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Abstract
Bistable switches are widely used in synthetic biology to trigger cellular functions in

response to environmental signals. All bistable switches developed so far, however, control
the expression of target genes without access to other layers of the cellular machinery. Here
we propose a bistable switch to control the rate at which cells take up a metabolite from the
environment. An uptake switch would provide a new interface to command metabolic activ-
ity from the extracellular space and has great potential as a building block in more complex
circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among
different strains, or require cell-to-cell communication with metabolic signals. Inspired by
uptake systems found in nature, we propose to couple metabolite import and utilization with
a genetic circuit under feedback regulation. Using mathematical models and analysis, we
determined the circuit architectures that produce bistability and obtained their design space
for bistability in terms of experimentally tuneable parameters. We found an Activation-
Repression architecture to be the most robust switch because it displays bistability for the
largest range of design parameters and requires little fine-tuning of the promoters’ response
curves. Our analytic results are based on on-off approximations of promoter activity and are
in excellent qualitative agreement with simulations of more realistic models. With further
analysis and simulation, we established conditions to maximise the parameter design space
and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results
highlight how mathematical analysis can drive the discovery of new circuits for Synthetic
Biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a
promising design to control metabolic phenotypes across cell cultures.

Keywords — synthetic biology; genetic circuits; bistability; cellular uptake; dynamic metabolic
engineering; piecewise affine models
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1 Introduction

Bistable switches are ubiquitous components in natural and engineered biological systems. They

play a key role in controlling cellular decisions [1, 2] and are common building blocks in syn-

thetic gene circuits [3, 4, 5, 6]. The aim of all synthetic switches developed so far has been to

produce bistable expression of target genes. One of the major goals in synthetic biology, how-

ever, is to scale up biomolecular circuits to systems that interface gene circuits with metabolic

activity. These have great potential to expand the functionality of biomolecular devices, for ex-

ample, to dynamically reroute flux through heterologous pathways [7] or to design self-adaptive

pathways in metabolic engineering [8, 9, 10].

The “metabolator”, a genetic circuit designed to generate an oscillatory metabolic flux [11],

showcased how complex responses could be engineered by coupling the genetic and metabolic

machinery. To date, however, little progress has been made in engineering other metabolic phe-

notypes. A bistable uptake switch has been particularly elusive, although it is a key building

block for more complex circuits that require metabolic control with extracellular metabolites.

An uptake switch can be used to coordinate pathway activity in multicellular systems, for exam-

ple, by allocating metabolic tasks among several strains [12] or by acting as a communication

device via metabolic signals [13]. In microbial consortia, an uptake switch can control the di-

vision of labor through diversified phenotypes of slow- and fast-feeders. Bistable uptake can

also serve as mechanism to engineer bacterial bet-hedging that favours survival in adverse en-

vironments [14, 15] or as a research tool to study cellular adaptation strategies [16], e.g. in

competition assays where subpopulations of switchers and non-switchers adapt to limited car-

bon sources or fluctuations in nutrient abundance.

Metabolic uptake is typically carried out by transport enzymes in the cell membrane, but

their kinetics do not naturally display bistability (Fig. 1A). Although ultrasensitive kinetics [17]

can generate a switch-like response in the uptake rate, or even generate bistability through co-

valent modifications [18], tuneable implementations of such such kinetic mechanisms require

protein engineering beyond our current capabilities.

In this paper we propose a bistable switch to control the rate at which cells take up a metabo-

lite from the environment. We identify a genetic-metabolic system that reversibly toggles be-

tween slow and fast uptake in response to the amount of metabolite in the extracellular space.

Our design relies on coupling enzyme activity with a gene regulatory circuit designed to shape

the uptake response as a bistable switch. We borrowed this strategy from two well known
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bistable uptake systems found in nature: the lactose operon in E. coli [19] and the galactose

pathway in S. cerevisiae [14, 20]. Both systems produce bistability through an underlying gene

regulatory network that controls the expression of key enzymes.

We consider uptake circuits based on feedback regulation of the expression of transport and

utilization enzymes (Fig. 1B). The circuit architecture requires two metabolite-responsive pro-

moters and includes four regulatory motifs depending on whether the internalized metabolite

activates or represses enzyme expression (Fig. 1C). Two of these motifs can be found in natu-

ral and engineered systems. The Activation-Activation circuit (labelled AA in Fig. 1C) has a

similar architecture as the lactose operon [19], where an intracellular metabolite (allolactose)

upregulates a transporter and a metabolic enzyme through binding to a transcriptional repressor.

A Repression-Activation circuit (RA), on the other hand, has been used to improve the produc-

tion of fatty acids by balancing the supply and consumption of the intermediate malonyl-CoA

[10].

From a general model for the uptake circuits, we identified those that produce bistability

and determined analytic conditions for bistability in terms of the promoters’ dynamic ranges

and transcriptional thresholds. Our approach combines a qualitative on-off model for promoter

activity together with a separation of timescales [21]. This leads to a reduced model based on

piecewise affine differential equations where bistability can be studied analytically [22]. The

analysis revealed that the circuits have a rich diversity of bistable regimes, i.e. qualitatively

different combinations of stable steady states that lead to a bistable uptake flux, all of which

can be linked to different design spaces for the promoter parameters. The multiple number of

bistable regimes contrasts with, for example, the original genetic toggle switch that has only

one regime for bistability [3]. Our analysis method relies on a coarse approximation of the

true system dynamics, but uncovers useful relations between experimentally tuneable parame-

ters and the resulting metabolic phenotypes. We used the derived conditions to distinguish the

bistable regimes via the shape and size of their design spaces [23]. With the size of the design

space as a proxy for robustness, we found that the Activation-Repression circuit (AR) is the best

candidate for an uptake switch, as it displays bistability for a large range of promoter dynamic

ranges and therefore it is likely to be more robust in face of cell-to-cell variability and unreliable

estimates for the enzyme kinetic parameters. Further analyses of the AR system revealed ana-

lytic conditions for hysteresis and design rules to maximise the promoter design space with the

transcriptional thresholds. We validated our results and the performance of the AR circuit with

extensive simulations of a more realistic, continuous, model for promoter activity. Population-
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wide simulations show that the circuit diversifies the uptake phenotypes by splitting a culture

into two subpopulations with slow and fast uptake.

Our study puts forward the AR circuit as a promising design for an uptake switch in fu-

ture synthetic biology applications that require metabolic control across cell cultures. A key

challenge in the implementation of the uptake switch is the lack of intracellular sensors that

interface metabolic signals with gene expression. This limitation is not specific to our study

and pervades all current efforts to engineer genetic-metabolic circuits [24, 25]. Successful im-

plementations have relied on metabolite-responsive promoters [8, 10, 11], but the design and

construction of such sensing mechanisms requires a substantial amount of experimental work.

Our study demonstrates how mathematical design can be an effective tool to identify circuit

architectures for a new biological function and to single out the key design parameters that need

to be tuned, both of which can help to focus and accelerate the experimental work in the field.
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Figure 1 – Bistable switches for cellular uptake with a two-promoter circuit under feedback regulation. (A)
Graded, ultrasensitive and bistable uptake. A bistable system switches between slow and fast uptake, and
displays hysteresis because of different switching points. (B) Circuit architecture for the uptake systems:
a transport enzyme (e1) imports a metabolite into the intracellular space. A second enzyme (e2) metabo-
lizes the internalized metabolite (s). The circuit contains two promoters (P1 and P2) that control enzyme
expression through feedback from the intracellular metabolite, including four combinations of (A)ctivation and
(R)epression feedback loops; the main design parameters are the dynamic ranges µ of both promoters, defined
as the ratio between maximal and baseline expression levels (see inset). (C) Schematics for the four uptake
circuits. Each circuit has two interlinked positive and negative feedback loops (shown in dashed lines); a faster
utilization causes a decrease in the concentration of metabolite, and thus upregulation (downregulation) of the
utilization enzyme corresponds to negative (positive) feedback.

2 General model for synthetic uptake circuits

We consider uptake circuits composed of two enzymes and an internalized metabolite (s) as

illustrated in Fig. 1B. A transport enzyme (e1) imports the extracellular metabolite (s0) into the

cell, which is then metabolized by different cellular processes represented by an utilization en-

zyme (e2). The network has two independent promoters that control the expression of enzymes

in response to the internalized metabolite, thus forming two coupled feedback loops. We assume
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that the extracellular metabolite concentration is constant so that the circuits are thermodynam-

ically open and sustain a nonzero flux. We model the dynamics of the metabolite and enzymes

as

ds
dt

= g1(s0)e1 − g2(s)e2, (1)

de1
dt

= κ0
1 + κ1

1σ1(s)− γ1e1,

de2
dt

= κ0
2 + κ1

2σ2(s)− γ2e2,
(2)

where (s, e1, e2) are the species concentrations, (κ0
i , κ

1
i ) are the baseline and induced enzyme

expression rates, and γi is a first order kinetic rate that accounts for protein degradation and

dilution by cell growth.

The functions gi in equation (1) are the enzyme turnover rates, i.e. the reaction rate per

unit of enzyme, and describe their kinetics for different substrate concentrations. We focus our

analysis on a broad class of kinetic rate functions that includes the common Michaelis-Menten

kinetics as a special case. To this end, we assume that the turnover rates are increasing functions

of their substrate, so that dgi(x)/dx > 0 with a saturation value gsat
i = limx→∞ gi(x) = sup gi.

In the case of Michaelis-Menten kinetics, the turnover rate is g(x) = kcat x/(KM + x) and has

a saturation value gsat = kcat .

