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We present a new computational approach to quantify the area per lipid and the area compressibility
modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations
using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139,
094902 (2013)], which provides excellent estimates of the bending modulus of model membranes.
Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermo-
dynamically consistent. This new area definition makes it possible to accurately estimate the area of
the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospho-
lipid protrusions. We find that the area per phospholipid and the area compressibility modulus features
a negligible dependence with system size, making possible their computation using truly small
bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis
of the CU area fluctuations is fully consistent with the Hooke’s law route. Unlike existing methods,
our approach relies on a single simulation, and no a priori knowledge of the bending modulus is
required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility
modulus obtained with our method and the MARTINI forcefield are consistent with previous studies
of these bilayers. C

2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926938]

I. INTRODUCTION

Lipid bilayers are one of the main structural constituents of
biological membranes. The elastic properties of bilayers play
a key role in determining the anchoring, insertion and function
of trans-membrane proteins,1 and possibly influence protein
signal transduction.2,3 The elastic properties further influence
the mesoscopic curvature of the membranes, and hence play a
key role in the formation of vesicles as well as bilayer fusion.4
One of the relevant elastic properties of bilayers is the area
compressibility modulus, K , which is directly proportional
to the bilayer area fluctuations hA

2i � hAi2. Simulation works
reported over the last two decades have quantified the area
compressibility moduli and the bilayer area fluctuations. A
major di�culty in the analysis of existing results is the lack of
a unique definition of the true area of a tensionless membrane.
The bilayer fluctuations are often interpreted as a combination
of undulatory and peristaltic modes.5–8 The Helfrich hamilto-
nian9 provides a good description of the collective bilayer long-
wavelength undulatory modes. However, for short wavelength
modes involving large wavevectors (q), the undulatory fluc-
tuations of the two phospholipid layers become uncorrelated,

a)Electronic address: echacon@icmm.csic.es
b)Electronic address: pedro.tarazona@uam.es
c)Electronic address: f.bresme@imperial.ac.uk

due to the so called peristaltic fluctuations, which involve local
changes of the membrane width, as well as to protrusions of
single lipids.10 It has been shown that the undulatory mode
features a crossover between coupled undulatory fluctuations,
in which the bilayer fluctuates as a whole, and the uncoupled

undulatory independent fluctuations of each layer. The true
area of a bilayer is determined by the coupled mode; however,
this mode is di�cult to isolate, since there is a smooth transi-
tion between the coupled and uncoupled regime, which results
in the mixing of these modes, making di�cult the evaluation of
the true area. Our work focuses on the definition of a new mode
that circumvents this problem by eliminating the inclusion of
high wave number modes that should not contribute to the true
area of the bilayer.

The di�culties associated to the analysis of the membrane
fluctuations have resulted in other problems. One of the most
important is the dependence of the compressibility modulus
with the surface tension,4 which has not yet been fully resolved.
We will show later that our approach allows us to resolve this
problem too.

The lack of a common approach to compute the true
area and the area compressibility modulus has prompted the
development of di↵erent approaches. The simplest choice is
the computation of the cross sectional area of the bilayer, A

k,
whose mean value Ak ⌘ hA

ki and fluctuations hA

k2i � A

2
k may

be easily obtained. However, for free membranes (zero surface

0021-9606/2015/143(4)/000000/11/$30.00 143, 000000-1 © 2015 AIP Publishing LLC
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tension), Ak is not an extensive thermodynamic variable, i.e.,
it is not proportional to the number of phospholipid mole-
cules per layer NPhos. In fact, the mean projected area per
phospholipid, ak ⌘ hA

ki/ NPhos, and the corresponding area
compressibility, K

k, depend on the size of the simulated mem-
brane.8,11 Helfrich’s theory9,12,13 provides a theoretical route
to understand this size dependence. The analysis of the size
dependence of ha ki and K

k provides in turn a route to obtain
the true area per lipid, hai, and the true compressibility, K .
Although the Helfrich theory is formally well defined, the
numerical procedure to calculate the relevant equations (see
the Eqs. 19 and 20 in Ref. 12) can lead to di↵erent results. Its
implementation requires the introduction of an ad hoc cuto↵ to
separate the undulatory and protrusion modes, but there is no
general agreement on the value that should be employed for the
cuto↵. Waheed and Edholm12 chose as cuto↵ 2⇡/

p
haki, while

Lindhal and Edholm7 used 2⇡/d, where d is the mean mem-
brane thickness. Di↵erent cuto↵s result in di↵erent compress-
ibility moduli, hence adding uncertainty to the computation of
this property. From a more practical point of view, the Hel-
frich approach requires computations involving bilayers with
di↵erent sizes, hence increasing the computational cost of the
method.

Following the discussion above, it is clear that an accurate
definition of the true membrane area and its area compress-
ibility modulus is still lacking. It would appear that the best
candidate to compute the true area is the area of the undulatory
surface, A

U, which is defined by the arithmetic mean for the
positions of the two bilayer leaflets.7,8 However, A

U includes
contributions from the uncorrelated molecular protrusions in
each leaflet (see Fig. 1-left), which should not be included in
the evaluation of the true area. As an alternative, we propose
to use the area of the peristaltic surface A

P, see Fig. 1-right, to
eliminate the protrusion contribution to A

U and to define the
coupled undulatory area,

A

CU = A

U � (AP � A

k) ⌘ A

U � �A

P. (1)

We will show that this area provides a robust approach to quan-
tify, using computer simulations, the true area of biological
membranes. This approach is based on our recent analysis of
the spectrum of elastic deformations in a bilayer membrane.14

FIG. 1. (Left) The area A

U of the bilayer calculated from the plane corre-
sponding to the arithmetic mean of the two bilayer leaflets (sup and inf). This
surface contains contributions from the uncorrelated molecular protrusions
(see spikes) in each leaflet. (Right) Representation of the membrane featuring
two symmetric peristaltic (P) modes in each leaflet, constructed to keep the
local thickness as in the real (left) membrane. The collective undulations of
the membrane do not contribute to the area A

P, but the molecular protru-
sions give equal contribution to A

P and A

U. We propose that the di↵erence
A

CU⌘ A

U� (AP� Ak) is a good measure of the true area of the membrane. A
detailed explanation of definitions introduced in this figure is given at the end
of Section III.

