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Abstract 

The experimental systems that recapitulate the complexity of native tissues and enable 

precise control over the microenvironment are becoming essential for the pre-clinical 

tests of therapeutics and tissue engineering. Here, we described a strategy to develop 

an in vitro platform to study the developmental biology of craniofacial osteogenesis. In 

this study, we directly osteo-differentiated cranial neural crest cells (CNCCs) in a 3-D in 

vitro bioengineered microenvironment. Cells were encapsulated in the gelatin-based 

photo-crosslinkable hydrogel and cultured up to three weeks. We demonstrated that this 

platform allows efficient differentiation of p75 positive CNCCs to cells expressing 

osteogenic markers corresponding to the sequential developmental phases of 

intramembranous ossification. During the course of culture, we observed a decrease in 

the expression of early osteogenic marker Runx2, while the other mature osteoblast and 

osteocyte markers such as Osterix, Osteocalcin, Osteopontin and Bone sialoprotein 

increased. We analyzed the ossification of the secreted matrix with alkaline phosphatase 

and quantified the newly secreted hydroxyapatite. The Field Emission Scanning Electron 

Microscope (FESEM) images of the bioengineered hydrogel constructs revealed the 

native-like osteocytes, mature osteoblasts, and cranial bone tissue morphologies with 

canaliculus-like intercellular connections. This platform provides a broadly applicable 

model system to potentially study diseases involving primarily embryonic craniofacial 

bone disorders, where direct diagnosis and adequate animal disease models are limited. 

 

 

 

 

 

 



  

 

 

1. Introduction 

Tissues and organs comprise cells and intercellular components that are highly 

organized at the organismic level, which have a dynamic, three-dimensional (3-D) nature 

especially highlighted during embryonic development. Tissue functionality arises from 

the finely orchestrated interactions of all such elements, which are regulated by the 

multitude of chemical and physical stimuli [1-4]. Tissue engineering and regenerative 

medicine hold a great promise to create models that mimic the natural biological tissue 

microenvironments and recapitulate tissue and organ formation and maturation. Cell-

encapsulating 3-D tissue models are emerging tools that bring inspiring in vitro venues 

to study the development of complex physiological systems. These models overcome 

the limitations of the two-dimensional (2-D) monolayer cultures in studying the 

significantly complex biological mechanisms involved in multicellular behavior [5, 6]. 

Microscale tissue models can efficiently utilize rare cells that are challenging for 

monolayer expansion [7]. Such microscale models are capable of recapitulating 

regulatory dynamics of the germ layers and cellular condensations forming at the early 

developmental stages. The design and fabrication of 3-D microenvironments with well-

defined architecture and material compositions specific for progenitor cell types are 

essential for mimicking intricate events taking place in vivo. Cell-encapsulating hydrogel 

microenvironments are fabricated by gelation of extracellular matrix mimicry polymer 

solutions using various techniques including thermal, enzymatic, chemical and UV 

photo-crosslinking methods. In particular, the flexibility to fine-tune the microscale tissue 

size and shape, together with the high throughput and reproducibility aspect of the UV 

photo-crosslinking platform, underscores its broad utility to create successful tissue 

models [8, 9].  

Often referred to as the “fourth embryonic germ layer” [10, 11], neural crest is a 

transient, multipotent embryonic population of cells, which migrate from their site of 



  

 

 

origin at the dorsal neural tube and differentiate into a diverse array of specialized cell 

types during vertebrate development [12]. Cranial neural crest cells (CNCCs) can 

differentiate into chondrogenic and osteogenic cells that, in turn, generate most of the 

cranial skeletal tissues (both bones and cartilages) in the vertebrate head [12, 13]. 

Cranial dermal bones are unique in the way they are formed – dermal bones form 

directly from the neural crest of the cranial dermis without forming a cartilage precursor, 

through a process known as intramembranous ossification [12, 14-20]. Despite these 

unique developmental features of the cranial bones, most of our current understanding 

of bone development, in general, is from studies on the limb and trunk bones of 

mesodermal origin. The skeletogenesis using CNCCs, and the morphogenesis of cranial 

bone formation, are not very well understood, particularly at the tissue level, at least in 

part due to the lack of 3-D microscale tools to model and manipulate cranial skeletal 

tissues in vitro.  

Recent studies investigating cranial neural crest cell biology utilize 2-D 

monolayer culture models, which do not replicate the native, three-dimensionally defined 

microenvironments [21-23]. In this study, we created a broadly applicable platform that 

allows the direct differentiation of multipotent progenitor cells, including those of neural 

crest origin. We produced in vitro 3-D tissue model constructs with relatively high 

throughput efficiency to mimic the osteogenic differentiation conditions of the 

mammalian post-migratory CNCCs (Figure 1). The objective was to recapitulate the in 

vivo development of cranial dermal bone tissue from CNCCs in well-defined 3-D bio-

mimicking hydrogel units. Such a platform provides in vitro study models for embryonic 

craniofacial disorders, where our understanding of etiology is limited, and few adequate 

animal disease models exist. To this purpose, we have developed an array of 

microenvironments allowing successful 3-D direct differentiation of neural crest cells, 

forming cranial skeletal tissues and mimicking the embryonic phases of organogenesis. 