The enzyme equations in (2) describe the balance between protein synthesis and degrada-

tion. The functions σi(s) are lumped models for the promoter response curves and describe the

activation/repression of transcriptional activity by the internalized metabolite. We assume that

the promoter response curves satisfy dσi/ds > 0, σi(0) = 0 and σi(∞) = 1 in case of activa-

tion (conversely, dσi/ds < 0, σi(0) = 1 and σi(∞) = 0 in case of repression). The promoters

therefore control the enzymes between a baseline (“off”) and a maximal concentration (“on”):

Eoff
i =

κ0
i

γi
, Eon

i =
κ0
i + κ1

i

γi
. (3)

Promoter strengths are key parameters in promoter engineering [26] and one of the most easily

tuneable parameters in synthetic circuits. Here we quantify the strength of promoters via their
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dynamic range (µi), i.e. the ratio between their maximal and baseline activity levels:

µi =
Eon

i

Eoff
i

=
κ0
i + κ1

i

κ0
i

. (4)

As we shall see in the next section, we found that bistability depends critically on an additional

design parameter, the relative dynamic range (µ12):

µ12 =
Eon

2

Eoff
1

=
κ0
2 + κ1

2

κ0
1

γ1
γ2
, (5)

which corresponds to the maximal level of the utilization enzyme relative to the baseline level of

the transport enzyme. We note that because the functions σi lump transcription and translation

together, our model can also account for the strength of ribosomal binding sites, another com-

mon tuneable parameter in gene circuits [27], via a linear scaling factor of enzyme expression

rates in equation (2).

As shown in Fig. 1C, the general circuit architecture includes four uptake circuits, which

we call AA, RR, AR, and RA depending on the particular combination of gene (A)ctivation or

(R)epression. Each network can can be seen as combinations of two interlinked positive and

negative feedback loops. In particular, we can readily rule out bistability in the RA network

because it does not contain any positive feedback loop, a well-known necessary condition for

bistability [28]. In the next section we will determine conditions under which the other three

circuits in Fig. 1C display two steady state fluxes.

3 Bistability in the synthetic uptake circuits

The steady state uptake flux in the circuits is

J = g1(s0)ē1 = g2(s̄)ē2, (6)

where the bars denote steady state concentrations. The steady state transport flux depends only

on the concentration of the transport enzyme (e1). The utilization reaction, in contrast, depends

on both the metabolite and enzyme, and therefore different steady state concentrations can lead

to the same utilization flux. For example, in equation (6) a slow utilization flux can be sustained

by a lowly abundant metabolite and an overexpressed utilization enzyme, or a highly abundant
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metabolite and an underexpressed utilization enzyme. These two scenarios require promoters to

operate at different activity levels and lead to steady states that are qualitatively different. Next

we will show that a single uptake circuit can display a number of bistable regimes, i.e. qualita-

tively different combinations of steady state concentrations that lead to a bistable flux. We will

then provide analytic conditions that describe all combinations of promoter dynamic ranges that

produce bistability, which we will refer to as the promoter design space.

3.1 Identification of all bistable regimes

Using the model in (1)–(2) we can obtain an equation for the steady state metabolite concentra-

tion:

g2(s̄) = g1(s0)

(
κ0
1 + κ1

1σ1(s̄)

κ0
2 + κ1

2σ2(s̄)

)
γ2
γ1
, (7)

from where both enzyme concentrations can be computed as ēi =
(
κ0
i + κ1

iσi(s̄)
)
/γi. The

ideal would be to have analytic solutions of (7) that show how bistability depends on the pro-

moter dynamic ranges, potentially revealing structural differences among the circuits. However,

the steady state equation is analytically intractable because of the nonlinearities in the enzyme

kinetics (g2) and promoter response curves (σi). For some parameter combinations, the circuits

may also lead to unbounded accumulation of the metabolite due to saturation of the utilization

enzyme. This happens when the steady state equation does not have a solution because the right

hand side of (7) is higher than the saturation value of g2.

In general, the number of steady states and their stability depend intricately on the model

parameters and the shape of the nonlinearities. A common strategy to detect bistability is to use

phase plane analysis to identify the number of steady state solutions and their behaviour with

respect to model parameters. This approach becomes cumbersome in highly nonlinear models

and requires case-by-case analyses for each uptake circuit. An alternative is to solve the steady

state equation numerically for many parameter combinations and use linear stability analysis in

each solution, or to run long model simulations for many initial conditions and single out those

that lead to two final states. It is generally difficult, however, to establish whether bistability

properties found with numerical search are structural features of the model, or if instead they

are a consequence of the form of the nonlinearities and the specific choice for parameter values.

We can avoid the above difficulties with an analysis technique based on piecewise affine
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models for gene regulation [22, 29] and a separation of timescales [21, 30]. This approach

leads to a reduced model in which we can study bistability analytically. To obtain a tractable

model, we assume that promoters switch between “on” and “off” activity levels depending on

the amount of metabolite:

Activation Repression

σ̄i(s) =

0, s < θi,

1, s > θi.
σ̄i(s) =

1, s < θi,

0, s > θi.
(8)

where θi is a threshold for transcriptional activation or repression. Enzymatic catalysis occurs

in a much faster time scale than enzyme expression, with kinetic time constants typically in the

millisecond range [31] and gene expression in the order of tens of minutes or longer. We incor-

porated this timescale separation to obtain a reduced model that can be extensively analyzed in

terms of its bistability properties.

Our analysis revealed that the uptake circuits can sustain a rich variety of bistable regimes.

The results, summarized in Fig. 2 (details in Appendix A.1 and the Supplementary Material),

indicate a total of nine qualitatively different regimes: one for the RR circuit, three for the AA

circuit, and five for the AR circuit.
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Figure 2 – Bistable regimes in the uptake circuits. The bar plots (left panels) show all the qualitatively different
regimes that sustain a bistable uptake flux. Each bistable regime corresponds to a combination of steady state
concentrations from the right panels, marked with circled numbers. The steady state flux is proportional to
the concentration of transporter enzyme, as shown in equation (6); therefore, low or high concentration of
transporter (e1) correspond to slow or fast uptake flux, respectively. For the enzymes, the bar height represents
a baseline (Eoff

i ) or maximal (Eon
i ) steady state concentration; for the metabolite, the bar height represents the

qualitative steady state concentration of metabolite relative to the thresholds: e.g. if θ2 < θ1, the bars denote
a low (s̄ < θ2), intermediate (θ2 < s̄ < θ1) or high (s̄ > θ1) concentration. The threshold-independent
regimes (highlighted in gray) exist for any combination of regulatory thresholds. All the threshold-dependent
regimes are sustained by an intermediate concentration of metabolite; these regimes vanish if both promoters
have similar thresholds. The bistable regimes can be verified through numerical simulation of a continuous
model with promoter responses described by steep sigmoids. Details on how to find the bistable regimes can
be found in Appendix A.1 and the Supplementary Material.
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As shown in Fig. 2, each bistable regime requires the promoters to operate at different ac-

tivity levels depending on the steady state concentration of metabolite. Moreover, if promoters

respond at different regulatory thresholds, the circuits can reach steady states with intermediate

metabolite concentrations (i.e. θ1 < s̄ < θ2). As a consequence, the bistable regimes depend

strongly on the promoter thresholds: we observe three threshold-independent regimes (RR-0,

AA-0, and AR-0 in Fig. 2) and six threshold-dependent regimes that emerge depending on

whether θ1 < θ2 or θ1 > θ2. The threshold-dependent regimes vanish when both promoters

have similar thresholds. The results in Fig. 2 also uncover several qualitative differences among

the circuits:

• The RR circuit has only one bistable regime. The circuit cannot reach an intermedi-

ate concentration of metabolite because this would cause transport to be too fast to be

matched by a slow utilization (in the case θ1 > θ2), or too slow to be matched by a fast

utilization (in the case θ1 < θ2). Such imbalance would ultimately lead to accumulation

or depletion of the internalised metabolite.

• The AA and AR circuits, in contrast, admit intermediate steady state metabolite concen-

tration, and consequently they can display two additional bistable regimes each (AA-1

and AA-2, AR-1 and AR-3, respectively).

• The AR circuit has two extra bistable regimes (AR-2 and AR-4) sustained by three stable

steady states. We note that in these regimes, the three stable steady state concentrations

translate into two stable uptake fluxes, because the steady states have only two different

concentrations for the transporter (e1), which in turn determines the uptake flux via the

relation J = g1(s0)e1 in equation (6).

3.2 Shape and size of the promoter design space

To decide which circuit is the best candidate for an uptake switch, we determined the promoter

design spaces and proposed a measure to assess the robustness of each bistable regime. With the

simplified model Section 3.1 we obtained analytic conditions for each bistable regime in terms

of the promoter dynamic ranges. The conditions are summarised in Fig. 3–4, and the details

on how to obtain them are in Appendix A.1 and the Supplementary Material. In particular, the

11



design spaces for the threshold-independent regimes are:

RR-0 regime β1µ1 < µ12 < β2µ2, (9a)

β̌µ2 < µ12. (9b)

AA-0 regime β1µ2 < µ12 < β2µ1, (10a)

β̌µ1 < µ12. (10b)

AR-0 regime β1 < µ12 < β2µ1µ2, (11a)

β̌µ1µ2 < µ12, (11b)

The above conditions, illustrated in Fig. 3, describe all combinations of dynamic ranges the lead

to a bistable uptake flux. In all cases, the shape and size of the design space depend on three

parameters:

β1 =
g1(s0)

g2(θ1)
, β2 =

g1(s0)

g2(θ2)
, β̌ =

g1(s0)

gsat
2

. (12)

These parameters reflect how the interplay between enzyme kinetics and gene regulation af-

fects bistability. The βi parameters correspond to the ratio of enzyme turnover rates at a given

concentration of extracellular metabolite and transcriptional threshold. They take maximal or

minimal values when thresholds are far away from the Michaelis constant of the utilization

enzyme (Km). The third parameter, β̌, describes the saturation level of the transport enzyme

relative to the maximal utilization rate.

