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Abstract

This thesis explores and proposes solutions to the challenges in deploying context-aware systems

that make decisions or take actions based on the predictions of a machine learner over long

periods of time.

In particular, this work focuses on mobile context-aware applications which are intrinsically

personal, requiring a specific solution for each individual that takes into account user preferences

and changes in user behaviour as time passes.

While there is an abundance of research on mobile context-aware applications which employ

machine learning, most does not address the three core challenges required to be deployable over

indefinite periods of time. Namely, (1) user-friendly and longitudinal collection and labelling of

data, (2) measuring a user’s experienced performance and (3) adaptation to changes in a user’s

behaviour, also known as concept drift.

This thesis addresses these challenges by introducing (1) an infer-and-confirm data collection

strategy which passively collects data and infers data labels using the user’s natural response

to target events, (2) a weighted accuracy measure Aw as the objective function for underlying

machine learners in mobile context-aware applications and (3) two training instance selection

algorithms, Training Grid and Training Clusters which only forget data points in areas of the

data space where newer evidence is available, moving away from the traditional time window

based techniques. We also propose a new way of measuring concept drift indicating which type

of concept drift adaption strategy is likely to be beneficial for any given dataset.

This thesis also shows the extent to which the requirements posed by the use of machine learning

in deployable mobile context-aware applications influences its overall design by evaluating a

mobile context-aware application prototype called RingLearn, which was developed to mitigate

disruptive incoming calls. Finally, we benchmark our training instance selection algorithms

over 8 data corpuses including the RingLearn corpus collected over 16 weeks and the Device

Analyzer corpus which logs several years of smartphone usage for a large set of users. Results

show that our algorithms perform at least as well as state-of-the-art solutions and many times

significantly better with performance delta ranging from -0.2% to +11.3% compared to the best

existing solutions over our experiments.
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“In HCI it’s not the number of mistakes [a mobile context-aware system makes] that counts,

it’s about the acceptance of them by the user. If a smartphone app fails to react in the way I

want it to in exceptional situations I might tolerate the mistakes, while if it repeatedly fails on

a common task I might feel it doesn’t work”

Paul Lukowicz, PerCom 2014
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Chapter 1

Introduction

Using machine learning in context-aware systems has the potential to overcome the tedious, and

often impossible, task of entirely predefining a system’s behaviour before deployment. Given the

dynamic nature of human behaviour, machine learning is a technique to complement, or even

replace, static system behaviour rules set by the user or an expert. This makes the overall system

adaptive and convenient for long-term use. For instance, the context-aware Luna mattress

allows users to set the mattress’s temperature and also promises to ‘learn and program itself to

create a personalized schedule for bed temperature adjustments’ [Sle15]. While both context-

aware systems and machine learning are well researched topics in isolation, the challenges

in combining them to produce a system that’s actually deployable are largely unaddressed.

These challenges arise from (1) the machine learning component requiring labelled data to

infer desired system behaviour, (2) the system itself which must offer a user-friendly and user-

tailored experience and (3) the user who might change his behaviour as time passes — also

known as concept drift — requiring the system to be adaptive. In this thesis, we are specifically

interested in mobile context-aware applications which we define as context-aware systems that

interact with a single user through a mobile device such as a smartphone or wearable device.

1
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1.1 Application Domains

Three applications domains will be used to help illustrate various concepts throughout the

thesis. Depending on design and implementation decisions, the applications may use context

that is gathered using sensors outside a mobile device and could have their computational cy-

cles offloaded to a remote server, yet, we consider them as mobile context-aware applications

because mobile devices are key to interaction with the user and external sensing and offloading

are orthogonal to the problems this thesis is concerned with.

Activities of Daily Living Recognition

Activity Recognition applications make use of the presence or lack of certain activities in a

user’s daily routine to provide a given service or take an action. For example, Activities of

Daily Living (ADL) are important in Healthcare as they provide an indication of a person’s

wellbeing [FNV10, KA76], one could think of an application that attempts to recognise ADLs

and provide summaries for nurses and doctors to help track their patient’s health over time.

Collecting and labelling the ADLs must be done in a practical way so that the application can

be deployed over an indefinite period of time. This could be done by showing the patient a sum-

mary of their ADLs at each day’s end, allowing them to correct the application’s predictions if

need be which we term an infer-and-confirm strategy (Chapter 4). Some ADLs might be more

important to recognise than others for the patient’s safety. For instance, attaining a perfect

true positive recognition rate for falls might be considered a priority compared to watching

TV for a given application. This in turn necessitates optimised learning using user-specific

and class-specific performance measures (Chapter 3). A patient’s ADLs and the way they are

performed is also bound to change as time passes leading to concept drift (Chapter 3).

Thermostat Auto-scheduling

Smart homes are a challenging application domain for context-aware systems because their

success and acceptance greatly depends on their usability and how well underlying systems

can adapt to users. Thermostat auto-scheduling implemented in the Nest system [Nes15] and

the Luna Mattress are interesting use cases for our work as they are commercially available
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systems that learn user behaviours. Thermostat auto-scheduling is a simple task that consists

in learning a user’s preferred temperature setting on the different days of the week subject to

exceptional and seasonal variations. We are interested in the mechanism to gather ground truth

for the user’s preferred temperature setting, the fact that users might prefer ‘too hot’ to ’too

cold’ or vice versa and, finally, that regardless of any normal seasonal variation in temperature,

heating preference and personal schedules might change over time.

It is interesting to note that Nest published a whitepaper in November 2014 reaching a conclu-

sion very similar to our infer-and-confirm approach to collect and label data: ‘every interaction

is treated as a way for the user to communicate with the device about his or her preferences for

a particular temperature at a particular time and day of the week. In addition to considering

active interactions, we also consider lack of interactions (indicating satisfaction with the current

temperature), as well as the room temperature and whether the user is home or away. This

provides a more holistic view of user preference than was considered previously’ [Nes14].

Disruptive Smartphone Notifications

Smartphone notifications are an ideal use case for mobile context-aware systems as smartphones

are the most widespread mobile device with an estimated 1.75 billion owners worldwide in 2014

[eMa15]. A solution to alleviate disruptive smartphone notifications would thus benefit a large

number of people and could be implemented on existing systems. A context-aware application

that could predict when an incoming push notification or incoming calls is disruptive given a

user’s context could automatically change the delivery method for the notification to lessen

disruptiveness by using a silent alert instead of an audible alert for instance.
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1.2 Research Statement

1.2.1 Scope

This work focuses on mobile context-aware applications that can be modelled as supervised

binary class sequential learning tasks. In supervised learning, labels are available for all data

points. This contrasts with semi-supervised learning where only some of the data is labelled.

While there are machine learning techniques that leverage unlabelled data points as well as

labelled points to increase prediction performance compared to supervised learning (e.g. co-

training [RKSM14]), these are performance optimisation methods which do not solve the core

machine learning challenges this thesis aims to address and are thus beyond the scope of it.

In binary class tasks, data points can belong to one of two classes, for instance, labels for incom-

ing calls could be disruptive or non-disruptive. We chose binary problems as a simplification

step, the methods proposed in this thesis are straightforwardly application to multi-class prob-

lems which is important as many context-aware applications such as ADL recognition can be

multi-class learning problems. Finally, learners are assumed to be asked for predictions online,

one point at a time, and subsequently receive the ground truth for the prediction — which we

refer to as (supervised) sequential learning. This model of learning in context-aware systems is

realistic in many context-aware systems where data is generated by a single user. Consequently,

computational and space complexities of algorithms are only a minor concern which is reflected

in the thesis. Instead, we focus on fast adaptation of mobile-context aware systems to cope

with the unpredictable nature of human beings. Specifically, we do not consider context-aware

applications that learn from data streams which are characterised by large volumes of partially

labelled data. We argue many mobile context-aware applications do not generate streams of

data because the rate at which a single person is able to change their context, and thus generate

data points, is lower than any modern system’s processing capacity and more importantly, the

rate at which a person is able to label data is even lower. Because human-labelled data is

usually expensive, we thus assume relatively small, fully labelled datasets.
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1.2.2 Research Questions

Our research questions are concerned with concept drift and data collection issues due to

the use of machine learning in mobile context-aware applications. Concept drift, which is a

change in input data distribution is typically caused by a change in a user’s existing behaviour

patterns or the creation of new behaviour patterns, is difficult to recognise. Currently, concept

drift on real datasets is assumed because of the way a dataset was generated (as is the case

of real datasets where a specific event is thought to cause concept drift), or symptomatically

observed due to a decrease in performance of learners across a dataset. Our interest in data

collection methodologies comes from the fact most research tackles either only the learning

side of intelligent mobile context-aware applications, not taking into account that the data

used cannot be obtained in a practical setting, or the human computer interaction side of

intelligent mobile-context aware applications, proposing approaches that work well on fixed

sized datasets but do not account for potential changes in data distribution and thus also limit

their applicability in practice. We take a more comprehensive approach to intelligent mobile

context-aware systems driven by the following research questions:

Research Question 1. Can we devise a learner-independent measure for concept drift on an

arbitrary dataset that enables us to quantify concept drift?

Research Question 2. Does the presence of concept drift always imply the need to forget

existing data as suggested by the large majority of existing work? In some cases, for instance a

new behaviour pattern emerging from a user, is it sometimes more beneficial to integrate new

data with current data rather than automatically discarding some of the current data. If so,

can we qualify and quantify these cases?

Research Question 3. Is it necessary to make a distinction between sudden, gradual, incre-

mental and reoccurring concept drifts? Can we derive algorithms to cope with concept drift

that are agnostic to the type of drift and perform at least as well as current state of the art

solutions?

The following two questions are concerned with the usability issues in using machine learning

in context-aware applications.
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Research Question 4. Can we incorporate user preferences and cope with unbalanced datasets,

both of which are important concerns when dealing with real data?

Research Question 5. Because mobile context-aware applications usually aim to simplify or

better one’s daily routine, how can we collect and label data from users in a convenient and

practical way in applications deployed over indefinite periods of time?

1.3 Publications and Statement of Originality

The research in this thesis was conducted as part of an FP7 European project called iCareNet.

iCareNet focused on the areas of healthcare, wellness, and assisted living applications. The

goal of iCareNet was to introduce and make use of context-awareness in pervasive healthcare,

to develop telehealth and preventive medicine. One aspect of iCareNet was to use technology

to reduce the burden of ‘non care’ tasks done by medical staff by automating aspects of these.

Our work contributes to this goal by developing a comprehensive approach to deploying mobile

context-aware systems which use machine learning, addressing the cornerstone requirements to

successfully implement intelligent applications in the environment of non technical users in a

convenient way.

The following publications arose from the work carried out during the course of this PhD and I

declare that this thesis was written by myself, and that the work it presents is my own, unless

stated otherwise.

[SDT+13] Jeremiah Smith, Naranker Dulay, Mate Attila Toth, Oliver Amft, Yanxia Zhang:

Exploring concept drift using interactive simulations. PerCom Workshops 2013: 49-54

This paper presents a tool enabling the creation of interactive simulations with customisable

concept drift events. These are used to test the suitability of learners when faced with single or

concurrent concept drift occurring in models of human-centric tasks like activity recognition.

This initial work suggests that hybrid, self-calibrating learners that are also able to incorporate

ground truth might be appropriate for robust body-worn sensor activity recognition carried out

over extended periods of time where concurrent concept drifts are likely to occur.

http://www.icarenet.eu
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[JSS+13] Shahram Jalaliniya, Jeremiah Smith, Miguel Sousa, Lars Buthe, Thomas Pederson:

Touch-less interaction with medical images using hand & foot gestures. UbiComp

(Adjunct Publication) 2013: 1265-1274

This paper presents a practical system that uses an inertial body-worn sensor combined with

a capacitive floor sensor for touch-less interaction with displays in a surgery context. It was

designed to recognise 12 different gestures (6 hand gestures and 6 foot gestures) for interaction.

A practical study showed it was possible to attain high accuracy with limited amount of training.

[SD14] Jeremiah Smith, Naranker Dulay: RingLearn: Long-term mitigation of disrup-

tive smartphone interruptions. PerCom Workshops 2014: 27-35

This paper presents a new approach to smartphone interruptions that maintains the quality

of mitigation under concept drift considering long-term usability. The approach uses online

machine learning and gathers labels for interruptive events using implicit experience sampling

without requiring extra cognitive load on the user’s behalf. An Android application, RingLearn,

was developed for handling incoming phone calls and tried by 10 participants using their own

phones over 2 months. The gathered data, together with a post-hoc survey, confirmed the

feasibility of the approach as well as highlighted the strengths and weaknesses of 3 different

types of learners in 3 different modes for this application

[SLM+14] Jeremiah Smith, Anna Lavygina, Jiefei Ma, Alessandra Russo, Naranker Dulay:

Learning to recognise disruptive smartphone notifications. Mobile HCI 2014: 121-124

This paper shows that dependent on the relative importance a user associates with detecting

disruptive incoming calls versus non-disruptive calls, machine-learners can be used to lessen

the occurrence of disruptive calls (for example, by silencing the phone’s ringer when such a

call is detected) without fully removing incoming call notifications, as putting the phone in a

silent mode would. Out of the 6 benchmarked learners, an association rule classifier, not only

outperformed all other benchmarked techniques but also outputs human readable rules which

could be used to inform a user why a (non-)disruptive call prediction was made, an important

HCI consideration.

[SRLD14] Jeremiah Smith, Anna Lavygina, Alessandra Russo, Naranker Dulay: When did
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your smartphone bother you last? UbiComp Adjunct 2014: 409-414

This paper attempts to answer the following questions: ‘Do users revise what they perceive

as disruptive incoming calls as time goes by?’, ‘How do different types of machine-learners

(lazy, eager, evolutionary, ensemble) perform on this task?’ and ‘Can we restrict the initial

amount of data and/or the number of features we need to make predictions without degrading

performance?’. These questions were answered on the Cambridge University’s Device Analyzer

dataset regrouping over 17000 mobile phone usage traces. Out of the 10 selected datasets we

found that the majority showed that users did revise what they considered disruptive calls, that

online and windowed learning performed similarly indicating that the benefit of forgetting all

old data does not markedly outweigh the cost of losing certain points that remain relevant for

predictions and that a limited set of features performed just as well as using the initial selected

set of features.

[Amf15] iCareNet group: Context-Aware Systems: Methods and Applications. Springer,

in production

Each chapter of this book was written by a different researcher or group of researchers from

the iCareNet EU project on a topic related to context-aware systems. In the chapter produced

by Frank Bolton and myself, we combined and synthesised his work on interruption theory and

modelling, and used my research on disruptive smartphone notifications as a use case for the

chapter.

1.4 Thesis Structure

Chapter 2 gives a broad overview of the concept drift and mobile context-aware application

topics, laying out fundamental concepts and seminal works, while the state of the art in each

topic is explored in detail in the contribution Chapters 3 and 4.

Chapter 3 is concerned with concept drift due to changes in user behaviour. While most existing

work addresses concept drift using either a form of windowed learning or ensemble learning,

we explore the hypothesis that in context-aware applications, where data comes from human
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actions, changes in data distributions are likely to be local. This hypothetical concept drift —

referred to as local concept drift — means that some parts of the input data space will stay

stable throughout the dataset while others will require the use of adaptive learning techniques

loosely linked to new habits appearing, disappearing or changing independently from each other

and calling for more refined strategies than forgetting all ‘old’ data (typical windowed learning)

or training learners on time-continuous chunks of data (typical ensemble learning). The chapter

thus proposes a new way of quantifying concept drift on datasets and decouples concept drift

and the need to forget which is not always implied by the former as we will show. It also

proposes two learner-independent dynamic training set formation algorithms, Training Grid

and Training Clusters, that only forget data when newer data is available to replace it in order

to tackle the problem of local concept drift while still being able to handle cases where concept

drift affects the entire dataset. Because data in mobile context-aware applications is likely to be

unbalanced, that is to say the majority of points in a dataset belong to a single class, this makes

traditionally used performance measures such as learner accuracy uninformative. Further, users

might have class recognition preferences as in the case of spam recognition where false positives

are typically perceived as more costly than false negatives, our algorithms are benchmarked

using a proposed weighted accuracy performance measure Aw.

Chapter 4 closes the loop by addressing the practical data collection challenge in using machine

learning as part of a mobile context-aware application. The challenge is to collect and label

data in a way that the perceived benefit of using the application outweighs the increase in

the cognitive load caused by the data gathering mechanism when deployed in the wild over an

indefinite length of time. To address the said challenge, we propose to couple implicit experience

sampling that infers data labels using a user’s response to naturally occurring events and an

confirmation step that informs them of the inferred label, with the option to change it. Finally,

we test our contribution in its entirety over 6 real incoming call datasets collected using either

our own RingLearn application or the Cambridge Device Analyzer application.

Chapter 5 summarises the findings of thesis and discusses their implications pointing to future

work.



Chapter 2

Background

Machine learning is a set of methods used to determine a mapping between input and output

values of a dataset or patterns in a dataset, automatically. It is used to predict the output

values of unseen data or uncover patterns to better understand the underlying process that

generated a dataset. The type of machine learning used in context-aware systems is normally

the predictive kind, for example, where a machine learner is used to determine the best action

for the system to take in a particular situation given a previous history of situation-action pairs.

A context-aware system is the combination of a computer program, a set of sensors (physical

or virtual) and optionally a set of controllers, that provides functionality that depends on the

sensed state of its environment and/or its user(s). We are specifically interested in mobile

context-aware systems where the key sensing and/or interaction points between the system

and its user(s) is a mobile device. A mobile device is any of the following: a smartphone,

phablet, tablet, or any wearable device that can accept user input such as a head mounted

device or smart watch.

We assume each instance of a mobile context-aware system has a single user as mobile devices

are usually personal. Further, we focus on intelligent mobile context-aware applications —

that is to say applications that use machine learning to map the sensed state of the environment

and/or user to actions. These are the applications that have the highest barriers for adoption,

highlighted in the challenges below, yet potentially offer the most impact in users’ daily lives.

10
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2.1 Challenges

Throughout the thesis we refer to these three main challenges for intelligent mobile context-

aware systems:

Challenge 1. Collecting and labelling data

Using machine learning in a context-aware system requires labelled data i.e. situation-action

pairs where the user’s desired action is known. A system thus has to gather action labels in a

way that the user’s perceived benefit in using the system dominates the increase in cognitive

load due to gathering action labels. This is an important point as machine learning performance

is highly linked to the amount of data available to learn on, so that performance can be increased

by gathering more labels but could make a system impractical.

A typical example of this is using experience sampling which is a common way to gather labels.

Experience sampling queries the user for labels in different situations to gather situation-action

pairs. In Activities of Daily Living recognition a context-aware system could query the user

several times per day asking them to label their current activity. This could be acceptable for

a small amount of time but in the long-run a user might prefer not to use the system at all

rather than be interrupted too often.

The challenge is thus to collect labels in a user friendly way adapted for deployment over an

indefinite period of time.

Challenge 2. Measuring Learner Performance

A context-aware system’s performance can be measured in different ways, for instance, execu-

tion speed, memory requirements or battery usage. However, in the scope of this thesis, we are

interested in how successful a system is in predicting the correct action in different situations

which is not implementation dependent. It is directly linked to the underlying learner used in

the system.

Learner accuracy, as defined in Appendix A.1, is the most widely used performance measure in

machine learning. It tell us the percentage of times the learner was right in making predictions.
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While it has a clear intuitive meaning it is unclear how accuracy translates into user perceived

performance.

This can be illustrated using the fire alarm example. If we discretise a year’s time into second

slots with a fire alarm queried every second to know whether there is a new fire or not, we would

get a certain number of points p, about 3.1∗107. If within that year there are no fires but the fire

alarm goes off twice, the accuracy would be p−2
p
> 99.99% and might be acceptable to a user.

If within the next year there is a fire but the fire alarm fails to go off, the accuracy would be

higher p−1
p

yet the alarm would probably be considered useless by the user. This highlights the

problem of asymmetric costs in making wrong predictions across actions (in this case,

fail to signal no fire correctly and fail to signal fire correctly) and unbalanced datasets which

are exaggerated in the fire alarm example yet essential concerns in context-aware applications.

The challenge is thus to take into account user preferences when it comes to making wrong

predictions and account for unbalanced datasets when measuring learner performance.

Challenge 3. Coping with Changes in User Behaviour

Coping with changes in user behaviour presents the most difficult challenge when deploying

a context-aware application over an indefinite period of time yet is crucial given that human

behaviour is variable and the environment we live in is highly dynamic. In practice, this means

that a learner can face the following cases: new situation-action pairs appear in the data where

the situation was not known beforehand, this might happen if a user goes to a new location for

instance; situation-action pairs appear in the data where the action contradicts the previously

observed action for the same situation, this might happen if the user changes his schedule for

instance.

Formally, these events fall under the notion of concept drift in machine learning which means a

change in the statistical properties of a dataset. Because experiments can only be conducted on

a finite set of data, many works in the literature draw conclusions from experiments where the

learners have no mechanism to cope with the said concept drift. This leads to a situation where

a system might perform well on the specific time chunk of the experiment but will eventually
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degrade its performance if deployed for a long enough period of time.

The challenge is to design machine learning methods that can be used in a context-aware system

to be deployed over indefinite periods of time without deteriorating their predictive performance

if the user changes his behaviour or the environment changes its properties.

2.2 Machine Learning

The situation-action pairs mentioned in previous sections can be generalised into an input value

~x = (x1, ..., xn), xi ∈ Si and an output value, or label, y ∈ S ′ pairs, where Si and S ′ are sets.

In the case of context-aware systems, Si can be a continuous or discrete set. The n different

xi values, usually called features, can come from a large continuous set such as R if we are

measuring GPS longitude for instance, or a small discrete sets such as {screenon, screenoff} if

we choose to incorporate a mobile’s device’s screen state as part of a context-aware application.

Similarly, S ′ can be continuous, in which case the learning task is called regression, or discrete

in which case the learning task is referred to as prediction. The following definitions and

explanations are based on [Bis06] unless specified otherwise.

Learning tasks can further be segmented into 5 different categories:

• Supervised learning

In supervised learning, a set of ~x, y pairs are given (the training set) and are used by a

learner to predict unknown y′ values for previously unseen ~x′ values (the testing set).

• Unsupervised learning

In unsupervised learning, only a set of ~x is given and is used by a learner to find structure

in the data to get insights on the underlying process that generated it. It can also be

used to devise the existence of different labels without knowing what the different labels

correspond to.

• Semi-supervised learning
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Semi-supervised learning is similar to supervised learning except that a set of ~x′′ without

the corresponding labels is also given which a earner can use to better predict y′ labels.

• Reinforcement learning

In reinforcement learning, instead of being given ~x, y pairs, we are given an initial ~x0 and

a set of actions that a learner can take to obtain a ~x1, y1 pair. y1 is called the reward

from transitioning from ~x0 to ~x1 using the action we chose. From ~x1 we can once again

take an action to generate further data. Reinforcement learning is used to predict the

best action to take for any ~x.

• Logic based learning

In logic based learning, ~x, y pairs are encoded as facts (background knowledge), and a

learner derives a set of rules which entail (informally, best explains) the ~xi → yi mappings

found in the training set. Logic based learning has an advantage in that it produces

human-interpretable rules, which is often times not the case for learners in the other

categories.

2.2.1 Modelling the Learning Flow in Mobile Context-aware Sys-

tems

Learning in mobile context-aware systems deployed over indefinite periods of time is sometimes

referred to as lifelong learning [KH07]. The scope of the thesis is systems where the under-

lying learning task can be modelled as a binary class supervised sequential learning problem.

Our assumptions differ from stream learning where data is assumed to be abundant and only

partially unlabelled so that learner computation speed and data storage requirements are of

concern. Sequential learning [Zli10], illustrated in Figure 2.1, describes the order in which

learners receive labelled data and update their internal model or prediction heuristic. Initially,

learners are given a chunk of data to train (training phase), in mobile context-aware systems

this could be considered as part of the initial system configuration and depending on the actual

system it could come from the user filling in a questionnaire or using the system in a data
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collection mode for some time and then manually labelling the data for instance. Next, each

time the system’s target event is detected, the learner is asked to make a prediction based on

the sensed situation (context), resulting in the system potentially taking an action (prediction

phase). Finally, the ground truth label for the previous prediction is given to the learner so

that it can update its internal model or predictions heuristic (update phase). This process

goes on indefinitely.

System

Learner

Event trigger

Training phase Test points

All training data available 

t1t0 tn-4 tntn-1tn-2tn-3

Context

...
1.Query 2.Prediction 3.Update

?

Figure 2.1: Illustration of the training, prediction and update phases in sequential learning as
a function of time t

2.2.2 Machine Learners

Buliding upon the core notions of Appendix A.2 machine learning is centred around the fol-

lowing concepts: in the supervised learning, we define a learner as an algorithm L(~xa) → ya

that maps an input value ~xa ∈ S1 × ...× Sn to a value ya ∈ S ′ i.e. a method to map arbitrary

input points to a known set of labels.

Learners can be [NJ02]:
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• Direct discriminative maps, in which case it maps S1 × ... × Sn → S ′ without prob-

abilities playing a direct role. A simple example is a linear classifier that uses a line or

plane ~bT~x+ c = 0 mapping L(~xa)→ 0 if ~bT~xa + c < 0 and 1 otherwise for S ′ = {0, 1}.

• Probabilistic discriminative maps, these implicitly or explicitly estimate p(yi| ~xa) ∀yi ∈

S ′ to predict the label of ~xa, generally the label with highest posterior class probability.

If the learner models p(yi|~x) using a model with a fixed number of parameters it is called

parametric and the learning procedure can be summarised as choosing a model and find-

ing the parameters that make the assumed model best fit the training data, as in the

case of Logistic Regression. Conversely, if the learner does not assume a specific model

for p(yi|~x) it is called non-parametric and the learning procedure varies from learner to

learner. Example are SVMs, Decision Trees and nearest neighbour classifiers. Probabilis-

tic discriminative maps have an advantage over direct discriminative maps as probabilities

can used to assess the confidence of predictions using the posterior class probabilities val-

ues.

• Probabilistic generative maps, instead of estimating p(yi|~x), generative maps esti-

mate the joint probability distribution p(~x, y) and use the probability product rule to

compute p(yi|~xa) and make predictions (as in probabilistic discriminative maps). The

difference between discriminative and generative maps is that the latter can be used to

artificially generate data using p(~x, y). Generative maps can also be parametric, as in

the case of fitting a Normal distribution to a dataset or non-parametric as in the case of

Hierarchical Dirichlet processes. Context-aware applications usually do not need to gen-

erate data although parametric generative maps are sometimes used to make predictions,

Hierarchical hidden Markov Models in Activity Recognition for instance.

Finally, learners also have hyperparameters, whether they are parametric or not.

Hyperparameter

Hyperparameters are learner parameters set by the practitioner before learning takes place.

They are different from the parameters a parametric learner fits to the model it uses to make
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predictions as they remain fixed during training. They can be thought of as corresponding

to a particular setting for a learner, for instance the heuristic for creating internal nodes in a

Decision Tree.

The main assumption of learning as presented in this section is that an L(X) → Y map

devised from training data can be used to make predictions on testing data. Specifically, the

assumption is that the underlying data probability distributions of the training and testing

sets are the same. In context-aware systems this assumption is optimistic as a person might

change their habits (informally, a change in p(x, y)) or create new habits (informally, a change

in pX(x)) which can mean a fixed L(X)→ Y mapping learned during training is not valid over

the entire testing set, this is called concept drift which we now expand upon.

2.2.3 Concept Drift

The most common definition of concept drift is given by Kelly et al. [KHA99]

Kelly’s Definition of Concept Drift

Given a set of time ordered instances ~x ∈ X,X ∈ Rd where d ∈ Z>0 each belonging to one

of n classes ci i = 1, 2...n. Concept drift is said to occur if one or more of the following event

happen as time goes by:

• i) The marginal distribution pX(X) changes

• ii) The marginal distribution pC(X) for two or more classes changes

• iii) The conditional distribution p(X|C) for two or more classes changes

• iv) The conditional distribution p(C|X) for two or more classes changes

The immediate question that arises from this definition is what is mean by ‘a distribution

changing’. In practice, we only every observe samples from an underlying distribution so that

one must choose a data property (for example one of the features’ moments) to observe the

change over and account for sampling uncertainty in order to apply this definition. These
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two points are addressed later on in our concept drift measure algorithm. We will also later

refine this definition to suit the needs of context-aware systems, and we note that because of

Bayes’ rule, in general, concept drift will affect p(C|X) which is what we are interested in.

Intuitively, in a mobile context-aware system, if a person changes their behaviour pX(X) is

likely to change as features might take on new values (visiting new a location for instance)

or the relative frequency of feature values might be altered (change in schedule for instance).