  

 

 

 

2. Materials and Methods 

2.1. Mouse Cranial Neural Crest Cell Isolation and Culture 

Mouse cranial neural crest cells were isolated accourding to Etchevers H. 2011 [24] 

under Harvard IACUC, Animal Experimentation Protocol No 26-04. Briefly, frontonasal, 

maxillary and mandibular prominences of E10.5 mouse embryos were dissected into 

small pieces in a petri dish containing DMEM/F12 media (Life Technologies) with 1% 

penicilin-streptomycin (Life Technologies). These tissue blocks were digested for 5 min 

in a mixture of warm 0.1% collagenase (Sigma) and 0.025% trypsin (Thermo Scientific), 

while being pipetted gently up and down to generate single cell suspension of mouse 

CNCCs. These cells were washed with fresh medium to stop the digestion, counted and 

seeded in laminin-coated plates. Cells were maintained and expanded in a monolayer 

culture in DMEM/F12 media with N2 supplement (Life Technologies), 10 ng/ml EGF and 

10 ng/ml bFGF recombinant proteins (R&D Systems).  

 

2.2. Synthesis of methacrylated gelatin hydrogel 

Gelatin (Sigma) was dissolved in 50 °C phosphate buffered saline (PBS) with 10% (w/v) 

of final concentration. Methacrylic anhydride (Sigma) was added (0.8 ml/g) drop wise to 

the dissolved gelatin and stirred for two and a half hours. The unreacted methacrylic 

anhydride was dialyzed, and the final product was lyophilized. Methacrylation was 

monitored and controlled with NMR analysis (Oxford Instruments, NMR AS600) in 

deuterium oxide (Supplementary Figure 1). 

 

2.3. Cell encapsulation  

Cell-encapsulated 3-D hydrogels were generated using methacrylated gelatin (GelMA) 

as a prepolymer solution. CNCCs between passage 3 and 5 were resuspended in 5% 



  

 

 

(w/v) GelMA prepolymer solution containing 0.3% (w/v) 2-hydroxy-1-(4-

(hydroxyethoxy)phenyl)-2-methyl-1- propanone photoinitiator (Irgacure 2959; CIBA 

Chemicals) with the cell densities of 1x106, 5x106, 1x107 or 4x107 cells/ml. The mixture of 

the cell-prepolymer solution was placed between 150 μm-thick spacers and covered with 

a glass coverslip (Figure 1). The geometry of the hydrogel units was shaped by a 

photomask with circular motifs of 500 μm in diameter, placed on top of the glass 

coverslip. The prepolymer solution with cells was crosslinked with UV light (1 mW/cm2) 

for 20 seconds, and the excess uncrosslinked polymer solution was washed out with 

PBS. The resulting cell-encapsulated 3-D hydrogels were cultured in osteogenic media 

(OM) composed of alpha-MEM (Life Technologies), 10% fetal bovine serum (Life 

Technologies), 100 U/mL penicillin (Life Technologies), 100 mg/mL streptomycin (Life 

Technologies), 100 nM dexamethasone (Sigma), 10 mM E-glycerophosphate (Sigma), 

200 μM ascorbic acid (Sigma) and 50 ng/ml BMP2 (R&D Systems) for direct 

differentiation toward osteogenic lineage. These cell-encapsulated 3-D hydrogels were 

harvested weekly for three weeks for further analysis. 3-D hydrogel samples cultured in 

the neural crest growth media (control media, CM) were used as controls. 

 

2.4. Characterization of cranial neural crest cells 

Prior to 3-D hydrogel encapsulation, the isolated and monolayer-expanded post-

migratory CNCCs were characterized with ectoderm- and mesenchyme-specific cell 

surface markers. Cells were stained with p75 antibody conjugated with fluorescein 

isothiocyanate (FITC) (Abcam) and CD73 antibody conjugated with phycoerythrin (PE) 

(BD Biosciences) in 1% BSA solution for 40 min at 4 °C and analyzed using flow 

cytometry (BD FACS Calibur) and FlowJo software (Figure 2A). Cells stained with IgG 

FITC and IgG PE were used as negative controls. The viability and proliferation of the 



  

 

 

encapsulated CNCCs in 3-D in vitro culture were assessed with Live-Dead staining (Life 

Technologies).  

