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Abstract

This thesis deals with the energy management problem of series hybrid electric

vehicles (HEVs), where the objective is to maximize fuel economy for general driving.

The work employs a high-fidelity model that has been refined to deliver appropriate

level of dynamics (for the purposes of this research) at an acceptable computational

burden. The model is then used to design, test and study established conventional

control strategies, which then act as benchmarks and inspiration for proposed novel

control strategies.

A family of efficiency maximizing map strategies (EMMS) are developed based on a

thorough and holistic analysis of the powertrain efficiencies. The real-time variants

are found to deliver impressive fuel economy, and the global variant is found to out-

perform the conventional global benchmark. Two heuristic strategies are developed

(exclusive operation strategy (XOS) and optimal primary source strategy (OPSS))

that are found to deliver significantly better fuel economy results, compared to con-

ventional alternatives, and further desirable traits. This is found to be particularly

related to the better use of modern start stop systems (SSSs) that has not been

considered sufficiently in the past.

A global heuristic strategy (GHS) is presented that successfully outperforms the

conventional global benchmark without any particularly complex analysis. This

exposes some of the limitations of optimization-based techniques that have been

developed for simple vehicle models. Lastly, the sensitivity of the performance of the

control strategies has been studied for variations in tuning accuracy, SSS efficiency,

vehicle initial conditions, and general driving conditions. This allows a deeper insight

into each control strategy, exposing strengths and limitations that have not been

apparent from past work.
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Introduction

1.1 Rationale

The world is facing tremendous challenges ahead: CO2 levels are alarmingly high

and are steadily rising; consumption of the finite supply of oil is increasing; and world

energy consumption is unreservedly on the rise. These issues are critically relevant

in addressing the threat of climate change, which is by many seen as the greatest

challenge for this generation. A concerted push by NGOs, scientists and activists

has seen these challenges receive an increasing amount of attention from regulators,

industry and consumers. In particular, the personal transport industry has been

recognized as a major area of improvement. Since the 1970s the greenhouse gas

(GHG) emissions from transport have doubled, and the rapid adoption of personal

vehicles in India and China has made the necessity of sustainable transport more

urgent.

An essential step towards addressing these stated problems has to be a reduction

of energy consumed by cars. Shifting from fossil fuels to electric energy is quite

useful, as the macro-level generation of energy is going to be more efficient than a

small engine in each car (even with consideration for the transmission of energy).

However, the average consumer is not willing to sacrifice the convenience of easy

and quick refueling for a limited gain in fuel economy. A balance can be found in

the design of hybrid electric vehicles (HEVs), which enjoys both the convenience

21
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and range (due to fuel density) from engines, and the cleaner and cheaper energy of

electric motors.

This pursuit of HEVs has seen commercial success for the past decade, with Toyota

and Honda leading the way at the turn of the millennium. However, there is an

ongoing effort to push for even better fuel economy from these vehicles and make

them more competitive. This can be done by refining the component design, choice

of materials and aerodynamics. However, an essential and cost effective measure is

to improve upon the supervisory control system (SCS) of the HEV, such that the

powertrain is operated more efficiently. The key decision for the SCS is to determine

how the load power should be split between the multiple energy sources of the

powertrain. There is scope to significantly improve the fuel economy of a vehicle at

some developmental cost but a negligible variable cost for each manufactured car.

The academic research in this field has been active for the past two decades and has

seen several significant developments. Tools and frameworks have been developed

that help the design, implementation or validation of SCSs. A majority of the

techniques being used recently are established concepts from other applications, such

as dynamic programming (DP), model predictive control (MPC), game theory (GT),

genetic algorithms (GA) and neural networks (NN). However, the research on control

of HEVs has seen the development of the equivalent consumption minimization

strategy (ECMS) and the concept of equivalent fuel consumption (EFC) which are

novel and powerful. This area of research is thus not simply applying old techniques

to new problems, but fundamentally developing new tools to address these new

problems.

However, a vast majority of the research so far has been done with quite simple static

models. The few publications that have experimental data often show a larger error

between simulation and experimental data, than between the various studied control

strategies. As the research community has pursued the more advanced control theory

concepts, it has often been at the expense of the model complexity and accuracy.

The validity of a control strategy will ever only be as good as the model it is tested

on. Also, with regard to heuristic or rule-based strategies (which are still dominant

in commercial HEVs) the research has been quite stagnant. The main heuristic

strategies are from the mid-1990s.
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Despite this being an active research topic, there has been several calls for further

research in this field. The IEEE Control Systems Society published a document

on the most important areas of research for control theory and control engineering,

and the SCS for HEVs was among the recommended focus areas [1]. Several recent

review papers on the control of HEVs have highlighted the stagnant nature of recent

work, and the need for control strategies to be designed and tested on more realistic

models [2, 3].

1.2 Scope and Objectives

This work builds on past work by Dr. Evangelou that has involved developing a

high-fidelity HEV model [4–6]. This model can be employed to test and analyze

the conventional control strategies from the literature, as well as to develop novel

control strategies. The richness of the model is expected to not only allow for more

reliable results, but to also expose different dynamics which lead to new control

requirements. Also, as the model is of a series architecture, it allows the study and

design of SCSs for series HEVs that have received less attention in the academic

literature than the parallel or power-split architecture.

The research conducted as part of this PhD, has involved a very wide range of

problems being studied. A significant portion of the research activity was on control

of through-the-road (TTR) parallel plug-in hybrid electric vehicles (PHEVs). This

research was done together with Prof. Meisel from Georgia Institute of Technology,

and has led to three publications [7–9]. However, being a PHEV, with a TTR

architecture, this research meant a very different control problem. The vehicle used

for that research was a hybridized Ford Explorer and the model was very different

as well. As such, it was considered best to limit the scope of this thesis to only my

work on series HEVs.

For the work on series HEVs, an additional fifteen projects were pursued together

with final year undergraduate and postgraduate students. This included: four

projects on controlling the voltage of the DC bus (some results being published

in [10]); four projects on modeling and controlling emissions; four projects on mod-

eling and controlling the battery health; two projects on optimal control; and one

project on model predictive control (MPC). The work on each of these research
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paths have evolved quite far over the past four years, mainly by the students them-

selves but with significant guidance from me. These work packages could have been

a chapter each, but they still have many remaining loose ends. This work will need

to be refined and consolidated at a later stage.

A few additional research paths were also explored, almost as a necessity to facilitate

the main objectives of this project. In particular, significant efforts were put into

refining the vehicle model that is at the core of this project. Some of these contri-

butions are mentioned in Chapter 2 where appropriate, but have not been expanded

upon in detail. This modeling work is being published in [6]. Quite related to this,

an efficiency study was done on the continuously variable transmission (CVT) used

in the vehicle model, which was published separately in [11]. This has not been

included in this thesis either.

Thus, this thesis will be exclusively focused on the supervisory control of series

HEVs with the objective to improve the fuel economy. The efficiency maximizing

map strategy 0 (EMMS0) has been previously published [12–14], but all the results in

this thesis are new and based on an updated model (from the past few months). Also,

the control strategy has been evolved further, which will be presented as EMMS1

and EMMS2 in Chapter 4. Similarly, the exclusive operation strategy (XOS) in

Chapter 5 is being published in [15] but the results in this thesis have been updated.

The approach has been to reimplement and resimulate all past work to ensure that

all results are obtained for the same vehicle model, thus allowing valid comparison.

The main objectives of this thesis can be stated as follows:

1. To employ a high-fidelity HEV model that is suitable to test control strategies

2. To study and learn from existing work on control strategies

3. To design control strategies for HEVs based on analysis of the powertrain

4. To design heuristic control strategies that are suitable for modern HEVs

5. To expose the benefits of a high-fidelity model when testing control strategies

6. To understand the sensitivity of control strategies

These objectives can in order loosely be associated with each of the chapters from

Chapter 2 to Chapter 7.
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1.3 Outline

This thesis will begin by describing the vehicle model, which will be used throughout

the rest of the thesis. Thereafter the conventional strategies from the literature will

be described and a few will be implemented into Simulink. This will be followed by

the design of a family of novel control strategies that aim to maximize the powertrain

efficiency. The insights gained from these strategies, as well as the conventional

strategies, will be used to design two novel heuristic strategies, which are found to

perform well. The remarkable performance of the heuristic strategies will lead to a

discussion about the nature of global optimal solution for HEVs and their reliability.

Finally, a sensitivity study will be done to test the various designed strategies. Each

chapter is described briefly below.

Chapter 2 The modeling of the powertrain components are described together

with their interconnection. Emphasis is given on core operational behavior related to

the efficiency and performance of the components, as well as the significant changes

and updates from the original model. Simulation methods and how they are applied

within latter chapters of the thesis are also introduced and clarified.

Chapter 3 The conventional strategies are introduced by a brief literature review,

covering separately the heuristic strategies, the real-time optimization-based strate-

gies and the global optimization-based strategies. This is followed by the description,

tuning and implementation of three conventional control strategies: thermostat con-

trol strategy (TCS), power follower control strategy (PFCS) and global equivalent

consumption minimization strategy (GECMS).

Chapter 4 A family of control strategies are developed, with the objective of max-

imizing powertrain efficiency. The powertrain efficiency is analyzed, which includes

the use of replenishing efficiencies to consider the battery usage more holistically.

Based on the definition of the replenishing efficiencies, three different real-time con-

trol strategies are developed: EMMS0, EMMS1 and EMMS2. These outperform the

conventional rule-based strategies and approach the GECMS performance. A global

version of the developed strategies, GEMMS, is found to be more effective than the

GECMS.
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Chapter 5 Insights from past control strategies are discussed and formalized into

design principles, which are then used to design two distinct heuristic strategies: the

exclusive operation strategy (XOS) and optimal primary source strategy (OPSS).

Both of these are found to deliver good performance, with the latter approaching

the fuel economy realized by GECMS.

Chapter 6 The impressive performance of OPSS is developed further with the

global heuristic strategy (GHS), which allows two tunable parameters with advance

knowledge of the driving cycle. This heuristic strategy is found to outperform the

GECMS and GEMMS by a significant margin. The causes for this unexpected result

are explored and its impact on the wider body of work is discussed.

Chapter 7 The sensitivity of the real-time strategies presented in this work is

studied. This includes the sensitivity of the strategies to: correct tuning; effective-

ness of the start stop system (SSS); initial conditions of the battery; and changes

in driving cycle. It is found that the proposed novel strategies are more suitable for

modern HEVs with good SSSs.

Chapter 8 Conclusions are made for the whole thesis and contributions are sum-

marized. This is followed by an outline of future directions for this research.
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Vehicle Model

The vehicle model used in this work is based on work by Dr. Evangelou and Dr. Shukla

[4–6]. When referring to earlier versions of the model, this work will often refer to

Model0 and Model1. Model0 refers to the model inherited at the start of this re-

search (September 2012), and is documented in [4]. Model1 refers to an improved

model, which has been used for most of the past publications during this research,

and is documented in [6]. However significant changes have been made since Model1

for the work presented in this thesis that will be discussed in this chapter.

The vehicle model represents a general-purpose passenger car with a series hybrid

powertrain as shown in Fig. 2.1. This dynamic model is capable of realistic transient

response in the frequency range appropriate for standard driving. The powertrain of

the vehicle comprises three branches: the Propulsion Load (PL), which is an inverter

driven Permanent Magnet Synchronous Motor (PMSM), mechanically connected to

the wheels of the car via a continuously variable transmission (CVT); the Primary

Source of energy (PS) which consists of a turbocharged 2.0L diesel internal com-

bustion engine (ICE), mechanically coupled to a Permanent Magnet Synchronous

Generator (PMSG) which is electrically connected to a three-phase rectifier; and the

Secondary Source of energy (SS) which contains a lithium-ion battery connected to a

bi-directional dual active bridge DC-DC converter. Regenerative braking is possible

by the PMSM behaving as a PMSG while capturing the kinetic energy from the

wheels and converting it to electrical energy, which then gets stored in the SS.

27
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Figure 2.1: Overall structure of the series HEV model. Thin and thick arrows cor-
respond to electrical and mechanical energy flow respectively, while the direction of the

arrows shows the direction of the flow.

The PL is powered by the PS and SS, all connected to a common DC bus through

which energy transfer takes place, giving

PPS + PSS = PPL, (2.1)

where PPS and PSS are the output powers of the PS and SS respectively, and PPL is

the load power requested by the PL. Given the power ratings of the components, the

PS and SS are constrained to operate within their rated limits, which are defined to

be PPS ∈ [0, 58] kW and PSS ∈ [−21, 42] kW.

The vehicle also includes a supervisory control system (SCS) that manages the power

split of the powertrain by following a control strategy (of which the design is the

main focus of this work). In parallel with the SCS, the powertrain makes use of

a start-stop system (SSS) that enables the ICE to be switched off to reduce idling

losses. These kinds of systems are becoming standard in commercial vehicles and

significantly improve the fuel economy.

This chapter will provide some background on hybrid vehicles before describing the

component models of the PL (car dynamics, PMSM, inverter and CVT), PS (ICE,

PMSG and rectifier) and SS (battery and DC-DC converter), and then describing

their interconnection and overall control (including the use of a SSS). Lastly, the

applied methods of simulations will be discussed.
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2.1 Background

2.1.1 Brief History

There have been several historical attempts to bring HEVs to the market, with lim-

ited success. The first HEV, the Lohner-Porsche of 1900 , was a series HEV designed

by Ferdinand Porsche. It was impressive, but too expensive for popular consump-

tion. A revival in the 1970s seemed imminent, following the Arab oil embargo of

1973 which resulted in a hike in fuel prices. The pioneering work of Victor Wouk,

who has been called the “godfather of the hybrid”, saw several promising hybrid

prototypes developed but would eventually be controversially stopped by the US

Environmental Protection Agency. The American car industry would thereafter not

pursue any further hybrid technology, and with the exception of a few European

projects (by Audi and Volvo) the technology would enter a long hiatus.

The true HEV revival occurred in the late 1990s when the Japanese car manufac-

turers produced affordable, efficient and practical HEVs. The Toyota Prius was

the first mass-market hybrid to be launched in 1997 (originally in only Japan), and

Honda Insight was first to the American market in 1999. There has since then been

an effort by most major manufacturers to include HEVs in their vehicle fleet, but

Toyota remains the leader as they now sell more than 1 million new hybrid cars

each year (in a world where global total accumulated sales for all hybrids reached

10 million just this year).

2.1.2 Electrification

As cars are becoming more electrified, there is a large range of possible arrangements,

and degrees of electrification. The closest to a conventional car would be a mild

hybrid which only has a small motor to enable quick restarts of the car, allowing the

engine to be switched off rather than waste fuel idling. They may also be capable

of recovering energy through regenerative braking, further improving fuel economy.

Hybrids with a larger hybridization factor (relative size of the motor to the engine),

are referred to as full hybrids (or strong hybrids) and make much more use of the

electric motor even during normal driving. These can typically operate in pure

electric mode during low-speed urban driving.



30 Chapter 2

The next level of electrification is a hybrid which has a larger battery and can be

charged from the electric grid. These plug-in hybrid electric vehicles (PHEVs) are

often operated in pure electric mode most of the time, but use the engine as a

back-up option in case the battery is approaching depletion. However, it is also

possible to use the engine and the motor in a blended mode at all times. This latter

approach tends to be optimal only for longer journeys. The fact that electric energy

is available from the grid is a fundamental difference from ordinary HEVs, where

even the electric energy of the battery has to come from either direct charging by

the engine or through regenerative braking.

Lastly the pure electric vehicle (EV), also often called battery electric vehicle (BEV),

is a fully electrified vehicle. The engine has been removed from the PHEV and the

battery capacity is typically increased, to allow for a decent range. Although, the

EV is considered the most environmental friendly (zero emissions, and no fossil fuel

consumption), it is still not considered cost effective. Also, if the battery runs out

of charge, a significant amount of recharge time is required.

According to experts, and judging by adoption trends, the electric vehicles are still

not ready for the mass-market. Significant innovation in battery technology will be

required for the battery capacity to increase, and for recharge times to be more palat-

able. Also, the charging infrastructure is developing fast but is still not widespread.

PHEVs on the other hand have been gaining traction and are expected to overtake

the conventional HEVs, which are by many seen as a stepping stone towards further

electrification.

It is worth mentioning that hybrid powertrains are not limited to electric motors and

engines. A significant amount of research is happening in the area of fuel cell electric

vehicles (FCEVs), which uses compressed hydrogen to produce energy by reacting

with oxygen, resulting in only heat and water as by-products. Also, fuel cells have

been shown to be more efficient than combustion engines. However, there are major

challenges for mass-market adoption, including the requirement of completely new

infrastructure to allow refueling of hydrogen. A handful of commercial FCEVs are

currently available, but are practically limited to a few select regions with developed

hydrogen infrastructure.
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2.1.3 Architectures

Series

A HEV with a series powertrain is sometimes referred to as a range-extended elec-

tric vehicle. This reflects the fact that it can be operated purely as a BEV, with

the battery powering the motor to drive the wheels. Although such operation (with

no emissions) is great during urban driving, the battery offers a limited range for

highway driving. This is addressed by the series architecture with an internal com-

bustion engine (ICE) connected to a generator that can either charge the battery

or power the motor driving the vehicle. Due to the high energy density of fuel, this

addition greatly benefits the range of the vehicle. The fact that the ICE is not me-

chanically connected to the wheels decouples the engine speed from the wheel speed,

allowing the ICE to operate at its optimal point persistently. Furthermore, it allows

the ICE to be located flexibly and simplifies packaging, as it is unconstrained by

any mechanical connections. Also, as the motor singlehandedly provides the torque

for the propulsion of the vehicle, both transmission and control can be kept quite

simple.

However, these benefits come at the expense of an additional electrical machine. The

generator not only adds to weight, bulk and cost but also introduces another stage

of energy conversion. The mechanical energy of the ICE is converted to electrical

energy by the generator before being reconverted to mechanical energy by the motor

to drive the wheels. These conversions are particularly significant during sustained

highway driving. Lastly, as the series powertrain is solely powered by the motor,

it needs to be sized for peak power requirements. Additionally, both the ICE and

generator need to be sized for maximum sustained road load to allow full battery

redundancy. Consequently the series powertrain is quite bulky, and mainly suitable

for heavy and large vehicles. However, as components are becoming more compact,

the architecture is becoming more attractive.

Parallel

As the name suggests, a parallel powertrain allows the HEV to be propelled by the

ICE and motor in parallel, simultaneously. This not only eliminates the need of a

generator, but also reduces size of ICE and motor due to the synergistic operation.
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This power share also improves performance, as both ICE and motor can provide

propulsion during heavy acceleration. The direct connection between the ICE and

the wheels (through transmission) avoids the conversion losses associated with the

series architecture, and it thus offers superior efficiency for sustained highway driv-

ing.

However, the mechanical connection between the ICE and the wheels couples their

speed through finite number of gear ratios, limiting the ICE efficiency. This is partic-

ularly significant during urban driving when both requested power and wheel speed

vary across a wide range. The parallel architecture faces more complicated control

and transmission compared to the series architecture as it requires torque blend-

ing. There are many approaches to connecting the ICE, motor and transmission

system so the parallel architecture is often sub-categorized into pre-transmission,

post-transmission and through-the-road configurations.

Pre-transmission In the pre-transmission configuration, both the motor and ICE

are located before the transmission system. This allows the ICE to drive the motor

like a generator (as with regenerative braking) to charge the battery, even during

stand-still. More importantly, as the motor is driven at a higher speed than the

wheels, it can operate at a lower torque which results in a smaller sized motor.

However, it also means that the ICE and the motor have to operate at the same

speeds as they both share the same transmission system. This configuration is

primarily used in mild hybrid passenger cars.

Post-transmission In the post-transmission configuration, the motor is coupled

to ICE branch after the transmission system. Therefore the power is delivered to and

from the motor without suffering transmission losses, and the transmission system

is kept relatively simple. However, with the motor coupled to the wheels, it must

be specified to operate across all vehicle speeds. Consequently, it is also required to

operate at higher torques, resulting in a larger sized motor. It is therefore typically

used in full hybrids of passenger cars and light-duty trucks.

Through-the-road As the previous two configurations have the ICE and motor

driving the same axle in the vehicle, they have to use speed or torque couplers to

connect the power flow of the ICE and motor. Through-the-road is an alternative
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configuration where the motor and ICE are acting on separate axles, avoiding any

kind of direct coupling. Instead, the road acts as a speed coupling device, fixing

both sets of wheels to the same rotational speed, enabling power flow from the ICE

to the motor/generator. This configuration has a low mechanical complexity, with a

simple transmission, no coupling device and is essentially identical to a conventional

powertrain for one of the axles. It is therefore very suitable for hybridization of

conventional vehicles. Also, it benefits from improved traction due to the four-wheel

drive. However, consequently, it requires more complex control as the two axles are

driven simultaneously by two indirectly coupled machines.

Split power

The increasingly popular split power architecture delivers the benefits of both the

series and parallel architectures. It decouples the ICE speed from vehicle speed,

but still allows some of the ICE power to transfer mechanically to the wheels. Such

operation enables the split power powertrain to perform efficiently in urban as well

as highway driving conditions.

These benefits come at the expense of complexity. Not only does it require an

additional electrical machine (like the series architecture) but it also needs a power

split device, typically a planetary gear set, which couples the ICE, the motor, the

generator and the transmission shaft. This adds weight, bulk, cost and complexity

(mechanical as well as control). There are many configurations of this architecture,

which have evolved from the single-mode of Toyota Prius to the latest three-mode

configuration of GM Volt. The increasing complexity is pushing the boundary of

realized efficiency across wide ranges of operation, but again it is at the expense of

bulk and cost as multiple planetary gears and other components are required.
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2.2 Propulsion Load

As mentioned, the PL comprises the car dynamics, PMSM, inverter and CVT. Each

of these will be briefly described and discussed in this subsection, with emphasis on

the differences from previous versions of the model.

2.2.1 Car dynamics

This work is mainly focused on the control of the powertrain, but this necessitates a

sufficiently accurate model of not only the powertrain but also the car response. The

modeled car describes the longitudinal vehicle dynamics and employs a mechanical

multibody system model based on [16]. The constituent masses are introduced in

a tree structure with the freedoms and forces between them specified. Thus the

main body of the vehicle is allowed forward and vertical translation, and pitch

rotation. The front and rear hub carriers are attached to it with vertical translation

freedoms, with their motion restricted by spring and damper suspension forces. The

model also has spinning wheels attached to the hub carriers. The rear wheel is

connected via a crown wheel and pinion, and a CVT to the motor shaft. The model

employed here includes also aerodynamic lift and drag forces which are proportional

to the square of the speed. The tires are treated as vertically compliant, with

associated spring and damper forces, and the tire longitudinal force is generated

from normal load and longitudinal slip using standard ‘magic formulas’ [17]. Tyre

rolling resistance proportional to tire normal load is also included. The vehicle

is decelerated by regenerative braking only, via the rear wheels and transmission,

and the useful energy is captured. The parameter values used in the model are

representative of a contemporary European family saloon and are taken from [16]

where the total mass is 1475.6 kg, the pitch inertia is 2152.1 kgm2, and the drag

coefficient is 0.35. Further vehicle parameters are presented in [6]

Model0 and Model1 implemented these vehicle dynamics in LISP with the multi-

body modeling code VehicleSim R©, formerly called Autosim [18]. The VehicleSim

model was then imported into the Simulink environment as an S-Function. However,

this implementation was restrictive in several aspects. Any change to the vehicle

dynamics (including the CVT, which used to be implemented in VehicleSim as well)
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required changes to the VehicleSim code, followed by stages of compiling and in-

tegration with the remaining Simulink vehicle model. Having the model split up

between Simulink and VehicleSim also increased computational load, resulting in

slower simulations. Furthermore, the use of an imported S-function prohibited the

use of simulation accelerators within Simulink that can potentially reduce simula-

tion time into a fraction of the original. Therefore, all of the car dynamics were

reimplemented in Simulink directly, using the SimMechanics library.

2.2.2 Permanent Magnet Synchronous Motor

The model uses a surface mounted PMSM, which offers a high torque-to-inertia ratio

and power density. It is a 3-phase system with a star-connection to the inverter that

links it with the DC bus of the powertrain. However, rather than dealing with

the three phases individually, the model converts these into a standard 2-phase

d-q rotating reference system, using the non-power-invariant Park Transform [19],

greatly simplifying its control. The resulting nonlinear coupled differential equations

for the electrical dynamics of the PMSM [19] are thus as follows:

didm
dt

= (vdm −Rmidm + ωsmLqmiqm)/Ldm, (2.2)

diqm
dt

= (vqm −Rmiqm − ωsm(Ldmidm + λfm))/Lqm, (2.3)

where idm and iqm are the d- (direct) and q- (quadrature) axis components of stator

current, vdm and vqm are the d- and q-axis components of stator voltage, and Ldm and

Lqm are the d- and q-axis stator inductances. The electromagnetic torque produced

by the motor is given by [19]

Tem =
3

2
pm (λfmiqm + (Ldm − Lqm)idmiqm) (2.4)

which in the case of Ldm = Lqm (surface-mounted PMSM) is simplified to

Tem =
3

2
pmλfmiqm. (2.5)

This torque is reduced by a friction torque, Tfm, to produce a load toque, Tlm,

according to

Tlm = Tem − Tfm. (2.6)
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Table 2.1: Parameter values for friction torques Tfm (and Tfg)

Constant Value

a1 10
a2 4
a3 0.3
p0 1.779
p1 −1.116× 10−2

p2 1.307× 10−4

p3 −1.321× 10−6

p4 6.699× 10−9

p5 −1.300× 10−11

p6 8.685× 10−15

Table 2.2: Parameters for PMSM (and PMSG)

Parameter Symbol Value

Nominal rated power Pn 75 kW
Maximum speed ωn 5000 rpm
Stator resistance R 0.04Ω
D-axis stator inductance Ld 0.20mH
Q-axis stator inductance Lq 0.20mH
Rotor magnetic flux λf 0.125Wb
Moment of inertia J 0.05 kgm2

Number of pole pairs p 6

The proposed friction torque is identified to be a function of rotor speed as follows

Tfm =
2

π
tan−1(a1mωrm) ·

(

a2m exp(−a3mωrm) +
6
∑

i=0

pimω
i
rm

)

(2.7)

with parameter values given in Table 2.1. Tlm is applied on the rotor shaft that is

connected to the car transmission, thereby driving the car forward. Therefore, Tlm

is an output of the motor model and an input to the transmission model of the car,

while the rotor speed, ωrm, is calculated in the transmission model of the car and

fed back to the motor as an input.

The remaining parameter values for the PMSM are given in Table 2.2. The basis

of this selection is the EVO Electric AFM-140 motor [20]. The chosen parameters,

together with the tuned friction torque, are found to deliver a qualitatively correct

representation of the efficiency based on experimental results from the manufacturer.

The PMSM efficiency is presented in Fig. 2.2.
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Figure 2.2: PMSM steady-state power efficiency map for variations in load torque, Tlm,
and rotor speed, ωrm for the PMSM model. As only forward vehicle motion is of interest,
the rotor speed is always non-negative and the PMSM can operate in two quadrants: a)
positive Tlm (motoring) and b) negative Tlm (regenerating). The contours correspond to

constant efficiencies in the range 75%-96%.

2.2.3 Inverter

The PMSM is connected to the DC bus through a bi-directional inverter (operating

as a rectifier during regenerative braking). This component is described with an

averaged model. The converter switches are first treated like voltage and current

sources, making the circuit topology time-invariant, before averaging the signals.

The negligible (for the purposes of energy management of the overall powertrain)

high frequency switching harmonics are thus removed, balancing precision with com-

putational load. The resulting average model of the PWM inverter in the d-q frame

is described by the following equations [21, 22]:

i′PL =
3

2
(dqmiqm + ddmidm), (2.8)

vdm = ddmvdc, (2.9)

vqm = dqmvdc, (2.10)
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in which vdc is the DC-link voltage, i′PL is the modified (before inverter losses are

applied) DC current drawn by the inverter from the DC-link, and ddm, dqm are

continuous duty cycle functions in the d- and q-axis respectively.

Model0 and Model1 used a constant efficiency term for the inverter (ηinv = 95%).

However, unlike the assumption of using an averaged model, this choice does im-

pact the overall energy flow of the powertrain. Therefore, additional dynamics are

included to consider the conduction and switching losses of the inverter based on

the work in [23]. The conduction losses of the inverter are given by [24, 25]:

Pcond = 6

(

ipkvf0

(

1

2π
− M

8

)

+ i2pkrf

(

1

8
− M

3π

))

+ 6

(

rcei
2
pk

(

1

8
+

M

3π

)

+ vc0ipk

(

1

2π
− M

8

))

, (2.11)

where ipk is the peak AC current from the inverter, vf0 is the diode forward voltage

corresponding to zero current, rf is the diode forward resistance, rce is the IGBT

(insulated-gate bipolar transistor) collector emitter resistance and vc0 is the IGBT

forward voltage corresponding to zero collector current. The switching losses of the

inverter are given by [25]:

Psw = 6
fivdcipk
vref irefπ

(Eon,ref + Eoff,ref + Err,ref ) (2.12)

where fi is the switching frequency (carrier signal frequency) of the inverter; Eon,ref

and Eoff,ref are the reference IGBT turn on and turn off energy losses respectively;

vref and iref are the voltage and current respectively at which reference energy loss is

measured; and Err,ref is the reference diode reverse recovery energy loss. Reference

values are obtained from the device datasheet of Infineon for FS150R12KT4 [26].

The dynamic efficiency expression of the inverter is implemented as

ηinv =











i′PLvdc
i′
PL

vdc+Pcond+Psw
i′PL ≥ 0

i′PLvdc+Pcond+Psw

i′
PL

vdc
i′PL < 0

, (2.13)
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Figure 2.3: Inverter efficiency for varying values of propulsion load.

which can also be expressed more simply as

ηinv =











PPL−Pcond−Psw

PPL
PPL ≥ 0

PPL

PPL−Pcond−Psw
PPL < 0

. (2.14)

The simulated steady state inverter efficiency is presented in Fig. 2.3, where it can

be seen to gradually rise towards about ηinv = 97%. The efficiency is however quite

low at very low power loads. The efficiency dynamics are very symmetrical, so a

similar but mirrored profile is applied during regenerative braking when the inverter

is engaged in AC to DC conversion. However, note that this steady state efficiency

map is only included for illustrative purposes. The actual inverter model deals with

transients and is dependent on the state of the vehicle (mainly PMSM rotor speed

ωrm).

2.2.4 Continuously Variable Transmission

Lastly, the model uses a toroidal CVT to connect the PMSM to the wheels. The

stepless gear ratios offered by the CVT enables the PMSM to rotate at its optimum

speed while driving the wheels of the car at any speed. This is done by defining the

appropriate final drive ratio N , as ωrm = Nωwc (where ωwc is the rotational speed

of the wheel). However, this is compromised to some extent due to the fine range of

final drive ratios that are realizable (N ∈ [1.47, 10.67] in this work).
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The CVT control strategy pursued is to operate it in a straight line through the

PMSM torque-speed map such that

T ′

lm = kCV T ωrm, (2.15)

in which kCV T is a constant and T ′

lm is the PMSM load torque after the CVT losses.

This is not only easy to implement but also allows the line of operation to intersect

with the most efficient region of the PMSM. This is realized by setting the reference

final gear reduction ratio to:

Nref =
|T ′

lm|
kCV T ωwc

. (2.16)

Here Nref is the total (requested) gear reduction from the motor shaft to the rear

wheels of the car (N = Nref in steady-state).

The dynamic response of the CVT is characterized by a first order lag with a cor-

responding time constant, τ , of 200 ms [27]. The CVT losses are simplified to be

expressed as a constant efficiency of ηCV T = 93%, which was found to be the average

efficiency for a toroidal CVT [28–31]. The CVT model is shown in Fig. 2.4.

x

Losses

Ratio 1
sτ+1

ωwc

Tlm

T ′

lm

Nref N

ωrm

Figure 2.4: CVT implementation block diagram, with Ratio defined in Eq. 2.16 while
Losses is the application of a constant ηCV T = 93%.
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2.3 Primary Source

The PS consists of three components: an internal combustion engine (ICE), a Per-

manent Magnet Synchronous Generator (PMSG), and a three-phase rectifier. Each

of these will be described here, together with some analysis of the PS as a whole.

2.3.1 Internal Combustion Engine

The ICE is the main energy source of the HEV, and the only source of a conven-

tional vehicle. It converts the chemical energy of the fuel into mechanical energy to

power the propulsion of the vehicle. The ICE model in the work represents a tur-

bocharged 2.0L Puma diesel engine. It is based on mean-value torque maps for the

engine cylinders, turbocharger turbine and turbocharger compressor, but includes

dynamics for the filling and emptying of the inlet and outlet manifolds; the inter-

action of engine and turbocharger inertia; and fuel-injection valve dynamics. These

dynamics consider the pressures, temperatures and mass flows through the various

parts of the engine. As such, this model can partly capture transient dynamics

that are essential for the application of HEVs, where the operating state changes

from one second to another. This is in contrast to other vehicle models that will

typically use static look-up tables for either fuel consumption or engine efficiency.

The ICE model used thus allows a more accurate representation of a real engine.

Furthermore, the steady-state operation of the model have been validated against

Ricardo WAVE full computational fluid dynamics (CFD) model simulation results,

which were previously validated against experimental results. This model has been

fully detailed in [4].

The ICE model used in this work has implemented a few significant changes from

Model0. The initial fuel injection constraints were restricting the ICE to operate

with a maximum power rating of 42 kW, which is lower than the validated region

of operation and the maximum rating of the Puma 2.0L engine. These constraints

have therefore been eased, such that the ICE can operate up to PICEmax = 64.7 kW.

In fact, the constraint has been made a function of the reference PS power PPSref

such that higher reference loads to the ICE allows higher fuel injection. The key

purpose of this is to avoid open throttle fuel injection during sudden changes from
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Figure 2.5: BSFC of ICE, BSFCICE (g/kWh), for varying ICE power demand and
engine speed. Minimum is marked with a cross.

very low to low power requirements. As part of these changes, the PID control (with

anti-windup) for the fuel-injection has been retuned as well.

The brake specific fuel consumption (BSFC) of the ICE is defined as

BSFCICE =
ṁfuel

PICE

, (2.17)

where ṁfuel is the mass rate of fuel consumption and PICE is the output power of

the ICE that is defined as

PICE = TICEωICE, (2.18)

where ωICE is the engine speed (in rad/s) and TICE is the output torque of the ICE.

To determine the BSFC at various operating points, the ICE model is simulated

for PICE ∈ [0, PICEmax] kW in 0.1 kW steps and ωICE ∈ [800, 3200] rpm in 10 rpm

steps. The resulting BSFC map is presented in Fig. 2.5. It can be seen that the

minimum BSFC (marked with a cross in the figure) is found in the island around

ωICE = 1620 rpm and PICE = 25.2 kW. The envelope of the efficiency map is

determined by feasibility of the ICE. The omitted data points at very low power

requirements are either not operationally feasible or the model is not validated in

that range. Furthermore, the engine has an internal control constraint for the air fuel

ratio that essentially limits the power output at any engine speed (the uppermost

diagonal limit), in order to reduce emissions [5].
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2.3.2 Permanent Magnet Synchronous Generator

The ICE is connected to a PMSG, which is based on the same equations and pa-

rameter values as the PMSM in Section 2.2.2. However, it is only operated with a

negative torque. Thus, the energy flow is reversed and the machine converts me-

chanical energy to electrical energy (similar to the regenerative braking case of the

PMSM). The efficiency of this process is given by

ηg =
3
2
(vqgiqg + vdgidg)

TICEωICE

, (2.19)

where vdg, idg, vqg and iqg represent d-q voltages and currents respectively corre-

sponding to the three-phase output of the PMSG. The efficiency plot of the PMSG

is presented in Fig. 2.6. Note that the output power is expressed as a negative value,

due to the aforementioned negative torque convention.

In Model0 and Model1 the PMSG was sized at 95 kVA, due to legacy reasons.

However, as the PMSG is connected to an ICE barely capable of 65 kW, the PMSG

was clearly oversized. Therefore, the old PMSG has been reduced, and now employs

the same machine as is used for the PMSM (with parameters given in Table 2.2).

This should be beneficial when the project is expanded to include hardware-in-the-

loop simulations.

While the PMSM rotor shaft was connected to the wheels through a CVT, the

PMSG connects to the ICE through a fixed gear ratio G, such that ωrg = GωICE. In

this work G = 1.2 is used, as it was found to deliver improved overall efficiency (the

efficient ICE operation island around ωrg ∈ [1600, 1800] rpm is matched up with

the efficient PMSG operation around ωICE ∈ [1900, 2150] rpm). The mechanical

dynamics of this connection are given by

GTICE +G2(Teg − Tfg) = (JICE +G2Jg)
dωrg

dt
, (2.20)

with TICE the mechanical torque applied by the ICE on its inertia, Teg the elec-

tromagnetic torque applied by the PMSG on its shaft, Tfg the friction torque in

the generator, and JICE and Jg the moments of inertia of the ICE and generator

respectively.
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Figure 2.6: PMSG steady-state power efficiency contours ηg (%) for varying output
power and rotor speed.

2.3.3 Rectifier

Lastly, the energy flows through the rectifier, which is modeled identically (with con-

duction and switching losses) to the inverter in Section 2.2.3, as opposed to the fixed

efficiency model in Model0 and Model1. However, the expression for the rectifier

efficiency is not the same as that of the inverter in Eq. 2.13 as the rectifier operates

in a single direction and the PMSG makes use of the negative sign convention, but

the PS does not. The rectifier efficiency is thus implemented as

ηrec =
i′PSvdc − Pcond − Psw

i′PSvdc
, (2.21)

which can also be expressed more simply as

ηrec =
PPS

PPS + Pcond + Psw

, (2.22)

which is the ratio between the input power of the DC link to the output power of

the PMSG.

The simulated rectifier efficiency is presented in Fig. 2.7. Unlike the inverter effi-

ciency in Fig. 2.3, the rectifier achieves good performance even at very low loads.

As the efficiency is indirectly dependent on the rotor speed of the connected ma-

chine, the rectifier always enjoys high-speed operation with the engine-generator set

(which always operates at ≥800 rpm). However, as the PMSM is delivering low
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Figure 2.7: Rectifier efficiency for varying values of PS power.

loads, or the wheel speed is very low, the inverter experiences quite inefficient oper-

ation. Furthermore, the correlation between the rectifier efficiency and the operating

engine speed is clearly visible when comparing the profile of the rectifier efficiency

in Fig. 2.7 with the profile of the operating engine speed for varying PPS in Fig. 2.9

later in this section.

2.3.4 Overall Operation

As each component of the PS has been modeled, the combined operation can be

analyzed to determine the optimal operating points. This analysis and optimization

was originally performed as part of the EMMS in Chapter 4 but was later adopted

for all strategies. It is therefore briefly presented here.