The conditions in (9a)–(11b) assume that the thresholds are ordered as θ1 ≤ θ2 (and there-

fore that β1 ≥ β2), but the converse conditions for θ1 > θ2 can be obtained by swapping β1 and

β2 in the inequalities. The conditions for bistability in (9a)–(11b) have two parts: a-conditions

guarantee two stable steady states for the enzyme concentrations, while b-conditions prevent the

accumulation of metabolite in both steady states. The b-conditions arise due to the saturation of

the enzyme kinetics: if not satisfied, then the uptake flux will be higher than the saturation rate
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of the utilization reaction and cause the metabolite to accumulate in the intracellular space.
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Figure 3 – Promoter design space for the threshold-independent bistable regimes in Fig. 2. The design spaces
can be visualized as 3-dimensional solids in a (µ1, µ2, µ12) space. The solids correspond to the inequalities
in (9a)–(11b) for fixed enzyme kinetics and transcriptional thresholds. The bar plots represent the species
concentrations as in Fig. 2. Details on how to find the design spaces analytically are in Appendix A.1 and the
Supplementary Material. The size of the design spaces provides a metric for the robustness of each regime. We
quantified robustness as the volume of the design space relative to the total volume of the full parameter space
for fixed enzyme kinetics and different regulatory thresholds spanning two orders of magnitude. The (θ1, θ2)
values shown are relative to a nominal metabolite concentration s0 = 1µM (the white line marks the equal
threshold case). Details of the simulations and parameter values can be found in Appendix A.2.

As shown in Fig. 3–4, the shape and size of the design spaces varies significantly across

regimes. Bistability in the RR-0 and AA-0 regimes is particularly constrained, as it requires

asymmetric designs where one promoter has a much broader dynamic range than the other. The

AR-0 regime, in contrast, is much more flexible as it produces bistability for more combinations
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Table S3 – Conditions for bistability in each regime. The parameters are �i = g1(s0)/g2(✓i).

Regime ✓1 < ✓2 ✓1 > ✓2
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Figure 4 – Promoter design space for the threshold-dependent bistable regimes in Fig. 2. The design spaces
correspond to the shown inequalities for fixed enzyme kinetics and transcriptional thresholds. Details on how
to find the design spaces analytically are in Appendix A.1 and the Supplementary Material. The robustness
index was computed as in Fig. 3. 14



of promoter dynamic ranges. We can compare the regimes using the size of their design spaces

as a metric for robustness:

Robustness =
Volbistable

Voltotal
× 100, (13)

where Volbistable is the volume of the 3-dimensional solid defined by the design space, and Voltotal

is the volume of the full parameter space defined as a cube

1 < µ1 < µmax
1 ,

1 < µ2 < µmax
2 ,

µmin
12 < µ12 < µmax

12 .

If we choose the same parameter cube for each circuit, the relative volume provides an effec-

tive measure to compare the design spaces. A robust circuit should ideally have a large design

space to ensure bistability without a laborious fine-tuning of the promoter’s response curve. The

design space should also be symmetric with respect to µ1 and µ2 to allow for an independent

design of both promoters. The most robust bistable circuit would therefore have a 100% rel-

ative volume (i.e. all parameter combinations lead to bistability), while fragile designs would

have a much smaller volume. Since the design spaces depend strongly on the transcriptional

thresholds (through the βi parameters in (12)), we numerically computed the relative volumes

of the bistable regimes for different combinations of regulatory thresholds. The results, shown

in Fig. 3 and Fig. 4, show that most regimes are fragile, with only two (the AA-2 and AR-0

regimes) standing out with a robustness index above 70%. As observed in Fig. 2, however, the

AA-2 regime requires θ1 < θ2 while the AA-0 regime does not impose constraints on the tran-

scriptional thresholds. We therefore conclude that the AR-0 regime is the most robust design

for a bistable uptake switch.

The quality of the AR circuit as a bistable switch can be intuitively understood from the

interaction diagrams in Fig. 1C. The AR circuit corresponds to two positive feedback loops,

where the internalized metabolite increases its own abundance by speeding up its import and

slowing down its consumption. Interlinked positive feedback loops are known to improve the

bistability properties in a number of natural networks [32, 33, 34] and there is evidence that

nature favours bistability through interlinked regulation [2]. In the next sections we carry out a

deeper analysis of the AR circuit.
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4 Further design criteria for the Activation-Repression circuit

4.1 Optimization of the promoter design space

Here we use the derived conditions for bistability to learn how to maximize the circuit’s de-

sign space with the transcriptional thresholds. We focus on the Activation-Repression circuit

designed to operate in the robust AR-0 regime, but analyses of the other regimes can be carried

out analogously. For this part we further assume that both promoters have equal baseline ex-

pression levels, i.e. Eoff
1 = Eoff

2 and thus µ12 = µ2. Substituting µ12 = µ2 in the conditions in

(11a)–(11b), we obtain simplified conditions for bistability

AR-0 regime:

1

β2
< µ1 <

1

β̌
,

µ2 > β1.

(14)

The conditions in (14) describe the design space as an open box in a (µ1, µ2) parameter space,

illustrated in Fig. 5. The effect of the βi parameters in the conditions in (14) suggests a tradeoff

between the transcriptional thresholds and the size of the design space (Fig. 5): a low repression

threshold θ2 (i.e. a larger β2 parameter) enlarges the design space for the activating promoter

(µ1) and, conversely, a high activation threshold θ1 enlarges the design space for the repressing

promoter (µ2). Further, we can derive criteria to maximize the design space:

• The upper limit for µ1 grows if β̌ � 1. Recalling that β̌ = g1(s0)/g
sat
2 , we conclude

that gsat
2 � gsat

1 is a sufficient condition for β̌ � 1 for any concentration of intermediate

metabolite. In the case of Michaelis-Menten kinetics, the condition is equivalent to

kcat 2 � kcat 1. (15)

• If β1 = β2 = 1 we minimize the lower limits for the dynamic ranges and get a maximal

design space

Maximal design space:
1 < µ1 <

1

β̌
,

µ2 > 1.

(16)

Using the definition of the βi parameters (βi = g1(s0)/g2(θi)), we can impose the condi-

16



tion βi = 1 to obtain an optimal threshold

θ? = g−12 (g1(s0)) , (17)

where g−12 is the inverse function of g2. In the case of Michaelis-Menten kinetics, the

inverse is g−12 (x) = KM x/(kcat − x). We therefore conclude that if the transcriptional

thresholds are designed as

θ1 ≥ θ? and θ2 ≤ θ?, (18)

then the AR circuit has a maximal design space for bistability. Note that we state the

conditions in (18) as inequalities because, by definition, the dynamic ranges are µi >

1 and consequently any combination of thresholds that satisfies (18) leads to the same

maximal design space.

The conditions in (15) and (18) provide quantitative criteria for designing an AR circuit

with maximal design space for bistability. Condition (15) relaxes the upper limit for the first

promoter (dynamic range µ1), but it is generally difficult to satisfy bacause catalytic enzymes in

the same pathway tend to have similar kcat values. On the other hand, condition (18), illustrated

in Fig. 5, loosens the lower limit for the promoter dynamic ranges, and therefore may prove

useful in implementations with weak promoters and tuneable regulatory thresholds.
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Figure 5 – Maximization of the design space in the Activation-Repression circuit. The diagrams illustrate the
promoter design space for different combinations of transcriptional thresholds, as described by the conditions
in (14). The optimal design has regulatory thresholds chosen according to the criteria in (18) taken as equality.

4.2 Conditions for hysteresis

So far we have focused on a bistable uptake flux under a fixed amount of extracellular metabo-

lite. A hallmark feature of bistable switches, however, is that they display hysteresis to changes

in the input stimulus. As shown in the bifurcation diagram in Fig. 1A, hysteresis causes cells

to switch between slow and fast uptake at different metabolite concentrations. This mechanism

filters out spurious switching from extracellular fluctuations, and implements a form of memory

where the response of a cell to intermediate metabolite concentrations depends on its previous

exposure to it. Since equal transcriptional thresholds enlarge the design space (Fig. 3), we as-

sumed a nominal threshold for both promoters, θ1 = θ2 = θ and obtained conditions for the AR

circuit to display hysteresis:

Hysteresis: β1 <µ12 < β2µ1µ2, (19a)

β̌µ1µ2 <µ12, (19b)

µ12 < β̂, (19c)

βsatµ1µ2 <µ12, (19d)

The above conditions can be obtained by examining the effect of the extracellular metabolite

(s0) on the circuit’s steady states through changes in the βi parameters (details in Appendix A.1

18



and the Supplementary Material). The conditions depend on two extra parameters

β̂ =
gsat
1

g2(θ)
, βsat =

gsat
1

gsat
2

, (20)

which correspond to the original βi and β̌ parameters in (12) under saturation of the transport

enzyme. The conditions in (19a)–(19b) are the same as the design space in (11), while the

conditions in (19c)–(19d) add further constraints to the design space. Condition (19c) guarantees

that uptake can be bidirectionally switched, i.e. from slow to fast and vice versa (if not satisfied,

the circuit can only be switched off). Condition (19d) ensures that the metabolite steady state s̄

exists for all concentrations of extracellular metabolite. Note that the condition (19d) becomes

less tight under the kinetic condition in (15).

5 Activation-Repression circuit with graded promoters

5.1 Validation of the design criteria

In the previous sections we obtained design criteria for the AR circuit based on a coarse approx-

imation for promoter activity. The approximation assumes that promoters behave in an on-off

fashion, i.e. having either a maximal or baseline activity without intermediate levels of expres-

sion. In practical implementations, promoter sensitivities are severely constrained and therefore

it is unclear whether the derived design criteria are useful when using realistic promoters with

graded, low-sensitivity, response curves.

To test the utility of the AR circuit in a more realistic model, we ran extensive simulations of

the circuit with sigmoidal models for promoter response curves [35]. We modelled the promoter

response curves as Hill functions

σ1(s) =
sh

θh + sh
, σ2(s) =

θh

θh + sh
(21)

where θ is the regulatory threshold and h is the promoter sensitivity (Hill coefficient). We

computed the parameter regions for bistability in the continuous model (1)–(2) with low, inter-

mediate and high promoter sensitivities. The results in Fig. 6A suggest that although the design

spaces for the continuous model are smaller than those predicted by our approximation, they

preserve the predicted qualitative properties (compare Figures 5 and 6A). We can distinguish

19



among designs that are monostable, bistable, or that do not have a steady state. Optimization

of the regulatory threshold, i.e. according to the criterion in (18), effectively enlarges the design

space in the continuous model, even in the case of low-sensitivity promoters (h = 2). These

results thus suggest that the derived design criteria can guide the design in more realistic models

for promoter activities.