 

2.5. Quantitative Real-Time PCR 

Total RNA (3 replicates for each group) was extracted by TRIzol� (Life Technologies) 

and RNeasy MINI kit with QIAshedder columns (Qiagen) according to the 

manufacturer’s instructions. After extraction, total RNA was resuspended in the final 

volume of 30 μl with RNAse-free water and quantified using spectrophotometer 

(Nanodrop ND-1000, Delaware, USA). For the best results in the PCR array, all RNA 

samples were selected for purity using an A260/A280 UV spectrophotometry ratio 

greater the 1.99. 1 μg of total RNA was used for the reverse transcription reaction using 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Amplification and 

detection were carried out using SYBR Green (Kapa Biosystems) with Eppendorf 

Mastercycler using 2-step cycle for 40 cycles. Primer sequences: (i) GAPDH Forward 

(5’- CTA CAC TGA GGA CC AGG TTG TCT -3’) Reverse (5’- TTG TCA TAC CAG GAA 

ATG AGC TT -3’), (ii) p75 Forward (5’- GCA TTG TGG TAG GCC AGA CC -3') Reverse 

(5’- CCT GAA AGT CAC TCC ATC CC -3’) (iii) Sox9 Forward (5’- AGC TCA CCA GAC 

CCT GAG AA -3’) Reverse (5’- TCC CAG CAA TCG TTA CCT TC -3’), (iv) Osterix 

Forward (5’- CTG CTT GAG GAA GAA GCT C -3’) Reverse (5’- TTC TTT GTG CCT 

CCT TTC C -3’), (v) Osteocalcin Forward (5’- CTG ACA AAG CCT TCA TGT CCA A -3’) 

Reverse (5’- GCG CCG GAG TCT GTT CAC TA -3’), (vi) Bone Sialoprotein Forward (5’- 

CAG GGA GGC AGT GAC TCT TC -3’) Reverse (5’- AGT GTG GAA AGT GTG GCG 

TT -3’), (vii) Alkaline phosphatase Forward (5’- AGT TAC TGG CGA CAG CAA GC -3’) 

Reverse (5’- GAG TGG TGT TGC ATC GCG -3’), (viii) Aggrecan Forward (5’- TGG CTT 

CTG GAG ACA GGA CT -3’) Reverse (5’- TTC TGC TGT CTG GGT CTC CT -3’), (ix) 

Collagen Type 2 Forward (5’- CAA CAC AAT CCA TTG CGA AC -3’) Reverse (5’- TCT 



  

 

 

GCC CAG TTC AGG TCT CT -3’). mRNA expressions were assayed in triplicate for 

each sample and normalized to GAPDH housekeeping gene expressions to calculate 

ΔCT. The undifferentiated and unencapsulated neural crest cells were used as control 

samples to calculate the relative gene expression levels in fold change (2ΔΔCT value).  

 

2.6. Immunohistochemistry 

For each time point, samples were fixed in 4% paraformaldehyde solution for 20 min, 

permeabilized with 0.1% TritonX-100 (Sigma) and blocked with 1% bovine serum 

albumin for 2 h at room temperature. Primary antibodies for Osterix (OSX) (Abcam), 

RUNX2 (Novus-Biologicals), Osteopontin (OPN) (GenWay Biotech), Osteocalcin (OCN) 

(EMD Millipore), bone sialoprotein (BSP) (Bioss) and Ki67 (Abcam) were used at the 

concentrations recommended by the manufacturers, and the hydrogel samples were 

incubated with the antibodies overnight at 4 °C. AlexaFluor 488 and AlexaFluor 568 (Life 

Technologies) were used as secondary antibodies. Alexa Fluor 647 Phalloidin (Life 

Technologies) was used to visualize the actin cytoskeleton. The images were taken with 

Zeiss LSM 780 confocal microscope. 

 

2.7. Mineralization assay 

The mineralization matrixes produced by the osteo-differentiated CNCCs were detected 

and quantified with alkaline phosphatase staining kit (Sigma) and hydroxyapatite 

quantifying Osteoimage™ (Lonza) assay, according to manufacturers’ instructions. The 

mineralization levels in the cell-encapsulated hydrogels were assessed weekly for three 

weeks. The secreted hydroxyapatite was quantified by the relative fluorescence 

intensities of the cell-encapsulated hydrogels using ImageJ software (NIH, Bethesda, 

Maryland, USA). 

 



  

 

 

2.8. Image Quantification 

The unprocessed raw confocal z-stack files were analyzed with Fiji software (ImageJ, 

NIH, Bethesda, Maryland, USA) with 3-D objects counter plugins. The total number of 

cells were counted using DAPI staining. For OSX, cells with a positive signal in the 

nucleus were counted while cells with the positive signal in the cytoplasm were counted 

for OCN and OPN. Signals above a threshold set by the software were counted as 

positive and were confirmed manually.   