By considering the ICE, PMSG and rectifier together, the BSFC of the PS can be

expressed as

BSFCPS(PPS, ωICE) =
ṁfuel(PPS, ωICE)

PPS

, (2.23)

in which PPS is the PS power flowing to the DC-link. Thus, for any given PPS the

BSFC of the PS can be determined by measuring the fuel rate ṁfuel. This is done

for PPS ∈ [0, PPSmax] with ωICE ∈ [800, 3200] rpm to produce the BSFC map in

Fig. 2.8. It demonstrates that the PS is generally more efficient at higher levels

of power demand and medium speeds. Note that the minimum BSFC is found at

20.1 kW at 1870 rpm and is marked with a cross in the chart. This point has moved
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Figure 2.8: BSFC of PS, BSFCPS (g/kWh), for varying PS power demand and engine
speed. Minimum is marked with a cross.
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Figure 2.9: Look-up profile for preferred engine speed for varying power requirements
of the PS.

to a higher speed and lower power as compared to the optimal BSFCICE due to the

efficiency profiles of the PMSG and rectifier.

It can be noted that BSFCPS in Eq. 2.23 is a function of ωICE as well as PPS.

However, with the obtained BSFC map in Fig. 2.8 we can now determine the optimal

ωICE for a given PPS such that BSFCPS is minimized (with some adjustments to

ensure smooth transitions). This relationship, as shown in Fig. 2.9 is independent of

any choice by the SCS and can therefore be used in the optimization problem later.
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Figure 2.10: Steady-state fuel consumption for varying power requirements of the PS.

With ωICE(PPS) defined, the expression for BSFCPS can simply be expressed as

BSFCPS(PPS) =
ṁfuel(PPS)

PPS

, (2.24)

Consequently, the control problem of the powertrain is reduced by one degree of

freedom and the steady state fuel consumption of the PS can be treated (neglecting

transient behavior) as a one-dimensional look-up table for control purposes, as shown

in Fig. 2.10. Note that the vehicle model is still using the full dynamics of the engine

model, and this fuel consumption profile is only to be used for control designs in

later chapters.
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2.4 Secondary Source

2.4.1 Battery

The Li-ion battery model in this work is based on the battery model from the

SimPowerSystems library in Simulink that has been described in [32, 33]. It uses

the physical parameters of the battery in electrochemical equations to describe the

battery dynamics. It is able to capture the generic dynamic response of a Li-ion

battery. The battery voltage is defined as

vbat = Ebat −Rbat · ibat (2.25)

where Rbat is the battery internal resistance and ibat is the average current drawn

from the battery. The open circuit voltage Ebat is given by

Ebat =

{

E0 − Qmax·K1Q

Qmax−Q
− Qmax·K2i

∗

bat
)

Qmax−Q
+ A exp(−B ·Q) i∗bat ≥ 0

E0 − Qmax·K1Q

0.1Qmax+Q
− Qmax·K2i

∗

bat
)

Qmax−Q
+ A exp(−B ·Q) i∗bat < 0

(2.26)

where Q represents the consumed charge and the i∗bat variable is a filtered version of

ibat flowing through the polarization resistance, and are defined as

Q = (1− SOCinit) ·Qmax +

∫ t

0

ibatdt (2.27)

i∗bat =
1

τrs+ 1
ibat, (2.28)

where ‘s’ is the standard Laplace variable. However, rather than considering the

absolute level of consumed charge Q, the key state variable of interest for the battery

is the state of charge (SOC) given by

SOC = 1− Q

Qmax

. (2.29)

Model0 and Model1 employed a battery with a maximum battery capacity of 20

Ah and nominal voltage of 215 V, with further parameters populated through the

experimental look-up tables provided by the Simulink library. This battery was then

operated within the range of PSS ∈ [−30, 30] kW. However, the battery has now been

resized and is based on a stack of Kokam SLPB11043140H cells (3.7 V and 4.8 Ah)
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Table 2.3: Parameter values of the Li-Ion battery

Parameter Symbol Li-Ion Battery

Rated capacity Qmax 14.4Ah
Nominal Voltage Vnom 296V
Initial state of charge SOCinit 65%
Battery constant voltage E0 320.6795V
Polarization constant K1 0.116V/(Ah)
Polarization resistance K2 0.116Ω
Internal resistance Rbat 0.2056Ω
Time constant for filtered current (i∗bat) τr 10 s
Exponential zone amplitude A 25.1477V
Exponential zone time constant inverse B 4.2404 (Ah)−1

[34], with three parallel connected modules of 80 cells in series, giving a nominal

voltage of 296 V and rated capacity of 14.4 Ah. This gives a power capacity of

4.26 kWh, which is practically identical to that of the old model. The power rating

of the battery is defined by limiting the battery to C ratings of 5 C during charging

and 10 C during discharging, which would correspond to Pbat ∈ [−21, 42] kW. For

simplicity, these have been applied as power ratings for the SS. The remaining model

parameters are found through the mentioned experimental look-up tables of the

Simulink library, and these have been summarized in Table 2.3.

The efficiency of the battery is conventionally based on charge and discharge cycles,

but this will not be done in this work. Instead, the aim is to express the charging

and discharging efficiencies separately. This will be done in Section 4.2.2.

2.4.2 DC-DC Converter

To connect the battery, which has a variable voltage, to the 700 V DC link requires a

bi-directional DC-DC converter. Model0 and Model1 utilized a half-bridge converter

based on the work in [35]. However, the model in this work has instead considered

a dual active bridge (DAB) converter (as shown in Fig. 2.12 in the next section).

This is based on the investigation and modeling in [23], which identified the DAB

architecture to be suitable. However, much of the modeling work, which required

in-depth modeling of the converter to assess its losses, is very detailed and thus too

heavy in terms of computational load for our purposes. Therefore, the dynamics of

the DC-DC converter model have been simplified. The main converting dynamic is
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Figure 2.11: DC-DC converter efficiency for varying values of load power.

governed by the following equation for the average power flow [36, 37]:

Pdcdc =
vbatvdcφ(π − φ)

2nπ2Ldcdcfdcdc
, (2.30)

where φ is the phase shift between the primary and secondary switch gating signals

of the DAB converter, determining the direction of power flow (positive phase shift

results in power flow from battery to DC link, and negative in the opposite direction);

n is the transformer turns ratio; Ldcdc is the primary referred leakage inductance of

the intermediate isolation transformer; and fdcdc is the switching frequency of the

DC-DC converter.

The model individually models the average current flows through the inductors,

capacitors, transistors (IGBTs) for a large set of operating modes. This is the most

computationally intensive part of the model. These signals are then used to compute

the conduction, switching and core losses of the transistors as well as component

losses for diodes and snubber capacitors. However, rather than employing the full

model, this work has first implemented the model and thereafter determined the

steady-state efficiencies at different loads through simulation. This data has been

used to produce a look-up table for the DC-DC converter efficiency as shown in

Fig. 2.11. It can be seen that the efficiency is very low at low loads but quickly rises

to peak around 96.4% for positive flow (at Pdcdc = 23 kW) and 95.4% for negative

flow (at Pdcdc = −28 kW). The efficiency is generally quite flat around 95%, but it

is clear that the SS should not be operated at very low loads.
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2.5 System Integration

This section describes the integration and control of the the PL, PS and SS branches;

the overall control by the SCS and SSS; as well as an overview of model time con-

stants and states.

2.5.1 Overall Powertrain

Each of the described branches (PL, PS and SS) of the powertrain are connected

together at the DC link, as shown in Fig. 2.12. This diagram illustrates the electrical

integration of the powertrain branches.
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Figure 2.12: The electric connection of the powertrain includes the PMSG, rectifier,
battery, DAB converter, inverter and PMSM. Symbols R, L and e represent phase resis-
tances, inductances and induced emfs; subscripts a, b and c correspond to the individual
phases; and subscripts g, m and ref correspond to ‘generator’, ‘motor’ and ‘reference’.
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Figure 2.13: Block diagram showing the interconnection of the ICE, PMSG, rectifier,
battery, DC/DC converter, inverter, PMSM, CVT and car, and the related control loops.

The DC link comprises a capacitor (Co = 3 mF) that is operated at a constant

voltage, with vdc,ref = 700 V, by controlling the power flowing from the SS into the

DC link. The voltage is governed by the standard capacitor differential equation:

iPS + iSS − iPL = Co

dvdc
dt

, (2.31)

where the directions of the currents involved are consistent with the direction of

power flow. For example, when iSS < 0 the battery is being charged and when

iPL > 0 the PMSM is being driven.

The powertrain is managed by controlling the converters. The inverter is controlled

such that the the forward speed of the car ucar is following the reference speed ucar,ref ,

defined by a specified driving cycle (discussed further in Section 2.6.1). This results

in the necessary energy being pulled from the DC link to power the propulsion of

the vehicle. The rectifier is controlled by the SCS which determines the reference PS

power PPS,ref . Lastly, as mentioned, the DC-DC converter is controlled such that the

DC link voltage is operated at its reference voltage, meaning that the inflowing and

outflowing current of the DC link, as described in Eq. 2.31, are balanced (resulting in

the power balance described in Eq. 2.1). A block diagram of the overall powertrain

control can be seen in Fig. 2.13.

In addition to the overarching control loops, it can be seen that the vehicle model

employs PI control schemes at eight instances. The values for these have largely been

determined through trial and error and have been summarized in Table 2.4. These

are slightly different from Model1, as the components have been sized differently.
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Table 2.4: Parameter values for PI controllers

Block KP KI

Engine speed ωICE 10−5 2 · 10−5

Generator power PPS 0 −0.04
Generator direct current idg 5 100
Generator quadrature current iqg 5 100
DC-link voltage vdc 0.08 0.008
Motor direct current idm 5 40
Motor quadrature current iqm 5 40
Car speed ucar 1000 500

Note that the PMSM and PMSG are described with their three individual phases (a,

b and c) in Fig. 2.12, representing the physical nature of the components, while they

are described using the d-q frame convention in Fig. 2.13, representing the control

signals employed.

2.5.2 Supervisory Control System

The control diagram in Fig. 2.13 clearly shows the interconnected nature of the

powertrain. It can be noted that all the control loops are closed apart from the

necessity to provide PPS,ref , ωICE,ref , vdc,ref and ucar,ref . From these, the car speed

reference ucar,ref is set as the driving cycle profile, which is discussed in the next

section. The DC link voltage reference is always defined as vdc,ref = 700 V in

this work, although it has been controlled in real time in [10]. Furthermore, in

Section 2.3.4 the preferred engine speed was determined to be a function of PPS

(as shown in Fig. 2.9), meaning that the reference engine speed can be given as

ωICE,ref = f(PPS,ref ). Thus, the only control signal that needs to be determined

externally is PPS,ref . This is the role of the SCS. However, as the control strategies

often deal with both the PS and SS in their optimization process, the control variable

is often defined to be the power share factor u as:

u =
PPS

PPL

. (2.32)

Several SCSs will be presented in this work, but they all operate under certain

common constraints. In terms of inputs for the SCS, it will depend on the nature

of the choice of control strategy. In this work, only the load power PPL and SOC
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Figure 2.14: Simulink implementation of the SCS and its constraints. Note that f(u)
implements Eq. 2.36 to limit PPS,ref .

will be used, but it is not uncommon for control strategies in the literature to also

use the vehicle speed (ucar). In the work on regulating the DC link voltage in [10],

even vdc is a required input (and output).

The SCS output in each case is the reference PS power PPS,ref , but it needs to be

checked to meet four different constraints. The first three of these are quite simple:

the PS can not be required to deliver negative power; the PS power demand can

not exceed its maximum rating; and finally the PS can not be allowed to exceed

the load power of the PL by such a margin that the SS can not absorb the surplus

power. The fourth constraint concerns the maximum realizable PS power for the

current engine speed. Essentially, the PS should not be loaded with more power than

it is capable of at the current engine speed. An alternative understanding of this

constraint is that the increasing of engine speed is prioritized in order of execution

over the increasing of PS power. In summary:

PPS,ref (t) ≥ 0 (2.33)

PPS,ref (t) ≤ PPSmax (2.34)

PPS,ref (t) ≤ PPL(t) + PSSmin (2.35)

PPS,ref (t) ≤ max(PPS(ωICE(t))) (2.36)

These constraints, together with the required inputs/outputs, form the surrounding

structure for each SCS. This is implemented in Simulink as shown in Fig. 2.14.
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2.5.3 Start Stop System

As the SCS instructs the PS to operate at different power levels, it will quite often

request the PS to deliver no power at all (PPS,ref = 0 kW). Such a request would have

the net effect of the PS producing 0 kW overall, but the ICE would need to “idle”

at 800 rpm with enough torque to overcome the losses within the ICE and PMSG.

This state of operation requires about ṁfuel = 0.11 g/s. This waste of fuel is not

desirable, but switching off the engine has several drawbacks. Once the ICE has been

switched off, some amount of fuel is consumed (and emissions are emitted) to turn

on the ICE again. Furthermore, this turn-on is not instantaneous, compromising

the vehicle’s ability to follow a driving cycle, compromising the drivability of the

vehicle. The drivability is further affected by the jerk and vibrations involved in the

turn-on of the ICE. Nevertheless, drivers of conventional cars have often used the

rule of thumb that it is worth turning off the engine any time the duration of the

stop is greater than 10 seconds.

However, a HEV is not as restricted as a conventional car. The availability of electric

power to drive the car, allows the powertrain to deliver instantaneous power even

if the engine has been switched off. Furthermore, modern SSSs are highly efficient,

with the associated fuel consumption becoming negligible. There are industrial

reports that show that a modern SSS allows the ICE to break even with the idling

losses for short stops of 0.7 seconds [38].

As these types of SSSs are installed by default in most modern HEVs, it is essential to

include this capability within the model to allow relevant design of control strategies.

However these are rarely seen within models employed in the literature. Either the

losses associated with turning on the ICE are neglected altogether or the ICE is

kept idling when not in use. This can partly be attributed to the very complex

dynamics involved in modeling the turning on of an engine. Including such dynamics

are not only beyond the scope of this work, but would also negatively impact the

computational speed of the model.

Instead, the model used makes use of a simplified SSS, as shown in Fig. 2.15, which

crudely considers the fuel losses of switching the engine on. This subsystem is

installed in the cylinder model of the ICE and modifies the base fuel consumption

ṁfuel∗ with a penalty. The SSS takes the reference engine speed ωICE,ref as input,

and as long as the ICE model is idling, the fuel consumption is zero. However, the
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corresponds to the idling speed of the ICE.

instance the signal exceeds 800 rpm (the idling speed) this signals that the ICE

has been turned on. This event results in a spike of magnitude 1 by the “Detect

Increase” block, but is scaled by a gain of 20 immediately afterwards. To make use

of this spike, the slew rate of the falling signal is restricted to -200 units/second, such

that the fall from 20 to 0 takes 0.1 seconds, producing a triangular signal with an

area of 1 unit. This signal is multiplied by the defined “Penalty” and finally added

to the base fuel consumption to produce the modified fuel consumption ṁfuel. In

this work the penalty has been defined such that it corresponds to the fuel consumed

by idling the ICE for 1 second (mpenalty = 0.11 g). However, a sensitivity study of

this parameter is presented later in Section 7.2.

The main limitation of this simplified SSS is the lack of delay for the availability

of the PS and the distinction between the actual engine speed ωICE and the refer-

ence ωICE,ref (the reference typically reaches the idling speed faster than the actual

speed). Furthermore, the effects on emissions have not been studied within this

work and that will affect the break-even time of idling. However, the use of this SSS

is nevertheless an improvement upon Model0 and other work in the literature.

2.5.4 Overall Model Characteristics

For the purposes of this work an appropriately high fidelity has been achieved,

balanced by the level of complexity and computational load. The model is simulated

with a fine sample time (0.1 ms) and requires 35 (model and control) states.
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The overall model is non-linear and has come together with consideration of what

dynamics are of interest for each component. The PL is mainly affected by the

vehicle dynamics with time constants of about 100-500 ms and the CVT, which has

a time constant of 200 ms. At least one of the PS and SS need to keep up with

these transients. The PS is mainly governed by the ICE, which is quite slow. The

combustion in the cylinder is a very fast process and has been replaced by a map

that is accessed instantaneously. The fuel injection has a time constant of 5 ms,

but due to the slower air flow and mechanical inertia the output power has a time

constant of about 200-500 ms. Consequently, the PS often struggles to keep up with

the changing load requirements from the PL, and thus the faster SS is often called

into action during faster transients.

The battery and the electric dynamics of the PMSM and PMSG have time constants

in the order of 1 ms, so they have an easy time keeping up with the required transient

loads. These dynamics were considered significant enough to justify being included

in the model, but this requires the simulations to be run at sample time steps of

just 0.1 ms. The DC-DC converter, rectifier and inverter have even faster switching

dynamics (time constants of 0.05 ms). However, with consideration of the balance

between the benefits of faster dynamics and the negative impact on simulation time,

these very fast dynamics have been averaged in this model.

As the model has been modeled in great detail, it consists of a large number of

states. While most models employed in literature to study control strategies have

3-5 states (typically vehicle speed, SOC and gear ratio), the presented model com-

prises 27 physical states and 8 control states (PI component controllers within the

model, as shown in Table 2.4). Furthermore, there are also a number of additional

output states (typically seven of these), due to integrators being introduced to pro-

cess output signals (for example, to measure total fuel consumed by integrating

the fuel consumption rate). These are not strictly speaking part of the model, but

would nevertheless affect simulation speed. All states discussed above are continu-

ous states that are evaluated at each time step. In contrast, there are an additional

14 delay states introduced to resolve algebraic loops and reduce component inter-

dependencies, with the aim to increase simulation speed. Each delay state is a dis-

crete state that stores the value of some continuous state at the previous simulation

time step (delayed by one sampling time step).
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Of the 27 model states, 13 describe the powertrain components while the remaining

14 describe the vehicle dynamics (car body, suspensions and wheels). Each of these

states are listed in Table 2.5. For the purposes of designing control strategies, the

vehicle dynamics are not playing a significant role, in particular with consideration

of how many states are dedicated towards it. However, the upcoming section will

discuss methods to retain some of these detailed vehicles dynamics while removing

the corresponding states from the model. Thus, allowing the model to enjoy high

accuracy without compromising simulation speed. However, when studying the de-

signed control strategies, these dynamics and the corresponding states are retained.

Table 2.5: Physical states in the vehicle model

Symbol Component Description

ωICE ICE Engine speed
ωtc ICE Turbocharger speed
ṁae ICE Air exhaust mass flow rate
ṁai ICE Air inlet mass flow rate
ṁf ICE Fuel mass flow rate
idg PMSG Direct current
iqg PMSG Quadrature current
idm PMSM Direct current
iqg PMSM Quadrature current
Q Battery Charge
i∗bat Battery Filtered current
vdc DC link Bus voltage
Ncvt CVT Final drive ratio
pxc Car body Longitudinal displacement, x-axis
vxc Car body Longitudinal speed, x-axis
pyc Car body Vertical displacement, y-axis
vyc Car body Vertical speed, y-axis
θrc Car body Pitch angle, r-axis
ωrc Car body Pitch angular speed, r-axis
pfs Suspensions Deflection, front
vfs Suspensions Deflection rate, front
prs Suspensions Deflection, rear
vrs Suspensions Deflection rate, rear
θfw Wheels Rotational angle, front
ωfw Wheels Angular speed, front
θrw Wheels Rotational angle, rear
ωrw Wheels Angular speed, rear
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2.6 Simulation Methods

With the vehicle model described, it is important to discuss the simulation methods

that will be applied in this work. Even with a good model, the validity of the

developed control strategies rely on them being tested on representative driving

cycles and that the fuel economy is evaluated in a robust way. There are thus three

important aspects that will be explored in this section: the speed profile of the

driving cycles; the method of assessing fuel economy; and approaches to improve

simulation speed. Each of these will be discussed in turn in this section.

2.6.1 Driving Cycles

To run the simulation model, it is necessary to test it for a specific driving cycle,

which essentially defines the speed profile for the vehicle to follow. The choice of

driving cycle heavily influences the operation and fuel economy of the driving and

it is therefore essential to have an arsenal of driving cycles to apply for the results

to be representative.

The standard European driving cycles are the ECE15 (low-speed urban), EUDC

(medium speed rural/highway) and NEDC (composite of ECE15 and EUDC). These

are quite common in the literature, as they are very simple and the European reg-

ulators apply these to test commercial vehicles and assign official fuel economies.

These type of driving cycles are called modal cycles, and consist of acceleration and

speed profiles of straight lines. These features make them easy to define and, more

importantly, easy to implement. However, both academic work and the industry

have pointed out the significant flaws in these designs. They are overly smooth and

not representative of real-world driving. Also, the load during acceleration stages

of these driving cycles are not representative of modern vehicles, which tend to be

lighter and more powerful. The Japanese driving cycles are also modal cycles.

In contrast, the American driving cycles by the EPA (Environmental Protection

Agency) do not use modal cycles. These cycles, which include the NYCC (low-

speed urban), UDDS (medium-speed urban), HWFET (medium-speed highway),

FTP (medium-speed urban) and US06 (aggressive high-speed rural/highway), are

defined with transient data and are thus much more realistic. However, there is a
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Figure 2.16: Speed profile of the WLTP, with the four different stages (WL-L, WL-M,
WL-H and WL-E) demarcated.

large number of cycles with no intuitively clear choice of cycles to be tested. Fur-

thermore, the driving cycles are US-centric in their speed and acceleration profiles.

Nevertheless, these American cycles were considered the most suitable ones in the

past, and all previously published results are based on these (with some usage of the

EUDC).

However, there is a new driving cycle in development that is called the WLTP

(worldwide harmonized light vehicles test procedure). This project is led by the

United Nations, but has had wide international support and participation. It has

been noted that the deviation between laboratory-based results (based on cycles

like the NEDC) and real-world driving have been increasing over the past decades,

and the effect is particularly pronounced for hybrid vehicles [39]. The WLTP pro-

files are therefore based on internationally collected data of real driving to be as

representative as possible.

The cycle is being developed right now and will be adopted by the EU in 2017 to

replace current cycles [39]. The WLTP is a single driving cycle with four stages that

can be considered as independent driving cycles of their own. These are defined by

their speeds: low (WL-L), medium (WL-M), high (WL-H) and extra high (WL-E).

These speed profiles are shown in Fig. 2.16. Some particular features of the profiles

are given in Table 2.6 (note that the power features are specific for the vehicle design

in this work).
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Table 2.6: Features of the speed profiles for the four driving cycles

WL-L WL-M WL-H WL-E

Duration (s) 589 433 455 323
Stationary time (s) 156 48 31 7
Distance (m) 3095 4756 7158 8254
Maximum Speed (km/h) 56.5 76.6 97.4 131.3
Average Speed excl. stops (km/h) 25.7 44.5 60.8 94.0
Average Speed incl. stops (km/h) 18.9 39.5 56.6 92.0
Minimum acceleration (m/s2) -1.47 -1.49 -1.49 -1.21
Maximum acceleration (m/s2) 1.47 1.57 1.58 1.03
Maximum load, PPLmax (kW) 25.69 35.97 41.59 50.36
Average load, P̄PL (kW) 1.96 4.52 7.36 17.32

In this work, it is often necessary to simulate multiple iterations of a particular driv-

ing cycle to exhibit or reliably measure the features of interest. Therefore, whenever

driving cycles are repeated, the notation ×N will be used to indicate N iterations.

For example WL-H×4 refers to a driving cycle comprising four repetitions of the

WL-H driving cycle. It was found that the most useful number of iterations to run

is WL-L×8, WL-M×8, WL-H×4 and WL-E×4, which in total takes just more than

three hours to drive. Although this makes the WL-L part of the simulations much

longer and more time consuming, it keeps the fuel consumption reasonably balanced

across the different driving cycles. Also, it is sufficient to expose most relevant

long-term characteristics (in particular SOC evolution) of the control strategies.

A vast majority of the results in this thesis are based on the above number of

iterations, so whenever WL-L, WL-M, WL-H and WL-E are mentioned without any

explicit information about the number of iterations, then 8, 8, 4 and 4 iterations

have been used for each driving cycle respectively.
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2.6.2 Fuel Economy Evaluation

The essence of this work relates to the fuel economy achieved by various control

strategies for a series HEV. However, the definition of fuel economy is not trivial for

a vehicle with multiple energy sources. This subsection will consider various possible

methods to assess the fuel economy of the vehicle for a driving cycle, before pursuing

a particular method in more depth.

The first approach is to only consider the fuel consumed by the ICE, and ignore

the usage of the SS. This can be justified by the fact that all the energy of the

SS ultimately originates from the PS anyway (either through direct charging or

through regenerative braking). Thus, the fuel is the only true energy source of the

vehicle while the battery acts merely as a buffer and temporary storage. However,

this perspective neglects the short-term effects of the battery. A low-speed urban

driving cycle is often quite short (WL-L is 589 s, NYCC is 599 s and ECE15 is 195

s) and can often be driven purely by the SS. With this method of assessing the fuel

economy, the vehicle would be assigned a fuel consumption of zero, and thus an

infinite fuel economy. Thus, this method is clearly flawed for shorter driving cycles.

A second approach is to apply the first method (of only measuring the fuel consumed)

but complement it with the following SOC constraint: SOCfinal = SOCinitial. As

this forces the control strategy to be strictly charge sustaining, with zero charge

consumed over a full driving cycle, the fuel consumed by the ICE is the only rel-

evant parameter left. This is a very popular approach in the academic literature

when investigating and proposing optimization based control strategies. However,

this method requires prior knowledge of the driving cycle for the control strategy to

ensure that the artificially strict SOC constraint is met. This is not representative

of real driving and thus this approach of assessing fuel economy loses validity. Fur-

thermore, many SCSs operate in a charge sustaining but charge oscillatory manner

(e.g. TCS (thermostat control strategy) in Section 3.2). Forcing such a control

strategy to meet the SOC constraint might not only be unrealizable, but would

severely compromise the integrity of the fuel-saving nature of the control strategy.

This approach is therefore not suitable, with the possible exception of evaluating

global optimization-based strategies for benchmarking purposes.

The third approach also applies the first method but with repeated iterations of the

driving cycle being studied. Thus, if the control strategy initially applies SS-only
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driving for a low-speed urban driving cycle, it will not be able to do so indefinitely.

After a few iterations, the SOC will reach its lower limit and the control strategy

will have to operate in a CS manner. Furthermore, as the number of iterations

is increased, the contribution of the ICE fuel to the fuel economy increases. For

example, if a single driving cycle requires 0.1 kg of fuel, and consumes 5% of the

battery charge, the control strategy will need to adjust for the coming two driving

cycles such that the constraint of SOC ≥ SOCL is not violated. The vehicle may

therefore consume 0.3 kg of fuel and 15% (SOCinitial−SOCL) of the battery charge

over 3 iterations, with no further ability to consume charge over another driving

cycle. However, it remains problematic to determine how 0.3 kg and 15% of battery

charge can be evaluated overall (e.g. against 0.4 kg fuel and 10% battery charge).

But this can be resolved by increasing the number of iterations. After 100 iterations

of the driving cycle, the vehicle will have consumed 10 kg fuel and 15% battery

charge. At this point the battery charge becomes negligible and only considering the

fuel consumption is sufficient. However, running such a high number of iterations is

not desirable from a computational point of view. Not only will running simulations

become onerous, it will be outright prohibitive for tuning processes.

The fourth approach is therefore to evaluate the fuel and charge consumption under

a single paradigm. It is possible to consider the efficiency of the components, the

cost of operation, or any other factor which both fuel and charge can be translated

to. However, the most suitable approach that is often used in the literature is to

convert the consumed charge into an equivalent fuel consumption (EFC). It allows

comparison of the overall fuel economy by considering the actual fuel consumption

as well as the shortage/surplus of final SOC. Many analytical methods have been

described in the literature to define such an equivalence between SOC and fuel

consumption [40–42]. For the purposes of analyzing the results in this work, the

line-chart approach described in [42] is adopted as it is a natural extension of the

GECMS (which will be described in Section 3.4). The total EFC is defined as

mefc =







mf + Sd,efc ·∆SOC
Qmaxvb,OC

QLHV
∆SOC ≥ 0

mf + Sc,efc ·∆SOC
Qmaxvb,OC

QLHV
∆SOC < 0

, (2.37)

where ∆SOC = SOCinitial−SOCfinal, Qmax is the battery capacity and vb,OC is the

battery open-circuit voltage. The two equivalence factors Sd,efc and Sc,efc need to

be identified for each driving cycle by determining the correlation of the electrical
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energy Ee and the fuel energy Ef required to drive the driving cycle in question,

where

Ef = mfQLHV (2.38)

Ee = ∆SOCQmaxvb,OC . (2.39)

To run these simulations it is necessary to operate with some control strategy, and

this choice will influence the resulting equivalence factors. The SCS suggested in

[42] is to apply a simple proportional control strategy as

PPSref = uefcPPL (2.40)

where uefc is a constant.

A sweep is therefore performed for uefc ∈ [0, 2], in steps of 0.05 units, to obtain a

wide set of power shares between the PS and SS. The obtained values of Ee and Ef

(for WL-L×2, WL-M×2, WL-H×1 and WL-E×1) are plotted against each other in

Fig. 2.17. It can be seen that the slopes of the correlation has two distinct sections

for each driving cycle, separated by the reference electric energy Ee0. This term is

the value of Ee for the case when the SS is only used during regenerative braking

(corresponding to uefc = 1). The slope of the Ee-Ef charts for Ee ≤ Ee0 gives the

negative values of Sd,efc, while the case of Ee ≥ Ee0 gives the negative values of

Sc,efc. These can intuitively be understood as the conversion factors between fuel

energy and electrical energy, for the cases of discharging (data marked as plus signs)

and charging (data marked as circles) respectively.

However, the lines are not completely linear. For higher uefc values, the results

are distorted as the battery approaches SOC = 100% and for lower values the

inefficient use of the PS, and the SSS begin influencing the operation. The latter

is particularly true for WL-L where low load combined with low uefc results in the

PS being operated very inefficiently (in a way it would never operate during real

driving). The applied method for determining the equivalence factors, as suggested

in [42], has limitations in which points to consider when calculating the slope. The

suggestion of setting the lower and upper limit by the values corresponding to SOCU

and SOCL respectively is only appropriate if the Ee0 is quite close to the center of

the sloped lines. This can best be understood by considering the case of WL-M×2,

where the Ee0 appears quite close to the lower constraint (checked line corresponding
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Figure 2.17: Correlations between electrical energy Ee and fuel energy Ef with uefc ∈
[0, 2] for WL-L, WL-M, WL-H and WL-E (left to right, top to bottom).

to SOCU = 80% in Fig. 2.17), only allowing five points to be considered when

determining the slope and Sd,efc. A more extreme case can be considered with WL-

M×4 for which all the tested points within the span SOCL < SOCfinal < SOCU

would have Ee > Ee0, thereby making it impossible to determine Sd,efc.

An alternative approach is to limit the testing range in terms of uefc rather than

SOC. By only plotting and considering the slopes of uefc ∈ [1−α, 1+α] the testing

points will always be symmetric around Ee0 (corresponding to uefc = 1). This

method is applied here with α = 0.5 and the resulting Ee-Ef charts are presented

in Fig. 2.18.

The lines of best fit are also shown in the charts, and the resulting equivalence

factors can be obtained my measuring their slopes. To confirm the validity of this

method, these values are applied to assess the fuel economy of a strategy (GECMS,

which is described in Section 3.4) which is known to produce optimal result such
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Figure 2.18: Correlations between electrical energy Ee and fuel energy Ef with uefc ∈
[0.5, 1.5] for WL-L (top left), WL-M(top right), WL-H (bottom left) and WL-E (bottom

right), together with the line of best fit for both charging and discharging cases.

Table 2.7: EFC factors as determined by the correlation between Ef and Ee

Driving cycle Sd,efc Sc,efc

WL-L 2.80 2.59
WL-M 2.98 2.46
WL-H 3.09 2.45
WL-E 3.54 2.91

that SOCfinal ≈ SOCinitial. Badly selected equivalence factors will not yield this

result. However, it is possible to have false positives, so this criterion is a necessary

condition but not sufficient. The equivalence factors obtained by the mentioned

line-chart method for α = 0.5 satisfied these tests (although the Sd,efc value for

WL-L×2 had to be modified from 2.77 to 2.80), and the final equivalence factors

are presented in Table 2.7.
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Recognizing the fallibility of these equivalence factors, the fuel economy results in

this work will apply these together with the approach of running multiple iterations

of each driving cycle. Even if the equivalence factor for a particular driving cycle

is off by 0.1, the worst case scenario (SOCfinal = 50% with WL-L) would result in

a an error in fuel economy assessment of 1.1%, while for normal driving conditions

(60% ≤ SOCfinal ≤ 70% the error would be less than 0.36%.

It is useful to be able to evaluate the fuel economy of several driving cycles together.

In this work, when evaluating the total fuel economy of a particular control strat-

egy, the four mentioned driving cycles will be used (WL-L, WL-M, WL-H, WL-E).

However, the defined number of iterations (8, 8, 4 and 4 respectively) is found to

bias the summed fuel economy too heavily towards the WL-E driving cycle, which

consumes a significant amount of fuel. Therefore the total fuel economy will only

consider half the EFC contribution from WL-E, as follows:

mtot = mefc,WL−L +mefc,WL−M +mefc,WL−H +mefc,WL−E/2. (2.41)

Furthermore, the fuel economy results will typically be normalized against the opti-

mal performing strategy or tuning parameter selection as follows (unless explicitly

defined otherwise):

Mefc =
mefc

mefc,opt

, (2.42)

Mtot =
mtot

mtot,opt

. (2.43)

Finally, for all the control strategies implemented in this work, the GECMS will be

used as a benchmark to express the fuel economy. Thus, the relative performance

to the GECMS will often be used, which is defined as:

∆GECMS =
mefc

mefc,GECMS

(2.44)

where mefc is the EFC of the control strategy being evaluated and mefc,GECMS is

the EFC of the GECMS for the same driving conditions.
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2.6.3 Simulation Speed Improvements

The developed high-fidelity model captures detailed dynamics of the hybrid power-

train and offers more accurate results compared to other models in the literature.

However, this depth and accuracy comes at the expense of computational burden

and simulation time. Whilst other models can simulate a second of driving within

a few milliseconds, this used to take about 14 seconds for Model0. This is a serious

bottle-neck for any work on the model, and thus measures were taken to speed up

simulations.

The conventional approach would be to simply reduce the model by removing some

of the model dynamics. This is indeed the reason why most control strategy work

is done on very simplistic models. However, a core part of the motivation for this

work is to study control strategies when applied to high-fidelity models. Thus, it

is essential to maintain at least one full-scale version of the model. The approach

taken here is therefore to speed up the full model as much as possible with negligible

effect on simulation results, and then accompany it with a significantly faster model

with limited deviation in simulation results. The reduced model will be particularly

useful for various debugging and tuning processes where hundreds of iterations might

be required, translating into months of simulation time, which is unacceptable.

The first technique that is applied to speed up simulations is to re-implement the

model with simpler and leaner tools in Simulink, to realize the same dynamics with

lower computational burden. Rather than implementing an equation with a dozen

graphical mathematical blocks, it can be expressed with a single user-defined func-

tion. These are not only more efficient in terms of computational burden, but also

make the model more user-friendly and concise. Furthermore, nested subsystems

adversely affect simulation time and have therefore been minimized as much as rea-

sonable without compromising clarity.

A second technique that has been applied is the reduction of required memory. Al-

though the required memory has small impact on simulation time, it affects the

ability to run multiple simulations in parallel. If each simulation (the longest types)

requires 4 GB of RAM to complete and there is only 8 GB spare RAM, then only

two parallel simulations can be run. However, if the required memory is reduced to

2 GB per simulation, then four parallel simulations can be run. This can practically
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be considered as doubling the simulation speed. This is primarily achieved by re-

moving superfluous signals, scopes and outputs, but it is also necessary to reduce

the sampling frequency of some of the data collection. Furthermore, attention is

given to the data type of signals stored and time-arrays are not collected for each

individual signal, but instead as a single array overall.

A third technique is to resolve any algebraic loop (AL) within the model. ALs occur

when a signal A is needed to compute a signal B, but at the same time signal A

needs signal B to be defined. Simulink can generally solve these iteratively but

the process is very inefficient. Therefore, each of the ALs within the model were

solved, using the following three approaches: redefining the dynamic to avoid the

loop; introducing an “initialization value” for one of the signals; or introducing a

unit delay (0.1 ms) between the signals. Each of these changes had negligible effect

on the simulation results, but significantly sped up simulations.

A fourth technique is to introduce unit delays in other parts of the model to reduce

the interconnectivity of the model blocks. This allows Simulink to compute the

model and its components with fewer interdependencies, again resulting in faster

simulations. However, these need to be applied carefully and appropriately. Thus,

unit delays were included for reference signals (e.g. ωICEref and PPSref ) which would

experience a minor lag in a real vehicle as well. The DC link voltage vdc is practically

constant at 700 V and connects to most components in the vehicle. It is therefore a

prime candidate for a unit delay. However, the SS is somewhat sensitive to the vdc in

determining PSS, which if disturbed would affect the simulation results noticeably.

As a result, vdc has only been delayed within the PS and PL).

A fifth technique is to apply accelerators within Simulink. This is related to the

earlier point about removing ALs. A model without any ALs can make use of ac-

celeration tools within Simulink. When running the model, Simulink will generate

a C-MEX S-function to perform the simulation external to the Simulink environ-

ment. This significantly speeds up the simulation, while only taking a few seconds

of additional compilation and build time. Additional drawbacks, such as limited

interactivity during run-time, are not very relevant for our purposes.

All of the mentioned techniques can be applied with negligible loss of precision in

results and deliver significant improvements in simulation speed. However, the simu-

lation speed has only been sped up by a factor of about five. To truly begin speeding
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Reduced: P_PL P_PL/V_dc

1

I_PL

1

V_dc

Figure 2.19: Simulink implementation of the reduced model, where a pre-recorded PPL

signal is used to produce the iPL signal for the model.

up the model, a separate reduced model is considered, where we will compromise on

precision to a slightly larger extent.

The vast majority of simulations that are performed within this work are interested

in the fuel economy of the vehicle for a particular driving cycle for a particular

control strategy. The main signals of interest are therefore the accumulated fuel

consumption (mf ) and final value of battery SOC (SOCfinal), which will provide the

EFC (mefc), as described in the previous section. By studying the series powertrain

in Fig. 2.1, or the control diagram of the model in Fig. 2.13, it can be understood

that the operation of the PL is independent of the control strategy being used. The

PL simply determines the PL current iPL that flows into the DC link, after which

the SCS determines how the PS and SS should share in meeting this load. The PL

only depends on the driving cycle ucar,ref (and on the DC bus voltage to a negligible

extent).

It thus follows that the PL can be replaced by a pre-defined signal. The full model

can be simulated for all driving cycles of interest, and the resulting PPL for each case

is recorded. Then a separate reduced model can be produced where the recorded

PPL signal is a pre-defined input, as shown in Fig. 2.19. This block replaces the

PL and driver model in the overall model, as shown in Fig. 2.20. Note that the

Propulsion Load and Driver models have been “commented out” (as indicated by

the % sign) and are not simulated. The removal of the inverter, PMSM, driver and

CVT models are very helpful, but it is particularly the car dynamics that are worth

removing. Even though the car dynamics have been made faster by implementing

them with SimMechanics within Simulink (as opposed to with VehicleSim in Model0

and Model1), this remains one of of the most computationally heavy blocks of the

model. Consequently, the simulation speed is dramatically improved.