The Fourier analysis of A

U and A

CU shows that Eq. (1) allows
a rigorous separation of the molecular protrusion from the
undulatory modes. The evaluation of A

CU does not require the
use of any ad-hoc wavevector cuto↵, and it may be obtained
directly from, e.g., the area of the U and P triangulated surfaces.
Hence, our approach circumvents current problems associated
to the use of cuto↵s to separate fluctuation modes, allowing the
determination of the true area. We will show that A

CU complies
with the properties of an extensive property and features a rapid
time relaxation, sub-nanosecond timescales, towards its mean
equilibrium value ACU = hA

CUi.
The paper is structured as follows. First, we provide details

on the model bilayers and simulation approaches employed
in this work. A discussion of the membrane fluctuations in
terms of the coupled undulatory (CU) and peristaltic modes
is provided, followed by a detailed description of the new
coupled-undulatory area, ACU. We then report our result for the
membrane area and area compressibility modulus as a function
of the membrane cross sectional area and membrane tension.
A final section containing the most relevant conclusions closes
the paper.

II. MODEL AND SIMULATION DETAILS

We have performed simulations of POPC (1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine) bilayers, which is a
major component of many biological membranes. We use the
MARTINI coarse-grained model, where the phospholipid is
modeled as a collection of beads joined by bonding and angular
terms.15 The MARTINI model reproduces quantitatively a
number of relevant properties, such as the bending modulus.14

Also it can be used to model multicomponent bilayers, e.g.,
those containing cholesterol, hence enabling the prediction of
complex multicomponent phase diagrams.16

All our simulations were performed at 320 K. At this
temperature, POPC is in the L

d

phase. We truncated and shifted
the Lennard-Jones non-bonding short range interactions at
0.9 nm. A shifted coulomb potential with a 1.2 nm cuto↵ and
an e↵ective dielectric constant of 15 were used to model the
electrostatic interactions arising from the charges in the POPC
head groups.

The bilayers consisted of NPhos phospholipids per layer
and NWater coarse grained water molecules. We employed peri-
odic boundary conditions in all directions and independent
thermostats (Berendsen17 or v-rescale18) were applied to the
solvent and the phospholipids to maintain their temperatures
at the target values. The temperature coupling constant was set
in all cases to 2 ps. The motion of the configuration center of
mass was removed every 10 time steps.

In our previous work,14 we employed a Berendsen semi-
isotropic barostat to simulate bilayers at di↵erent surface
tensions. This barostat does not produce the correct statistical
ensemble and therefore it is not possible to compute the
area compressibility modulus from a fluctuation analysis of
the membrane area. In this work, we have employed instead
the semi-isotropic Parrinello-Rahman barostat.19 We com-
plemented these simulations with additional ones using the
Berendsen thermostat in order to highlight the di↵erences
associated to the simulations with these two barostats. The time
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TABLE I. Simulation parameters of the systems investigated in this work. �0 is the surface tension, L
x

and L y

the box lateral lengths, ak is the mean projected area per phospholipid, aCU is the mean true area per phospholipid,
NPhos the number of phospholipid molecules per layer, �T production simulation time, and NCW the number of
configurations employed in the fluctuation analysis. The simulations at constant surface tension were performed
using the Parrinello-Rahman and Berendsen barostats. hL

z

i⇡ 14.0 nm for all systems.

�0 (mN/m) hL
x

i (nm)
⌦
L y

↵
(nm) ak (nm2) aCU (nm2) NPhos �T (µs) NCW

Parrinello Rahman barostat
0 12.60 ± 0.01 13.23 ± 0.02 0.6671 ± 0.0002 0.670 77 ± 0.0002 256 0.450 6 000
0 12.75 ± 0.01 13.40 ± 0.02 0.6663 ± 0.0002 0.670 52 ± 0.0002 500 0.376 5 334
0 21.83 ± 0.01 22.87 ± 0.02 0.6662 ± 0.0002 0.670 83 ± 0.0002 750 0.450 6 001
0 35.55 ± 0.01 37.42 ± 0.02 0.6653 ± 0.0002 0.670 87 ± 0.0002 2000 0.450 5 934
0 43.54 ± 0.01 45.80 ± 0.02 0.6648 ± 0.0002 0.670 81 ± 0.0002 3000 0.300 3 987
0 50.28 ± 0.01 52.89 ± 0.02 0.6650 ± 0.0002 0.670 78 ± 0.0002 4000 0.249 3 311
4.2 ± 0.2 50.68 ± 0.01 53.28 ± 0.01 0.6748 ± 0.0005 0.681 0 ± 0.0005 4000 0.252 3 367
7.5 ± 0.2 50.95 ± 0.01 53.60 ± 0.01 0.6825 ± 0.0005 0.685 5 ± 0.0005 4000 0.290 3 855
10.57 ± 0.2 52.40 ± 0.01 52.71 ± 0.01 0.6905 ± 0.0005 0.693 8 ± 0.0005 4000 0.263 4 293
15.2 ± 0.2 52.86 ± 0.01 53.17 ± 0.01 0.7027 ± 0.0005 0.705 7 ± 0.0005 4000 0.274 4 569
21.2 ± 0.2 53.55 ± 0.01 53.87 ± 0.01 0.7212 ± 0.0005 0.723 8 ± 0.0005 4000 0.253 4 054
27.51 ± 0.2 55.17 ± 0.01 55.50 ± 0.01 0.7431 ± 0.0005 0.750 8 ± 0.0005 4000 0.291 3 881

Berendsen barostat
0 12.52 ± 0.01 13.32 ± 0.02 0.6657 ± 0.0002 0.670 78 ± 0.0002 250 0.450 6 000
0 21.82 ± 0.01 22.89 ± 0.02 0.6661 ± 0.0002 0.670 74 ± 0.0002 750 0.450 5 334
0 25.16 ± 0.01 26.46 ± 0.02 0.6660 ± 0.0002 0.670 71 ± 0.0002 1000 3.975 5 301
0 43.68 ± 0.01 45.67 ± 0.02 0.6650 ± 0.0002 0.670 77 ± 0.0002 3000 0.343 4 569
0 50.27 ± 0.01 52.88 ± 0.02 0.6646 ± 0.0002 0.670 74 ± 0.0002 4000 2.1 10 000
10.0 ± 0.2 51.67 ± 0.01 53.32 ± 0.01 0.6888 ± 0.0005 0.692 4 ± 0.0005 4000 0.265 3 538
15.0 ± 0.2 52.71 ± 0.01 53.29 ± 0.01 0.7023 ± 0.0005 0.705 3 ± 0.0005 4000 0.264 2 851
27.3 ± 0.2 53.20 ± 0.01 55.96 ± 0.01 0.7441 ± 0.0005 0.746 2 ± 0.0005 4000 0.291 3 881

coupling constant for the barostat was 10 ps in all cases. We
use 4.5 ⇥ 10�5 and 9.8 ⇥ 10�5 bar�1 for the pressure coupling
in the bilayer plane and normal directions, respectively.