Similarly, p(C|X) and p(X|C) are affected if a user changes the desired action to be taken by

the context-aware system for a given situation (context), which in turn can affect pC(C).

Types of concept drift

Historically, concept drift is usually characterised as being of 4 different types as illustrated in

Figure: 2.2 [GvB+14]. In the definitions below, a core distribution refers to pX(X), pC(X) or

p(X|C) — p(C|X) being directly dependent on those three distributions.

• Sudden drift: is when a core distribution changes abruptly. In Activities of Daily Living

Recognition this could happen if a user suddenly stops performing a certain activity.

• Gradual drift: is similar to a sudden concept drift except that the core distribution

is interleaved between an old and new distribution until the new distribution gradually

dominates the old one completely. For Disruptive Smartphone Notifications a user might

work one Saturday a month for some time, affecting what the user perceives as being

a disruptive smartphone notification once a month compared to usual weekends, and

might then start working increasingly often on Saturdays, gradually replacing what they

perceive as being a disruptive notification for that day.

• Incremental drift: happens when there is a progressive shift in a core distribution. In

Thermostat Auto-scheduling this would correspond to the user starting to prefer increas-

ingly high temperature settings as winter comes.

• Reoccurring drift: is similar to sudden concept drift except that the same old core

distribution can become valid again after some time. In Activity Recognition, this could
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happens if a user starts performing an activity he stopped doing again.

Figure 2.2: The different types of concept drift and how they might affect the mean of a random
variable (taken from [Zli10])

In practice, classifying concept drift as belonging to any of these 4 categories is subjective and

an ideal solution should cope with concept drift regardless of its type as further discussed in

Chapter 3. The key to cope with concept drift lies in the learner employed in a system. We

now review the main types of adaptive learners.

Adaptive learning

Adaptive learners are learners that continue to refine their internal prediction model after the

initial training phase by integrating newly available labelled training points, they fall into the

online learner category. We use the definition of offline and online learning given by Fern et al

[FG00]

Online and Offline Learning

Offline learning algorithms take as input a set of training instances and output a hypothesis. In

contrast, online learning algorithms take as input a single labelled training instance as well as

a hypothesis and output an updated hypothesis. Thus, given a sequence of training instances

an online algorithm will produce a sequence of hypotheses.
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In the above definition, an algorithm is what we call a learner L and a hypothesis is what

we call a L(X) → Y map, where X is the set of possible inputs (contexts) and Y the set of

the possible outputs (classes for contexts). When we say a learner is not adaptive we mean

it learns offline. In offline learning, learners are trained on the training set and are used to

make predictions on the testing set without revising their internal model or prediction heuristic

throughout. The simplest way a learner can be made adaptive is by retraining it as new

data labels become available during testing i.e. periodically growing the training set with new

labels and repeating the initial training step of learning every so often. This is a form of online

learning that can be achieved with any learner and which we refer to as online retraining. Some

learners are specifically designed for online learning having the ability to integrate each new

labelled datapoint without having to go through an entire retraining step as in the case of

Multilayer Perceptrons which can update their internal weights with each new point [WM03].

Given the accepted definition of concept drift, it is possible to have a dataset where online

learning achieved through retraining is enough to handle the concept drift present on the

dataset, a specific example of this will be shown on the Ž-luxem dataset in Section 3.4.3.

However, research in the field of concept drift is focused on problems where this type of online

learning is not the best adaptive learning technique — which is the case in general.

The seminal paper in concept drift was published by Widmer et al. and is concerned with

concept learning [WK93] (classifying objects into different classes given their description in

terms of discrete features) and there are five recent doctoral theses on using adaptive learning

to handle concept drift. The closest work to ours was published by Žliobaite [Zli10] investigating

learner adaptivity through dynamic training set selection . Similarly to this thesis, she focuses

on real world dataset, some of which we reuse in Chapter 3, and proposes the FISH dynamic

training set selection algorithms which we also benchmark in our experiments. Garnett [Gar10]

is concerned with concept drift in large streams of data. He proposes a Dynamic Logistic

Regressor (DLR) and a Gaussian Processes for Global Optimization (GPGO) algorithm to cope

with missing and corrupted data labels. Our work differs from his because we assume small and

fully labelled datasets and propose learner independent methods to cope with concept drift.

Minku [Min11] researches ensemble learning for handling concept drift. He proposes a Diversity
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for Dealing with Drifts (DDD) method to improve learning accuracy in a base learner and drift

agnostic way. While his concern about the popular categorisation of concept drift mentioned

in Section 2.2.3 and his focus on drift agnostic learner adaptivity concords with our work, his

DDD method is a symptomatic method as it explicitly detects concept drift to trigger a response

within the ensemble. His work also differs from ours as ensemble learning, as we later show in

Chapters 3 and 4, is best fitted to stream learning applications which contrasts with the class

of mobile context-aware systems we are interested in, characterised by relatively small fully

labelled datasets. Conca [Con12] also focuses on ensemble learning but in a semi-supervised

setting. While we could only access the thesis abstract, it seems that his work is concerned with

applications where unlabelled data exists and is plentiful which is again opposite to the types of

problems we are interested in. Finally, Lindstrom [Lin13] presents 2 adaptive learning methods

for learning from semi-supervised data streams. The proposed Decision Value Sampling (DVS)

and Confidence Distribution Batch Detection (CDBD) algorithms assume that learners have

a mechanism to obtain labels from a data stream and aim to minimise the number of queries

needed for a learner to adapt to concept drift, which is not relevant for the class of mobile

context-aware systems considered in this thesis.

Concept Drift Learner Adaptivity Overview

To give the reader a bird’s-eye view on concept drift adaptation techniques we divide approaches

into 3 different categories and highlight representative examples in each case. For further

reference we also recommend a recent concept drift literature review by Gama et al. [GvB+14]

which uses a different categorisation of adaptive learning techniques. An in-depth literature

survey concerned solely on the type of concept drift relevant to mobile context-aware system is

given in Chapter 3.

In the case of concept drift, learner adaptivity can be categorised into 3 paradigms:

• Base Learner Adaptivity

In base learner adaptivity the drift adaptation process is part of the learner. It is thus not
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learner independent and is made up of custom algorithms. Decision trees that dynami-

cally reconfigure their nodes when faced with concept drift are the most popular example

of this [HSD01, GFR06, IGD11]. A well known example is Concept-adapting Very Fast

Decision Trees [HSD01]. In VFDT, a decision tree is learned online by recursively splitting

leaf nodes as new data is made available to the learner. The Concept-adapting extension

of VFDT works by growing an alternate decision tree in the background using a sliding

window of the most recent training instances, once the alternate subtree becomes more

accurate on the current sliding window data than the current tree, it replaces it and an-

other alternate decision tree starts to grow in the background. Garnett’s DLR and GPGO

mentioned above also fall into this category. The trade off in using custom algorithms

rather than learner independent algorithms is performance versus flexibility. The former

might perform very well in specific applications but because their base learners are im-

mutable, system designers have to replace the entire concept drift adaptation mechanism

if they wish to take advantage of another type of base learner. For instance, a system

designer might want to start using a logic based learner able to output human readable

rules to make a system more user-friendly.

• Adaptive Training Set Formation

Adaptive training set formation can be achieved by either selecting a subset of available

training instances (dynamic training set formation) or weighting training instances to bias

the learner’s internal model (instance weighting). Dynamic training set formation is thus a

learner independent paradigm while instance weighting is indirectly learner dependent as

not all learners are able to take instance weights into account for training. Most dynamic

training set formation strategies are based on a training set sliding window of the most

recent instances [BG07, KZ09, ZK09, BvdAvP11, DSJ14, LZL14] . For instance the

WR* algorithm [BG07] tries to detect when a concept drift event occurs in the data and

estimates the most likely training instance at which this happened to adjust the training

window size and retrain the base learner accordingly. Žliobaite’s FISH algorithms cited

above also fall into this category although they do not use a time continuous window
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of instances, rather, they dynamically form training windows by considering the age

and spatial proximity of available training instances compared to the current testing

instance. An example of instance weighting is given in [Sen14] where instance weights

are exponentially decayed to train a Naive Bayes classifier according to instance age.

Adaptive training set formation is the most flexible concept drift adaptation technique as

base learners are interchangeable and adaptation is learner independent with a potential

performance trade off as base learners will react differently to a given training set.

• Ensemble Learning

In ensemble learning, a collection of base learners are combined to make predictions

by voting on testing instance labels. The concept drift adaptation mechanism lies in the

ensemble’s voting strategy and/or the ensemble’s strategy to add and delete base learners.

These approaches are thus learner independent. Examples include dynamically weighted

voting strategies [EP11, TPCP06a, NYO05] and responding to concept drift by varying

the amount of base learners in the ensemble [MWY10]. The Adaptive Classifiers-ensemble

is a typical example [NYO05] of this. The ACE algorithm defines a batch size and either

trains a new base learner on every new batch or when it detects that concept drift has

occurred. To detect a concept drift event, ACE computes lower and upper bounds on

the accuracy of a learner on the previous batch of instances, if the maximal base learner

accuracy falls outside this range concept drift is assumed. The performance of learners on

the previous batch of instances are used as weights when performing weighted majority

voting. The DDD method mentioned above falls into this category. Ensemble learning

is more flexible than base learner adaptivity as base learners can be changed according

to the system designer’s will, although it is constrained by its voting process making it

less versatile than adaptive training set formation. Specifically, for ensemble learning to

perform well, large amounts of data are required so that ensemble learning is generally

more suitable for stream learning than sequential learning.
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2.3 Mobile Context-aware Systems

2.3.1 Context

We use the popular definition of context given by Dey [ADB+99, Dey01].

Context

‘Context is any information that can be used to characterise the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and applications themselves’

In mobile context-aware systems, context is gathered using either physical sensors such as

proximity sensors and microphones or virtual sensors such as device time or IP address that

are gathered from software applications. Context can be classified into 6 categories [CK00]

which aim to answer the questions who?, what?, where? and when?:

Time context such as time, time-zone or season

Location context such as GPS coordinates or currently used cell tower id for GSM/CDMA

capable devices

Environment context such as light condition or atmospheric pressure

Motion context such as accelerometer or gyroscope data

Computing context such as calendar events or the list of running applications

Computing activity context such as tracking when the user opens an app or the last time

they used the mobile device

The context variables a system uses can be sensed directly through the device it is deployed

on, for instance a system might try to recognise whether the user is walking, running, cycling,

or training using an onboard accelerometer [CCH+08, GSB14, SFH+11], through a server in

charge of aggregating and propagating context as in the case of the AwarePhone which gathers
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location and duty information for surrounding hospital workers in an smart hospital setting

[BH10] or dynamically through localised beacons for instance at a restaurant where the menu

can be provided to systems that are nearby [PA03].

2.3.2 Mobile Context-aware System

Context-aware systems in general leverage context to change the information they record, the

information they display and/or the actions they take. There are two types of context-aware

systems, passive context-aware systems which simply record and/or display information

such as smart tourist guides which show information relevant to the user’s current location

[HCS05, HMM06] and active context-aware systems which are able to take actions [MN13].

This thesis focuses on mobile context-aware systems. A mobile context-aware system

(application) is a single computer program running on the user’s mobile device, or a set of

collaborating computer programs one of which is running on a user’s mobile device, which

provides a functionality or service to the user that is dependent on context. A mobile context-

aware system (application) can be active or passive.

The simplest active mobile context-aware systems are what we would define as static systems

which have a pre-programmed context → action map (or rules), a device that changes its

display orientation based on gyroscope data or a smartphone application that alerts the user

when battery charge is computed to be insufficient to reach the next charging point [RSHI08]

are two examples of this. On the contrary, in intelligent systems, the context→ action map is

inferred using machine learning — these are the types of systems we are specifically interested

in and are further discussed in the following section.

The first deployed mobile context-aware application was called birddog and ran on the ParcTab

PDA [SAG+93]. The application enabled users to see where colleagues were located in a smart

office environment building upon the Active Badge system (wearable beacons) [WHFG92].

Shortly after, the ParcTab also enabled the execution of arbitrary UNIX commands based on a

user’s location and status (arriving, departing, settled-in,missing or attention) using ‘Context-

triggered Actions’ [SAW94] (pre-programmed context→ action map) making it an active static
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mobile context-aware system according to our definitions. The ParcTab is representative of

initial research in mobile context-aware systems which was focused on prototype development.

Since then, the field has branched out into several areas of research topics which build upon

each other. The 6 key research areas in mobile context-aware systems are illustrated in Figure

2.3. We briefly review and give examples for each layer defining the scope of this thesis within

mobile-context aware systems and how it relates to the other key research topics of the field.

2. Processing of raw sensor data

1. Context sensors

Infer high level context

Model high level context

4. Context management

3. Context representation

Distribute context

Build concrete application

6. System design and deployment studies

5. System development

Assesment and collaborative development

Figure 2.3: They 6 key research areas in Mobile context-aware systems and how they relate to
each other

The first area of research is concerned with the development of physical sensors and sensor

platforms (embedded systems capable of outputting digital signals) to gather context. For

instance, we might wish to know the high level physical activity of a user at any point in

time which requires hardware sensors to translate user motion into discrete context variables.

The main challenges in the area are sensor selection, sensor precision, energy consumption

and form-factor [BVP+14], examples of available commercial products are the Fitbit line of

activity trackers [Inc15] or Shimmer wearable sensors [Sen15], custom research solutions include
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the ETHOS [HAW+10] and HedgeHog wristbands [fTD15].

The second layer is concerned with gathering high level context that is directly exploitable by

mobile context-aware systems. High level context can be extracted from low level sensor signals

by using signal processing such as thresholding and machine learning in which case it is called

context inference. Going back to our previous example, accelerometer and gyroscope signals

can be used to infer a user’s physical activity [EPC08, SZL+10, HTM11, RB11] with a recent

in depth tutorial available in [BBS13]. High level context can also be directly gathered from

virtual sensors (from a device’s API or external APIs for instance), in both cases, high level

context is subject to noise and uncertainty which are the main challenges in this field [STA+12].

The third layer treats about representing, or modelling, high level context. Many times this

is trivial, the simplest form of context modelling is using a Key-Value model which essentially

makes context available to applications as environment variables but can also be more sophis-

ticated as in the case of ontologies which can be used to precisely describe the environment

a system is deployed in, specifying relationships between context variables and enabling rea-

soning over these [SLP04]. For instance COBRA-ONT [CFJ03] based on the OWL ontology

[MVH+04] was made to describe locations, agents, events and their associated properties in

a smart office setting, as an example, if a user’s phone is detected via a bluetooth scan in a

specific room the COBRA-ONT is used to deduce that the user is also in that room, that he is

in the corresponding office building and that he is at work that day.

The fourth layer is concerned with how to manage context across multiple mobile context-

aware systems so that systems do not have to implement their own context sensing mecha-

nism. Context management is implemented as context-aware development frameworks (middle-

wares) which centralise context information and distribute it to requiring applications [LSNJ11,

BCFF12]. For instance, in the Android OS the recent cODA open-source framework [FDN+14]

uses 2 types of components to enable easy development of context-aware applications. Ob-

servers take care of the ‘Context sensors’ layer and extract high level context from smartphone

physical and virtual sensors while Deciders use high level context to notify applications of con-

text events they have subscribed to. Applications can then decide whether or not to act upon
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these. Practitioners can thus reuse existing Observers and Deciders to make an application or

implement their own if further context is required which can then be reused by others.

The fifth layer is concerned with mobile context-aware system development. Literature in this

area explains why and how actual systems are developed specific to a target use case and

encompass different elements such as interface graphic design [HM06], context choice, hardware

choice, interaction choice and energy efficiency considerations [LKLZ10]. Examples include

tourist guides [HMM06, MRGS14], hospital smart devices [Bar04, BHMS06, BH10, DDL15]

and fitness monitors [CCH+08, RB11, RLGB+14].

The sixth layer is concerned with mobile context-aware system design principles [HCS05], sys-

tem development methodologies such as participatory design [BHMS06] and user centred design

[Gou95, DDL15] and user studies of systems deployed in the wild [BH10]. This is especially

relevant in sensitive application areas where a badly designed system can have harmful conse-

quences such as a hospital. The AWARE architecture is perhaps the most in depth participatory

design example available [BHMS06, BH10]. The architecture was developed over 4 years using

detailed field studies to understand the requirements of clinicians, future workshops [HLP97] (a

three phase brainstorming process where participants formulate their current work problems,

envision solutions and then reflect on the steps needed for a possible implementation) to derive

potential solutions, paper and video prototyping to concretise context-aware system behaviour,

and ‘a series of design workshops in which different versions of the systems were evaluated by

the clinicians’. This led to the elaboration of the previously mentioned AwarePhone and the

AwareMedia public display which gives an overview of the location and activity of clinicians in

a ward (not a mobile context-aware system) as well a set of application-specific insights on the

workflow of clinicians and design principles context-aware systems must take into consideration

if they are to be deployed in a hospital setting.

We point the reader to the main reviews in the field for further reading [SAT+99, CK00, MN13,

Sch14, YLS+14]. In our case, the scope of this thesis are the last two layers, namely system

development, specifically addressing disruptive incoming call management and usability issues

in gathering labelled data for intelligent mobile context-aware system.
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2.3.3 Intelligent Mobile Context-aware Systems

Intelligent mobile context-aware systems, which we sometimes abbreviate to intelligent mobile

systems or intelligent applications, refer to systems where the context→ action map is inferred

and adapted using machine learning. Expanding the introduction of Chapter 1, this offers three

potentially compelling benefits compared to systems with static context→ action maps. First,

it might be laborious, or even impossible, to define a system’s behaviour before deployment.

Machine learning removes the task of explicitly defining the system’s behaviour instead only

requiring desired system behaviour examples (labelled training data) to generalise a context

→ action map for arbitrary contexts. Second, pre-programming the system’s behaviour with

a static map requires the system designer to make assumptions about the user and their use

of the system. While this might be perfectly acceptable in some cases, changing a device’s

display orientation to match the user’s for instance, in more complex applications such as

Thermostat Auto-scheduling, there might not exist a system behaviour adapted to all users as

they might each have a different way of using the system and different expectations when it

comes to its behaviour. Machine learning is a scalable way to tailor systems to specific users

by training them on individual users’ desired system behaviour examples. Finally, even when

it is possible to exhaustively define a system’s behaviour using a static context → action map,

there is no guarantee the user won’t change their mind about the desired system behaviour.

Even for simple examples such as automatic device display orientation, some users will prefer

to disable the functionality after trying it out for some time — the problem of concept drift.

An intelligent mobile context-aware system is a mobile context-aware system where the

system’s context → action map is partially or entirely defined using machine learning.

We note that this definition does not apply to the case where machine learning is used in

the ‘Processing of raw sensor data’ layer only. For instance, if a smartphone application uses

learning to convert accelerometer data into high level activity context but uses a static map

to decide which action to choose, we do not consider it as an intelligent mobile context-aware

application. This is because the application’s intended behaviour is static and does not depend

on how noisy the context inference component is — although the application’s perceived per-
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formance will. In this thesis we assume that high level context is readily available focusing on

methods to leverage machine learning in real world scenarios where the context→ action maps

are likely to change as time goes by.

While intelligent mobile context-aware systems might be the right solution in some cases, it is

not the panacea for all application scenarios. Especially in the case of active mobile context-

aware systems, the uncertainty brought by the use of machine learning could have dramatic

consequences in critical application areas such as healthcare or the military where a mismatch

between the system’s action and the ground truth action can be very harmful. Intelligent

mobile context-aware systems are thus usually researched in cases where incorrect actions on

the system’s behalf have benign consequences.

Examples of such systems (applications) include: Recommender systems [BKL+11, HMB12,

PTG14] such as InCarMusic which recommends tracks based on traffic state [BKL+11], dis-

ruptive smartphone notification management applications [MCRL11, RDV11, OTN14] our use

case for Chapter 4 or even digital behaviour intervention applications where, for instance, signs

of depression are recognised and different actions (e.g. displaying links to theatre tickets) are

explored by the applications until the right ‘therapy’ is learned [PM14a]. In practice however,

very few intelligent context-aware systems go past the prototype stage where they are tested

over shorts periods of time in a controlled environment. As captured by our research challenges,

we argue this is mainly due to the need for systems to adapt to changes in user behaviour, a

recognised but seldom addressed issue [MN13], and the collateral requirement for labelled data

throughout deployment, the topic of the following two chapters. Chapter 3 focuses on quanti-

fying concept drift on arbitrary datasets and the adaptivity mechanisms for learners to be able

to cope with the said drift. Chapter 4 then investigates a disruptive smartphone notification

use case which assembles and evaluates the proposed solutions to the challenges presented in

Section 2.1 of intelligent mobile context-aware applications.



2.4. Summary 31

2.4 Summary

This chapter starts by presenting the 3 challenges that guide the work in this thesis. These

are in the areas of data collection and labelling, measuring learner performance and coping

with changes in user behaviour in mobile context-aware systems. The core concepts are then

described in the contribution Chapters 3 and 4.

The background section on machine learning gives an overview of the existing types of machine

learning and machine learners, justifying our choice to model the mobile context-aware systems

that we are interested in as binary class supervised sequential learning problems. The focus of

this background section within machine learning is on concept drift, the phenomenon linked to

changing user behaviours as time passes and the different adaptive learning techniques to cope

with it.

The chapter concludes with related work on mobile context-aware systems. It classifies the

research into 6 areas that build upon each other, situating the work in this thesis in both the

system development and system design and deployment studies areas.
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Measuring Concept Drift and

Forgetting Strategies

This chapter addresses two challenges in deploying intelligent mobile context-aware applications

over long periods of time (Challenges 2 and 3). Measuring the performance of machine learners

in human-centric applications, for which we propose to use a weighted accuracy measure, and

adapting to changes in user behaviour when deploying intelligent mobile context-aware appli-

cations over long periods of time, for which we propose to use forgetting strategies. Changes in

user behaviour represents by far the largest challenge because they pose the problem of knowing

how to integrate new data and how to forget old data that corresponds to obsolete behaviour

patterns. These forgetting strategies are only ever implicitly mentioned in the literature and

while it is easy to construct cases where existing forgetting strategies fail, this chapter not only

proposes new forgetting strategies but also introduces a new approach to determine whether

forgetting strategies are likely to increase performance on a particular dataset compared to

offline learning and online retraining. In addition, we benchmark existing and proposed forget-

ting strategies on 8 datasets with two in depth case studies to demonstrate their behaviour as

well as their relative performance.

32
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3.1 Measuring Concept Drift

Before taking action to manage concept drift, we first need a means to measure its presence

on an arbitrary set of time ordered instances. We give a definition of concept drift adapted to

the context-aware systems we are interested in based on the definition given by Kelly et al. in

Section 2.2.3.

Concept Drift

In a sequential learning framework as defined in 2.2.1, given a set of time ordered instances

~x ∈ X = (X1, ...Xn) with each Xi being a discrete or continuous random variable and ~x

belonging to class c+ or c− associated with the discrete random variable Y , concept drift is

said to occur if the posterior distribution p(Y |X) changes as time goes by. This implies one or

more of the following:

• The marginal probability distribution pY (Y ) has changed

• The marginal probability distribution pX(X) has changed

• The class conditional probability distribution p(X|Y ) has changed

This restates the Kelly’s definition by defining concept drift as a change over time in a dataset

which affects the posterior distribution p(Y |X) — precisely the distribution we are approximat-

ing when making predictions, it also extends the notion of concept drift to mixed discrete and

continuous spaces for X which is likely to be the case in context-aware systems . Intuitively,

concept drift represents an event that might affect the validity of the model or heuristic we are

currently using to make future predictions.

A possible solution to measure concept drift is to track changes in statistical characteristics of

instances throughout a dataset. For example, a change in moving window feature mean across a

dataset indicates the presence and type (none, sudden, gradual, incremental or reoccurring) of

concept drift [BvdAvP11, RMM+13]. One can also use statistical tests to inspect consecutive

data segments and find statistically significant differences between segments, also a sign of

concept drift [AB13, KBDG04]. The issue with this type of approach is that it does not tell
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us what to do about the drift. For example, in the case of sudden concept drift, if we observe

a jump in a feature’s mean value at some time t, it might be the case that class boundaries

change in a way that does not produce future misclassifications by keeping the current learnt

class boundaries or simply requires retraining the learner using all newly available training

instances to refine previously learned boundaries. Further, in practical cases such as mobile

context-aware applications, detecting the presence of concept drift in a dataset is irrelevant

if it does not affect the performance measure by which the application will be judged by the

designer or end-user.

Another way of approaching the problem is thus to have a performance based measure of concept

drift, assuming a relative increase or drop in learner performance is due to concept drift. This

technique is used in trigger based approaches to counter concept drift where a learner will adapt

by changing the size of its training window [ZK09, DM14, GvB+14] or adding base learners to

an ensemble [BS14, BWPL14] when performance falls below a certain threshold. The problem

with this type of approach is that the measurement of the drift is dependent on the learner whose

performance is being tracked. Further, in practice, the problem with this type of approach is

that it is symptomatic. This means the effect of the concept drift will only be measured or

recognised once it hits a certain threshold, depending on the type of drift, the drift might have

started, and thus might have been acted upon, well before it was detected. This is especially a

problem if we have small datasets as can often happen in mobile context-aware applications.

We thus decouple the problem of measuring concept drift and measuring the need to forget data

instances, ultimately offering a hands-on approach to detecting and managing concept drift

suitable for mobile context-aware applications. This is because we are not actually concerned

about the presence of any type of concept drift in a dataset, rather, we are concerned about

the presence of drifts that change class boundaries in a way that contradicts previous instance

classifications. Throughout a dataset, if the class boundaries change in a way that does not

affect previous instance classifications, online retraining will suffice to adapt to the concept drift,

while in the other cases, some data will have to be discarded to learn the correct boundary as

illustrated in Figure 3.1.
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Figure 3.1: Two archetypical scenarios of how concept drift might affect a dataset as time passes
(initial state on the left, later state on the right with points from the initial state faded out).
The figures shows what the class boundaries might look like for each state using a discriminative
learner. On top, an example where retraining a learner with all newly available training data will
suffice to remedy concept drift. On the bottom, a case where class boundaries have changed in
a way that affects previous instance classifications and where a forgetting strategy is potentially
needed to learn the new boundary.

3.1.1 Drift Events

We thus propose to measure the amount of concept drift and the need to forget as two separate

quantities. For this, we segment a dataset into k equally sized chunks which we call epochs

and look for the occurrence of two types of events across successive epochs.

• New data event: an area (or neighbourhood) in the dataspace that is not empty in the

current epoch but was empty in the previous epoch. Specifically, we say an area is empty

if it contains less than θempty ∗ 100 percent of the total number of datapoints in the set.

• Class flip event: an area in the dataspace that is not empty and had a class balance

that noticeably changed compared to the previous epoch where it was also not empty.

Specifically, we define the class balance btci of class ci at epoch et as btci =
|cti|∑
j |ctj |

where |cti|

is the number of instances of class ci in et. We then say an area’s class balance noticeably

changed if there is a class ci such that the difference between class balances at epochs et

and et−1 |btci − b
t−1
ci
| is larger than θchange and the area was non-empty in et and et−1.
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Class Flip Measure

We define the class flip measure as being the percentage of points in a dataset which have been

affected by a class flip event defined by a specific θchange over consecutive epochs. The number

of points affected is obtained by summing the number of points in each affected area belonging

to the latest epoch over consecutive epochs. The algorithm to compute the class flip measure

of dataset is shown in Algorithm 1.

Concept Drift Measure

We define the concept drift measure as the sum of the class flip measure and the new data

measure. The new data measure is the percentage of points in a dataset which are affected by

a new data event defined by a specific θempty over consecutive epochs. The number of points

affected is obtained by summing the number of points in each affected area belonging to the

latest epoch over consecutive epochs. The algorithm to compute the concept drift measure of

dataset is shown in Algorithm 1.

These drift events have a convenient interpretation in mobile context-aware systems. A new

data event shows evidence of a new context being sensed, which could be due to a new behaviour

pattern on the part of the user the data was collected over, for instance, a user receiving calls

from a new contact in a disruptive smartphone notification use case scenario. A class flip event

shows evidence of a change in an existing behaviour pattern as the class distribution changes

in a specific area loosely corresponding to a context, for instance, a change in the preferred

temperature for a given day and time in Thermostat Auto-scheduling use case scenario. Because

we only consider class flip events over non-empty areas, the two events are mutually exclusive.