Vehicle Model 71

V_dc

SOC

I_SS

Secondary Source

V_dc

P_PS,ref

w_ICE,ref

w_ICE

I_PS

Primary Source

I_PL

I_SS

I_PS

V_dc

DC Link

u_carT_lm,ref

Driver

SOC

w_ICE

I_PL

P_PS,ref

w_ICE,ref

Supervisory Controller

T_car,ref

V_dc

u_car

I_PL

Propulsion Load

V_dc I_PL

Reduced PL

Merge

 

Figure 2.20: Overall Simulink model where the Reduced PL is integrated to override
the full PL and driver that have been commented out (as indicated by the % symbol).

To quantify the benefits and costs of these procedures, simulations are run for various

versions of the model and simulation speed Ssim (seconds of simulated driving in

1 real second) and EFC mefc are measured. The results for Ssim and Eefc (the

error in mefc relative to the “Full model”) are presented in Table 2.8 and Table 2.9

respectively for WLTP as well as separate simulation of its individual stages (WL-L,

WL-M, WL-H and WL-E). Note that the “Full model” does not have all the ALs

that were present in Model0 and that the latter can not be compared in terms of

EFC due to differences in component sizing.

The speed results are quite consistent across driving cycles, but it can be noted that

the speed tends to be higher for longer driving cycles. This is mainly due to the

effect of the building and compilation times becoming increasingly negligible as a

proportion for longer simulations. Thus, the WLTP results can be considered most

representative for simulations required in this work. The EFC results on the other

hand are very dependent on the individual driving characteristics of the driving
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Table 2.8: Comparison of simulation speeds Ssim for original, full and reduced models
for various driving cycles (all results for Model0 were obtained for NEDC). Simulations

with acceleration mode are marked with “Acc”.

Model WLTP WL-L WL-M WL-H WL-E

Model0 0.0714 0.0714 0.0714 0.0714 0.0714
Full model 0.1217 0.1175 0.1226 0.1232 0.1227
Full model, Acc 0.4401 0.4401 0.4375 0.4227 0.4150
Reduced model 0.3039 0.2928 0.2971 0.2974 0.2965
Reduced model, Acc 3.7336 3.6555 3.4456 3.5747 3.3936

Table 2.9: Comparison of error in EFC Eefc (%) with regards to the Full model results
for various driving cycles. Simulations with acceleration mode are marked with “Acc”.

Model WLTP WL-L WL-M WL-H WL-E

Full model 0.0000 0.0000 0.0000 0.0000 0.0000
Full model, Acc -0.0004 -0.0005 0.0001 -0.0003 -0.0005
Reduced model -0.0352 -0.1227 -0.0658 -0.0488 -0.0111
Reduced model, Acc -0.0355 -0.1226 -0.0657 -0.0489 -0.0111

cycles and thus vary significantly. However, the WLTP (which comprises the four

other driving cycles) can be considered to include a variety of all these driving

dynamics and is quite representative of all types of driving. Nevertheless, many

upcoming simulations will include repetitions of a particular type of driving, so the

worst case scenario is of most interest.

Comparing the models for WLTP, it is clear that the Full model improved the simu-

lations significantly (+70% in speed) over Model0, just by reimplementing the blocks

and introducing some minor delays (the first four techniques mentioned above) de-

spite the new model having more complex converter models. As the accelerator

mode is used, the full model increased simulation speed by another 262% while hav-

ing a negligible impact on EFC. This is the model that will be used to generate

final results within this work. Lastly, the reduced model with acceleration mode is

able to improve the simulation speed by another 748% while compromising the mefc

precision by about 0.12% at worst (0.04% for WLTP overall). This reduced model

will be used for the tuning processes for all control strategies in this work.
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2.7 Summary

This chapter has described the vehicle model that will be used within this work. It is

a series HEV, where the PL comprises an inverter, PMSM, CVT and car dynamics;

the PS includes a turbo-charged diesel engine, PMSG and rectifier; and the SS

consists of a Li-ion battery and a DAB DC-DC converter. The three branches are

connected together at the DC link where energy is exchanged. The SCS determines

how the load power PPL should be distributed between the PS and SS.

The model has been changed and improved upon in several respects since Model0.

Several of the components have adjusted power ratings (e.g. ICE from 34 kW

to 58 kW, PMSG from 92kVA to 75 kVA, battery from 30 kW to 42 kW), new

loss dynamics have been included (e.g. detailed loss models for inverter, rectifier

and DC-DC converter, rather than fixed efficiencies), and the overall control of the

powertrain has been redesigned (e.g. introducing a SSS, retuning most PI loops,

and optimizing engine speed as a function of PPS).

This chapter has also presented the driving cycles that will be employed within this

work: WL-L, WL-M, WL-H and WL-E (the four stages of WLTP). Each of these will

typically be repeated multiple times in each simulation to allow more reliable results

and to investigate dynamics that only appear over longer time frames. Furthermore,

the concept of EFC is introduced as a means to express the fuel economy of the

vehicle with consideration for the charge consumed by the SS over a driving cycle.

To this end, the equivalence factors Sd,efc and Sc,efc have been identified for each

driving cycle, to be used to evaluate fuel economy results in upcoming chapters.

These changes to the model dynamics have been accompanied with significant im-

provements in modeling implementation, allowing simulations to run more than six

times faster than Model0. In addition a reduced model has been designed that en-

ables simulations at more than 50 times the speed of Model0 with only minor loss

in precision. This reduced model has allowed this work to progress much faster, as

the time spent on the tuning and debugging processes for each control strategy have

been dramatically reduced. This will benefit all future work as well.
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Conventional Strategies

The research area of SCSs for HEVs has been quite active for the past two decades,

and a handful of techniques and strategies have established themselves as the de-

fault choice for benchmarking, prototyping or inspiration for novel strategies. These

conventional strategies are the topic of this chapter.

The chapter will begin by describing past work in the literature, exploring rule-based

strategies, real-time optimization-based strategies, and global optimization-based

strategies. The aim is to briefly introduce the reader to a wider body of work in this

research area, and set this work in both its research and historical context. Particular

attention will be given to the thermostat control strategy (TCS), power follower

control strategy (PFCS), equivalent consumption minimization strategy (ECMS),

its globally tuned version GECMS, and dynamic programming (DP), as these have

been most influential in this research area.

Based on this review, the TCS, PFCS and GECMS will be implemented for the

purpose of study and benchmarking. Each of the three control strategies is designed,

implemented and tuned before its operation and performance is evaluated. These

strategies (the GECMS in particular) will serve as both inspiration and benchmarks

for novel control strategies in upcoming chapters.

75
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3.1 Background

As mentioned in the last chapter, the earliest HEVs employed series architecture,

and practically operated as an electric vehicle with an engine-generator set aboard

to recharge the battery. There was thus barely any designed control strategy. As the

concept of hybrid vehicles evolved, and the engine-generator set would increasingly

power the propulsion motor at the same time as the battery, the role of the control

system became more important. However, this proved to be a challenging task, and

the interaction between the battery, engine and the control system remained one of

the biggest challenges for these early HEVs (in addition to cost) [43].

The early implementation of simple rules to control the powertrain, was arguably

more concerned with meeting the operational constraints of the components than any

type of optimization of the fuel economy. However, in the early 1990s the academic

research on SCSs accelerated significantly [44], developing and consolidating several

key control strategies that are popular even today. It is worth noting that this boom

in control strategy research happened years before the Toyota Prius was released in

Japan in 1997 and was later brought to the US market in 2000.

This section will discuss some of the most conventional control strategies in the

literature from the past two decades. Although the thesis overall deals primarily

with series HEVs, there has been such a rich exchange of ideas and concepts between

HEVs of varying architectures that this section will explore the evolution of control

strategies without limiting the scope to just series HEVs (although this will be

given some prominence). The section will begin by discussing rule-based controllers,

followed by real-time control strategies and finally the global optimization-based

strategies.

3.1.1 Rule-based Strategies

Most commercial vehicles apply rule-based control strategies due to their ease of use

and reliability. For series HEVs the two most conventional strategies are the TCS

and PFCS. The evolution of these two will be discussed, followed by some alternative

heuristic strategies.
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Thermostat and Power Follower Control Strategy

In 1995, Anderson and Petit discussed several concepts for the design of control

strategies for series HEVs in [45], where the essential features of the TCS are defined.

This was followed up by work in 1996 by Hochgraf et al., that made a more detailed

study of the TCS in [46]. Since then, the TCS has been established as the most

conventional control strategy for series HEVs and is used as a benchmark to this day

[47–50]. It operates the powertrain in two distinct modes: battery only mode and

active engine mode. The default mode of operation is with the battery only, making

the propulsion of the vehicle completely electrical. However as the battery depletes

its charge and reaches a defined lower limit, the engine-generator set is activated

and is thereafter operated at its optimal operating point. This point of operation

of the engine-generator set is typically higher than the load of the vehicle during

driving, so the surplus energy is directed to the battery, which is thus gradually

recharged. As the battery SOC reaches a defined upper limit, the engine-generator

set is switched off, and the vehicle operates in pure electric mode once again. This

control strategy is implemented later in Section 3.2.

Two years later, in 1997, Cuddy and Wipke implemented a PFCS in a series HEV

[51], just a few months before Jalil et al. would do the same in [52]. These were

the first implementations for a series HEV, but early work on control strategies

operating on the same principles can be found as early as 1987 for parallel HEVs

[53]. This control system has several modes of operation, but the two main ones are:

battery only mode and power following mode. At very low loads (sometimes also

constrained to low speeds) the battery is used to drive the powertrain. However,

above a minimum load, the PS is responsible for meeting the full load of the driving.

Later developments of the PFCS include a small deviation from pure power following

that is proportional to the change in SOC of the battery [54]. This deviation ensures

that the battery is charged for lower SOC and discharged at higher SOC values,

thus making the strategy charge sustaining (CS). The PFCS has been used for

series HEVs but has seen particular success when implemented in HEVs of parallel

architecture. Most importantly, the control strategies of most commercial HEVs so

far are based on this control strategy [55, 56]. This control strategy is implemented

later in Section 3.3.
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The principle of operating the PS at a constant load and using the battery as an

equalizer, like the TCS, is commonly referred to as load leveling. In contrast, the

principle of having the PS power follow the load power, like the PFCS, is called

load following. Each of these will be explored further in Section 5.1, discussing the

design principles of heuristic strategies. The advantages and disadvantages of the

load leveling and load following methods have been further understood over the past

two decades and several control strategies have been proposed to exploit the best

of each. This is exemplified by the more recent work by Kim et al. [57], which

proposed the hybrid thermostat strategy (HTS) which has its basis in the TCS,

but applied concepts from the PFCS to achieve improved performance. A similar

approach was also taken in [58] by Ko et al. This more comprehensive approach is

particularly relevant when considering multi-objective control. For example, Zhang

et al. designed a control strategy in [59] which is based on TCS to achieve good

fuel economy but, recognizing the resulting harsh usage of the battery, the control

is modified to not operate the engine-generator set strictly at its most efficient point

at all times. In this particular case a sliding mode controller is applied to achieve

this result.

Maximum SOC-of-PPS

Although the TCS and PFCS can be considered the parents of most deterministic

rule-based strategies, there are a few exceptions. One noteworthy alternative to

the TCS for series HEVs, is the Maximum SOC-of-PPS (MSP) that is presented in

[47]. It aims to keep the SOC at a high level persistently by often operating with

only the engine-generator set to meet the load. In doing so, it often operates the

engine-generator set inefficiently, which is why it is not as popular. However, it

offers benefits beyond fuel economy.

MSP recognizes a few limitations of the TCS in terms of reliability. Firstly, the TCS

does not guarantee CS operation for any driving cycle (as will be demonstrated

later in Section 3.2) [47]. If the average load exceeds the optimal operating point

of the engine-generator set, the SOC will keep on decreasing even when the engine

is on. Secondly, as the SOC of the battery oscillates between its lower and upper

bound, the performance of the powertrain will be compromised at the lower bound

[47]. The lower battery voltage at this stage will reduce the battery efficiency and

possibly (if no DC-DC converter is present) reduce the voltage level (and thus power
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rating) of the electric machines in the powertrain. Both of these limitations can be

unacceptable in mission critical situations, such as for a military vehicle (which is

one of the common applications of series architecture) [47]. The MSP addresses

these issues by maintaining the SOC high, and operating the engine-generator set

more flexibly.

Other

The heuristic strategies mentioned so far have all been deterministic. A second cat-

egory of heuristic strategies include the fuzzy logic controllers (FLCs), which apply

fuzzy logic to handle different operating modes, as opposed to discrete thresholds.

This makes the control strategy more robust to disturbances and less sensitive to im-

precise data input [56]. Like the PFCS, these control systems have historically and

typically been developed for parallel HEVs, but have seen implementation in series

HEVs as well [60, 61]. Although the FLCs are rule-based, they are not as heuristic

as the previously mentioned strategies. As FLCs excel at handling multiple inputs

and outputs, it is not uncommon for them to work with additional inputs, such as

GPS data in [60].

A third category of heuristic control strategies that is often mentioned is the State

machine controllers (SMCs), with the only prolific contribution being by Phillips et

al. in 2000 in [62]. It involves a set of dynamic rules to govern the hybrid powertrain

in numerous different conditions and ten distinct states. With such clear operating

conditions and well defined state transitions, the resulting control strategy is very

robust. However, arguably, this category of systems is not a separate category of

rules, but rather a different method of implementation. In fact, control strategies

such as TCS and PFCS might have historically been implemented with simple logic

gates or if-else statements, but they are now often implemented with state machines.

Overall, two decades from inception, the TCS and PFCS remain the go to control

strategies for both prototype and benchmarking purposes. Not only are they simple

to implement but they have historically performed quite well. The advancement of

fuzzy logic based controllers is seen to hold high potential but the impact so far

has mainly been within academic circles. Among commercial vehicles, the heuristic

strategies are still more prevalent than optimization based strategies due to their

simplicity and effectiveness [55, 63].
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3.1.2 Real-time Optimization-based Strategies

This subsection explores various real-time optimization-based control strategies that

have been applied for the supervisory control of HEVs. As the dominant approach

in this field is the ECMS, this will be treated first separately. Thereafter the model

predictive control (MPC) approach will be explored and lastly some alternative

techniques will be mentioned briefly.

Equivalent Consumption Minimization Strategy

Although the heuristic strategies are able to deliver good performance with a simple

approach they are unlikely to deliver fuel economies (or any other control objective)

close to the global optimal. Thus, to achieve improved results, researchers have

applied concepts from optimal control theory in the context of a hybrid powertrain.

The first step is to determine a cost function. The general problem for a vehicle is

to minimize the fuel consumption:

J =

∫ tf

0

ṁf (t, u(t)) dt (3.1)

However, such an objective would result in persistent use of the battery (to achieve

J = 0). It is thus necessary to include a penalty for the discharging of the battery

(as well as a reward for charging it):

J =

∫ tf

0

ṁf (t, u(t)) + w · ˙SOC(t) dt (3.2)

As pointed out in [44], this approach has often been used with an arbitrary weight

w [64–66].

The ECMS takes the approach of defining w by an analytical equivalence between

fuel and charge. The concept of such an equivalent fuel consumption (EFC) factor

was introduced by Kim et al. in 1999 [67] and it established the foundation for the

real-time strategy presented by Paganelli et al. in 2000 [68]. This work evolved over

several years in Ohio with several publications [69–72], and gained traction around

2004 when several influential publications developed the ECMS further. Pisu, Riz-

zoni and the team at Ohio State University would continue and build on the work
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of Paganelli, and apply the ECMS to series HEVs as well [73, 74]. This also resulted

in the development of an adaptive ECMS (A-ECMS), which added an estimating

algorithm onto the ECMS, to adapt the equivalence factor based on the propulsion

load during driving [75]. This work also compares the optimally tuned ECMS to

a DP solution, and finds the results to be practically identical. However, the work

notes that the DP solution were executed on a simpler quasi-static model to allow

reasonable computation time. This makes the comparison of results less valid, but

nevertheless suggests that the ECMS technique is potent.

At the same time in ETH Zurich, the ECMS is being applied and refined by Scia-

rretta, Guzzella and their team. In [42], the equivalence factor is redefined to be

applied at each time instant as:

J(t, u) = ∆Ef (t, u(t)) + s(t) ·∆Ee(t, u(t)) (3.3)

where ∆Ef and ∆Ee are the used amount of fuel and electrical energy respectively.

Unlike previous versions of ECMS, this definition does not rely on average efficiencies

for the powertrain components [56]. Also, it considers each operating condition and

control input when defining the equivalence factor at each time instant. Intuitively,

this can be considered as the association of use of electrical energy to the future

change in fuel consumption (as the battery is merely an energy buffer). However,

during implementation, the equivalence factor is actually simplified to

s(t) = p(t)Sdis + (1− p(t))Schg (3.4)

where Sdis and Schg are the discharging and charging equivalence factors (that are

either tuned or defined by the process described in Section 2.6.2) respectively. The

probability function p(t) expresses the probability of the final amount of electrical

energy Ee being positive. Thus, it is unable to precisely implement the optimal

equivalence factor s(t) that would yield the best possible fuel economy. However,

simulation results have shown that the resulting performance is very close to the

global optimal results (as obtained through DP solutions), with a gap of 0.1 to 2%.

Considering the relative simplicity of this method, it is very powerful.

The next evolution of the ECMS was the association to the Pontryagin’s minimum

principle (PMP), which offers a set of necessary conditions for the optimal control,

allowing a reduction of the search space for candidate solutions. The PMP was
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applied in two separate control strategies proposed in 2008: [76] for a parallel HEV

and [77] for a series HEV. It was thereafter evaluated in relation to the ECMS

for a series HEV in 2009 by Serrao et al. at Ohio [78]. It was shown that the

ECMS, under certain circumstances, is equivalent to the global optimal solution

offered by the application of PMP. But while the PMP requires prior access to the

whole driving cycle, the ECMS allows a real-time and straightforward approach

for implementation. One of the assumptions in this work is a constant battery

efficiency as it simplifies the problem significantly. The conclusion of this work

is that ECMS allows the identification of the global optimal solution. However,

this equivalence between ECMS and PMP was re-evaluated in 2011 by Kim et al.

in [79]. Although the strong link between the two approaches is re-affirmed, it

emphasizes the simplifications required for the ECMS to be equivalent to the PMP.

One of the possible suggestions to improve performance would be to consider multiple

equivalence factors (e.g. S1, S2, S3, S4 and S5) rather than just two (e.g. Sdis

and Schg) when determining the overall equivalence factor s(t). Nevertheless, by

comparing to DP, it found that the solutions are practically identical. However, it is

worth noting that some of the PMP results were superior to the DP solutions (which

should be impossible). This was attributed to truncation and numerical errors in

the simulations, which were run for a static model.

More recent developments for the ECMS have been incremental rather than con-

ceptual. The framework of the ECMS has not changed in concept, but has rather

expanded to deal with a larger set of control objectives. The nature of the problem

formulation of the ECMS lends itself towards including additional variables and con-

straints with additional equivalence factors. Several contributions have been made

that also consider emissions, battery health [80, 81] and drivability. Other work has

expanded the ECMS by considering additional input information, by using a GPS

[82] or telematics [83]. This has led to more work taking the MPC approach to the

control problem.

In 2013, the collaborative paper [3] (authors include Serrao and Sciarretta) was

published to discuss open issues within supervisory control of HEVs, from the per-

spective of the ECMS and PMP framework. One of the main issues raised was that

the simplicity of the models (quasi-static, isothermal) used to design ECMS (and

other optimal control strategies) are unrealistic. Typically, the SOC is considered

the only state of the powertrain. In particular engine temperatures are identified as
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having a significant impact on the resulting fuel economy. Interestingly, it is found

that heuristic strategies might perform better than ECMS strategies that are based

on engine models that do not consider engine temperature (as heuristic strategies

are less dependent on engine models).

Model Predictive Control

The MPC approach has a great track record in industrial applications and has been

applied to HEVs as well over the past decade. It is a success story for optimal

control theory, as it was adopted in chemical plants and oil refineries already in the

1980s and has expanded to other areas since then. The basic principle is to design

a predictive model that allows you to determine the impact of your control input.

By solving such an optimization problem over a finite time horizon, it allows the

determination of a the optimal control input at the immediate time instant, which is

then implemented. The time horizon is chosen such that the problem can be solved

in real-time. The approach is particularly useful when it is essential to avoid certain

types of operation (typically due to system instability or regulation).

The earliest example of the use of MPC for the supervisory control of HEVs can be

found in [84] in 2004, although a few other earlier work had considered the use of

predictive data. MPC was also being used for other purposes: [85] used it to prevent

depletion of hydrogen in hybrid fuel cell vehicles; [86] applied it to steer autonomous

vehicles; and [87] applied it for adaptive cruise control in vehicles. The consequence

of bad control in the two latter applications is a collision of vehicles which is clearly

essential to avoid. However, it has become increasingly more common to apply MPC

solely for the purpose of improving the fuel economy of the HEV.

The publication of the paper [88] by Johannesson et al. in 2007 (based on the paper

with the same name in 2005 [89]), might be considered an important moment in the

development of MPCs for HEVs. The emphasis of the paper was to evaluate the

potential of predictive control for HEVs, assuming that accurate data could be ob-

tained through GPS and telematics. The results were promising and were followed

by a significant amount of research the coming years. This has also been boosted

further by the trend of navigation systems becoming standard in new commercial

vehicles, and developments towards communication between vehicles and infrastruc-

ture [90]. Also, as computational power is becoming cheaper and more available on
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vehicles, the MPC becomes more attractive. MPC techniques have become partic-

ularly popular for power split HEVs [2], but [91] presented a stochastic MPC for a

series HEV.

However, the suitability of MPC for HEV application has limitations. Wang and

Boyd state in [92] that MPC is only suitable for systems with slow dynamics, which

a HEV wouldn’t really qualify as. Also, the benefits offered by MPC might be more

useful as a safety system rather than an energy management system.

Other

One of the weaknesses of DP (see next subsection) is that it produces a driving

cycle specific control policy that is not generally applicable. This has been dealt

by the development of stochastic DP, where the driving load is determined by a

random Markov process [93, 94]. The same effect has also been achieved by training

neural networks (NN) with various driving profiles [50, 95]. In each of these cases

a significant amount of offline analysis is required, but the resulting control policy

can be implemented in real-time.

3.1.3 Global Optimization-based Controllers

Finally, this subsection will present a few global control strategies. Here, global refers

to the available data: a global controller is acausal and has access to the full driving

cycle at all times. Such an infinite-horizon problem is not real-time implementable,

but serves other purposes (benchmarking, inspiration, etc.). The first technique to

be discussed will be DP, which has established itself as the default global optimal

approach for HEV control systems. This will be followed by the GECMS, which is

the global solution preferred in this work, and will be followed by briefly mentioning

alternative strategies.

Dynamic Programming

DP is a numerical optimization technique based on the Bellman’s principle of op-

timality [96], which has been expressed in [97] as: “An optimal control policy has
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the property that no matter what the previous decisions (i.e. controls) have been,

the remaining decisions must constitute an optimal policy with regard to the state

resulting from those previous decisions.” This allows the problem to be solved in

a backwards fashion, based on a defined final state. This requires the evolution of

states to be incremental:

x(t+ 1) = f(x(t), u(t)). (3.5)

The essence of the DP method is to discretize the problem (time-domain, states and

control inputs), such that the solution space is made finite. Naturally, the precision

of the optimality of the DP solution is proportional to how finely these spaces are

discretized. As the technique requires access to the whole driving cycle in advance

to determine the optimal solution, the process is acausal and not implementable in

real time. Furthermore, it is worth noting that the computational time increases

linearly with the drive cycle duration, but increases exponentially with the number

of model states [44]. Thus, the main restriction of DP is that it can only be applied

to relatively simple models.

The first DP implementation was done for a series HEV, due to the fewer number

of decision variables in this architecture, by Brahma et al. in 2000 [98]. The model

used a single state, a sampling time of 1 second and a power discretization of 5 kW.

This simple model yielded useful results in about 10 minutes on a general purpose

PC. This inspired the work of Lin et al. in 2001 for a parallel truck [99], which

was further improved and developed in 2003 in [100]. A model with three states

was used: SOC, vehicle speed and transmission gear. They simplified their normal

vehicle mode such that Eq. 3.5 is abided for each state. Despite these simplifications,

the optimization process required a sampling time of 1 second, and resulted in errors

in vehicle speed of up to 3 km/h. However, the solution was useful enough to provide

insights to design a refined rule-based controller that outperformed a conventional

heuristic strategy.

Many further implementations of DP have been made since then, but they have

always been limited to simplified models. However, techniques have been suggested

to reduce the computational burden by, for example, reducing the control space

without compromising the optimality of the solution [101]. Nevertheless, it has

been very popular as a benchmark [42, 75, 102], inspiration for control design [99],

and inspiration for powertrain design [103].
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Although DP is one of the most robust optimization techniques available it is still

being held back by the “curse of dimensionality”. It is definitely not realizable in

real-time, and even as a benchmark it is not great as it is only able to operate on

very simple models. Considering the high-fidelity model being considered in this

work, implementing a DP is beyond feasibility.

Global Equivalent Consumption Minimization Strategy

It was mentioned in the previous subsection that the ECMS has been shown to

be equivalent to the PMP (under certain conditions), which in turn is practically

equivalent to DP [75, 78, 79, 104]. This has been shown to be the case for both

optimally tuned and adaptive equivalence factors for the ECMS. It is therefore pos-

sible to consider a GECMS, which has been tuned for each individual driving cycle

separately, as a close approximation of the global optimal solution. Considering

the foundation on the ECMS, which is the most established framework of analysis

within the control strategy literature, it can be considered a reliable benchmark for

this work.

The GECMS is relatively easy to implement. The determination of the equivalence

factors can be done either through the line-method described in Section 2.6.2 or

through a brute force approach. Although the line-method offers a good selection

of equivalence factors, they have not been found to be optimal. Instead, a variety of

combinations of equivalence factors are tested for each driving cycle, and the EFC

is measured to determine the best set of equivalence factor that yield the optimal

fuel economy. This solution can be considered to be a close approximation of the

global optimal. The production of optimal control inputs for each set of equivalence

factors can be somewhat tedious but is easy to automate. The implementation of

the GECMS in this work is based on [78] and is described more fully later in Section

3.4.

Another advantage of the GECMS is the medium computational requirements. The

testing of each candidate set of equivalence factors can take an hour for repeated

iterations of a driving cycle. Nevertheless, identifying the optimal set of equivalence

factors to three significant digits (beyond which the impact is quite small) is a process

that will typically take a few days for our model, as opposed to times greater than

the age of the universe (for DP). Thus the global benchmarking solution can be
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obtained for the same vehicle model as the other proposed control strategies, unlike

DP which is typically implemented on simplified models.

Other

Several other established control theory methods have also been tested and applied

on HEVs. Genetic algorithms (GAs) search for the optimal solution by allowing

each candidate solution to evolve towards its minimum. Implementations have been

published frequently, from as early as 2001 [105, 106]. It is based on biological

evolution and is useful for complex non-linear optimization problems [56]. However,

they are not considered suitable for constrained optimization, and are generally not

considered suitable to be applied to the control of HEVs [63].

A second approach has been to apply game theory to HEVs [107, 108], where the

vehicle operation is evaluated as a non-cooperative game between the driver and

the powertrain. Recent results have been quite positive but the literature is still

quite limited. Other applied approaches include linear programming (LP) [109] and

convex optimization (CO) [110–112].
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3.2 Thermostat Control Strategy

The thermostat control strategy (TCS) is a simple, robust SCS that achieves a

good fuel economy and is the most conventional control strategy for series HEVs. It

oscillates between battery-only operation (with the engine off), and using the engine

at its most efficient point of operation (with the battery leveling out the load).

3.2.1 Design

The basic principle is to run the PS at its optimal point and have the SS act as an

equalizer, as

PSS = PPL − PPS,cop (3.6)

where PPS,cop is the selected constant operating point of the PS. Typically this is set

to be the most power efficient point of operation of the PS (PPS,cop = PPS,opt). This

mode of operation is valid until the SOC reaches its upper threshold (SOCU = 80%),

at which point it enters a mode of SS-only operation. This mode quickly depletes

the SS and once the SOC hits the lower threshold (SOCL = 50%) it returns to

operate the PS at its optimal point. This logic is implemented by S(t), which is

the state determining whether the PS is generally (with the exception of insufficient

power) active (S(t) = 1) or not (S(t) = 0):

S(t) =











0 SOC(t) ≥ SOCU

1 SOC(t) ≤ SOCL

S(t−) SOCL < SOC(t) < SOCU

. (3.7)

Here, S(t−) is the state S in the previous time sample. The rules and different modes

of operation of the TCS are presented graphically in Fig. 3.1. Note that the PS will

be requested to supplement power (at PPS = PPS,cop) if the load power exceeds the

capability of the SS (PPL > PSSmax), without changing S(t) to 1. For the purpose

of stable operation an additional rule is also introduced: the PS reduces its supply

of power if the battery is about to be charged beyond its power capacity (typically

occurs during the event of regenerative braking), to avoid damage to the battery.

This two-state SCS is best implemented using a state machine, which can easily be

designed using the Stateflow tool in Simulink, as shown in Fig. 3.2.
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SOC

PPL

PPS = 0

PPS = 0 if S = 0

PPS = PPS,cop if S = 1

PPS = PPS,cop PPS = PPL − PSSmax

1

SOCU

SOCL

PSSmax PPS,cop
+PSSmax

PPSmax
+PSSmax

Figure 3.1: The TCS operates in two different modes, depending on given SOC and
PPL: SS-only or hybrid-mode with PS operating at a constant operating point.

PSopt_mode

P_PSref=TCS_opt;

Max_mode

during: P_PSref=P_PL-42;

PS_mode

P_PSref=TCS_opt;

S=1;

SS_mode

P_PSref=0;

S=0;

Start

[SOC>80]

[SOC<51 || (S==1 && SOC<79)]

[P_PL<30 &&(SOC>79 

|| (S==0 && SOC>51))]

[P_PL>(42+TCS_opt)]

[SOC>0]

[SOC<50 

|| P_PL>42]

[P_PL<(42+TCS_opt)]

[P_PL>(42+TCS_opt)]

Figure 3.2: Stateflow diagram of the TCS, illustrating the control laws governing this
SCS. TCS opt is the optimal value for PPS,cop.

3.2.2 Tuning

The TCS has a single control parameter, PPS,cop, that needs to be set appropriately.

By design, this should be the optimal operating point of the PS (although certain

work in literature looks solely on the engine), which corresponds to PPS,opt = 20.1 kW

in the case of the vehicle model used in this work. However, although this intuitively

is an appropriate selection, it is worth validating this choice with an objective tuning

process.

Simulations are therefore run for the four driving cycles (WL-L, WL-M, WL-H and

WL-E) with a range of PPS,cop values. Tuning results are presented in Fig. 3.3. It can

be seen that the ideal value of PPS,cop varies between each driving cycle (19.6 kW,

17.8 kW, 17.0 kW and 23.8 kW for the four driving cycles respectively). It is

interesting to observe that the optimal power level is reduced as the average power

consumption increases from WL-L to WL-M to WL-H. This can be explained by the



90 Chapter 3

   

M
e
f
c
(-
)

   

   

   

   

2015 25
1

1.01

1.02

1.03

   

S
O
C

(%
)

   

   

   

   

2015 25
62

63

64

65

   

M
e
f
c
(-
)

   

   

   

   

   

2015 25
1

1.01

1.02

1.03

1.04

   

S
O
C

(%
)

   

   

   

   

   

2015 25
50

60

70

80

90

   

M
e
f
c
(-
)

   

   

   

   

   

2015 25
1

1.01

1.02

1.03

1.04

   

S
O
C

(%
)

   

   

   

   

   

   

2015 25
55

60

65

70

75

80

PPS,cop (kW)
   

M
e
f
c
(-
)

   

   

   

   

2015 25
1

1.05

1.1

1.15

PPS,cop (kW)
   

S
O
C

(%
)

   

   

   

   

   

2015 25
0

20

40

60

80

Figure 3.3: Normalized EFC (left) and final SOC (right) for varying PPS,cop when
driving WL-L, WL-M, WL-H and WL-E (from top to bottom) with TCS.



Conventional Strategies 91

PS operating point, PPS,cop (kW)
     

F
u
el

E
co
n
o
m
y,

M
e
f
c
(-
)

   

   

   

   

17.5 20 22.515 25
1

1.01

1.02

1.03

Figure 3.4: Normalized total EFC Mtot for varying PPS,cop with TCS.

benefits gained from reducing the amount of SS operation at high loads (where it is

inefficient). A lower power level PPS,cop results in longer duration of PS operation,

meaning that the SS can avoid a large part of its high load operation. However,

if the average power load is high enough (like the WL-E) then the SS is typically

required to be active and discharging during PS mode as well. Thus, the control

strategy can’t be CS for lower values of PPS,cop (the SOC can be seen to drop to

20% for PPS,cop = 15 kW). Instead, by increasing the power levels of the PS, the

burden on the SS is reduced.

To determine a single value for PPS,cop to be used during real-time driving, the

four driving cycles are considered together (as described in Section 2.6.2). The

normalized total EFC results are presented in Fig. 3.4, where the optimal tuning

value is found to be PPS,cop = 19.8 kW. It can thus be seen that the preliminary

guess of PPSopt = 20.1 kW is a very good estimate of the most suitable choice. For

the purposes of this work, PPS,cop = 19.8 kW will be used to allow the TCS to

perform at its best when benchmarking against other control strategies.

It is worth mentioning that the parameter PPS,cop could be defined as an adaptive

variable to persistently remain close to the optimal value for each driving cycle that

yields the best fuel economy results, but such a variable would add undesirable

complexity as well as move away from the heuristic nature intended for the TCS.

Nevertheless, it is worth considering further why a single constant PPS,cop is not a

universally suitable parameter value (as evidenced by the WL-E simulations).
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Selecting PPS,cop to correspond with the peak efficiency operating point of the PS

ensures optimal performance of the PS in the powertrain. However, the efficiency

of the SS is not accounted for by any means, and is completely dictated by the

propulsion load required to meet the driving cycle. If a driving cycle typically

requires power loads comparable to the optimal power supply of the PS, then the SS

efficiency does not significantly impact the overall fuel economy of the powertrain

during PS mode. However, if the propulsion load greatly exceeds the optimal power

supply of the PS (PPL >> PPS,cop) then the magnitude of power from the SS becomes

significant and its efficiency dynamics impact the overall fuel economy. Conversely,

if the propulsion load is very low (and PPL << PPSopt), then the battery is being

charged at a very high C-rating, and thus a lower efficiency, again resulting in reduced

overall powertrain efficiency. Also, there are further non-linear effects of PPSopt on

the timing of the on-set of PS (S(t) = 1) that are very driving cycle specific (you

would ideally like to have the PS switch on just before high loads within the driving

cycle).

3.2.3 Operation

Based on above findings, PPS,cop = 19.8 kW is found to be the most suitable choice

and will be used hereafter for all driving cycles. To understand the operation of the

TCS, it is useful to study its power profiles. Figures 3.5 and 3.6 show the power

profiles for the first and second iteration respectively of the four driving cycles.

For WL-L and WL-M, the vehicle is only powered by the SS in the first iteration of

the cycles (as the TCS is in its charge depleting state S = 0). As the required load is

quite low, it takes a long time for the SOC to drop sufficiently for the TCS to enter

charging mode. This happens in the second iteration (Fig. 3.6) for both of these

driving cycles. It can be seen that the SS is charged rapidly once the PS is on as

typically the load is much lower than the PS power being delivered (PPL < PPS,cop).

The TCS will actually return to charge depleting mode very soon after finishing

the second iteration of the cycle. It’s also worth noting that the PS deviates from

its steady operation during significant regenerative braking, to respect the battery

limits (PSSmin = −21 kW).

In contrast, WL-M and WL-E both enter charging mode within the first iteration

of the cycles (in fact, in less than a quarter of the time it took WL-L). However,
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Figure 3.5: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the TCS.
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Figure 3.6: Power time histories for PS, SS and PL for the second iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the TCS.
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this change of state could not have arrived soon enough, as it can be seen that

the SS was being exposed to very heavy loads, which is inefficient and accelerates

battery degradation. The PS is in fact required to briefly assist the SS during peak

loads for the WL-E, as the load exceeds the SS limits (PPL > PSSmax). It can also

be seen in both iterations of the WL-E cycle that the SS is often being discharged

despite the TCS operating in charging mode (S = 1). Thus, for any driving cycle

that frequently or persistently uses more power than the steady supply of the PS

(PPL < PPS,cop), the TCS will not be able to be CS (in the case WL-E for the vehicle

design being tested, the TCS is just barely CS).

Overall, it can be seen that the TCS is able to operate the PS quite steadily in a

very efficient manner, but at the expense of extreme types of operation by the SS.

The latter is often charged at its limit PSSmin, and it is also often required to deliver

very heavy loads (at times matching PSSmax). This stems from the PS-centric design

of the TCS and does not serve the overall powertrain very well.

The resulting fuel economy for the four driving cycles for the TCS is shown in

Table 3.1. It can be seen that the final SOC varies considerably, as could be expected

from the oscillating nature of the control. The fuel economy is also compared to the

GECMS (presented in Section 3.4) which can be considered an approximate global

optimal solution. Thus, the TCS is found to lag the GECMS results by 7.13-17.89%,

with a combined difference (as computed for Mtot) of 14.35%. This leaves plenty of

room for improvement.

Table 3.1: Fuel economy results for TCS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 62.84 0.8115 0.8350 +17.89
WL-M 73.71 1.4174 1.3345 +17.18
WL-H 76.03 1.1912 1.0865 +14.34
WL-E 49.21 1.4818 1.6983 +7.13
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3.3 Power Follower Control Strategy

The power follower control strategy (PFCS) is the second most conventional control

strategy for series HEVs. Its key characteristic is having the engine deliver the

required power to drive the car, unless high loads are required, in which case the

battery adds support.

3.3.1 Design

The PFCS follows a set of rules. Generally, the PS follows the load of the PL, with

some deviation to correct and consider the varying SOC. When the load from the

PL (PPL) is low and SOC is high, the SS is selected to deliver the power to the

vehicle (S(t) = 0). Conversely, when PPL is high or SOC is low, the PS is selected

to meet the load (S(t) = 1). These states are defined as follows:

S(t) =











0 SOC(t) ≥ SOCU and PPL < Pmin

1 SOC(t) ≤ SOCL or PPL > PSSmax

S(t−) SOC(t) ≥ SOCL and PPL < PSSmax

. (3.8)

For S(t) = 0, we always have PPS = 0. For S(t) = 1, the operation of the PS is

defined as

PPS(t) =











Pmin SOC(t) ≥ SOCU

Pm(t) SOCL < SOC(t) < SOCU

PPSmax SOC(t) ≤ SOCL

(3.9)

where Pm is given by

Pm(t) = PPL + Pch

[

SOCU + SOCL

2
− SOC(t)

]

. (3.10)

It can be understood that the PS power is essentially following the load PPL when

the SOC is at the midpoint between SOCL and SOCU , but biases the operation in

favor of charging or discharging the SS in the cases of low and high SOC respectively.