 

2.9. Freeze-Fracture Cryo-Scanning Electron Microscopy 

Freeze-fracture cryo-SEM imaging was performed with a Zeiss Supra55VP FESEM. A 

fixed single hydrogel was placed on a sample stub and submerged into a slurry bath of 

liquid nitrogen. The frozen sample was transferred to a cryo-transfer chamber and was 

fractured in a vacuum with a sharp blade to expose the cross sections of the sample. 

The surfaces of the fractured samples were sputter coated with platinum and imaged 

using the SE2 detector at a voltage of 4 kV while maintained at -160 °C. 

 

2.10. Statistical analysis 

Statistical analyses were performed with GraphPad Prism, version 5 (GraphPad 

Software, Inc., San Diego). Results were analyzed using analysis of variance with 

Tukey’s post hoc test for multiple comparisons and Student’s two-tailed t test for single 

comparisons, with statistical significance set at p<0.05. Unless otherwise stated, the 

mean values represent three experiments with two or three channels per experiment, 

and the error bars represent the standard error of mean.  

 

3. Results 

3.1. Characterization of hydrogel and neural crest cells 



  

 

 

3-D cellular microenvironments were designed from highly biocompatible gelatin-based 

hydrogels, supporting cell viability and growth [25]. Gelatin was methacrylated and 

lyophilized for the generation of UV photo-crosslinkable hydrogels (Supplementary 

Figure 1). Mouse CNCCs were isolated from the frontonasal, maxillary and mandibular 

prominences of E10.5 mouse embryos and expanded in the monolayer culture prior to 3-

D differentiation (Figure 1). The CNCCs before encapsulation showed 63.21%±20.28 

positivity for ectodermal marker p75 and 66.22%±11.64 positivity for mesodermal marker 

CD73 confirming the mesenchymal-neural phenotype as previously shown (Figure 2A) 

[26, 27]. The effect of the encapsulation process on cell viability were assessed with 

Live-Dead staining (Figure 2B). More than 90% of encapsulated cells were alive after the 

formation of 3-D constructs. The encapsulation process or the hydrogel itself do not 

restrict or alter the proliferation capacity of neural crest cells as shown with Ki67 

immunostaining (Figure 2C). The encapsulated cells were then differentiated towards 

the osteogenic lineage in the 3-D microenvironment to evaluate their potential for 

ectomesenchymal transformation and the natural state osteogenesis. We investigated 

the effect of the cell encapsulation density on cranial osteogenesis under four different 

cell concentrations (1x106 to 4x107 cells/ml). Cell densities above 107 cells/ml showed 

significant expressions of the osteogenic markers (Figure 2D - I), whereas the lower cell 

concentrations resulted with poor osteogenic morphology. All following experiments 

were performed at a cell density of 4x107 cell/ml. 

 

3.2. Monitoring the osteogenic differentiation of cranial neural crest cells in 3-D platform  

3-D differentiated CNCCs were analyzed for chondrogenic and osteogenic gene 

expressions with qRT-PRC (Figure 3). The neural crest marker p75 only maintained a 

high level of expression in the cells cultured in the neural crest cell-specific media and its 

expression decreased by more than 70% after the first week of culture in the osteogenic 



  

 

 

media (Figure 3A). Since CNCCs have the potential to differentiate into chondrocytes, 

we also checked the expression level of Sox9, collagen type II, and aggrecan. Sox9 is 

required for chondrogenesis, as it induces the expressions of cartilage-specific 

extracellular matrix molecules, such as collagen type II, IX and XI and aggrecan [28-31]. 

The Sox9 expression was slightly increased up to the second week but eventually 

decreased below the original level, confirming the cells were not in the course of 

chondrogenic differentiation (Figure 3B) [32, 33]. The expression of collagen type II and 

aggrecan did not show differences in expression between the control and the osteogenic 

samples (Figure 3C-D). To evaluate the osteogenic differentiation, expression levels of 

four major bone specific genes, Osterix (Osx, also known as Sp7), Alkaline phosphatase 

(Alp), Osteocalcin (Ocn) and Bone sialoprotein (Bsp) were analyzed. All four genes 

showed dramatic increase in their expression when cultured in the osteogenic 

differentiation media, especially by the third week of incubation, where markers indicated 

the presence of mixed population of osteoblasts and osteocytes (Figure 3E-H) 

The expressions of bone-specific markers of 3-D encapsulated CNCC were also 

evaluated at the protein level for three weeks with immunocytochemistry (Figure 4). The 

differentiation of CNCCs to bone cells was demonstrated by the accumulation of OSX 