The measure of the prevalence of our two events depends on how we define an area. A

straightforward way to do so, and the one we use in this thesis, is to partition the dataspace

using a regular n-dimensional grid (where n is the number of features in the dataset) so that

each grid element is an area. To make the grid, we partition each feature into f segments,

resulting in a grid where each element is of equal n-dimensional volume. The number of grid

elements, or areas, new data and class flip events are considered over for each epoch is thus

fn. A 3 dimensional example of this partitioning with f = 3 is shown in figure 3.2. In general,
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areas need not all have the same n-dimensional volume, if they are defined using clusters for

instance.

x

z

y

Figure 3.2: An illustration of a 3-dimensional dataset being partitioned into areas using a grid
with f = 3, each feature is segmented into 3 equal parts yielding 9 different areas in which to
measure new data and class flip events.

3.1.2 Concept Drift Analysis Algorithm (CDA)

We now present our proposed learner-independent concept drift measurement method. It quan-

tifies the amount of concept drift in dataset d by assessing the prevalence of new data events

and class flip events using parameters k (number of epochs), θempty (threshold for an area to be

considered empty), θchange (threshold for a change in an area’s class balance to be considered a

class flip) and f (feature partition parameter). Specifically our algorithm measures the amount

of concept drift by estimating the percentage of datapoints affected by new data and class flip

events as these correspond to changes in pX(X) and p(X|C) respectively. The algorithm also

outputs the percentage of datapoints affected by class flip events only, as these suggest the

need to use a forgetting strategy in addition to online learning to maximise learner prediction

performance. A toy example of the CDA algorithm is shown in Figure 3.3.
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Figure 3.3: A toy example of the CDA algorithm over 3 epochs (k = 3) on a 30 point 2-
dimensional dataset with θempty = 0.05, θchange = 0.5 and feature partition parameter f = 3.
CDA considers new data and class flip events between epoch 1 and 2, and epochs 2 and 3. At
epoch 2, the class balance changes by 100% in the red area in favour of the blue class so that
a class flip event is counted and the class flip measure is initialised to 2

30
, similarly the green

area goes from empty to non-empty as it holds 2
30
> θempty = 0.05 points in epoch 2 so that

a new data event is counted and the new data measure initialised to 2
30

. On the contrary, in
the grey area no new data event is counted as it did not hold any points in epoch 1 and is still
considered empty in epoch 2 as it only holds 1 point and 1

30
≤ θempty = 0.05. Between epoch

2 and 3, in the green area, a new data event is counted as it now holds 2
30
> θempty = 0.05

points while it was considered empty in the previous epoch. The new data measure is then
incremented by 2

30
. The grey area is not considered to have had a class flip event occur in it as

the class balance went from 0:1 (orange class ratio : blue class ratio) to 1
3
:2
3

so that the change
in class balance remains below θchange. The output of CDA is the concept drift measure which
is the sum of new data and class flip measures 3 ∗ 2

30
= 20% in this case, and the class flip

measure 2
30
∼= 6.6%.
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Algorithm 1 Top level concept drift analysis to measure concept drift. Returns the estimated
percentage of points in d affected by concept drift and the percentage of points affected by class
flips.

1: procedure ConceptDriftAnalysis(d,k, θempty, θchange, f)
2: qND ← 0 . Number of points linked to new data events
3: qCF ← 0 . Number of points affected by class flip events
4: grid, centres←MakeGrid(d, f) . Initialise grid

5: lepoch ←
⌊
|d|
k

⌋
. We only consider full length epochs

6: d0 ← d[0 : lepoch] . Data for first epoch
7: grid← Insert(grid, d0, centres)
8: for i = 1..k − 1 do . i is the epoch index
9: gridprevious ← grid . Deep copy of current grid
10: clear(grid) . Clears data points held in the grid
11: di ← d[i ∗ lepoch, (i+ 1) ∗ lepoch] . Data for the new grid
12: grid← Insert(grid, di, centres)
13: tempND, tempCF ← CompareGrids(d, centres, grid, gridprevious, θempty, θchange)
14: qND ← tempND + qND
15: qCF ← tempCF + qCF

16: Return qND+qCF

|d| , qCF

|d|

Algorithm 2 Returns an regular n-dimensional grid and the set of grid element centres, where
n is the number of features in data d
1: procedure MakeGrid(d, f)

2: Initialise ~boundslower ← (Min(d[:, 0]),Min(d[:, 1]), ...,Min(d[:, n]))
3: . A vector with minimum values of each feature
4: Initialise ~boundsupper ← (Max(d[:, 0]),Max(d[:, 1]), ...,Max(d[:, n]))
5: . A vector with maximum values of each feature
6: ~range← ~boundsupper − ~boundslower
7: ~lpartitions ← ~range/f . element wise division by f

8: centres← MakeGridHelper(n, f, ~boundslower, ~lpartitions, [ [ ] ])
9: for ~centre in centres do
10: Initialise grid[ ~centre]← [ ]

11: Return grid, centres
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Algorithm 3 Tail-recursive helper function that returns a set of grid element centres centres
based on the minimum values of each feature ~boundslower, feature partition lengths ~lpartitions
and the number of partitions per feature f

1: procedure MakeGridHelper(n, f, ~boundslower, ~lpartitions, centres)
2: if n = 0 then . base case: we have gone through all features
3: return centres
4: centresnew ← [ ] . Initialise
5: tempcoordinates ← [ ] . Initialise
6: for j = 0..f − 1 do
7: tempcoordinates ← Append(tempcoordinates, ~boundslower[0] + 2j+1

2
∗ ~lpartitions[0])

8: . Use the centre of mass of grid elements as centres
9: for ~centre in centres do
10: tempcentres ← list( ~centre.append(coordinate)) for coordinate in tempcoordinates
11: . Each ~centre branches into |tempcoordinates| new centres
12: centresnew ← centresnew.append(tempcentres) . centresnew is a list of vectors

13: ~boundslower ← ~boundslower[1 : end] . Discard the feature we just processed

14: ~lpartitions ← ~lpartitions[1 : end] . Discard the feature we just processed

15: Return MakeGridHelper(n− 1, ~boundslower, ~lpartitions, centresnew)

Algorithm 4 Inserts data d into grid defined by centres

1: procedure Insert(grid, d, centres)

2: for ~datum in d do
3: ~target← argmincentreDistance( ~datum, centre)
4: . Distance measure is arbitrary, we use Euclidian
5: grid[ ~target].Append( ~datum)

6: Return grid

Algorithm 5 Returns the number of points linked to new data events qND and points affected
by class flips events qCF , in between the epochs corresponding to gridprevious and grid, according
to θempty and θchange threshold parameters as defined in Section 3.1.1

1: procedure compareGrids(d, centres, grid, gridprevious, θempty, θchange)
2: qND ← 0
3: qCF ← 0
4: for ~centre in centres do
5: qt−1 ← |gridprevious[ ~centre]| . Number of points in grid element in previous epoch
6: qt ← |grid[ ~centre]|
7: if qt−1/|d| < θempty and qt/|d| ≥ θempty then
8: qND ← qt + qND
9: else if qt ≥ θempty then

10: ~bt−1 ← GetBalance(gridprevious[ ~centre])

11: . Class balance ~bt−1 is (
|ct−1

1 |
|ct−1

1 |+...+|ct−1
n | , ...,

|ct−1
n |

|ct−1
1 |+...+|ct−1

n |)

12: ~bt ← GetBalance(grid[ ~centre])
13: if |btci − b

t−1
ci
| > θchange for some class ci then

14: qCF ← qt + qCF

15: Return qND, qCF



3.1. Measuring Concept Drift 41

Dataset Set Num. Class f Grid Drift Class flip
name Size features balance param. Size measure measure
Iris 150 4 0.33/0.67 4 256 47.3% 0.0%
Mushroom 8124 4 0.48/0.52 9 6561 13.4% 2.5%
SEA 60000 3 0.37/0.63 6 216 13.6% 13.6%
STAGGER 120 3 0.44/0.56 6 216 43.3% 29.1%
Hyperplane 1000 2 0.51/0.49 3 9 8.0% 8.0%

Table 3.1: 5 datasets we used our concept drift analysis algorithm on with results in the second
half of the table

3.1.3 Example use of the CDA Algorithm

In real datasets, concept drift can only ever be suspected, as the underlying distribution, or

data-generating process, is often unknown. In artificial datasets however, where concept drift

is purposefully introduced, we have access to the concept drift ground truth so that it is highly

likely that using a forgetting strategy will be advantageous compared to online retraining and

offline learning. We report the results of our concept drift analysis algorithms on 5 different

well-known datasets using k = 3 epochs which can be thought of as segmenting datasets into

training, validation and testing sets and analysing the changes that occur throughout these

learning phases. The dataset characteristics, computed concept drift measures (Drift Measure

in the table) and class flip measures are summarised in Table 3.1 and are discussed in detail

below.

• Iris: the famous Iris flower dataset introduced by Fisher [Fis36, fRAF36], often used in

Hello World machine learning examples. It consists of 3 ∗ 50 instances that belong to one

of 3 different types of Iris flower: Setosa, Virginica and Versicolor. For our experiments

we merged the Virginica and Versicolor sets to have a binary class learning problem. The

data has 4 features, sepal length, sepal width, petal length and petal width. This set is

interesting because it presents a simple learning problem where maximum accuracy can

easily be attained using offline learning i.e. the concept drift present in the set does not

affect performance. Intuitively this is because Iris flower species are a stable concept,

in a given location it is highly likely that all Irises have similar physical characteristics.

While the drift measure is the highest (47.3%) of all considered datasets the class flip
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measure is the lowest (0.0%) confirming the expected outcome. This type of result occurs

when each epoch is an incomplete representation of the full dataset but the full dataset

does not have changing class boundaries that eventually contradict previous instance

classifications. This situation is prone to happen in small datasets such as Iris.

• Mushroom: a popular UCI repository dataset [tNAM81]. It consists of 8124 instances

that correspond to hypothetical samples of 23 different species of gilled mushrooms cat-

egorised into poisonous or edible. We restricted the original dataset to 4 features, odor,

spore-print-color, population and habitat as these are sufficient to discriminate between

the two classes with over 99% accuracy [Sch87]. As in the Iris dataset, the characteristics

of the different types of mushrooms and their poisonousness is assumed to have stayed

the same while the dataset was made, meaning any potential concept drift in the set

should not affect performance. Our results show that, as expected, both the drift and

class flip measures are low (13.4% and 2.5% respectively). We suspect the non-zero class

flip measure is due to a high data density which also required the use of an unusually fine

grid (6561 elements) before the values output by CDA converged.

• SEA: this is one of the most cited datasets in the concept drift literature [SK01, Pec06]. It

is an artificial datasets with 60,000 3-dimensional randomly generated instances in [0, 10]3.

The instances are labelled as belonging to class 1 if the value of feature1 + feature2 < θ

and class 0 otherwise, where θ is an arbitrary threshold. Concept drift is created by

segmenting the data into 4 consecutive blocks (which we call epochs) and changing the

threshold value θ between consecutive data blocks. Interestingly, the value of the drift

measure and the class flip measure are the same (13.6%) meaning that there were no ‘new’

datapoints after the first epoch and that all concept drift was due to class boundaries

contradicting previous point classifications. This makes intuitive sense as the datapoints

were uniformly randomly generated, thus covering the whole space and it is only class

assignments that changed throughout the data.

• STAGGER: this is another emblematic dataset in the concept drift literature [SG86,

WK96, Kun07]. It is an artificial dataset with 120 instances generated over a 3-dimensional
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discrete feature space {small,medium, large} × {red, green, blue} × {square, circular,

triangular}. Similarly to the SEA dataset, concept drift is introduced by generating

instances in the space and changing the label of datapoints as time passes (every 40 in-

stances). For example, points will be labelled as coming from class 1 if they carry the

features small and red in the first 40 instances and 0 otherwise, while in the next 40

instances, points will be classified as coming from class 1 if they carry the features green

or circular. The values of the drift and class flip measures are high (43.3% and 29.1%

respectively) which conforms to our expectations as the epoch segmentation we use in

our concept drift analysis matches the epochs used in the data generation process and

classification rules after each sudden drift are very disconnected (most class 1 instances

from the first epoch will change their class each 40 instances).

• Hyperplane this widely used concept drift dataset is made by uniformly randomly gen-

erating and labelling data in [−1, 1]2 depending on which side of a hyperplane passing

through the origin they fall [Kun07]. Concept drift is generated by gradually rotating the

hyperplane about the origin, thereby changing the class of points close to the hyperplane.

This datasets is in the same situation as the SEA dataset where the drift measure and

class flip measure are the same (8.0%). The absolute value of the measures are relatively

low, probably due to the class balance per grid element being either below or well above

θchange when considered at the epoch level. We predict a number of epochs much larger

than 3, would show the class flip events even more clearly.

These experiments show that datasets crafted to have concept drift that affects learner per-

formance have a higher class flip measure than the Iris and Mushroom datasets which are

popularly considered as ‘concept drift free’ (in the sense that near perfect accuracy can be

obtained with an offline learner). This epitomises the problem with the term concept drift and

shows the importance of decoupling the notions of concept drift and the need to forget. In

all datasets we observe a change in the underlying data distributions throughout the 3 epochs

we consider (leading to non-zero drift measures) but only SEA, STAGGER and Hyperplane

benefit from employing forgetting strategies. As our experiments later show, it is not the drift
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measure which is correlated with the need to forget but the class flip measure. We further

confirm this link in Section 3.3 on the 8 datasets used to benchmark forgetting strategies.

3.1.4 Discussion and limitations

This section presents a simple way of measuring concept drift and estimating whether a forget-

ting strategy, such as windowed learning, is likely to improve performance compared to offline

learning and online retraining on an arbitrary dataset. The proposed concept drift analysis al-

gorithm CDA quantifies concept drift and the need to forget in a learner-independent way and

with an intuitive interpretation, we thus believe it presents an essential tool for practitioners

in the field of mobile context-aware applications as it provides a way to inspect data relating

to an application and know which type learning setting might be appropriate for it.

The proposed methods has, however, certain limitations and areas in which it could be improved

which we list below:

• The method is not parameter free. In practice, 4 parameters need to be set. k,

the number of epochs we segment a dataset into; θempty, the threshold below which we

consider a grid element to be empty; θchange, the threshold over which we consider a class

balance change to occur; and f , the number of segments we split features into. Setting

different values for k, θempty and θchange will change the estimated percentage of points

considered to be affected by concept drift and class flips events. To best compare values

across datasets, a solution would be to keep CDA parameters fixed and to normalise

datasets so that each grid area is of equal n-dimensional volume. For all our experiments,

we used θempty = 0.01 and θchange = 0.08 as we worked with relatively small datasets, and

chose f large enough so that the output for f and f + 1 converged to the same drift and

class flip measure.

• Time and space complexity. The time and space complexities of CDA are both O(fn)

where n is the number of features in a dataset and f the number of partitions each feature

is segmented into. This exponential runtime restricts the use of our method to datasets
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with a small number of features which we assume to be the case for the type of mobile

context-aware applications we are interested in. That being said, the algorithm is meant

to be a pre-processing or data analysis step and thus only needs to be done once for

each dataset and can be done offline. Further, for large and sparse datasets, a different

definition of the areas used by CDA could make CDA scale better.

• Refinements Our approach is novel in that it decouples concept drift and the need to

forget (discard) some parts of a dataset as we argued the former does not always imply

the latter. It makes the assumption that class flip events indicate that the learnt class

boundary no longer corresponds to the optimal one and that in those cases a forgetting

strategy needs to be employed to learn the new boundary. Datasets where class flip events

occurs without the need to forget any data can easily be constructed but we have found

that on our initial test datasets our measure could reliably be used to assess whether a

forgetting strategy should be employed.

It would be interesting to compare our proposed approach with other ways of measuring

changes in data distributio. For instance, the Earth Mover’s Distance [LB01] could be

used instead of our CompareGrids() function (line 13 in Algorithm 1) if the grid was

flattened into normalised 1-dimensional bins. The amount of concept drift could then be

estimated by taking the EMD over all data points between two epochs and the need to

forget by taking the weighted sum of EMDs for each class. This would contrast with our

current approach as it would compute grids level statistic instead of computing statistics

for each element in isolation and combining them.

3.2 Forgetting Strategies

Being able to detect the need to forget certain instances in a sequential learning setting naturally

leads to the question of finding the right forgetting strategy for a given dataset.

Forgetting Strategy

A forgetting strategy is a dynamic training set formation algorithm achieved by selecting subsets
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of training instances for online learning. The datapoints from the overall available training set

which are not used as part of the current training subset to make predictions are said to be

forgotten. The most common forgetting strategy is windowed learning where the most recent n

instances corresponding to the window size are selected regardless of the current testing point.

Intelligent systems have one fundamental property that must be considered when choosing

a forgetting strategy. Not only must an application be able to adapt to sudden changes in

user behaviour affecting a large number of instances thereby radically changing current class

boundaries, but it must also be capable of handling isolated changes of existing habits and

creation of new habits that only affect class boundaries locally. Going back to the Disruptive

Smartphone Notification application, if a user changes his schedule, rules for the affected days

will have to be re-learned (and also potentially other days collaterally) while visiting a new

location might only affect future instances connected to that location without changing the

current underlying rules.

We thus need forgetting strategies that do not assume anything about the nature of concept

drifts and that are able to handle local concept drift. We also add the requirement that

the forgetting strategies be learner independent as an application might require a specific type

of learner, a computationally efficient black-box learner or a logic based learner that outputs

human readable rules for instance.

Local concept drift is a very little studied field, notable exceptions being [DCTC05, TPCP06b,

TPCP08, Zli09, Zli10]. It is usually only recognised implicitly when instance based learning is

shown to better cope with concept drift than learners that use training windows. Email spam

filtering is the prototypical example of this where new types of spam such as ’Win tickets to the

Champions League’ will suddenly appear and disappear independently of online casino spam,

that is constantly being disseminated.

Local concept drift was first formally defined in Tsymbal et al. in [TPCP08] and our definition

of it is a rephrasing of the original, relaxing the constraint that t and t′ are consecutive time

points.
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Local Concept Drift

Local concept drift occurs between two time points t and t′ if classification boundaries between

the two times remain stable except in one area where the class boundary of t′ contradicts

previous instance classifications.

The notion of local concept drift is important because by and large most learner indepen-

dent concept drift adaptation techniques (discussed in Section 2.2.3) assume that concept drift

equally affects the entire data space. This translates into discarding of all old data points in

the case of adaptive-size windowed learning and all outdated or under performing base learners

in ensemble learning approaches. Omitting the possibility of local drift thus means infrequent

patterns will periodically be unlearned as old data is indiscriminately discarded either directly

or indirectly. In mobile context-aware applications this is especially undesirable as lesser fre-

quent patterns might be the ones that have the highest cost when misclassified. In a Disruptive

Smartphone Notifications application, if a user receives disruptive PPI spam1 related text mes-

sages every 3 months they will want these correctly classified as such regardless of how many

new contexts they experience in the mean time for instance.

To the best of our knowledge the only learner independent adaptation techniques that were

designed to handle local concept drift are Dynamic Integration of Classifiers (DIOC) [TPCP06b,

TPCP08] and the uniFied Instance Selection algoritHm (FISH) [Zli09, Zli10] which we now

present before proposing our own strategies.

3.2.1 Existing strategies

The notion of forgetting strategy is never explicitly used in the literature although it forms the

basis of most concept drift adaptation algorithms. We believe this way of approaching concept

drift is useful in mobile context-aware applications as it intuitively links to the need to forget

no-longer-accurate user behaviour patterns and also clarifies the amalgam between concept

drift and the need to forget as explained in Section 3.1. While some forgetting strategies are

straightforward: discard data older than the n-th most recent instance in the case of windowed

1Payment Protection Insurance



48 Chapter 3. Measuring Concept Drift and Forgetting Strategies

learning, some are more indirect: ignore data used to train a base learner not participating in

the current prediction in the case of an ensemble.

Dynamic Integration of Classifiers (DIOC)

Dynamic integration of classifiers in an ensemble means that the voting weights of base classifiers

are reevaluated for each test instance ~xi. In DIOC, the weights depend on the local performance

of base classifiers on the k nearest neighbours of ~xi in a validation set; it fits into the Fusion rules

of the ensembles category of the taxonomy discussed in Section 2.2.3. In its prediction phase

(Algorithm 7) local concept drift is thus accounted for by only using those base classifiers, and

hence those training instances, which are thought to be locally optimal to predict ~xi. Algorithm

6 and 8 show what DIOC does during the training and update phases of sequential learning

and all three algorithms are discussed below.

Algorithm 6 Dynamic Integration of Classifiers algorithm training algorithm

1: procedure DIOCtrain(trainingSet, chunkSize, baseClassifier)
2: Initialise ensemble← {}
3: validationSet← Queue(chunkSize) . An empty queue of size chunkSize
4: Divide trainingSet into chunks of size chunkSize . chunks is a list of lists
5: for chunk in chunks do
6: ensemble← Append(ensemble, baseClassifier.train(chunk))
7: . Add new baseClassifier instance to ensemble

8: validationSet← chunks[end] . the last chunk of data

Algorithm 7 Dynamic Integration of Classifiers algorithm prediction algorithm. Returns the
predicted label for input ~x

1: procedure DIOCpredict(~x, k,NearestNeighbours(),GetPerformances(),Vote())
2: neighbours← NearestNeighbours(validationSet, ~x, k)
3: . validationSet from DIOCtrain()
4: bCperfs← GetPerformances(ensemble, neighbours)
5: . ensemble from DIOCtrain()
6: label← Vote(~x, bCperfs)
7: Return label

The DIOC training algorithm takes 3 parameters: trainingSet, the training set; chunkSize the

size of each base learner’s training set; baseClassifier, a base classifier class. This algorithm is

similar to any ensemble learner’s training phase with the exception of the validationSet which

is used to find a test instance’s nearest neighbours later on.
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Algorithm 8 Dynamic Integration of Classifiers algorithm update algorithm called after a
prediction is made

1: procedure DIOCupdate(~x, groundTruth,maxEnsembleSize,DiscardWeakest())
2: validationSet← Add(validationsSet, ~x, groundTruth)
3: . validationSet from DIOCtrain()
4: every chunkSize iterations do
5: ensemble← Add(ensemble, baseClassifier.train(validationSet))
6: . baseClassifier defined in DIOCtrain()
7: if Size(ensemble) > maxEnsembleSize then
8: ensemble← DiscardWeakest(ensemble)

The DIOC prediction algorithm is where the approach differentiates itself from other ensemble

learning techniques. It takes 5 parameters: ~x the test input to predict; k, the number of

neighbours we assess base classifiers’ performance on; nearestNeighbours(point,k), a function to

be called on a queue returning the k nearest neighbours of point in it; getPerformances(points)

a function to be called on an ensemble returning bCPerfs a list of its base classifiers and

their performance on points; vote(point,bCPerfs) a function that returns the predicted label

of point based on bCPerfs and the voting strategy it implements. The 3 crucial choices for a

practitioner are:

• A distance measure for NearestNeighbours(). In mobile context-aware applica-

tions data is likely to have a mix of categorical and numerical features which makes the

notion of distance between two instances unclear. In [TPCP08], Tsymbal et al. propose

to use the Heterogeneous Euclidean/Overlap Metric (HEOM) from [WM97].

dHEOM(~a,~b) =

√
Σn
i=1 HEOMi(~a,~b)2 (3.1)

HEOMi(~a,~b) =


0 if feature i is categorical and ai = bi

1 if feature i is categorical and ai 6= bi

|ai−bi|
rangei

else

(3.2)

where n is the number of features and ~ai denotes the values of the i-th feature of ~a
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• A performance measure for GetPerformances(). The performance measure pro-

posed by the authors to compute the weight w of a base learner over the k-neighbourhood

of ~xi is:

w(~xi) = Σk
j=1σ(~xi, ~xj)c(~xj)/Σ

k
j=1σ(~xi, ~xj) (3.3)

c(~xj) =


1 if the learner’s prediction was correct for ~xj

−1 else

σ(~xi, ~xj) = 1/dHEOM(~xi, ~xj) (3.4)

w thus takes into account the number of correct and incorrect prediction for a learner close

to ~xi with the c(~xj) function and advantages learners that perform well in the immediate

neighbourhood of ~xi.

• A voting strategy for Vote(). Tsymbal et al. compare 3 voting strategies. Dynamic

Selection: select the base classifier with highest w to predict ~xi’s label. Dynamic Voting:

sum the weights of base classifiers for each predicted class and predict the class with

largest sum of weights. Dynamic Voting with Selection: do the same as Dynamic Voting

but only take into account the weights that are over the median weight. We note that

the most recent base classifier in an ensemble was trained with much of the validationSet

used to compute it’s local performance which might lead to a bias in favour of it.

The DIOC update algorithm takes 4 parameters: ~x, a datapoint; groundTruth its label,

maxEnsembleSize the maximum size of the ensemble; DiscardWeakest() a function to

be called on an ensemble removing one of its base classifier according to some criteria. Tsym-

bal et al. discard the classifier with smallest w according on the current validationSet.

The authors report that Dynamic Selection performs the best, with DVS coming in close second,
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on the datasets they consider: SEA, Hyperplane (see Section 3.1.3) and a private antibiotic

resistance dataset. In the rest of this thesis, when we refer to DIOC we speak of the above

mentioned algorithm with Dynamic Selection as the Vote() function in Algorithm 7.

Unified Instance Selection Algorithm (FISH)

The uniFied Instance Selection algoritHm is not a forgetting strategy per se as it never perma-

nently discards data, rather, it dynamical forgets and ‘unforgets’ subsets of training instances

to maximise prediction performance for each test instance ~xi. FISH has 3 variants FISH1,

FISH2 and FISH3 and fits into the adaptive training set formation category of the taxonomy

presented in Section 2.2.3. The idea behind FISH is to dynamically construct a fixed-sized

training window to make a prediction for each ~xi. The training window is made by combining

the training instances that are closest in time and closest in space to ~xi, thereby addressing the

problem of local concept drift. Instances are selected based on the distance measure shown in

equation 3.5 where αt and αs are used to trade off contemporariness dt and spacial proximity

ds of points. For instance, if αt and αs are equal, points in the training window will be selected

if they are somewhat contemporary with ~xi, if they are somewhat close in space according to a

chosen distance function or if they are very close in time regardless of how far they are spatially

and very close in space regardless of how old they are compared to ~xi.

D(~a,~b) = αtdt(~a,~b) + αsds(~a,~b), αt, αs ∈ [0, 1], αt + αs = 1 (3.5)

The variants of FISH differentiate themselves in their prediction function. The one for FISH1

is shown in Algorithm 9. FISH2 is identical to FISH1 except for an extra step where multiple

training window sizes are tried so that lines 7 to 8 from Algorithm 10 become part of a loop over

window size candidates. The window size with highest cross-validation performance is kept to

make the final prediction. FISH3 extends FISH2 by adding yet another for loop where a range

of αt and αs are tried equivalent to FISH2 becoming part of a loop over all weight candidates.

Because we choose not to recompute hyperparameters beyond an initial validation step for other
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Algorithm 9 FISH1 training phase

1: procedure FISH1train(trainingSet)
2: allT rainingData← trainingSet . Initialise

Algorithm 10 FISH1 prediction phase. Returns the predicted label for input ~x

1: procedure FISH1predict(~x, winSize, αt, αs, baseClassifier,Distancet(),Distances())
2: distances← [ ]
3: for ~point in allT rainingData do
4: tempdistance ← αtDistancet(~x, ~point) + αsDistances(~x, ~point) . Equation 3.5
5: distances← Append(distances, tempdistance)

6: Sort(distances) . assume ordered by increasing distances
7: trainingData← distances[0, winSize]
8: baseClassifier.train(trainingSet)
9: label← baseClassifier.predict(~x)
10: Return label

forgetting strategies in our benchmarks of Section 3.4, we select FISH1 as the FISH forgetting

strategy representative which we refer to as FISH from now on.

The FISH training algorithm takes 1 parameter: trainingSet, the training set which becomes

the initial pool of points used to construct training windows.

The FISH prediction algorithm takes 5 parameters: ~x the test input to predict; winSize, the

size of the dynamically formed training window; αt the time distance weight from Equation 3.5;

αs the spacial distance weight from Equation 3.5; baseClassifier the classifier used to make

predictions; distancet(pointa,pointb) a function that returns the time distance between 2

points; distances(pointa,pointb) a function that returns the spacial distance between 2 points;

In [Zli09, Zli10] Žliobaitė uses distancet = |i− j| as the distance in time between the i-th and

j-th instances and chooses the euclidian distance for distances. We note that all distances

are normalised to fall in [0, 1] and make αt and αs comparable across datasets.

The FISH update algorithm takes 2 parameters: ~x, a datapoint; groundTruth its label. The

function simply adds these to the pool of available training data.