In Fig. 6B we plot the domains of attraction for each steady state in particular instances

of AR circuits with low-sensitivity promoters. The results suggest that basins of attraction can

depend strongly on the transcriptional thresholds and, in particular, threshold-optimization can

also help to equalize the domains of attraction and prevent a bias towards one uptake flux more

than the other. The bifurcation diagrams in Fig. 6C indicate that the AR circuit effectively

functions as a bidirectional switch with hysteresis, toggling between low/high states for enzyme

expression.
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Figure 6 – Bistability in the Activation-Repression circuit. (A) Regions for bistability in non-optimized and
optimized designs for a continuous model of the AR circuit (cf. Fig. 5). In the non-optimized designs the
regulatory threshold was chosen as θ = s0 for an extracellular metabolite concentration s0 = 4.7µM; in the
optimized designs the threshold was chosen to maximize the region for bistability according to the criterion
in (18) taken as equality; promoter sensitivities are h = {2, 4, 8}. (B) Domains of attraction of two spe-
cific designs with low-sensitivity promoters (h = 2) and promoter dynamic ranges (µ1, µ2) = (19, 2) and
(µ1, µ2) = (10, 10), marked as À and Á in panel A. (C) Bifurcation diagrams of the enzyme concentrations
and internalized metabolite as a function of the extracellular concentration; solid (dashed) lines indicate the
stable (unstable) steady states. The design is optimized for a nominal concentration s0 = 1µM according to
(18) taken as equality, and promoter dynamic ranges (µ1, µ2) = (6, 5). The baseline enzyme expression levels
were fixed to Eoff

1 = Eoff
2 = 2.5nM in panels A–B, and Eoff

1 = Eoff
2 = 25nM in panel C. Details of the

simulations and parameter values can be found in Appendix A.2.
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5.2 Emergence of bimodal phenotypes across cell populations

Our results describe conditions under which single cells display a bistable uptake when exposed

to the extracellular metabolite. At a population level, however, each individual cell will switch to

slow or fast uptake depending on its intracellular state before exposure to the metabolite. Due to

numerous factors that affect the cellular composition, cell populations can exhibit a large cell-to-

cell variability. In the case of synthetic gene circuits, variability can arise from e.g. fluctuations

in plasmid copy numbers, variability in transcriptional and translational resources (RNA poly-

merases, sigma factors and ribosomes), mutations in the promoter sequences, and the stochastic

fluctuations inherent to gene expression [36].

We ran population-wide simulations of the AR circuit to test how it would perform in bacte-

rial cultures with significant cell-to-cell variability. The domains of attraction in Fig. 6B suggest

that single cells switch to a slow or fast uptake depending only on the abundance of enzymes

and not the intracellular metabolite. We therefore focused on how variability in enzyme levels

propagates to the flux phenotypes produced by the uptake switch [37, 38]. We modelled vari-

ability in enzyme expression through deterministic simulations for many cells in a culture with

randomized promoter dynamic ranges. The results, shown in Fig. 7, indicate that the proposed

AR circuit can effectively toggle the uptake flux in a population. The resulting population-wide

histograms show the hysteretic response of the uptake switch, with individual cells switching

to a slow or fast uptake depending on their previous exposure to extracellular metabolite. As

predicted by the bifurcation diagrams in Fig. 6C, the range for hysteresis grows with more sen-

sitive promoters and further, we found that the high flux state has a narrow distribution that is

largely insensitive to the Hill coefficient. This indicates that the AR circuit tightly controls the

uptake flux across a population even for low sensitivity promoters. As a consequence of cell-

to-cell variability, individual cells switch at different extracellular concentrations of the metabo-

lite, leading to the observed bimodal phenotypes when the metabolite is close to the switching

threshold.
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Figure 7 – Hysteresis and bimodal phenotypes in the Activation-Repression circuit. Response of a cell popu-
lation with variability in the enzyme expression levels. The heat maps are histograms of the population-wide
distributions of the uptake flux for increasing or decreasing levels of extracellular metabolite. Cell populations
were initialized at low (top panels) or high (bottom panels) uptake fluxes. The grayscale represents the number
of cells with a given uptake flux. The histograms were obtained from a population with 500 cells with enzyme
expression levels (Eoff

i and Eon
i ) sampled from Gamma distributions [39] with means corresponding to the de-

signs in Fig. 6C and a coefficient of variation of 20%, representative of measured genome-wide fluctuations in
protein abundance [40]. The circuit is optimized for a nominal metabolite concentration s0 = 1µM accord-
ing to the criterion in (18) taken as equality. The histograms are overlaid with the flux bifurcation diagrams
computed from Fig. 6C. Details of the simulations and parameter values can be found in Appendix A.2.

6 Discussion

In this paper we proposed a bistable switch to control the rate at which cells take up a metabolite

from the environment. The switch couples enzyme activity with a two-promoter gene network
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under feedback regulation. We examined mathematical models for four candidate networks and

obtained the design spaces for promoter dynamic ranges that produce a bistable uptake system.

Using the size of the promoter design space as a proxy for robustness, we singled out one

network, an Activation-Repression circuit (AR in Fig. 1C), that is significantly more robust than

the others and is the best candidate for an uptake switch.

The proposed Activation-Repression circuit effectively toggles between slow and fast up-

take depending on the abundance of the extracellular metabolite. The shape of its design space

suggests that both promoters can be tuned independently and we found criteria to maximise the

design space by tuning the transcriptional thresholds. The large design space also indicates that

the switch is robust to variability in promoter strengths and thus requires little fine-tuning of

promoter response curves. Population-wide simulations show the emergence of bimodal pheno-

types due to cell-to-cell variability and hysteresis. The circuit thus works as a memory device

where individual cells lock into slow or fast uptake depending on their previous exposure to the

extracellular metabolite, while protecting them from spurious switching caused by stochastic

environmental fluctuations.

A key element in the proposed switch is the use of feedback regulation of enzyme expres-

sion levels. This strategy was inspired by the regulation of the lactose operon in E. coli [19] and

the galactose pathway in S. cerevisiae [14], two well known uptake systems where bistability

emerges from the interplay between metabolism and gene regulation. In the lactose operon,

bistability emerges from a regulatory architecture similar to the Activation-Activation circuit

studied here, but our results indicate it is not as robust as the Activation-Repression circuit be-

cause it requires more careful fine-tuning of the design parameters. Natural systems may achieve

such fine-tuning through evolution, but this is extremely laborious in engineered systems. In the

galactose pathway, on the other hand, bistability emerges from a more complex gene regulatory

network with multiple components and interactions that are difficult to tease apart. Other bacte-

rial systems that display switching metabolic phenotypes, e.g. the carbon catabolite repression

system [41], the glycolytic-gluconeogenic switch [42] and the central carbon metabolism [43],

rely on even more intricate regulation and are too complex to be used as templates for design.

Although other strategies to produce bistability may exist, either using different genetic circuits

or regulatory mechanisms, the proposed Activation-Repression circuit is a simple architecture

for a robust uptake switch, and thus a promising backbone for future implementations.

The uptake switch provides an interface to control metabolic activity from the extracellular

space. This could be useful, for example, in metabolic engineering applications that need to reg-
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ulate production with extracellular inducers or to trigger pathways only when substrates reach

an activation threshold. The hysteretic response of the switch can help to control production in

face of substrate variability or heterogeneous bioreactor conditions. Another promising appli-

cation for a bistable uptake switch is the control and coordination of metabolism in microbial

consortia. Although most synthetic cell-to-cell communication systems rely on mechanisms

drawn from quorum sensing or hormone signalling, recent studies have also explored the use of

metabolic signals to coordinate pathways distributed among different strains [44]. The field is in

its early days, but it is becoming increasingly clear that metabolites may not only provide a new

channel for synthetic communication between cells [12], but also that consortia can outperform

single-strain cultures [13]. A plausible scenario for this is, for example, to split a large synthetic

pathway among different strains and thus alleviate the genetic burden caused by expression of

multiple heterologous proteins in a single strain [45]. The general principle is to have a “sender”

strain that secretes a metabolite which is then taken up by a “receiver” strain. If the exchanged

metabolite is a precursor for a target product in the receiver strain, an uptake switch can serve

as a mechanism to lock receivers in a high uptake flux and, through hysteresis, insulate them

from extracellular fluctuations in the transmitted signal. Another possibility is to use the up-

take switch in receiver cells to diversify their phenotypes. Upon command from sender cells,

receivers can split into slow- and fast-feeders, opening up the possibility to use bet-hedging

to control metabolic activity upon changes in growth conditions, a well-known survival strat-

egy used by microbes [15]. Such synthetic systems could also be used to study the evolution

of social interactions in microbes. A number of studies have successfully used synthetic gene

circuits to uncover how strains evolve their phenotypes in different conditions, e.g. under com-

petition for shared carbon sources or cooperation through exchange of nutrients and signalling

molecules [16, 46, 47]. These diverse applications suggest that bistable uptake switches will

become increasingly relevant as efforts to engineer synthetic consortia intensify in the future.

Asserting whether a biochemical network is bistable is a challenging mathematical and com-

putational problem. For specific classes of models, a number of approaches have addressed

bistability by e.g. exploiting the structure of the model’s Jacobian [28, 48] or using notions from

Chemical Reaction Network Theory [49] (see [50, Table 3] for a list of existing approaches).

Finding parameter regions for bistability is even harder and, although promising approaches ex-

ist for specific model types [51], for more general models the problem remains largely unsolved

and we do not have effective methods other than numerical exploration of the parameter space.