(Figure 4A and D), OPN (Figure 4B and E) and OCN proteins (Figure 4C and F). The 

expression of the early osteogenic marker RUNX2 was higher in cells cultured in the 

osteogenic media compared to the control cells at the initial differentiation phase, and 

RUNX2 expression later gradually decreased as the bone tissue started to form (Figure 

4G and Supplementary Figure 2). On the other hand, more than 30% of encapsulated 

cells cultured in the osteogenic media showed OSX expression in the nucleus after three 

weeks of incubation (Figure 4D). The OPN and OCN protein depositions could be 

detected in the cytoplasm and the extracellular matrix of osteogenic cells cultured for 3 

weeks in osteogenic media (Figure 4E and F), as in the late development phase of the in 



  

 

 

vivo bone tissue, confirming the successful osteogenic differentiation of the CNCCs 

using the 3-D hydrogel platform. We detected BSP depositions in the peripheral parts of 

the 3-D hydrogels starting from week 1, which gradually expanded its expression 

towards the core parts of the hydrogel during the 3-week osteogenic differentiation 

period (Supplementary Figure 2). By week 3, BSP accumulation could be observed 

around the lacunae of the osteogenic cells. 

 

3.3. Osteogenic mineralization and the morphological analysis of the neo-tissues 

ALP expression starts from the early osteogenic differentiation steps and continues 

through the maturation of the newly formed bone tissues. The engineered 3-D cell-

encapsulated hydrogels were analyzed for mineralization by examining the ALP activity 

in the cells differentiated over the 3-week culture period (Figure 5A). The cells cultured in 

the osteogenic condition inside the hydrogels exhibited high level of ALP activity after 

two weeks, which increased 2.56 folds by week 3. The undifferentiated cells in the 

control hydrogels did not show any ALP activity (Figure 5A). We evaluated the 

functionality of osteo-differentiated CNCCs also with mineralization of hydrogels and the 

secretion of hydroxyapatite. The newly secreted hydroxyapatite in the 3-D cell-

encapsulated hydrogels was quantified with Osteoimage® Mineralization assay (Figure 

5B). The secretion of hydroxyapatite crystals was detected in the osteogenic hydrogels 

starting from week 1, which gradually increased with further osteogenic differentiation 

and maturation by week 3. The undifferentiated control hydrogels did not show any 

fluorescent signals indicative of hydroxyapatite secretion. 

Importantly, osteo-differentiated CNCC encapsulated hydrogels showed 

formation of in vivo-grade osteo lacuna structures, characteristic of the living bone tissue 

with embedded mature osteocytes (Figure 6, Supplementary Figure 3). Within the 3-D 

constructs osteo-differentiated cells also build intercellular connections providing cell-cell 



  

 

 

interactions (Figure 6C, Supplementary Video1 and Video 2). Morphological analysis of 

the osteo-differentiated hydrogels with FESEM revealed round, osteocyte-shaped cells 

located in the lacunae, and also mature osteoblasts throughout the hydrogel (Figure 7A - 

C). Moreover, we observed differentiated bone cells with a large number of long 

projections called filopodia extending from the cell body, which is another key 

morphological characteristic of the mature osteocytes (Figure 7A, red colored) [34].  

 

4. Discussion 

 Along with many other important roles in the embryonic development, neural 

crest cells are essential for the proper development of the vertebrate head. The human 

skull is composed of more than twenty intricately shaped and interconnected bones, 

which the majority is originated from the neural crest cells. Thus, deeper knowledge of 

the cranial neural crest cell behavior, and eventually how they properly differentiate to 

bone, is essential for understanding both the normal head development and the myriad 

of craniofacial abnormal conditions present in up to one-third of all congenital birth 

defects in humans [35]. The vertebrate cranium is also an important and unique 

structure from the evolutionary perspective as it represents one of the innovations that 

defines the vertebrate lineage, and vertebrate heads display a variety of adaptive and 

species-specific characteristics [36]. 3-D differentiation culture systems support efficient 

tissue formation and allow the manipulation of the cells in their native-like 

microenvironments [23]. Notably, our work demonstrates the generation of 3-D cellular 

niches for the efficient differentiation of CNCCs while maintaining their viability and 

proliferation capacity. To achieve a 3-D in vitro differentiation platform that recapitulates 

the in vivo osteogenic differentiation of CNCCs, we monitored and analyzed the 

developmental phases of cranial bone in our system. In the course of embryogenesis, 

the neural crest cells have a unique status as these cells of neuroectodermal origin can 



  

 

 

give rise to the specialized cell types that are typically derived from the mesodermal 

germ layer, such as connective tissue, cartilage and bones [26]. In this study, after 

monolayer amplification we encapsulated post-migratory CNCCs expressing both neural 

and mesenchymal markers, p75 and CD73 (Figure 2A). Clonal study performed on 

neural crest cells demonstrated that those cells are mostly formed as heterogeneous 

populations consisting of multiple progenitor cell types (e.g., melanocytes, glia, neuron, 

and myofibroblast) [37]. To reach the high CNCC differentiation yield, we investigated 

the effects of hydrogel properties and differential cell density in micro-tissue formation. 