The bilayers were subjected to di↵erent surface tensions,
in the interval 0-27.3 mN/m. The surface tensions were
computed using the microscopic pressure tensor route, see
Ref. 14 for further details. We did not find evidence for pore
nucleation in the membranes. The simulation time step was
set to 0.03 ps in all our computations. The fluctuation analysis
was performed over NCW configurations. To investigate the
size dependence of the area per phospholipid and the area
compressibility modulus, we performed a systematic analysis
by varying the membrane cross sectional area and the
number of lipids. The water content, defined as the water to
phospholipid ratio, was kept close to 27 in all these simulations.
Full details on the simulations parameters are given in Table I.
All the simulations were performed with the GROMACS 4.5
simulation package.20

In the rest of the paper, we use � =
p

APhos = 0.816 nm
and kT = ��1 as the units of length and energy. � defines the
average distance between the phosphate groups in a POPC
tensionless membrane, at 320 K.

III. FLUCTUATION MODES OF BILAYER MEMBRANES

The analysis of the bilayer thermal fluctuations provides
a powerful approach to quantify the membrane elasticity
including all the relevant fluctuation modes, from mesoscopic
to molecular ones (lipid protrusions), using a single computer
simulation. Di↵erent approaches have been proposed to

analyze the fluctuation spectrum.21 Despite the di↵erent
approach, all the methods should be consistent with the macro-

scopic elastic limit described by the Helfrich Hamiltonian.9
We expect that deviations from the Helfrich predictions will
be observed when the fluctuations include high wave number
modes, like lipid protrusions.

The analysis of the fluctuations in computer simulations
requires the construction of a mathematical surface z

= ⇠(x, y) ⌘ ⇠(R) that defines the instantaneous shape (IS)
of the membrane. To construct the IS, we choose a set of
pivots that are defined by the positions of the phospholipid
molecules. We find that the phosphate pseudoatoms in the
POPC MARTINI model provide a good representation for
the IS pivots. The pivots were selected according to their
position in the upper or lower leaflet.22 The mathematical
surfaces z = ⇠up,low(R) representing the instantaneous shape
of the upper and lower leaflets are then constructed using
a function that interpolates through the pivots’ coordinates.
We use here the same interpolation scheme as in our previ-
ous work.14 First, we construct a two dimensional Delaunay
triangulation (DT) using the phosphate pseudoatom coordi-
nates projected on the membrane plane (x, y). The DT is
then used to identify the nearest neighbors from each indi-
vidual phosphate pseudoatom. Using this information, we
construct the corresponding three dimensional triangulated
surfaces, where the triangle edges join each pivot to its near-
est neighbors. The triangulated surfaces define z = ⇠ low(R)
and z = ⇠up(R). We take into account the periodicity of the
simulation box on the bilayer plane, defined by the box vec-
tors, L

x

and Ly, to represent each IS in terms of a Fourier
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series,

⇠(R,q
m

) =
X

|q|q
m

⇠̂
q

e

iq.R, (2)

where the wavevectors are defined by q = 2⇡(n
x

/L

x

,ny/Ly),
for n

x, y = 0,±1,±2, . . .. For constant surface tension simula-
tions, the cross sectional area, L

x

⇥ Ly, and hence the lattice
reciprocal vectors, q, fluctuate along the trajectory, but the
changes in q are less than 1% for N

Phos

= 4000 and 4% for
N

Phos

= 256. Hence, we decided to calculate all the relevant
statistics for the Fourier terms using a common scaled square
modulus (2⇡)2(n2

x

+ n

2
y) = q

2
Ak = q

2
L

x

Ly. This approach fa-
cilitates the representation of the fluctuations in terms of a sin-
gle wavevector, q�, where � is again the mean lipid-lipid dis-
tance in the tensionless POPC membrane. Formally, we extend
series (2) up to |q| = 2⇡/�

c

, with �
c

=
p

ak ⇡ � although the
relevant analysis will involve only |q| values well below that
limit.

The equilibrium thermal fluctuations of ⇠up(R) and ⇠ low(R)
are computed using a large set of equilibrated independent
configurations sampled along the simulation trajectory.23 In a
symmetric bilayer fluctuating around a planar configuration,
all the q > 0 Fourier components must have zero mean values
h⇠̂ low

q

i = h⇠̂up
q

i = 0, hence their mean quadratic fluctuations are
described by two real numbers, h|⇠̂up

q

|2i = h|⇠̂ low
q

|2i, that define
the fluctuations of each bilayer leaflet, which are identical, and
h⇠̂up

q

⇠̂ low⇤
q

i = h⇠̂ low
q

⇠̂up⇤
q

i, that describes the coupling between the
two phospholipid layers, with ⇠̂⇤

q

being the complex conjugated
of ⇠̂

q

. These equalities make it possible to average out the
results obtained from both monolayers, hence improving
the statistics of our computations, hence we used h|⇠̂m

q

|2i
=

⇣
h|⇠̂ low

q

|2i + h|⇠̂up
q

|2i
⌘
/2.

The bilayer fluctuations are often analyzed using the so
called undulatory and peristaltic modes. The undulatory (U)
mode24,25 describes the fluctuations of the mean surface, with
⇠̂U
q

= (⇠̂ low
q

+ ⇠̂up
q

)/2, and its mean square fluctuation,

h|⇠̂U
q

|2i = 1
2
h|⇠̂m

q

|2i + 1
2
h⇠̂ low

q

⇠̂up⇤
q

i. (3)

The peristaltic (P)7 mode, ⇠̂P
q

= (⇠̂ low
q

� ⇠̂up
q

)/2, describes
the fluctuations of the membrane thickness as

h|⇠̂P
q

|2i = 1
2
h|⇠̂m

q

|2i � 1
2
h⇠̂ low

q

⇠̂up⇤
q

i. (4)

The use of Equations (3) and (4) in the high q uncoupled

regime is problematic, as the uncorrelated monolayer protru-

sions

10 h⇠̂ low
q

⇠̂up⇤
q

i ⇡ 0 and therefore h|⇠̂U
q

|2i ⇡ h|⇠̂P
q

|2i. We note
that these protrusions should not be included in an analysis of
the collective membrane undulations.14

The mean area of the undulatory surface area AU = hA

Ui is
often used to represent the fluctuating bilayer membrane.12,13

Following the capillary wave theory,26–28

AU ⌘ hA

Ui =
*⌅

d

2
R

q
1 +

�r
R

⇠U(R)
�2+

⇡ Ak +
Ak
2

q

uX

0< |q|
q

2h|⇠̂U
q

|2i. (5)

AU is not a well defined quantity because it depends on the
upper limit q  qu appearing in the sum over the fluctuating

FIG. 2. The roughness of the membrane as function of the cuto↵ wavevector
q

u

, for the POPC free membrane (�0= 0) with NPhos= 4000. The dark (blue)
full line represents the coupled undulatory roughness �CU