We overcame the above limitations with an analysis technique that combines a piecewise
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affine model for gene expression, a kinetic model for metabolic reactions, and a separation of

timescales between both [21]. This strategy proved useful to single out networks that display

bistability and to identify the parameter design spaces analytically. A salient conclusion of our

analysis is that the uptake systems display a diverse range of bistable regimes. The Activation-

Repression circuit, in particular, displays five qualitatively different bistable regimes depending

on the promoter dynamic ranges and their transcriptional thresholds. Our approach also offers a

number of other advantages: it requires minimal assumptions on the enzyme kinetics, it accounts

for the four regulatory circuits simultaneously without separate ad hoc analyses, and it reveals

the underlying geometry of the design space for bistability in terms of experimentally accessible

parameters. The latter uncovers how the interplay between promoter design and enzyme kinetics

affects the shape and size of the design space, giving a first idea of which design parameters are

most relevant to achieve a prescribed phenotype.

We point out that because our analysis relies on a coarse on-off approximation of promoters,

its predictions are not guaranteed to hold in more realistic models for promoter activity. Our

simulation results show, however, that the derived design criteria can effectively guide circuit

design in models with standard sigmoidal descriptions of promoter response curves, even in the

case of low Hill numbers, and that the derived design spaces provide an excellent starting point

to search for bistability.

In this work we focused on the promoter dynamic ranges as the main tuneable parameters of

the circuits. Although new technologies in DNA engineering are ever expanding the number of

tuneable “knobs” in synthetic circuits [52, 53], promoter dynamic ranges are particularly flexible

in that they can be altered with many techniques, e.g. by random mutagenesis [26], by manipu-

lation of polymerase binding sites [54], or by the addition of sequence repeats [55]. In its current

form, our model analysis can also be used to study the effect of tuneable protein half-lives [56],

the strength of ribosomal binding sites [27], and in general, other genetic modifications that can

be modelled as a linear scaling of protein expression rates. Other tuning strategies, e.g. affinity

of transcription factors or post translational modifications, however, cannot be directly included

in our analysis and require a more mechanistic model for gene expression beyond the lumped

model used here.

Our main goal in this paper has been to investigate the mathematical design of an uptake

switch. We sought to draw analytic links between bistability and design parameters, for which

we studied a tractable model that retains the typical nonlinearities encountered in enzyme ki-

netics and gene regulation. The costs of this analytic treatment were a number of model sim-
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plifications that should be addressed in future molecular implementations of the switch. First,

the model should include the mechanistic details for gene regulation. By including the detailed

interactions between the internalised metabolite and enzyme expression, the model will predict

the effect of the particular strategy used to tune the circuit function. Second, the model should

be tailored to the specific metabolite and enzymes employed, including features such as re-

versible transport or regulatory mechanisms of kinetic activity. Third, the model should account

for the interactions between the uptake switch and its host. These can significantly degrade

the function of genetic circuits [57] and recent progress in models for bacterial growth allow

to systematically incorporate host-circuit interactions into the circuit design [58]. This will be

particularly relevant for switches designed to take up carbon sources or essential nutrients, as

these will likely interfere with central metabolic functions of the host and trigger some of its

native regulatory mechanisms [59].

The molecular implementation of the proposed switch remains a challenge because of the

lack of mechanisms to sense intracellular metabolites and control gene expression. Natural

systems have evolved a number of mechanisms to sense intracellular metabolites, see e.g. the

comprehensive discussions in [59, 60], but in general it is not easy to make them respond to

metabolites they have not evolved to sense [25]. The lack of metabolite sensors is the most im-

portant bottleneck in dynamic metabolic engineering [24] and limits all current efforts to engi-

neer synthetic gene circuits for metabolism. In our study we have assumed that the intracellular

metabolite controls enzyme expression by direct activation or repression of the promoters, but

in implementations the regulation will be mediated by a specific molecular mechanism, e.g. nat-

ural metabolite-responsive transcription factors [8] or hybrid promoter-regulator systems [61].

Although currently there are no modular mechanisms to sense intracellular metabolites, recent

progress in the field has led to e.g. novel sensors [25] and the implementation of a Repression-

Activation circuit in E. coli [10], bringing us increasingly close to building complex genetic-

metabolic circuitry. This makes the role of mathematical design ever more important, as it is a

powerful tool to discover useful circuit architectures that could be built once metabolite sensors

are available.
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A Appendix

A.1 Analytic results

Identification of bistable regimes and parameter spaces for bistability The details on how

to identify each bistable regime in Fig. 2, together with their conditions for bistability (the

design spaces in Fig. 3–4), can be found in the Supplementary Material. The general idea is to

first approximate the promoter response curves in the model (1)–(2) by step functions:

ds
dt

= g1(s0)e1 − g2(s)e2, (A1)

de1
dt

= κ0
1 + κ1

1σ̄1(s)− γ1e1,

de2
dt

= κ0
2 + κ1

2σ̄2(s)− γ2e2,
(A2)

where σ̄i are the step functions in (8). Using the separation of timescales, we reduce the model

assuming the metabolite to be in quasi steady state with respect to the evolution of enzyme

concentrations. Details on the technical conditions for the separation of timescales can be found

in [62]. We take ds/dt ≈ 0 in equation (A1) to get an algebraic equation for the metabolite

concentration

g2(s) = g1(s0)
e1
e2
. (A3)
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The key observation is that, since g2(s) is an increasing function of s, the condition s < θi

implies that g2(s) < g2(θi), which after substituting in (A3) leads to the equivalences:

s < θi ⇐⇒ e2/e1 > βi, s > θi ⇐⇒ e2/e1 < βi, (A4)

where βi = g1(s0)/g2(θi) are the parameters that appear in all the conditions for bistability

(Fig. 3–4). We can then get a reduced model in the form of a 2-dimensional discontinuous

differential equation

de
dt

= Γ (φ− e) , (A5)

where e = [e1, e2] is the vector of enzyme concentrations and the matrix Γ = diag{γ1, γ2}
contains the degradation rates. The vector φ is piecewise constant and is formed by different

combinations of baseline (Eoff
i ) and maximal (Eon

i ) enzyme expression levels, depending on

whether e1/e2 > βi or e1/e2 < βi. The model in (A5) is a piecewise affine differential equation

defined in conic domains (because conditions such as e1/e2 > βi describe a cone in an (e1, e2)

plane). We can then identify its bistable regimes and the conditions for bistability by examining

the geometry of the partitioned state space. The conditions for bistability arise naturally in terms

of Eoff
i and Eon

i concentrations, but we can convert them to conditions on the promoter dynamic

ranges with the following equivalences (recall the definitions in (3)–(5)):

Eoff
1 /Eoff

2 = µ2/µ12, Eon
1 /E

on
2 = µ1/µ12,

Eon
1 /E

off
2 = µ1µ2/µ12, Eon

2 /E
off
1 = µ12.

(A6)

Conditions for hysteresis in the Activation-Repression circuit We can obtain the condi-

tions for hysteresis in the AR circuit (the inequalities in (19a)–(19d)) by examining the model’s

bistability with the parameters βi = g1(s0)/g2(θi) regarded as functions of the extracellular

metabolite (s0). The key idea is to ensure that: for low s0 concentrations the model is monos-

table with a slow uptake flux, for intermediate s0 concentrations the model is bistable, and for

high s0 concentrations the model is monostable with a fast uptake flux. These three conditions

guarantee that the piecewise model has two saddle-node-like bifurcations and thus displays hys-

teresis. Further details can be found in the Supplementary Material.
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A.2 Model simulations

Simulations were done in Matlab with enzyme kinetic parameters kcat 1 = 32s−1, kcat 2 =

320s−1, KM 1 = KM 2 = 4.7µM, and enzyme degradation rate constants γ1 = γ2 = 2× 10−4s,

corresponding to a half-life ∼1h.

Size of promoter design spaces. To compute the volumes of the solids in Fig. 3 and Fig. 4,

we computed the convex hull of points satisfying the inequalities that define each design space.

The µ1 and µ2 axis contains 50 linearly spaced points each, with µmax
1 = µmax

2 = 25. The µ12
axis contains 50 log-spaced points with (µmin

12 , µ
max
12 ) = (10−2, 102).

Simulations of the continuous model. We determined the parameter regions for bistability

(Fig. 6A) from long simulations of the model in (1)–(2) for 104 pairs of promoter dynamic

ranges (µ1, µ2) and µ12 = µ2 sampled from a regular grid with increasing promoter sensitivities

(hi = {2, 4, 8} for i = 1, 2). We ran two simulations for each (µ1, µ2) pair, initialized at the

two stable steady states predicted by the piecewise affine model. We discriminated between

monostability and bistability using the euclidean distance between the final time points of each

simulation. We determined the regions for metabolite accumulation by checking the condition

g2(s̄) < gsat
2 at the final time points (in which case the steady state equation in (7) does not have

a solution).

We computed the domains of attraction in Fig. 6B from long simulations of (1)–(2) for

8 × 103 initial conditions sampled from a uniform grid. The bifurcation diagrams in Fig. 6C

were computed with the MatCont package for Matlab [63].

Population-wide simulations. We computed the the histograms in Fig. 7 from simulations of

the deterministic model (1)–(2) with randomized parameters. The top/bottom panels in Fig. 7

are simulations of cells initialized at a low/high uptake fluxes in steady state, and each simu-

lation was ran for 100 increasing/decreasing concentrations of extracellular metabolite in the

range [0.1, 10]µM. For a each metabolite concentration s0, we sampled the baseline and maxi-

mal enzyme concentrations (Eoff
i and Eon

i for i = 1, 2) from Gamma distributions with means

〈Eoff
1 〉 = 〈Eoff

2 〉 = 25nM, 〈Eon
1 〉 = 150nM, and 〈Eon

2 〉 = 125nM, which correspond to dy-

namic ranges (µ1, µ2) = (6, 5); these are the same parameters as in the bifurcation diagrams

in Fig. 6C. We used a coefficient of variation of 20%, representative of measured fluctuations
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in protein abundance reported in the literature [40]. The gene expression parameters were then

computed as κ0
i = γiE

off
i and κ1

i = γi
(
Eon

i − Eoff
i

)
. The histograms were obtained from simu-

lations of 500 cells for each concentration s0; we discarded and resampled all samples that led

to metabolite accumulation by checking the condition g2(s̄) < gsat
2 at the final time points of the

simulation.