Substrate stiffness and focal polarization of progenitor cells in conventional 2-D culture 

conditions dramatically affect the fate and physiology of cells [22, 38]. The 3-D platform 

that we generated allows tuning of both hydrogel stiffness and cell encapsulation density. 

According to our findings, high cell-to-cell contact dramatically assists the osteogenic 

differentiation in the microscale hydrogels. The highest level of cell-to-cell contacts and 

the native-like osteogenic differentiation in both morphological and molecular aspects 

were achieved in our 3-D culture system with the cell density of 4x107 cell/ml. 

We systematically investigated the intramembranous osteogenic differentiation 

progress of CNCCs in our 3-D platform by analyzing the expression patterns of multiple 

neural crest and skeletogenic markers, including p75, Sox9, Col II, aggrecan, Runx2, 

Osx, Alp, Ocn, Opn and Bsp (Figure 3 and 4). Cells encapsulated in hydrogels cultured 

in osteogenic media lost the expression of p75 and even in early phase (week 1) are 

committed to osteogenic lineage. On the other hand, the ectodermal phenotype of 

CNCCs in control condition resumed up to week 2 with elevaded expression of p75.   

Intramembranous ossification differs from the endochondral ossification, as it lacks the 

formation of hypertrophic cartilage template prior to generating mineralized calcified 

bone [39]. Sox9 is a well-known marker for chondrogenic cells in the process of 

endochondral ossification, but it also plays an important role in the differentiation of 



  

 

 

CNCCs to early bone progenitor cells during intramembranous ossification [19]. 

Accordingly, we detected the elevated levels of Sox9 expression during the early phase 

of the osteogenic differentiation, which then decreased below the initial level at the later 

stages of the culture process (Figure 3B). We also evaluated the chondrogenesis for 

potential endrochondral ossification with regulation of Col II and aggrecan expression. 

After week 2, Col II expression slightly decreased in osteogenic conditions and aggrecan 

expression did not alter significantly for both study groups. These findings indicate there 

is no chondrogenic tissue formation and the osteogenic differentiation is through the 

intramembraneous course. Early phases of the osteogenesis process are directly 

regulated by Runx2, an early marker and regulator of many other osteoblast markers, 

such as Bsp, Ocn and Alp [19]. In our 3-D differentiation system, RUNX2 was expressed 

during the first week of osteogenesis and its expression decreased significantly at the 

later stages of bone tissue culture (Figure 4G). These later stage osteogenically 

committed cells no longer require RUNX2 for further ossification [40]. All of the later 

stage osteogenic markers (e.g., Osx, Ocn, Opn, BSP) suggest that skeletal development 

process was successfully recapitulated and led to the formation of mature osteoblasts 

and osteocytes. During the second and third week of 3-D osteo-differentiatiation CNCCs 

demonstrate the expression of i) OSX, a bone-specific transcription factor that is 

specifically expressed in osteoblasts of all skeletal elements [41], ii) OCN, an osteoblast-

derived hormone expressed only in fully differentiated osteoblasts and osteocytes, iii) 

OPN, a late osteogenic protein that regulates the biomineralization and boneremodelling 

[42, 43] and iv) BSP, a non-collagenous protein that is a key component of the bone 

extracellular matrix [44, 45](Figure 3E, F, Figure 4B, C, E, F, G and Supplementary 

Figure 2). The formation of mature bone tissue is further characterized by the 

mineralization in terms of hydroxyapatite deposition in the newly formed extracellular 

matrix [46]. We demonstrate the ability of newly differentiated osteogenic cells to 



  

 

 

mineralize the hydrogels with hydroxyapatite from second week. Similarly, high 

expression of alkaline phosphatase (ALP), which is highly involved in the mineralization 

of neo-tissues [47] supports the osteogenesis and in vitro tissue maturation (Figure 5). 