A , the light (green)
full line the peristaltic (uncoupled) roughness �P

A, the dashed line (red) the
undulatory roughness �U

A, and the dashed-dotted line (cyan) the monolayer
roughness �m

A.

modes. For high qu, AU increases with qu due to the incorpora-
tion of protrusion terms. We illustrate this e↵ect in Fig. 2, by
representing the membrane roughness,

�↵A ⌘
hA

↵i � Ak
Ak

, (6)

where ↵ represents the corresponding fluctuation model.
This problem is also present in the estimation of AU

using the capillary wave theory. This can be shown by first
assuming that each fluctuation mode fulfills the equipartition
principle for the mean elastic energy, q

2�U(q)Akh|⇠̂U
q

|2i/2
= kT/2, where �U(q) is a q-dependent surface tension,
formally defined as h|⇠̂U

q

|2i, and second approximating the
latter by the expansion,

�U(q) ⌘ kBT

q

2h|⇠̂U
q

|2iAk
= �0 + q

2 + O(q4), (7)

where the bending modulus, , is responsible for the increase
of the membrane sti↵ness � k with q with respect to the q = 0
limit value, which corresponds to the thermodynamic surface
tension. Using Eq. (7), Eq. (5) can be rewritten as

AU � Ak ⇡ 1
2

q

uX

0< |q|

1
��U(q) ⇡

kT

2

q

uX

0< |q|

1
�0 + q

2 , (8)

showing that AU increases with the wavevector qu (see our
simulated AU in Fig. 2). Traditional approaches have attempted
to resolve the area divergence problem discussed above by
introducing an ad hoc cuto↵ for q in the sums of equations (5)
and (8). The cuto↵ can be used to separate undulation and
protrusion modes. Unfortunately, there is no general agreement
on what cuto↵ value must be used. Di↵erent authors have
used 2⇡/pak,12 where ak is the projected area per lipid, or
2⇡/d,7 where d is the membrane thickness. The first cuto↵
results in a very small system size dependence for the area
per lipid, while for the second cuto↵ this dependence is stron-
ger. Braun et al.

29 used a 1.15 nm�1 cuto↵ in simulations for
DMPC, and in a subsequent work,30 the same authors used
a cuto↵ of 1.0 nm�1 for DOPC. Both values are lower than
2⇡/d.
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Although it is not often used in practical calculations, it is
also possible to define a peristaltic area, AP, by replacing ⇠U(R)
by ⇠P(R) = (⇠sup(R) � ⇠ inf(R))/2 in Eq. (5). We show in Fig. 1
that AP represents the area of the leaflets when the membrane is
forced to adopt a planar mean shape, i.e., ⇠̂U

q

= 0 and therefore
AU = Ak without changing the local distances between the
two leaflets. The U surface (see Fig. 1) includes the proper
undulatory component, and also, with half of their amplitude,
the uncorrelated protrusions in each leaflet. The P surfaces do
not include any contributions from the correlated undulation,
for which h|⇠̂m

q

|2i ⇡ h⇠̂ low
q

⇠̂up⇤
q

i, but feature the same behavior
observed in the protrusions, where the amplitude of the latter
is 1/2 of that observed in the leaflets, since they correspond
to uncorrelated fluctuations with h|⇠̂m

q

|2i � h⇠̂ low
q

⇠̂up⇤
q

i. We pro-
pose to eliminate the unwanted contribution to AU arising from
the uncorrelated protrusions. We exploit the fact that the same
contribution appears in AP, as shown by the parallel growth of
AU and AP in Fig. 2 for q

u

� > 1. In this way, we may define a
true undulating area given by Equation (1), which circumvents
the problems associated to the selection of arbitrary values for
q

u

.

IV. A NEW ROUTE TO OBTAIN THE TRUE AREA
OF BIOLOGICAL MEMBRANES

Our approach is based on the analysis of the CU mode
introduced in our previous work.14 The mean square fluctua-
tions of this mode are given by

h|⇠̂CU
q

|2i ⌘ h|⇠̂U
q

|2i � h|⇠̂P
q

|2i = h⇠̂ low
q

⇠̂up⇤
q

i, (9)

which di↵ers from the usual undulatory mode h|⇠̂U
q

|2i. The CU
mode uses the correlations between the phospholipids located
in the two bilayer leaflets as a natural filter to quantify the
global membrane undulations “only,” hence overcoming the
problems associated to the inclusion of protrusion contribu-
tions and avoiding the need to use a cuto↵ q

u

. In our previous
work,14 we showed that the tension �0 obtained by fitting the
CU spectrum at low q to the equation �CU(q) = �0 + q

2 agrees
well with the surface tension imposed in the simulations and
the one computed from the microscopic pressure tensor route.
For the present bilayer, we obtained the bending modulus �
= 21. Also, we showed that the CU mode is not sensitive to
whether the Fourier or the real-space calculation is employed,
and to the reference group used for define the monolayers
surfaces.

Within the quadratic approximation, and similarly to
Eq. (5) for A

U, the CU area is given by

ACU ⌘ hA

CUi = Ak +
Ak
2

q

uX

0< |q|
q

2h⇠̂ low
q

⇠̂up⇤
q

i. (10)

It can be shown that Eq. (9) along with Eq. (10) is equivalent
to the geometrical definition given in Eq. (1). Equations (1)
and (10), provide a new definition for the true area. We show
in Fig. 2 that our new roughness, �CU

A

, is independent of q

u

for q

u

� & 1, as a result of the cancellation of AU and AP in
Eq. (1). At low q

u

, AP = Ak and both CU and U agree with each
other. The independence of the CU roughness with q

u

cuto↵

FIG. 3. The CU, dark (blue) lines, and P, light (green) lines, roughness
of the membranes as function of the cuto↵ wavevector q

u

. All results
were obtained with the Parrinello-Rahman barostat. Top panel: membranes
with NPhos= 4000 at �0= 0.0 mN/m (full lines), 4.2 mN/m (dashed lines),
7.5 mN/m (dotted lines), and 27.5 mN/m (dotted-dashed lines). Bottom
panel: membrane in the tensionless state(�0= 0) as a function of the lateral
size of the simulation box. Dashed-dotted lines: L

x

⇡ 12.5 nm (NPhos= 256),
dashed lines: L

x

⇡ 25.0 nm (NPhos= 1000), and full lines: L

x

⇡ 50.0 nm
(NPhos= 4000). The overlap of the P data shows that this mode does not
depend on the tension or the system size.

for q

u

� & 1 makes it possible to obtain the true area of the
membrane.