Algorithm 11 FISH1 update phase called after a prediction is made

1: procedure FISH1update(~x, groundTruth,maxEnsembleSize,DiscardWeakest())
2: allT rainingData← add(allT rainingData, ~x, groundTruth)
3: . allT rainingData from FISH1train()
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3.2.2 Proposed Strategies

Historically, most forgetting strategies are based on a single training window which forgets

points in a time-linear FIFO fashion. We view these as eager forgetting strategies as they

do not consider the possibility that some ‘old’ data might still be useful for future predictions

and are indiscriminately discarded. The DIOC algorithm is interesting because it introduces

the idea that distinct training windows might be optimal for specific areas of the input space,

albeit indirectly, showing different base classifiers are optimal in different areas of the data

space. FISH continues in this direction by introducing the idea that not only do different areas

in the data space require different training instances but that these need not all have the same

age i.e. ‘old’ instances can be relevant for future predictions if they are close enough in space to

a test point. To the best of our knowledge, FISH was the first algorithm to explicitly combine

spacial and time distances to dynamically form a unique training window for each test input.

While the edge cases of FISH have an intuitive interpretation: a heavy weight αt for the time

component makes FISH a classic windowed learning strategy, conversely, a heavy weight αs

for the spacial distance component turns FISH into a nearest-neighbour Case Based Reasoning

strategy, the intermediate cases are more difficult to rationalise. In general, a FISH training

window will include instances that are close in time but far away in input space from the

current test point ~xi, instances that are close in space but of a very different age and points

that are somewhat close in time and and somewhat close in space. In Žliobaitė’ [Zli10], only 1

(the Vote dataset) out of the 6 datasets used to benchmark FISH had α weights that weren’t

heavily skewed either toward space or time, hinting there might be better ways to leverage both

dimensions. We thus propose to combine time and space using the idea of local forgetting.

The idea of local forgetting is to only discard data if it can be replaced by newer instances

covering the same concept. We propose 2 algorithms implementing this strategy, Training

Grid and Training Clusters, which both spatially segment the data space and hold a fixed

sized training window for each area. As new training points are made available to the learner

in the update phase of sequential learning, they get assigned to a training window which might

cause the oldest point from the window to be discarded if the window is at capacity. This allows
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for local changes in patterns while preserving the knowledge of less frequently updated areas

and also accommodates total concept drift, in which case all areas of the data space would be

updated within a short time interval.

The Training Grid and Training Clusters algorithms are part of the Adaptive training set forma-

tion category of the taxonomy presented in Section 2.2.3. They are blind, learner-independent

adaptation techniques [GvB+14], meaning they are always active and always build training sets

in the same way regardless of concept drift type or intensity, and can be used with any learner,

addressing the requirements set in Section 3.2

Training Grid Algorithm (TG)

Our Training Grid algorithm segments the data space in the same way as our concept drift

analysis algorithm from Section 3.1.2. It takes a parameter f to specify the number of segments

each feature should be split into and uses the same MakeGrid() function to initialise the grid

used to keep the local training windows. The core idea is to keep independent local training

windows that get populated as new training instances are made available in the update phase

of the sequential learning process. Each new training point is assigned to the unique grid

element that has its centre closest to it, so that each training window contains increasingly

recent points although these will not come from a time continuous chunk of the overall training

data in general. The forgetting strategy is illustrated in Figure 3.4. The TG prediction phase

shown in Algorithm 14 can be used in two different ways. TG can either be used to train a base

classifier using the window belonging to the grid element the current test point ~xi belongs to or

using the union of points across all training windows. The former could be called local training

reminiscent of Case Based Reasoning, while the latter can be used in inductive learning where

a classifier generalises from locally updated training instances.

Algorithm 12 Training Grid training phase

1: procedure TGtrain(trainingSet, f, winSize,Distance())
2: grid, centres← makeGrid(trainingSet, f)
3: . Initialise using Algorithm 2 from Section 3.1.2
4: grid← TGinsert(grid, trainingSet, centres, winSize,Distance())
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Figure 3.4: A 2-dimensional example of the Training Grid adaptive training set formation algo-
rithm. Gi denotes grid elements that segment the data space and wi denotes the corresponding
training window each of size 4.

Algorithm 13 Inserts data d into the grid the function was called upon

1: procedure TGinsert(grid, d, centres, winSize,Distance())

2: for ~datum in d do
3: ~target← argmincentredistance( ~datum, centre) . Find closest grid element centre

4: grid[ ~target]← Append(grid[ ~target], ~datum)
5: if Size(grid[ ~target]) > winSize then
6: grid[ ~target]← RemoveHead(grid[ ~target])
7: . Remove oldest element from local training window

Return grid

Algorithm 14 Training Grid prediction phase. Returns the predicted label for input ~x

1: procedure TGpredict(~x, trainLocal, baseClassifier)
2: if trainLocal then
3: ~target← argmincentredistance(~x, centre)
4: . Find closest grid element centre, centres and Distance() from TGtrain()
5: trainingSet← grid[ ~target]
6: else
7: trainingSet← ∪centregrid[ ~centre]
8: . Gather all grid points, centres from TGtrain()

9: baseClassifier.train(trainingSet)
10: label← baseClassifier.predict(~x)
11: Return label
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Algorithm 15 Training Grid update phase called after a prediction is made

1: procedure TGupdate(~x, groundTruth)
2: grid← TGinsert(grid, [~x, groundTruth], centres, winSize,Distance())
3: . centres, winSize and Distance() from TGtrain()

The TG training algorithm TGtrain() takes 4 parameters: trainingSet, the training set ; f ,

the number of segments we split features into; winSize, the size of each grid element’s training

window; distance(pointa, pointb), a distance function to compute distances from training and

testing points to grid centres. This algorithm sets up the actual training grid and populates

local training windows with the initial trainingSet. In our case we use the Euclidian distance.

The TG prediction TGpredict() algorithm takes 3 parameters: ~x the test input to predict;

trainLocal, a boolean specifying whether the training set will be made of a single training

window — the one attached to the grid element ~xi belongs to — or the union of all training

windows in case it is set to False; baseClassifier the classifier used to make predictions;

The TG update TGupdate() algorithm takes 2 parameter: ~x, a datapoint; groundTruth its

label. The function simply inserts these into the training grid.

Training Clusters (TC) Algorithm

Our Training Clusters algorithm resembles the TG algorithm except in the way areas are defined

in data space. Instead of having regularly spaced areas of identical n-dimensional volume, TC

associates training windows to an arbitrary number of density-based clusters. The f parameter

from TG is thus replaced by ε and θpts, the maximum cluster point distance threshold and

the minimum cluster size of the DBSCAN algorithm [EKSX96] used to form clusters. The

use of clusters is a natural solution to the data sparsity and fused pattern problems TG can

face. If data is sparse, many of the grid elements TG creates, and later on loops over, will

remain empty throughout learning. Using density-based clustering ensures we only focus on

areas which are populated with data and do not create useless training windows. Further, it

can be the case that two patterns find themselves in the the same grid element when using

TG. This makes it impossible to update them independently from each other, while if the two
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patterns can be separated into instance clusters, TC overcomes this issue. The TC forgetting

strategy is illustrated in Figure 3.5, and just like TG, the prediction phase of TC shown in

Algorithm 18 can be done using a single local training window or the union of points available

across all training windows.
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Figure 3.5: A 2-dimensional example of the Training Clusters adaptive training set formation
algorithm. Ci denotes clusters that segment the data space and wi denotes the corresponding
training window.

Algorithm 16 Training Clusters training phase

1: procedure TCtrain(trainingSet, ε, θpts, winSize,Distance())
2: centroids← {} . Initialise
3: clusters← [ ] . Initialise
4: trainingSetClustering ← DBSCAN(trainingSet, ε, θpts) . Initialise
5: for clusterP ts in trainingSetClustering do
6: . clusterP ts holds the set of points for each cluster
7: tempcentroid ←Mean(clusterP ts) . Compute the cluster’s centroid
8: centroids← Add(centroids, tempcentroid)

9: clusters← TCinsert(clusters, trainingSet, centroids, winSize,Distance())

The TC training algorithm TCtrain() takes 5 parameters: trainingSet, the training set ;

ε, the maximum cluster point distance threshold for DBSCAN; θpts, the minimum cluster size

for DBSCAN; winSize, the size of each cluster’s training window; distance(pointa, pointb), a

distance function to compute distances from training and testing points to cluster centroids. In

our case we use the Euclidian distance. This algorithm thus uses DBSCAN to compute clusters
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Algorithm 17 Inserts data d into the training windows attached to the clusters the function
was called upon

1: procedure TCinsert(clusters, d, centroids, winSize,Distance())

2: for ~datum in d do
3: ~target← argmincentroiddistance( ~datum, centroid)
4: . Find closest cluster centroid
5: clusters[ ~target]← Append(clusters[ ~target], ~datum)
6: if Size(clusters[ ~target]) > winSize then
7: clusters[ ~target]← RemoveHead(clusters[ ~target])
8: . Remove oldest element from local training window

9: Return clusters

Algorithm 18 Training Clusters prediction phase. Returns the predicted label for input ~x

1: procedure TCpredict(~x, trainLocal, baseClassifier)
2: if trainLocal then
3: ~target← argmincentroiddistance(~x, centroid)
4: . Find closest cluster centroid, centroids and Distance() from TCtrain()
5: trainingSet← clusters[ ~target]
6: else
7: trainingSet← ∪centreclusters[ ~centre]
8: . gather all cluster points, centres from TCtrain()

9: baseClassifier.train(trainingSet)
10: label← baseClassifier.predict(~x)
11: Return label

Algorithm 19 Training Clusters update phase called after a prediction is made

1: procedure TCupdate(~x, groundTruth)
2: clusters← TCinsert(clusters, [~x, groundTruth], centroids, winSize,Distance())
3: . centroids, winSize and Distance() from TGtrain()
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on the trainingSet. Although DBSCAN is not a centroid based algorithm, for simplicity, we

assume minimum distance to a cluster’s centre is equivalent to cluster membership which need

not always be the case in practice.

The TC prediction TCpredict() algorithm takes 3 parameters: ~x the test input to predict;

trainLocal, a boolean specifying whether the training set will be made of a single training

window associated with the cluster ~xi belongs to or the union of all training windows in case

it is set to False; baseClassifier the classifier used to make predictions;

The TG update TCupdate() algorithm takes 2 parameter: ~x, a datapoint; groundTruth its

label. The function simply inserts these into the correct cluster training window.

3.2.3 Discussion and Limitations

This section gathers 4 forgetting strategies which each have their own intuition. From a train-

ing set formation perspective, DIOC makes predictions either by gathering a chunk of time

continuous instances leading to the the highest validation performance in the neighbourhood

of the current test point ~xi or by weighting different sets of time continuous instances based on

their associated local performance, depending on the chosen ensemble voting strategy. FISH

gathers training instances that are contemporary with and close in space to ~xi while TG and

TC can be used in two different ways. Either locally, by making predictions based on the most

recent instances in the neighbourhood of ~xi, or globally, by gathering the most recent training

instances in all areas of the data space, the only difference being in the way areas are defined

in TC and TG.

The limitations of DIOC come from the fact it is an ensemble learning method. It is computa-

tionally expensive and data-hungry so that it is more adapted to stream learning. Its underlying

forgetting strategy is also less flexible than the other 3 strategies as the time continuous chunks

of training data it uses to train base classifiers are mutually exclusive. If only half the instances

of a training chunk are ‘outdated’ and need to be forgotten (discarded), the other ‘healthy’ half

will be forgotten at the same time when a base classifier is replaced.
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FISH offers a more flexible approach as it considers instances one-by-one when making a train-

ing set. Further, by setting hyperparameters accordingly, FISH can be shifted toward acting

as a classic training window forgetting strategy or a nearest neighbour CBR algorithm. It is

important that more complex forgetting strategies also include simple existing strategies as

a special case of their expression as these are sometimes optimal as we show in Section 3.4.

The limitation of FISH appeared in our experiments where many times the best optimal hy-

perparameters were the ones that made it into a classic windowed learner. FISH also never

permanently discards datapoints so that points that become noisy during the testing phase

might still be used to make predictions if they are close enough to the current test point ~xi.

The TG and TC algorithms were designed to keep the flexibility of FISH but change the way

time and distance are combined and allow local predictions like DIOC. They also have the de-

sirable property that online retraining, window learning and nearest neighbour CBR are special

instances of their expression. Online retraining is achieved by using local or global training with

infinite size training windows. Windowed learning is achieved using a single area (grid element

or cluster) regardless of local or global training and nearest neighbour CBR is achieved using

local training.

The limitations of TG and TC are computational, each time a new training instance is available

the base learner must be fully retrained, and a large grid size in TG or number of clusters in

TC also leads to slow computation times. In the case of mobile context-aware applications, this

is less of a problem as we aim to be data-efficient rather than computation-efficient because of

our assumption that new ground truth data is only infrequently available due to the high cost

of labelling. In practice, because of the extra parameter needed by TC to segment data space

into clusters validation will take longer than for TG. This is then made up for during learning

where TG can be slower due to the number of empty grid elements it has to loop over that do

not exist in the cluster based data partition.
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3.2.4 Potential Improvements and Future Directions

The proposed TG and TC algorithms are the simplest version of an entire family of algorithms

leveraging the idea of local forgetting. Similar to the relationship between FISH1, FISH2 and

FISH3, TG and TC could be refined by allowing periodic retuning of hyperparameters. For

instance, the local training window sizes could be recomputed every so often by validation on

recently acquired training data. In fact, training windows need not all be of equal size they

could also be proportional to the number of points in the associated area.

While one can think of refining the TG and TC forgetting strategies, other forgetting strategies

could also be developed. For instance, given a function that computes the area an instance

covers, a forgetting strategy could be to formulate a set cover instance problem and use the

cover with the least aggregate instance age as a training set.

3.3 Evaluating the Performance of Learners in Mobile

Context-aware Applications

nThe final step before we can compare forgetting strategies is to choose a performance measure

pertinent to mobile context-aware applications. Accuracy and the related recall, precision

and f -measures are perhaps the most popular performance measures in the context-aware

systems literature but we argue that they are not adapted to the field. In mobile context-

aware applications, there is often a dominant class leading to unbalanced datasets. In the case

of Disruptive Smartphone Notifications we’ve experimentally confirmed that a person typically

receives many more wanted calls than unwanted calls for instance. The problem with using recall

and precision related measures in an unbalanced dataset is that high values can be achieved

by always predicting the class recall and precision are considered over or always predicting the

majority class in the case of accuracy.

Performance measures that alleviate this problem such as the the Matthews correlation coeffi-

cient [Mat75] have been developed to this end, but most do no take into account the asymmetric
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costs of misclassifying instances of different classes. Continuing with our example of disruptive

smartphone notifications, it has been shown that users are dissimilar in the way they rate their

interruptibility [FS11, FHA+05, KS06, KC05, RDV11] so that, for instance, some users will

associate a high cost for being disturbed by an unwanted incoming call even though it is the

minority class [KH07].

Dataset unbalance and asymmetric cost of misclassification thus have to be accounted for in the

target performance measure. While it is tempting to use the Area Under the Receiver Operating

Characteristic curve (AUC) for this, it has recently been shown to be an incoherent performance

measure because its value depends on the classifier itself and thus cannot be soundly compared

across learners [Han09]. The proposed coherent replacement, the H measure, requires class

misclassification costs to be specified via a beta distribution, which makes it difficult to use

from an HCI perspective. On the grounds of simplicity, we propose to use a weighted accuracy

measure Aw which encompasses class imbalance and user preferences in a single parameter w.

3.3.1 Weighted Accuracy Measure

In binary classification problems, our weighted accuracy measure Aw gives a way to express the

preference, or importance, of the positive class c+ being correctly predicted compared to the

negative class c− based on the parameter w. Formally Aw is defined in Equation 3.6

w =
c+ weight

c− weight
∈ [0,∞)

Aw =
w ∗ TP + TN

w ∗ (TP + FN) + TN + FP

=
w ∗ recall ∗ |c+|+ specificity ∗ |c−|

w ∗ |c+|+ |c−|
(3.6)

Where TP, TN are the number of correctly predicted c+, c− instances respectively and FN,FP
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the number of incorrectly predicted c+, c− instances respectively. We constrain the c+ weight

to be in [0,∞) and the c− weight to be in (0,∞). |c+| and |c−| denote the number of instances

in each class. Intuitively, Aw artificially grows or diminishes the number of instances from

the positive class c+ proportionally to w while keeping the recall, or performance on class c+,

fixed before computing the standard accuracy measure thereby emphasising or playing down

the importance of correctly predicting the c+ class. Going back to the example of disruptive

smartphone notifications from Section 1.1, setting c+ to be non-disruptive notifications and

c− to be disruptive ones, w > 1 would apply to individuals that prefer to be interrupted by

some unimportant notifications to avoid missing important ones while w < 1 indicates that a

user prefers to miss some important notifications instead of accidentally being interrupted by

unimportant ones. The weighted accuracy measure has the nice property that setting w = 1

yields the well-known accuracy measure that weights performance on both classes equally.

3.3.2 Discussion

The immediate consequence of using a cost sensitive performance measure is the need to use

cost sensitive learners so that their internal objective function is coherent with the function

their performance is being judged by. While some learners can naturally be made cost sensitive

(such as SVMs by setting the misclassification penalty for each class accordingly), in others,

cost-sensitivity is less straightforward like in a Logistic Regression classifier. In the latter case,

undersampling of a low weight majority class or oversampling of high weight minority class can

be used to make any classifier cost sensitive.

While weighted accuracy gives us a mechanism to take into account different user preferences,

an important question remains: how can we know a w for a specific user? This is an HCI issue

and somewhat outside the scope of this thesis. However, it poses an even greater one: is it at

all possible to reduce an individual’s experienced performance into a single number i.e. what

does 80% accuracy feel like, is it enough? Paul Lukowicz once commented that “in HCI it’s

not the number of mistakes that counts, it’s about the acceptance of them by the user. If a

smartphone app fails to react in the way I want it to in exceptional situations I might tolerate
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the mistakes, while if it repeatedly fails on a common task I might feel it doesn’t work”2. One

can argue, the ultimate true, but indirect, performance measure for a mobile context-aware

application is the percentage of users that keep on using the application after being introduced

to it.

3.4 Experiments

In the previous sections we presented a method to quantify a dataset’s concept drift and need

to forget ageing instances, a set of 4 forgetting strategies to tackle the problem of local concept

drift and defined weighted accuracy as a suitable performance measure for such applications.

We are now ready to run experiments and benchmark the strategies.

To verify the hypothesis that local forgetting is necessary in mobile context-aware applications

we must move away from artificial datasets that are usually used in concept drift research.

Longitudinal real datasets are rare because of the time it takes to gather the data and the cost

of associated with manually labelling it — this issue is further discussed in Chapter 4. The

8 datasets we run experiments on in this chapter were chosen either because they are related

to mobile context-aware applications, present interesting concept drift properties or because

they have previously been used in concept drift research with published results we can easily

compare our methods to.

This section studies the evolution of a single Aw performance measure for each dataset using

a moving average performance window to understand the relative strengths and weaknesses of

forgetting strategies when faced with concept drift as time goes by. Later, Chapter 4 studies

each strategy’s performance in different user preference scenarios by benchmarking them over

a range of w parameters for a given dataset.

2Private communication
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Set Set Time Num. Class Data f Grid Drift Class flip
name Size span feats. balance type param. Size measure measure
Olympics 8619 12y 1 0.56/0.44 real 10 10 6.4% 6.4%
Artificial6 400 N/A 2 0.50/0.50 artif. 9 81 47.5% 31.7%

Ž-elec 2956 3m 7 0.57/0.43 real 4 16389 51.2% 26.3%

Ž-luxem 1901 5y 9 0.51/0.49 real 2 512 5.8% 0.0%
Twitter-activ 2735 7y3m 2 0.57/0.43 real 9 81 57.1% 57.1%
Twitter-times 4722 6y4m 4 0.43/0.57 real 5 625 64.3% 6.3%
Sleep-dur 289 9.5m 3 0.51/0.49 real 8 512 64.7 % 14.1%
Sleep-time 867 9.5m 3 0.27/0.73 real 8 512 64.1% 13.2%

Table 3.2: Summary of the 8 datasets used in our experiments. Concept drift analysis (right-
hand side of table) was made as described in Section 3.1

3.4.1 Datasets

We now present and explain our choice of datasets used to initially benchmark forgetting

strategies. Their properties are summarised in Table 3.2.

• Olympics: this is the first dataset we use to present and discuss our experiments. The

dataset is assembled from real raw data and will be used to exemplify how local concept

drift might manifest itself in certain real datasets. It has 8619 single dimensional instances

representing the age of athletes in all Olympic games from 2000 to 2012, it is freely

available [Ref15]. The aim is to predict whether an athlete’s age is under (class c+) or

over (class c−) the mean age of athletes for that year’s Olympic game. Concept drift is

known to occur because the year of the competition is not included in the feature set and

is the hidden context that produces the concept drift. The dataset was chosen as it is a

longitudinal real dataset, known to have concept drift that requires certain instances to

be discarded at various times during learning.

• Artificial6: this is the second dataset we use for a detailed discussion of experiment

results. The dataset is artificial (the only artificial dataset we use in this thesis) and has

400 2−dimensional instances. The aim is to predict whether points belong to class c+

(coloured in orange) or class c− (coloured in blue) in [−2, 2]2. Concept drift is known to

occur as we had total control over the data generation process. We created this set to
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show the effects of patterns locally and independently drifting in a dataset and highlight

the shortcoming of existing forgetting strategies in such cases.

• Ž-elec: this is the same dataset used by Žliobaite in her thesis. It has 2956 instances

gathered between May and July 1997 (subset of a larger set of 45,312 instances gathered

over 2 years [HW99]). The aim is to predict whether eletricity prices have gone up (class

c−) or down (class c+) compared to the average price for the last 24 hours in a region

of Australia. There are 6 features: day of the week, time, demand in region, price in

neighbouring region, demand in neighbouring region and scheduled energy transfer between

regions. Concept drift is suspected to occur because electricity prices tend to change as

time goes by. The dataset was chosen because it has been used in approximately 40 other

published works and has recently shown to have a very simple optimal forgetting strategy:

an A1 of ∼85% can be obtained by using a training window of size 2 because consecutive

instances are autocorrelated [Zli13].

• Ž-luxem: this is also a set used by Žliobaite in her thesis. It has 1901 instances gathered

between 2002 and 2007 gathered from a European Social Survey [JtCCT07, Zli09]. The

aim is to predict whether a person is a heavy (class c+) or low (class c−) internet user.

Originally there are 20 features, but we restrict ourselves to 9 features that can still be

used to achieve an A1 close to 100% (for computation time reasons): country, watches

TV?, average num. hours TV watched per week, reads newspapers?, average num. hours

newspapers read per week, trust in the European Parliament, trust in the United Nations,

signed a petition in the last 12 months? and average number of social meetings with friends

per week. Concept drift is suspected to occur because Internet penetration increased

between 2002 and 2007 and usage patterns are thus also suspected to have changed. The

dataset was chosen because our concept drift analysis shows that there is indeed concept

drift but no class flip events, meaning that no forgetting strategy should be needed and

online retraining should be sufficient to reach high performance.

• Twitter-activ: this set was made using the Twitter feed, available through the Twitter

API, of Noah Glass one of the Twitter founders [Gla15]. It has 2735 instances and spans
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over 7 years. Each instance corresponds to a day and the aim is to predict whether a given

day will be an active tweet day (class c−) or not (class c+), we define an active tweet day

to be a day where a user created a number of tweets greater than the daily average for

the month it belongs to. There are 2 features: month and day. Concept drift is suspected

to occur because users can potentially change their Twitter habits throughout the years.

The dataset was chosen because it is a recorded human behaviour over a long period of

time and Twitter activity could easily be part of a mobile context-aware application.

• Twitter-times: this set was gathered in the same way as Twitter-activ but over a

different Twitter founder, Christopher Stone [Sto15]. It has 4722 instances made by

splitting each day in the 6+ years it spans into morning (before 12pm) and afternoon

(12pm onwards) periods. The aim is to predict whether the user will tweet (class c−) or

not (class c+) for a given day and period. There are 4 features: year, month, day and

period. Concept drift is suspected to occur for the same reason as in Twitter-activ. The

set was chosen because it is an example of total concept drift so that windowed learning

should be the best forgetting strategy.

• Sleep-dur: this set was made using the HedgeHog open sensor platform [fTD15] in

the context of sleep tracking research. The data was gathered over a period of 9 and

half months using a watch case for the sensor that was constantly worn by a subject

[BVL12, ds15]. In this learning task, the data is separated into days yielding 289 instances

and the aim is to predict whether a person will sleep in (class c−) or not (class c+) (sleep

longer than their mean sleep time over the whole dataset or not). There are 3 features:

month, day of the week and bedtime for that day. Concept drift is suspected to occur

because of the natural variability in a person’s sleep patterns. This set was chosen because

it could easily be part of a sleep tracking mobile context-aware application.

• Sleep-time: this set was made from the same raw data as Sleep-dur. It has 867 instances

made by splitting each day into 3 time blocks. The aim is to predict whether a person is

sleeping (class c+) or awake (class c−) at the time corresponding to the instance’s time

block: 9pm, 10pm or 11pm, i.e. while in Sleep-dur we try to predict if a person will sleep
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a lot on a given day, in Sleep-time we try to predict when they will fall asleep. There are

3 features: month, day of the week and time block. Concept drift is suspected to occur

for the same reason as in Sleep-dur and the set was chosen for the same reason.

We now go through the implementation and experimental setup details, with an in-depth

explanation of the Olympics and Artificial6 experiments to familiarise the reader with the

experimental approach used for all the remaining experiments in this thesis.

3.4.2 Experimental Setup and Implementation Details

As most datasets we use are reasonably well balanced, forgetting strategies were benchmarked

using A1, except Sleep-time, which was benchmarked using A2 because of its class balance ratio

0.73
0.27
∼ 2.7. In order to compare forgetting strategies equitably, they were implemented as meta-

learners that all used the same base classifier, a cost-sensitive Logistic Regression classifier.

Unless specified otherwise, learners were trained on the first third of datasets and tested on

the two remaining thirds using the sequential learning process described in Section 2.2.1 where,

after an initial call to the train function, the predict and update function of strategies are

called one after another for all test points. Performance is then visualised by plotting the Aw

performance’s moving average over the last n points showing their evolution over time.

For each experiment we benchmark 6 forgetting strategies, if present, hyperparameters were

set experimentally by iterating over a range of candidates and keeping the best ones:

• Offline: this is equivalent to the constant forgetting strategy where regardless of any

new data available past the training set, no updates are made to the learner. This is the

control for our experiments showing what would happen if we took no adaptive action at

all.

• Online retraining: this is equivalent to the no-forgetting strategy where all new data

available is used by the base learner. It shows the necessity, and sometimes the lack of

necessity, in using a forgetting strategy when faced with concept drift.
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• Window: this is the age-based forgetting strategy where all new data is discarded except

the n most recent instances. It is, or forms the basis of, the default answer to concept

drift in the literature and is used as a performance baseline.

• DIOC: this the local-performance-based forgetting strategy of Section 3.2.1. Its chunkSize

and k parameters are noted CS and k in figures.

• FISH: this the local age-based forgetting strategy of Section 3.2.1. The αt and winsize

parameters are noted a t and WS in figures, by property αs = 1− αt.

• TG: this is the local age-based forgetting strategy of Section 3.2.2. The f , winSize and

trainLocal parameters are noted f, WS and TL (T for True F for False) in figures.

• TC: this is the local age-based forgetting strategy of Section 3.2.2. The ε, minimum

cluster size θpts, winSize and trainLocal parameters are noted e, MCS, WS and TL (T

for True F for False) in figures.

Each forgetting strategy was made into its own class and experiments were coded in Python

making use of the open source sci-kit learn package [sklc15a] when possible, namely for the

base learner implementations and the DBSCAN algorithm. Cost sensitivity was achieved by

oversampling class c+ when w > 1 until the number of class c+ instances was w times the

number of class c− instance, and when w < 1 by oversampling class c− until the number of

class c− instances was 1
w

times the number of class c+ instances. Plots were generated using

matplotlib [mdt15] and all experiment code and datasets are available from the thesis author’s

website [Smi15].

The Olympics Dataset

The Olympics dataset presents a seemingly simple task, given an athlete’s age, label them

as younger or older than the average athlete age of the Olympic game they participated in.

The difficulty comes from the hidden (unavailable) context feature of the Olympic game year.