References
[1] J. J. Tyson, K. C. Chen, and B. Novak, “Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and

signaling pathways in the cell,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 221–231, Apr. 2003.

[2] O. Brandman, J. E. Ferrell, R. Li, and T. Meyer, “Interlinked fast and slow positive feedback loops drive
reliable cell decisions.” Science, vol. 310, no. 5747, pp. 496–8, Oct. 2005.

[3] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,”
Nature, vol. 403, no. 6767, pp. 339–342, Jan. 2000.

[4] M. R. Atkinson, M. A. Savageau, J. T. Myers, and A. J. Ninfa, “Development of Genetic Circuitry Exhibiting
Toggle Switch or Oscillatory Behavior in Escherichia coli,” Cell, vol. 113, no. 5, pp. 597–607, May 2003.

[5] B. P. Kramer and M. Fussenegger, “Hysteresis in a synthetic mammalian gene network.” Proceedings of the
National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9517–22, July 2005.

[6] D. Chen and A. P. Arkin, “Sequestration-based bistability enables tuning of the switching boundaries and
design of a latch.” Molecular systems biology, vol. 8, no. 1, p. 620, Jan. 2012.

[7] W. R. Farmer and J. C. Liao, “Improving lycopene production in Escherichia coli by engineering metabolic
control,” Nature Biotechnology, vol. 18, no. 5, pp. 533–537, May 2000.

[8] F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a dynamic sensor-regulator system for production of
chemicals and fuels derived from fatty acids,” Nature Biotechnology, vol. 30, pp. 354–359, Mar. 2012.

[9] D. A. Oyarzún and G.-B. V. Stan, “Synthetic gene circuits for metabolic control: design trade-offs and
constraints,” Journal of The Royal Society Interface, vol. 10, no. 78, p. 20120671, 2013.

[10] P. Xu, L. Li, F. Zhang, G. Stephanopoulos, and M. Koffas, “Improving fatty acids production by engineering
dynamic pathway regulation and metabolic control,” Proceedings of the National Academy of Sciences, vol.
111, no. 31, pp. 11 299–11 304, aug 2014.

[11] E. Fung, W. W. Wong, J. K. Suen, T. Bulter, S.-g. Lee, and J. C. Liao, “A synthetic gene-metabolic oscillator,”
Nature, vol. 435, no. 7038, pp. 118–122, May 2005.

[12] R. Silva-Rocha and V. de Lorenzo, “Engineering multicellular logic in bacteria with metabolic wires.” ACS
synthetic biology, vol. 3, no. 4, pp. 204–9, Apr. 2014.

[13] K. Brenner, L. You, and F. H. Arnold, “Engineering microbial consortia: a new frontier in synthetic biology.”
Trends in biotechnology, vol. 26, no. 9, pp. 483–9, Sept. 2008.

31



[14] M. Acar, A. Becskei, and A. van Oudenaarden, “Enhancement of cellular memory by reducing stochastic
transitions.” Nature, vol. 435, no. 7039, pp. 228–32, May 2005.

[15] A. Solopova, J. van Gestel, F. J. Weissing, H. Bachmann, B. Teusink, J. Kok, and O. P. Kuipers, “Bet-hedging
during bacterial diauxic shift.” Proceedings of the National Academy of Sciences of the United States of
America, vol. 111, no. 20, pp. 7427–32, May 2014.

[16] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo, “Adaptive response of a gene network to environmental
changes by fitness-induced attractor selection.” PloS one, vol. 1, no. 1, p. e49, Jan. 2006.

[17] A. Goldbeter and D. E. Koshland, “An amplified sensitivity arising from covalent modification in biological
systems.” Proceedings of the National Academy of Sciences, vol. 78, no. 11, pp. 6840–6844, Nov. 1981.

[18] A. Ciliberto, F. Capuani, and J. J. Tyson, “Modeling networks of coupled enzymatic reactions using the total
quasi-steady state approximation.” PLoS computational biology, vol. 3, no. 3, p. e45, Mar. 2007.

[19] E. Ozbudak, M. Thattai, H. Lim, B. Shraiman, and A. van Oudenaarden, “Multistability in the lactose utiliza-
tion network of Escherichia coli,” Nature, vol. 427, pp. 737–740, 2004.

[20] C. Cosentino, L. Salerno, A. Passanti, A. Merola, D. G. Bates, and F. Amato, “Structural bistability of the
GAL regulatory network and characterization of its domains of attraction.” Journal of computational biology :
a journal of computational molecular cell biology, vol. 19, no. 2, pp. 148–62, Feb. 2012.

[21] D. A. Oyarzún, M. Chaves, and M. Hoff-Hoffmeyer-Zlotnik, “Multistability and oscillations in genetic control
of metabolism.” Journal of Theoretical Biology, vol. 295, pp. 139–153, 2012.
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Supplementary material
“Design of a bistable switch to control cellular uptake”
By Diego A. Oyarzún1 and Madalena Chaves2

Here we explain: a) how to determine the bistable regimes for the uptake circuits (Fig. 2 of

the main text); b) how to determine the conditions on the promoter dynamic ranges for bistability

(the design spaces in Fig. 3–4 of the main text); c) how to determine the conditions for hysteresis

in the AR circuit (the inequalities in (19) of the main text). The general model for the uptake

circuit is

ds
dt

= g1(s0)e1 − g2(s)e2, (S1)

de1
dt

= κ0
1 + κ1

1σ1(s)− γ1e1,

de2
dt

= κ0
2 + κ1

2σ2(s)− γ2e2,
(S2)

where (s, e1, e2) are the concentrations of the metabolite, transport enzyme and utilization en-

zyme, respectively. The parameters (κ0
i , κ

1
i ) are enzyme expression rates, and γi is a first order

kinetic rate of protein degradation and dilution by cell growth. We assume that:

• The extracellular metabolite s0 is constant.

• The enzyme turnover rates satisfy gi(0) = 0, they are monotonically increasing dgi/dx >

0, and they saturate at gsat
i = limx→∞ gi(x) = sup gi.

• The promoter response curves satisfy dσi/ds > 0 when the metabolite activates gene

expression, and dσi/ds < 0 when the metabolite represses expression.

In our model, the promoters control enzyme expression between a baseline concentration

(“off”) and maximal concentration (“on”)

Eoff
i =

κ0
i

γi
, Eon

i =
κ0
i + κ1

i

γi
. (S3)

1Department of Mathematics, Imperial College London, UK; E-mail: d.oyarzun@imperial.ac.uk
2BioCore team, INRIA Sophia Antipolis, France.
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The promoter dynamic ranges (µi in equation (4) in the main text) are defined as:

µi =
Eon

i

Eoff
i

=
κ0
i + κ1

i

κ0
i

, (S4)

and the relative dynamic range (µ12 in equation (5) in the main text) as:

µ12 =
Eon

2

Eoff
1

=
κ0
2 + κ1

2

κ0
1

γ1
γ2
. (S5)

From the definitions in (S3)–(S5), we note the following equivalences:

Eoff
1 /Eoff

2 = µ2/µ12, Eon
1 /E

on
2 = µ1/µ12,

Eon
1 /E

off
2 = µ1µ2/µ12, Eon

2 /E
off
1 = µ12.

(S6)

Our analysis is based on a separation of time scales and an approximation of the promoter

responses σi by step functions. In the next sections we detail the general methodology: in

Section S1 we show how to recast the model as a 2-dimensional piecewise affine system in

conic domains. In Section S2 we explain how to identify the bistable regimes in each circuit. In

Section S3 we show how to obtain the conditions for bistability. Finally in Section S4 we derive

the conditions for hysteresis in the AR circuit.

S1 Timescale separation and piecewise affine model

Since metabolic dynamics operate in a much shorter time scale than gene expression, we assume

that the metabolite is in quasi steady state with respect to the evolution of enzyme concentra-

tions. We can thus take ds/dt ≈ 0 for all t in equation (S1) to get an algebraic equation for the

metabolite concentration

g2(s) = g1(s0)
e1
e2
. (S7)

We can write a reduced version of the complete model (S1)–(S2)

de1
dt

= κ0
1 + κ1

1σ̄1(s)− γ1e1,

de2
dt

= κ0
2 + κ1

2σ̄2(s)− γ2e2,
(S8)
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where s is the solution of equation (S7) and we have replaced the promoter response curves (σi)

by

Activation Repression

σ̄i(s) =

0, s < θi,

1, s > θi.
σ̄i(s) =

1, s < θi,

0, s > θi.
(S9)

The model in (S8) is 2-dimensional approximation of the original system in (S1)–(S2). It cor-

responds to a piecewise affine differential equation in which enzyme expression rates change

between slow (κ0
i ) and fast rates (κ0

i + κ1
i ) depending on whether s < θi or s > θi. Using the

monotonicity of g2(s) in (S7), we can find one-to-one correspondences between the concentra-

tion s and the ratio e1/e2. Since g2 is an increasing function of s, the inequality s < θi implies

that g2(s) < g2(θi), which after substituting in (S7) leads to the following equivalences

s < θi ⇐⇒ e2 > βie1, s > θi ⇐⇒ e2 < βie1, (S10)

where βi = g1(s0)/g2(θi). We can use the equivalences in (S10) to recast the reduced model in

(S8) as a piecewise affine system defined in three conic domains separated by half-lines of the

form e2 = βie1 (see Fig. S1).
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Figure S1 – State space of the reduced piecewise affine model in (S8). The state space is partitioned in three
cones (calledDk if θ1 < θ2, orD′

k if θ1 > θ2 for k = 1, 2, 3); the βi parameters are the slopes of the boundary
half-lines and defined as βi = g1(s0)/g2(θi). The φij points are defined in Table S1A.