The bias is scaled by Pch to achieve CS operation. Note that in general PSS 6= 0

when S(t) = 1. These rules are shown visually in Fig. 3.7 and the implementation

of the rules within a state-flow diagram is shown in Fig. 3.8. Note that the PS

is constrained to operate within Pmin ≤ PPS ≤ PPSmax (where Pmin is a tunable
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PPS = 0
PPS = 0 if S = 0
PPS = Pmin if S = 1

PPS = Pmin

PPS = 0 if S = 0
PPS = Pm if S = 1

PPS = Pm

PPS = PPSmax

SOC

PPL

1

SOCU

SOCL

Pmin PSSmax PPSmax
+PSSmax

Figure 3.7: The PFCS has two distinct states, dependent on given SOC and PPL (as
defined in (3.8)), and has an area of hysteresis in between where the PS delivers zero, Pmin

or Pm power. Note that the vehicle can’t deliver maximum power for SOC > SOCU .

Pm_mode

during: P_PSref=P_PL+P_ch*(65-SOC);

SS_mode

P_PSref=0;

Max_mode

during: P_PSref=58;

Start

Min_mode

during: P_PSref=PFCS_min;

[((P_PL+P_ch*(65-SOC))<58 

&& SOC>50) || SOC>80]

[SOC>0]

[SOC>80 && P_PL<PFCS_min]

[(P_PL+P_ch*(65-SOC))>PFCS_min 

|| (SOC>80  && P_PL<PFCS_min)]

[(P_PL+P_ch*(65-SOC))<PFCS_min 

|| (SOC>80 && P_PL>PFCS_min)]

[(P_PL+P_ch*(65-SOC))>58 

|| SOC<49]

[P_PL>42 || SOC<50]

Figure 3.8: Stateflow diagram of the PFCS, illustrating the control laws governing this
SCS. PFCS min is the minimum power Pmin.

parameter whilst PPSmax = 58 kW is a physical constraint of the PS) when it is on,

thus resulting in the diagonal boundaries (with slope 1/Pch) in Fig. 3.7.

The PFCS therefore has two tunable parameters: the charging factor Pch and the

minimum power Pmin. The charging factor needs to be positive to contribute to-

wards making the control strategy more CS, but Pch = 0 is permissible as well.

Furthermore, as the charging factor scales the amount the battery is recharged, it

should respect the maximum power the battery can absorb, such that

Pch

100(SOCL − SOCU)

2
≤ PSSmin. (3.11)

Note that the factor of 100 is to convert the SOC units to percentage, as this is the

convention when defining Pch. Thus, for PSSmin = −21 kW the charging factor Pch
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should be defined such that it’s limited to Pch ∈ [0, 1.4] kW. Similarly, the charging

factor is also limited by the maximum power limit of the SS, such that

Pch

100(SOCU − SOCL)

2
≤ PSSmax. (3.12)

Thus, for PSSmax = 42 kW the charging factor Pch should be defined such that it’s

limited to Pch ∈ [0, 2.8] kW. To allow the charging factor to achieve all its potential

influence, it will be explored in the range Pch ∈ [0, 3] kW, but limits in the model

will ensure that the SS is not overloaded.

In the literature, the minimum power Pmin is sometimes defined by a physical con-

straint of the engine-generator set, but the magnitude of this parameter varies widely

across different work. The powertrain used in this work can operate at very low

power levels, and the PFCS inherently imposes Pmin < PSSmax (as can be understood

by Fig. 3.7). Thus the feasible range for the minimum power is Pmin ∈ [0, 42] kW.

3.3.2 Tuning

The implemented PFCS is simulated for various driving cycles with different Pch

and Pmin values and the resulting normalized EFC and final SOC values for these

tests are presented in Fig. 3.9. The optimal selection of parameters for each driving

cycle is marked with a cross sign.

As can be seen in the charts, the optimal tuning for each driving cycle is unique.

However, in each case the optimal Pmin is found to be close to 20 kW, which is

the PS peak efficiency operating point, or just below it. Considering the fact that

the PFCS often operates at PPS = Pmin, it is not a surprising outcome, although

it is not a typical setup in the literature (where lower values are typically used).

Furthermore, in the first three of the driving cycles, Pch = 0 is found to be the

ideal selection, thus having the PFCS truly operate such that the PS follows the

load power (PPS = PPL) with no additional CS action. Instead, the control strategy

remains CS through switching between it’s charge depleting state (S(t) = 0) and

charge replenishing state (S(t) = 1). However, it can be seen that the control

strategy is operating close to the upper bound of the SOC for WL-E if Pch = 0 is

used.
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Figure 3.9: Normalized EFC Mefc (left) (Mefc = 1 is marked with a cross) and final
SOC (right) for varying Pmin and Pch when driving WL-L, WL-M, WL-H and WL-E

(from top to bottom) with PFCS.
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Figure 3.10: Normalized total EFC Mtot for varying Pmin and Pch with PFCS.

To obtain the optimal tuning parameters for implementation during real-time driv-

ing, a single set is found by evaluating the total fuel economy of the four driving

cycles combined. The results are presented in Fig. 3.10, and the total EFC is found

to be at its minimum for Pch = 0 and Pmin = 16.8 kW. This selection will therefore

be used henceforth within this work.

3.3.3 Operation

Using the tuned values for the control parameter it is now possible to look closer

at the resulting operation. Figure 3.11 shows the power profiles of the powertrain

when driving the first iteration of the four driving cycles, and Fig. 3.12 shows the

second iteration.

For WL-L, the PFCS operation is very similar to the operation of TCS from Figs.

3.5 and 3.6. As it opens with pure SS operation it operates identically to the TCS

until halfway through the second iteration, when the PS is switched on. The PFCS

operates at Pmin quite persistently as the required load is very low. The power

level is however different, as Pmin is of a lower magnitude than the PPS,cop of the

TCS. Consequently, the PFCS can expect to operate in a charge replenishing mode

(S = 1) for a longer duration than the TCS, while exposing the SS for less intensive

charging.
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Figure 3.11: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the PFCS.
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Figure 3.12: Power time histories for PS, SS and PL for the second iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the PFCS.
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Figure 3.13: Power time histories for PS, SS and PL for the first two iterations of
driving WL-H with the PFCS with Pch = 1 kW and Pmin = 10 kW.

The operation for WL-M is the same as the TCS for the first iteration, but it begins

to display its power following characteristics in the second iteration. As the PS is

switched on (as SOC has dropped to its lower limit), the PS will operate typically

at Pmin, but whenever the required load exceeds this threshold, the PS will adjust

and meet the load fully.

This operation becomes even clearer for WL-H and WL-E, where a higher amount of

time is spent with PPL > Pmin, allowing the PFCS to operate in its power following

mode for a significant part of the driving cycle. As the SS is not discharged in

this mode of operation, the SOC can be expected to recover quite fast, which is

comparable to TCS for WL-H, despite Pmin < PPS,cop. It also worth noting that the

PFCS enters charge replenishing mode already around t = 60 s, which is earlier than

the TCS. This is an effect of the power conditions that are given in Eq. 3.8, which

makes the PFCS change state if the load becomes high. This allows the PFCS to

enable the PS at an earlier stage than the TCS, which is clearly advantageous for

WL-E.

The resulting operation from the optimal tuning parameters is not the typical PFCS

operation (although it arguably is more “power following”), which would have a

higher Pch and lower Pmin. To illustrate this, Fig. 3.13 shows the power profile for

WL-H×2 with Pch = 1 kW and Pmin = 10 kW. The PFCS starts the driving cycle

starts with SS-only mode, just like the optimal setting in Fig. 3.11. As the PS is

switched on around t = 200 s (because SOC reaches SOCL), the power from the



104 Chapter 3

PS generally follows the shape of the load power but exceeds it with some margin

(PPS > PPL) resulting in the SS being charged. This offset is due to the contribution

from the charging factor Pch as seen in Eq. 3.10.

However, with time (as SOC increases), the margin between PPS and PPL is grad-

ually reduced, resulting in the SS being charged at a slower rate, until the PS is

briefly following the load power quite precisely (as SOC = SOCU+SOCL

2
). As the SS

is generally charged (and the SOC thus increases), the SS begins supplementing the

PS in meeting the load power. This type of operation is clearly more CS (rather

than just rapid charging) than the operation shown in Fig. 3.12, and thus keeps

the PS on even at the end of the two iterations of WL-L. However, having the SS

operate at very low power levels is not efficient due to the high DC-DC converter

losses for this type of operation. Consequently, the PFCS setting of Pch = 0 and

Pmin = 16.8 kW is find to be the best. As the nature of the PFCS is dependent

on the particular powertrain in which it is implemented, it is expected to exhibit

some variance in behavior. Thus, the appropriate way to proceed is to use the tuned

parameters that were found to be optimal for the PFCS in terms of equivalent fuel

economy, despite its somewhat unconventional operation (albeit within the power

follower framework).

Lastly, the fuel economy of the PFCS is presented in Table 3.2 for the four driving

cycles. Similar to the TCS, it can be seen that the final SOC varies considerably, as

the high setting of Pmin has the PFCS partly mimic the operation of the TCS. The

fuel economy is also compared to the GECMS (presented in the next section) which

can be considered an approximate global optimal solution. The PFCS is found to

lag the GECMS results by 6.57-18.60%, with a combined difference of 13.55%. This

is a small improvement on the TCS, but further improvements can be expected for

better designed strategies.

Table 3.2: Fuel economy results for PFCS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 63.88 0.8278 0.8400 +18.60
WL-M 62.02 1.2824 1.3145 +15.43
WL-H 69.49 1.1198 1.0772 +13.35
WL-E 80.86 1.8681 1.6894 +6.57
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3.4 Global Equivalent Consumption Minimization

Strategy

The GECMS is a globally tuned ECMS. The strategy determines the equivalent fuel

consumption (EFC) of the powertrain for various driving conditions to produce an

offline control map, instructing how to best share the power between engine and

battery. To compute the EFC, the equivalence factors Sd and Sc need to be esti-

mated, but the GECMS operates with the luxury of being allowed to use optimally

tuned equivalence factors, in order to achieve close to optimal fuel economy.

3.4.1 Design

The ECMS has been widely described in the literature, both as a proposed SCS as

well as for benchmarking [70, 78, 113]. There are many variants, but the presented

work implements a GECMS (globally tuned ECMS), based on [78]. It has been

shown that the GECMS is able to realize operation almost identical to the global

optimal solution as determined through DP [104]. This makes the GECMS a very

suitable benchmark, as it provides a close to optimal solution to benchmark any

proposed SCS without employing DP, which might be unfeasible to implement for

a complex and dynamic vehicle model. As the principles of GECMS, and its foun-

dation on PMP, have been discussed previously in this chapter (and in more depth

in the literature), this section will solely focus on the implementation of this SCS.

The objective of a GECMS is to minimize the EFC meq, which is defined as

meq =

∫ tf

o

ṁeq(t, u(t)) dt, (3.13)

where

ṁeq =







ṁf (PPS)− Sd
PSS

QLHV
PSS ≥ 0

ṁf (PPS)− Sc
PSS

QLHV
PSS < 0

, (3.14)

where ṁf is the fuel consumption rate of the ICE in the PS and QLHV is the lower

heating value of the fuel. The two constants Sd and Sc are equivalence factors that

translate the energy discharged/charged by the SS into a corresponding amount of
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fuel consumed/stored. The values of these constants can be determined by trial-

and-error or numerical optimization, to identify the optimal selection of equivalence

factors for each driving cycle being tested. Although such tuning can be time-

consuming for very complex vehicle models, it’s likely to be faster and simpler than

implementing alternative global SCSs (such as DP solutions).

The optimization problem can now be reduced to a local minimization problem as

follows:

PGECMS















min
u

ṁeq(t, u) ∀t ∈ [0, tf ]

0 ≤ u ≤ PPSmax

PPL

SOCL ≤ SOC ≤ SOCU

(3.15)

Thus, for each time instant t of a given driving cycle (for which we obtain the PPL

profile), an optimal power share factor uopt can be defined for each set of equivalence

factors Sd and Sc. Using a map of fuel consumption mf (PPS), as shown in Fig. 2.10,

a sweep can be performed for Eq. 3.14 with u ∈ [0, PPSmax

PPL
] for PPL(t) to produce

an optimal control input. This process is repeated for each candidate set of Sd and

Sc. For m number of Sd values investigated and n number of Sc values investigated,

there are m×n number of control maps produced for each driving cycle investigated.

Consequently, to identify the optimal selection of equivalence factors, within a range

of e.g. Sd ∈ [2.9, 3.1] and Sc ∈ [2.6, 2.9] with intervals of 0.01 for the four driving

cycles would require approximately 2000 hours of driving simulation.

3.4.2 Tuning

To tune the GECMS, the computational time needs to be reduced. A coarser search

(with 0.02 intervals) is therefore performed on a quarter of the number of iterations

that are typically used in this work for each driving cycle (i.e. WL-L×2, WL-M×2,

WL-H×1 and WL-E×1). As the GECMS control variable is independent of SOC,

or any other model state, the applied control is identical for each iteration of each

driving cycle. Thus, these initial simulations will yield quite accurate equivalence

factor values. The fuel economy results for these tests, together with final SOC

values, are shown in Fig. 3.14.

It can be seen that the optimality of the driving cycle is highly sensitive to the

selected equivalence factors Sd and Sc (e.g. an error of 2% in Sc could cause a 20%
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Figure 3.14: Normalized EFC Mefc (left) (Mefc = 1 is marked with a cross) and final
SOC (right) for varying Sd and Sc coarsely when driving WL-L, WL-M, WL-H and WL-E

(from top to bottom) with GECMS.
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drop in fuel economy for WL-M), although the approximate optimal values (marked

by the cross) are often found in close proximity to each other, in particular for the

three first driving cycles. Furthermore, by comparing each set of subplots, it appears

that each approximate optimal solution appears nearby the SOCfinal = SOCinitial

line (where SOCinitial = 65%). This is a desirable trait, as it tends towards making

the GECMS CS. However, it is worth noting that this behavior is not inherent to the

ECMS alone, but relies on appropriately defined Sd, efc and Sc, efc when evaluating

the EFC mefc (as discussed in Section 2.6.2). A badly defined EFC would not have

the GECMS exhibit these CS tendencies.

Now further simulations can be run (for the full number of iterations of the driving

cycles and with intervals of 0.01) in the proximity of the obtained approximate

equivalence factors. The fuel economy results for these tests, together with final

SOC values, are shown in Fig. 3.15.

At this precision level, it becomes apparent that the fuel economy is less sensitive

than the final SOC to the equivalence factors (the fuel economy is still more sensitive

for the GECMS than for the TCS or PFCS). In fact, this feature can be exploited

to design a real-time ECMS. By tuning the equivalence factors in real-time based

on the SOC, the real-time ECMS will remain CS for any driving cycle and achieve a

fuel economy comparable to the GECMS. Although a real-time ECMS has not been

implemented, this concept will be used in the next chapter.

The equivalence factor values obtained from this optimization process for the four

driving cycles are given in Table 3.3 and the resulting optimal control maps are

shown in Fig. 3.16. In all four cases it can be seen that the strategy includes a

pure electric operation at low powers, which should be expected considering that

the PS doesn’t perform very efficiently at low loads. Equally, once the PS is turned

on, it delivers more power than the required load and thus ends up charging the

SS. This is followed by generally hybrid operation for higher power loads. The mix

of u < 1 and u > 1 operation allows driving to be more CS than only relying on

regenerative braking. These are all insights that will be used in designing further

control strategies in the coming chapters.

The GECMS is implemented into the vehicle model in Simulink through a simple

look-up table that uses the produced map (shown in Fig. 3.16) and the requested PPL

to select the optimal power share factor, that is then multiplied by PPL to provide
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Figure 3.16: Power share factor and PS power for varying power requirements, for
WL-L, WL-M, WL-H and WL-E (from top to bottom) with GECMS.
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Table 3.3: Optimal equivalence factor values

Driving cycle Sd Sc

WL-L 2.96 2.80
WL-M 2.98 2.75
WL-H 3.00 2.74
WL-E 3.43 2.86

1

P_PSref
 

1

P_PL

f(u)

1-D T(u)

Lookup Table 1D

Figure 3.17: Implementation of the GECMS in Simulink.

the optimal PPSref . This implementation is shown in Fig. 3.17. An alternative

implementation would be to generate a power share ratio profile u(t) for each driving

cycle and implement it without any input from the model. However, such a method

is less robust for changes in vehicle operation and requires more pre-simulation

processing time (to generate the power share profile). Lastly, and maybe the most

common method of implementation, would be to compute the power share ratio

u (using globally tuned, pre-computed equivalence factors) at each sample time.

Although this process is feasible in real time, it would result in increased simulation

time and is thus not preferred.

3.4.3 Operation

The implemented GECMS, with optimally tuned Sd and Sc values, has been sim-

ulated and the resulting power profiles are shown in Fig. 3.18 for the four driving

cycles. As the GECMS is state-independent, it operates exactly the same way for

every iteration of the driving cycles. Therefore, only the first iteration is presented

here.

For WL-L and WL-M, the control can be characterized by its frequent switching of

the PS. It is not used more than 20 s continuously. It is consequently much more

responsive to changes in required load, as compared to the TCS or PFCS that could
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Figure 3.18: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the GECMS.
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keep on operating the SS close to its maximum limit rather than turn on the PS.

In fact, while the TCS and PFCS would switch on the PS twice each during WL-L,

the GECMS does it 144 times (corresponding to one switch per 33 s). Although this

incurs a penalty in fuel consumption, it is quite likely that the improved power share

will more than compensate for this (as is shown later). The GECMS experiences

somewhat more continuous operation for WL-H and WL-E. For the latter, the PS

operates in some sense even steadier than the PFCS. The PS is operated between

20 and 25 kW with a few spikes for very high loads.

More generally, it can be seen that the GECMS is quite “blocky” and often operates

the PS quite steadily, despite having the possibility to operate with much more

variance. This also corresponds with the nature of the series powertrain, where the

ability to operate the PS quite freely (to operate close to its optimal operating point)

is seen as the biggest advantage. However, the nature of these “blocks” are different

from the TCS or PFCS, in the sense that they are often of a very short duration.

In fact, some of these switches are just for about a second, which are unlikely to be

optimal. Such operation is not ideal and would not occur in a truly global optimal

solution. It is these kinds of discrepancies that separate the solutions obtained by

methods such as DP and a GECMS. However, as mentioned, works in the literature

suggest that the fuel economy differences between these approaches are very small.

The fuel economy results for the four driving cycles are presented in Table 3.4. It is

immediately apparent that the GECMS is able to maintain the SOC very close to

SOCinitial = 65%. The absolute EFC results are not of great importance yet, but

these GECMS results will be used to benchmark all other strategies in this work (as

was done for TCS and PFCS earlier in this chapter).

Table 3.4: Fuel economy results for GECMS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 65.17 0.7100 0.7083 +0
WL-M 64.34 1.1317 1.1388 +0
WL-H 64.18 0.9404 0.9503 +0
WL-E 64.05 1.5723 1.5853 +0



114 Chapter 3

3.5 Summary

This chapter has introduced past work on control strategies for HEVs. This has

included a review of both rule-based and optimization-based control strategies,

with the latter further subdivided into real-time and global control strategies. An

overview of these strategies from the literature is shown in Table 3.5.

Table 3.5: Overview of control strategies for series HEVs

Rule-based
Strategies

Real-time Optimization
-based Strategies

Global Optimization
-based Strategies

TCS ECMS DP
PFCS MPC GECMS
MSP SDP GA
FLC NN GT
SMC CO

The TCS and PFCS are the most conventional rule-based strategies for series HEVs,

and have therefore been adopted as benchmarking strategies in this work. While the

ECMS and DP are the most common approaches in optimization-based strategies,

the GECMS was found to be most suitable. It enjoys the simplicity and effectiveness

of the ECMS while achieving a fuel economy performance comparable to DP.

The implementation of a real-time ECMS would have been useful as another bench-

mark, but there is a wide range of approaches that would have achieved a wide

range of results. Based on work in the literature, the real-time implementation is

typically a few percentage points behind the GECMS (assuming no GPS or telem-

atic information is used). DP, on the other hand, has not been pursued due to it

being unfeasible for the used model. The approach of creating a significantly reduced

model for the application of DP (the conventional approach in literature) does not

appear worthwhile, as any benchmarking where the candidate strategies are tested

on different vehicle models has questionable validity.

The chapter also included the design, implementation and operation of the TCS,

PFCS and GECMS. The TCS takes a load leveling approach while the PFCS applies

load following, but both their operation and fuel economy results were similar. The

GECMS outperformed these with 14.35% and 13.55% respectively in terms of fuel

economy, and demonstrated consistently CS operation. The GECMS will be acting

as the fuel economy benchmark for the proposed strategies in the coming chapters.
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Efficiency Maximizing Map

Strategies

This chapter will propose a set of novel efficiency maximizing map strategies (EMMS).

These will include the EMMS0, EMMS1 and EMMS2 that are real-time control

strategies, as well as the the Global EMMS (GEMMS), which is a globally tuned

variant. The core idea behind each of these strategies is to utilize a thorough under-

standing of the powertrain efficiencies to maximize the fuel economy during driving

with precomputed control maps.

The chapter will begin by laying out the design principles of the proposed control

strategies, before thoroughly evaluating the powertrain efficiencies, with the objec-

tive to control the powertrain in upcoming sections. Efficiencies for both the PS

and SS are derived before a total efficiency is expressed. Thereafter, the EMMS0,

which we have published in [12–14], is presented. Some minor adjustments have

been made to the control strategy as compared to these publications and new re-

sults are presented. This is developed further with the EMMS1 by including a more

intuitive and effective method to accomplish CS operation, in addition to delivering

improved fuel economy. The EMMS1 is modified and converted into the globally

tuned strategy GEMMS (similar to the GECMS in the previous chapter). Lastly, the

GEMMS will be modified into EMMS2 to allow real-time implementation. For each

of the proposed control strategies, the tuning process, the resulting control maps,

and representative power profiles of operation will be presented and discussed.

115
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4.1 Design Principles

The control strategies discussed and presented in Chapter 3 included a mix of rule-

based and optimization-based strategies. It was mentioned that the latter type tend

to deliver better performance but at the expense of simplicity, robustness and ease of

tuning. In particular, the ECMS was emphasized, as it is the most popular approach

within the research community today.

However, the success of the ECMS is quite sensitive to the equivalence factors, con-

verting between fuel and battery charge, that depend on driving cycle and other

time-variant factors. An alternative approach to minimizing equivalent fuel con-

sumption is to maximize the powertrain efficiency. This has the advantage of not

only being more intuitive but also less sensitive to tuning, as the component efficien-

cies are often readily available unlike equivalence factors. Also, this method is more

transparent in the sense that it can be understood where the various losses are oc-

curring in the powertrain. Furthermore, this control method does not rely on future

driving information but only on the instantaneous power demanded for the vehicle

to follow any given speed profile, as well as the SOC of the battery. Therefore, it

can be implemented in real-time at low computational cost.

Past work that has taken the approach of considering the powertrain efficiency has

often focused on the optimization of the internal combustion engine (ICE) or the

engine-generator set, as a vast majority of the powertrain losses occurs there. Con-

sequently, this often results in the battery dynamics and losses being considered

very crudely, if not neglected. Instead the battery is only considered when applying

constraints on the control, typically to ensure the SOC remains between a defined

upper and lower bound. Some work investigates the overall powertrain efficiency

but uses it to derive heuristic control rules rather than an efficiency-maximizing

objective function [114–116]. Other work studies the powertrain efficiency in depth

to inform the control algorithm (without specifically optimizing efficiency) and then

evaluates simulation results rigorously [117, 118].

The work proposed in this chapter takes a holistic approach and investigates the

efficiency of the whole powertrain in depth before producing a control map such

that the total efficiency is continuously locally maximized during driving (subject to

SOC constraints). The implementation of SCSs using control maps has been done

in the past as well [119]. These maps are easy to implement and can be read during
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driving in real-time with very limited processing requirements. Also, as the maps

are precomputed off-line, there is practically no time-constraint on the optimization

algorithm to maximize the efficiency.

Particular attention is also given to charge sustaining mechanisms. Any optimization

that solely focuses on optimizing the fuel economy will tend to deplete the battery

quite rapidly (or overcharge in rare cases). It is therefore essential to balance short-

term gains in fuel economy with long-term sustainability of such driving. The first

two real-time strategies (EMMS0 and EMMS1) will take two distinct approaches

to address this problem, while the GEMMS has the luxury of knowing its route in

advance and is thus inherently designed to be CS. The permissible range of SOC will

be the same as in Chapter 3 (SOCL = 50% and SOCU = 80%) but further emphasis

will exist on maintaining the SOC reasonably close to SOCinitial = 65%. This differs

vastly from the TCS and PFCS, which both are designed to reach their extreme

points of SOC before alternating the operation such that the SOC drifts in the

opposite direction. This type of driving has certain benefits in terms of robustness

and lack of engine start-stop events, but is very inefficient and has detrimental effects

on the battery.

Lastly, an effort has been made to keep the control strategies practical. There are

always possibilities to include additional factors or corrections that add new tuning

parameters. Such choices tend to make the control design a tuning exercise, and often

render the control system impractical for any other vehicle design. Thus, each of

the control strategies proposed have been limited to use only two tuning parameters.

The approach also aims to be general enough to allow the same optimization process

to be successfully applied to a different series HEV design.
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4.2 Powertrain Efficiency

This section studies and identifies the efficiency of the powertrain with the objective

to control it in upcoming sections. Efficiencies for both the PS and SS are presented

before a total efficiency is expressed.

4.2.1 Primary Source

The study of the PS efficiency has already been partly presented as part of the

overall PS operation description in Section 2.3.4. This subsection will therefore

only briefly identify the component efficiencies of the engine, the generator and the

rectifier before presenting the resulting combined PS efficiency ηPS.

The energy of the PS originates from the fuel powering the ICE, where the chemical

energy is converted to mechanical energy. The efficiency of this process is defined

by

ηICE =
TICEωICE

ṁfuel ·QLHV

, (4.1)

where TICE and ωICE are the torque and speed of the ICE respectively, ṁfuel is

the fuel mass flow rate and QLHV is the lower heating value of the fuel. The PS

then uses the PMSG to convert the above to three-phase electrical energy, and the

efficiency of this process is given by

ηg =
3
2
(vqgiqg + vdgidg)

TICEωICE

, (4.2)

where vdg, idg, vqg and iqg represent d-q voltages and currents respectively corre-

sponding to the three-phase output of the PMSG. Lastly, the energy flows through

the rectifier to make the energy available as DC power, and its efficiency is defined

as

ηrec =
PPS

3
2
(vqgiqg + vdgidg)

. (4.3)

The overall energy of the PS is therefore defined as the product of these three

efficiencies

ηPS(PPS) =
PPS

ṁfuel(PPS) ·QLHV

. (4.4)
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Figure 4.1: PS efficiency, ηPS , for varying PS power demand and engine speed.

Thus, for any given PPS the efficiency ηPS can be determined by measuring the fuel

rate ṁfuel, which will only depend on PPS (as the optimal selection of engine speed

ωICE is utilized as shown in Fig. 2.9). Based on the BSFC data from Section 2.3.4,

the PS efficiency ηPS is presented in Fig. 4.1 as a function of PPS. It demonstrates

that the PS is generally more efficient at higher levels of power demand and medium

speeds. As discussed in Section 2.3.4, the dotted border is defined by the operational

limits of the ICE (due to feasibility or lack of validation). Note that the maximum

efficiency is found at 20.1 kW at 1870 rpm and is marked with a cross in the chart.

4.2.2 Secondary Source

Strictly speaking, the SS is an energy buffer, rather than an energy source. It receives

energy from the PS either directly (by charging) or indirectly (by regenerative brak-

ing). It is therefore not straightforward to express the efficiency as an instantaneous

value. The conventional approach is to express it as the energy charge-discharge

efficiency [41], defined as

ηbat,c−d =
Edischarge

Echarge

, (4.5)

where the two energies are defined for the same SOC. Other alternatives include

the expression of efficiency as the coulombic efficiency or the voltaic efficiency [120].

However, they all suffer from an inaccuracy: the underlying assumption of these

types of efficiency is that the battery will be charged and discharged at the same
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power level. Consequently, when evaluating the efficiency of the battery at a dis-

charge of, e.g. 10 kW as compared to 20 kW, it is not the actual instantaneous

efficiency being compared, but rather it is a comparison with two different assump-

tions being made for the two cases. The assumptions are that the battery was

charged with 10 kW in the past if discharging at 10 kW, and 20 kW if discharging

at 20 kW. Clearly the past charging should be already fixed, and not determined

by present and future discharging levels. To address this, the efficiency is separated

into charging efficiency and discharging efficiency, where the former is defined as

ηbat,c =
Pbat−charge

Pbat−in

=
vbat,OC · ibat
vbat · ibat

=
vbat,OC

vbat
, (4.6)

in which Pbat−charge is the power being stored in the battery. This power is obtained

by multiplying the current, ibat, with the open-circuit voltage of the battery, vbat,OC .

Pbat−in corresponds to the power sent to the battery at its ports, while vbat is the

voltage at the same ports. Similarly the discharging efficiency can be formulated as

ηbat,d =
Pbat−out

Pbat−discharge

=
vbat · ibat

vbat,OC · ibat
=

vbat
vbat,OC

, (4.7)

where Pbat−out is the power delivered by the battery at its ports, and Pbat−discharge

is the power consumed by the battery internally. The latter power is obtained by

multiplying the current with the open-circuit voltage of the battery.

The efficiency of the DC-DC converter ηdcdc can now be included, which is defined

through a look-up table (as given in Section 2.4.2). Thus the overall efficiency of

the SS can be expressed as

ηSS =







vbat,OC

vbat
ηdcdc PSS < 0

vbat
vbat,OC

ηdcdc PSS ≥ 0
. (4.8)

To allow simplification of Eq. 4.8 and make it more usable for the optimization

in the next section, battery voltage can be substituted with current. The battery

voltage is modeled to be a function of ibat and SOC. However, vbat,OC has ibat = 0

so we can determine that vbat,OC = f(SOC). Similarly, ibat is a function of SOC
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and vbat, which can however be expressed as a function of PSS as follows:

ibat =







PSS ·ηdcdc
vbat

PSS < 0

PSS

vbat·ηdcdc
PSS ≥ 0

. (4.9)

Now, by considering Eqs. 4.8 and 4.9 the overall efficiency of the SS is given by

ηSS(PSS, SOC, ibat) =







vbat,OC ibat
PSS

PSS < 0

PSS

vbat,OC ibat
PSS ≥ 0

, (4.10)

The defined SS efficiency can now be determined experimentally, analytically or

through simulations. Both of the two latter methods have been performed and

published in [12, 14], but only the analytical method will be presented in this thesis.

The battery model used is described in Section 2.4.1 where parameter values are

also given. It has minor differences in dynamics between charging and discharging

operation to account for differences in the polarization resistance. However, below

only the discharging dynamics are presented, although the dynamics of each mode of

operation were considered when performing the analysis and producing the efficiency

map in this section. The key discharging dynamics of the battery model are given

by Eqs. 2.25-2.29.

To make the efficiency model time-invariant, it is assumed that i∗bat = ibat, so that

we obtain the efficiencies for steady-state operation. To obtain vbat−OC , Eqs. 2.25

and 2.26 should be substituted with ibat = 0 to create open circuit conditions. To

express this as a function of SOC, we substitute with Eq. 2.29 to give

vbat,OC(SOC) = E0 −
K1 ·Qmax(1− SOC)

SOC
(4.11)

+ Ae−B·Qmax(1−SOC).

Lastly, ibat can be determined by combining Eqs. 4.9, 2.25,2.26 and 2.29 to produce

the following quadratic equation

aI2bat + bibat + c = 0, (4.12)
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where

a =
K2

SOC
+Rbat,

b =
K1Qmax(1− SOC)

SOC
− E0 − Ae−B·Qmax(1−SOC),

c =
PSS

ηdcdc
.

Thus, we obtain the battery current as

ibat(PSS, SOC) =
−b±

√
b2 − 4ac

2a
, (4.13)

where it is only a function of PSS and SOC. This allows the expression of Eq. 4.10

as follows:

ηSS(PSS, SOC) =







vbat,OC ibat
PSS

PSS < 0

PSS

vbat,OC ibat
PSS ≥ 0

, (4.14)

Equations 4.11 and 4.13 are then iteratively solved for SOC ∈ [SOCL, SOCU ] and

PSS ∈ [PSSmin, PSSmax] in steps of 1% and 0.1 kW respectively before being sub-

stituted into Eq. 4.14 to provide the efficiency of the SS. The obtained results are

presented in Fig. 4.2.

Battery efficiencies are typically high at low magnitudes of power and get gradually

lower for higher loads. However, as the powertrain includes a DC-DC converter,

the efficiency is very low at very low loads. These two features together result in

an efficiency profile with a peak around 10 kW for discharging and -10 kW for

charging. Furthermore, it is interesting to note that the charging becomes slightly

more efficient at lower SOC levels, while discharging becomes slightly more efficient

at higher SOC levels. Thus, if efficient operation is encouraged, CS is indirectly

taking place to a limited extent.

4.2.3 Total Efficiency

Having obtained the efficiencies for both the PS and the SS in Eqs. 4.4 and 4.14

respectively, these can now be merged into a single expression. However, as we

consider the complete powertrain, we need to make a correction to the SS efficiency.

As mentioned, the battery is not a source of energy by itself but must ultimately
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Figure 4.2: SS efficiency ηSS for varying charging (negative) and discharging (positive)
SS power demand and SOC.

receive its energy through the PS. Therefore, a correction factor v is included to

account for the PS losses involved in facilitating the SS to operate (the term is

defined further in upcoming sections). Thus, the combined total efficiency (for

PPL ≥ 0) can be expressed as

ηtot(PPS, PSS, SOC) =
PPL

Pin

=











PPS+PSS
PPS
ηPS

+
PSSηSS

v

PSS < 0

PPS+PSS
PPS
ηPS

+
PSS
vηSS

PSS ≥ 0
, (4.15)

As the SS efficiency (in Eq. 4.10) during discharging is the inverse of itself during

charging, the expression can by simplified by using

η∗SS =







1/ηSS PSS < 0

ηSS PSS ≥ 0
. (4.16)

Essentially, η∗SS expresses the bi-directional efficiency as a single term. To simplify

further, the individual powers of the sources can be expressed using the power share

factor u, defined in Eq. 2.32, giving a single decision variable to determine both PPS

and PSS. Thus the total efficiency can be formulated as

ηtot(u, PPL, SOC) =
ηPSη

∗

SSv

vη∗SSu+ ηPS(1− u)
. (4.17)
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4.3 Efficiency Maximizing Map Strategy 0

This section presents the general design of the EMMS approach as well as the

specifics of the EMMS0. It begins by introducing the problem formulation and

the control map approach that can be used to solve this. The fist attempt, the

non-CS EMMS0, is presented before being improved further by including a mech-

anism to ensure CS operation, to produce the EMMS0. Lastly, the operation and

performance is evaluated.

4.3.1 Control Approach

The fundamental principle of the EMMS is to operate the energy sources such that

the efficiency ηtot is maximized. As it is clear from the definition of this variable in

the previous section, it depends on two defined variables (PPL and SOC) and one

decision variable (u). The optimization problem can be expressed as the following

local maximization problem:

P

{

max
u

ηtot(t, u) ∀t ∈ [0, tf ]

0 ≤ u ≤ PPSmax

PPL

(4.18)

However, the total efficiency at any time instant is determined by the power re-

quested by the PL, the SOC and the power split between PS and SS, and therefore

the optimization problem can be reformulated as:

PEMMS

{

max
u

ηtot(PPL, SOC, u) ∀PPL ∈ [0, PPLmax], SOC ∈ [SOCL, SOCU ]

0 ≤ u ≤ PPSmax

PPL

(4.19)

where PPLmax = PPSmax + PSSmax.

This reformulation has many benefits. It reduces the time to perform the optimiza-

tion offline and allows the same control map to be used for different driving cycles.

Furthermore, the memory used to store the maps is often reduced. However, the

EMMS approach has some additional processing requirements during operation, as

it needs to read the PPL and SOC in real-time to select the appropriate operating

point. However, this type of real-time feedback also makes the control more robust,

should there be any unexpected variation in operating conditions.
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Figure 4.3: Implementation of the EMMS in Simulink.

The objective is thus to produce a map for the optimal decision variable given the

defined variables, according to

uopt = f(PPL, SOC). (4.20)

This control map is then implemented within the Simulink model as shown in

Fig. 4.3. The SOC and load power PPL signals are read into the map, which

produces the optimal power share ratio that can simply be multiplied by the load

power to generate a reference signal for the PPS. Note that the f(u) function block

converts the input to the same precision as the generated control map.

The objective function can then be solved through a simple iterative process, within

the search space of SOC ∈ [SOCL, SOCU ], PSS ∈ [PSSmin, PSSmax] and PPS ∈
[0, PPSmax]. Note that the search for ωICE is not needed due to the pre-computation

of ωICE,opt = f(PPS) as shown in Fig. 2.9, thus significantly reducing computational

time (which is not a significant issue though, as optimization is performed off-line).

The efficiency is therefore computed for every feasible combination of values for the

defined and the decision variables and the optimal u is selected in each case (the

range of u is set by the PPL of interest as u ∈ [0, PPSmax/PPL] and is appropriately

discretized). Once this optimization is performed, the efficiency maximizing control

map is obtained.

4.3.2 Efficiency Maximizing Map

This first design attempt will only consider the efficiencies of the powertrain to

produce the control map, without consideration for CS operation. To implement

the control map it is first necessary to further define the total efficiency of the

powertrain. As mentioned in the previous section, the SS efficiency needs to be
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adjusted by a factor v to account for the PS losses incurred in the charging of the

battery. The definition used in [14] is as follows:

v =







1 PSS < 0

ηre PSS ≥ 0
. (4.21)

where ηre is the replenishing efficiency. This term is applied only during discharging,

and can be intuitively understood as a correction with consideration for the PS

efficiency involved in replenishing the battery after it has been discharged. This can

also be related to practically by considering the fact that the SS efficiency is often

in the region of 90% while the PS efficiency is around 34%. Without any correction,

the efficiency maximizing strategy would almost always operate using only the SS,

ending up depleting the battery. By multiplying the SS discharging efficiency with

the replenishing efficiency, the complete energy cycle involved in discharging the

power from the battery is considered.

In reality, the replenishing efficiency is a variable that is dependent on both past and

future operating conditions and is difficult to compute. However, as its dynamics

can be considered very slow, it can be treated as a constant for a particular driving

cycle without much loss in optimality. This is the approach taken in this work, and

a unique control map can be produced for each selection of ηre.