We have further analyzed the physical consistency of our
approach by computing the membrane roughness of bilayers
at di↵erent surface tension conditions (Fig. 3-top). The rough-
ness obtained with our CU area, ACU, features the correct
dependence with the surface tension, namely, it decreases as
�0 increases, and it does not depend on an arbitrary choice of
the wavevector cuto↵, q

u

� > 1, since Equations (1) and (10)
eliminate the molecular scale fluctuations. In contrast, the area,
AP, obtained with the peristaltic mode, which describes an in-
ternal fluctuation of the bilayer, does not vary significantly with
the membrane surface tension, but it increases with increasing
qu, reflecting the inclusion of contributions associated to lipid
individual protrusions (see Fig. 3). We have shown so far that
(1) the CU mode fulfills the physical laws governing mem-
brane fluctuations, namely, increasing roughness with decreas-
ing surface tension, (2) that the peristaltic P contribution is
an invariant internal property of the membrane, and (3) the
thermodynamic conjugate variable of the surface tension is the
area, and not the peristaltic changes in the membrane thickness.
As shown in Fig. 3, AP is nearly invariant with the surface
tension; therefore, an improper contribution of the peristaltic
mode to the area may lead to failures in the thermodynamic
consistency.

We analyze now the area per phospholipid, which is one
of the most important properties defining the structure of bio-
logical membranes, and widely used to test the accuracy of
simulation forcefields. We have computed the area per lipid
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FIG. 4. The area per phospholipid for the free membrane vs. the number of
phospholipid, NPhos (lateral size of the box simulation). The full symbols
represent the CU areas, aCU= ACU/NPhos, and the empty symbols the pro-
jected areas ak = Ak/NPhos. The circles (blue) show the results obtained with
the Parrinello-Rahman barostat and the squares (green) with the Berendsen
barostat. The full line shows the fit to the logarithmic behavior predicted by
Eq. (11). The dashed (red) line represents the behavior of ak predicted by
Eq. (11) with atrue= aCU= 1.0074�2 and � = 21.

using the CU analysis introduced in this work and the projected
area per lipid, ak = Ak/N

Phos

, which also represents the pro-
jected area of our true area aCU. We show in Fig. 4 the system
size dependence of the area per lipid computed using both the
Berendsen and Parrinello-Rahman barostats. The CU area per
lipid, aCU, is independent of system size while the projected
area per lipid, ak, widely used in computer simulation studies
decreases as the membrane size increases. Equation (10) shows
that the bilayer maintains a constant CU area per lipid by reduc-
ing the projected area per lipid when the bilayer size increases,
to compensate the increase of the q dependent term in Eq. (10).
We conclude that ACU is a proper thermodynamic variable
in our simulations of the free membrane. It is important to
note that according to Equation (6), the insensitivity of aCU to
membranes size shows that the roughness does depend on the
system size, as illustrated in Fig. 3-bottom. Larger membranes
result in a larger CU roughness, �CU

A , since they have smaller
projected areas per lipid. Moreover, we note that �P

A does not
vary with the system size, because A

P is proportional to the
projected area.

The method presented above provides a “direct” route to
compute the true area per lipid in biological membranes. Alter-
native methods require “indirect” approaches to extract the true
area. These methods rely on the theoretical estimation of the
undulatory contribution to Ak, as predicted by Eq. (8). In the
latter, the sum over wavevectors is approximated by an integral
from a lower limit qsize = 2⇡/L

x

, defined by the system size, to
an upper limit, qu, defined by a characteristic molecular length
scale. Waheed and Edholm12 used the relationship (qu/qsize)2
⇡ NPhos to obtain the equation

A

true = Ak
 
1 +

k

B

T

8⇡
ln (N

Phos

)
!
. (11)

The logarithmic dependence of this equation with the numberQ2
of phospholipids in the membrane agrees qualitatively with our
results (see solid line in Fig. 4), but only when the bending
modulus, , and the true area are taken as fitting parameters.
As shown by the dashed line represented in Fig. 4 (using the

bending modulus  = 21kT), Eq. (11) predicts a di↵erence
between a

true and ak about 0.2% larger than that is found for
our a

CU, which on the scale of the figure represents a large shift.
This discrepancy is connected to the sum over q appearing
in Eq. (8). This sum has to be replaced by an integral and
truncated at q

u

, in order to recover the ln(N
Phos

) function-
ality. For membranes with N

Phos

. 1000, Eq. (11) only gives
a qualitative dependence. Amongst the most recent alterna-
tives,13,29,30 Otter13 employed a more sophisticated approach,
which relies on a triangulation procedure to compute the area
of large membranes, hence avoiding the drawbacks associated
to the evaluation of the sum over q. He obtained the area per
molecule from the asymptotic limit of the area for very large
system sizes.

Our area per lipid a = 0.6707 ± 0.0005 nm2 for the free
membrane is very similar to the one reported in the POPC
experiments of Hyslop et al.

31 at 310 K, 0.66 nm2, slightly
larger than the area reported by Smaby et al.

32 at 297 K,
0.63 nm2, and slightly lower than the area obtained by Kucerka
et al.

33 at 303 K, 0.683 nm2. The di↵erences across experi-
ments may be connected to the di↵erence experimental ap-
proaches. It is known that the areas obtained using neutron,
X-rays, or NMR techniques may be di↵erent, hence adding Q3
uncertainty to the use of this quantity as a reference for force-
field fitting and testing.34 The simulations of Braun et al.

30

using a similar lipid (DOPC) at T = 303 K predict area of
a = 0.659 nm2, after filtering out the non-undulatory modes
with q > 1 nm�1, which is used by these authors to define their
“undulation reference surface.” We find that our true area per
lipid is in good agreement with previous simulations of the
projected area per lipid, ak, as well as our own computations
of this quantity, ak = 0.666 ± 0.002 nm2 (See Table I). The
latter result is very close to previous simulations using the
AMBER forcefield at 303 K, ak = 0.668,35 and similar to
the results reported by Janosi using the CHARMM forcefield Q4
at 310 K, ak = 0.647 ± 0.013 nm2,36 and by Poger using the
GROMOS96 forcefield at 303 K, ak = 0.638.37

The comparison above shows that there are very small
di↵erences between the true area per lipid and the projected one
(see the scale of the y axis in our Fig. 4). Hence, it is clear that
the projected area, ak, provides a good approximation to the
true area per molecule in many situations. However, computa-
tions requiring accurate areas (see, e.g., the data in Table I of
Ref. 12) cannot rely on the projected area. Our method provides
a route to compute the true area using very small bilayers (see,
e.g., N

Phos

= 256 system in Fig. 4) and a single simulation,
hence avoiding the need to compute the bending modulus, and
the problems associated to the evaluation of the sums over the
q corrugation modes.