The general form of the piecewise affine ODEs in (S8) is

de
dt

= Γ
(
φij − e

)
, (S11)

where we defined the concentration vector as e = (e1, e2)
T , the matrix Γ = diag {γ1, γ2}, and

the φij vectors are combinations of the baseline and maximal expression levels (Eoff and Eon
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given in Table S1A). The vectors φij take different values in different regions of the state space,

givein in Table S1B–C. As an example, next we detail the construction of the piecewise affine

model for the (R)epression-(R)epression circuit with thresholds ordered as θ1 < θ2.

Example. RR circuit with θ1 < θ2.

• If s < θ1 (or equivalently e2 > β1e1), both promoters are in the ON state and thus we can

write the right hand side of (S8) as

de1
dt

= γ1

(
κ0
1 + κ1

1

γ1
− e1

)
,

de2
dt

= γ2

(
κ0
2 + κ1

2

γ2
− e2

)
,

if e2 > β1e1. (S12)

• If θ1 < s < θ2 (or equivalently β2e1 < e2 < β1e1), promoter 1 is in the OFF state, and

promoter 2 in the ON state, thus we can write the right hand side of (S8) as

de1
dt

= γ1

(
κ0
1

γ1
− e1

)
,

de2
dt

= γ2

(
κ0
2 + κ1

2

γ2
− e2

)
,

if β2e1 < e2 < β1e1. (S13)

• If s > θ2 (or equivalently e2 < β2e1) both promoters are in the OFF state, and thus we

can write the right hand side of (S8) as

de1
dt

= γ1

(
κ0
1

γ1
− e1

)
,

de2
dt

= γ2

(
κ0
2

γ2
− e2

)
,

if e2 < β2e1. (S14)

We can write equations (S12)–(S14) in vector form and substitute the definitions of Eoff
i and

Eon
i (shown in (S3)) to get:

de
dt

=


Γ
(
φ11 − e

)
, if e ∈ D1,

Γ
(
φ01 − e

)
, if e ∈ D2,

Γ
(
φ00 − e

)
, if e ∈ D3,

(S15)

The conic domains Di are defined in Table S1B and illustrated in Fig. S1; the RR case in (S15)

corresponds to the first row of Table S1B.
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Table S1 – Piecewise affine description of the timescale-separated model in (S8). (A) Possible stable steady
states for the transport and utilization enzymes. (B) Piecewise affine models with θ1 < θ2; the RR row
corresponds to the example in equations (S12)–(S14). (C) Piecewise affine models with θ1 > θ2.

A
Steady state Transport (e1) Utilization (e2)

φ00 Eoff
1 Eoff

2

φ01 Eoff
1 Eon

2

φ10 Eon
1 Eoff

2

φ11 Eon
1 Eon

2

B θ1 < θ2
Domain D1 Domain D2 Domain D3

Circuit e2 > β1e1 β2e1 < e2 < β1e1 e2 < β2e1

RR ė = Γ
(
φ11 − e

)
ė = Γ

(
φ01 − e

)
ė = Γ

(
φ00 − e

)
AA ė = Γ

(
φ00 − e

)
ė = Γ

(
φ10 − e

)
ė = Γ

(
φ11 − e

)
AR ė = Γ

(
φ01 − e

)
ė = Γ

(
φ11 − e

)
ė = Γ

(
φ10 − e

)
C θ1 > θ2

Domain D′1 Domain D′2 Domain D′3
Circuit e2 > β2e1 β1e1 < e2 < β2e1 e2 < β1e1

RR ė = Γ
(
φ11 − e

)
ė = Γ

(
φ10 − e

)
ė = Γ

(
φ00 − e

)
AA ė = Γ

(
φ00 − e

)
ė = Γ

(
φ01 − e

)
ė = Γ

(
φ11 − e

)
AR ė = Γ

(
φ01 − e

)
ė = Γ

(
φ00 − e

)
ė = Γ

(
φ10 − e

)

S2 Identification of the bistable regimes.

In this section we show how to obtain the bistable regimes in Fig. 2 of the main text. We first

show how to obtain the steady state enzyme concentrations and how to guarantee the existence

of a steady state metabolite concentration, without computing its value. Later in Section S3

we derive parametric conditions for bistability, which we then use to determine the qualitative

value of the metabolite concentration (i.e. the “low”, “intermediate” and “high” concentration

metabolite levels in Fig. 2 of the main text).

S2.1 Steady state enzyme concentrations

We obtain the stable steady state enzyme concentrations by imposing conditions on the φij vec-

tors in the piecewise affine models in (S11). The key observation is that a point φij is a locally

stable steady state of the piecewise affine system if and only if it belongs to its corresponding

domain. Therefore, for a circuit to have two stable steady states, we need to ensure that at least

5



two points φij belong to their conic domain. To guarantee that those steady states lead to a

bistable uptake flux, they should have different values for the e1 coordinate (recall from equa-

tion (6) in the main text, that the flux is proportional to the transport enzyme, i.e. J = g1(s0)ē1).

We illustrate this idea with an example.

Example. RR circuit with θ1 < θ2.

From Table S1B we see that the RR circuit with θ1 < θ2 can lead to a bistable flux in three

cases:

• φ11 ∈ D1 and φ00 ∈ D3.

• φ11 ∈ D1 and φ01 ∈ D2.

• φ11 ∈ D1, φ01 ∈ D2 and φ00 ∈ D3.

Note that a fourth case, φ01 ∈ D2 and φ00 ∈ D3, can be ruled out because e1 is at a low

concentration in both φ01 and φ00, and therefore these two steady states would not lead to a

bistable flux.

With the above idea we can single out all the possible bistable regimes for each circuit. In

Table S2 we have detailed all the conditions on the φij vectors for each regime; in particular, the

example (RR case with θ1 < θ2) corresponds to regimes RR-0, RR-2 and RR-4 in Table S2. In

Table S2 there are a total of 15 possible arrangements of vectors φij and conic domains that lead

to a bistable flux. Note, however, that six of these regimes are infeasible in the sense that the

conditions for bistability cannot be met for any combination of positive parameters (marked in

red in Table S2). The infeasibility of these regimes can be readily checked from the conditions

in Table S2 and the geometry of the state space in Fig. S1. The nine remaining regimes are the

ones reported in Fig. 2 of the main text.

S2.2 Existence of the steady state metabolite concentration.

The steady state for the metabolite satisfies the equation in (S7):

g2(s̄) = g1(s0)
ē1
ē2
. (S16)

However, because g2 saturates at gsat
2 , equation (S16) may not have a solution for every (ē1, ē2)

pair. To guarantee that g2(s̄) < gsat
2 , and therefore the existence of a steady state concentration

for the metabolite, we need the steady state enzyme concentrations to satisfy

ē2 >
g1(s0)

gsat
2

ē1 = β̌ē1, (S17)
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Table S2 – Bistable regimes in each uptake circuit. The regimes in red are infeasible, as the conditions cannot
be met with any combination of parameters (due to the geometry of the state space, see Fig. S1). The feasible
regimes are those shown in Fig. 2 of the main text. The crosses indicate the threshold-dependent regimes,
i.e. those that emerge only under specific orderings of the thresholds.

Regime θ1 < θ2 θ1 > θ2

RR-0 φ11 ∈ D1, φ00 ∈ D3 φ11 ∈ D′1, φ00 ∈ D′3
RR-1 5 φ10 ∈ D′2, φ00 ∈ D′3
RR-2 φ11 ∈ D1, φ01 ∈ D2 5

RR-3 5 φ11 ∈ D′1, φ10 ∈ D′2, φ00 ∈ D′3
RR-4 φ11 ∈ D1, φ01 ∈ D2, φ00 ∈ D3 5

AA-0 φ00 ∈ D1, φ11 ∈ D3 φ00 ∈ D′1, φ11 ∈ D′3
AA-1 5 φ01 ∈ D′2, φ11 ∈ D′3
AA-2 φ00 ∈ D1, φ10 ∈ D2 5

AA-3 5 φ00 ∈ D′1, φ01 ∈ D′2, φ11 ∈ D′3
AA-4 φ00 ∈ D1, φ10 ∈ D2, φ11 ∈ D3 5

AR-0 φ01 ∈ D1, φ10 ∈ D3 φ01 ∈ D′1, φ10 ∈ D′3
AR-1 5 φ00 ∈ D′2, φ10 ∈ D′3
AR-2 5 φ01 ∈ D′1, φ00 ∈ D′2, φ10 ∈ D′3
AR-3 φ01 ∈ D1, φ11 ∈ D2 5

AR-4 φ01 ∈ D1, φ11 ∈ D2, φ10 ∈ D3 5

where β̌ = g1(s0)/g
sat
2 . Although the exact steady state metabolite concentration can be com-

puted from the equation in (S16), for our purposes it is more useful to determine its concen-

tration relative to the regulatory thresholds θ1 and θ2. This allows us to distinguish between

different bistable regimes based on the qualitative value of the metabolite concentration. For

example, in the case θ1 < θ2, we can classify the metabolite concentration as “low” when

s̄ < θ1, “intermediate” when θ1 < s̄ < θ2, and “high” when s̄ > θ2. As we show in the next

section, we can deduce the qualitative value of the metabolite concentration from the conditions

for bistability.

S3 Parametric conditions for bistability

From the ideas in Section S2, we can summarize a general procedure to obtain analytic condi-

tions for bistability:

1. For a given bistable regime in Table S2, impose the conditions for local stability φij ∈ Dk

using the definitions in Table S1.

2. For each stable steady state, impose the condition for existence of the metabolite steady state,

7



i.e. e2 > β̌e1 in (S17).

3. Rewrite the conditions in terms of the promoter dynamic ranges µ1, µ2 and µ12 using the

relations in (S6).

4. Discard any redundant inequalities.

5. Determine the qualitative value of the steady state metabolite concentration by using (S16)

for each steady state and combining it with the derived inequalities.

Using the above steps in each of regimes in Table S2 we get the conditions for bistability

detailed in Table S3 and Fig. 3–4 of the main text. To illustrate the application of steps 1-5

above, we show the full calculations in detail for two representative cases: the AA-2 regime and

the AR-0 regime. These two examples are representative of the general procedure and contain

all the elements needed to obtain the conditions for bistability in Table S3.