The optimal power share factor uopt for varying power demand is shown in Fig. 4.4

for ηre = 34%, together with the realized efficiency ηtot. It can be seen that the SCS

chooses to operate SS-only mode during low PPL and almost PS-only mode during

mid-range PPL. For higher power requirements the non-CS EMMS0 uses a blended

mode to drive the powertrain. It is worth noting that the dependence of uopt on

SOC-levels is quite limited, as could be expected from the efficiency plot of the SS

in Fig. 4.2. The total efficiency ηtot that is realized by this selection of u is quite

steady above 30% for most power requirements.

Simulations are run for the four different driving cycles to tune the replenishing

efficiency ηre ∈ [26, 36]% to maximize the fuel economy. Results with normalized

EFC and final SOC levels are presented in Fig. 4.5, and it can be seen that the

optimal value is found as low as ηre = 29% for WL-E but higher than ηre = 36% for

WL-L. Higher values for the replenishing efficiency were not tested as the battery

SOC was dropping too low. However, by looking at the fuel economy of the four
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Figure 4.4: Optimal power share and PS power, and corresponding total efficiency for
varying power requirements and SOC for ηre = 34% for non-CS EMMS0.

driving cycles combined, as shown in Fig. 4.6, it can be determined that ηre = 34%

is the optimal selection. This corresponds to the typical efficiency of the PS, as

shown in Fig. 4.1.

It is also evident that for all the driving cycles the SOC drops to low levels, and

the control strategy is not CS. In fact, even for extremely low ηre values (which

discourages the use of the SS), the final SOC is only higher than 70% for WL-M.

This can be attributed to the unwillingness of the strategy to use the PS to charge

the SS directly, and instead being overly reliant on regenerative braking.
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4.3.3 Charge Sustaining Operation

The non-CS EMMS0 has no inherent constraints in terms of SOC, so the battery

could end up depleted or overcharged and permanently damaged. To address this,

a CS function kcs(SOC) is included in the control design, which encourages the

battery to be charged at low SOC values and discharged at high SOC values. This

bias is introduced in the expression of total efficiency, by weighting the input power

of the SS as follows:

ηCS(u, PPL, SOC) =
ηPSη

∗

SSv

vη∗SSu+ kcsηPS(1− u)
. (4.22)

For kcs > 1, the SS discharging power becomes heavier, causing it to be reduced by

the optimization algorithm. Simultaneously the SS charging power becomes heavier,

but since it is a negative quantity, this actually encourages further charging of the

battery (as ηCS is always positive and we are aiming to minimize the denominator).

Conversely, for smaller kcs values, the discharging of the SS becomes more attractive

and charging less desirable. The new objective is not only to maximize the efficiency

but also to keep the SOC levels within a certain range. The upper and lower limits

of SOC are the same as for TCS and PFCS (with SOCL = 50% and SOCU = 80%).

This allows a buffer for regenerative braking, as well as avoids very low or high SOC

that accelerates degradation of the battery. Thus, the new optimization problem to
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Table 4.1: Definition of CS function kcs

kcs(SOC%) Defined such that

kcs(80) u = 0 for PPL ≤ PSSmax

kcs(75) 1− (1− kcs(80))/Kcsi

kcs(70) No correction
kcs(60) No correction
kcs(55) 1 + (kcs(50)− 1)/Kcsi

kcs(50) u ≥ 1 for 0 < PPL ≤ PPSmax
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Figure 4.7: Charge sustaining function kcs(SOC) for various CSI factors Kcsi for
EMMS0.

be solved can be expressed as

PEMMS0















max
u

ηCS(PPL, SOC, u) ∀PPL ∈ [0, PPLmax], SOC ∈ [SOCL, SOCU ]

0 ≤ u ≤ PPSmax

PPL

SOCL ≤ SOC ≤ SOCU

(4.23)

To ensure operation within this SOC range the CS function kcs is shaped according

to the rules presented in Table 4.1. During operation at high SOC, the PS is used to

a minimal extent while at lower SOC the PS is often charging the SS. The resultant

profile for the charge sustaining factor kcs is shown in Fig. 4.7. It can be seen that

the lower values of SOC are associated with a high kcs value, encouraging the SCS

to charge the battery, as discussed above. Similarly, at high SOC values, the kcs

value is low and thus encourages the battery to be discharged. There is a flat region

between 60% and 70% where no modification is desired. The intensity of the charge
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Figure 4.8: Optimal power share and PS power, and corresponding total efficiency for
varying power requirements and SOC with ηre = 34% and Kcsi = 8 for EMMS0.

sustaining modification at moderately low or high SOC levels is adjusted by the

charge sustaining intensity factor Kcsi. When published in [14], Kcsi = 4 was used

without any thorough tuning, but for the purpose of completion, and consistency

with other control strategies being evaluated, it should be a tunable parameter as

there is no intrinsic reason to choose any particular value.

As an example, the CS function is implemented for ηre = 34% and Kcsi = 8, and new

maps are produced for optimal power share factor and total efficiency in Fig. 4.8.

Clearly the power share factor is consistently higher for lower SOC (often larger
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than one) and quite low (often zero) for higher SOC. The charge sustaining factor

thus seems successful in maintaining the SOC within the desired thresholds and the

resulting power share is in accordance with the rules defined in Table 4.1. However,

it is clear from Fig. 4.8 that this charge sustaining correction comes at the expense

of efficiency in the case of extreme SOC values. Arguably, it is better to suffer some

reduced efficiency immediately rather than damaging the battery or for that matter

suffer heavy inefficiency later. Thus, over longer periods of driving, the EMMS0

could be more efficient.

With the CS function included, new power share maps are produced for each com-

bination of values of ηre ∈ [26, 36]% and Kcsi ∈ [1, 8] in steps of 1% and 1 unit

respectively. Each of these are then tested for the four driving cycles to tune the

parameters to maximize the fuel economy. Results with normalized EFC and final

SOC levels are presented in Fig. 4.9, and it can be seen that the optimal value

is still found around 34% or lower, similar to the non-charge sustaining results of

Fig. 4.5. However, it can be seen that the simulation results, for all ηre values,

are within the defined SOC limits (between 50% and 80%) for each driving cy-

cle. The CS function kcs(SOC) thus appears successful in its objective to maintain

SOCL ≤ SOC ≤ SOCU .

To determine the optimal selection overall, the total fuel economy for the four driving

cycles is evaluated and is presented in Fig. 4.10. It can be seen that the optimal

selection is found to be ηre = 34% (which coincides with the optimal from the

non-CS EMMS0) and Kcsi = 8 (the maximum tested). As the CSI factor Kcsi is

increased, the effects of the CS function kcs(SOC) are reduced, thus resulting in a

lower final SOC. As a consequence, the fuel economy is generally improved by the

increasing Kcsi, as the kcs(SOC) interferes less with the control decision. There is

thus a trade-off between fuel economy and CS ability.

There is a case to be made for choosing a more CS set of tuning parameters, at

the expense of half a percent of fuel economy. However, for the purposes of this

work it is most useful to pursue the strategy that yields a higher fuel economy while

delivering an acceptable CS ability. The EMMS0 will therefore be using ηre = 34%

and Kcsi = 8 for all result from here onwards.
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Figure 4.9: Normalized EFC Mefc (left) (Mefc = 1 is marked with a cross) and final
SOC (right) for varying ηre and Kcsi when driving WL-L, WL-M, WL-H and WL-E (from

top to bottom) with EMMS0.
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4.3.4 Operation

The power profiles of the operation corresponding to this selection are presented for

the first and final iterations of the tested driving cycles in Fig. 4.11 and Fig. 4.12

respectively. Note that final iterations correspond 8th, 8th, 4th and 4th iteration for

WL-L, WL-M, WL-H and WL-E respectively.

For the first iteration of WL-L and WL-M, the operation of the EMMS0 is quite

similar to the GECMS in when the PS is active. However, the difference is that

the EMMS0 will often follow the load at these times rather than operate the PS

as steadily as the GECMS. Nevertheless, resembling the GECMS rather than TCS

or PFCS should be reassuring for the EMMS0, based on the fuel economy results

from the previous chapter. It is also worth noticing that the SS is practically only

recharged through regenerative braking. This is clear from the figure, as the SS

is never charged (light shading that is negative) unless the vehicle is experiencing

regenerative braking (PPL < 0). Also, although the power share is normally either

u = 0 (only SS delivering load) or u = 1 (only PS delivering load) there are a few

times (when the load is somewhat high) when the SS and PS act together. This

hybrid type of operation becomes more prevalent for WL-H and WL-E, as the load

level is generally higher. However, even for these driving cycles, the PS is often

switched on and off to adapt to the changing loads.

For the final iteration of each of these driving cycles the operation is quite different

as the EMMS0 is SOC dependent, unlike the GECMS. Most visibly, the PS is used
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Figure 4.11: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with EMMS0.
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Figure 4.12: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with EMMS0.
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to a much larger extent for each of the driving cycles. This can be attributed to the

drop in SOC that has occurred over the repeated iterations of driving. The EMMS0

is now actively discouraging the use of SS and the driving is thus dominated by PS

operation. There is however still no direct charging by the PS of the SS, as the SOC

has not dropped low enough to trigger this type of operation (as seen in Fig. 4.8).

This is probably an area for improvement.

Finally, the fuel economy of the EMMS0 is given in Table 4.2 for the four driving

cycles. The actual fuel consumption of the engine mf of the vehicle is actually much

lower than the GECMS for each driving cycle. This is a result of significant driving

with the SS, which is why it is followed by a significant drop in SOC (but still

within the constraints). Looking at the fuel economy comprehensively, the EFC of

the EMMS0 is consistently outperformed by the GECMS, with margins between 4

and 11%. The total fuel economy for the driving cycles combined (as defined for

Mtot) has the EMMS0 5.68% behind the GECMS. This is a significant improvement

on the TCS and PFCS, which were lagging the GECMS by 14.35% and 13.55%

respectively. However, the urban driving is still a significant issue for EMMS0, as it

needs to be able to use the SS more effectively.

Table 4.2: Fuel economy results for EMMS0

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 54.54 0.6700 0.7835 +10.61
WL-M 57.25 1.1128 1.1963 +5.04
WL-H 56.67 0.8901 0.9897 +4.15
WL-E 55.97 1.5254 1.6492 +4.03
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4.4 Efficiency Maximizing Map Strategy 1

This section presents the non-CS EMMS1, which is an evolution of the non-CS

EMMS0 discussed in the previous section. The strategy is then further developed

into the EMMS1 that accomplishes charge sustaining operation more intuitively and

effectively, in addition to delivering improved fuel economy.

4.4.1 Modified Efficiency Maximizing Map

The non-CS EMMS0 employs the efficiency expressed in Eq. 4.17 to produce the

control map shown in Fig. 4.4. It can be observed that for all power requirements,

we always have u ≤ 1, meaning that the PS is never used to charge the SS. Conse-

quently, the powertrain is limited to operate the SS with only as much energy as is

recuperated through regenerative braking. This works out reasonably well, as the

SS is particularly useful in urban settings (where proportion of regenerative brak-

ing is high) and less important when cruising at highways (where a limited amount

of regenerative braking is applied). However, considering the heavy investment in

electrifying the powertrain, it makes sense to have the ability to utilize the SS to a

larger extent and accomplish an even greater fuel economy.

The reason why the non-EMMS0 never opts for the “charging mode” (PS charging

the SS directly) can be attributed to the severe drop in efficiency due to increased

usage of the PS, which is the least efficient component in the powertrain. To illustrate

the impact that the mode of operation has on efficiency, it is worth looking at a

simplified example (values do not correspond exactly to the vehicle model being

used). If the powertrain has to deliver 20 kW, we can explore three different modes

of operation: PS only (PS mode); PS operation with SS supplementing (hybrid

mode); or PS operation with the SS simultaneously being charged (charging mode).

In this example we are using ηPS(15 kW)= ηPS(20 kW)= ηPS(25 kW)=33%, ηSS(-

5 kW)= ηSS(5 kW)= 90% and ηre = 33%.

The powertrain efficiency (as given in Eq. 4.15) can be simplified for PS mode and

computed for PPS = 20 kW as follows:

ηtot =
PPS + PSS

PPS

ηPS
+ PSS

vηSS

=
20

20
ηPS

+ 0
ηSSηre

=
20

60 + 0
= 33%. (4.24)
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The expression is reduced to ηtot = ηPS, which is obvious as we are only using the

PS. For hybrid mode, the efficiency in the case of PPS = 15 kW and PSS = 5 kW is

expressed and computed as:

ηtot =
PPS + PSS

PPS

ηPS
+ PSS

vηSS

=
20

15
ηPS

+ 5
ηSSηre

=
20

45 + 16.67
= 32.43%. (4.25)

The chosen format is used to emphasize the PS and SS components of the input

power (denominator). It can be seen that any increase in contribution from the SS

will slightly decrease the total efficiency. However, it can be imagined that in a case

where ηPS(15 kW)> ηPS(20 kW) there would be scope for the hybrid mode to be

more efficient than PS only mode. Lastly, the efficiency for the charging mode in

the case of PPS =25 kW and PSS =-5 kW is expressed and computed as:

ηtot =
PPS + PSS

PPS

ηPS
+ PSSηSS

v

=
20

25
ηPS

− 5 · ηSS
=

20

75− 4.5
= 28.37%. (4.26)

The charging mode clearly has a dramatically lower efficiency as compared to the

two former modes. In particular, it can be seen that the input power of the PS

(the first term in the denominator) has increased significantly with only a limited

amount of power being absorbed by the SS (the second term in the denominator).

This explains why this mode is seldom used for the non-CS EMMS0.

However, although the above efficiency expression might be true locally in real-

time, it doesn’t yield the maximum efficiency over a longer period of driving. An

alternative understanding of the SS efficiency during charging would be to include

a correction factor in the same way the replenishing efficiency ηre is applied during

discharging. Similar to how the discharging efficiency of the battery needs to be

penalized with the efficiency of the PS involved in replenishing the battery, any

charging should be “rewarded” for offsetting future needs to be replenished. To

include this consideration, the correction factor v from Eq. 4.21 needs to be modified

to:

v = ηre. (4.27)

This new formulation yields a different efficiency for the charging mode case with

PPS = 25 kW and PSS = −5 kW:

ηtot =
PPS + PSS

PPS

ηPS
+ PSSηSS

v

=
20

25
ηPS

− 5·ηSS

ηre

=
20

75− 13.5
= 32.52%. (4.28)
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It can be seen that the magnitude of the second term in the denominator is increased

such that the overall impact of charging the battery is amplified. Consequently,

the obtained efficiency is now comparable to that of the hybrid mode, and it can

similarly be imagined that in a case of efficient use of the PS, the charging mode

could outperform the other two modes of operation and end up being the optimal

solution.

Based on the new efficiency expression, the optimization problem can be formulated

in the same way as for the non-CS EMMS0 (in Eq. 4.19) with the updated correc-

tion factor v. The process to solve this problem is identical as well (described in

Subsection 4.3.1), allowing the formation of the EMMS1 control map.

The optimal power share factor uopt for varying power demand is shown in Fig. 4.13

together with the realized efficiency ηtot. It can be seen that the SCS chooses to

operate SS-only mode during low PPL, similar to the non-CS EMMS0. However,

once the PS starts to be used, it is used at u > 1 (charging mode), which would

not occur previously. Thereafter, at lower mid-range PPL, a lot of the operation is

almost PS-only mode. For higher power requirements the map uses hybrid mode to

drive the powertrain. It is worth noting that the dependence of uopt on SOC-levels

is still quite limited, although the added charging mode operation can be expected

to impact the SOC profile of the resulting driving. The total efficiency ηtot that is

realized by this selection of u is slightly higher during the charging mode compared

to the non-CS EMMS0, but this can currently only be attributed to the efficiency

being redefined as opposed to superior performance.

Simulations are run for the four different driving cycles to tune the replenishing

efficiency to maximize the fuel economy. Results with normalized EFC and final

SOC levels are presented in Fig. 4.14. Simulations were run for the same range of

ηre as non-CS EMMS0, but only ηre ∈ [33, 36]% were successfully completed. As

can be seen from the results, the final SOC is extremely sensitive to the replenishing

efficiency with variations from 100% to around 40% for WL-L, WL-M and WL-H.

Even the WL-E sees significant changes in SOCfinal for varying ηre.

It can be seen that the optimal value is often found around ηre = 35%, and this

is confirmed by looking at the normalized total EFC in Fig. 4.15. The data is

quite sparse but the optimal value for ηre is likely to be in close proximity to ηre =

35%. However, these results are sufficiently precise to realize that there is a need
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Figure 4.13: Optimal power share and PS power, and corresponding total efficiency for
varying power requirements and SOC for ηre = 35% for non-CS EMMS1.

to improve upon this control strategy by designing a charge sustaining mechanism.

The SOCfinal values for ηre = 35% are 50%, 60%, 62% and 34% for the four driving

cycles. Thus, similar to the non-CS EMMS0, the non-CS EMMS1 will require some

modification to ensure CS operation. However, the non-CS EMMS1 might be in a

better position to do so.

As mentioned, the SOC range of the non-CS EMMS1 stretches from very high to

very low with a very limited range of ηre, while the non-CS EMMS0 can not even

match the same SOC range with five times the range for ηre. This difference can
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Figure 4.15: Normalized total EFC Mtot for varying ηre with non-CS EMMS1.

be attributed to the modification of the correction factor v which now encourages

charging mode operation. Although the achievement of high final SOC comes at

the expense of the fuel economy, it is a great characteristic that can be utilized to

make the control strategy CS without designing an external function to perform this

function.

4.4.2 Charge Sustaining Operation

As has been shown in Fig. 4.14, the non-CS EMMS1 is capable of controlling the

final SOC over a wide range by simply adjusting the replenishing efficiency ηre for

the control strategy. As ηre is reduced, the final SOC is increased, and a higher ηre

results in a drop for the final SOC. Thus, if the control strategy is designed such that

a low ηre is employed when the SOC is low (to increase the SOC) and a high ηre is

used when the SOC is high (to decrease the SOC), then the control strategy would

be inherently CS. Designing such an SOC-dependent ηre function is very simple, as

a linear relationship would be sufficient for our purposes. Some possible designs,

with varying CSI factors Dcsi, are presented in Fig. 4.16 (where the optimal ηre,opt

is chosen to be 35%).

Each line represents a unique design that intersects with the optimal solution of

ηre,opt at SOC = SOCinitial. The CSI factor Dcsi determines the deviation from

the optimal ηre,opt. For example, with ηre,opt = 34% and Dcsi = 4, the extreme

points of SOCL and SOCU will correspond to ηre(50%) = 34% − 4% = 30% and
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Figure 4.16: Replenishing efficiency ηre(SOC) for various values of CSI factor Dcsi with
ηre,opt = 35%.

ηre(80%) = 34% + 4% = 38% respectively. This is expressed analytically as

ηre = ηre,opt +
SOC − SOCmid

SOCrange

Dcsi (4.29)

where

SOCmid =
SOCU + SOCL

2
= 65% (4.30)

and

SOCrange =
SOCU − SOCL

2
= 15%. (4.31)

Thus, Dcsi determines how intensely CS operation should be pursued.

The SOC-dependent ηre is then considered to produce new control maps, using the

same approach as taken in the previous section for EMMS0. The generated map for

optimal power share is presented in Fig. 4.17 together with the corresponding power-

train efficiencies. It can clearly be seen that the control strategy is relying heavily on

the PS during low SOC, with significant amount of charging mode operation as well.

Conversely, for higher SOC, the SS is used much more significantly. The contrast

is less extreme compared to EMMS0 in Fig. 4.8, as it is beyond practical necessity

to require complete SS mode for high SOC. It is worth noting that the operation

for the cases of SOC = 55% and SOC = 75% are quite close to the operation of

SOC = 50% and SOC = 80% respectively. This is in contrast to the EMMS0

where even these very low and high values of SOC would result in operation only

marginally different from the SOC = 65% case. Thus, a more aggressive charge
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Figure 4.17: Optimal power share and PS power, and corresponding total efficiency for
varying power requirements and SOC for ηre = 35% and Dcsi = 7 for EMMS1.

sustaining operation can be expected. Also, the EMMS1 utilizes the charging mode

not only for low power requirements but also at higher levels, where the EMMS0

would use hybrid mode.

The resulting efficiency is even more different. The inclusion of the replenishing effi-

ciency for charging, which boosts the SS efficiency term, allows very high efficiency

values to be achieved. This is particularly visible at very low power requirements

where the use of charging mode results in efficiencies higher than the peak PS ef-

ficiency (around 35%), which has often been the upper limit for previous control
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strategies. However, it is problematic to compare the efficiencies of each control

strategy, as although the EMMS1 is still using the total powertrain efficiency ηtot

as defined in Eq. 4.15 earlier in this chapter, the meaning is quite different. The

definition of the total efficiency has changed as we use a new understanding of

the replenishing efficiency ηre (within the correction factor v) which is now SOC-

dependent rather than a constant and both boosts and penalizes the SS efficiencies

during charging and discharging respectively. Consequently, this new efficiency for

the EMMS1 does not relate to the instantaneous physical efficiency of the power-

train, but it allows the optimization process to identify suitable operating points for

longer durations of driving.

To test the EMMS1 with its CS features, new power share maps are produced for

each combination of values of ηre,opt ∈ [34, 36]% and Dcsi ∈ [1, 9]% in steps of 0.2%

and 1% respectively. Each of these are then tested for the four driving cycles to tune

the parameters such that the fuel economy is maximized. Results with normalized

EFC and final SOC levels are presented in Fig. 4.18.

The optimal selection of ηre,opt and Dcsi varies considerably between driving cycles,

and is in fact typically outside the investigated region (thus appearing on the edge of

the plots). However, it can be seen for the first three driving cycles that the final SOC

is found to be sustained best within the investigated range (in particular just below

ηre,opt = 35% where SOCfinal ≈ SOCinitial). Also, an overall evaluation of Mtot, as

shown in Fig. 4.19, gives ηre,opt = 35% and Dcsi = 7% as the optimal selection. This

selection was manually favored over an alternative solution at ηre,opt = 36% and

Dcsi = 8% as it yields practically identical fuel economy results (<0.02% difference)

but delivers improved CS ability.

As the investigated range of the tuning parameters is quite narrow, relative to the

EMMS0, it might be thought that this control strategy is highly sensitive to precise

tuning. However, there are two reasons why this is not true. Firstly, even though the

optimal tuning parameters for various driving cycles are very different, the resulting

fuel economy for varying tuning parameters are quite similar. Secondly, and most

importantly, due to the nature of the charge sustaining mechanism, the control

strategy will often tend to drift towards the optimal ηre value for the particular

type of driving. For example, as was shown in Fig. 4.14, the WL-E driving cycle

performs optimally for ηre = 33% while the other driving cycles prefer operation

closer to ηre = 35%. With the EMMS1, it can be seen that the optimal selection (of
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Figure 4.18: Normalized EFC Mefc (left) (Mefc = 1 is marked with a cross) and final
SOC (right) for varying ηre,opt and Dcsi when driving WL-L, WL-M, WL-H and WL-E

(from top to bottom) with EMMS1.
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Figure 4.19: Normalized total EFC Mtot for varying ηre,opt and Dcsi with EMMS1.

ηre,opt = 35% and Dcsi = 7%) will result in a final SOC of 60% for WL-E. By using

Eq. 4.29 we can calculate that this corresponds to operation with ηre = 32.7%.

Thus, for most types of driving, the SOC will often drift and become reasonably

steady close to the point that yields the best ηre value such that the fuel economy

is maximized.

It is also worth noting that for the first three driving cycles the final SOC is close

to SOCinitial = 65%. This has several benefits. Firstly, this mean that the SOC

will rarely deviate significantly from the base SOC value. This reduced depth of

discharge leads to improved battery health. Secondly, the limited need to apply

CS adjustments speaks to the effective design of the core control strategy that is

applicable to a wide range of driving cycles. Thirdly, the control strategy is quickly

able to reach the optimal ηre value to maximize the fuel economy for the given driving

cycle. If a particular driving cycle had its optimal operation with ηre = 28%, the

EMMS1 would need to drive sub-optimally for quite a while until the SOC drops

down to 50% (as given by Eq. 4.29) to make the control strategy effectively operate

with ηre = 28%. Thus, the closer the final steady SOC value for a driving cycle is

to SOCinitial, the faster it will reach its ideal fuel economy.

4.4.3 Operation

The power profiles resulting from the operation of EMMS1 with ηre,opt = 35% and

Dcsi = 7% are presented in Fig. 4.20 and Fig. 4.21, for the first and final iteration



Efficiency Maximizing Map Strategies 149

       
   

   

   

   

   
P
ow

er
(k

W
)

100 200 300 400 5000 589
-30

-15

0

15

30

PSS

PP S

PP L

      
   

   

   

   

   

   

P
ow

er
(k

W
)

100 200 300 4000 433
-30

-15

0

15

30

45

      
   

   

   

   

   

   

P
ow

er
(k

W
)

100 200 300 4000 455
-30

-15

0

15

30

45

     
   

   

   

   

   

   

   

P
ow

er
(k

W
)

100 200 3000 323
-30

-15

0

15

30

45

60

Time (s)

Figure 4.20: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the EMMS1.
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Figure 4.21: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the EMMS1.
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of the driving cycles respectively. There are three major differences between the

operation of EMMS0 and EMMS1: the use of charging mode operation; the amount

of PS operation; and the differences between the first and final iteration.

Firstly, it is quite clear from the EMMS1 results that the SS is quite often charged

directly by the PS (shown as light shading in the negative region, while PPL is

positive). This occurs frequently for every single driving cycle, normally in quite

small magnitudes. However, as is seen towards the end of WL-E, the EMMS1 even

opts to charge the SS at about 15 kW during driving. This not only boosts the SOC

but also allows the PS to operate at a more efficient power level. Consequently,

the power share can be seen to exhibit a mix of load following and load leveling

characteristics.

Secondly, the PS is used more frequently for the EMMS1. There are many instances

where the SS on its own is more efficient than the PS on its own. However, in many

of these cases an even more preferred option is to have the PS deliver power in excess

of the required load and thus charge the SS. As this is allowed by the EMMS1, it can

be seen that the PS is used to deliver reasonably low loads. The operation around

t = 120 s for WL-E can be compared with the operation of EMMS0 in Fig. 4.11.

The two valleys in PPL are operated by the SS in EMMS0, while the EMMS1 decides

to use the PS to deliver power (efficiently) in excess of the required load and thus

charge the SS at the same time.

Thirdly, it can be seen that the difference between the first and final iteration for

EMMS1 for each driving cycle is relatively low. The differences for WL-L, WL-

M and WL-H are barely noticeable, while the WL-E clearly has more PS usage.

Nevertheless, the differences are much smaller than EMMS0. This can be explained

by the previous two differences mentioned, which both result in a higher SOC. As

the EMMS0 struggled to maintain its SOC (having final SOC values around 55% for

each driving cycle), it needed to apply control decisions that deviated significantly

from its base operation (at SOC = SOCinitial). EMMS1 on the other hand maintains

SOC ≈ SOCinitial for most of its driving and does thus not need to deviate from

its operation. In fact, the limited deviation that does occur is desirable, as this is

the mechanism that allows the EMMS1 to identify the ideal control policy for the

particular driving conditions.
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Figure 4.22: Power time histories for PS, SS and PL for all four iterations of driving
WL-E with the EMMS1.

The WL-E is the only driving cycle where the SOCfinal drops by more than 1.5%,

which is why it has some clearly visible differences between the first and final itera-

tion. It is however worth emphasizing that the EMMS1 operates quite steadily even

for WL-E. To demonstrate this further, the power profiles for all four of the WL-E

iterations are shown in Fig. 4.22. It is quite clear that the control strategy is quick to

learn about the driving conditions, and adapts already by the second iteration. The

differences in control between the second and fourth iteration are very small. Thus,

it can be understood that the EMMS1 will “find” the preferred mode of operation

within a short time frame and then settle into consistent operation.

The fuel economy results corresponding to these driving cycles are shown in Ta-

ble 4.3. As observed and mentioned earlier, the EMMS1 is quite successful in main-

taining its SOC (in contrast to the EMMS0). The EFC results are quite impressive

as they are at worst less than 5% behind the GECMS, and at best less than 1%

behind. Overall, for all driving cycles considered together, the GECMS outperforms

the EMMS1 by only 2.34%, which essentially cuts the margin to EMMS0 by half.

Table 4.3: Fuel economy results for EMMS1

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 63.63 0.7258 0.7406 +4.57
WL-M 65.18 1.1701 1.1684 +2.59
WL-H 65.30 0.9679 0.9651 +1.56
WL-E 59.60 1.5257 1.5997 +0.91
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4.5 Global Efficiency Maximizing Map Strategy

As the EMMS framework is delivering good performance, it is of interest to produce

a globally tuned variant that is comparable to the GECMS. This section will present

such a control in the form of the GEMMS, which will be designed, tuned and studied,

as well as compared to the GECMS.

4.5.1 Global Design

The GEMMS is a globally tuned EMMS (similar to the relationship between the

GECMS and ECMS). However, the GEMMS not only tunes the EMMS1 optimally

with prior knowledge of the driving cycle, it also refines the definition of the objective

function. The EMMS1 refined the total efficiency expression used by the EMMS0, to

include a correction to the battery charging operation as well (the EMMS0 only cor-

rected discharging operation), and also made the correction factor SOC-dependent

(rather than being a constant). However, the correction factors are the same for

charging and discharging operation. Although this is a good approximation, the re-

plenishing efficiency ηre is not identical for charging and discharging operation and

a more precise expression can be obtained by modifying the correction factor v from

Eq. 4.27 to:

v =







ηre,c PSS < 0

ηre,d PSS ≥ 0
(4.32)

where ηre,c and ηre,d are the replenishing efficiencies for charging and discharging

respectively.

Based on the new efficiency expression, the optimization problem can be formulated

as the local maximization problem given in Eq. 4.19. However, for the GEMMS

the correction factor v can be globally tuned for each driving cycle. Thus, for any

given positive power requirement PPL, an optimal power share factor uopt can be

defined for each set of replenishing efficiencies ηre,c and ηre,d. Using the efficiency

maps for the PS and SS, a sweep can be performed for Eq. 4.15 with u ∈ [0, PPSmax

PPL
],

PPL ∈ [0, PPLmax] and SOC ∈ [SOCL, SOCU ] to produce an optimal control map.

This process is repeated for each candidate set of ηre,c and ηre,d.
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Table 4.4: Optimal replenishing efficiency values for GEMMS

Driving cycle ηre,d (%) ηre,c (%)

WL-L 37.7 31.9
WL-M 37.9 31.9
WL-H 36.7 32.8
WL-E 34.7 31.0

This optimization process is now applied to produce power share maps for each

combination of values of ηre,c ∈ [31.5, 33]% and ηre,d ∈ [36.5, 38]% (theWL-E solution

was however later found by studying ηre,c ∈ [30, 32]% and ηre,d ∈ [34, 36]%) in steps

of 0.1% for each. Each of these are then tested for the four driving cycles to tune

the parameters to maximize the fuel economy. Results with normalized EFC and

final SOC levels are presented in Fig. 4.23. The optimal selection of replenishing

efficiencies for each of the four driving cycles is presented in Table 4.4.

The optimal selections of replenishing efficiency values are unique for each driving

cycle, but they are very similar for the first three of them. In fact, using ηre,d = 37.7%

and ηre,c = 31.9% yields fuel economies that are less than 0.2% inferior to the optimal

solution for these three driving cycles. The GEMMS is thus less sensitive to varying

driving cycles when compared to the GECMS. So despite that the optimal set of

tuning parameters for WL-H is found at ηre,d = 36.7% and ηre,c = 32.8%, which is

far from the values mentioned above, the performance is negligibly small. In general,

for each of the driving cycles, the performance of the control strategy is strongest

along the SOCfinal = SOCinitial line of operation (similar to GECMS).

However, it can be seen that the optimal value for WL-L and WL-M is not very

close to SOCfinal = SOCinitial = 65%, which can be expected from a global optimal

solution. This can be attributed to the limited precision of the tuning. For example,

for WL-L at ηre,d = 37.6% and ηre,c = 31.8% the fuel economy is only worsened

by <0.04%, while achieving SOCfinal = 65.67%. It is quite likely that there is

another solution in between these that achieves a better fuel economy (with very

small margin) while approaching SOCfinal = SOCinitial even more. When a similar

situation appeared for the EMMS1, the more charge sustaining option was selected,

as it was the preferred solution for a real-time control strategy (that is expected to

operate well for varying driving conditions). However, for the GEMMS the solution

with the better fuel economy will be selected, as the priority is to minimize EFC

such that it can be used as benchmark of what is realizable.
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Figure 4.24: Optimal power share and PS power for varying power requirements and
SOC for WL-L, WL-M, WL-H and WL-E (top to bottom) with GEMMS.
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The optimal set of replenishing efficiencies for each of the four driving cycles, corre-

spond to the control maps presented in Fig. 4.24. As can be seen, the optimal power

share uopt has similar trends to most of the previous optimization-based control

strategies in this work: pure PS operation at very low power requirements; charging

mode operation at mid-low power requirements; and hybrid operation for medium

and high power requirements. However it differs from the previous control strate-

gies in key respects. Firstly, it is interesting that the general shape of the GEMMS

control map is more similar to the GECMS than it is to the EMMS1. The flexibility

offered by having two tuning parameters allows both the GEMMS and GECMS to

adopt more precisely the truly optimal power share. However, in terms of its SOC

dependence, the GEMMS is more similar to the EMMS1 than the GECMS. Note

that the spike in power share around PPL = 0.5 kW, is an effect of the extremely

low DC-DC converter efficiency. However, this spike is not implemented in the real

control.

4.5.2 Operation

The operation based on the globally tuned parameter values is presented further in

Fig. 4.25 and Fig. 4.26, showing the power profiles for the first and final iterations

of the driving cycles respectively.

The operation for WL-L and WL-M is very similar to the GECMS. However, it can

be seen that the GEMMS experiences fewer false starts, i.e. the PS being switched

on for a brief moment before being switched off. This is particularly visible for

the WL-L, where the GECMS suffers from a large quantity of false starts. However,

rather than being a particular trait of the GEMMS, it has most likely been fortunate

with the driving conditions and its own rules at these particular times. The GEMMS

is using the PS to a lesser extent (as evidenced by the drop in final SOC discussed

earlier) and fewer false starts would be a consequence for these driving cycles with

low loads. Another difference between the GEMMS and GECMS, which is clearer

in WL-M and WL-E, is that the GEMMS is using the PS much more flexibly. As

was remarked earlier, the GECMS operates in a quite “blocky” manner, with the

PS often operating quite steadily. In contrast, the PS operation of the GEMMS is

much more uneven as it adapts to the changing load.
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Figure 4.25: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the GEMMS.
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Figure 4.26: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the GEMMS.
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With regards to the GEMMS performance for the first and final iterations of the

driving cycles, it can be seen that the PS is used to a larger extent for WL-L and

WL-M (and WL-H to a limited extent). This can be attributed to the drop in

SOC that was noted earlier that causes the SS efficiency to drop, making the PS the

preferred energy source more often. This results in an indirect form of CS operation.

The WL-E, on the other hand practically operates identically for all iterations.

It is worth noting that there is a significantly larger amount of charging mode op-

eration when compared to the EMMS1 (in Fig. 4.21). The frequency or duration

of charging mode operation is comparable but the magnitude is much higher with

the GEMMS. This can be attributed to the fact that the EMMS1 has ηre,c = ηre,d,

and is thus unable to include intense charging mode operation without detrimental

impact on the optimization of the balance during hybrid mode operation. Thus, the

ability to tune the replenishing efficiencies of charging and discharging separately

makes the GEMMS much more nuanced in making its decisions.

Finally, the fuel economy results for the GEMMS are presented in Table 4.5. As

mentioned earlier, the focus of the GEMMS is on minimizing EFC and thus the

lower final SOC is less relevant. It can be seen that the GEMMS has outperformed

the GECMS for every single driving cycle, with margins of 0.06-0.38%. For the

driving cycles combined, the net improvement is 0.2%. Considering the additional

analysis of the powertrain that was done to be able to implement this strategy, these

gains can be considered quite modest. The GECMS has a simple implementation

stage, and also results in relatively simple operation of the PS, which is operated

quite steadily. In fact, maybe the GECMS performed well because of its simplicity

rather than despite it. This will be explored further in Chapter 6.

Nevertheless, as the objective of both the GECMS and GEMMS is to act as bench-

marks, representing approximate global optimal solutions, the 0.2% improvement is

significant.

Table 4.5: Fuel economy results for GEMMS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 59.36 0.6451 0.7063 -0.28
WL-M 59.13 1.0750 1.1382 -0.06
WL-H 64.82 0.9465 0.9487 -0.17
WL-E 64.96 1.5788 1.5793 -0.38
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4.5.3 Relation to GECMS

It might be apparent from the comparisons between the GEMMS and GECMS in

this section that the two control strategies are similar. By looking closer at the

objective function of each of these control strategies, their connection can be further

understood.

The objective of the GEMMS (as given in Eq. 4.19) is to maximize the total power-

train efficiency for each possible power requirement. However, as the output power

for a particular driving cycle is fixed, the problem can be reformulated as a mini-

mization of the input power of the powertrain instead, giving:

PGEMMS















min
u

Pin(PPL, SOC, u) ∀PPL ∈ [0, PPLmax], SOC ∈ [SOCL, SOCU ]

0 ≤ u ≤ PPSmax

PPL

SOCL ≤ SOC ≤ SOCU

(4.33)

where

Pin =
PPS

ηPS

+
PSS

η∗SS
=







PPS

ηPS
+ ηSS

ηre,c
PSS PSS < 0

PPS

ηPS
+ 1

ηre,dηSS
PSS PSS ≥ 0

, (4.34)

which corresponds to the denominator of the efficiency expression in Eq. 4.15. This

can then be expressed in terms of fuel consumption using

PPS = ṁfQLHV ηPS (4.35)

which yields

Pin

QLHV

=







ṁf +
ηSS

ηre,c

PSS

QLHV
PSS < 0

ṁf +
1

ηre,dηSS

PSS

QLHV
PSS ≥ 0

. (4.36)

This is equivalent to the GECMS cost function (in Eq. 3.14), with the equivalent

factors as PSS and SOC sensitive variables, rather than constants, as follows:

Sc(PPL, u, SOC) =
ηSS(PPL, u, SOC)

ηre,c
(4.37)

Sd(PPL, u, SOC) =
1

ηre,dηSS(PPL, u, SOC)
(4.38)

The GEMMS can thus, in some sense, be considered equivalent to the GECMS, even

though this was not the original intention.
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Figure 4.27: Comparison of optimal power share profiles for GECMS and GEMMS (for
SOC = 65%) for WL-L, WL-M, WL-H and WL-E (left to right, top to bottom).

However, note that the traditional GECMS, which pre-computes the control input,

would find it difficult to solve above cost function as it would struggle to deal with

the SOC dependence. However, any implementation that pre-computers tools (like

the control maps of the GEMMS) rather than control inputs, would be able to solve

the problem as the driving and state conditions are available at each time instance.