Assuming an athlete is classified as belonging to class c+ if the number of full years he has lived
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Year Season Avg. athlete age
2000 Summer 26.2
2002 Winter 27.1
2004 Summer 26.3
2006 Winter 27.4
2008 Summer 26.2
2010 Winter 26.8
2012 Summer 26.1

Table 3.3: The average age in years of athletes for Olympic games between 2000 and 2012. From
2002 to 2006 Winter Olympics participants are on average about 1 year older than Summer
games participants, while starting 2008 the average is below 27 years for all games.

is less than or equal to the average athlete age of the Olympic game he participated in and

class c− otherwise. Table 3.3 shows why local drift will occur at the age value of 27. Because

instances are presented to learners in time increasing order, initially all athletes aged 27 years

old belong to class c− (for the year 2000), then, as instances from the 2002 Olympics games

are presented to the learners, the ground truth for athletes aged 27 years old changes to class

c+ with all other class assignments remaining valid, hence the local concept drift. Referring to

Table 3.2 we see that the amount of concept drift is equal to the amount of class flip events.

This is because all age input values are present in the initial training set, so that all drift is

due to the input value 27 changing class throughout the different Olympic games, hinting at

the necessity to use a forgetting strategy to attain and maintain high performance.

Figure 3.6 shows how each forgetting strategy reacts to the drift and performance is summarised

in Table 3.4. Note that the initial training set is composed of the instances corresponding to

the 2000 Olympic games only (1436 instances). The moving average A1 is taken over a window

of size 200.

The best hyperparameters for TC are ε = 0.05, a minimum cluster size of 2, a training window

size of 750 and using training windows locally. These hyperparameters yielded 29 clusters,

meaning the data space is segmented into 29 areas and each area holds the latest 750 training

instances corresponding to it. Predictions are thus made based on the 750 latest training

instances of the area a test point belongs to. The best hyperparameters for TG are f = 40,

a training window size of 1 and using training windows locally. This means the data space is
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segmented into 40 grid elements and each element contains the latest corresponding instance.

Predictions are thus made based on the class of that single element, similar to a Case Based

Reasoning approach. The best hyperparameters for FISH are αs = 1, αt = 0 and a training

window size of 100. This means predictions are made based on the 100 closest points in

space in the overall training set, again similar to a Case Based Reasoning approach. The best

hyperparameters for DIOC are k = 3 and a training chunk size of 250 for each base learner.

Predictions are thus made by choosing the learner, and corresponding 250 training instances,

which performs best on the 3 nearest neighbours of a test point in the validation set. The best

window size for baseline windowed learning was found to be 200.

Intuitively, the difficulty for learners in this dataset arises in years 2002, 2004 and 2006 leading

to the dips in performance observed in Figure 3.6. This is because in the initial training set

the age value 27 belongs to class c−. Due to concept drift in the year 2002, it changes to

class c+. In 2004, it returns back to its original class asignment. It flips to c+ in 2006 before

finally returning to c− from 2008 onwards. The class assignment for value 27 thus has to be

relearned throughout the datasets and the results show that TG and TC in their local training

mode perform best (with A1 over 0.99) followed closely by FISH (with A1 = 0.9733). This is

due to each technique quickly replacing obsolete labels for input value 27 as explained above,

and shows that a local forgetting strategy is optimal for the Olympics dataset. DIOC comes

in fourth (with A1 = 0.8691) because it is unable to do instance selection and has to select

instance chunks instead. Because it has lesser fine grain control over training window formation

it is affected by inconsistent training chunks that have some obsolete labels for input value 27

and some current, valid, labels. As expected, windowed learning performs better than online

retraining (with A1 = 0.8023) because it also integrates newly available training points but

discards older ones, which in this case resolves the inconsistencies over the label of input value

27. Online retraining on the other hand, never discards instances so that it is capable of some

adaptation but eventually gets confused by contradictory labels for input value 27. Last, offline

learning performs the worse as it keeps the 27 → class c− mapping that it learnt from the

training set throughout testing.
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Year

Figure 3.6: Evolution of forgetting strategy performance throughout the Olympics testing set.
Moving average performance computed using a window of size 200.

Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TC 0.9846 0.9983 0.9979 0.9814 0.9906
TG 0.9846 0.9980 0.9976 0.9814 0.9904
FISH 0.9699 0.9814 0.9775 0.9636 0.9733
DIOC 0.8991 0.8681 0.8324 0.8706 0.8691
Windowed 0.8952 0.7790 0.6885 0.8426 0.8023
Online ret. 0.8991 0.7591 0.6500 0.8401 0.7872
Offline 0.8991 0.6963 0.5191 0.8075 0.7284

Table 3.4: Summary of forgetting strategy performance on the Olympics testing set in decreas-
ing order of weighted accuracy.
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The Artificial6 Dataset

The Artificial6 dataset presents various learning tasks throughout 5 epochs taking place over a

2-dimensional square data space centred around the origin.

Figure 3.7 shows the test dataset made up of 4 epochs and the cumulative training dataset

available to learners to make predictions at each epoch. Concept drift is once again local as the

data space was segmented into 4 equal area squares and points from the different classes where

uniformly generated in disjoint squares for each epoch. It is easily seen that some training points

will have to be discarded as time goes by as the cumulative training set contains contradictory

patterns (bottom row of Figure 3.7). Drift events were purposefully exaggerated in this dataset

as reflected by the relatively high class flip measure of 31.7% shown in Table 3.2.

Epoch 0 covers half of the data space and is the initial training set. Epoch 1 corresponds to

a class flip event where points are in the same area of the data space as in epoch 0 but are

of opposite classes. This epoch is challenging for a learner using online retraining which will

get confused by the contradicting patterns. Epoch 2 represents a concept drift event without

class flips: a new area in the data space starts to be populated when it was previously empty,

it requires adaptation but does not require forgetting. Epoch 3 corresponds to old patterns

becoming relevant again with the top left square having the same pattern as in epoch 1. This

epoch is tricky for windowed learning as a choice has to made between a small window to adapt

fast which will discard the points from epoch 1 or a large window that will keep the pattern

of epoch 1 but carry contradictory patterns from epoch 0. Epoch 4 emphasises this problem

again as it contains the patterns from epochs 1 to 3.

Figure 3.8 shows how each forgetting strategy reacts to the drift and performance is summarised

in Table 3.5. Note that the initial training set is composed of the instances corresponding to

epoch 0 only (80 instances). The vertical red bars of Figure 3.8 show the different epochs and

the moving average A1 is taken over a window of size 30.

The best hyperparameters for TC are ε = 3, a minimum cluster size of 2 and a training window

size of 10, these hyperparameters yield a single cluster so the local training parameter’s value
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is insignificant and means TC converges to the same forgetting strategy as having a training

window of size 10. The best hyperparameters for TG are f = 2, a training window size of 3

and training using the union of all local training windows. Predictions are thus made based

on 12 points, 3 points from each area, each coming from potentially different epochs. The best

hyperparameters for FISH are αs = 0.1, αt = 0.9 and a training window size of 10. Because of

the high αt value, this is almost a training window strategy but also takes into account spacial

distance. The best hyperparameters for DIOC are k = 5 and a training chunk size of 30 for each

base learner. Predictions are thus made by choosing the learner, and corresponding 30 training

instances, which performs best on the 5 nearest neighbours of a test point in the validation set.

The best window size for baseline windowed learning was found to be 10.

The results show that TG performs best (A1 = 0.9844), this is because it only forgets data if

there are newer instances covering the same areas, or pattern, of the dataspace. In this case,

we note that the way in which TG segments the data space closely matches the data generation

process—which is unlikely to happen in practice. FISH comes in second (A1 = 0.9094) and

performs better than TC and windowed learning which are the same strategy in this particular

case (A1 = 0.8875). The advantage of FISH over the windowed strategy comes from αs = 0.1

and αt = 0.9 (the three strategies use the same window size) as it essentially behaves like a

simple windowed strategy but αs also includes some points that are very close to the current

test point and enables for ‘old but still valid’ patterns to be present in its dynamically formed

training windows. This is a double-edged sword as some obsolete instances from epoch 0 might

then also be be included in later epochs’ training windows if they are close enough to a test

point. Further, unlike TC, FISH does not depend on an initial segmentation of the data space

which is where TC shows its weakness. Because epoch 0 covers only half the space, clusters

aren’t made for the other half and points from epochs 1 and beyond get merged in a single

inconsistent training window so that the best strategy is then to keep only the most recent

points. DIOC lags behind (A1 = 0.7781) as it is data inefficient and Artificial6 is a relatively

small dataset (320 test instances). Last, online and offline learning perform no better than

a naive learner (A1 around 0.5) as offline learning is unable to cope with new patterns and

online gets confused by opposite class instances very close in space showing the need to apply
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Figure 3.8: Evolution of forgetting strategy performance throughout the Artificial6 testing set.
Moving average performance computed using a window of size 30.

a forgetting strategy in this dataset as well.

Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TG 0.9875 0.9814 0.9812 0.9874 0.9844
FISH 0.9187 0.9018 0.9000 0.9172 0.9094
TC 0.8875 0.8875 0.8875 0.8875 0.8875
Windowed 0.8875 0.8875 0.8875 0.8875 0.8875
DIOC 0.7562 0.7908 0.8000 0.7665 0.7781
Online ret. 0.3438 0.5000 0.6562 0.5000 0.5000
Offline 0.3625 0.4957 0.6312 0.4975 0.4969

Table 3.5: Summary of forgetting strategy performance on the Artificial6 testing set in decreas-
ing order of weighted accuracy.
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3.4.3 Results Beyond Simple and Synthetic Cases

Each of the 6 real datasets that we used to further benchmark the forgetting strategies show

interesting properties.

Ž-elec Results

Ž-elec shown in Figure 3.9 with performance summarised in Table 3.6, shows a case where a

very simple forgetting strategy is optimal. Making predictions based on the two most recent

training points yields higher performance than any other forgetting strategy, confirming the

findings of [Zli13] that show data from the closest previous two periods can be used to predict

current electricity prices with high accuracy. In this case, online retraining and offline learning

perform worse than the optimal forgetting strategy (15.5% and 24.8% respectively). This is

reflected in the high value for the class flip measure reported in Table 3.2, 26.3%, which signalled

that a forgetting strategy will be perform better than no or constant forgetting.

Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TC 0.8876 0.8836 0.8682 0.8727 0.8785
TG 0.8876 0.8836 0.8682 0.8727 0.8785
FISH 0.8876 0.8836 0.8682 0.8727 0.8785
Windowed 0.8876 0.8836 0.8682 0.8727 0.8785
DIOC 0.8776 0.8352 0.8049 0.8537 0.8434
Online ret. 0.9755 0.6951 0.5179 0.9494 0.7603
Offline 0.9918 0.6428 0.3790 0.9763 0.7037

Table 3.6: Summary of forgetting strategy performance on the Ž-elec testing set in decreasing
order of weighted accuracy.

Ž-luxem Results

On the other hand, Ž-luxem shown in Figure 3.10 with performance summarised in Table 3.7,

has a class flip measure of 0% foreshadowing that no forgetting strategy is necessary — all

historical survey data is beneficial when making predictions. This is proven to be correct as
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Figure 3.9: Evolution of forgetting strategy performance throughout the Ž-elec testing set.
Moving average of the A1 weighted accuracy computed using a window of size 100.

online retraining, the no-forgetting strategy, yields a near perfect A1 measure. Offline, the

constant forgetting strategy, performs 13.9% worse than online which could also be suspected

as the 5.8% drift measure value for the dataset indicates that some adaptiveness is needed

nonetheless; supporting our claim that concept drift and the need to forget need to be decoupled.

Twitter-active Results

Twitter-active shown in Figure 3.11 with performance summarised in Table 3.8, has three

interesting patterns. TC, TG and DIOC perform best with TC and TG forgetting points

locally but making predictions globally (their trainLocal parameter is False, TC uses 6 clusters,

i.e. local training windows, and TG uses 4). This means that the user in question has tweet



3.4. Experiments 79

Figure 3.10: Evolution of forgetting strategy performance throughout the Ž-luxem testing set.
Moving average of the A1 weighted accuracy computed using a window of size 50.

Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TC 0.9989 0.9978 0.9977 0.9989 0.9983
TG 0.9989 0.9978 0.9977 0.9989 0.9983
Online ret. 0.9989 0.9978 0.9977 0.9989 0.9983
Windowed 0.9989 0.9978 0.9977 0.9989 0.9983
FISH 0.9989 0.9978 0.9977 0.9989 0.9983
DIOC 0.9859 0.9816 0.9808 0.9853 0.9834
Offline 0.9978 0.8053 0.7494 0.9970 0.8760

Table 3.7: Summary of forgetting strategy performance on the Ž-luxem testing set in decreasing
order of weighted accuracy.

patterns which change independently from each other and must be updated as such. Twitter-

active is also the only case where FISH performs considerably worse than DIOC (12.5%) with

performance similar to the windowed strategy. Last, as predicted by the 57.1% class flip
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measure, online and offline perform markedly worse than the optimal forgetting strategy (68.0%

and 93.8% respectively). It is also interesting to note that although both have similar A1 values,

the test points they correctly predict are quite distinct as shown on the corresponding figure.

Figure 3.11: Evolution of forgetting strategy performance throughout the Twitter-active testing
set. Moving average of the A1 weighted accuracy computed using a window of size 200.

Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TC 0.9274 0.9695 0.9512 0.8869 0.9363
TG 0.9007 0.9651 0.9456 0.8507 0.9175
DIOC 0.9032 0.9525 0.9247 0.8511 0.9112
FISH 0.7304 0.9552 0.9428 0.6767 0.8099
Windowed 0.7304 0.9552 0.9428 0.6767 0.8094
Online ret. 0.3656 0.8327 0.8773 0.4528 0.5572
Offline 0.3932 0.6417 0.6332 0.3844 0.4830

Table 3.8: Summary of forgetting strategy performance on the Twitter-active testing set in
decreasing order of weighted accuracy.
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Twitter-times Results

Twitter-times shown in Figure 3.12 with performance summarised in Table 3.9, shows the classic

concept drift scenario. Total concept drift occurs, so that a windowed strategy performs best,

i.e. old data is useless when making new predictions. This means the user’s underlying Twitter

behaviour constantly evolves during the 6+ years the data was collected over. The relatively

low 6.4% class flip measure, yet high 64.3% concept drift measure explains the performance gap

between online and offline strategies which perform 23.0% and 97.3% worse than the optimal

forgetting strategy.

Figure 3.12: Evolution of forgetting strategy performance throughout the Twitter-times testing
set. Moving average of the A1 weighted accuracy computed using a window of size 500.
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Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TG 0.2613 0.4949 0.8653 0.6986 0.6625
FISH 0.2613 0.4949 0.8653 0.6986 0.6625
Windowed 0.2613 0.4949 0.8653 0.6986 0.6625
TC 0.2757 0.4920 0.8562 0.7006 0.6613
DIOC 0.3631 0.4283 0.7551 0.7012 0.6235
Online ret. 0.5297 0.3693 0.5430 0.6956 0.5386
Offline 1.0000 0.3357 0.0000 0.0000 0.3357

Table 3.9: Summary of forgetting strategy performance on the Twitter-times testing set in
decreasing order of weighted accuracy.

Sleep-dur Results

Sleep-dur shown in Figure 3.13 with performance summarised in Table 3.10, shows a case where

TC and TG have a large performance gap, TC is the best performing strategy and TG comes

in 4th performing 17.2% worse. Interestingly, TC achieves this result using only 6 clusters

while TG uses a much finer segmentation of the data space — 125 grid elements. Further, the

low performance of the windowed strategy shows the importance of discarding data locally in

this case, this corresponds to certain sleep patterns happening less frequently than others, yet

remaining valid throughout portions of the dataset. The class flip measure of 14.1% and high

concept drift measure of 64.7% once again foreshadow the performance of online and offline

strategies which perform 25.5% and 56.6% worse than TC.

Strategy Recall c+ Precision c+ Recall c− Precision c− A1

TC 0.7345 0.7034 0.7287 0.7581 0.7314
FISH 0.6283 0.6339 0.6822 0.6769 0.6570
DIOC 0.6814 0.6063 0.6124 0.6870 0.6446
TG 0.5133 0.6170 0.7209 0.6284 0.6240
Windowed 0.4956 0.5714 0.6744 0.6042 0.5909
Online ret. 0.5752 0.5508 0.5891 0.6129 0.5826
Offline 1.0000 0.4669 0.0000 0.0000 0.4669

Table 3.10: Summary of forgetting strategy performance on the Sleep-dur testing set in de-
creasing order of weighted accuracy.
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Figure 3.13: Evolution of forgetting strategy performance throughout the Sleep-dur testing set.
Moving average of the A1 weighted accuracy computed using a window of size 30.

Sleep-time Results

Sleep-time shown in Figure 3.14 with performance summarised in Table 3.11, shows a case

where TC and TG converge to the same forgetting strategy and perform significantly better

than other forgetting strategies. Similarly to Sleep-dur, local changes in sleep patterns are not

well handled by other forgetting strategies and the class flip measure of 13.2% and concept drift

measure of 64.1% explain the low performance of offline and online which perform 49.8% and

57.8% worse than TC and TG.

In terms of overall performance, TC is the most versatile forgetting strategy. It either converges

to the best found other forgetting strategy: window of size 2 for Ž-elec, online for Ž-Luxem. and

a window of size 100 for Twitter-times, or performs the best on datasets where simple strategies
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Figure 3.14: Evolution of forgetting strategy performance throughout the Sleep-time testing
set. Moving average of the A2 weighted accuracy computed using a window of size 50.

Strategy Recall c+ Precision c+ Recall c− Precision c− A2

TG 0.8018 0.7045 0.8470 0.9038 0.8255
TC 0.8018 0.6988 0.8428 0.9034 0.8233
FISH 0.6912 0.6410 0.8239 0.8543 0.7607
DIOC 0.5806 0.5526 0.7862 0.8047 0.6883
Windowed 0.3041 0.4925 0.8574 0.7304 0.5939
Online ret. 0.3272 0.3777 0.7547 0.7115 0.5510
Offline 0.0000 0.0000 1.0000 0.6873 0.5236

Table 3.11: Summary of forgetting strategy performance on the Sleep-time testing set in de-
creasing order of weighted accuracy.

are weak: A1 = 0.9363 for Twitter-active (runner-up DIOC with A1 = 0.9112), A1 = 0.7314

for Sleep-dur (runner-up FISH with A1 = 0.6570) and A2 = 0.8255 for Sleep-time (runner-up

FISH with A2 = 0.7607). TG is also capable of converging to simple forgetting strategies in

the same cases as TC and performs well on Twitter-active (A1 = 0.9175, 2.0% worse) and
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Sleep-time (A2 = 0.8233, 0.02% worse). The only case where it performs clearly worse than

TC is Sleep-dur (A1 = 0.6570, 17.2% worse).

FISH is also capable of converging to simple forgetting strategies on Ž-elec, Ž-luxem and

Twitter-times, but performs worse than TC on Twitter-active (A1 = 0.8099, 15.6% worse),

Sleep-dur (A1 = 0.6570, 11.3% worse) and Sleep-time (A2 = 0.7607, 8.5% worse) only per-

forming better than TG on Sleep-dur by 5.2%. We hypothesise this is due to way it combines

spacial distance and time when forming training sets which uses potentially obsolete points if

they are close enough in space to a test point. DIOC, on the other hand, does not manage to

converge to simple forgetting strategies on Ž-elec, Ž-luxem and Twitter-times although it only

performs slightly worse than the optimal forgetting strategy in all cases 4.1%, 1.5% and 6.5%

respectively. On Twitter-active, Sleep-dur and Sleep-time it performs 2.6%, 13.4% and 19.9%

worse than TC respectively. We hypothesise this is due to lack of flexibility in the instances

it is able to select as this ensemble techniques is constrained to use chunks of time-linear data

when making predictions.

3.4.4 Discussion and limitations

Throughout the 8 experiments shown above, the way in which TC and TG combine space and

time to form training datasets has proved to perform at least as well as any other forgetting

strategy and many times better, with performance delta ranging from 0 to 11.3% compared to

the best of FISH and DIOC on each dataset. The second best performing strategy was FISH

which, similarly to TG and TC, was able to converge to simple windowed or online strategies

when optimal, something DIOC did not manage.

TC is the best performing strategy on all datasets except Artificial6 where it shows one of its

two weaknesses. Because testing data appears in new areas as compared to the training data, it

is not properly covered by any of TC’s clusters and leads to clusters with contradictory patterns

yielding low performance. As mentioned in Section 3.2.4, a solution would be to periodically

recompute optimal cluster and window parameters using the most recent n training points as

a validation set. The second weakness of both TC and TG is that they require a retraining of
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the associated base learner which adds a number of steps proportional to the number of areas

when creating a training set.

Finally, we further confirmed the results of Section 3.1 by showing that the concept drift

measure was linked with the need to use an adaptive learning strategy but does not always

imply a forgetting strategy is appropriate, in the case of Ž-luxem, online learning is optimal

which is hinted by the null class flip measure returned by the concept drift analysis algorithm.

3.5 Summary

In this chapter we addressed the problem of knowing if concept drift is present in a dataset.

We proposed to decouple the notions of concept drift, simply meaning a change in a dataset’s

underlying data distribution, and the need to forget, where patterns in a dataset change in a

way that contradicts previous patterns. Our proposed concept drift analysis algorithm (CDA)

outputs two quantities, a concept drift measure and a class flip measure. We experimentally

showed a link between the need to use adaptive learning and the concept drift measure and

between the class flip measure and the need to forget certain instances while learning online

using 5 datasets in the Section 3.1 and 8 further datasets in Section 3.4.

We then reviewed the two existing learner independent forgetting strategies able to cope with

local concept drift DIOC and FISH and proposes two new strategies TC and TG. The TC and

TG forgetting strategies offer a new way of dealing with concept drift based on the principle

of local forgetting: instances are discarded only if they can be replaced by newer ones covering

the same area, the two methods differ only in the way they define areas for a given dataset,

clusters for TC and grid areas for TG. In data from mobile context-aware applications, each

area is assumed to loosely correspond to a different user context so that the way in which TC

and TG discard instances allows for a change in a specific behaviour independently of others

while also allowing for changes in multiple behaviours at once, putting minimal requirements

on the type and intensity of concept drift tolerated in an application. Similarly to FISH and

TG, these forgetting strategies thus take into consideration time and distance when forming
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training sets to make predictions. Further, they have the same advantage as FISH as they

encompass online retraining, windowed learning and a form of nearest-neighbour Case Base

Reasoning as a special case of their expression.

In order to compare these different strategies, the chapter also proposed to use a weighted

accuracy measure Aw as a performance measure. This measure allows to account for user

preferences in terms of which class is most important to predict correctly as a function of w.

This is relevant for mobile context-aware applications as datasets can be unbalanced and it

can be the case that the minority class labels an event with more severe consequences than the

majority class i.e. the relative cost of unsignalled alarms versus false alarms taking into account

the frequency of the alarm causing event. This relative costs is encoded in the w parameter of

the weighted accuracy measure.

Finally, we benchmarked seven forgetting strategies using the weighted accuracy measure Aw,

the 4 mentioned above and 3 baseline strategies, windowed learning, online retraining and

offline learning on eight different datasets. The results shows that TC is the most versatile and

overall best performing strategy, able to converge to simple strategies when these are optimal

and perform best in more complex cases. Although TG follows closely, the finer grained control

given by considering instance clusters instead of identical instance grid areas gives an advantage

to TC in most cases, also, TC usually requires many less clusters than grid elements saving on

computation time.



Chapter 4

Integrating Machine Learning into

Mobile Context-aware Applications

The previous chapter treated about how the user requirements for intelligent mobile context-

aware applications influence the machine learning aspects of it. We now show how the require-

ments stemming from the use of machine learning influences the application itself through a

detailed practical use case. Specifically, this chapter addresses the data collection and labelling

challenge in intelligent mobile context-aware applications (Challenge 1). Through the practical

example of smartphone notifications, we show the extent to which an application’s internal

use of machine learning can affect its user-facing component. We focus on disruptive incoming

calls and propose an infer-and-confirm data gathering strategy which silently collects data and

infers labels from the user’s natural response to target events while letting them amend inferred

labels, if necessary. We finish by applying the CDA algorithm and forgetting strategies from

Chapter 3 to real datasets gathered using our own RingLearn Android application and Cam-

bridge’s Device Analyzer Android application, applying and assessing the solutions proposed

in this thesis in their entirety.

88
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4.0.1 Why use Machine Learning?

The concept of ubiquitous computing is approximately 25 years old [Wei91] and while some

aspects of it are now part of our daily lives, such as the widespread use of wireless devices,

other aspects are still mostly at the research and prototype stage. This is the case of ambient

intelligence [GZW11] which intelligent mobile context-aware applications are a part of.

While there is a limited number of mobile context-aware applications available to the general

public, with the exception of the Nest and Luna Thermostat auto-schedulers, applications

are not intelligent. That is to say, their underlying context-to-action mapping has to be pre-

programmed by an expert or the user. Here are notable examples

• Medical asset tracking at Tallahassee Memorial HealthCare where equipment is tagged

so that nurses can see assets on a floor map and access them quickly when needed [Wor15].

• The Walksafe Android application which uses computer vision to alert users talking on

the phone if a vehicle is approaching when they are crossing the road [CoB15].

• The Launch Here iOS application which launches user-specified applications when a

given location is visited [app15]

Some approaches, such as Walksafe, do use machine learning (for computer vision) but only

to help sense the context. Using machine learning to learn a user’s context to action map

offers the possibility to effortlessly complement or even replace pre-programmed static rules.

Pre-programmed static rules have two main weaknesses. First, they are difficult to exhaustively

specify, it can be tedious, or often times impossible, to list all contexts and all corresponding

actions an application might face during its deployment. Second, due to the dynamic nature

of human behaviour, new rules might be needed and existing rules can become incorrect as

time passes — the topic of the Chapter 3. Machine learning alleviates this problem by using

known context to action examples to generalise context to action mappings (rules) with minimal

need for human input. Finding the right way to use machine learning in mobile-context aware

applications is thus a cornerstone to fulfil the promise of ubiquitous computing to change our

daily lives.
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4.0.2 Why Focus on Disruptive Incoming Calls as a Use Case?

Smartphone notifications have gained a lot of interest lately as apps are increasingly compet-

ing for user attention using push notifications [Mid07] and can be disruptive [FGB11, KS06,

LBGK12]. A disruptive notification is a notification that interrupts the recipient such that

the disturbance of receiving the notification outweighs the perceived benefit [SLM+14]. For

instance, for a conference paper submission, a call from a paper co-author at midnight may be

disruptive or not depending on the how close the paper submission deadline is and the current

state of the submission. Disruptive notifications thus concern virtually every smartphone user.

To decide which type of notification to focus on, we performed an initial survey with 65 partici-

pants [SD14], with highlights shown in Figure 4.0.21. The survey reported that while SMS was

found to be the most frequently used communication method for 41% of participants, 51% of

participants answered that they have already been bothered by incoming phone call ringtones,

versus only 28% for an audible incoming SMS alert.

Further, we found that for a typical week, the number of incoming calls per surveyed participant

was less than 7 for 18% of them, between 7 and 14 for 30% of them, between 15 and 21 for 27%

of them, and more than 21 for 25% of them. Moreover, 43% rejected between 1 and 3 incoming

calls per week, 32% rejected between 4 and 7, 17% rejected less than 1 and 8% rejected more

than 8, indicating that disruptive incoming calls are not only potentially the most disruptive

notification but are an everyday occurrence, justifying our choice.

4.1 Background

4.1.1 Interruptions

An interruption can be defined as an event disrupting a person’s continuity of cognitive fo-

cus while performing a task [FGB11]. This definition assumes that human behaviour can be

1The full survey results can be found at https://docs.google.com/forms/d/1OFe19KoE0FqgMltL4_

5fUfE9C_VCb8OjMYrda3WwXbg/viewanalytics

https://docs.google.com/forms/d/1OFe19KoE0FqgMltL4_5fUfE9C_VCb8OjMYrda3WwXbg/viewanalytics
https://docs.google.com/forms/d/1OFe19KoE0FqgMltL4_5fUfE9C_VCb8OjMYrda3WwXbg/viewanalytics
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Figure 4.1: Summary of the call behaviour questions and answers in our mobile phone usage
survey conducted on 65 participants.
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modelled by a sequence of non-overlapping tasks, also called activities, which can be further

broken down into phases. For instance, making a call from a mobile could be broken down into:

retrieving the mobile, finding the contact to call, calling the contact, getting a response for the

call, speaking, terminating the call and replacing the mobile. In any of its phases, the primary

task can be interrupted by an event that becomes a secondary task if it initiates a new activity

for this person.

Interruptions have been shown to have quantifiable consequences on the performance and com-

pletion of primary tasks usually dependent on the phase they occur in [FHA+05]. For instance,

[CCH00] shows that for a task consisting of a web-search followed by an analysis of the results,

an interruption happening in the analysis phase of the task yields longer completion times

than in other phases. Conversely, interruptions can sometimes be beneficial. This and other

studies [FYB+10, LBGK12, MGH05, TM13, GS09, WWR+10, PdOKO14, AH06], show that

interruptions unrelated to the ongoing task take longer to attend to than interruptions useful

to task completion, so that the disruptive value of an interruption not only depends on when

it occurs but also its content with respect to the recipient’s current context and task.