Example 1: AA-2 regime.

1. Following Table S2, we can guarantee the existence of two stable enzyme steady states by

enforcing the following conditions

φ00 ∈ D1, and φ10 ∈ D2, (S18)

which using the definitions in Table S1A become

Eoff
2 > β1E

off
1 , and β2Eon

1 < Eoff
2 < β1E

on
1 . (S19)

2. To guarantee the existence of a steady state for the metabolite, we impose condition (S17) to

each steady state in this regime (i.e. φ00 and φ10)

Eoff
2 > β̌Eoff

1 , and Eoff
2 > β̌Eon

1 . (S20)

3. Using the equivalences in (S6), we can rewrite conditions (S19)–(S20) in terms of the dy-

namic ranges:

Eoff
2 > β1E

off
1 ⇐⇒ µ12 > β1µ2, (S21)

β2E
on
1 < Eoff

2 < β1E
on
1 ⇐⇒ β2µ1µ2 < µ12 < β1µ1µ2, (S22)

Eoff
2 > β̌Eoff

1 ⇐⇒ µ12 > β̌µ2, (S23)

Eoff
2 > β̌Eon

1 ⇐⇒ µ12 > β̌µ1µ2. (S24)
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4. The conditions (S21)–(S24) can be put together as in Table S3. Note that the inequalities

(S23)–(S24) are redundant because β̌ < β2 < β1 (recall that θ1 < θ2 in the AA-2 regime)

and thus the inequalities in (S21)–(S22) imply that both (S23)–(S24) are automatically satis-

fied.

5. To determine the location of the metabolite steady state, we substitute φ00 in equation (S16)

to obtain

g2(s̄) = g1(s0)
Eoff

1

Eoff
2

= g1(s0)
µ2
µ12

, (S25)

but from the condition in (S21) we know that µ12 > β1µ2 = (g1(s0)/g2(θ1))µ2, which after

substituting in (S25) leads to

g2(s̄) < g2(θ1). (S26)

By monotonicity of g2 we conclude that that s̄ < θ1, and thus the steady state φ00 leads to a

low steady state concentration for the metabolite.

Conversely, substituting the steady state φ10 in equation (S16) leads to

g2(s̄) = g1(s0)
Eon

1

Eoff
2

= g1(s0)
µ1µ2
µ12

, (S27)

but from the condition in (S22) we know that β2µ1µ2 < µ12 < β1µ1µ2, or more explicitly

g1(s0)

g2(θ2)
µ1µ2 < µ12 <

g1(s0)

g2(θ1)
µ1µ2, (S28)

which after substituting in (S27) leads to

g2(θ1) < g2(s̄) < g2(θ2). (S29)

Monotonicity of g2 implies that θ1 < s̄ < θ2 and thus the steady state state φ10 corresponds

to an intermediate metabolite steady state concentration.

Example 2: AR-0 regime.

1. Without loss of generality, here we assume that θ1 > θ2 but the same analysis can be done for

the converse case. Following Table S2, we can guarantee the existence of two stable enzyme

steady states by enforcing the following conditions

φ01 ∈ D′1, and φ10 ∈ D′3, (S30)
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which using the definitions in Table S1A become

Eon
2 > β2E

off
1 , and Eoff

2 < β1E
on
1 . (S31)

2. To guarantee the existence of a steady state for the metabolite, we impose condition (S17) to

each steady state in this regime (i.e. φ01 and φ10)

Eon
2 > β̌Eoff

1 , and Eoff
2 > β̌Eon

1 . (S32)

3. Using the equivalences in (S6), we can rewrite conditions (S31)–(S32) in terms of the dy-

namic ranges:

Eon
2 > β2E

off
1 ⇐⇒ µ12 > β2, (S33)

Eoff
2 < β1E

on
1 ⇐⇒ µ12 < β1µ1µ2, (S34)

Eon
2 > β̌Eoff

1 ⇐⇒ µ12 > β̌, (S35)

Eoff
2 > β̌Eon

1 ⇐⇒ µ12 > β̌µ1µ2. (S36)

4. The conditions (S33)–(S36) can be put together as in Table S3. Note that the inequality (S35)

is redundant because β̌ < β2 and thus (S33) implies that (S35) is automatically satisfied.

5. To determine the location of the metabolite steady state, we substitute φ01 in equation (S16)

we obtain

g2(s̄) = g1(s0)
Eoff

1

Eon
2

=
g1(s0)

µ12
, (S37)

but from the condition in (S33) we know that µ12 > β2 = g1(s0)/g2(θ2), which after

substituting in (S37) leads to

g2(s̄) < g2(θ2). (S38)

By monotonicity of g2 we conclude that that s̄ < θ2, and thus the steady state φ01 leads to a

low steady state concentration for the metabolite.

Conversely, substituting the steady state φ10 in equation (S16) leads to

g2(s̄) = g1(s0)
Eon

1

Eoff
2

= g1(s0)
µ1µ2
µ12

, (S39)

but from the condition in (S34) we know that µ12 < β1µ1µ2 = (g1(s0)/g2(θ1))µ1µ2, which
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after substituting in (S39) leads to

g2(s̄) > g2(θ1). (S40)

which by monotonicity implies that s̄ > θ1 and thus the steady state φ10 corresponds to a

high metabolite steady state concentration.

Table S3 – Conditions for bistability in each regime. The parameters are βi = g1(s0)/g2(θi). The crosses
indicate the threshold-dependent regimes, i.e. those that emerge only under specific orderings of the thresholds.
The conditions for the threshold-independent regimes are depicted in Fig. 3 of the main text; the conditions for
the threshold-dependent regimes are shown in Fig. 4.

Regime θ1 < θ2 θ1 > θ2

RR-0
β1µ1 < µ12 < β2µ2 β2µ1 < µ12 < β1µ2

β̌µ2 < µ12 β̌µ2 < µ12

AA-0
β1µ2 < µ12 < β2µ1 β2µ2 < µ12 < β1µ1

β̌µ1 < µ12 β̌µ1 < µ12

AA-1
5 β1 < µ12 < β2

β̌µ1 < µ12 < β1µ1

AA-2
β1µ2 < µ12 < β1µ1µ2 5

β2µ1µ2 < µ12

AR-0
β1 < µ12 < β2µ1µ2 β2 < µ12 < β1µ1µ2

β̌µ1µ2 < µ12 β̌µ1µ2 < µ12

AR-1
5 β1µ2 < µ12 < β2µ2

β̌µ1µ2 < µ12 < β1µ1µ2

AR-2
β2 < µ12 < β1µ1µ2

5 β1µ2 < µ12 < β2µ2

β̌µ1µ2 < µ12

AR-3
β2µ1 < µ12 < β1µ1 5

β1 < µ12

AR-4
β1 < µ12 < β1µ1

β2µ1 < µ12 < β2µ1µ2 5

β̌µ1µ2 < µ12

S4 Conditions for hysteresis in the AR-0 regime

Here we show the derivation of the conditions in (19c)–(19d) for hysteresis in the Activation-

Repression circuit operating in the AR-0 bistable regime. The key idea is to guarantee two
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saddle-node-like bifurcations for different values of the βi parameters (and hence different con-

centrations of extracellular metabolite).

We assume that both promoters have equal regulatory thresholds, i.e. θ1 = θ2 = θ, as this

criterion helps to enlarge the design space for promoter dynamic ranges (recall Fig. 3 in the

main text). Note that under equal thresholds, the domains D2 and D′2 in the piecewise affine

models of Table S1 collapse, and moreover D1 = D′1 and D3 = D′3. We define the parameter

β(s0) =
g1(s0)

g2(θ)
, (S41)

where with a slight abuse of notation we have made the dependence of β on the metabolite

s0 explicit. Since the transport turnover rate, g1, is a non-decreasing function, β(s0) increases

with the concentration s0. We can analyze the bifurcations of the piecewise affine model in

Table S1 by fixing the location of the φij points and using the ideas in Example 2 of Section S3

for different values of β(s0). Following the notation in Table S1, to have a bistable hysteretic

response we need

low flux:

φ
01 ∈ D1,

φ10 /∈ D3,

for s0 < soff
0 , (S42)

bistable flux:

φ
01 ∈ D1,

φ10 ∈ D3,

for soff
0 < s0 < son

0 , (S43)

high flux:

φ
01 /∈ D1,

φ10 ∈ D3,

for s0 > son
0 . (S44)

The concentrations soff
0 and son

0 in the (S42)–(S44) represent the amount of metabolite needed to

switch the circuit from a high to low flux and vice versa. Note that condition (S42) is naturally

satisfied because g1(0) = 0 and therefore we can always find a sufficiently small soff
0 such that

φ10 /∈ D3 for s0 < soff
0 (or equivalently Eoff

2 > β(s0)E
on
1 for s0 < soff

0 ).

Condition (S43) is identical to the ones in (S30) and therefore it is satisfied provided that

the dynamic ranges satisfy the bounds in (S33)–(S34) when soff
0 < s0 < son

0 .

Condition (S44) can be satisfied if there exists son
0 such that φ01 /∈ D1 for s0 > son

0 , or

equivalently

Eon
2 < β(s0)E

off
1 , (S45)

for s0 > son
0 . A sufficient condition for (S45) to hold for s0 > son

0 is that in the saturation limit,
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i.e. when s0 →∞:

Eon
2 < β̂Eoff

1 , (S46)

where β̂ = gsat
1 /g2(θ). The condition (S46) above corresponds to condition (19c) in the main

text.

Finally, we need to guarantee that the metabolite steady state s̄ exists for all s0 > 0. Recall-

ing the condition in (S36), we need

Eoff
2 >

g1(s0)

gsat
2

Eon
1 , for all s0 > 0, (S47)

Since g1 saturates at gsat
1 , a sufficient condition for (S47) to hold for all s0 > 0 is

Eoff
2 >

gsat
1

gsat
2

Eon
1 , (S48)

which corresponds to condition (19d) in the main text.
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