V. CHARACTERISTIC RELAXATION TIME
OF THE AREA FLUCTUATIONS

To get a better insight into the di↵erences between ACU
and Ak modes, we computed the time correlation functions of
these two areas. The correlation function is defined as

Q5�(t) = h(A(t) � hAi) (A(t = 0) � hAi)i
h(A(t = 0) � hAi)) 2i . (12)
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FIG. 5. The normalized area autocorrelation function �(t) Eq. (12) for
the projected area, empty (black) circles, and for the CU area, full (blue)
circles, for membranes with NPhos= 4000. Top panel: tensionless mem-
branes. �CU shows a faster exponential decay, �CU(t)⇡ 0.786exp(�t/0.222)
(dashed line), than �k(t)⇡ 0.654exp(�t/0.222)+0.274exp(�t/6.775) (full
line). The (green) triangles represent �k for a smaller membrane, NPhos
= 2000. Bottom panel: membrane under tension, �0= 10.57 mN/m.

We show in the top panel of Fig. 5 the results for the NPhos
= 4000 system in the tensionless state. The isobaric simula-
tions were performed using the Parrinello-Rahman barostat.
The CU area behavior is consistent with the one expected
for a proper thermodynamic property, namely, the fluctuations
decay exponentially with a short relaxation time ⌧CU ⇡ 0.22 ns
making possible the determination of the mean area haCUi
using short simulation times, irrespective of the system size.
In contrast, the relaxation of the projected area, Ak, follows
a double exponential relaxation, with one of the exponentials
featuring the same relaxation time as obtained from the CU
mode, ⌧CU. The second contribution to � k(t) corresponds to
a much slower decay time ⌧k ⇡ 30⌧CU, which is connected to
changes of the membrane shape that are not related to the
fluctuations of the true area, A

CU. That indicates that changes
in the second term of Eq. (10) are counteracted by changes
in Ak (the first term of Eq. (10)) and therefore do not modify
A

CU. This second decay of the Ak fluctuations slows down as
the membrane size increases. Hence, larger simulations would
be necessary to get an accurate estimation of the mean value
haki for larger membranes. We test this idea in the top panel of
Fig. 5. The triangles represent �k for a smaller membrane, NPhos
= 2000 instead 4000. Our results shows that ⌧k indeed de-
creases with membrane size. In fact for NPhos = 500⌧k and ⌧CUQ6
become of the same order.

We have further analyzed the impact of the membrane
tension on the relaxation time. We find that applying a tension
reduces the dependence of the relaxation time with system
size. We show in the bottom panel of Fig. 5 that the double-
exponential dependence of the projected area is eliminated
and the time correlation functions for the CU and projected
areas agree with each other, hence featuring similar relaxation
times. We note that the tension modifies the projected area time
dependence while the CU remains unchanged.

Finally, we have analyzed the impact of the barostat either
Berendsen or Parrinello-Rahman, on the relaxation of the area
fluctuations. We find that the slow relaxation mode of Ak is
fairly independent on the barostat used, while the relaxation
of the ACU mode is very sensitive to the barostat, with the
relaxation time for the Berendsen case being twice as long
as the one obtained with the Parrinello-Rahman approach.
This result clearly shows that the barostat influences the mem-
brane fluctuation dynamics, and care should be exercised when
computing dynamic properties involving area fluctuations.

VI. THE AREA COMPRESSIBILITY MODULUS

The area compressibility modulus measures the isother-
mal variation of the surface tension with the membrane area.
It also quantifies the mean square thermal fluctuations per unit
area as

K = A

 
@�

@A

!

T

=
kT A

hA

2i � hAi2 . (13)

These equations may be applied to any definition of the mem-
brane area, either A

U, A

k, or A

CU. The evaluation of the
compressibility with the U mode is problematic, as the average
area, hA

Ui, depends on the wavevector cuto↵ used to separate
undulations and molecular protrusions. The projected area
provides a simple alternative to estimate compressibility from
computer simulations. However, as shown above the projected
area, A

k, fluctuations depend on the system size. Hence, the
evaluation of the corresponding compressibility, K

k, via a
direct derivative or the area fluctuations (see Eq. (13)) will be
a↵ected by the unphysical behavior of A

k. In contrast, we argue
that the CU area is a well defined thermodynamic quantity
that provides a consistent, physically meaningful approach to
calculate K

CU. We revise in the following these approaches
and their consistency by investigating their performance in
compressibility computations, either via the derivative of the
surface tension (the Hooke approach) or via the analysis of the
area fluctuations.

A. The Hooke approach

The area compressibility of an equilibrium tensionless
(�0 = 0) membrane, with mean area A(�0), may be obtained
from Eq. (13) by calculating the increase of the area induced
by an applied small tension, �0 > 0. The area increase, ↵, is
given by

↵ ⌘ A(�0) � A(�0 = 0)
A(�0 = 0) ⇡ �0

K

. (14)

This equation may be used, either with the projected or the true
CU area, to estimate the K

k and K

CU compressibility moduli.
In order to use this method, we need first to find the range
of validity of the linear Hooke’s law. We show in Fig. 6 that
our CU data do indeed follow the expected linear dependence
up to ↵CU . 0.05 and �0 . 0.015 N/m. At higher surface ten-
sions, �0, a deviation from linearity can be observed, signaling
the onset of the non-elastic response of the membrane. We
recall that all the results discussed in the present section were
obtained with the Parrinello-Rahman barostat, although our
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FIG. 6. The normalized area expansion ↵ (defined by Eq. (14) in the main
text) vs. tension for membranes consisting of NPhos= 4000. The full sym-
bols show the results for the CU area, ↵CU, and the empty symbols for
the projected area, ↵ k. The (blue) circles show the results obtained with
the Parrinello-Rahman barostat and the (green) squares with the Berendsen
barostat. The dashed (blue) dark line represents a linear fit (y = 46.72x) to
the low ��0�2 < 2.0 values obtained with the Parrinello-Rahman barostat
for ↵CU. The full (blue) dark line represents ↵CU evaluated by integrating
the linear dependence of K with �0 as obtained in Fig. 8, see Eq. (19). The
light (cyan) full line is the fit of the low �0 values of ↵ k to Eq. (15), using
for the bending modulus � = 21. The light (cyan) dashed line represent the
predictions of Eq. (15) for a system with an area one hundred times greater
than the one used in our computations.

results for ↵CU are independent of the barostat employed, as we
can see in Fig. 6. By fitting the linear regime in Fig. 6, we can
extract the compressibility modulus, �K

CU�2 = 46.72, which
corresponds to a compressibility of K

CU = 0.31 ± 0.02 N/m,
well within the range of values reported for lipid and cell mem-
branes.38 Our estimated error for K

CU represents the di↵erence
between the linear fits over the range of the lowest two, three,
or four values of �0.