It is interesting to compare the GECMS control maps from Fig. 3.16 directly with

GEMMS. This has been done in Fig. 4.27, where the GECMS is compared to the

GEMMS with SOC = 65%. It can be seen that the two control strategies produce

similar control maps in general, but the GEMMS is less smooth. This can be at-

tributed to the inclusion of the SS efficiency in the evaluation, due to the inefficient

region of operation at very low SS power levels, resulting in sudden changes in power

share. Also, at mid-high power requirements, the GEMMS is more inclined to use

the PS, exhibiting another clear difference between the control strategies.
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4.6 Efficiency Maximizing Map Strategy 2

This section presents the fourth and final EMMS. It aims to emulate the GEMMS

operation, but with the constraint of being real-time realizable. It will therefore use

the efficiency definition (and its tuned parameters) of GEMMS together with the

CS mechanism of the EMMS1 to produce the EMMS2.

4.6.1 Real-time Adaption of GEMMS

The developed GEMMS is great at delivering excellent fuel economy, and is probably

close to the global optimal solution as it outperformed the GECMS, but it is not

realizable in real time and thus mainly serves as a great benchmark. However, it is

possible to make use of the globally tuned selections of ηre,c and ηre,d of the GEMMS

to produce a real-time version based on the EMMS process.

Similar to EMMS1, it will be necessary to make the the replenishing efficiencies

SOC-dependent as ηre,c(SOC) and ηre,d(SOC) to allow the powertrain management

to adjust depending on operating conditions. For the EMMS1 there was only one

factor to be defined (in Eq. 4.29) while the EMMS2 will require the definition of

two replenishing efficiencies as

ηre,c = ηre,c,opt +
SOC − SOCmid

SOCrange

Dcsi,c (4.39)

ηre,d = ηre,d,opt +
SOC − SOCmid

SOCrange

Dcsi,d (4.40)

where ηre,c,opt and ηre,d,opt are optimal base values for the charging and discharging

replenishing efficiencies respectively, while Dcsi,c and Dcsi,d determine how intensely

CS operation should be pursued for each respectively.

Having four different tuning parameters might make this control strategy appear

excessively laborious. Investigating a range of 10 values for each parameter would

require 10,000 simulations to determine the optimal combination, which would be

prohibitively time-consuming. However, half the tuning is completed indirectly by

producing the GEMMS where the optimal replenishing factors are given for each

driving cycle in Table 4.4. Rather than selecting the values for a particular driving

cycle, ηre,c,opt and ηre,d,opt were selected such that the deviation from optimality is



164 Chapter 4

minimized. It was found that ηre,c,opt = 31.9% and ηre,d,opt = 37.7% delivered fuel

economies that were within 0.2% of the optimal solution for the first three driving

cycles and are therefore chosen. An alternative method to determine ηre,c,opt and

ηre,d,opt would be to define them as the set of values that optimizes the total fuel

economy of all four driving cycles together, or that minimizes the total distance to

all preferred solutions. The EMMS2 therefore only has to tune Dcsi,c and Dcsi,d.

Combinations of tuning parameters in the range of Dcsi,c ∈ [0, 1]% and Dcsi,d ∈
[0, 5]% in steps of 0.1% are used to produce control maps, based on the process

described in Section 4.3.1. Each of these are then tested for the four driving cycles

to tune the parameters such that the fuel economy is maximized. Results with

normalized EFC and final SOC levels are presented in Fig. 4.28.

The most striking feature is the straight lines of the profiles of the fuel economy

and SOC results for the first three driving cycles. This can attributed to the dis-

cretization process where the realized ηre,c,opt and ηre,d,opt values are implemented

in 0.1% intervals. Thus, for example, there would be no change in ηre,d,opt with

Dcsi,d = 3%, for any changes in SOC ∈ [64.5, 65.5) (as this would yield values of

ηre,d,opt ∈ [37.65, 37.75)%, which would be rounded to ηre,d,opt = 37.7%). Thus, for

the first three driving cycles which operate within a very narrow band of SOC, the

effects of discretization are very prominent, unlike the WL-E where the operation

over a wider range of SOC conceals this effect.

In general, the results have low sensitivity to changes in CSI factors Dcsi,c and

Dcsi,d. This is an expected outcome, if we consider the results of Fig. 4.23 for

the GEMMS. The selected ηre,c,opt and ηre,d,opt values do not only yield close to

optimal fuel economy results for the first three driving cycles, but also very close to

SOCfinal = SOCinitial. Consequently, these driving cycles are immediately operated

in a close to optimal strategy such that the SOC remains steady. The Dcsi,c and

Dcsi,d factors mainly influence the control behavior at low and high SOC values and

are thus barely needed for the three mentioned driving cycles.

In contrast, the WL-E relies heavily on the CSI factors Dcsi,c and Dcsi,d to achieve

its optimal fuel economy. In fact, it would prefer a very high Dcsi,d so that the

ηre,d,opt = 37.7% can be adjusted to ηre,d = 34.7% (as given in Table 4.4) as quickly

as possible. However, the ηre,c,opt = 31.9% needs to be adjusted to a lesser extent to

reach its preferred ηre,c = 31.0%, which is why a small Dcsi,c factor will suffice.



Efficiency Maximizing Map Strategies 165

      

D
cs
i,
c
(%

)

   

   

   

   

   

   

1.002
1.0

1

1.01
1
.0

5
1.05

1
.1

1
.1

1 2 3 40 5

0.2

0.4

0.6

0.8

1

      

D
cs
i
(%

)

   

   

   

   

   

   

62

63

6
4

6
4

64.5

1 2 3 40 5

0.2

0.4

0.6

0.8

1

      

D
cs
i,
c
(%

)

   

   

   

   

   

   

1
.0

0
0
1

1.
00

2 1.002

1
.0

2

1 2 3 40 5

0.2

0.4

0.6

0.8

1

      

D
cs
i
(%

)

   

   

   

   

   

   

6
5
.4

6
5
.4

6
5
.5

65.5

1 2 3 40 5

0.2

0.4

0.6

0.8

1

      

D
cs
i,
c
(%

)

   

   

   

   

   

   

1
.0

0
0
5

1.002

1
.0

0
2

1
.0

2

1 2 3 40 5

0.2

0.4

0.6

0.8

1

      

D
cs
i
(%

)

   

   

   

   

   

   

6
4
.5

65

65.5
6
5
.6

6
5
.6

6
5
.8

1 2 3 40 5

0.2

0.4

0.6

0.8

1

Dcsi,d (%)
      

D
cs
i,
c
(%

)

   

   

   

   

   

   

1.001

1.001

1.002

1.005

1.005

1.01

1.
01

1 2 3 40 5

0.2

0.4

0.6

0.8

1

Dcsi,d (%)
      

D
cs
i
(%

)

   

   

   

   

   

   

44
46

48

50
52

54

54

5
6

56

58

1 2 3 40 5

0.2

0.4

0.6

0.8

1

Figure 4.28: Normalized EFC Mefc (left) (Mefc = 1 is marked with a cross) and final
SOC (right) for varying ηre,c and ηre,d when driving WL-L, WL-M, WL-H and WL-E

(from top to bottom) with EMMS2.



166 Chapter 4

Dcsi,d (%)
      

D
cs
i,
c
(%

)

   

   

   

   

   

   

1.001

1.001

1.003

1
.0

0
3

1.003
1.

01

1
.0

1

1.01
1.01

1.01

1
.0

1

1
.0

2

1
.0

2

1.02
1.

03
1
.0

3

1
.0

3

1 2 3 40 5

0.2

0.4

0.6

0.8

1

Figure 4.29: Normalized total EFC Mtot for varying Dcsi,c and Dcsi,d with EMMS2.

As can be seen, the ideal selection of the CSI factors for the WL-E would compro-

mise the fuel economies of the remaining three driving cycles. Therefore, the total

normalized EFC Mtot is found and is shown in Fig. 4.29. The optimal selection, such

that the overall fuel economy of all driving cycles together is optimized, is delivered

with the selection Dcsi,c = 0.7% and Dcsi,d = 3.7%.

The resulting control map of optimal power share (and corresponding efficiency) for

the case of Dcsi,c = 0.7% and Dcsi,d = 3.7% is shown in Fig. 4.30. It can be seen that

the power share at medium SOC is very similar to the GEMMS for WL-L, WL-M

and WL-H. Also, at lower SOC, the power share is similar to the GEMMS for WL-E.

This control can therefore be expected to perform close to the optimal fuel economy

solution. It also clearly resembles the EMMS1 with regards to its SOC dependence,

although it is less aggressive in its CS pursuits. This is most evident at medium-high

load levels, where charging mode would be enabled already at around PPL = 32 kW

for SOC = 50% with EMMS1 but at around PPL = 47 kW with EMMS2. The

gentler CS intensity means less diversion from the optimal power share.

4.6.2 Operation

The resulting power profiles from this selection are presented in Fig. 4.31 and

Fig. 4.32 for the first and final iterations of the driving cycles respectively. For WL-

L, the operation in the final iteration is very similar to the first iteration, suggesting
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Figure 4.30: Optimal power share and PS power, and corresponding total efficiency for
varying power requirements and SOC for ηre,c,opt = 31.9%, ηre,d,opt = 37.7%, Dcsi,c =

0.7% and Dcsi,d = 3.7% for EMMS2.

that the control finds its stride quickly and operates quite consistently. Further-

more, by comparing to the GEMMS results in Fig. 4.25 and Fig. 4.26, it can be seen

that the operation is very similar. The EMMS2 is thus successful in adopting the

approximate global optimal solution in real time and does it quickly and effectively.

For WL-M and WL-H, the EMMS2 delivers very similar operation for the first and

final iterations of the driving cycles as well, as they both start and end around

SOCfinal = SOCinitial. When comparing with the GEMMS, the results are qutie

similar, but there are some distinct differences as well. For both the WL-M and
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Figure 4.31: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the EMMS2.
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Figure 4.32: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the EMMS2.
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WL-H, the PS is active more often for the EMMS2 than for the GEMMS. However,

when used, the PS is generally used in a similar manner as the GEMMS (although

there is some additional charging mode operation with the PS in WL-H).

Lastly, for the WL-E, the EMMS2 operation is quite different for the first and final

iterations of the driving cycle. The base operation (corresponding to SOC = 65%)

of the EMMS2 uses the SS a lot, before its SOC drop and it needs to react by

adopting a more rural type of driving. As the SOC drops further, it adapts further

and takes on a more highway type of operation. Thus, it can be seen that the final

iteration uses the PS more frequently and often uses it to a larger extent. This type

of operation is expected, as the principle of the EMMS2 is that it should seek its way

to an optimal manner of operation. Comparing its operation to the GEMMS, it can

be seen that their first iterations are quite different. However, their final iterations

are very similar, with the EMMS2 applying just a bit more charging mode operation.

The ability of the EMMS2 to realize operation that is quite similar to the GEMMS

suggests that it should achieve great fuel economy results. To look at this further,

the fuel economy results for the four driving cycles are presented in Table 4.6. It can

be seen that the EMMS2 performs very similarly to the GECMS, despite being a

real-time control strategy. In fact, it outperforms the GECMS for two of the driving

cycles. Comparing to the GEMMS instead, EMMS2 results for WL-L, WL-M and

WL-H are only behind by 0.11%, 0.17% and 0.15% respectively. A better choice of

ηre,c,opt and ηre,c,opt might have delivered even better results.

The WL-E results are slightly worse. Considering the fact that the EMMS2 needed

to spend some time to find the desired control policy, and thus had to operate in

an inefficient way for a while, the results are quite impressive. The final SOC is

somewhat low, but this is by design, as the EMMS2 essentially needed to locate the

control policy that matched the WL-E type of driving. Overall, for all driving cycles

considered together, the EMMS2 results were 0.18% behind the GECMS.

Table 4.6: Fuel economy results for EMMS2

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 64.24 0.6988 0.7071 -0.17
WL-M 65.53 1.1452 1.1402 +0.12
WL-H 65.60 0.9558 0.9501 -0.02
WL-E 57.16 1.4909 1.5983 +0.83
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4.7 Comparison of Optimization-based Strategies

Having developed the four EMMS (EMMS0, EMMS1, EMMS2 and GEMMS) it is

of interest to compare them internally, as well as with the GECMS from Section 3.4.

This section will compare their operation by studying their SOC profiles as well as

compare their fuel economy results.

The SOC profiles for each of the five optimization-based strategies are presented in

Fig. 4.33 for the four driving cycles. It can be seen that a majority of the control

strategies maintain their SOC quite steady around SOCinitial across the driving

cycles. This could have been expected based on the SOCfinal values that have been

presented for each SCS earlier in this chapter. However the EMMS0 does stand out

from this pattern, as it can be seen to experience a fall in SOC before steadying,

resulting in final values lower than 60%. Interestingly enough, it is joined by the

GEMMS for the WL-L andWL-M, where the SOC drops and steadies. As mentioned

earlier, this is not typical for a global optimization strategy, but it did yield the best

fuel economy among the tested parameters.

In addition, it is worth noting that the operation of all five strategies is gener-

ally smooth, as opposed to the oscillatory operation (where SOC oscillates between

SOCL and SOCU) that is associated with conventional strategies like TCS and

PFCS. This is a result of each of these strategies operating with a single state.

There is however an element of repetition in the profiles, which is a result of the

repeated iterations for each driving cycle.

This general pattern of dropping and steadying applies to all the presented control

strategies here, apart from GECMS. All the EMMS strategies have a charge sus-

taining element such that they will tend to flatten their SOC profile as they deviate

from SOCinitial. This is not true for the GECMS though, for which the error will

accumulate and get progressively worse. This is not very visible in the present chart

as the SOC deviation is very small for each driving cycle. Nevertheless it can be

seen for WL-H and WL-E in particular that the GECMS keeps dropping in SOC

relative to other strategies with a steady SOC.

The GECMS and GEMMS are the only strategies that remain close to SOCinitial

for the WL-E. This is easily understood as an effect of their global tuning. The

EMMS0 drops and steadies, due to the charge sustaining factor KCSI , but would
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have preferred to operate close to SOC ≈ SOCinitial. However, the other real-time

control strategies, EMMS1 and EMMS2, have both mechanisms that encourage the

SOC to drop such that it can reach control rules that are more suited for the WL-E

type of driving. The drop in SOC for these SCSs is thus not a failure, but rather a

tool that is actively employed to seek the optimal type of operation and to deliver

great fuel economy.

It is also worth noting that all of these control strategies have either kept a flat

SOC profile, or have dropped. Considering the fact that the SOC band between

SOCL = 50% and SOCU = 80% is at the disposal of the control strategies, none of

them make use of the upper half of this band. This could possibly have been due

to badly tuned equivalence factors Sd,efc and Sc,efc, such that any stored charged by

the end of a driving cycle is not proportionally rewarded, compared to the penalty of

having a net discharge. However, apart from the fact that the process for obtaining

these equivalence factors was rigorous, it can also be observed that the fuel economy

results for the tuning process of most control strategies have been quite symmetrical

about the SOCfinal = SOCinitial lines (e.g. the GEMMS tuning results in Fig. 4.23).

A more plausible explanation might be that the repetitive and short nature of the

driving cycles biases the results to be more short-term oriented. Although it would

in reality be ideal for a medium-speed rural driving cycle to charge the SS while

driving, such that more SS energy is available at a later date for either a lot of

low-speed urban driving or high-speed highway driving, the simulations results do

not consider this. Instead, the optimization process is about a single cycle being

repeated. The use of the equivalence factors is supposed to address this, but it

considers the average case for each driving cycle separately, so the benefits of having

a well-charged battery for WL-E is not considered in the EFC calculation for the

WL-L.

An additional consideration is that the general approach of HEV operation is to

use the SS as much as it will allow sustainably (this is even more true for PHEVs).

Most control strategies are greedy in the sense that “sustainably” is seen to mean

“without depleting or damaging the battery”. Such an approach is inherently biased

towards either discharging or maintaining the battery SOC.

Finally, the fuel economy performance relative to the GECMS (∆GECMS) for all

these strategies is presented in Fig. 4.34. It can clearly be seen that the EMMS0
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Figure 4.34: Comparison of fuel economy for EMMS0, EMMS1, EMMS2 and GEMMS
against GECMS when driving WL-L, WL-M, WL-H and WL-E.

is the least impressive among these. Its results are consistently behind the other

strategies. The same can not be said for the EMMS1 as it becomes progressively

better for driving cycles with higher loads. In fact it is comparable to the EMMS2

for WL-E. The EMMS2 is however the most impressive, as it is able to outperform

the GECMS on WL-L and WL-H (and is not far behind on the other strategies),

despite being a real-time control strategy.

The performance should however be considered in relation to the complexity of the

strategy. The GEMMS is somewhat more difficult to implement than the GECMS

(as it requires the powertrain analysis) but achieves a marginal improvement. How-

ever, for any solution that claims to approximate the global optimal solution, im-

provements in the order of 0.38% (as for WL-E) are quite significant. Between

the real-time strategies the performance is, as expected, improved gradually from

EMMS0 to EMMS1 to EMMS2. Considering the minor change in complexity from

EMMS0 to EMMS1, and the major difference in fuel economy performance, the

EMMS0 is not a worthwhile alternative (at least for the vehicle design for the model

in this work). However, in contrast, there is a significant increase in complexity from

EMMS1 to EMMS2, with more modest differences in fuel economy (in particular

for driving cycles with higher load). Therefore, the EMMS1 serves a function as an

easier implementation with decent performance.
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4.8 Summary

This chapter has presented a family of novel control strategies based on the objective

of maximizing the powertrain efficiency, which was determined by studying each

component comprising the powertrain sources: ICE, PMSG and rectifier for the PS,

and battery and DC-DC converter for the SS. In addition, a correction factor v

was considered to account for the losses involved in replenishing the battery after

it is discharged (or the gains involved in avoiding future replenishing after being

charged). The four control strategies EMMS0, EMMS1, GEMMS and EMMS2 used

this correction factor differently and a summary is provided in Table 4.7.

Table 4.7: Choice of correction factor v

Correction factor v EMMS0 EMMS1 GEMMS EMMS2

For PSS < 0 1 ηre(SOC) ηre,c ηre,c(SOC)
For PSS ≥ 0 ηre ηre(SOC) ηre,d ηre,d(SOC)

Each of the control strategies was implemented through a control map, which pro-

vides the optimal power share uopt as a function of the operating conditions (SOC

and PPL). This method is not only simple and computationally light, but it also

easily allows effective use of state dynamics (such as SOC) that are difficult to assess

offline for global control strategies. The fuel economy became progressively better

from the EMMS0, EMMS1 to the EMMS2 as the correction factor became more

nuanced and effective. The EMMS0 adopted a CS function kcs(SOC) to penalize

and reward the use of the SS, while the EMMS1 (and EMMS2) made the replen-

ishing efficiency ηre (and ηre,c and ηre,d) a function of SOC to achieve CS operation.

The GEMMS achieved the same inherently through global tuning, which required

no modification to its optimization procedure. Interestingly, the GEMMS was found

to be equivalent to a SOC dependent GECMS with consideration for SS efficiency.

In terms of fuel economy, the GEMMS was found to outperform the GECMS consis-

tently (by 0.2% overall), while the real-time EMMS2 was better than the GECMS

for half the driving cycles (but was 0.18% worse overall). The results demonstrate

how a more detailed understanding of the powertrain can contribute toward bet-

ter performance by the control strategies. Nevertheless, the GECMS has compared

quite favorably despite its simplicity (or maybe because of it).
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Heuristic Strategies

This chapter will propose two novel heuristic strategies: the exclusive operation

strategy (XOS) and the optimal primary source strategy (OPSS). Each of these

makes use of insights from previous chapters to deliver good performance with very

simple rule-based control. In some sense, these two strategies can be considered to

be improved versions of the TCS and PFCS from Chapter 3. The XOS presented in

this thesis has been partly modified since being published in [15], but has the same

essence (differences will be discussed within the chapter).

Although it is increasingly easier to make use of optimization-based strategies in

real HEVs, it is still useful to produce effective rule-based strategies. Not only are

these appropriate for prototypes and preliminary studies of powertrains (evaluating

architecture choice or component sizing), but they can also be the preferred choice

when simple and intuitive operation is a higher priority than an optimized fuel

economy. In fact, most commercial HEVs so far have opted to use heuristic energy

management strategies [55, 63].

The chapter will first explore the design principles that have been derived through

insights from previous chapters and discuss their applicability in designing heuristic

strategies for series HEVs. Thereafter, the XOS will be introduced in the context of

discussed design principles. This will be followed by the presentation of the OPSS.

For both the proposed control strategies the implementation, the tuning process,

representative power profiles of operation, and the fuel economy are presented and

discussed. Finally, the performance of the XOS and OPSS will be compared to the

conventional heuristic strategies.

177
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5.1 Design Principles

The essence of heuristic strategies is to apply design rules based on knowledge of

and experience with the system to be controlled. For the series HEV that is the

subject of this work, several insights have been gained over the past two chapters

that will here be condensed into a handful of such rules.

5.1.1 Fuel Economy Optimizing Mechanisms

There are three distinct approaches to determine the power share within the power-

train to achieve fuel efficient driving: load leveling, load following and load blending.

Load leveling refers to the strategy of operating the PS steadily and using the SS to

“level” the load as a buffer, as

PPS(t) = PPS,cop (5.1)

PSS(t) = PPL(t)− PPS,cop (5.2)

where PPS,cop is a constant operating point of the PS. This is most clearly applied in

the TCS where the PS is operated at its optimal point of operation (PPS,cop = PPSopt)

and the SS takes care of the difference between the PS and the propulsion load.

This approach typically optimizes the PS efficiency but suffers higher SS losses. The

general shape of the control input, both in terms of power share and PS power, is

presented in Fig. 5.1 (with PPS,cop = 20 kW).

This technique is also partly used by the GEMMS and GECMS, where it can partly

be seen in the smooth curves (corresponding to constant PPS levels) of the power

share charts in 4.27. However, it is more clearly visible in the operational power

profiles where the PS can be seen to operate quite steadily around 20 kW whenever

it is used in Fig. 3.18 and 4.25.

Load following on the other hand takes the opposite approach. It uses the PS to

“follow” the load power while the SS is ideally used at zero power levels, as

PPS(t) = PPL(t), (5.3)
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Figure 5.1: Power share and PS power for varying load for a load leveling strategy.
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Figure 5.2: Power share and PS power for varying load for a load following strategy.

PSS(t) = 0. (5.4)

This is the core approach behind the PFCS, where the above expression holds exactly

true for SOC = SOCinitial. However, to ensure charge sustaining operation, the

PFCS deviates from strict load following operation and instead allows the SS to

charge or discharge in proportion to its SOC deviation. Having the SS operate at

low power levels ensures higher SS efficiencies but this leaves the PS efficiency to be

determined by the varying load. The resulting control input, both in terms of power

share and PS power, is illustrated in Fig. 5.2.

This type of operation is also apparent in non-CS EMMS0 where the strategy often

uses u = 1 in Fig. 4.4. To a lesser extent the same technique can also be seen within
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non-CS EMMS1 in Fig. 4.13 (during PPL ∈ [17, 28] kW and PPL ∈ [50, 57] kW.

Lastly, the load blending mode of operation concerns itself with optimizing both

the power source branches of the powertrain. The operation is thus not as clearly

defined as the load leveling and load following modes, but instead encompasses all

techniques that blend the use of the PS and SS such that the overall performance

of the powertrain is benefited. This would clearly include the EMMS strategies of

the previous chapter that display a varied choice of operation with consideration of

both the PS and SS. For example, the EMMS2 in Fig. 4.30 has elements that would

fit either of the load leveling and load following modes, as well as some power share

choices that would fit neither. This approach is typically required to achieve global

optimal solutions, but it does not lend itself to be expressed as simple rules.

As shown, each of the fuel economy optimizing mechanisms discussed has been

employed in various control strategies within this work. However, as was just men-

tioned, the load blending operation does not easily translate into a rule-based control

strategy. Therefore, this chapter will aim to deliver one strategy based on load fol-

lowing and another on load leveling.

5.1.2 Charge Sustaining Mechanisms

From the presented work, four approaches have emerged to make control strategies

charge sustaining: state changing, threshold changing, power changing and emer-

gency handling.

The state changing approach does not have inherently CS rules, but rather switches

between two (or more) sets of rules depending on the SOC. These changes in state

are often triggered as the SOC reaches its lower (SOCL) or upper (SOCU) limit,

with a hysteresis area in between, as

S(t) =











0 SOC(t) ≥ SOCU

1 SOC(t) ≤ SOCL

S(t−) SOCL < SOC(t) < SOCU

, (5.5)

where S(t−) is the state in the previous time instance. This approach is followed

precisely with the TCS (as defined in Eq. 3.7) and is implemented with some

additional conditions with the PFCS (as defined in Eq. 3.8). These changing states
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Figure 5.3: Optimal power share for varying power requirements and SOC when em-
ploying the threshold changing mechanism to encourage charge sustaining operation.

are often relatively easy to define and none of them need to be CS in themselves.

In fact, the only necessary constraint is that at least one of the states is charge

depleting and at least one is charge increasing. Furthermore, these changes in states

can easily be connected to whether the PS is active or not (as is done for both TCS

and PFCS), such that the engine is only turned on or off when there is a change in

state. This reduces the number of start-stop events of the engine.

Threshold changing refers to the definition of a SOC dependent threshold to govern

whether the PS is active or not. Such a lower limit of the PS can be defined as

PPSmin(SOC) = Pth + Pcsi

(

SOC − SOCmid

SOCrange

)

(5.6)

where Pth is the base power threshold and Pcsi (which does not necessarily need to be

a constant) regulates the CSI of the strategy by defining the range as PPSmin(SOC) ∈
[Pth −Pcsi, Pth +Pcsi]. This is shown in Fig. 5.3 with an illustrative example. It can

be seen that the threshold operates such that the PS is activated at lower load levels

(and thus more frequently) if the SOC is low and is activated at higher load levels

if the SOC is high. This encourages the use of the SS when the SOC is high, and

discourages it when the SOC is low, thus tending towards making the operation CS.

It is however essential that the threshold and its range is defined appropriately to

ensure CS operation in all kinds of realistic operation.

The use of threshold changing operation is very clearly visible in EMMS0 (Fig. 4.8),
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Figure 5.4: Optimal power share for varying power requirement and SOC when em-
ploying the power changing mechanism to encourage charge sustaining operation.

EMMS1 (Fig. 4.17) and EMMS2 (Fig. 4.30), with a wide range for the threshold. In

all of these cases the range of the threshold stretches all the way down to PPL = 0 kW

which guarantees that the SOC will not drop below SOCL. This mechanism is

present to a limited extent in the GEMMS as well due to the SOC sensitive efficiency

expression (as shown in Fig. 4.24) but the range is very limited.

The power changing approach modifies the PS operating point to be SOC dependent.

This can be applied to a load leveling strategy as

PPS,op(SOC) = Pcop − Pcsi

(

SOC − SOCmid

SOCrange

)

(5.7)

where PPS,op is the operating point of the PS and is defined in the range of PPS,op ∈
[Pcop−Pcsi, Pcop+Pcsi]. Alternatively, the power changing mechanism can be applied

to a load following strategy as

PPS,op(PPL, SOC) = PPL − Pcsi

(

SOC − SOCmid

SOCrange

)

. (5.8)

The power changing mechanism is shown visually in Fig. 5.4 for the load following

case (where u = 1 corresponds to exact power following operation).

The PFCS uses the power changing method (with the load following alternative) to

bias operation in favor of maintaining the SOC close to SOCmid, as expressed in Eq.

3.10. The EMMS on the other hand can be considered to employ a blended version
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of the power changing mechanism. For example, in Fig. 4.30 for EMMS2, it can be

seen that a higher power share is selected in general for lower SOC cases, and lower

power share for higher SOC. In fact, typically u > 1 (charging mode) is used for

very low SOC values, thus encouraging charge sustaining operation.

However, this particular CS mechanism has a few vulnerabilities. If the power

changing mechanism is applied all the way down to PPL = 0 kW, the PS will have

to be operated at very low power levels which would be highly inefficient. The

solution could be to use a threshold above which the power changing (together with

load following or load leveling) is active. However, even in this case, if the powertrain

is operated at a low load level where the PS is not active, the fact that the PS power

levels at higher load levels are being adjusted by the power changing mechanism as

the SOC decreases will have no CS effect. Thus, this CS mechanism is generally

insufficient by itself.

Finally, as a last resort, it is useful to include emergency handling. These are rules

that are activated only if the SOC bounds are violated. These can in some sense be

considered a subset of the state changes discussed earlier, with the difference that

the emergency handling rules are only active while the SOC bounds are violated, and

normal mode is restored as soon as SOCL < SOC < SOCU . However, note that the

TCS does not make use of emergency handling rules, as Eq. 3.7 does not provide

separate instructions for how to operate if the SOC constraints are continuously

transgressed. This is later demonstrated in Fig. 5.20, where the SOC profile for the

TCS when driving the WL-E can be seen to fall to SOC = 45% before recovering. In

contrast, the PFCS clearly has defined emergency handling rules in Eq. 3.9 in case

the SOC limits are exceeded. The emergency handling rules need to be CS at the

very least, or possibly charge increasing for SOC < SOCL and charge depleting for

SOC > SOCU . It is however important to emphasize that the emergency handling

rules are typically not very fuel efficient. Thus, if the main CS mechanism employed

is badly designed, the benefits of the main fuel economy optimization mechanism

will be lost.

From these charge sustaining techniques, the threshold changing mechanism is con-

sidered to be the most suitable one for a modern series HEV. The state changing

approach has many attractive features (e.g. its simplicity and lack of engine start-

stop events), but these are increasingly less relevant today. As modern HEVs use

very efficient start-stop systems (SSSs), the cost of turning the engine on is very low,
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compared with a decade ago. The objective of minimizing the number of start-stop

events is thus much less of a priority (although it still matters to some extent for

the purposes of drivability). Furthermore, computational power is easily available

in any modern HEV and the automotive companies have the resources to develop

and test more advanced strategies (although robustness remains imperative). The

threshold changing approach on the other hand is the primary benefactor of the more

efficient SSSs, and can be expected to sustain the charge without compromising the

fuel economy too much. However, it will be sensible to include some emergency

handling rules nevertheless to handle exceptional driving circumstances.

Thus, the rule-based strategies presented in this chapter will mainly make use of a

threshold changing approach together with some emergency handling rules.

5.1.3 Implementation Mechanisms

Two different real-time implementation mechanisms have been used in the control

strategies presented so far: state machines and control maps. The GECMS can

also use precomputed control inputs to implement its strategy but this option is

only available for global strategies with prior knowledge of the driving route and

is thus not an option for the rule based strategies being considered in this chapter.

However, an additional approach that has not been considered so far is the algebraic

implementation with logic gates.

The state machines are particularly suitable for state changing strategies, as they

naturally involve multiple states with varying rules. This would include the TCS

and PFCS. In these cases a state-machine implementation is almost unavoidable.

However, for other rule based strategies with a single set of rules, the state machine

can be used by treating various operating conditions (such as low and high load

powers, or low and high SOC) as different states. However, this often requires certain

rules to be repeated in multiple states, making the expression of some strategies less

concise. Also, it often comes with a higher computational load (which is quite

negligible anyway).

The control maps on the other hand are look-up tables that are essentially flexible

enough to express any type of rules or optimizations. These were used for all the

EMMS and have also been implemented for the GECMS. They are also easy to
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design and have the benefit of being easily visualized. Although they are particu-

larly suitable for single-state strategies, it is possible to implement multiple-states

strategies like the TCS and PFCS using multiple control maps. However, the control

maps don’t shine when used to express simple rules. The precision of the control is

only as good as its sampling interval. Thus, a simple logical or algebraic relation

(or a state machine) could follow the intended strategy perfectly while the control

map has to compromise based on the imperfect precision arising from the finite size

of the map.

The third approach, which hasn’t been presented so far is the algebraic implemen-

tation with logic gates. Most rule-based controllers rely on simple arithmetical

and logical relations between inputs and outputs. These relations can be directly

expressed by equations and logic blocks in Simulink and most other design environ-

ments. Not only is this approach computationally efficient and easy to design, it also

delivers perfect precision when interpreting the intended strategy. For these reasons,

the algebraic implementation will be used for the rule-based strategies presented in

this chapter.
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5.2 Exclusive Operation Strategy

The exclusive operation strategy (XOS) is based on the load following technique

and uses the threshold changing mechanism to ensure CS operation. This design

uses insights gained from the PFCS and EMMS0 in particular, but also attempts to

emulate parts of the operation of the global strategies GECMS and GEMMS.

5.2.1 Design

Investigation of the power-split between the PS and SS in a powertrain shows that

the optimal selection is often to operate with the SS at lower powers and the PS

at higher load requirements. This agrees roughly with previously developed control

systems [14] as well as the GECMS and GEMMS presented here. Thus, the principle

of XOS is quite simple: operate with only SS at low load requirements (or if SOC >

SOCU), and operate with only PS at medium loads. The two energy sources are

only used together if the load power exceeds the maximum rating of the source in

operation (or SOC < SOCL, in which the SS is charged). These rules are shown

visually in Fig. 5.5.

The XOS is inspired by the PFCS as can be seen by its “power following” behavior

during PS-only mode. However, the XOS does not adjust PS power to correct SOC

deviation as done by Pm with the PFCS in Eq. 3.10. Such a deviation tends to

use the SS at very low powers, which is quite inefficient due to the high amount of

SOC

PSSmax

PPL

PPS = 0

PPS = PPL

PPS = PPSmax

1

SOCU

SOCL

Pth PPSmax
PPSmax
+PSSmax

Figure 5.5: The XOS operates in three distinct ways depending on given SOC and PPL:
SS-only (white), PS-only (light gray) and hybrid operation (dark gray).
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DC-DC converter losses at these operating points. Instead the SOC correction is

performed by using the threshold changing approach discussed in Section 5.1.2.

The XOS requires three parameters: PPSmin(SOC), PPSmax and PSSmax. The two

latter are readily available for any powertrain, but the former needs some further

attention. The threshold PPSmin(SOC) is the load at which the SCS switches from

using the SS to PS, and is defined as Eq. 5.6. However, it is preferable to consider

the case of Pcsi = Pth. Not only does this eliminate one tuning parameter from the

control strategy, but it also ensures that the strategy is CS for continuous operation

at low power levels. For example, if Pcsi < Pth, then a low persistent load PPL > 0

will gradually drain the battery until the emergency handling rules are activated

at SOC = SOCL. However, if Pcsi = Pth, then the PS will always be activated

before SOC = SOCL, practically always avoiding the need to trigger the emergency

handling rules. Therefore, the following PS activation threshold is used instead:

PPSmin(SOC) = Pth + Pth

(

SOC − SOCinitial

SOCrange

)

. (5.9)

To determine the optimal value for Pth, the efficiencies of the SS and PS could

be compared. However, as the SS efficiency by itself does not consider the PS

losses required to replenish the SS, the replenishing efficiency ηre = 35% (based

on the findings for EMMS1 in Section 4.4.2) is also included. Figure 5.6 shows a

comparison of PS and SS efficiencies based on the components used in this work, but

similar shapes would be found for most series HEVs. As expected, the SS efficiency

is high at low loads and drops for higher loads, while the PS starts with a lower

efficiency and moves towards a higher efficiency (peaking at PPSopt = 20.1 kW).

Thus the threshold at which the PS becomes more efficient than the SS is found

to be between 11.1 and 11.5 kW depending on SOC. In this work, Pth values of

between 10.4 and 15.0 kW are found to deliver optimal fuel economy results for

tested driving cycles.

A particular benefit of driving with each energy source exclusively is the linear

correlation between PL power request and PS power supply. Drivers have developed

a sense of intuition with regards to the speed and acceleration of the vehicle based

on auditory cues from the ICE in a conventional car. The unfamiliar, and sometimes

counterintuitive, cues provided by a hybrid powertrain remain a significant challenge

in terms of drivability for adopters of HEVs. The XOS addresses this particular
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Figure 5.6: Efficiency profiles for PS and SS (corrected by ηre = 35%). The intersection
between the profiles can be considered as Pth.

issue, but the switching between PS and SS mode, as the engine is switched on and

off, remains a challenge in terms of drivability. However, drivers are increasingly

becoming familiar with this sensation as SSSs are introduced in conventional vehicles

or mild hybrids. The XOS therefore helps in making the driver experience for a HEV

more similar to a conventional vehicle.

It is interesting to compare and contrast the operation of the GECMS and the XOS.

Each SCS has the same task: to determine the optimal power split of the load

request between the PS and SS. This task is reduced to the selection of the power

share factor u, as shown for the GECMS and GEMMS in Fig. 4.27. The equivalent

chart for XOS is presented in Fig. 5.7, for operation with SOCL ≤ SOC ≤ SOCU .

It can be seen that the XOS has three simple stages of operation: the first stage

(low PPL and medium or high SOC) is SS-only; the second stage (medium PPL)

is PS-only; and the third stage (high PPL) is hybrid mode with the PS delivering

maximum power. The transition between the first and second stage is dependent

upon the SOC, such that battery use is encouraged at high SOC and discouraged

at low SOC. This type of transition is also visible for the GEMMS and GECMS

in Fig. 4.27 to a lesser extent. Although the latter is not sensitive to SOC directly,

it can be seen that the transition occurs at higher PPL for WL-L to encourage the

use of the SS during urban driving, while the transition is at lower PPL for WL-E

where PS operation is preferred for highway driving. In the second stage, where

XOS applies u = 1, the GECMS and GEMMS are somewhat higher towards the
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Figure 5.7: Power share factor and PS power for varying load and SOC (with Pth =
12.2 kW) for XOS.

start of this stage, and somewhat lower towards the end of the stage. Operation

above the u = 1 line is charge increasing operation while operation below this line

is charge depleting. Thus, the operation of XOS can be considered a smoothened

version of the GECMS and GEMMS operation, to balance out charging and charge

depleting operations. Although not optimal, the simplified control policy of XOS

roughly reflects the general behavior of the GECMS and GEMMS, and can thus be

expected to perform well.

Unlike the TCS and PFCS that operate in two distinct states, and are thus imple-

mented with state machines, the XOS has a single state of operation and can be

implemented algebraically with the use of logic gates. The Simulink implementation

of the XOS is shown in Fig. 5.8. It can be seen that only simple arithmetic and logic

blocks are required for this implementation.

5.2.2 Tuning

The only tuning parameter for the XOS is the base threshold Pth. It is varied in

the range of Pth ∈ [10, 17] kW in steps of 0.2 kW. Each of these values are then

tested for the four driving cycles to tune the parameters such that the fuel economy

is maximized. Results with normalized equivalent fuel consumption and final SOC

levels are shown in Fig. 5.9.
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1

P_PSref
<

f(u)

< SOC_L

> P_SSmax

> SOC_U

<= SOC_U

>= SOC_L

P_PSmax

2

P_PL

1

SOC

Figure 5.8: Implementation of the XOS in Simulink. Note that f(u) implements Eq.
5.9 to define PPSmin(SOC).