Interruptions themselves have been characterised not only in terms of performance costs such as

the time to attend the interruption, the time spent dealing with the interruption or the time to

resume the interrupted primary task [AB04, LBGK12] but also in terms of cognitive, emotional

and even physical effects they cause, such as changes in emotional state and cognitive load

[ML02, PCdO14]. Empirical studies have shown that mobile-originating interruptions can have

greater impact than face-to-face interruptions [Glu08] and that interruptibility preferences are

different across users [KS06, KC05].

4.1.2 Disruptive Smartphone Notifications

In our work, we focus on approaches to handle notification signalling so that they are socially

and situationally appropriate. In consumer products, the current solution to handling disruptive

notifications is manual profile configuration as detailed below.
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Commercial Solutions

The traditional approach to manage disruptive notifications is to manually change a phone’s

profile to a silent mode. For example in Apple’s iOS 8 the ‘Do Not Disturb’ function shown

in Figure 4.2 can be activated for this purpose. When on, it silences all notifications (incom-

ing calls, messages and app push notifications) except for incoming calls from a customisable

whitelist set by the user. The function can be scheduled to be activated by manually setting a

schedule, and notifications from a particular number can also be entirely blocked by creating a

blacklist. An interesting function is the ‘Repeated Calls’ option, that will not apply the ‘Do Not

Disturb’ policy when activated if a person calls twice within 3 minutes. This is an indirect form

of availability sharing where a user is willing to be interrupted if the content of the notification

is judged important by the interrupter.

Figure 4.2: iOS ‘Do Not Disturb’ setting screen
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The latest Android operating system (version 5) introduced a very fine grained notification

management system which is based on 3 levels of notification: ‘None’, ‘Priority’ and ‘All’. Each

installed app, including incoming phone calls, messages and calendar events can be assigned to

one of these levels (first screen capture on Figure 4.3). Then, depending on which level the user

sets for the device itself (second screen capture on Figure 4.3), all notifications will be blocked

if ‘None’ is selected, only notifications from apps that are on the priority list will be delivered

if ‘Priority’ is selected and all notifications will be delivered if ‘All’ is selected (with the option

to blacklist specific apps so that their notifications are never delivered regardless of the device’s

notification level). A device’s notification levels can also be scheduled (third screen capture on

Figure 4.3) and it is also possible to block individual contacts as in iOS 8. On top of this, the

signal of notifications, including, incoming phone calls, messages and calendar events, can be

set to vibrate or a certain level of loudness for the ringtone (second screen capture on Figure

4.3).

Figure 4.3: Screen captures from the Android notification management system

Although there are no intelligent mobile notification management applications publicly avail-

able, on Android, some basic form of context-awareness for notifications does exists in apps

such as Smart Call Manager [Man15] where notification volume is dynamically set based on
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the ambient sound level of the recipient. In summary, Android 5 is more flexible than iOS 8

in terms of notification signalling settings, showing a good example of what a pre-programmed

static rule based system might look like in practice. The drawback is that it is also much more

complicated, so that it is quite possible that due to the tediousness and required time to set up

the mentioned Android lists and rules, common users will keep on using only the notification

volume switch already known to them to control notification signalling.

Research Solutions

Intelligent interruptions management stems from human-computer interaction and machine

learning research. They can be divided into scheduling and mitigation approaches. Scheduling

avoids interruptions altogether, with the user at risk of missing an important notification, while

mitigation strategies maintain interruptions but try to reduce their disruptiveness or adverse

consequences. We are interested in approaches that are deployable in an everyday setting over

long periods of time and thus omit approaches that require complex sensing. This applies

to solutions like the Finger Ring system [MS05] which allows members of a collocated group

to anonymously veto a potentially disruptive incoming phone call to any of its members by

pressing a button on a finger ring, or approaches like gaze detection used to infer whether a

face-to-face conversion is taking place during an incoming call event [VDS02].

Scheduling Interruptions at the Recipient

One approach to alleviate disruptive smartphone notifications is to intercept potential disrup-

tive events and postpone their delivery until a later moment, when interruptions are thought

to be less disruptive. In [FGB11] the authors formulate (5) hypotheses to test whether break

points in mobile interaction are appropriate for delivery. To test these, a natural-setting ex-

periment was carried out during 2 weeks over 18 participants using an Android application.

The application works by interrupting participants roughly 6 times per day with an SMS-style

notification that is equally likely to happen at a random time or right after a call or SMS

episode, asking the user to do one of three predefined tasks. Analysis of task acceptance, deci-
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sion, and completion times lead the authors to the conclusion that scheduling interruptions at

the recipient leads to faster interruption acceptance and decision times but that factors such

as the social context and cognitive demands of the interruptions play an important role in how

these are handled. Moreover, the gathered data reveals that breakpoints in primary activities

and endings of mobile episodes do not always collocate — one could receive a call and have to

make one right after, for instance. This approach thus entails a further requirement which is

to recognise mobile episode breakpoints, a potentially challenging task.

Similarly, in [PM14b] and [OTN14] the authors propose Android publish-subscribe middlewares

that aim to predict opportune moments to deliver push notifications. In [PM14b] the authors

run an experience sampling experiment for two weeks over 20 subjects where 8 notifications

are sent out each day asking the subjects about their sentiment (level of happiness, sadness

and boredom) and their interruptibility (not at all, a little, somewhat and very much). From

this experiment they show they can often predict the presence of reaction to a notification and

their sentiment towards it based on the context (time, accelerometer data, location, presence

of company, high-level activity and emotional state) they received it in. It is interesting to note

they could not verify the hypothesis formulated in [HI05] that physical activity boundaries are

opportune moments to deliver notifications as they could not detect physical activity boundaries

using the sensors available on the phone. The authors then test their approach in the wild by

running the same experience sampling experiment using a restricted number of context features

over a month and 10 subjects, alternating days where samples are gathered using opportune

moments as predicted by their proposed InterruptMe library and random sample times. They

find that the median user sentiment towards InterruptMe notifications is ‘somewhat’ suitable,

whereas it is only ‘a little’ suitable for notifications delivered at random moments. A comparable

approach is taken in [OTN14] with a focus on short-term notification scheduling, i.e. finding

breakpoints in smartphone usage while a user is actively using their smartphone. The aim is

thus to only slightly delay notifications so that they do not appear when a user is writing a

Tweet for instance, but right after. The sensed context is thus different from the approach in

[PM14b] and revolves around user interface events (e.g. taps and scrolls) and runtime events

(eg number of threads running and application switch events). An in the wild study conducted
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by the authors on 30 participants shows that for a subset of participants cognitive load from

notifications was reduced by 33% compared to random notification times as measured by a

NASA-TLX questionnaire.

Correctly scheduling notifications to opportune moments has a double benefit. On the side

of the recipient, disruptiveness of notifications and increase in cognitive load can be reduced,

while on the side of the initiator, i.e. a caller or SMS sender, a faster response can be obtained

if their interruption is timed right. This hints at the other interruption scheduling approach,

namely, leaving the scheduling of interruptions up to the initiator.

Scheduling Interruptions at the Initiator

Another scheduling strategy consists of providing some of the recipient’s contextual information

to a potential interruption initiator before they decide to start a mobile interaction episode.

This way, the initiator can estimate the disruptiveness of his potential interaction and schedule

it for later if need be — this is sometimes referred to as availability sharing.

The experimental studies [AGHK07] (78 participants one-off simulation) and [DGSB07] (13

participants 4 week diary study ) confirm that giving simple context information to the initia-

tor, such as coarse location, presence of others nearby and ringer status, can greatly reduce the

number of interruptions. A live study [tH07], using a Windows PDA application that asked

participants (10 participants over 7 days) questions about their location and presence of com-

pany, combines this context information with machine learning by predicting availability of the

recipient. In this example, using machine learning not only removes the interruption initiator’s

need to extrapolate the recipient’s availablity but is is also more respectful of the recipient’s

privacy as no direct context is shared. A practical example of an availability sharing system,

also called InterruptMe, is given in [HRVM11]. It takes into account privacy issues by allowing

a user to set which availability features are visible to potential interruptors and enables the user

to make groups such as friends, collegues or default, to fine tune privacy settings to different

types of people.
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This last point underlines the two drawbacks of this type of scheduling. First, initiators are

left with the responsibility of predicting the recipient’s availability based on potentially in-

complete context information. This might be difficult to do, especially if the initiator is not

well acquainted with the recipient; in fact, the initiator could choose to ignore the context

information entirely for instance in the case of telemarketers. Second, there are serious privacy

implications in being able to access someone’s context without them knowing about it.

Mitigating Interruptions via Explicit Experience Sampling

Unlike scheduling, mitigation strategies always maintain interruptions but try to reduce their

disruptiveness by changing the intensity or mode of notifications (e.g. quieter rings, vibration

mode, flashing LED, forwarding notifications to a third party). The challenge in these strategies

is learning the context to notification mode mapping for a particular user.

The method commonly known as ‘experience sampling’ [RDV11, FS11, KC05], which we re-

fer to as explicit experience sampling from now on, consists of intentionally interrupting

individuals to gather their sentiment or label their current situation or actions. The rationale

behind experience sampling is that humans have difficulty predicting context-dependent pref-

erences in advance and are more easily queried online, when experiencing different contexts, to

approximate these preferences. We later contrast it with implicit sampling approaches.

In [RDV11] the authors propose a disruptive incoming call mitigation approach that consists

of automatically silencing a mobile’s ringer. They use machine learning to activate their mit-

igation approach based on context and previous contact interactions. The degrees of freedom

in explicit experience sampling lies in the sampling strategy. The authors compare 3 sampling

techniques: random, uncertainty-based and their decison-theoretic approach. The advantage of

their proposed solution is that they take into account the cost of interruption due to sampling

so as to only ask the user to label their interruptibility if the cost of an interruption at that

point is time would be more costly than the interruption of asking the label.

Another approach using experience sampling is presented in [FS11] with the difference that
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the authors also use passive observations, or as we call them implicit samples, for the same

mitigation approach. The implicit samples they gather are ringer settings (corresponding to

the top left switch’s state on the iPhone brand smartphone the data is collected on) as well as

acceptance or rejection of incoming calls. They take advantage of these to decrease or cancel

the number of samples needed for learning. They refer to their technique as density-weighted

uncertainty sampling which will query the user, not only based on the level of uncertainty of

the current context but also how many additional contexts a sample covers, maximising the

utility of interrupting the user.

We argue mitigation offers a broader solution to the disruptive notification problem than

scheduling as incoming voice calls cannot be rescheduled, so that incoming call notifications

will inevitably require their own approach if scheduling is used for other notifications. That

being said, learning to mitigate disruptive notification signals using explicit experience sampling

presents a paradox in that the method creates further interruptions, and is thus susceptible to in-

crease the number of interruptions the user experiences. Further, for approaches that are meant

to be deployed over long periods of time, it does not present a sustainable way of learning as it

leads to experimental fatigue and can be frustrating for users [KH08].

Mitigating Interruptions via Implicit Experience Sampling

In an ideal world, a context-aware application would know which notifications are disruptive

to the user at any given time without any extra effort on their part such as configuring a set

of rules or periodically answering a question as in the case of explicit experience sampling.

While data must be collected to train the underlying learner of an intelligent context-aware

application, implicit experience sampling aims to do so passively, without interrupting the user

artificially. It can be seen as an implicit Human-computer Interaction paradigm as described

by Schmidt [Sch05].

Implicit Experience Sampling

Implicit experience sampling is the gathering or inferring of labelled context data through the

response of a user to naturally occurring events without interrupting them.
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The use of implicit experience sampling to mitigate disruptive incoming calls has been explored

in [Mar11, MCRL11] where the author uses static logic rules that can be set at any time by

the user, combined with inferred rules from past responses to incoming calls to predict whether

calls should be answered or rejected. This approach uses a form of inductive logic programming

which differentiates itself from previously mentioned approaches as it produces human readable

rules that can give insight into the recipient’s mobile answering policy. The authors propose

their ULearn system as an Android application that combines the user defined rules and learned

rules to automatically accept or reject incoming calls – their mitigation strategy. Unfortunately,

a survey carried out by the author shows that 79% of the 60 surveyed participants would not use

such an application, presumably due to very high cost of false negatives (automatically rejecting

a call when it should not have been) and the inconvenience of automatically answering calls.

We follow the lead of the ULearn approach by proposing the RingLearn intelligent context-aware

application prototype which aims to mitigate disruptive incoming calls by passively observing

the user’s past reactions to incoming call events.

4.2 RingLearn

RingLearn is an intelligent Android application prototype aiming to mitigate disruptive in-

coming calls in a long-term fashion. A first version was developed to gather context data and

incoming call events to test two hypotheses. First, that it is possible to predict when a user

will accept or reject incoming calls using data collected via implicit experience sampling. Sec-

ond, that users change their incoming call acceptance behaviour in a way that makes the use

of the forgetting strategies of Chapter 3 beneficial. While we did not iterate over the initial

implementation to develop a second version, a post-usage survey of RingLearn over 11 partici-

pants highlighted the changes that needed to be made in order to fully achieve the application’s

intended goal while addressing user experience needs and machine learning requirements.
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4.2.1 RingLearn Initial Design

The initial challenge of RingLearn revolves around collecting labelled incoming call events in

a practical way for the deployment of the application over an indefinite period of time. We

categorise incoming calls into two classes, non-disruptive (class c+) and disruptive (class c−).

Disruptive calls are the ones where a mitigation strategy would be applied. Currently, when

a user receives an incoming call they can choose to pick up, reject or ignore the call by either

taking no action or silencing the phone ringer by the press of a button.

It is difficult, perhaps impossible, to differentiate cases where a user consciously ignores an

incoming call by taking no action and cases where the user is unaware of the incoming call so

that no conclusions were drawn using missed calls and they were discarded from the datasets

used in our experiments. Incoming calls that were picked up or rejected where labelled in-

situ as part of the application’s custom incoming call screen shown in Figure 4.4 which is

RingLearn’s data collection and labelling mechanism. This custom incoming call screen adds

a fourth button to the usual 3: ‘Answer’, ‘Decline’ (reject) and ‘Ignore’ (silence the ringtone

but let the call ring through). The incoming call event tree from Figure 4.5 shows the purpose

of the new ‘Silent answer’ button. Answering a call using the ’Answer’ button labels it as

non-disruptive, signalling the application that these types of calls should not be mitigated in

the current context. Declining or ignoring an incoming call using the ‘Decline’ or ’Ignore’

buttons mark the call as disruptive, signalling the application that the notification for these

calls should be mitigated in the current context. The ‘Silent answer’ button covers the case

where a disruptive calls is received but a recipient still wishes to answer it without labelling it

at non-disruptive. For instance, imagine a situation where someone is at work and their partner

calls them, the person might want to step out and answer the call while still labelling the call

as disruptive so calls from their partner at work keep on being mitigated in the future without

removing their ability to answer such calls. For simplicity, we assumed that the converse case,

where someone rejects a call but wants similar calls not to be mitigated in the future, do not

happen, and thus did not provide the corresponding button in RingLearn’s user interface as

shown in the event tree of Figure 4.5 although such cases do exist. These could be described
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Figure 4.4: On the left, we show RingLearn’s configuration screen which is launched when the
application is opened from the application menu and on the right, we show RingLearn’s custom
incoming call screen

as exceptional rejections such as being in the middle of a task and not wanting to pick up the

call at that very moment in time without signalling to the application that the notification for

these types of calls should be mitigated.

4.2.2 RingLearn Implementation Details

RingLearn is as an Android 4 application2. It works by catching the Android incoming call

ring event and overlaying its custom incoming call screen on top of the default one that ships

with the phone. Figure 4.4 shows the single parameter to set in the application, namely the

overlay delay for the application’s custom screen; if the delay is too low, the custom screen will

not always successfully overlay itself as an incoming call is signalled by an unordered broadcast

event in the Android operating system; if the delay is too high, there will be a noticeable delay

in the overlay such that the user might see the default incoming call screen for a few instants and

witness the custom call screen overlaying itself. The data, stored in the Android application’s

local database, was remotely retrieved via the application main screen which offered an upload

to server button that uploads the contents of the local database to our server. We note that

an option to delete all data is also available to palliate any privacy concerns from users.

2The application can be obtained at the following url https://www.doc.ic.ac.uk/~jeremiah/ringlearn

https://www.doc.ic.ac.uk/~jeremiah/ringlearn
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Figure 4.5: A flowchart representing possible events and user actions on an incoming call event;
the ‘Answer’ button is labelled 1, the ‘Decline’ button is labelled 2, the ’Silent answer’ button
is labelled 3 and the ’Ignore’ button is labelled 4

RingLearn collected features

To choose the features collected by RingLearn we asked participants about the factors con-

tributing to them rejecting a call, shown in Figure 4.6, as part of our initial survey. We

restricted ourselves to 7 features that were straightforwardly obtained by using a smartphone’s

sensors, namely: the time and day to cover temporal factors; the contact’s number (or lack of)

and SSID, cell tower id and GPS information to cover location factors. We omitted features

that could not be instantly retrieved so that the decision to silence the ringer can be made

fast enough to implement the desired application behaviour without requiring a background

process to continuously poll the state of the phone sensors on the phone. We note that 70% of

surveyed participants reported using a calendar app on their mobile. In previous work, calendar

information was used to determine interruptibility [KC05, RDV11] but was also shown to be

an unreliable sensor [LOIP10]. For simplicity reasons we decided not to collect this feature in

the application. In this initial experiment, the application was set in data collection mode so

that it did not actually silence calls; the participants were given the instruction to carefully

choose the button that best corresponded to the type of incoming call they were receiving.

After collecting the data, it became clear that GPS was also an unreliable sensor as most users

had the functionality turned off as part of their normal smartphone usage, leading to many
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missing values for those features. That final 6 features used for learning where:

• The current month

• The current day of the week

• The current time

• The incoming call number

• The cell tower id the recipient is connected to

• The WIFI SSID the recipient is connected to

RingLearn Deployment and Experimental Findings

To keep the data collection experiment as close as possible to a real use case where an unknown

user can download and decide to use or not a disruptive incoming call mitigation app, we asked

a small group of students to install RingLearn without setting an end time for the experiment.

This left them the choice to uninstall the app at any given time. After 16 weeks participants were

contacted and asked whether the app was still installed and to take a post-usage survey. The

only technical difficulty encountered was on HTC branded devices where it was impossible to

programatically launch the custom incoming screen making RingLean useless on those devices.

We ended up gathering data from 11 participants over 16 weeks. The collected data showed

that many of the participants received very few incoming calls during the 16 week period (294

was the maximum) so that we only kept the 3 largest datasets for the data analysis and learner

benchmarking of Section 4.3.

The post usage survey of the application3 over the 11 participants confirmed that our data

collection and labelling method was indeed user friendly as illustrated in Figure 4.7. 7 out of 11

(63.6%) participants stated they would use a version of the RingLearn app that would actually

3Link to the RingLearn post usage survey: https://docs.google.com/forms/d/1zsob1VPAPRh-_

1er4ud9vRNeWsbt0TRSefBaMLNfTo0/viewanalytics

https://docs.google.com/forms/d/1zsob1VPAPRh-_1er4ud9vRNeWsbt0TRSefBaMLNfTo0/viewanalytics
https://docs.google.com/forms/d/1zsob1VPAPRh-_1er4ud9vRNeWsbt0TRSefBaMLNfTo0/viewanalytics
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Figure 4.6: Summary of the factors leading to incoming call rejection question and answers in
our mobile phone usage survey conducted over 65 participants.
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take actions when a disruptive call is predicted, while no participants declared they would not

use such an app, the 4 remaining participants asked for modifications to the interface which

we discuss below. 9 out of 11 (81.8%) stated that they understood, and were not confused by,

the presence of the new ‘Silent answer’ button on the incoming call screen interface. Finally, 9

out of 11 (81.8%) participants did not find the application difficult to configure and 7 out of 11

(63.6%) found that RingLearn did not add any noticeable extra cognitive effort compared with

the default incoming call screen. The most important point that came out of the survey was

that it is not always possible for a user to know whether an incoming call is disruptive before

answering it, sometimes, factors such as hidden or unknown numbers can change the ground

truth once the call is over.

Taking into account user feedback from the post usage survey and iterating over our initial

approach, we found that the best solution to perform practical disruptive incoming call mitiga-

tion is the infer-and-confirm strategy shown in Figure 4.8. The infer-and-confirm approach

relies on the same principle as the initially designed solution, namely inferring a label from the

user’s action after a notification is received (after the ‘user responds to notification step’), but

it also temporarily informs the user of the collected label once the user has stopped interacting

with the notification content (when a user puts down the phone in case of incoming calls or

quits a messaging app in case of message-based communication) user can then amend (‘display

inferred label to user’ and ‘user relabels if needed’ steps). This last extra step will mostly be

passive if a system is able to predict disruptive notifications requiring no extra action on the

part of the user compared to our initial design, yet allowing for a user to correct their initial

label in-situ if needed.

This shows the extent to which the collection and labelling of data required to use machine

learning might influence the user interface of a context-aware application and shows well that

the HCI component and learning component of an application cannot be dissociated as they

exert mutual requirements on each other. While we propose the infer-and-confirm approach

for incoming calls, the approach can be applied to other notifications. Taking the example of

push notifications, their disruptiveness could be inferred by looking at how long a user takes

to attend to them and which action they take when acting on them: swiping away or opening
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Figure 4.7: Summary of the RingLearn post usage survey questions and answers in our mobile
phone usage survey conducted over 65 participants.
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Figure 4.8: An illustration of our incoming call mitigation strategy.
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the corresponding app. If they open the corresponding app, one could consider the amount of

time they stay in it and the further action(s) the user takes. These could be used to infer a

label using a set of preprogrammed rules and once a label is inferred the user can be notified

via a dialog, allowing him to amend it if necessary as part of the label confirmation step.

4.3 Experiments

We now detail the experiments we ran to test the two hypotheses presented in Section 4.2: that

it is possible to predict whether a user accepts or rejects incoming calls using data collected via

implicit experience sampling and that users’ call acceptance behaviours change as time passes.

We selected 6 incoming call datasets as detailed below and conversely to Section 3.4, for a

given set, we benchmarked forgetting strategies over multiple Aw measures. This means we are

interested in each learner’s performance over the testing set under different user preferences

parameters w, instead of showing the evolution of each strategy’s performance over time under

a fixed w. This is because we cannot know an individual’s w parameter a priori, an optimal

forgetting strategy should perform well on average over any w parameter.

In the previous section, we presented the RingLearn Android application that was used to

gather data over 11 participants during 16 weeks. The relatively small sizes of the gathered

datasets forced us to keep only the three largest ones and we chose to complement them with

3 further datasets coming from the Cambridge Device Analyzer corpus.

4.3.1 The Cambridge Device Analyzer Corpus

The Cambridge Device Analyzer corpus [WRB14] consists of anonymised smartphone usage

traces from more than 23000 users. The data is collected through a downloadable Android

app [fA15] that silently logs over 300 Android system events4 for each user (the logged events

can be restricted by the user). The corpus was chosen because it is has many more datasets

4Full list available here http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm

http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm
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than the RingLearn corpus and many of them span much longer periods of time — some over

2 years — which presents a clear advantage over RingLearn. That being said, there were two

drawbacks when using Device Analyzer datasets for our purpose. First, because the datasets

are raw event logs, context cannot directly be gathered from the data as in RingLearn datasets

and has to be reconstituted from the said logs which are several gigabytes in size for datasets of

interest. Second, there are no labels for incoming calls, it is thus impossible to know the ground

truth when trying to categorise unintentionally missed or ignored calls versus explicitly declined

(rejected) calls. Assumptions thus have to be made to infer data labels which potentially lead

to noisy labels, a problem which could be offset if the Device Analyzer application used the

infer-and-confirm strategy presented in Section 4.2.

To convert raw Device Analyzer data into standard feature and label format, we thus recon-

stituted context across time by linearly going through a dataset’s event logs from top (earliest

recorded event) to bottom (latest recorded events), each line corresponding to a single system

event, reconstructing the context corresponding to every incoming call event. The events we

collected were from the phone, screen, conn and wifi keys yielding 11 features for each incom-

ing phone call with an extra feature not present during learning used to label incoming calls

(incoming call ring time). The 11 initial features are similar to RingLearn’s features augmented

with phone usage markers such as the amount of time a phone hasn’t been used as measured

by the amount of time the screen has been off, as these have shown to be good predictors

for notification disruptiveness [Pie14, PdOKO14]. For each call, we thus initially extracted 11

features as follows:

• The current month

• The current day of the week

• The current time

• The incoming call number

• The cell tower Id the recipient is connected to



4.3. Experiments 111

• The cell tower’s location area code

• The WIFI network name (if connected)

• Is the phone’s screen on or off when the call was received

• The amount of time since the phone’s screen was last on (0 if already on)

• If the screen is on, the number of seconds it has been on for (0 if it’s off)

• The number of seconds since the user’s previous call

Labelling Device Analyser Datasets

Having selected the context, the next step was to label the data. Using the logged Android

system events phone|OFFHOOK, phone|RINGING and phone|IDLE, we labelled datapoints

as follows: answered calls were labelled as non-disruptive while declined calls where the user

consciously chose not to answer the call by pressing the decline button, were labelled as dis-

ruptive. Answered calls could be recognised due to a phone|OFFHOOK event taking place in

between a phone|RINGING and phone|IDLE event. On the other hand, missed calls, when the

user either ignored or was unaware of the call happening, were initially indistinguishable from

declined calls as they were both characterised by a phone|RINGING followed by a phone|IDLE

event. To separate the two cases, we modelled the distribution of ringing times for both an-

swered and unanswered calls using a mixture of respectively a one and two Gaussian component

distribution, an example is shown in Figure 4.9.

We then labelled unanswered calls as disruptive if they fell within 2 standard deviations of

the answered call ringing time distribution mean, making the assumption that the user would

take the same amount of time to press the answer button as the decline button and ignoring

caller abandons (the caller drops a call before either reaching the user or their voicemail). We

note that unanswered calls could have been assumed to come from a 3 component gaussian

distribution: declined, missed and caller abandon (where the caller hangs up after x number of
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rings) classes but found that the Bayesian Information Criterion was always higher when using

3 classes.

After converting a number of Device Analyser datasets to feature and label format we selected

3 that had a high number of incoming call events. The datasets are anonymised and we refer to

them using the 4 first hexadecimal characters of their name 784c, b9ae and c260 and appending a

-DA marker to differentiate them from RingLearn dataset. We were then interested in knowing

which features where the most discriminanting so we applied Recursive Feature Elimination

with a random forest as described in [GFG06]. On these 3 datasets, the 5 features listed

below, ranked in term of discriminative power, gave virtually the same performance as using

the original 11 features and are the ones we used in our experiments:

• The number of seconds since the user’s previous call

• The current time

• The amount of time since the phone’s screen was last on (0 if aready on)

• The incoming call number

• The cell tower Id the recipient is connected to

Datasets

The properties of the 3 RingLearn and 3 Device Analyzer datasets used to benchmark forgetting

strategies over a range of w parameters are summarised in Table 4.1. Due to a shorter data

collection period, RingLearn dataset are much smaller than Device Analyzer datasets — from

193 to 294 points. The concept drift analysis algorithm from Section 3.1 reveals that the

class flip measure are moderate on these datasets, between 6.3% and 18.3%, indicating that

users did somewhat change what they considered to be disruptive incoming calls in a way

that significantly contradicted preceding instances. The relatively high concept drift measure

reveals that the 3 epochs used to analyse datasets had disruptive incoming call patterns that
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2 component GMM �t for incoming ringing times 
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Figure 4.9: For dataset c260-DA: the figure on the left shows the histogram of incoming call ring
times and a 2 component Gaussian distribution fit for modelling answered versus missed calls
ringing times. The figure on the right, shows a 1 component Gaussian distribution modelling
answered incoming calls times only and is used in the data labelling procedure for Device
Analyzer datasets.