Traditionally, the compressibility has been computed by
analyzing the projected area, Ak. As noted in Sec. V, in theQ7
tensionless state, �0 = 0, Ak is not extensive (see Fig. 4). The
equilibrium fluctuations of the free membrane induce a reduc-
tion of the projected area per phospholipid, a k, since the plane
tangential to a point on the membrane surface may take any
orientation with respect to the plane, (x, y), where the bilayer
surface is projected. A very small tension (�0 > 0) can induce
a large increase in the mean projected area with respect to the
tensionless case. This issue has been noted before by Rawicz
et al.

39,40 These authors used the CWT to derive a relationshipQ8
that describes the dependence of the projected area with the
membrane surface tension, �0, by considering the undulations
featured by large membranes,

↵ k ⌘ Ak(�0) � Ak(�0 = 0)
Ak(�0 = 0)

=
1

8⇡ �
ln

 
1 +

��0Ak
4⇡2�

!
+

�0

K

true . (15)

The derivative of ↵ k with respect to the surface tension, �0,
under tensionless conditions �0 = 0 gives

1
K

k =
1

K

true +
Ak(�0 = 0)

c⇡3�2 , (16)

which is similar to the equation derived by Waheed and Ed-
holm,12 from the fluctuation analysis of the projected area,
hA

k2i � hA

ki2. These authors pointed out that the numerical
coe�cient c, which would be exactly 32 for Eq. (16), depends
on the procedure used to evaluate the sum of the Eq. (8) over
the low wavevectors.12 According to Eq. (16), the e↵ective area
compressibility, K

k, vanishes when the membrane reaches the
thermodynamic limit, Ak ! 1. The influence of the undula-
tions on the compressibility, and the corresponding di↵erences
between the Hookean K

k and K

true, would be observed when
the derivative of ↵ k is evaluated for surface tensions fulfilling
��0�2

0 ⌧ 4⇡2�/NPhos. In our largest simulations, consisting
of NPhos = 4000, we have 4⇡2�/NPhos ⇡ 0.2, where we used
the bending modulus � ⇡ 21 obtained in our previous work.14

Therefore for the range explored here 0.5 . ��0�2 . 2.5, our
data follow Eq. (14) within the accuracy of our computations,
namely,

↵ k � ↵CU ⇡ 1
8⇡ �

ln
 
1 +

��0Ak
4⇡2�

!
. 3 ⇥ 10�3. (17)

We have represented in Fig. 6 the predictions of Eq. (15)
for a hypothetical system consisting of NPhos = 4 ⇥ 106 phos-
pholipid molecules. It is evident that ��0�2 does not change
linearly with ↵ k at low ↵ k. This deviation from linearity has
a very little impact on the compressibility, K

k, obtained from
Hooke’s law (Eq. (14)), for ��0�2 ⇡ 1 (see Fig. 6).

In simulations consisting of less than 4000 lipids per layer,
and for the values of �0 studied here, Ak is not large enough for
the first term in Eq. (15) to play a significant role. The di↵er-
ences between ↵ k and ↵CU are small and the behavior of Ak can
be well approximated directly by the Hookean law, Eq. (14).
Nonetheless, we have calculated K

true by fitting our ↵ k data
for low �0 to the theoretical expression given by Eq. (15),
using again our previous result � = 21. We show in Fig. 6
the corresponding fit. From this fit, we find �K

true�2 = 50.0
and K

true = 0.331 N/m, which is close to the value obtained
from the analysis of the true CU area, 0.31 ± 0.02 N/m.

B. The area fluctuation approach

The evaluation of the area compressibility modulus from
area fluctuations (13) is much more sensitive to the area
definitions than the Hookean approach. As discussed above,
the fluctuations of the projected area are strongly a↵ected
by the boundary conditions in the tensionless state. We have
computed the compressibility using both the projected and the
CU definition of the true area, as well as the two di↵erent
barostats, i.e., Rahman-Parrinello and Berendsen. We find that
the barostat type has a significant impact on the results.

For the tensionless membrane, see Fig. 7, the CU
compressibility obtained with the Parrinello-Rahman barostat
features a remarkable independence with the membrane area,
for a wide range of values, from 200 nm2 to 3000 nm2.
The resulting average compressibility, K

CU = 0.31 N/m, is in
excellent agreement with the value obtained from the Hookean
analysis, K

CU = K

k = 0.31 ± 0.02 N/m. Our result clearly
shows that the combination of a barostat that produces the
correct ensemble fluctuations combined with the true area
definition proposed here predicts area compressibility moduli
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FIG. 7. The dependence of the inverse of the area compressibility modulus
K with system size for a tensionless membrane. The compressibility was
obtained from an area fluctuation analysis. The open symbols represent the
compressibility obtained from the projected area, K k, and full symbols the
results obtained from the analysis of the CU area, KCU. The (blue) circles
represent data obtained with the Parrinello-Rahman barostat and the (green)
squares with the Berendsen barostat. The (blue) line represents the linear fit
of the K

k values obtained with the Parrinello-Rahman barostat, i.e., to the
(blue) empty circles. The horizontal line (black) indicates the compressibility
obtained using Hooke’s law. (see Section VI A).

in perfect agreement with the Hookean route. The Berendsen
barostat on the other hand does not produce the correct
fluctuations, and this is reflected in the strong overestimation of
the area compressibility modulus with respect to the Hookean
prediction. Hence, in the following, we will discuss the
results obtained with the correct barostat, Parrinello-Rahman,
only.

The compressibility K = 0.31 ± 0.02 N/m falls within the
range of values reported in experiments, 0.18-0.30 N/m.41 Our
result is close to that reported by Janosi and Gorfe for POPC
bilayers,36 0.272 N/m, although this value was obtained using a
di↵erent force-field (CHARMM) and from the fluctuations of
the projected area, which as we shall see below is inaccurate.
Braun et al.

30 employed the Hookean approach and reported a
value of K = 0.277 ± 0.01 N/m for a similar lipid (DOPC) at
T = 303 K.

We show in Fig. 7 our results for the fluctuations of the
projected area using the Parrinello-Rahman barostat. The area
compressibility shows a clear dependence with system size,
which can be fitted to the linear dependence of 1/K

k with
A

k predicted by Eq. (16). The linear fitting, using again as
bending rigidity � = 21, shows good agreement with the
theoretical predictions of Eq. (16). The numerical factor c ⇡ 33
is very close to 32 predicted by Eq. (15). The extrapolation
of the compressibility to zero area (see Fig. 7) gives K

true

= 0.34 N/m, slightly higher than the value obtained directly
from our analysis of the ACU area fluctuations. We conclude
that although the traditional methods based on Eq. (16) give
acceptable values of K , the use of the true area ACU is more
robust as the compressibility is independent of system size,
making it possible to compute this property from a single
simulation.