As can be seen, each of the driving cycles have different thresholds Pth (the optimal

threshold Pth for WL-L, WL-M, WL-H and WL-E are 15.0 kW, 12.6 kW, 11.6 kW

and 10.4 kW respectively). The pattern of having higher thresholds for WL-L (of-

ten low loads) and lower thresholds for WL-E (often high loads) is consistent with

previously presented strategies, including the GECMS and GEMMS presented in

Fig. 4.27. However, for all of those previous strategies, low-medium loads meant

charging of the SS and medium-high loads meant discharging of the SS. Thus, driv-

ing cycles that often operate at medium-high loads would need to have a lower

transition threshold to ensure CS operation. However, this explanation is not valid

for the XOS. When the PS is active, whether at low-medium or medium-high load,

the SS is neither charged nor discharged. Thus, the driving cycles with low loads

are discharging the SS the most, and are thus in most need of a lower transition

threshold.

This apparent contradiction can be resolved by understanding the inverse relation-

ship between the propulsion load and the need to apply CS correction. As the SOC

drifts over the duration of the driving cycle, the effective transition threshold PPSmin

tends to be quite different from the base threshold Pth. It is therefore more useful

to consider the PPSmin(SOCfinal) (by using the optimal values of Pth and SOCfinal

from Fig. 5.9 and use with Eq. 5.9) which yields values of 6.5 kW, 8.4 kW, 7.8 kW

and 10.5 kW for the four driving cycles. These agree better with the mentioned

expectations.
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Figure 5.9: Normalized EFC (left) and final SOC (right) for varying Pth when driving
WL-L, WL-M, WL-H and WL-E (from top to bottom) with XOS.
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Despite the variations in threshold across the driving cycles, it can be noted that

the compromise in fuel economy for a badly tuned threshold is lower than 1% in

each case. It is also worth noting that the final SOC values are typically quite

lower than SOCinitial, even for quite low thresholds. This control strategy has the

same limitations as the EMMS0 with regards to being overly reliant on regenerative

braking to recharge the SS. Nevertheless, the operation is well within the SOC

bounds of the vehicle.

To identify the optimal base threshold Pth with consideration for the varying results

for the different driving cycles, the EFC of each driving cycle is combined (as dis-

cussed in Section 2.6.2) and normalized, and is presented in Fig. 5.10. As can be

seen, there is a very flat region for Pth ∈ [12, 14] kW, but the optimal value is found

at Pth = 13.4 kW. However, as it is possible to choose a lower threshold value at

negligible impact to fuel economy, while realizing a higher final SOC (a lower base

threshold translates to a high final SOC, as shown in Fig. 5.9), this is preferred.

Thus, for the purposes of this work, Pth = 12.2 kW is selected instead (sacrificing

0.0024% in fuel economy relative to the optimal selection). The overall fuel economy

is only affected by about 0.2% for changes of 25% in Pth. With such a low tuning

sensitivity, the realized fuel economy can not be expected to be comparable to the

EMMS, but the aim is to keep the XOS extremely simple and still deliver superior

fuel economies to the conventional heuristic strategies.
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5.2.3 Operation

Using the selected base threshold value, the power profiles for the XOS when driv-

ing the first and final iteration of the driving cycles are presented in Fig. 5.11 and

Fig. 5.12 respectively. The operation is clearly applying the load following mecha-

nism, as the PS, when used, is always matching the load requirement PPL precisely.

However rather than resembling the PFCS, which would use the PS persistently at

Pmin at low loads and operate the PS much more steadily, the operation is more

similar to the EMMS0 in Fig. 4.11 and 4.12. It is also evident that the PS and SS

are never used together, but rather used exclusively (as the name suggests). This

has, as mentioned, great benefits for drivability as the auditory cues of the engine

are more intuitive and comparable to conventional vehicles. However, as a result

there is no direct charging of the SS, which has to rely on regenerative braking to

increase its charge.

The operation for WL-L is almost exactly like the EMMS0, for both the first and

final iteration, as the load is generally low and the threshold at when to activate

the PS is the main decision. For WL-M and WL-H, there are some differences at

higher loads. Whenever the load increases beyond about 25 kW, the EMMS0 will

supplement the PS with the SS in hybrid mode, while the XOS persists in using

PS only operation. Interestingly, the changes that occur from the first to the final

iteration of driving with the XOS are very similar to the changes that occur for

the EMMS0, as both of these strategies see the SOC gradually decrease before

steadying.

The differences are most clear for the first iteration for the WL-E, where the EMMS0

will rarely use the PS beyond 25 kW, while the XOS is operating the PS close to

50 kW. There is a significant difference in operation here, and it might be unclear

which operation should be preferred. However, by looking at the final iteration of the

WL-E driving, it can be seen that even the EMMS0 adopts the same approach as the

XOS and uses the PS at much higher power levels (as high as 50 kW). Essentially, the

EMMS0 needed to operate for quite a while (until SOC had dropped significantly)

before it recognized what type of operation was desirable and sustainable, while the

XOS figured this out much faster. However, even the XOS will be using the PS to

a larger extent for all driving cycles in the final iteration, as its SOC has dropped

somewhat.
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Figure 5.11: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the XOS.
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Figure 5.12: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the XOS.
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Lastly, the fuel economy of the XOS is evaluated in Table 5.1 for the four different

driving cycles. Although the charge has been sustained in each case (with good

margins between SOCfinal and SOCL or SOCU), the XOS is unable to maintain

the SOC steady at SOCfinal ≈ SOCinitial for any of the driving cycles. Also, the

inability to actively adjust the SOC by charging the SS clearly reduces the flexibility

of the strategy to operate efficiently without compromising the CS operation. The

resulting EFC is thus not great, but lags the GECMS results by 4.45-11.53%, with

a combined difference (for all four driving cycles together) of 6.29%.

This is however quite favorable if compared to the TCS and PFCS, which were

outperformed by the GECMS by 14.35% and 13.72% respectively. The results are

particularly good for high-speed driving cycles, where the regenerative braking is

sufficient to balance the SS load over the driving cycles. Also, as another benchmark,

the XOS performs almost as well the EMMS0 (which is 5.68% behind the GECMS)

while using simpler rules and implementation.

Table 5.1: Fuel economy results for XOS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 57.36 0.7070 0.7899 +11.53
WL-M 60.79 1.1568 1.2022 +5.56
WL-H 60.44 0.9414 0.9959 +4.80
WL-E 63.91 1.6409 1.6559 +4.45
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5.3 Optimal Primary Source Strategy

The OPSS employs the load leveling approach for the powertrain management and

operates the PS at its optimal operating point (in terms of efficiency), like the

conventional TCS. However, rather than using the state changing technique like the

TCS, the OPSS uses the threshold changing mechanism to ensure that charge is

sustained. This type of operation is strongly inspired by the global solutions found

through GECMS and GEMMS.

5.3.1 Design

One of the key characteristics of the series HEV is the ability to operate the engine-

generator set independent of the wheel speed, thus allowing continuously optimal

operation if desired. Although such an optimization strategy neglects the SS losses,

it is worth considering that all energy delivered by the SS ultimately originates from

the PS through either regenerative braking or direct charging. Thus, even the SS,

when considered holistically, is greatly benefited by operating the PS optimally. Fur-

thermore, this could enable further optimization of the engine and generator design,

sizing, coupling and control to perform optimally at a single point of operation,

as opposed to the more complex consideration of all the various possible operating

points in a load following strategy.

Although the name of the OPSS makes emphasis on the optimal operation of the

PS, the TCS does not. The key characteristic of the TCS is the “thermostat” type

of operation, oscillating between charge increasing and charge depleting operation

through a hysteresis mechanism. As mentioned earlier in this chapter in Section

5.1.2, this state changing approach allows the number of start-stop events of the

engine to be minimized. However, within a modern HEV the cost of start-stop

events is much lower than it used to be, and it is therefore possible to reduce SS

losses (by switching off the PS at appropriate times) such that they outweigh the cost

of the start-stop events involved. The OPSS therefore uses the threshold changing

mechanism to not only ensure CS operation, but also to reduce the typical magnitude

of the charging and discharging operation of the SS. The implementation of the

threshold changing mechanism is the same as for the XOS, as given in Eq. 5.9 (and

described in Section 5.1.2).
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Figure 5.13: The OPSS operates in three modes depending on given SOC and PPL:
SS mode (white), optimal PS mode (light gray) and maximum PS mode (dark gray).

The complete set of rules governing the OPSS is best illustrated graphically, as shown

in Fig. 5.13, where the assigned PS power is shown for various operating conditions

(varying load power and SOC). It can be seen that the “shell” of the strategy, in

the form of its emergency handling rules (for SOC < SOCL or SOC > SOCU), is

practically identical to the XOS (in Fig. 5.5). The simple difference exists only in

the center of the chart, where the PS power is defined as PPS = PPSopt.

It is also useful to compare the simple nature of these rules to the setup of the TCS

and PFCS (in Section 3.2.1 and Section 3.3.1 respectively). The TCS arguably has

the simplest rules, followed by the XOS, OPSS and PFCS in this particular order.

The TCS has a single tunable parameter PPS,cop that can readily be estimated as

PPS,opt, while both the XOS and OPSS have to tune the base threshold Pth with

some guidance. The PFCS on the other hand has two tunable parameters in Pch and

Pmin. However, the TCS and PFCS have two states of operation as opposed to the

single-state operation of the XOS and OPSS. Furthermore, there are significantly

fewer rules and modes of operation within the XOS and OPSS as compared to the

PFCS.

To further clarify the design of the OPSS, the resulting power share has been pre-

sented in Fig. 5.14 (with PPSopt = 20 kW) in the same form as previously presented

strategies. The strategy uses only SS at low powers but turns on the PS to its op-

timal operating point once it passes the threshold PPSmin. Only as the load reaches

the maximum power of the PS PPSmax does the PS begin to contribute more power

(in fact its maximum power) to meet the load.
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Figure 5.14: Power share factor and PS power for varying load PPL and SOC (with
Pth = 10.4 kW) for OPSS.

Comparing these profiles to those of the GECMS and GEMMS in Fig. 4.27, it can be

seen that they are almost identical up until about PPL = 50 kW (for SOC = 65%).

The main exception is a small region around PPL = 20 kW where u = 1 is used

instead (like the XOS). This deviation is expected, as the GECMS and GEMMS have

considered the extremely low DC-DC converter efficiency at low SS power levels and

have opted to use PSS = 0, rather than PSS = 1 kW or PSS = −1 kW. Such

consideration or nuance does not exist for the OPSS which persistently uses the PS

at PPSopt. The implementation of the OPSS is practically the same as the XOS, as

might be expected from the similarities between the control schematics in Fig. 5.5

and Fig. 5.13. Figure 5.15 shows the OPSS Simulink implementation, where the

second of the three terms being added is now a constant (PPSopt), unlike the XOS.

5.3.2 Tuning

To tune the OPSS, the threshold power is varied in the range of Pth ∈ [4, 15] kW in

steps of 0.2 kW. Each of the values is then tested for the four driving cycles to tune

the parameter such that the fuel economy is maximized. Results with normalized

EFC and final SOC levels are shown in Fig. 5.16.

The optimal threshold Pth varies for each of the driving cycles. The fuel economy

is maximized when Pth is defined as 9.2 kW, 10.2 kW and 10.4 kW for WL-L,

WL-M and WL-H respectively (although not very clear from the figure). The ideal
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Figure 5.15: Implementation of the OPSS in Simulink. Note that f(u) implements Eq.
5.9 to define PPSmin(SOC).

threshold for WL-E is outside the investigated region (the minimum at Pth = 5.4 kW

is just a local minimum), but is found separately to be at -0.8 kW. Similar to the

EMMS and GECMS, the threshold is higher for the driving cycles with lower load

(e.g. WL-L) and lower for higher loads (e.g. WL-E). The exception of the XOS

results in Section 5.2.2, is thus not applicable as the OPSS operation is more similar

to optimization-based strategies in the sense that the SS is charged at medium-low

loads and discharged at medium-high loads (the SS is neither charged or discharged

in either of these cases for the XOS). Furthermore, the distinction between the base

threshold Pth and the effective transition threshold PPSmin is less relevant for the

OPSS results as there is barely any SOC deviation (SOCfinal ≈ SOCinitial), giving

PPSmin(SOCfinal) (as given by Eq. 5.9) values of 9.02 kW, 10.26 kW, 10.47 kW and

1.00 kW for WL-L, WL-M, WL-H and WL-E respectively (with SOCfinal values of

64.81%, 65.06%, 65.08% and 53.64%).

It is also interesting to contrast the final SOC values of the OPSS results with those

of the XOS. As the XOS relied solely on regenerative braking to charge the SS, the

strategy was essentially only able to reduce the discharging of the SS to maintain

CS operation. The OPSS, on the other hand, is able to actively charge the SS more

by reducing the power threshold Pth. Consequently it can be seen that the SOC

reaches its upper limit SOCU = 80% for the first three driving cycles at low values

of Pth. Such threshold selections cause the emergency handling rules, as displayed
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WL-L, WL-M, WL-H and WL-E (from top to bottom) with OPSS.



202 Chapter 5

Base Threshold, Pth (kW)
     

F
u
el

E
co
n
o
m
y,

M
e
f
c
(-
)

   

   

   

   

   

   

7 10 134 16
1

1.02

1.04

1.06

1.08

1.1

Figure 5.17: Normalized total EFC Mtot for varying Pth with OPSS.

in Fig. 5.13, to intervene to prevent the SOC from increasing further. However, this

intervention comes at the expense of fuel economy, where a clear spike is visible, in

particular for WL-L and WL-M. It is thus clearly desirable to set an appropriate

value for Pth to avoid the emergency handling rules on the upper range of SOC.

The consequences of triggering the emergency handling rules in the lower SOC range

are quite different. The case of the WL-E shows the SOC flattening off around

SOC = 54%, which still has a decent gap to SOCL = 50%. However, as will be

shown later in Fig. 5.20, the SOC actually reaches this lower threshold during the

driving cycle, before recovering somewhat by the end of the cycle to yield SOCfinal =

54%. Most importantly, it can be seen that the fuel economy also flattens out

around Pth = 10 kW. Thus, the fuel economy in some sense benefits by triggering

the emergency handling rules, as it prevents the operation from becoming even more

suboptimal. This is the ideal type of emergency handling rules. However, for this

work the emergency handling rules at higher SOC have prioritized simplicity, which

is why a spike in fuel economy can be observed for badly tuned threshold values.

To determine the optimal tuning of the OPSS, the overall fuel economy is evalu-

ated for the four driving cycles combined. The normalized results are presented in

Fig. 5.17. The optimal power threshold is found at Pth = 10.4 kW, which is very

close to the ideal selection for WL-M and WL-H (which arguably represents the

most common type of driving). Although the OPSS is more sensitive to tuning than

the XOS, even if the Pth is off by 25%, it would only affect the fuel economy by less

than 0.4%.
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5.3.3 Operation

The resulting power profiles are shown in Fig. 5.18 and Fig. 5.19, for the first and final

iteration of the driving cycles respectively. It is clear that the OPSS is relying on the

load leveling approach as the PS, whenever used, is always used at PPSopt = 20 kW.

Although this approach might sound or even look primitive, it is worth comparing

the resulting power profiles to the GECMS and GEMMS in Fig. 4.27.

The operation for WL-L is very similar to the GECMS, which operates the PS with

slightly more variation. However, both the GEMMS and GECMS generally use the

PS for the same durations as the OPSS. These variations in power levels for the

PS by the GECMS and GEMMS become larger for the WL-M and WL-H, while

the OPSS maintains its steady operation, but generally uses the PS at the same

occasions. It is also worth noting that the OPSS is operating almost identically in

its first and final iteration, suggesting that its operation is charge sustaining from

the very beginning.

The same can not be said for the WL-E, where the OPSS uses the SS more often at

high magnitudes, as compared to the GECMS and GEMMS. As can be expected,

this results in a lower SOC and the operation in the final iteration is therefore quite

different. Apart from generally having the PS on at all times (except during regen-

erative braking), the OPSS experiences some extreme oscillatory behavior towards

the second half of the final iteration of WL-E. Essentially the SOC drops below

SOCL, requiring the emergency handling rules to be kicked in. This results in the

PS being requested to deliver its maximum rated power (as illustrated in Fig. 5.13),

causing the PS load to exceed the required load, thus charging the SS and increasing

the SOC. This in turn, results in the OPSS returning to normal mode (i.e. exiting

emergency handling rules), causing the PS to return to delivering PPSopt and the

SS supplementing the difference to the load as the SOC drops again. This causes

high-speed oscillations in the operation of the PS such that it on average follows the

load (PPS = PPL). Although this operation is sensible, these oscillations are highly

undesirable. They can however be removed by either redefining the emergency han-

dling rules or by including a hysteresis effect between the emergency handling rules

to prevent the oscillations. This will be done in the next version of this control

strategy.
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Figure 5.18: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the OPSS.
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Figure 5.19: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the OPSS.
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Finally, the fuel economy of the OPSS is evaluated in Table 5.2 for the four different

driving cycles. It can be seen that the SOC has been closely sustained (SOCfinal ≈
SOCinitial) for the first three of the studied driving cycles, while it has dropped

significantly for WL-E×4. Considering the simplicity of the rules, this CS ability is

very impressive. The achieved fuel economy is equally impressive, being only 0.00-

3.52% behind the GECMS (the GECMS outperforms the OPSS with 0.0042% for

WL-L). If the four driving cycles are considered together (as calculated for Mtot),

the difference is 0.95%. Considering the analytical effort invested in the GECMS,

the OPSS delivers exceptional utility in terms of results per effort.

Table 5.2: Fuel economy results for OPSS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 63.16 0.6884 0.7083 +0.00
WL-M 64.78 1.1404 1.1428 +0.34
WL-H 65.08 0.9532 0.9525 +0.23
WL-E 53.64 1.4853 1.6410 +3.52
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5.4 Comparison of Heuristic Strategies

Having presented the XOS and OPSS, and their individual designs and perfor-

mances, it is interesting to compare their operation to the two conventional heuristic

strategies: the TCS and PFCS. Results of the GECMS are also included as a refer-

ence point.

The SOC profiles for each of the four heuristic strategies are presented in Fig. 5.20

for the four driving cycles. It should be noted that the selection of tuning parameters

for the PFCS in Section 3.3.1 makes this strategy operate quite similarly to the TCS

for PPL ≤ PPSopt. As this is often true for WL-L (and somewhat true for WL-M

and WL-H), the SOC profiles of the PFCS and TCS are very similar (and somewhat

similar for WL-M and WL-H) in the presented results. This similarity is also visible

in comparing the power profiles of TCS and PFCS in Fig. 3.5 and Fig. 3.11. The

difference of 3 kW between PPS,cop = 19.8 kW and Pmin = 16.8 kW results essentially

in a change in period for the SOC profiles.

There is also a distinct difference between the operational pattern between the state

changing strategies (TCS and PFCS) and threshold changing strategies (XOS and

OPSS). The former can be seen to oscillate between the lower and upper SOC limits,

alternating between charge depleting and charge replenishing modes of operation.

This is also true for WL-E, although the oscillations occur at the limits rather than

between them.

The TCS can be seen to discharge quite sharply at the start of the driving cycle,

but even as the operation changes to charging mode, the charge keeps depleting for

some further time. This occurs due to the high level of load for the WL-E, such

that PPL ≥ PPSopt, meaning that the SS has to supplement the PS to meet the load

power. Thus the SOC drops to 42.65% before beginning to recover. The TCS then

remains in charging mode (with the SS occasionally entering discharging mode) for

the rest of the driving cycle as the progress of increasing SOC towards the upper

limit of SOC is essentially flat due to the generally high load power. However, if

the PPS,cop was slightly higher, the SOC would reach its upper limit and the TCS

would enter the charge depleting mode again. This operation is consistent with the

observation that the period of the state changes (Ttcs) for the TCS is proportional

to the average load power of the driving cycle (P̄dc). As shown in Table 2.6, we have
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Figure 5.20: SOC profiles for XOS, PFCS, OPSS, TCS and GECMS when driving
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P̄WL−L < P̄WL−M < P̄WL−H < P̄WL−E. Thus, it follows (and matches the results in

Fig. 5.20) that TWL−L < TWL−M < TWL−H < TWL−E.

The PFCS operation is however quite different for WL-E. While the TCS can only

change its mode by having the SOC reach its lower or upper limits, the PFCS has

some additional possibilities, as shown in Eq. 3.8. The PFCS will also activate

the charging mode operation if the load power exceeds the maximum SS power

(PPL > PSSmax), which occurs quite frequently for the WL-E. Thus, it can be seen

that the PFCS enters charging mode operation already around t = 60 s, without

needing to operate the SS at very high loads (as TCS has do). Thereafter, the

PFCS often operates in a load following manner but ends up charging the SS during

low loads (and regenerative braking). The SOC is thus gradually increased, before

reaching its upper limit around t = 670 s As the PFCS switches mode to operate

with SS only, the SOC begins dropping. However, quite soon the load power briefly

exceeds the maximum SS power (PPL > PSSmax), making the strategy return to its

load following mode. As a result, the PFCS keeps on operating at a quite high SOC,

oscillating between around SOC = 81% and SOC = 76%.

In contrast, both XOS and OPSS operate much more steadily, quite similarly to the

GECMS. In fact, the OPSS is always operating within the following SOC bands for

WL-L, WL-M and WL-H: 62.75-65%, 63.76-65.15% and 63.39-65.59% respectively.

Such a limited depth-of-discharge (DOD), as opposed to the 50-80% cycles of TCS

and PFCS, is not only beneficial for the fuel economy of the vehicle, but also helps to

reduce battery degradation. Similarly, the XOS also has a small DOD, but operates

within a band of SOC that has deviated further from SOCinitial. It can be seen

that it takes the XOS less than a quarter of the simulated driving cycles to reach

its steady and CS operation, while the OPSS is very well positioned from the very

start. However, the simulation results for WL-E demonstrate the opposite relation.

Here, the XOS is operating within the SOC band of 62.43-64.33%, which is very

close to SOCinitial, while the OPSS is operating at 49.99-55.06%. In fact, the OPSS

is briefly activating the emergency handling rules to remain within the SOC bounds.

As the operation of both XOS and OPSS (and in particular the latter) is very

similar to the GECMS, which significantly outperformed the TCS and PFCS in

Chapter 3, it is not surprising to have these new heuristic strategies achieve better

fuel economies than the conventional heuristic strategies. The relative fuel economy

performance is shown in Fig. 5.21 for the four driving cycles. It can be seen that the
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novel proposed heuristic strategies are consistently outperforming the conventional

ones. It is also clear that the XOS tends to perform better for higher loads, while

the OPSS performs at its best at lower loads (note that that OPSS bar for WL-L is

at ∆GECMS = 0 so is not visible).

It is useful to compare the load following and load leveling strategies internally. The

XOS reduces the EFC by 6.83% relative to the PFCS for the four driving cycles

considered together, while the OPSS improves the fuel economy by 13.28% relative

to the TCS for the four driving cycles combined. These results demonstrate the

ineffective nature of the state changing mechanism for modern HEVs for which the

frequent, but intelligent, use of a SSS for the ICE is essential to achieve great fuel

economy. Although the XOS is a significant improvement over the conventional

heuristic strategies, it is the OPSS that is the most impressive one, achieving fuel

economy comparable (in fact identical for WL-L) to the GECMS.

The fact that the OPSS only has made use of a single tunable parameter and is

matching the fuel economy of the GECMS, raises some new questions. How much

further can the fuel economy of heuristic strategies be pushed? How close to the

truly global optimal solution are these strategies operating? These questions will be

discussed further in Chapter 6.
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5.5 Summary

This chapter has discussed insights gained from past chapters that can serve as

design principles for heuristic control strategies. These have been formulated as

distinct design principles, which are summarized in Table 5.3.

Table 5.3: Possible design principles for control of HEVs

Fuel Economy
Optimizing Mechanisms

Charge Sustaining
Mechanisms

Implementation
Mechanisms

Load leveling State changing State machine
Load following Threshold changing Control map
Load blending Power changing Algebraic

Emergency handling

The XOS used the load following technique together with a threshold changing

mechanism. It thus operated as: SS-only mode at low load power; PS-only mode at

medium load; and hybrid mode at higher loads. This generally exclusive operation

of each power source allows more intuitive auditory feedback for the driver, and

makes the experience more similar to driving a conventional vehicle. The XOS out-

performed the PFCS (the conventional implementation of load following) by 6.83%.

However, the fuel economy results were still lagging the GECMS by 6.29%.

The OPSS, on the other hand, used the load leveling technique together with a

threshold changing mechanism. The resulting strategy operated as follows: SS-only

mode at low load power; PS operating at its optimal level at medium load; and PS

operating at its maximum level at higher loads. This type of operation is very similar

to the operation of GECMS and GEMMS, and thus the performance of the OPSS

was very impressive. It lags the GECMS by only about 1.4%, and consequently

outperformed the TCS (the conventional implementation of load leveling) by 12.7%.

The dramatic improvements of XOS and OPSS, over PFCS and TCS respectively,

clearly demonstrated the advantage that threshold changing has over state changing

mechanisms to enable charge sustaining operation in a modern HEV. The benefit

of fewer ICE start-stop events that the state changing mechanism enjoys, is less

relevant if an efficient SSS is installed. This result would translate to modern HEVs

with parallel architecture as well. However, the extraordinary performance of the

OPSS, with its load leveling strategy, can only be expected to be effective for series

HEVs where the ICE can be operated independently of the vehicle speed.
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Global Optimality

This work has proposed several novel control strategies, including both optimization-

based (EMMS0, EMMS1 and EMMS2) and rule-based strategies (XOS and OPSS).

Their performance relative to conventional control (TCS and PFCS) strategies has

been impressive and the results have often approached the performance of GECMS,

which supposedly is close to the global optimal solution [75, 78, 79, 104]. The fact

that GEMMS narrowly outperformed the GECMS might support this claim, as the

room for improvement seems quite limited. However, the extraordinary performance

of the OPSS, albeit inferior to GECMS, suggests that there might be a global optimal

solution out there that has not been considered in the search space of the investigated

control strategies so far.

To investigate this possibility, ideally a DP or brute force approach should be applied

to explore the control space more exhaustively. However, the previously mentioned

computational issues make any such attempt unfeasible. The best practical choice

is thus to take a “brute force light” approach, where a suitable heuristic control

structure is setup with multiple tunable parameters. This chapter will thus design

a global heuristic strategy (GHS) with the aim to outperform the GECMS and

GEMMS. The larger the margin, the less validity can be asserted to the claim that

the GECMS is practically identical to the DP solution.

This chapter will begin by introducing the design of the GHS, followed by a demon-

stration of its operation and analysis of its fuel economy. Thereafter the results

will be discussed in the context of claims of global optimality among other control

strategies.

213
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6.1 Global Heuristic Strategy

6.1.1 Design

The objective of the GHS is to apply heuristic rules that can be globally tuned to

achieve fuel economy results that are superior to GECMS with as large a margin

as possible. There are a wide range of heuristic insights that can be considered,

including those mentioned in the Design Principles section in Section 5.1. However,

rather than investigating new heuristic rules it makes sense to apply the OPSS rules,

which were shown to deliver fuel economies comparable to the GECMS results in

Section 5.3.3. This tried and tested approach will thus be further improved in this

section by allowing for a significantly larger amount of tuning.

Firstly, the tuning process will be made driving cycle specific. The global nature of

the control allows it access to the whole driving cycle in advance, so that it can be

tuned separately for each driving cycle, as has been the case for the GECMS and

GEMMS. This allows the control strategy to perform at its optimum rather than

needing to have a compromised nature of policies that are not excellent on any one

driving cycle but are instead good at all of them.

Secondly, a few additional tuning parameters are included. Rather than just tuning

the power threshold Pth, like the OPSS, the GHS will also tune Pcsi and PPS,cop

(previously defined as Pcsi = Pth and PPS,cop = PPSopt = 20 kW for OPSS). This

wide range of tuning will result in control policies that have not been tested before,

and have not been replicated by the GECMS or GEMMS either. It is expected

that this somewhat blind tuning process will yield improvements on OPSS (unless

Pcsi = Pth and PPS,cop = PPSopt happen to be the truly optimal tuning). The actual

implementation of the GHS is identical to the OPSS (as shown in Fig. 5.15).

However, result from the tuning process show that the initial selection for Pcsi = Pth

is already selected quite well, and the potential gains in fuel economy are smaller

than 0.05%. Therefore, this chapter will not describe the tuning of this variable

further, focusing instead on PPS,cop. This also makes the presentation of the tuning

results more readable. It should be noted that the use of only two tuning parameters

is quite restrictive, and the ideal approach would be to consider at least three or

four variables.
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Figure 6.1: Optimal power share and PS power for varying power requirements and
SOC for WL-L, WL-M, WL-H and WL-E (from top to bottom) for GHS.
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The resulting control policy (based on the tuning process described in the upcoming

subsection) for each of the four driving cycles is shown in Fig 6.1. This corresponds

to: Pth = 10.4 kW and PPS,cop = 24.2 kW for WL-L; Pth = 11.8 kW and PPS,cop =

23.8 kW for WL-M; Pth = 11.2 kW and PPS,cop = 23.6 kW for WL-H; and Pth =

2.8 kW and PPS,cop = 24.2 kW for WL-E. The control policy can generally be

considered a vertical shift of the OPSS control from Fig. 5.14, while maintaining

close resemblance to the GECMS and GEMMS in Fig. 4.27.

6.1.2 Operation

The tuning process for the GHS involves simulating the control strategy with a wide

range of Pth and PPS,cop for the four driving cycles. The presented tuning result for

the three first driving cycles will be in the range Pth ∈ [10, 12] kW and PPS,cop ∈
[22, 25] kW in intervals of 0.2 kW. However, the optimal tuning parameter for WL-E

was found elsewhere and the tuning results are presented for Pth ∈ [1, 4] kW and

PPS,cop ∈ [22, 25] kW in intervals of 0.2 kW. The resulting tuning graphs for all

driving cycles are presented in Fig. 6.2 with normalized EFC and final SOC values.

It can be seen that none of the optimal power levels are found at PPS,cop = 20 kW,

as was assumed for OPSS. Instead the ideal power levels are found at 24.2 kW,

23.8 kW, 23.6 kW and 24.2 kW for the four driving cycles. By noting that the final

SOC for each driving cycle is very close to SOCfinal = SOCinitial = 65%, it can be

understood that the GHS can use the PS constant operating point PPS,cop to affect

the charge sustaining ability of the control strategy. The ideal base thresholds are

found at 10.4 kW, 11.8 kW, 11.2 kW and 2.8 kW. Each of these has seen an increase

compared to the OPSS (which had optimal thresholds at 9.2 kW, 10.2 kW, 10.4 kW

and 5.4 kW), with the exception of WL-E. This final driving cycle didn’t finish with

SOCfinal = SOCinitial for OPSS, and should therefore be corrected by Eq. 5.9 to

find PPSmin. This value for OPSS if found to be at 1.32 kW. Thus, for each driving

cycle, the effective threshold PPSmin was increased for GHS, and the power level

PPS,cop was increased as well.

While the OPSS determines the PPS,cop = PPSopt with the aim to operate the PS

efficiently and tunes the base threshold Pth to make the control strategy charge

sustaining, the GHS uses both parameters to make the strategy charge sustaining

and to improve overall powertrain efficiency. By having a higher PPS,cop level, the
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Figure 6.2: Normalized EFC Mefc (left) (Mefc = 1 is marked with a cross) and final
SOC (right) for varying Pth and PPS,cop when driving WL-L, WL-M, WL-H and WL-E

(top to bottom) with GHS.
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base threshold level can be kept higher without compromising the charge sustaining

ability. This allows the SS to be used to a larger extent.

Despite the global nature of tuning, the fuel economy is not very sensitive (relative

to the sensitivities of the optimization-based strategies) to the tuning parameters.

Even the final SOC values are very close to SOCfinal = SOCinitial for the first three

driving cycles for practically the whole investigated search space. This speaks to the

general robustness that often comes with heuristic strategies, and is further discussed

in the next chapter.

It is also worth noting that the generally vertical nature of the SOC profiles (meaning

that the SOCfinal is not very dependent on PPS,cop) for the first three driving cycles

explains why the OPSS is able to achieve SOCfinal = SOCinitial without an optimal

selection of tuning parameters. In these cases the base threshold Pth is the critical

tuning parameter. However, for WL-E the SOC profiles are more horizontal (or

diagonal), meaning that the SOCfinal is quite dependent on PPS,cop. Thus, for WL-

E, the OPSS is not able to achieve SOCfinal = SOCinitial.

To study the operation of the GHS, the power profiles for the first and final iterations

of the driving cycles are shown in Fig. 6.3 and Fig. 6.4 respectively. The operation

clearly resembles the OPSS operation, but with more intense use of the PS, and

somewhat less frequent. It is also remarkable how similar the first and final iteration

is for every single driving cycle: they are practically identical. This suggests that

the GHS enters its efficient stride from the very start and is able to perform well

through all the iterations, and is able to maintain a steady SOC. Nevertheless, the

control and operation looks deceptively simple.

It is not until the fuel economy results are studied, that the performance of the

GHS is appreciated. The fuel economy of the GHS is presented in Table 6.1 for the

four different driving cycles. As can be seen, this control strategy has outperformed

the GECMS for every single driving cycle, while maintaining the SOC sustained

(SOCfinal ≈ SOCinitial). The GHS is particularly successful at slower driving cycles,

but keeps an edge even at the highway. There is quite likely an alternative heuristic

strategy that could serve as the core structure for another GHS that would excel

for highway driving only. Overall, if the four driving cycles are considered together,

the GHS improves the fuel economy by 0.83% compared to GECMS (and 0.58%

compared to GEMMS).
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Figure 6.3: Power time histories for PS, SS and PL for the first iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the GHS.
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Figure 6.4: Power time histories for PS, SS and PL for the final iteration of driving
WL-L, WL-M, WL-H and WL-E (top to bottom) with the GHS.
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This impressive performance has been achieved with very simple rules and quite

limited tuning. As the GECMS is outperformed by up to 1.8%, it suggests that the

GECMS might not be as close to the global optimal solution as originally thought.

Table 6.1: Fuel economy results for GHS

Driving Cycle SOCfinal (%) mf (kg) mefc (kg) ∆GECMS (%)

WL-L 64.45 0.6895 0.6954 -1.82
WL-M 64.87 1.1227 1.1241 -1.34
WL-H 65.11 0.9453 0.9442 -0.64
WL-E 64.94 1.5826 1.5834 -0.12
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6.2 Discussion

This section will discuss the findings of the previous section, where the GHS was

found to outperform the GECMS and GEMMS. It will begin by exploring various

causes for this unexpected result, before discussing the impact and conclusions for

the wider body of work.

6.2.1 Causes

Precision of Implementation

The first possible, but trivial, suspect for the cause of the GECMS and GEMMS

being outperformed by the GHS is the precision of implementation. Both of these

strategies were implemented with three significant digits. However, these control

strategies are very sensitive to changes in the equivalence factors, where a change

of 0.3% (roughly double the error margin of three significant digits) in just one of

the equivalence factors can change the SOCfinal with more than 2%. However, by

studying the tuning plots for both the GECMS and GEMMS, it can be seen that the

general area around the optimal policy selection in terms of fuel economy is quite

flat, and any hidden solution between the studied points is unlikely to be more than

a 0.1% improvement.

However, there are a few additional imprecisions. The whole process of designing

these strategies has involved discretizing each space. The PS fuel consumption and

efficiency has been measured for engine speeds and power levels that have been

discretized in 10 rpm and 0.1 kW intervals respectively. The SS efficiency has been

determined for SOC and power levels that have been discretized in 1% and 0.1 kW

intervals respectively. Also, the input for the control system, the load power PPL

is discretized in 0.1 kW intervals before being processed. Altogether, these minor

imprecisions can be accumulated into a somewhat larger error. Nevertheless, these

imprecisions are unlikely to account for the whole difference between the GHS and

the studied global strategies. Also, the discretization in this work has been quite

narrow, relative to other work and implementations in the literature.
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Limited Search Space

There are many limitations in the search space for the proposed global strategies

in this work. A DP solution allows for the controller to apply different control

inputs for two instances t1 and t2 where the load requirement and vehicle states are

identical. This is not possible for GECMS or GEMMS, for which the control input

is essentially a mapping between load power PPL (and SOC for GEMMS) and the

control input. Thus, at any two instances t1 and t2, where the load power is identical

(as well as the SOC for GEMMS), the power share ratio u as determined by the

GECMS and GEMMS will always be identical, independent of where in the driving

cycle these two instances are.

It is also important to understand the role of the equivalence factors in determining

the control policy for the GECMS (and replenishing efficiencies for GEMMS). Each

GECMS control policy assumes a constant Sd and Sc for the duration of the driving

cycle. Furthermore, the same set of equivalence factors are considered for a particular

policy for all power requirements. Thus, an optimal policy, such that it requires

different equivalence factors at different power levels, would never be able to be

discovered by the GECMS. This can be visually understood as follows. As the

equivalence factors are tuned, every single point of the control map in Fig. 3.16 is

adjusted. For the ideal selection of equivalence factors, certain parts of the control

policy match the optimal policy. Any further tuning would make some additional

points match up with the optimal policy but a larger number of points would fall out

of alignment with the optimal policy, with a net negative impact on fuel economy.

Thus, despite the tens of thousands of control policies that were tested for GECMS

and GEMMS, none of these matched the better control policies that GHS produced.

To quantify some of these limitations, we can look at the number of control decisions

that are designed. For the GECMS, a control decision is defined for each load power

PPL ∈ [0, 100] kW in increments of 0.1 kW. In each case, the PS can take on a value

of PPSref ∈ [0, 58] kW in increments of 0.1 kW, although this will be restricted

in many cases due to the limited ability of the SS to be charged. For simplicity,

300 different possible control decisions can be considered. Thus, 1001 scenarios are

considered with 300 possible decisions in each case. A brute force approach would

allow 3001001 different control policies, while the GECMS would at most have tested

100 × 100 (assuming 100 values each of Sd and Sc are trialled). This constitutes a
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negligible part of the control space (which is mostly junk). In the case of GEMMS,

the SOC is also considered as SOC ∈ [50, 80]% in 1% increments, resulting in a

total of 31,031 control scenarios, and thus 30031,031 different control policies. Of

course, any intelligent approach to optimization would not consider each of these

cases, but the necessary computational time would become prohibitive long before

we can consider additional factors such as engine temperatures or battery voltage.

Complexity of Model

The fallibility of the global optimal benchmark has not been considered an issue in

previous work, where a simplified and reduced model is used to apply DP to identify

the global optimal solution. This solution has been found by exhaustively searching

the feasible points of operation, and truly represents the global optimal solution

of that particular model. Thus, in the case of an ECMS (or any other real-time

strategy) being tested on a quite simple model and the DP on a very simple model,

the benchmarking can be considered quite valid. This explains why in general the

DP results are marginally better than the real-time control strategies, as should

be expected. However, in the case of a real-time control strategy being applied to

detailed dynamic model, and being compared to a DP solution on a very simple

model, the results can’t be considered valid.

In fact, considering a normal distribution of any systematic deviation between the

full and simplified model, it should be expected that the DP is outperformed by an

excellent real-time control strategy almost half the times. There are some reported

cases of the DP being outperformed, but these have typically been attributed to

numerical errors. Also, such negative results might be held back from publication.