Set Set Time Num. Class Data f Grid Drift Class flip
name Size span feats. balance type param. Size measure measure
L-RingLearn 193 16w 6 0.24/0.76 real 3 729 61.6% 8.8%
F-RingLearn 236 16w 6 0.13/0.87 real 3 729 59.7% 6.3%
J-RingLearn 294 16w 6 0.27/0.73 real 3 729 63.2% 18.3%
784c-DA 871 19w4d 5 0.31/0.69 real 4 1024 40.1% 3.8%
b9ae-DA 1256 1y7m9d 5 0.26/0.74 real 4 1024 42.9% 36.8%
c260-DA 2047 1y5d 5 0.30/0.70 real 4 1024 37.3% 35.5%

Table 4.1: Summary of the 6 incoming call datasets used in our experiments. Concept drift
analysis (right-hand side of table) was made as described in Section 3.1

were unique to them, which can be explained by the small size of the datasets. The first Device

Analyzer dataset, 784c-DA, while being larger than RingLearn datasets (871 instances), also

has the lowest class flip measure: 3.8%, foreshadowing that forgetting strategies will perform

close to online retraining. The remaining two Device Analyzer datasets are not only larger

(1256 and 2047 instances respectively) but span a longer period of time, over 1 year each,

leading to higher class flip measures (36.8% and 35.5% respectively) as expected. These two

datasets provide an ideal real use case to benchmark our proposed forgetting strategies and

support the hypothesis that in some cases there is a need to forget a subset of old patterns in

mobile context-aware applications deployed over long periods of time.
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4.3.2 Experimental Setup and Implementation Details

We use the same experimental setup as in Section in 3.4, with three exceptions. First, instead of

tracking the evolution of learner performance over time using a fixed w user preference param-

eter, we are interested in how well learners perform under different user preference scenarios.

We thus benchmark learners over 6 w parameters: w = 0, w = 0.5, w = 1, w = 2, w = 3 and

w = 4, corresponding to cases where the cost of failing to correctly predict disruptive calls is

increasingly higher than for non-disruptive calls, and compute learners’ mean performances and

standard errors over all w; the learner with highest mean weighted accuracy Aw is considered

the best as it can be seen as the most versatile, a default choice for cases where a user’s w

is unknown — as it is likely to be the case in practice. Second, the training set ratio was

set to 20% of the total dataset for RingLearn datasets and 33% for Device Analyzer datasets.

Finally, when two learners perform similarly, we use McNemar tests [Alp10] with α = 0.5 to

assess whether they perform statistically significantly differently or not.

McNemar Test

Given a training set, from the predictions of two learners l1 and l2 on the same testing set, the

following contingency table can be constructed:

a : b :
number of test instances number of test instances correctly
misclassified by l1 and l2 predicted by l2 but not by l1

c : d :
number of test instances correctly number of test instances

predicted by l1 but not by l2 correctly predicted by l2 and l1

The McNemar test is a statistical test that assumes the following null hypothesis: l1 and l2

have the same error rate at significance level α if χ2
1 = (|b−c|−1)2

b+c
≤ χ2

α,1 where χ2
α,1 is the chi-

square statistic with degree of freedom 1. Informally, the McNemar test makes the hypothesis

that l1 and l2 have similar error rate i.e. that they perform equally well, and that the observed

difference in performance for l1 and l2 on a particular experiment is only due to learners’ natural

variability in predictions over specific datasets. If the computed χ2
1 is greater than χ2

α,1 the test
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suggests that it is unlikely that the hypothesis is valid so that the opposite hypothesis, that l1

and l2 do not perform equally well in general, is assumed valid by default. In the experiments

below we use χ2
0.05,1 = 3.481 and apply the test for the sequence of predictions over all 6 w

parameter values we consider.

Concept drift analysis was again taken over 3 epochs, although larger grid sizes than in Chapter

3 had to be used for the measures to converge due to denser datasets. On each Device Analyzer

dataset, we also ran an extra experiment using a different base learner: the Classification and

Regression Trees provided by the sci-kit learn module, a non-parametric learner very similar

to the popular C4.5 algorithm [sklc15b]. The extra experiments were used to investigate how

different base learners might affect the performance of forgetting strategies and confirm that

our proposed forgetting strategies are indeed learner independent.

4.3.3 Results

The first four datasets: L-RingLearn, F-RingLearn, J-RingLearn and 784c-DA, have relatively

high concept drift measures and moderate to low class flip measures (61.6%, 59.7%, 63.2%,

40.1%, and 8.8%, 6.3%, 18.3%, 3.8% respectively) as shown in Table 4.1. Thus, we might

expect that offline learning will perform significantly worse than online retraining and that

forgetting strategies will provide some benefit over online retraining as indicated by the class

flip measure. In practice we find slightly different patterns.

L-RingLearn Results

L-RingLearn shown in Figure 4.10 with performances summarised in Table 4.2 is the smallest

of all considered datasets. Surprisingly, mean Aw for offline and online retraining only have a

0.5% performance gap between them (mean Aw = 0.7304 for offline and mean Aw = 0.7342 for

online retraining) although the dataset’s concept drift measure is 61.6%. The McNemar test

reveals an interesting fact, although offline and online retraining have very similar performance,

the actual instances they misclassify are significantly different. Further, with the exception of
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DIOC, the McNemar tests show that forgetting strategies perform similarly to online retraining

with a performance difference range of -1.9% for DIOC to 2.3% for TC (mean Aw = 0.7203 and

mean Aw = 0.7516 respectively) which is surprising given the dataset’s 8.8% class flip measure.

We attribute these unexpected patterns to the small dataset size and/or inconsistencies of

incoming call rejection patterns in the data. As a result, learning is rather unsuccessful as a

whole, with a maximal mean learner performance gain of only 8.3% compared to making naive

c− predictions i.e. always predicting the non-disruptive call class regardless of input. This is

can further be seen by the proximity of learner and naive performance curves in Figure 4.10.

Figure 4.10: Plot of forgetting strategy performances Aw on the L-RingLearn testing set for
different values of the user preference parameter w = c+ weight

c− weight
. c+ denotes the disruptive call

class and c− the non-disruptive call class. The baseline performances naive c+ and naive c−

indicate the performance attained when always predicting the corresponding classes. Individual
forgetting strategy hyperparameters for each w are reported in Appendix A.3
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Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TC 1 0.8603 0.7484 0.6321 0.6147 0.6543 0.7516 0.062
FISH 1 0.8603 0.7484 0.6269 0.6210 0.6506 0.7512 0.062
TG 1 0.8603 0.7484 0.6218 0.6061 0.6468 0.7472 0.063
Windowed 1 0.8603 0.7419 0.6218 0.5887 0.6208 0.7389 0.066
Online ret. 1 0.8603 0.7484 0.5959 0.5801 0.6208 0.7342 0.068
Offline 1 0.8603 0.7584 0.6321 0.5368 0.5948 0.7304 0.072
DIOC 1 0.8088 0.6839 0.6321 0.6061 0.5911 0.7203 0.064
Naive c− 1 0.8603 0.7548 0.6062 0.5065 0.4349 0.6937 0.088
Naive c+ 0 0.1397 0.2452 0.3938 0.4935 0.5651 0.3062 0.088

Table 4.2: Summary of forgetting strategy performances on the L-RingLearn testing set for a
range of w parameters. Strategies are ordered in decreasing order of mean weighted accuracy.

F-RingLearn Results

F-RingLearn shown in Figure 4.11 with performances summarised in Table 4.3 has similar

characteristics to L-Ringlearn. Online retraining performs slightly better than offline learning,

with a mean Aw gap of 3.7% (mean Aw = 0.7712 for offline and mean Aw = 0.8011 for

online retraining) and the McNemar test results again show that the difference is significant.

The McNemar tests show that forgetting strategies perform similarly to online retraining with

performances gains ranging from -2.3% for DIOC to 4.2% for TC (mean Aw = 0.7829 and mean

Aw = 0.8350 respectively) which is unexpected given its 6.3% class flip measure. It is interesting

to note that F-RingLean is the only dataset where a naive learner outperforms online retraining,

naive c− which has mean Aw = 0.8243 performing 2.8% better than online retraining. This

means predicting every call to be non-disruptive will yield higher performance than making

predictions using online retraining. The maximal mean performance gain compared to naive c−

is 1.2%, again indicating that learning in general was not significantly beneficial for the same

potential reasons as in L-RingLearn.

J-RingLearn Results

J-RingLearn shown in Figure 4.12 with performances summarised in Table 4.4 is the the largest

RingLearn dataset. It has a concept drift measure of 63.2% and a mean Aw gap of 8.1% between

online retraining and offline learning (mean Aw = 0.6649 for offline and mean Aw = 0.7190
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Figure 4.11: Plot of forgetting strategy performances Aw on the F-RingLearn testing set for
different values of the user preference parameter w = c+ weight

c− weight
. c+ denotes the disruptive call

class and c− the non-disruptive call class. The baseline performances naive c+ and naive c−

indicate the performance attained when always predicting the corresponding classes. Individual
forgetting strategy hyperparameters for each w are reported in Appendix A.3

for online retraining). The McNemar test confirms online retraining is a significantly better

strategy than offline learning. Further McNemar tests comparing forgetting strategies to online

retraining show that forgetting strategies perform significantly better, with performance gaps

higher than for previous datasets ranging from 2.6% for DIOC to 6.7% for FISH (mean Aw =

0.7379 and mean Aw = 0.7674 respectively) which is inline with our expectations due to the

dataset’s 18.3% class flip measure. The maximal mean performance gain over naive predictions

is 12.6% with naive c− mean Aw = 0.6814 which shows using machine learning is beneficial.

That being said, offline learning performs 2.5% worse than naive c− underlining the importance

of using adaptive learning and choosing the right forgetting strategy.
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Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TC 1 0.9352 0.8730 0.7925 0.7234 0.6860 0.8350 0.050
TG 1 0.9352 0.8730 0.7783 0.7149 0.6822 0.8306 0.051
FISH 1 0.9352 0.8730 0.7642 0.7149 0.6822 0.8282 0.052
Windowed 1 0.9352 0.8730 0.7642 0.7149 0.6822 0.8282 0.052
Naive c− 1 0.9352 0.8730 0.7830 0.7064 0.6434 0.8243 0.055
Online ret. 1 0.9352 0.8730 0.7642 0.6298 0.6047 0.8011 0.066
DIOC 1 0.8310 0.7725 0.7264 0.6936 0.6744 0.7829 0.049
Offline 1 0.9352 0.8730 0.6651 0.6000 0.5543 0.7712 0.076
Naive c+ 0 0.0648 0.1217 0.217 0.2936 0.3566 0.1756 0.056

Table 4.3: Summary of forgetting strategy performances on the F-RingLearn testing set for a
range of w parameters. Strategies are ordered in decreasing order of mean weighted accuracy.

Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
FISH 1 0.8491 0.7585 0.7003 0.6620 0.6348 0.7674 0.055
TC 1 0.8443 0.7542 0.6734 0.6732 0.6539 0.7665 0.055
TG 1 0.8540 0.7500 0.6667 0.6257 0.6277 0.7540 0.060
Windowed 1 0.8345 0.7373 0.6667 0.6257 0.6038 0.7446 0.061
DIOC 1 0.8273 0.7034 0.6397 0.6145 0.6425 0.7379 0.061
Online ret. 1 0.8345 0.7458 0.6027 0.5587 0.5728 0.7190 0.071
Naive c− 1 0.8516 0.7415 0.5892 0.4888 0.4177 0.6814 0.091
Offline 1 0.8540 0.6186 0.4714 0.4944 0.5513 0.6649 0.087
Naive c+ 0 0.1484 0.2585 0.4108 0.5112 0.5823 0.3185 0.091

Table 4.4: Summary of forgetting strategy performances on the J-RingLearn testing set for a
range of w parameters. Strategies are ordered in decreasing order of mean weighted accuracy.
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Figure 4.12: Plot of forgetting strategy performances Aw on the J-RingLearn testing set for
different values of the user preference parameter w = c+ weight

c− weight
. c+ denotes the disruptive call

class and c− the non-disruptive call class. The baseline performances naive c+ and naive c−

indicate the performance attained when always predicting the corresponding classes. Individual
forgetting strategy hyperparameters for each w are reported in Appendix A.3

784c-DA Results

784c-DA shown in Figures 4.13 and 4.16 with performances summarised in Tables 4.5 and

4.8 for Logistic Regression and Decision Tree base learners respectively, is the first Device

Analyzer dataset we consider. For Device Analyser datasets we are also interested in seeing

which patterns stay true across learners by comparing experimental results across the two base

learners. 784c-DA is larger than the RingLearn datasets, 871 points versus 193, 236 and 294

points which might explain the larger maximal mean performance gain of learners compared to

naive predictions. The performance increase is consistent across base learners: 21.7% for TG



4.3. Experiments 121

Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TG 1 0.8173 0.8173 0.6207 0.6365 0.6749 0.7433 0.059
TC 1 0.8132 0.7055 0.6232 0.6303 0.6757 0.7413 0.058
FISH 1 0.8091 0.7072 0.6079 0.6324 0.6511 0.7346 0.060
Windowed 1 0.8091 0.7038 0.6105 0.6110 0.6655 0.7333 0.061
DIOC 1 0.8122 0.7072 0.6041 0.5967 0.6757 0.7326 0.062
Online ret. 1 0.8050 0.6969 0.5977 0.6090 0.6613 0.7283 0.062
Offline 1 0.7920 0.6712 0.5734 0.5448 0.6224 0.7005 0.069
Naive c− 1 0.7946 0.6592 0.4917 0.3912 0.3260 0.6106 0.105
Naive c+ 0 0.2054 0.3408 0.5083 0.6079 0.6740 0.3894 0.104

Table 4.5: Summary of forgetting strategy performances on the 784c-DA testing set for a range
of w parameters. Strategies are ordered in decreasing order of mean weighted accuracy.

using Logistic Regression and 18.8% for FISH using a Decision Tree (mean Aw = 0.7433 and

mean Aw = 0.7260 respectively compared to naive c− mean Aw = 0.6106. On the contrary, the

gap between online retraining and offline learning is not. 784c-DA’s concept drift measure is

40.1% and while using Logistic Regression produces a mean Aw gap of 3.9% (mean Aw = 0.7005

for offline and mean Aw = 0.7283 for online retraining) the gap is of 10.2% when using a Decision

Tree base learner (mean Aw = 0.6426 for offline and mean Aw = 0.7086 for online retraining).

In both cases, McNemar tests reveal once again that online retraining is significantly better

than offline learning. However, the performance gap between online retraining and forgetting

strategies is consistent, it is low, foreshadowed by the dataset’s low class flip measure of 3.8%.

When using Logistic Regression as a base learner, it ranges from 0.5% for DIOC to 2.0% for

TG (with mean Aw = 0.7326 and mean Aw = 0.7433 respectively) and when using Decision

Trees it ranges from 0.8% for windowed learning to 2.6% for FISH (with mean Aw = 0.7145

and mean Aw = 0.7260 respectively). McNemar tests show that the null hypothesis cannot be

rejected when comparing online retraining to forgetting strategies on these two sets i.e. there is

no significant effect in using forgetting strategies on this particular dataset so that the optimal

forgetting strategy is to not forget anything. This is inline with the low class flip measure.

It is also interesting to note the overall weaker performance of strategies using Decision Tree

base learners as they are usually thought of as a more sophisticated base learner than Logistic

Regression.
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Figure 4.13: Plot of forgetting strategy performances Aw on the 784c-DA testing set for different
values of the user preference parameter w = c+ weight

c− weight
. c+ denotes the disruptive call class and

c− the non-disruptive call class. The baseline performances naive c+ and naive c− indicate the
performance attained when always predicting the corresponding classes. Individual forgetting
strategy hyperparameters for each w are reported in Appendix A.3

b9ae-DA Results

b9ae-DA shown in Figures 4.14 and 4.17 with performances summarised in Tables 4.6 and

4.9 for Logistic Regression and Decision Tree base learners respectively, is the dataset that

spans the longest period of time, over 1 year and 7 months for 1256 points. This leads to

a consistent benefit in using machine learning across base learners: a 25.4% increase for TC

using Logistic Regression and 17.4% for TG using a Decision Tree (mean Aw = 0.8057 and

mean Aw = 0.7545 respectively compared to naive c− mean Aw = 0.6422). b9ae-DA’s concept

drift measure is 42.9% and the performance gap between online retraining and offline learning is
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Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TC 1 0.8307 0.7696 0.7338 0.7470 0.7537 0.8057 0.041
FISH 1 0.8300 0.7482 0.7165 0.7241 0.7411 0.7933 0.044
TG 1 0.8286 0.7447 0.6964 0.7034 0.7362 0.7848 0.047
Windowed 1 0.8286 0.7447 0.6964 0.7034 0.7362 0.7848 0.047
DIOC 1 0.8286 0.7411 0.6700 0.6538 0.6521 0.7576 0.055
Online ret. 1 0.8265 0.7233 0.6335 0.6405 0.6889 0.7521 0.057
Offline 1 0.8188 0.7043 0.5843 0.5555 0.5233 0.6977 0.075
Naive c− 1 0.8216 0.6971 0.5351 0.4342 0.3653 0.6422 0.099
Naive c+ 0 0.1784 0.3029 0.4649 0.5658 0.6347 0.3577 0.099

Table 4.6: Summary of forgetting strategy performances on the b9ae-DA testing set for a range
of w parameters. Strategies are ordered in decreasing order of mean weighted accuracy.

different across base learners although the McNemar tests show that offline and online retraining

misclassify different instances. Using Logistic Regression yields a mean Aw gap of 7.7% (mean

Aw = 0.6977 for offline and mean Aw = 0.7521 for online) and the gap is of 12.3% when using

a Decision Tree base learner (mean Aw = 0.6218 for offline and mean Aw = 0.6988 for online).

The performance gap between online retraining and forgetting strategies is consistent, it is

higher than on previous datasets as anticipated due to the dataset’s higher class flip measure

of 36.8%. When using Logistic Regression as a base learner, it ranges from 0.7% for DIOC to

7.1% for TC (mean Aw = 0.7576 and mean Aw = 0.8057 respectively) and when using Decision

Trees it ranges from 3.7% for windowed learning to 7.9% for TG (with mean Aw = 0.7248

and mean Aw = 0.7545 respectively. This is a typical case of a large dataset where forgetting

strategies perform better than online retraining due to the presence of class flips throughout

the datasets, this is confirmed by McNemar test which finds the difference in performance

statistically significant. Finally, we once again note the overall weaker performance when using

Decision Trees as a base learner.

c260-DA Results

c260-DA shown in Figures 4.15 and 4.18 with performances summarised in Tables 4.7 and 4.10

for Logistic Regression and Decision Tree base learners respectively, is the largest dataset we

consider with 2047 points and spans over 1 year. This again leads to a marked benefit in using
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Figure 4.14: Plot of forgetting strategy performances Aw on the b9ae-DA testing set for different
values of the user preference parameter w = c+ weight

c− weight
. c+ denotes the disruptive call class and

c− the non-disruptive call class. The baseline performances naive c+ and naive c− indicate the
performance attained when always predicting the corresponding classes. Individual forgetting
strategy hyperparameters for each w are reported in Appendix A.3

machine learning across base learners: a 19.7% increase for TC using Logistic Regression and

29.0% for TC using a Decision Tree (mean Aw = 0.7545 and mean Aw = 0.8542 respectively

compared to naive c− mean Aw = 0.6621). c260-DA’s concept drift measure is 35.5% with a

slight but significant performance gap between online retraining and offline learning as con-

firmed by McNemar tests. Using Logistic Regression yields a mean Aw gap of 3.5% (mean

Aw = 0.7421 for offline and mean Aw = 0.7176 for online) and the gap is of 1.2% when using

a Decision Tree base learner (mean Aw = 0.7792 for offline and mean Aw = 0.7886 for online).

The performance gap between online retraining and forgetting strategies is consistent, and sig-

nificant according to McNemar tests, with a similar pattern and class flip measure to b9ae-DA.
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When using Logistic Regression as a base learner, it ranges from 2.0% for DIOC to 6.8% for

TC (mean Aw = 0.7576 and mean Aw = 0.7931 respectively) and when using Decision Trees it

ranges from 1.9% for windowed learning to 8.3% for TG (with mean Aw = 0.8042 and mean

Aw = 0.8542 respectively). It is interesting to note that, opposite to 784c-DA and b9ae-DA,

using a Decision trees yields higher performance than using Logistic Regression on this dataset.

Figure 4.15: Plot of forgetting strategy performances Aw on the c260-DA testing set for different
values of the user preference parameter w = c+ weight

c− weight
. c+ denotes the disruptive call class and

c− the non-disruptive call class. The baseline performances naive c+ and naive c− indicate the
performance attained when always predicting the corresponding classes. Individual forgetting
strategy hyperparameters for each w are reported in Appendix A.3
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Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TG 1 0.8394 0.7653 0.7192 0.7145 0.7203 0.7931 0.045
TC 1 0.8394 0.7485 0.6663 0.6654 0.6799 0.7665 0.054
FISH 1 0.8415 0.7405 0.6549 0.6612 0.6751 0.7622 0.055
Windowed 1 0.8356 0.7354 0.6577 0.6481 0.6700 0.7578 0.056
DIOC 1 0.8335 0.7413 0.6492 0.6537 0.6680 0.7576 0.056
Online ret. 1 0.8360 0.7201 0.6401 0.6257 0.6307 0.7421 0.061
Offline 1 0.8369 0.7136 0.5860 0.5607 0.6086 0.7176 0.070
Naive c− 1 0.8373 0.7201 0.5626 0.4617 0.3914 0.6621 0.095
Naive c+ 0 0.1627 0.2799 0.4374 0.5383 0.6086 0.3378 0.095

Table 4.7: Summary of forgetting strategy performances on the c260-DA testing set for a range
of w parameters. Strategies are ordered in decreasing order of mean weighted accuracy.
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Figure 4.16: Plot of forgetting strategy performances Aw on the 784c-DA testing set using a
Decision Tree base learner for different values of the user preference parameter w = c+ weight

c− weight
.

c+ denotes the disruptive call class and c− the non-disruptive call class. The baseline perfor-
mances naive c+ and naive c− indicate the performance attained when always predicting the
corresponding classes. Individual forgetting strategy hyperparameters for each w are reported
in Appendix A.3

4.3.4 Discussion and Limitations

Due to the weak overall performance of learning i.e learners converging to naive strategies on

L-RingLearn and F-RingLearn, we do not base our conclusions on those experiments, they were

kept as an example of the possible outcome of data collection in the wild practitioners might

face. The experiments over J-RingLearn, 784c-DA, b9ae-DA and c260-DA confirm the patterns

observed in Chapter 3. The concept drift measure, which was high across the four datasets,

ranging from 37.3% to 63.2%, is consistently correlated with adaptive learning achieving higher

performance than offline learning. Interestingly, McNemar tests reveal that online retraining
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Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
FISH 1 0.7358 0.7003 0.6539 0.6446 0.6215 0.7260 0.057
TC 1 0.7358 0.7038 0.6590 0.6405 0.6173 0.7260 0.057
TG 1 0.7430 0.6986 0.6641 0.6303 0.6088 0.7241 0.058
Windowed 1 0.7173 0.6986 0.6462 0.6191 0.6063 0.7145 0.059
Online ret. 1 0.7296 0.6884 0.6475 0.5998 0.5868 0.7086 0.062
DIOC 1 0.7234 0.6627 0.6245 0.5743 0.5343 0.6865 0.068
Offline 1 0.6574 0.6216 0.5364 0.5621 0.4784 0.6426 0.075
Naive c− 1 0.7946 0.6592 0.4917 0.3912 0.3260 0.6106 0.105
Naive c+ 0 0.2054 0.3408 0.5083 0.6079 0.6740 0.3894 0.104

Table 4.8: Summary of forgetting strategy performances on the 784c-DA testing set for a range
of w parameters with a Decision Tree base learner. Strategies are ordered in decreasing order
of mean weighted accuracy.

Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TG 1 0.7600 0.7197 0.6791 0.6797 0.6889 0.7545 0.050
TC 1 0.7600 0.7292 0.6855 0.6553 0.6490 0.7465 0.053
DIOC 1 0.7649 0.7162 0.6563 0.6080 0.5905 0.7339 0.061
FISH 1 0.7586 0.7162 0.6673 0.6383 0.6304 0.7351 0.056
Windowed 1 0.7397 0.7209 0.6563 0.6294 0.6030 0.7248 0.059
Online ret. 1 0.7348 0.6960 0.6153 0.5865 0.5607 0.6988 0.066
Naive c− 1 0.8216 0.6971 0.5351 0.4342 0.3653 0.6422 0.099
Offline 1 0.7110 0.6485 0.5242 0.4430 0.4045 0.6218 0.089
Naive c+ 0 0.1784 0.3029 0.4649 0.5658 0.6347 0.3577 0.099

Table 4.9: Summary of forgetting strategy performances on the b9ae-DA testing set for a range
of w parameters with a Decision Tree base learner. Strategies are ordered in decreasing order
of mean weighted accuracy.
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Figure 4.17: Plot of forgetting strategy performances Aw on the b9ae-DA testing set using a
Decision Tree base learner for different values of the user preference parameter w = c+ weight

c− weight
.

c+ denotes the disruptive call class and c− the non-disruptive call class. The baseline perfor-
mances naive c+ and naive c− indicate the performance attained when always predicting the
corresponding classes. Individual forgetting strategy hyperparameters for each w are reported
in Appendix A.3

makes predictions which are significantly different from offline learning, the mean Aw perfor-

mance gap between the two was often small and inconsistent across base learners similar to

784c-DA where it is 3.9% using Logistic Regression and 10.2% for Decision Trees, on b9ae-DA

these values where 7.7% and 12.3%. The McNemar tests show that although offline and online

retraining can be close in performance, the actual instances they misclassify are different. This

means that integrating new knowledge is beneficial as online retraining will correctly classify

some test instances offline learning won’t, but that integrating new knowledge indiscriminately

yields misclassifications that would not have happened if it was ignored (offline learning) —

confirming the intuitive benefit of forgetting strategies.
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Figure 4.18: Plot of forgetting strategy performances Aw on the c260-DA testing set using a
Decision Tree base learner for different values of the user preference parameter w = c+ weight

c− weight
.

c+ denotes the disruptive call class and c− the non-disruptive call class. The baseline perfor-
mances naive c+ and naive c− indicate the performance attained when always predicting the
corresponding classes. Individual forgetting strategy hyperparameters for each w are reported
in Appendix A.3

Larger class flip measures were consistently linked across base learners with larger gap in per-

formance between online retraining and one of the four benchmarked forgetting strategies. The

maximal mean Aw performance improvement on J-RingLearn is 6.7% (Logistic Regression based

FISH) for a 18.3% class flip measure, 2.0% (Logistic Regression based TG) and 2.6% (Decision

Tree based FISH) on 783c-DA for a 3.8% class flip measure, 7.1% (Logistic Regression based

TC) and 7.9% (Decision Tree based TG) on b9ae-DA for a 36.8% class flip measure, and 6.8%

(Logistic Regression based TC) and 8.3% (Decision Tree based TC) on c260-DA. We note that

the actual class flip measure value cannot be used to predict the performance gain range, it

does not give bounds on performance increase, rather it is a indicator that a dataset is likely to
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Strategy A0 A0.5 A1 A2 A3 A4 mean Aw SE
TC 1 0.8775 0.8513 0.8161 0.7953 0.7853 0.8542 0.032
TG 1 0.8725 0.8469 0.8132 0.7893 0.7761 0.8496 0.033
DIOC 1 0.8326 0.8326 0.7870 0.7645 0.7425 0.8240 0.037
FISH 1 0.8403 0.7974 0.7830 0.7486 0.7409 0.8183 0.039
Windowed 1 0.8119 0.8309 0.7893 0.7388 0.7203 0.8050 0.040
Online ret. 1 0.8343 0.7748 0.7323 0.7051 0.6854 0.7886 0.047
Offline 1 0.7835 0.7675 0.7267 0.7037 0.7037 0.7792 0.045
Naive c− 1 0.8373 0.7201 0.5626 0.4617 0.3914 0.6621 0.095
Naive c+ 0 0.1627 0.2799 0.4374 0.5383 0.6086 0.3378 0.095

Table 4.10: Summary of forgetting strategy performances on the c260-DA testing set for a
range of w parameters with a Decision Tree base learner. Strategies are ordered in decreasing
order of mean weighted accuracy.

have contradictory class boundaries across epochs which in turn make the use of a forgetting

strategy beneficial.

Regarding which strategy to choose, the experiments shows that DIOC performs the worse,

its mean Aw being usually very close to that of windowed learning, online retraining or offline

learning and predictions not significantly different from these according to McNemar tests.