Finally, the area compressibility modulus defined in (13)
may also be obtained for membranes under tension. We
examine in the following the dependence of K

CU and K

k
with the bilayer tension �0. For this analysis, we considered

FIG. 8. Dependence of the area compressibility modulus with the membrane
surface tension �0, for a membrane consisting of NPhos= 4000 lipids. The
simulation results were obtained using the Parrinello-Rahman barostat. Full
(blue) symbols represent the results obtained with the CU area, KCU, and
empty (red) symbols the results obtained from the projected area, K k. The
thick (blue) line represents a linear fitting to the K

CU values, and the thin (red)
line is a guide to the eye. The square (black) indicates the compressibility at
�0= 0 obtained from Hooke’s law (see Section VI A).

large bilayers, consisting of 4000 lipids per leaflet. We show in
Fig. 8 that the compressibility obtained from the true area (CU
mode) or the projected area is very similar for �0 > 2.5 mN/m,
although K

k is slightly larger than K

CU. It is only in the limit
of very low tensions that the behavior of the compressibility
modulus obtained from both areas di↵er. The results from
the projected area deviate significantly as we approach the
tensionless state, �0 = 0. Note that for these larger membranes,
4000 lipids, the inaccuracy of the projected area approach
is particularly noticeable, as the tensionless state features a
compressibility which is not in line with the ones obtained for
membranes under tension. This failure of the projected area
approach is reflected in a large drop of the compressibility in
going from 5 mN/m (⇠0.3 N/m) to 0 mN/m (⇠0.23 N/m).
On the other hand, K

CU increases linearly with decreasing
surface tension and converges to the Hookean result of the
tensionless state. A linear fit to our K

CU gives K

CU(�0)
⇡ K

CU(�0 = 0) � 4.2(±0.3)�0. From this result, we may pre-
dict the area deformation as a function of the surface tension.
Integrating Eq. (13),

↵CU(�0) =
A(�0) � A(�0 = 0)

A(�0 = 0) = exp

"⌅ �0

0

d�

K

CU(�)

#
� 1,

(18)

and replacing the linear fit,

↵CU(�0) =
�K

CU(�0 = 0)�2

(�K

CU(�0 = 0)�2 � 4.2��0�2)4.2
, (19)

which we have represented in Fig. 6. The prediction is
fully consistent with the direct calculation of the mean area
for the whole range of areas, including those beyond the
linear Hookean range. The consistency of the fluctuation and
Hookean routes highlights again that our definition of ACU
measures the true area of the undulating membrane.

In a recent work,42 the authors considered the error asso-
ciated to the estimation of K

A

from the analysis of �↵ vs
� when the tilt is ignored. It would be very interesting to
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check whether the tilt modes may explain the dependence of
the compressibility with the surface tension observed in our
computations.

VII. CONCLUDING REMARKS

In this work, we have reported a new approach to compute
the true area of a membrane under tension and in the tensionless
state. Our approach circumvents the problems associated to
existing approaches, which either rely on the computation of
the membrane area using the undulatory modes, AU, which
is given by the average position of the lipid head groups, or,
more simply, via the projected area, Ak. The former approach
is a↵ected by protrusion contributions, while the latter is ther-
modynamically inconsistent, since the projected area is not
extensive. The true area proposed here is defined in terms of
a coupled undulatory area,

ACU = AU � (AP � Ak), (20)

which allows to completely eliminate the protrusion contri-
butions and to recover thermodynamic consistency. We have
tested our approach by performing molecular dynamics simu-
lations of POPC membranes using the MARTINI force field.
We have demonstrated that the CU area per lipid and the area
compressibility K

CU do not depend on the lateral size of the
simulation box for a wide range of system sizes. This result
opens the route to accurately compute the true area per lipid
and compressibility using truly small bilayer patches, down
to 500 lipids. Further, we have shown that the CU relaxation
time associated to the bilayer area fluctuations does not depend
of the system size, while the projected one increases with the
membrane size. For NPhos = 4000, the projected area relaxation
time is one order of magnitude larger that the CU one.

We have tested the thermodynamic consistency of the
compressibility, K

CU, obtained from the true area, A

CU. With
this purpose, we applied the Hookean and area fluctuation
approaches to membranes under tension and in the tensionless
state. We found agreement between these two approaches.
Our results indicate that the thermodynamic consistency ex-
tends beyond the elastic regime. Our areas per lipid and
compressibilities for MARTINI POPC bilayers are in line with
previous computations for the tensionless state, a = 0.6707
± 0.0005 nm2 and K = 0.31 ± 0.02 N/m. The compressibility
results are, as expected, strongly dependent on the barostat
employed. The Nosé-Hoover barostat reproduces the correct
fluctuations of the ensemble, and the compressibilities ob-
tained from these fluctuation and from the direct approach,
namely, Hooke’s law, are fully consistent. As expected, the
compressibility obtained from the analysis of the area fluctua-
tions using the Berendsen barostat, which is widely employed
in computer simulations, is not consistent with the Hooke’s
approach.

One main advantage of our approach is that it obviates
the need to perform a series of simulations at di↵erent mem-
brane areas, and/or pre-computations of the bending modulus,
which are required in current approaches to assess system size
e↵ects and to quantify the compressibility in the thermody-
namic limit. Further, we have tested the accuracy of equationQ9

of Rawicz et al., which estimates the true area compress-
ibility from an analysis of the system size dependence of the
projected area compressibility. Our results confirm previous
observations12,13 of showed that this equation is qualitatively
correct.

Many computations in the past have been performed using
the projected area. Interestingly, we find that the deviations of
this area from the true one are small,⇠1%-2%, for a wide range
of system sizes, 102-103 lipids, probably within the uncer-
tainty associated to the forcefields/experiments. However, the
compressibilities of the tensionless membrane depend strongly
on the system size, and for membranes consisting of ⇠103

lipids, the use of the projected area can lead to compressibilities
that deviate significantly,⇠30%, from the real value. Ironically,
we have found that the projected area provides an interesting
approach to “estimate” the area per lipid and compressibility
when the bilayer size is small,⇠500 lipids. However, as the use
of the projected area for these small sizes is an uncontrolled
approximation, it should be used with great care.

Overall, we have demonstrated that the computational
approach presented in this work circumvents most of the
problems of the existing methods, as it does not require ad

hoc parameters, such as the cuto↵ employed in Fourier se-
ries methods, numerical prefactors employed in analytical
equations, computations using several system sizes, or pre-
computations of the bending modulus. More importantly,
unlike the widely used project area, the CU area proposed here
is thermodynamically consistent.
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