However, considering that most real-time strategies are at least 1-2% inferior to the

DP, any results with a simplified model that produces fuel economy errors (relative

to the full model) within ±1% would produce results consistent with the expectation

of DP beating the real-time strategy. However, the accuracy of the simplified models

are never disclosed in the published works.

Apart from the inaccuracy of the simplified model, it is worth recognizing the inac-

curacy of the full models as well. These are very often vehicle models with a handful

of states (maybe some of SOC, engine speed, transmission gear and vehicle speed).

However, a real vehicle would be greatly affected by many more states and would
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experience transient behavior that can’t be modeled. This discrepancy can easily

be observed in any work that publishes experimental data together with simulation

data. The error in the full model is typically larger than the 1-2% that were pre-

viously mentioned for the simplified model. The vehicle model in this particular

work has been modeled in greater detail than most previously published work, and

includes states and transients that give a better representation of a real vehicle.

Thus, the greatly simplified analysis of GECMS (assuming constant component ef-

ficiencies, steady state fuel consumption, instantaneous engine speed changes, etc.)

is not as successful as it would be on a simpler model.

6.2.2 Impact

Simulation vs Reality

In the published body of work on SCSs, the vast majority of proposed control strate-

gies have been demonstrated on vehicle simulations only. This is reasonable enough,

considering the costs involved in real vehicle validation. However, it is important to

recognize the compromise in accuracy when dealing with simulation results.

Based on the findings in this work, as well as some experience with other vehicle

models, it could be claimed that the complexity of the ideal control policy is in-

versely proportional to the complexity of the vehicle model. A very simple model

can make use of optimization techniques such as DP to obtain the optimal control

policy. A medium-level model wouldn’t allow DP solutions, but has simple enough

dynamics to be analyzed to design an optimization-based control strategy that would

perform very well. A high fidelity vehicle model or a real vehicle would only allow

the optimization-based control strategy to analyze a fraction of the vehicle and com-

ponent dynamics and would thus design a competent control strategy (recognizing

that most of the assumptions going into the design would not hold during actual

operation), which might be comparable to a well-designed heuristic strategy.

However, at this point the distinction between an optimization-based and a heuristic

strategy becomes somewhat blurred. The ideal heuristic strategy could be derived

either by brute force tuning (similar to numerical optimization approaches like DP

or GA) or by heuristics derived from analysis of the powertrain (similar to ECMS or

EMMS). Nevertheless, as it is not feasible to execute an extensive tuning process on
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a real vehicle, and quite difficult for a high fidelity model, the best approach might

be to use the analysis behind optimization-based strategies to inform the control

structure for the heuristic strategy, which can then be tuned on a high-fidelity model,

with further minor adjustments by tests on a real vehicle.

A final example of this point can be made by considering the optimal engine speed

map that was produced in Section 2.3.4. The standard method to design this map

is to determine the most efficient engine speed for each possible load requirement,

and use the corresponding point of operation for each given load during driving.

However, recognizing that the change in engine speed is not instantaneous in our

model, or in reality, it was found that the vehicle performed better if a smoother

engine speed map was implemented, although this would result in suboptimal points

of operation. Essentially, it was preferable to operate on a slightly suboptimal engine

speed consistently, rather than have significant changes in engine speed every second

in the pursuit of achieving the “optimal” engine speed, as defined by its steady state

efficiency. This illustrates how simplistic analysis that performs well on simpler

models might be bad for high fidelity model and real vehicles.

Better benchmarking practices

As discussed, the validity of DP solutions executed on a simplified model is question-

able. The application of theoretically sound analysis on a bad model of reality will

not yield sound control policies or good benchmarking results. There is thus a need

to develop tools that allow the determination of the global optimal performance,

or at least an approximate solution, for high-fidelity models for benchmarking pur-

poses. There are many possible paths towards this, but based on this work, it is

probably a good idea to be open-minded about what the balance should be between

pre-design analysis and tuning. The former might be more rigorous, elegant and

transferable (to be applied on other powertrains), but the value of a richer and more

vast search space might be useful. This is not to argue for a brute force method, but

possibly something like the GHS, where a competent heuristic strategy is defined

and then multiple aspects are opened up for tuning. Any such tuning will explore

control space that would have been ignored by optimization-based strategies.

A variation of this approach could be to further tune the control policy of the

GECMS. Having found the ideal set of equivalence factors, further control space
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can be explored by strategically increasing or decreasing the power share ratio for

various power requirements. The easiest approach might be to smoothen the control

policy and remove occurrences of very low SS power being charged or discharged.

Depending on computational load, more advanced tuning could be done. The essen-

tial principle would be to treat the original GECMS control policy as a competent

“initial guess” rather than as the actual optimal policy.

In fact, the objective of actually achieving a guaranteed global optimal policy might

be impossible for a high-fidelity model or a real vehicle. Not only is the search space

incredibly vast, but the complexity of the model, and the significant amount of

interconnectivity between powertrain components, makes the system exhibit certain

chaotic features. The effects of a particular control decision cannot be predicted well

enough, despite the system being deterministic. This limits any analytical approach

to the problem, thus prohibiting any rigorous proof of optimality. Thus, it might

be more productive to determine a different benchmarking target; possibly defined

by the searched control space. For example, a numerical optimization approach

might be applied to obtain the optimal control policy such that the control decision

u is defined for each load power PPL. Thus, for any two time instances t1 and t2

where the load power PPL is identical, the control decisions u1 and u2 will also be

identical. Although this is a compromise on optimality, it would be a well-defined

solution that would be more informative as a benchmark than a DP solution on a

simplified model.

Powerful heuristic strategies

The findings of this work also emphasize the potential of heuristic strategies. The

rule-based strategies are often overlooked as a simplistic approach that exist for his-

toric reasons or are at best useful as baseline benchmarks. However, it is important

to appreciate the significant value they offer. Not only are they very effective (as-

suming well designed rules), they are in fact remarkably robust against modeling

inaccuracies. For example, Serrao et al. in [3] found that heuristic strategies out-

performed ECMS if applied to models which included temperature dynamics for the

engine. This advantage would be significantly stronger on a real vehicle where all

kinds of additional dynamics come into play.
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The most appropriate method for designing SCSs for real-time implementation might

therefore be to produce good suboptimal control policies (preferably by previously

mentioned method) and then extract simpler rules to produce a real-time control

strategy. There have been some works in the literature taking this approach of

converting DP solutions into rule-based strategies as well. This might be the best

approach until more powerful tools exist to design optimization-based control strate-

gies for high fidelity models. However, strong candidate methodologies for producing

good suboptimal solutions would include the NN (neural network) approach, which

is applied in [50]. It demonstrates many of the desired features, including the ability

to deal with larger search spaces (considering state space, control space and decision

space).
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6.3 Summary

Based on the surprisingly impressive results of the previous chapter, this chapter

has investigated the claim that the GECMS delivers results that are close to the

global optimal solution. The most suitable approach was identified to be the global

tuning of a heuristic strategy, producing the GHS, in an attempt to outperform the

GECMS. The GHS in this work was based on the OPSS. Several control parameters

were investigated, but finally only the power level was treated as a tunable param-

eter. This control strategy was found to outperform the GECMS by 0.83% (the

improvement for WL-L was 1.82%), thereby discrediting the claim to approximate

global optimality of the GECMS.

The causes for this failure of the GECMS are multiple, including the precision of

implementation, the limited search space, and the complexity of the model. How-

ever, the latter might be most relevant. Optimization-based control strategies (and

benchmark implementations like DP) have often been implemented on simple mod-

els, where they are most effective. The vehicle dynamics are simple enough to be

analyzed and controlled effectively, and simple assumptions might either hold true

for the model or affect the performance negligibly. However, a real vehicle, or a high-

fidelity model as the one used in this work, will have significantly richer dynamics

that are not as easy to analyze, and practically impossible to control optimally.

Thus, the GECMS, which might perform close to the global optimal solution for a

simple model, is less effective on the vehicle model in this work.

Consequently, it raises the importance of appreciating the differences between sim-

ulation results and reality. These differences can be partly reduced by using high-

fidelity models. However, this in turn will require the development of better bench-

marking practices to be applied to high-fidelity models, as the current benchmarking

tools require excessive computational load. A potential solution could be in the form

of a tunable heuristic strategy, like the GHS, but with a more robust method of tun-

ing and defining the control space. Lastly, the point from the previous chapter was

further strengthened: heuristic strategies (with inspiration from optimization-based

strategies) might be the most suitable category of control strategies for commercial

vehicles.
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Control Sensitivity Analysis

The past chapters have presented both conventional and novel control strategies,

and have evaluated their results in terms of fuel economy. However, it is of interest

to consider the performance of each control strategy more broadly. Other work

in the literature may consider additional performance metrics, such as emissions,

battery degradation or drivability, but there is a very limited body of work on the

sensitivity of the strategies to various design or operating conditions. Ignorance of

such considerations may lead to the design of control strategies that only perform

well under very particular operating conditions (realized in a simulation setting),

such as driving profile or initial battery SOC. A control strategy that excels on

two driving cycles, but performs terribly at ten other driving cycles, might appear

very impressive if only tested on the “right” set of driving cycles. Furthermore,

the performance of control strategies might be significantly affected by technological

developments, such as improvements in the performance of start stop systems (SSSs)

or batteries. It is important to appreciate these sensitivities to determine how the

optimal strategy might change with time.

This chapter will analyze and compare the sensitivities of the six presented real-

time control strategies (TCS, PFCS, XOS, OPSS, EMMS1 and EMMS2) to four

different factors: correct tuning of the control parameters; effectiveness of the SSS;

initial conditions of the vehicle; and the driving cycles being tested. Each of these

will be considered in a separate section. The objective of this study is to further

understand the strengths and weaknesses of the different control strategies, so they

can be selected more appropriately.

231
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7.1 Tuning Parameters

This section compares the six real-time control strategies that have been presented

in this work, in terms of the sensitivity of the fuel economy results to the tuning of

the control parameters.

To make any such comparison possible, it is necessary to normalize the fuel economy

results as well as the tuning parameters. The former can be dealt by the normalized

EFC Mefc that has been used throughout this work already, with the distinction

that each control strategy will be normalized separately. Thus, each control strategy

will have Mefc = 1 at its optimal point. Also, the total fuel economy results are

considered (for all four driving cycles together). This ensures Mefc ≥ 1 at all points,

and the results are more readable.

Normalizing the tuning parameters is less straightforward, but the most appropriate

method was found as:

Xtune =
xtune

xtune,opt

(7.1)

where xtune is the tuning parameter for the SCS in question, and xtune,opt is the opti-

mal value that yields the best fuel economy results. For control strategies with two

tuning parameters (PFCS, EMMS1 and EMMS2), the more influential parameter is

considered. For PFCS, the fuel economy results are mainly driven by Pmin, whereas

Pch only has a minor role (in fact Pch = 0 is used in this work). For EMMS1, the

performance is governed primarily by ηre, while Dcsi is for CS purposes. Lastly, for

EMMS2 Dcsi,d and Dcsi,c (modifying ηre,d and ηre,c respectively) have equal concep-

tual influence. However, as the range of variation in ηre,d for various driving cycles

is much greater than ηre,c, the Dcsi,d parameter is found to be the most influential.

The tuning results for TCS, PFCS, XOS, OPSS, EMMS1 and EMMS2 from previ-

ous chapters are then processed and normalized as discussed, and are presented in

Fig. 7.1. Here, the optimal results for each control strategy is found at Xtune = 1

(where Mefc = 1). The results are shown in the range Xtune ∈ [0.6, 1.4], meaning

that the tuning parameter is considered within ±40% of its optimal value.

It can be seen that the TCS and PFCS are most sensitive to the correct tuning

of its control parameters, with the latter producing 1% inferior fuel economy for a

10% error in tuning. Both the XOS and OPSS are significantly less sensitive, with

a 20% tuning error only compromising the fuel economy by about 0.2%. The XOS
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in particular is impressive, allowing up to 40% tuning error while the fuel economy

only drops by 0.2%. The EMMS1 results are defined within a narrow range (but

represents the relevant tuning space) where the fuel economy is compromised 0.2-

0.3% for bad tuning. EMMS2 is tuned for a much larger range, and show extremely

low sensitivity for the lower range of the tuning parameter (less than 0.1% drop in

fuel economy for tuning error of 35%), while there is a significant error for the higher

range (1% drop in fuel economy for tuning error of 5%).

Many of the tuning sensitivity profiles are somewhat asymmetrical, meaning that

the sign of the tuning error is relevant. In general, it can be seen that it is preferable

to overestimate the value for the tuning parameters, rather than underestimate, with

the EMMS2 being the only clear exception (and the TCS in very close range of the

optimally tuned value). A larger set of control strategies would be needed though,

to study such a bias further.

It can also be seen that the range for the various control strategies is different:

the EMMS1 results are defined for roughly Xtune ∈ [0.97, 1.03] (as ηre ∈ [34, 36])

while EMMS2 is defined for Xtune ∈ [0, 1.37] (as Dcsi,d ∈ [0, 5]). It can thus be

seen that lower values of xtune will produce relatively larger values of Xtune (e.g.

xtune = 6 and xtune,opt = 5 will give Xtune = 1.2, while xtune = 51 and xtune,opt = 50

will give Xtune = 1.02). Thus, the Xtune parameter might mean quite different

things for each control strategy. Nevertheless, this definition of Xtune together with

the presented range (which gives an indication of the relevant search space), gives

sufficient information to evaluate the sensitivity of the tuning process.
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Figure 7.1: Fuel economy sensitivity profiles for the tuning of control strategies.
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7.2 Start Stop System

This section investigates the SSS impact on the fuel economy results of the six real-

time control strategies presented in this work. In particular, it looks at how effective

each control strategy would have been for a SSS with a different turn-on penalty.

It has been suggested earlier in this work that the conventional heuristic SCSs, which

aim to minimize the number of engine turn-on events, are based on outdated ideas

of the tradeoff between engine idling and switching. In the 1980s, the rule-of-thumb

used to be that the engine should be switched off if the vehicle is expected to idle for

30 seconds or more. This tradeoff has become updated with time, and it has been

commonly advised in the past decade that the tradeoff is 10 seconds. However, as

mentioned earlier in Section 2.5.3, modern HEVs use very efficient SSSs that have

reduced this tradeoff to less than 1 second. The vehicle model in this work uses a

SSS that penalizes each engine turn-on event by a fuel penalty mpen, defined as

mpen = TSSS · ṁidling (7.2)

where TSSS is the tradeoff time between switching off and idling, and ṁidle is the

rate of fuel consumption during idling operation. In this work TSSS = 1 second has

been used (corresponding to mpen = 0.00011 kg).

It would be interesting to find how the fuel economies determined in the previous

chapters would be affected by a different selection of TSSS. To proceed with this

analysis, the number of engine turn-on events Nturn−on for each control strategy

(when optimally tuned) are measured, and the overall fuel economy is defined as:

mefc = m′

efc +Nturn−on ·mpen (7.3)

where m′

efc is the pre-correction value for the EFC (which can be calculated from

the previously obtained results by computing m′

efc = mefc−Nturn−on ·0.00011). Fur-
thermore, as the EMMS2 results are the best for each driving cycle, it is appropriate

to normalize all the fuel economy values for the mpen = 0 case of EMMS2 operation,

as:

Mefc =
m′

efc +Nturn−on ·mpen

m′

efc,EMMS2

. (7.4)

This would give Mefc ≥ 1 for all control strategies, for all positive values of TSSS.
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The normalized fuel economy results for TSSS ∈ [0, 30] seconds are presented in

Fig. 7.2 for the four driving cycles. It is important to understand that the slope of

the lines are proportional to Nturn−on. Thus, a control strategy with a low value for

Nturn−on would have a flat profile (like TCS and PFCS), whereas a higher Nturn−on

value would lead to an increasing profile. Also, as mentioned, the actual fuel economy

results for the vehicle in this work are those that correspond with TSSS = 1 second.

The most striking feature of these charts is the flat nature of the TCS and PFCS. As

these control strategies make use of a state changing charge sustaining mechanism

(as discussed in Section 5.1.2), the aim is to minimize the number of engine switch-

ing events. This used to be a sensible policy two decades ago when these control

strategies were developed, but is clearly less effective today. As can be seen, the XOS

outperforms the PFCS for TSSS < 4, TSSS < 7.5, TSSS < 11 and TSSS < 17 seconds,

for the four driving cycles respectively. The other control strategies outperform the

TCS and PFCS with an even more generous margin for TSSS. This clearly suggests

that the aim to minimize Nturn−on should not be a priority once the SSSs are good

enough to deliver about TSSS = 5 seconds, which happened many years ago.

This largely explains why the XOS and OPSS have been able to outperform the con-

ventional heuristic control strategies (TCS and PFCS) with very large margins (up

to 20%). These novel control strategies are designed in a paradigm where significant

engine switching is a necessary requirement to achieve good fuel economy results. In

fact, it is interesting to observe that the optimization-based strategies (EMMS1 and

EMMS2) typically have a higher slope (larger Nturn−on values) than XOS and OPSS.

Consequently, the EMMS are more sensitive to TSSS, and are actually outperformed

by the OPSS for high TSSS values for most driving cycles. This is particularly pro-

nounced for WL-E where the EMMS2 is the best strategy for TSSS = 0 and the

worst strategy for TSSS = 30 seconds.

However, it is worth emphasizing that the reduction of Nturn−on is not only a matter

of fuel economy. Any such switching causes undesirable jerks in operation that need

to be kept low for the comfort of the driver. Also, there might be considerations

in terms of component degradation, as frequent engine switching has a negative

impact on the engine life. However, most modern engines will fail for other reasons,

long before the switching becomes a dominant influence. Thus, although extremely

frequent engine switching might be undesirable, it is likely to become less of an issue

with time.
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Figure 7.2: Normalized EFC Mefc for varying tradeoff time between engine switching
and idling, when driving WL-L, WL-M, WL-H and WL-E (from top to bottom) with six

different real-time control strategies.
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7.3 Initial Conditions

This section investigates the influence of simulation initial conditions on the final

state of the vehicle and its fuel economy. It focuses on determining how sensitive

each of the presented real-time control strategies are to the setting of the initial SOC

value, SOCinitial.

All the simulation results presented in this work so far have consistently used the

same initial conditions. The state of the vehicle at the start of the simulation is

identical for when testing each control strategy. This is essential to allow a fair

comparison between various control strategies, which has been an essential part of

this work. However, this comes with a few limitations. To measure the performance

of the control strategies for the same initial conditions every time, might not be

indicative of actual performance in a real vehicle, where initial conditions vary for

every single journey. There are several initial conditions that could be considered.

However, most states have quite fast dynamics and would quickly return to some

reference value (e.g. DC Link voltage, battery voltage, etc.), so any variation in

initial condition would have a negligible effect. Instead, it is more useful to consider

states like ambient temperature, engine temperature and battery SOC, as these

change more slowly and can impact simulation results to a larger extent.

In this chapter, only the battery SOC will be considered. The ambient temperature

should affect both the battery and engine performance, but as the vehicle model

in this work does not include battery temperature dynamics, the results of such a

study would not be valid. A sensitivity study of engine temperature could be done,

but considering that most real journeys, and most commercials tests, are done with

a cold start of the engine, this is probably an appropriate assumption for all tests.

The battery SOC, however, is distinct in the sense that it does not tend towards

a reference or ambient value with time. As such, each journey with a real vehicle

might start with any battery SOC value, depending on the past history of driving

of the vehicle. Therefore, the influence of the initial setting of SOC on the fuel

economy and final SOC for each journey will be studied.

To investigate this, new simulations are run for the optimal setting of the six real-

time control strategies presented in this work, with the following three initial SOC

values: SOCinitial ∈ {50, 65, 80}% (as SOCL = 50% and SOCU = 80%). Results of

normalized EFC and final SOC for the four driving cycles are shown in Fig. 7.3.
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Figure 7.3: Normalized EFC Mefc and final SOC for varying values of initial SOC at the
start of simulations when driving WL-L, WL-M, WL-H and WL-E (from top to bottom)

with six different real-time control strategies.
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Note that the EFC is calculated based on the new initial SOC values, and that the

EFC of each control strategy has been normalized with respect to the EFC results

corresponding to the case of SOCinitial = 65% of the same strategy:

Mefc =
mefc

mefc,SOCinitial=65%

. (7.5)

Also, note that the lines are based on only three values of SOCinitial for each control

strategy and line charts have been used to allow easier distinction between the

strategies. Interpolating these results would not be valid (for TCS and PFCS in

particular).

It can clearly be seen that the impact of varying SOCinitial on the fuel economy

of each control strategy is very significant, with fuel economy typically improving

for higher SOCinitial values. This is the expected result, as the battery gets more

efficient for higher SOC levels. The conventional rule-based strategies TCS and

PFCS are least affected, as their operation tend to by cyclical, and no particular

SOCfinal is preferred (as is clear from the SOCfinal plots). However, WL-E is an

exception as both the TCS and PFCS are forced to use their emergency handling

rules and operate consistently around SOC = 50% and SOC = 80% respectively.

In this case the TCS benefits from being able to operate in its steady mode as long

as possible, and it thus has better fuel economy at lower SOC levels.

The EMMS1 and EMMS2 are slightly more sensitive to the initial SOC setting in

terms of fuel economy, but it can be seen that the final SOC values remain consistent

for all settings, for all driving cycles (apart from the drop for SOCinitial = 50%

for WL-E for EMMS2). This is an effect of the charge sustaining mechanisms of

these strategies, meaning that they will seek themselves towards SOCfinal = 65%,

independent of the initial setting of SOCinitial. As a consequence, the fuel economy is

compromised for any deviation from the SOCinitial = 65%, as they have to struggle

their way towards this operating point. Again, the WL-E is an exception as the

EMMS strategies have their optimal operating point below SOC = 65% for this

driving cycle, and thus the SOCinitial = 50% setting ends up being favorable, for

EMMS2 in particular.

The OPSS performs quite similar to the EMMS, and is actually less sensitive than

EMMS2 to SOCinitial variations in terms of SOCfinal values. But it is slightly less

successful in keeping the SOC close to the SOCfinal = 65%. However, the XOS has
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Figure 7.4: Equivalent fuel consumption mefc for varying values of initial SOC at the
start of simulations when driving WL-L (top left), WL-M (top right), WL-H (bottom

left) and WL-E (bottom right) with six different real-time control strategies.

the most distinct profiles. In terms of fuel economy, it is the most sensitive to varying

SOCinitial values. This can easily by understood by its limited ability to control its

SOC trajectory, as it is unable to recharge the battery directly and has to rely on

regenerative braking to increase the SOC. Most importantly, the XOS is not ever

supposed to operate at its extreme SOC limits, as its charge sustaining mechanism

gets progressively more extreme from towards the boundaries. The operation at

either end of the SOC band has quite extreme control decisions to push the SOC

away from its limits and this will inevitably have a negative impact on the fuel

economy.

To further study the impact on fuel economy, the sensitivity plot for the absolute

values of mefc are presented in Fig. 7.4 for the four driving cycles. It can be seen

that, in general, each of the control strategies have somewhat similar sensitivity to
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variations in SOCinitial, with the exception of the XOS. In fact, the effect on the

XOS is so pronounced that it is actually outperformed by both the TCS and PFCS

for WL-L, and it is outperformed by TCS and almost matched by the PFCS for

WL-E.

This limitation of the XOS was not visible in previous simulation results in this work,

but has been discovered in this sensitivity analysis. However, considering the design

and performance of the XOS, it is quite unlikely that it would ever get itself into a

position of SOCinitial = 50% in the first place (due to the mentioned progressively

more extreme charge sustaining behavior towards the SOC limits). However, for

example, a HEV that has not been used for a very long time might find the SOC

dropping to these levels through natural charge leakage. Nevertheless, the variations

in SOCinitial that would occur for each journey in a real vehicle would affect the XOS

and compromise its fuel economy (even if not to the extent to be outperformed by

the TCS and PFCS).



242 Chapter 7

7.4 Driving Cycles

This section will be testing the performance of the control strategies for a new set of

driving cycles, that have not been part of the tuning process. The aim is to assess

how sensitive each control strategy is to varying driving conditions.

It is quite common for SCSs presented in the literature to be developed and tested for

two or three driving cycles. This always raises the question of how effective the SCS

in question might be for alternative driving cycles. This work has actively sought

to develop, design, tune and test the control strategies for a wide range of driving

cycles, as discussed in Section 2.6.1, which is why the driving cycle segments of the

WLTP were employed. This has allowed the testing of each control strategy on low-

speed urban (WL-L), medium-speed urban (WL-M), rural (WL-H), and high-speed

highway (WL-E) driving cycles.

To further test the developed control strategies, they will be used to simulate six

additional driving cycles. These driving cycles consist of the NYCC, HWFET,

FTP-75 and US06 that are the most standard American driving cycles, as well as

the EUDC and the NEDC that are the most conventional European driving cycles.

These will be run for multiple iterations to allow the study of SOC deviation and

fuel economy over longer period of driving. However, the EFC equivalence factors

Sd,efc and Sc,efc have not been evaluated for these new driving cycles. Therefore,

as an approximate solution, the equivalence factors from WL-L, WL-M, WL-H and

WL-E will be used and assigned based on which driving cycle is most similar. While

this compromises the precision of the study to some extent, the results are still quite

reliable due to the repeated iterations and the reasonably narrow range of SOC

deviation (as shown later). A brief summary of the driving cycles are presented in

Table 7.1.

Table 7.1: Additional driving cycles tested

Driving Cycle Iterations EFC factors from Description

NYCC 8 WL-L Low-speed urban
NEDC 4 WL-M Low-speed urban and high-speed rural
FTP75 4 WL-M Medium-speed urban
EUDC 8 WL-H High-speed rural
HWFET 4 WL-H Medium-speed highway
US06 4 WL-E Aggressive highway
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Figure 7.5: EFC mefc for multiple iterations (see Table 7.1) of ten different driving
cycles with six different real-time control strategies.
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Figure 7.6: Relative EFC ∆efc for multiple iterations (see Table 7.1) of ten different
driving cycles with six different real-time control strategies.

Fuel economy results for the four WLTP driving cycles as well as the six additional

driving cycles are presented in Fig. 7.5, where the absolute EFC results are given for

each of the presented real-time control strategies, for each driving cycle. In addition,

for further clarity, Fig. 7.6 shows the relative difference in EFC ∆efc compared to

the best strategy for that particular driving cycle. It can be seen for the first four

sets of data (for WL-L, WL-M, WL-H and WL-E) that the results are reasonably

consistent. The TCS and PFCS are the worst, followed by the XOS, followed by the

OPSS and EMMS1, and finally the EMMS2 that yields the best fuel economy for

each of these driving cycles.
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However, the results for the additional six driving cycles are quite different. Quite

remarkably, the EMMS2 is the worst-performing strategy for NEDC and EUDC. The

results for the NEDC could have been expected, as it consists partly of low-speed

urban driving and partly of high-speed rural driving. This prevents the EMMS2 from

settling into an optimal mode of operation and it has to keep changing its desired

mode of operation. However, the negative impact of such switching wouldn’t have

needed to be as high if the strategy had also considered the NEDC in the tuning

process and the CSI factors had been chosen more appropriately. The weak results

for the EUDC are somewhat more surprising, as the EMMS2 should have handled

such repetitive driving cycles quite well. However, this result might be attributed to

the distinct type of operation the EUDC exhibits, which is different from both WL-

H and WL-E. Again, a better tuning process might have addressed this issue, but

the point has been made: an optimization-based strategy will always be vulnerable

to driving conditions that have not been part of the designing and tuning process.

It is also worth noting that the EMMS1 performance is much more reliable than

the EMMS2. As the tuning process of EMMS1 is essentially based on powertrain

analysis, its results are quite consistent. In contrast, the tuning of the EMMS2 is

partly based on the global tuning of the GEMMS, which is much more susceptible

to bias the control strategy based on the particular driving conditions for which it

was tuned. Thus, EMMS1 not only performs consistently, but actually is the best

control strategy for EUDC. This can partly be attributed to the artificially plain

speed and acceleration profiling of the EUDC, which is always piecewise linear. Such

operation allows plenty of steady state operation, allowing the EMMS1 to excel with

its steady-state analysis of the powertrain efficiencies.

However, the most impressive results are achieved by the OPSS, which achieves the

best results for four out of the six additional driving cycles being tested. Although

the OPSS is also based on a tuning process involving only WL-L, WL-M, WL-H

and WL-E, there is only a single tuning parameter and it is not very sensitive to

driving conditions (apart from very aggressive driving). Consequently, the OPSS

achieves excellent fuel economy results for all driving cycles apart from WL-E and

US06 (where it still performs decently).

It is also worth noting that the XOS delivered the best results for the US06. In

contrast to the OPSS, the XOS excels with aggressive driving, as it allows plenty

of opportunities for regenerative braking and has a good balance between the use
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Figure 7.7: Final SOC values for multiple iterations (see Table 7.1) of ten different
driving cycles with six different real-time control strategies.

of battery and engine. The latter is not true for urban driving with this particular

vehicle model. The XOS can be expected to perform better for a powertrain where

the battery power rating is more limited, such as in [15]. Nevertheless, even for all

the other driving cycles, it always outperforms the conventional heuristic control

strategies TCS and PFCS.

Finally, it is also of interest to check the charge sustaining ability of the control

strategies under new driving conditions. The final SOC values from simulations with

each of the control strategies are shown for each of the driving cycles in Fig. 7.7. It

can be seen that the TCS and PFCS remain as erratic as ever, as they are based on

state changing operation. Most of the other final SOC results are around 60-65%,

which is quite good.

The EMMS strategies are the most capable ones in maintaining their SOC such

that SOCfinal ≈ SOCinitial. The fact that the EMMS2 is able to do so, despite

the poor performance for EUDC and NEDC, is somewhat surprising. The OPSS

profile is more in line with expectations where the aggressive driving cycles WL-E

and US06 are seeing a dip in SOCfinal, but other results are more charge sustaining.

Conversely, the XOS generally has a lower SOCfinal value for most driving cycles,

but is boosted for the aggressive driving cycles WL-E and US06, where it was shown

to perform best. This chart, is quite effective in contrasting the nature of the XOS

and OPSS, where the SOC will increase and decrease respectively for more aggressive

driving.
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7.5 Summary

This chapter has conducted a brief control sensitivity analysis of six real-time con-

trol strategies (TCS, PFCS, XOS, OPSS, EMMS1 and EMMS2), investigating the

impact on changes in: tuning parameters; effectiveness of SSS; initial battery SOC;

and selection of driving cycles.

It was found that the conventional heuristic strategies (TCS and PFCS) are most

sensitive to correct tuning, with a 10% error causing a drop of 1% in fuel economy.

This can be contrasted with the novel heuristic strategies (XOS and OPSS) which

could suffer a 20% tuning error but only lose 0.2% in fuel economy. Thus, the novel

heuristic strategies have more robust designs and might be easier to design.

The influence of the SSS on the preference among control strategies was found to be

very significant. A poor SSS resulted in the conventional heuristic strategies being

preferred, while a strong SSS overwhelmingly favored the novel heuristic strategies,

as well as the EMMS. The results verified the earlier stated hypothesis that the

TCS and PFCS are based on an outdated concept of the undesirability to switch the

engine on or off. Thus, the control principles put forward with the XOS and OPSS

can be expected to be successful in most modern HEVs.

By studying the impact of the initial battery SOC on the resulting fuel economy,

it was found that the XOS in particular is more sensitive to deviations in initial

conditions (in particular low supplies of charge). In fact, it is so sensitive that it was

at times outperformed by the TCS and PFCS. The other novel strategies presented

were not only quite robust in terms of fuel economy, but were also quite successful

in returning the SOC to medium levels by the end of the driving cycles.

Lastly, the study of an additional six driving cycles exposed the strong sensitivity

to driving conditions of the EMMS2 in particular. It failed miserably for two of

the tested driving cycles, and was generally less effective when facing new types of

driving. However, this could probably be addressed by better tuning. In contrast,

the OPSS, for which the design is less tuning-dependent, excels at the new driving

cycles (finishing top for four out of six).

Overall, the sensitivity analysis provided much deeper insights into the operation of

each control strategy, and exposed limitations that were not visible in previous fuel

economy results. In consideration of these results, the OPSS is the top performer.
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Conclusion

This thesis has gone though three distinct stages: Chapters 1 to 3 introduced the

problem, the vehicle model and conventional control strategies; Chapters 4 and 5

presented several novel control strategies; and Chapters 6 and 7 have provided novel

analysis and perspective of control strategies.

It has been found that the conventional control strategies are lacking in several

regards. The heuristic strategies are based on outdated ideas of engine switching,

making room for the novel heuristic strategies XOS and OPSS to outperform these

conventional strategies by a good margin. As SSSs get better, this effect becomes

more pronounced. The most established optimization-based strategy (ECMS) lacks

knowledge about the powertrain it operates on. The design of the EMMS, based

on a thorough understanding of the powertrain efficiencies, allowed the GEMMS to

outperform the GECMS (suggesting that the EMMS2 would outperform the ECMS).

Also, overall, the optimization-based strategies have been found to be less effective

than expected, due to the use of a high-fidelity model. The optimization-process

often requires significant assumptions, which might hold true in a simple model, but

not in a real vehicle. This was further aggravated when driving on fresh driving

cycles, where heuristic strategies like the OPSS excelled.

This final chapter will not further summarize the findings of these past chapters,

as it has been done quite concisely by the end of each chapter. Instead, the key

contributions of this thesis will be listed. This will be followed and finished by an

outlook on future research directions.

247
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8.1 Contributions

This section will list the key contributions from each chapter of this work.

Chapters 2 and 3: Vehicle Model and Conventional Strategies

1. A high-fidelity model was further developed to enable more reliable study and

design of control strategies.

2. A reduced model was developed to allow more than 50 times faster simulations

at a very limited loss of precision. This enabled the implementation of control

strategies with higher tuning requirements.

3. Conventional strategies (TCS, PFCS and GECMS) were implemented and

tested for this high-fidelity model, providing new insights about their operation

and effectiveness.

Chapter 4: Efficiency Maximizing Map Strategies

1. A framework for designing control strategies is proposed, such that the partic-

ular powertrain in question is optimized. Control objectives and cost functions

are expressed in terms of component efficiencies, in an intuitive, measurable

(replenishing efficiencies being the only non-measurable parameter), and com-

prehensive way (in contrast to the ECMS that typically assumes constant

battery efficiency).

2. The concept of replenishing efficiency is proposed, that is not only more in-

tuitive than equivalence factors, but also more compatible when dealing with

battery efficiencies. Multiple uses of the replenishing efficiencies are consid-

ered (in EMMS0, EMMS1 and EMMS2), leading to varying advantages and

disadvantages, which are explored.

3. Simulation results suggest that EMMS1 and EMMS2 are effective (but the

latter will require more thorough tuning). The global version, the GEMMS,

delivers superior performance than GECMS and is thus a better benchmark

for future work.
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Chapter 5: Heuristic Strategies

1. A useful classification is given for design principles for fuel economy optimizing,

charge sustaining and implementation mechanisms. These can be mixed and

matched to create a wide range of control strategies.

2. The XOS is proposed, which is found to deliver good fuel economy (7% im-

provement on PFCS), with very simple rules. Also, the exclusive operation of

each power source allows intuitive auditory feedback from the engine, improv-

ing drivability, and reducing barriers to adoption of HEVs.

3. The OPSS is proposed, which is found to deliver excellent fuel economy (13%

improvement on TCS), with very simple and intuitive rules. The results are

found to be consistent across varying driving conditions.

Chapter 6: Global Optimality

1. The developed GHS outperforms the GECMS (with up to 1.82% margin), thus

disproving the notion of approximate optimal solution for the GECMS.

2. Results, from both this work and literature, are used to make the case for the

limited validity of designing advanced control strategies on simplistic models.

3. Alternative benchmarking methods and concepts are proposed, whereof only

the GHS is implemented.

Chapter 7: Control Sensitivity Analysis

1. A sensitivity study of control strategies, the first of its kind, was conducted for:

tuning parameters; effectiveness of SSSs; initial battery conditions; and varying

driving cycles. This provided a deeper insight into each control strategy.

2. The superiority of the novel heuristic strategies (XOS and OPSS) over the

conventional heuristic strategies (PFCS and TCS) is further shown by demon-

strating more robustness to tuning errors.

3. The significant impact of the SSS on the fuel economy and the relative perfor-

mance of control strategies is exposed. The results justify the superiority of

the novel heuristic strategies for a modern HEV.
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8.2 Future Research Direction

This section highlights some of the suggested future paths of research.

Chapter 2: Vehicle Model

1. Many components should be further refined, in particular the DC-DC converter

and the CVT. The engine and battery models should be developed further, to

allow the modeling of emissions and battery degradation.

2. Components with various power ratings should be modeled, allowing control

strategies to be tested on different powertrains.

3. It would be useful to conduct hardware in the loop (HiL) simulations, or even

implement control strategies in real vehicles.

Chapter 3: Conventional Strategies

1. A real-time ECMS should be implemented to act as a better benchmark for

the EMMS, as well as to inform the discussion in Chapter 6.

2. Fuzzy logic controllers (FLCs) should be implemented to provide a fuller pic-

ture of the rule-based strategies.

3. More generally, wide types of strategies should be implemented for a large

benchmarking exercise.

Chapter 4: Efficiency Maximizing Map Strategies

1. The concept of replenishing efficiency should be further refined, ideally allowing

real-time estimation during driving in an intuitive way.

2. The strategies should be tuned more broadly (especially EMMS2), as exposed

in Section 7.4. The base values for the replenishing efficiencies for EMMS2

should be selected more rigorously.

3. It would be interesting to try to use more dynamic expressions for the efficien-

cies rather than the steady state maps.
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Chapter 5: Heuristic Strategies

1. Further heuristic strategies can be designed based on the design principles

presented in Section 5.1. An exhaustive benchmarking exercise might be in-

sightful.

2. The performance results of the XOS were not as impressive for the model

used in this work, as compared to the previous results in [15]. The impact of

powertrain sizing on control strategies would be a very useful study.

3. The use of fuzzy logic control (FLC) should be explored.

Chapter 6: Global Optimality

1. It would be useful if DP solutions on varying model complexities could be

systematically compared to result of a high-fidelity model or a real vehicle.

2. A more powerful GHS (or alternative) should be designed to provide a better

indication of how much the GECMS is lagging the global optimal solution.

3. New concepts of control space-constrained optimal solutions should be pro-

posed (building on the brief discussion in Section 6.2.2), as they might be

more valuable as benchmarks.

Chapter 7: Control Sensitivity Analysis

1. There are several other factors for which a sensitivity study would be of inter-

est: component sizing, hybridization, or component temperatures.

2. The influence of the SSS on control strategies is dramatic, and definitely merits

further study. This should also consider emissions and drivability though.

3. Sensitivity to driving conditions (including road slopes) should be studied fur-

ther, including tests with mixed driving cycles, as opposed to repeating the

same for multiple iterations. The EMMS2 performance on the NEDC in par-

ticular raises this flag.
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