FISH and TC are usually the best learners with similar performances but significantly different

predictions patterns according to McNemar tests (except on 784c-DA where the null hypothesis

cannot be rejected regardless of the base learner) giving only a slight advantage to TC: Aw =

0.7674 versus Aw = 0.7665 On J-RingLearn, Aw = 0.7933 versus Aw = 0.8057 on b9ae-DA

using Logistic Regression, Aw = 0.7351 versus Aw = 0.7465 on b9ae-DA using Decision Trees,

Aw = 0.7622 versus Aw = 0.7665 on c260-DA using Logistic Regression and Aw = 0.8183

versus Aw = 0.8542 on c260-DA using Decision Trees. Finally, interestingly, we note that cost

sensitivity for low values of w when using a Decision Tree base learner is less well achieved

than when using Logistic Regression as can be seen on Figures 4.16, 4.17 and 4.18, although

we did not find any related conclusions in the literature this would be an interesting point to

investigate in future work.
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4.4 Summary

This chapter started by motivating our choice of using smartphone notifications as a case study

and justifies our decision to focus on disruptive incoming calls.

It covered background literature in interruptions, targeting disruptive smartphone notifications

specifically. In commercial devices, disruptive smartphone notification handling is done by

manually setting notification signalling rules for applications and enabling or disabling the en-

forcement of these rules by choosing an overall smartphone signalling setting such as priority

only or ’Do Not Disturb’. In research, solutions aim to leverage user context and machine learn-

ing to avoid manually setting rules for applications and the overall phone signalling setting.

The methods can be categorised into scheduling notifications to predicted opportune moments

and context-dependent mitigation of notification signalling. We then argued that scheduling is

not straightforwardly applicable to incoming calls while most of the work in notification mit-

igation employs explicit experience sampling which is not fit for long term deployment — an

essential property for mobile context-aware applications to be useful in practice. Another inter-

esting point that came from a smartphone usage survey conducted on 65 participants showing

that mobile communication is increasingly happening through asynchronous communications

messaging application such as WhatsApp and Facebook messenger. A comprehensive approach

must thus be used to manage disruptive notification again favouring mitigation over scheduling.

Different types of notifications thus might have to be mitigated in different ways which is an

interesting future work topic.

The chapter proposes a new way of mitigating disruptive notifications using implicit experience

sampling. Implicit experience sampling silently infers data labels from users’ actions when re-

ceiving a notification rather than explicitly requesting labels as in the case of explicit experience

sampling. A solution prototype was implemented as an Android application called RingLearn

which labels incoming calls as disruptive or non-disruptive based on the button a user chooses

to either accept or reject a call on a custom incoming call screen. Data was gathered over 16

weeks on 11 users and a post-usage survey revealed that 7 out of 11 participants would use

RingLearn if it went beyond the prototype stage (RingLearn was only collecting data for the
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duration of the experiment). The remaining 4 participants requested a mechanism to be able

to change inferred call labels as it is not always possible to predict the disruptiveness of an

incoming call before answering it.

The resulting data collection and labelling mechanism which addresses the corresponding core

challenge of intelligent mobile context-aware applications, was obtained by refining our initial

implicit experience sampling strategy by combining it with a confirmation step. The resulting

infer-and-confirm strategy labels data using implicit experience sampling and then temporarily

informs the user each time a new label is inferred, leaving the user a small time window

to amend it if necessary. If the user does not amend the label within the time frame, it is

considered valid — the optimal outcome, not requiring any extra effort on the part of the user

compared to normal device use. This strategy can be used for arbitrary smartphone notifications

and beyond, for instance, we retrospectively found it used in a commercial Thermostat auto-

scheduling product as mentioned in Section 1.1. An illustration of how our approach can be

applied in practice in an arbitrary mobile context-aware application is shown in Figure 4.19.

In Section 4.3 we used the 3 largest datasets collected using RingLearn and 3 datasets from

another incoming call dataset, Device Analyzer, to test the chapter’s fundamental hypotheses:

can we predict disruptive versus non-disruptive incoming calls on data gathered through implicit

experience sampling? And, is the use of a forgetting strategy beneficial on the call data i.e. do

users change what they consider to be a disruptive call as time goes by?

We constructed 9 experiments over the 6 datasets testing learners over a range of Aw parameters

to answer these hypotheses. The results showed that on the RingLearn datasets with 193, 236

and 294 points each, an 8.3%, 1.2% and 12.6% maximal average performance increase was

observed over the naive strategies. The implicit experience sampling strategy used over 16

weeks was thus not very effective, especial in the case of the second dataset, in collecting

enough data to predict disruptive incoming calls. The three Device Analyzer datasets, chosen

for their larger size and lengthier collection time spans, 871 points spanning 19 weeks and 4

days, 1256 points spanning 1 year 7 months and 9 days, and 2047 points spanning 1 year and 5

days, showed maximal average performance increases of 21.7%, 25.5% and 29.0%. These results
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indicate that human behaviour sensed by simple smartphone sensors is consistent enough so that

given sufficient passive observations of incoming call events one is able to predict disruptive

incoming calls significantly better than making naive guesses. That being said, the performance

benefits observed over naive predictions are probably not worth the amount of time required

to gather the amount of training data needed to achieve them — at least 4 weeks for even

the smallest Device-Analyzer dataset. A solution to this is to combine our proposed infer-and-

confirm strategy with either an initial period of explicit experience sampling or bootstrapping

data with a questionnaire. The way in which to combine data collection techniques, how long

do we collect initial data for and how this affects user interaction with the application for

instance, is an important future work direction.

The most important finding of the chapter concerns the second hypothesis. First, we have ex-

perimentally confirmed that the concept drift measure was consistently correlated with adaptive

learning performing significantly better than offline learning (although the performance gaps

between offline and online retraining were sometimes small) and that the class flip measure

is correlated with forgetting strategies performing significantly better than online and offline

learning in line with our findings of Chapter 3. Specifically, 4 cases arise:

• A high concept drift measure is observed with a low class flip measure which leads to

offline learning’s mean Aw performance being close to the online retraining and forgetting

strategies’ mean Aw as in the case of 784c-D.A using Logistic Regression

• A high concept drift measure is observed with a low class flip measure which leads to

offline learning performing markedly worse than online retraining and forgetting strategies

as in the case of 784c-D.A using Decision Trees

• A high concept drift measure is observed with a high class flip measure which leads to

offline learning’s mean Aw performance being close to the online retraining mean Aw but

forgetting strategies performing better than online retraining as in the case of c260-DA

using Decision Trees

• A high concept drift measure is observed with a high class flip measure which leads to
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offline learning performing worse than online retraining and forgetting strategies perform-

ing better than online retraining as in the case of J-RingLearn, b9ae-D.A and c260-DA

using Logistic Regression.

This once again supports our claim that concept drift is not always informative of any per-

formance patterns other than that some form of adaptive learning will increase performance

compared to offline learning and highlights the advantage of thinking in terms of ‘necessity to

forget’ which reliably predicts that forgetting strategies will be beneficial over online retraining

and offline learning.

In these sets of experiments, we found the best forgetting strategies were TC and FISH with

DIOC lagging behind. Interestingly, on 784c-DA using Logistic Regression, c260-DA using

Logistic Regression and b9ae-DA using Decision Trees TG performed better than TC, once

again revealing the same weakness of TC as on the Artificial6 dataset of Section 3.4. Because

clusters are only computed using the training set, if a new cluster appears during testing it

will not be covered by existing clusters properly, leading to misclassifications. An immediate

piece of future work would thus be to refine the TC algorithm to periodically recompute its

density-based clustering as in principle its performance should be at least the same as TG —

as a TG segmentation of the data space can be approximated using TC but not vice versa.

Finally, we observed that Decision Trees were worse than Logistic Regression on cost sensitive

learning tasks, specifically for w = 0.5, where learners using a Decision Tree base classifier often

performed worse than naive predictions. This indicates that some base learners might be more

suitable or less suitable for cost sensitive learning depending on how they achieve cost-sensitivy.

Because cost-sensitivity is so important in mobile context-aware applications it would also be

interesting to investigate this further in future work.
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Figure 4.19: An illustration of how forgetting strategies and our weighted accuracy measure
from Chapter 3 and the infer-and-confirm strategy proposed in this chapter are meant to be
combined in a deployable intelligent mobile context-aware application
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Conclusion

The goal of this thesis is to address the challenges in making mobile context-aware applications

deployable over indefinite periods of time. It focuses on intelligent mobile context-aware ap-

plication which use machine learning to infer the correct behaviour to adopt based on sensed

context. This type of application presents an advantage over static applications which require

the user or an expert to entirely pre-program the application’s behaviour before deployment

and allows for adaptation to new contexts. This subsumes three main challenges. First, find-

ing a way of collecting labelled data to train machine learners that is practical for real world

deployment of the application. Second, defining a objective function that matches user prefer-

ences for the application’s behaviour. Third, devising a mechanism to adapt to changes in user

behaviour which might occur during deployment.

This thesis thus differentiates itself from much of the existing literature by proposing a compre-

hensive approach to intelligent mobile context-aware systems. It proposes an infer-and-confirm

user interaction paradigm to collect labelled data while minimising the cognitive load of do-

ing so which was elaborated based on the deployment of a disruptive incoming call manager

prototype called RingLearn on the Android platform. It proposes to use a weighted accuracy

measure as an objective function to train learners in a way which takes into account user pref-

erence and offsets class imbalance. Last but not least, it offers a new way of approaching the

problem of concept drift which is the effect of changes in user preferences or behaviour during
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an application’s deployment which in turn might change the expected behaviour of the appli-

cation. In doing so, the thesis decouples the notion of concept drift and the ‘need to forget’. It

proposes a new way to quantify both, and introduces the notion of a forgetting strategy. Two

new forgetting strategies, Training Grid (TG) and Training Clusters (TC) are developed and

compared to both baseline forgetting strategies and state-of-the-art methods using two data

corpuses, the data collected via our RingLearn Android application and Device Analyzer, the

largest smartphone usage dataset available to date.

5.1 Summary of Thesis Achievements

The main original contributions of this thesis are the following:

A concept drift analysis algorithm which decouples concept drift and the need to forget. The

algorithm (Algorithm 1) takes as input a number of epochs to carry out the analysis over

and a feature splitting parameter. It then proceeds to segment the dataspace accordingly and

analyses local changes in each area of the data space across epochs. The algorithm returns the

percentage of points which are new between epochs i.e. not present in anterior epochs, and the

number of points affected by what we refer to as class flips. Class flips occur when an area in

the dataspace changes its dominant class in between epochs, it is considered a form of concept

drift because it indicates that classification boundaries from previous epochs might contradict

the boundary of the epoch currently being analysed, the overall percentage of points affected

by these two events are said to be affected by concept drift. The number of points only affected

by class flips indicate a potential need to forget some data in the corresponding area.

Two learner-independent dynamic training set formation strategies which we refer to as for-

getting strategies (Algorithms 14 and 18). These are our proposed solution to learning under

concept drift in mobile context-aware applications designed to handle any type of local or total

concept drift and perform at least as well, and many times better, than current solutions. The

Training Grid and Training Clusters algorithm share the same core idea, segment the input

data space and assign a local training window to each area. Data is thus only discarded if
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it can be replaced by newer instances in the same area building upon the popular concept of

windowed learning. The two algorithms differentiate themselves in the way they define areas,

Training Grid segments the input space into regular equal n-dimensional volume areas based on

a feature splitting parameter, while Training Clusters uses density-based clustering to segment

the dataspace.

A use case study of disruptive smartphone notifications, specifically aimed toward disruptive

incoming calls, which led to the development of an Android application called RingLearn pre-

sented in Section 4.2 to understand user behaviour towards disruptive incoming calls and the

gathering of 16 weeks of incoming call data over 11 participants. The conclusion of the study

led to the elaboration of a generic infer-and-confirm strategy detailed in Section 4.2.2 to gather

labelled data in a user friendly way over indefinite periods of time that can be used in mobile

context-aware applications.

Two separate evaluations comparing, naive predictions, offline learning, online retraining, win-

dowed learning, two state-of-the-art forgetting strategies and our proposed forgetting strategies

using a weighted accuracy performance measure Aw (presented in Section 3.3). The weighted

accuracy performance measure takes into account user preferences as to which class is more

important to predict correctly and can be used to offset class imbalance using a single weight

parameter w, in the case of disruptive call management for instance a user might consider the

correct prediction of disruptive calls to be more important than non-disruptive calls although

they might occur less often which corresponds to a large w for the disruptive call class. The set

of experiments in Chapter 3 was carried out over 8 datasets coming from 6 different corpuses

with a fixed user preference parameter w analysing the performance of learners as time passes,

while the 9 experiments in Chapter 4 specifically targeted disruptive smartphone notifications

and were carried out over data collected using our RingLearn application and the Device An-

alyzer application. In Chapter 4, we also compared forgetting strategies using two different

base learners, Logistic Regression and Decision Trees to experimentally show that our pro-

posed learning strategies are indeed learner independent. Over the course of the experiments

we have confirmed the 4 patterns we had hypothesised. First, that the presence of concept

drift does not always imply that a forgetting strategy will be beneficial — it could be the case
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that online retraining suffices to achieve maximal performance. Second, that the presence of

concept drift as computed by our concept drift analysis algorithm implies that online retraining

will be significantly better than offline learning which we confirmed by looking at performance

gaps between the two across experiments and applying McNemar tests on prediction contin-

gency tables. Third, that the class flip measure indicates the need to forget which implies

that forgetting strategies will perform significantly better than online retraining on a dataset,

again confirmed by looking at performance gaps and applying McNemar tests on prediction

contingency tables. Finally, that our proposed TG and TC algorithms perform at least as well

as existing forgetting strategies when these are optimal over a dataset, and many times better.

TC usually outperforms TG (10 out of 15 times) and performance delta between the best of

TC and TG over existing solutions ranged from -0.2% to 11.3% across the 15 experiments.

5.2 Critical Review and Future Work

This thesis touches upon a variety of topics including machine learning, context-aware systems,

HCI and smartphones notifications. As such, some topics were investigated more in depth than

others with room for refinement and future work in these.

5.2.1 Machine Learning

The proposed CDA algorithm quantifies and decouples concept drift and the need to forget

using the concept drift and class flip measure which seems to be a crucial element in better

understanding dataset properties and appropriate learning strategies. That being said, because

our proposed method considers chunks of data (the data in a grid element partitioning the

dataspace) and does not require equal volume grid elements to compute measures, it can lead

to the class flip measure being overestimated which in turn makes it difficult to compare class

flip measures across datasets with different data density and feature ranges. An interesting

area of future work is thus to find alternative ways to computing the class flip measure, for
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instance using finer grained grids in areas where class flips are thought to happen and taking

steps to normalise datasets before applying CDA.

The proposed Training Grid and Training Clusters algorithms fulfil their intended purpose, to

converge to simple forgetting strategies (online retraining and windowed learning) in simple

cases and significantly outperform existing state-of-the-art approaches (DIOC and FISH) in

most complex scenarios. That being said, further improvements could be explored to poten-

tially increase this performance gap. One of the spotted weaknesses of TC in our experiments

is that the dataspace partition it creates during the training phase might not fit new data in-

stances acquired during the testing phase after some time. This could be solved by periodically

recomputing dataset partitions. Similarly, both methods could potentially have different sized

windows attached to different areas of the dataspace, as a function of their size for instance.

We note that although all our experiments assume binary class problems, our work is directly

applicable to multiple class problems. Specifically, the definitions of new data and class flip

events of the CDA algorithm from Section 3.1.1 have no restrictions on the number of classes

they consider. The weighted accuracy measure we propose in Section 3.3.1 can straightforwardly

be extended to multiple class problems by assigning a weight wi to each class such that Σiwi = 1

and computing Awi
= Σiwi∗recalli∗|ci|

Σiwi|ci| where recalli is the recall for class ci and |ci| is the number

of instance in class ci. Finally the TG and TC forgetting strategies are meta-learners which do

not make use of datapoint classes in their adaptive training set formation mechanism so that

their support for multiple class learning problems only depends on the base learner chosen by

a practitioner.

5.2.2 Mobile Context-aware Systems

In Chapter 4, we presented the RingLearn disruptive incoming call management prototype

which implicitly (passively) collected incoming call data during 16 weeks. In the associated

experiments, it became clear that 2 out of the 3 collected datasets were too small for machine

learning to offer a marked advantage over naive predictions while data collected over longer

periods of time did not present this pattern. In practice, 16 weeks seems to be a very long
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time for a user to wait until a mobile application is able to make predictions that beat naive

predictions. A solution to this would be to use an initial data bootstrapping phase using explicit

(active) data collection strategies such as explicit experience sampling or a questionnaire and

once enough data is collected only rely on passive data collection mechanisms to keep the

application updated. The way in which to combine implicit and explicit data collection methods

is a worthwhile area of future work.

Our use case focused on disruptive incoming calls as a survey revealed these are potentially

the most disruptive. The same survey also revealed that asynchronous messaging applications

were the most commonly used communication method, an interesting area of future work is

to extend our proposed methodology to cover all types of notifications in a unified way which

implies to devise a way to passively recognise whether incoming asynchronous messages are

disruptive or not.

5.2.3 Human Computer Interaction

The infer-and-confirm method seems like a natural way to passively collect labelled data from

device use, in fact, we found it to be very similar to the data acquisition paradigm used in

the Nest thermostat auto-scheduler system retrospectively. The confirm step is a user facing

component in which a temporary dialog is shown to the user informing them of the system’s

predicted label given the current context letting the user correct the label if need be. The

confirm step thus has various interface and interaction design questions attached to it such as:

what does the dialog look like, where should it be placed to minimise disturbance, how long

should it be shown and how does the user interact with it which is a crucial piece of future work

to make mobile context-aware systems that can be deployed over indefinite periods of time.

This thesis also proposes a weighted accuracy measure Aw to take into account user preferences

and class imbalance when measuring a system’s performance. The weighted accuracy measure

is parametrised by a class weight parameter w in the case of binary class prediction problems

which can be extended to multiple classes by assigning a weight to each class. This implies a

fundamental HCI question: how can we model user preferences using numbers, in the specific
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case of weighted accuracy, how do we find a given user’s w? Mending the discrepancy between

computed performance and user perceived performance is a cornerstone for learning context-

aware applications to become mainstream so that studying how humans perceive a learning

(mobile context aware) system’s performance is also a critical future work to pursue.

5.3 Final Comments

Mobile context-aware systems are a very important topic as they carry the potential to impact

many people’s daily lives. Applications for this work are two fold. The first area is pure machine

learning, where our proposed concept drift analysis algorithm and forgetting strategies can be

used beyond context-aware systems in problems where concept drift is suspected. Second, the

overall findings of the thesis in terms of which type of learning to use, which objective function

to optimise and how to collect data, can be applied in mobile applications beyond disruptive

incoming calls such as smart-home devices, daily activity recognition or recommender systems.

This thesis became what I have had wanted to read when I first started doing research in

intelligent context-aware systems: an in depth and unified exploration of the different theoretical

and practical challenges in deploying intelligent mobile context-aware systems over indefinite

periods of time, allowing me to address the further theoretical and practical challenges of

mobile context-aware systems specific to healthcare settings. As I could not find this in existing

research, I did my best to carry out the work myself and present it in a format that allows

other researchers to build upon it and explore the further theoretical and practical challenges

attached to a specialised applications directly.
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Mykola Pechenizkiy. Handling concept drift in process mining. In Proceedings of

the 23rd international conference on Advanced information systems engineering,

CAiSE’11, pages 391–405, Berlin, Heidelberg, 2011. Springer-Verlag.

[BVL12] Marko Borazio and Kristof Van Laerhoven. Combining wearable and environ-

mental sensing into an unobtrusive tool for long-term sleep studies. In 2nd ACM

SIGHIT International Health Informatics Symposium, Miami, Florida, USA, Jan

2012. ACM Press.
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Appendix

A.1 General notation

Vectors are noted ~x and are assumed to be in column format. Row vectors are represented

using the transpose of a column vector ~xT

• tp: true positive(correct classification of a positive instance as positive), tn: true nega-

tive(classification of a negative instance as negative), fp: false positive(incorrect classifi-

cation of a negative instance as positive), fn: false negative(incorrect classification of a

positive instance as negative)

sensitivity or recall = tp
tp+fn

i.e. the proportion of positive instances we have classified

as such, ‘how much of the positive instances we have found’

specificity = tn
tn+fp

i.e. the proportion of the negative instances that have been classified

as such, ‘how much of the negative instances we have found’

precision = tp
tp+fp

i.e. the proportion of the instances classified as positive that actually

are, ‘how much we can trust our classifier when it says something is a positive

instance’

accuracy = tp+tn
tp+tn+fp+fn

i.e the proportion of correct classifications, ‘how much of the

time our classifier is right’
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area under receiver operating characteristic curve (AUC) gives the tradeoff be-

tween true positive rate and false positive rate, for the range of values of a discrimina-

tive threshold for a classifier. It tells us how much a certain sensitivity performance

will cost in terms of false positive rate (proportion of instances classified positive

that are actually negative)

f-measure = 2 precision∗recall
precision+recall

i.e a score that weighs equally precision and recall.
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A.2 Machine Learning Core Concepts

Definition 1. Random variable

A random variable X is a variable that can take on different values each associated with a

probability P (X = a) ∈ [0, 1] for discrete variables and P (X ∈ A) ∈ [0, 1], A ∈ R for

continuous variables. If X is continuous P (X = a) = 0 for any a ∈ R.

Definition 2. Probability mass and Probability density

A Probability mass function p(x) gives the probability that a discrete random variable will take

on a certain value P (X = a) = p(a). A probability density function p(x) is used to compute the

probability that a continuous random variable falls in the interval A, P (X ∈ A) =
∫
A
p(x)dx,

it is thus the area under the probability density function curve on the interval A.

Definition 3. Joint probability distributions

Without loss of generality, given two random variables X and Y , the joint probability distri-

bution p(x, y) describes the common dynamics of two variables. In the discrete case, p(X =

a, Y = b) gives the probability of the values X = a and Y = b occurring together, p(x, y) is

called the joint probability mass function. In the continuous case, p(x, y) is the joint probability

density function which enables us to compute the probability that X ∈ A and Y ∈ B for some

intervals A,B. P (X ∈ A, Y ∈ B) =
∫
A

∫
B
p(x, y)dydx.

Definition 4. Marginal probability distributions

Without loss of generality, given two random variables X and Y , the marginal distribution

pX(x) is the probability distribution of X without reference to Y . In the discrete case, the

marginal probability mass function pX(x) = Σy p(X = x, Y = y) where p(x, y) is the joint

probability mass function, it gives us the overall probability that X will take on the value x. In

the continuous case, pX(x) =
∫
y
p(x, y)dy where p(x, y) is the joint probability density function,

it can be used to compute the overall probability that X will fall within a certain range.

Definition 5. Conditional probability distributions

In the type of context-aware system we are interested in, learning tasks have a random variable

vector X = (X1, ..., Xn) describing the situation or context sensed by the system (Xi can be
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discrete or continuous), and a discrete random variable Y representing the labels based on which

the system might take an action. For a specific input ~xa, we want to know P (Y = yi|X = ~xa)

which is the conditional probability of the label being yi given the input ~xa. P (Y = yi|X =

~xa) = p(~xa,yi)
pX(~xa)

where p(x, y) is the joint probability distribution function and pX(x) the marginal

distribution function. In practice though, the conditional distribution P (Y = yi|X = ~x) is

usually directly modelled and fitted using the training data or implicitly estimated using a

heuristic.

Definition 6. The product rule and Bayes’ rule

The probability product rule states that: p(x, y) = p(y|x)p(x) implying that p(y|x) = p(x|y)p(y)
p(x)

which is Baye’s rule. It applies to discrete, continuous and mixed random variables as well as

random variables vectors.
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Strategy A0 A0.5 A1 A2 A3 A4

DIOC 10/7 15/1 15/9 5/3 5/3 5/3

TG 64/40/F 64/40/F 64/40/F 729/3/F 1/10/T 1/10/F

TC 15/1/50/F 15/1/50/F 30/5/1/T 10/2/3/F 3/2/5/F 3/2/5/F

FISH 60/0.5 200/0.5 100/0.5 200/0.5 10/1 10/1

Windowed 300 300 300 300 10 10

Table A.1: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the F-
RingLearn dataset with a Logistic Regression base learner

Strategy A0 A0.5 A1 A2 A3 A4

DIOC 25/11 25/11 25/11 15/7 5/3 5/3

TG 64/40/F 64/40/F 64/3/F 1/100/F 729/3/F 64/20/F

TC 15/1/50/F 15/1/50/F 0.5/1/5/F 20/1/2/F 20/2/2/F 2.5/2/25/F

FISH 60/0.5 100/0.9 60/0.5 60/0.5 20/0 20/0

Windowed 300 300 100 100 300 300

Table A.2: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the L-
RingLearn dataset with a Logistic Regression base learner

A.3 Individual forgetting strategy hyperparameters for

the results of Section 4.3.3

The tables listing parameters for each experiment appear in the same order as they do in Section

4.3.3.

Strategy A0 A0.5 A1 A2 A3 A4

DIOC 10/7 50/3 25/11 5/1 5/3 15/3

TG 64/2/F 64/2/F 64/10/F 1/5/F 1/3/F 729/2/T

TC 30/1/2/F 30/1/2/F 30/1/7/F 20/2/10/T 3/2/7/T 20/2/10/T

FISH 60/0.5 60/0.5 1/0.5 1/0.5 1/0.5 1/0.5

Windowed 300 300 300 5 3 20

Table A.3: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the J-
RingLearn dataset with a Logistic Regression base learner
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Strategy A0 A0.5 A1 A2 A3 A4

DIOC 10/7 50/3 25/11 5/1 5/3 15/3

TG 729/10/F 729/10/F 4096/3/F 4096/2/T 729/5/F 729/10/F

TC 1000/3/150/F 1000/3/150/F 40/3/100/F 40/3/10/F 40/3/200/F 800/2/50/F

FISH 200/0.3 200/0.3 200/0.3 40/0.3 50/0.5 50/0.5

Windowed 300 600 600 300 300 350

Table A.4: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the
784c-D.-A. dataset with a Logistic Regression base learner

Strategy A0 A0.5 A1 A2 A3 A4

DIOC 150/7 150/7 100/7 25/1 250/3 250/3

TG 1/150/T/F 1/150/T(F) 1/75/T(F) 1/150/T(F) 1/75/T(F) 1/150/T(F)

TC 40/2/50/F 40/2/50/F 800/11/80/T 875/10/60/T 895/30/100/T 745/5/130/T

FISH 50/0.9 50/0.9 60/1 40/0.5 100/0.3 200/0.5

Windowed 300 150 75 150 75 150

Table A.5: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the
b9ae-D.-A. dataset with a Logistic Regression base learner

Strategy A0 A0.5 A1 A2 A3 A4

DIOC 400/7 400/7 600/9 150/1 250/1 200/1

TG 32/900/T 32/900/T 32/150/T 4096/450/T 4096/450/T 4096/450/T

TC 40/2/100/F 40/2/100/F 775/28/250/T 745/16/70/T 1900/7/225/T 1650/5/250/T

FISH 100/0 100/0 200/0 100/1 200/0.3 200/0.3

Windowed 1 1 600 100 400 200

Table A.6: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the
c260-D.-A. dataset with a Logistic Regression base learner

Strategy A0 A0.5 A1 A2 A3 A4

DIOC 250/7 250/7 50/9 75/9 50/9 200/7

TG 1024/585/F 1024/585/F 1/600/T 3125/330/F 1024/135/T 243/495/F

TC 40/3/450/T 40/3/450/T 350/15/550/F 500/3/300/F 1150/2/600/T 200/25/500/F

FISH 7/0 7/0 600/0 500/0.3 500/0.5 500/0.9

Windowed 700 700 600 500 625 625

Table A.7: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the
784c-D.-A. dataset with a Decision Tree base learner
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Strategy A0 A0.5 A1 A2 A3 A4

DIOC 150/11 150/11 200/1 50/3 150/3 50/3

TG 900/30/200/T 900/30/200/T 3125/210/F 1/210/T 3125/450/T 3125/450/T

TC 900/30/200/T 900/30/200/T 200/3/100/F 300/30/350/T 450/30/200/F 350/25/200/T

FISH 3/0 3/0 200/0.9 200/0.3 200/1 200/1

Windowed 400 400 750 400 400 400

Table A.8: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the
b9ae-D.-A. dataset with a Decision Tree base learner

Strategy A0 A0.5 A1 A2 A3 A4

DIOC 400/1 400//1 400/7 200/9 400/1 200/9

TG 32/330/F 32/330/F 32/345/F 32/600/F 32/150/F 32/510/F

TC 200/6/700/F 200/6/700/F 200/8/650/F 200/6/350/F 600/9/300/F 500/5/200/F

FISH 200/0.5 200/0.5 100/0.5 200/0.9 100/0.3 200/0.5

Windowed 300 600 600 300 300 350

Table A.9: Hyperparameters for DIOC (chunkSize/k), TG (f/winSize/trainLocal),
/3 TC (ε/θpts/winSize/trainLocal), FISH (αt/winSize) and Windowed (winSize) on the
c260-D.-A. dataset with a Decision Tree base learner
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