Another decisive method to evaluate the formation of bone tissue and the emergence of 

the differentiated osteoblasts and osteocytes is to analyze their morphologies compared 

to the native mature bone tissues with osteoblasts and osteocytes embedded. As early 

as one week after the initiation of the 3-D osteogenic differentiation process, the cell 

morphology of the neural crest cells began to change to reflect their differentiation into 

osteoblasts (Figure 6, Figure 7, Supplementary Video1 and Video 2). The appearance of 

the lacunae cavities containing mature osteoblasts and osteocytes within the hydrogel is 

strikingly similar to those seen in the natural bone tissue [48]. Such cell morphology 

changes during the course of osteogenesis can be observed through the freeze-

fractured FESEM imaging. While the newly formed, larger osteoblast cells were tightly 

embedded in the hydrogel matrix (Figure 7B), their morphology changed to the small 

and round osteocyte-looking cells that reside in the spacious lacunae at later stages, 

and send multiple filopodia extensions through the surrounding matrix and the 

neighboring bone cells (Figure 7A). Filopodia penetrate the bone tissue through canal-

like structures called bone canaliculi and are believed to sense biomechanical stress and 

communicate with other bone cells within the same tissue [34]. These cellular 

projections also observed in our mature 3-D bone tissues extended beyond the 

immediate lacunae boundaries and continued through the surrounding matrix towards 

other neighboring bone cells (Figure 7A, white arrowheads). These cell-cell interactions 

were clearly detected in the cell-encapsulated 3-D hydrogels, starting from the second 

week of osteogenic differentiation. 

 

In summary, we demonstrate a 3-D differentiation platform that enables to 



  

 

 

recapitulate an important developmental process in vitro. The platform we generated 

successfully supports the intramembranous ossification of cranial bone tissue using 

primary CNCCs. Thus, it is an essential tool added for studying the normal and abnormal 

osteogenic development in the model and non-model vertebrates. This platform has the 

potential to be used in a broader context, especially when combined with other 

bioengineering technologies [6, 8, 49, 50]. This platform can be easily scaled up by 

assembly technologies, and be utilized in bottom-up tissue engineering, enabling to 

generate larger, multi-hydrogel constructs needed to understand the morphogenesis of 

specific skeletal structures. Neural crest cells differentiated from induced pluripotent 

stem cells (iPSCs) that are derived from human patients with craniofacial diseases could 

be used to monitor disease-specific phenotypes during osteogenic differentiation and 

eventually bone and other skeletal tissue formations for medical and pharmaceutical 

research. The adaptive and flexible nature of the platform will also allow it to be used to 

investigate the evolution of the diverse craniofacial bone shapes by including 

morphogenic factors in the specific regions of the assembled multi-hydrogels to 

recapitulate and manipulate the morphogenic processes in vitro.  
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Figure Legends: 

Figure 1. Recapitulation of the osteogenic differentiation of CNCCs with direct 
differentiation in the 3-D hydrogels in vitro. Neural crest cells were isolated from E10.5 
mouse embryo and initially expanded in monolayer with neural crest-specific media and 
later on encapsulated in hydrogels forming 3-D in vitro culture. Osteogenic differentiation 
phases with specific gene expressions in 3-D microenvironments were monitored for 
three weeks. 
 
 
Figure 2. The characterizations of the CNCCs prior and after hydrogel encapsulation. 
(A) FACS analysis of the CNCCs prior to the encapsulation in 3-D hydrogels. 
63.21%±20.28 of cells were p75 positive indicating the neural crest cells phenotype (left), 
and 66.22%±11.64 were CD73 positive showing mesenchymal lineage characteristic 
(right). Corresponding IgG staining was used as a negative control (blue contour). (B) 
The Live-Dead staining of neural crest cells encapsulated in the 3-D hydrogel. Live cells 
were stained for green and dead cell are shown in red. (C) The proliferation capacity of 
neural crest cells was evaluated with Ki67 staining after 1 week of encapsulation in the 
3-D hydrogels. Proliferating cells express Ki67 (red) in the nuclei, co-localizing with DAPI 
(blue). The cell cytoskeletons were shown with phalloidin staining (green). (D-I) Effects 
of cell encapsulation density on osteogenic differentiation of primary CNCCs. (D, E, F) 
Bright field images of the cell-encapsulated hydrogels generated using different cell 
densities. (G, H, I) The immunocytochemistry results for OSX (green) and cytoskeleton 



  

 

 

(phalloidin, magenta) in 3-week osteo-differentiated hydrogels showed that high cell 
density is more favorable for osteogenic differentiation. Scale bars 100 μm.  
 
 
Figure 3. qRT-PCR analysis of the neural crest-specific gene p75 and bone and 
cartilage-specific genes in cells cultured in control or osteogenic media for three weeks 
(n=3 for each sample. Error bar indicates standard error). (A) p75 was highly expressed 
in encapsulated cells cultured in control media. (B) The expression of cartilage-specific 
marker Sox9 did not change in both control and osteogenic media. (C) Col II expression 
slightly decreased after week 2. (D) Expression of chondrogenic marker aggrecan did 
not alter significantly during the differentiation.  (E-H) Bone specific marker Osx, Alp, 
Ocn, and Bsp were highly expressed in the cells cultured in osteogenic media especially 
at the third week of incubation. (One asterisks denote significance at P < 0.05, two 
asterisks denote significance at P < 0.01, Student t-test).  
 
 
Figure 4. The cell-encapsulated hydrogels cultured either in control media (CM) (A-C) or 
osteogenic media (OM) (D-F) were stained for OSX, OPN and OCN after three weeks. 
(A, D) The nuclear localization of osteoblastic marker OSX (green) could be seen in the 
differentiated cells cultured in the osteogenic media. (B, C, E, F) Late osteogenic 
markers OPN (red) and OCN (green) were expressed in the cytoplasm and the 
extracellular matrix of osteo-differentiated cells (E and F). (G) The expression of early 
osteogenic marker RUNX2 decreased during the course of osteogenic differentiation of 
CNCCs, whereas the expression of OPN and OSX increased (n=3 for each sample. 
Error bar indicates standard error). All scale bars 50 μm. 
 
 
Figure 5. The osteogenic mineralization in the control and osteo-differentiated cell-
encapsulated 3-D hydrogels were determined and quantified at weeks 1, 2 and 3 with 
alkaline phosphatase (A), and hydroxyapatite (B) staining. The osteogenic differentiation 
of CNCCs showed hydroxyapatite secretion and mineralized the hydrogels gradually 
after week 1 (C). Scale bars 100 μm. 
 
 
Figure 6. The hydrogel-encapsulated CNCCs change their morphology in the 3-D 
osteogenic differentiation platform. (A) Hydrogel-encapsulated CNCCs incubated in 
control media exhibited elongated morphology typical for mesenchymal cells. (B) 
Spherical morphology of osteo-differentiated cells in lacunae-like niches. Cytoskeletons 
were stained with phalloidin (magenta) and cell nuclei with DAPI (blue). (C) The confocal 
image of the hydrogel with encapsulated cells differentiated for two weeks in osteogenic 
media. The immunostaining results showed early osteogenic cells positive for RUNX2  
(red) and osteocytes positive for OSX (green). The cytoskeletons stained with phalloidin 
(white) revealed filopodia projections and cell-to-cell connections (red arrowheads). 
Scale bars: 100 μm in A and B, 10 μm in C. 
 
 
Figure 7. The representative freeze-fractured hydrogel FESEM images of the 
bioengineered neo-tissues, after three weeks of osteogenic differentiation. Cell-
encapsulated hydrogels revealed cells in different phases of osteogenic differentiations, 
recapitulating native-like microenvironment. (A) An osteocyte (red) in a lacuna with 
extended filopodia that could also be observed in the bone canaliculus-like structure 



  

 

 

(white arrowheads), connecting to the neighboring cells. (B) A focused image of a single 
osteoblast starting to remodel the surrounding hydrogel into a lacuna-like structure. (C) 
Representative image of the osteogenic niche in 3-D hydrogel microenvironment. Scale 
bars; 3 μm in A and B, 10 μm in C. 
 
 
Supplementary Figure 1. The NMR analysis of the methacrylated gelatin used to 
fabricate hydrogels. (A) The NMR analysis results of gelatin before and (B) after 
methacrylation. The encircled peaks correspond to the methacrylic groups covalently 
bound to gelatin, providing the UV photo-croslinkable features to the hydrogel. 
 
 
Supplementary Figure 2. The hydrogels were cultured in control media (A-D, I-L, Q-T) 
or osteogenic media (E-H, M-P, U-X) and stained with OSX (A, E, I, M, Q, U), OPN and 
OCN (B, F, J, N, R, V), BSP (C, G, K, O, S, W) or RUNX2 (D, H, L, P, T, X). Positive 
cells are marked with white arrowheads for OSX, OPN, and RUNX2 and with white 
arrows for OCN and BSP. Scale bars 50 μm.  
 
 
Supplementary Figure 3. The bright-field images of cell-encapsulated hydrogels 
cultured in control media (CM) (A, B) or osteogenic media (OM) (C, D). (D) Granular-
shaped spaces could be observed in the hydrogels cultured in osteogenic media for 
three weeks. Scale bars 100 μm. 
 
 
Supplementary Video 1. Three-dimensional reconstitution of confocal microscopy 
image of 2 weeks osteo-differentiated hydrogels encapsulating neural crest cells. Cells 
immunostained for OSX (green), RUNX2 (red) and DAPI (blue). The cell-cell interactions 
were shown with cytoskeleton staining for phalloidin (white).  
 
 
Supplementary Video 2. Three-dimensional reconstitution in the z-axis of the confocal 
image of osteo differentiated neural crest cells at week 2 stained for OSX (green), 
RUNX2 (red) and DAPI (blue). Cytoskeleton stained for phalloidin (white). Immature 
osteoblastic cells express RUNX2 and differentiated osteocytes express OSX. The 
filopodia projections of OSX positive cells form cell-cell contact with neighboring cells. 
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