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ABSTRACT

Quantum computing promises a new paradigm of computation where information is processed

in a way that has no classical analogue. There are a number of physical platforms conducive

to quantum computation, each with a number of advantages and challenges. Single photons,

manipulated using integrated linear optics, constitute a promising platform for universal quan-

tum computation. Their low decoherence rates make them particularly favourable, however the

inability to perform deterministic two-qubit gates and the issue of photon loss are challenges

that need to be overcome.

In this thesis we explore the construction of a linear optical quantum computer based on the

cluster state model. We identify the different necessary stages: state preparation, cluster state

construction and implementation of quantum error correcting codes, and address the challenges

that arise in each of these stages. For the state preparation, we propose a series of linear optical

circuits for the generation of small entangled states, assessing their performance under different

scenarios. For the cluster state construction, we introduce a ballistic scheme which not only

consumes an order of magnitude fewer resources than previously proposed schemes, but also

benefits from a natural loss tolerance. Based on this scheme, we propose a full architectural

blueprint with fixed physical depth. We make investigations into the resource efficiency of

this architecture and propose a new multiplexing scheme which optimises the use of resources.

Finally, we study the integration of quantum error-correcting codes in the linear optical scheme

proposed and suggest three ways in which the linear optical scheme can be made fault-tolerant.
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CHAPTER 1

INTRODUCTION

It’s not a Turing machine, but a machine of a different kind.

Richard Feynman

1.1 Introduction

Quantum computers have recently been subject to much interest, as they promise to harness

effects at microscopic level which have no equivalence in classical physics. It was Feynman who

first proposed [3] the idea of a quantum computer as a “probabilistic simulator of a probabilistic

nature”. He was addressing the difficulty of simulating a quantum physical system: the problem

of exponential growth when dealing with multiple particles. His proposal was for a machine

that would work by following the same laws of the system simulated, so that if one repeated a

certain experiment a certain number of times, one would find the same probability distribution

of results as if the experiment were done in the physical system we wanted to simulate. What

Feynman was really proposing was a “quantum simulator”, a controllable quantum system that

would simulate the dynamics of another quantum system. A universal reprogrammable machine

such as a quantum digital computer, able to perform any logical operation on quantum bits,

will be an extremely capable simulator of quantum physical systems1. Lloyd [4] formalised this

intuition by formally showing how such simulation could be performed in a universal quantum

computer.

A number of quantum algorithms have been proposed that show a computational advantage

with respect to classical algorithms, such as Shor’s factoring algorithm [5], Grover’s unstructured

data base search [6] or quantum machine learning [7]. But the most promising application

of quantum computers is exactly what Feynman had in mind. Currently, 30% of the world’s

supercomputing power in research facilities is being used to solve problems in quantum chemistry

and material science [8]. There is a huge breadth of problems in these fields which have real-

world applications, such as the design of room temperature superconductors, new medicines,

an efficient catalyst to capture carbon from the atmosphere and better catalysts for nitrogen

fixation, among others. New fast algorithms have been proposed [9, 8, 10, 11] which show how

it is possible to accurately solve simple quantum chemistry problems in ∼300 seconds. These

1In analogy with classical systems, the classical digital computer has proven to be the most capable and
multi-purpose simulator of classical physics.
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problems are outside the scope of what can be achieved with classical computers, the ability to

implement them in quantum processors gives hope for a new range of applications for quantum

computers that would otherwise be outside our reach. As the authors of a recent review on the

field of Quantum Computers [12] put it, the advent of a quantum computer will have a similar

impact as that of the laser. The laser provides us with many technological advances but it

certainly hasn’t replaced light bulbs, and, in the same way, quantum computers won’t replace

classical computers but will allow us to perform an entire new range of computational tasks.

The necessary accurate control of quantum systems has only been demonstrated in recent

years, but only for small number of qubits. A number of quantum computing architectures have

recently been proposed for different physical systems, showing how the control capabilities can

be scaled up sufficiently to integrate the first quantum computers. Some of the front runners in

the quantum computer race are superconducting qubits [13, 14], ion traps with photonic links

[15, 16], microwave ion traps [17] and photons [18].

In this thesis, we present a study of linear optics as a candidate system for quantum comput-

ing. We study the architecture in detail and bring it much closer to experimental realisation.

In doing so, we provide techniques for generating entanglement, possible implementations of

quantum error correction and provide a blueprint for an experimental realisation of a linear

optical quantum computer.

1.2 Quantum Computing

Quantum bits, or qubits, are two-level quantum systems that can be used to store and process

quantum information. The two levels are usually represented by |0〉, |1〉, which are known as the

computational basis states. The main difference between bits and qubits is that the latter can

be in a linear combination, usually referred to as superposition, of the two basis states. Hence

the most general representation of a qubit is :

ψ = α|0〉+ β|1〉, (1.1)

where α and β are (in general)2 complex coefficients. When a qubit is measured in the com-

putational basis, the results 0 or 1 are obtained with probability |α|2 and |β|2 respectively. As

these probabilities must add up to one (|α|2 + |β|2 = 1), we have a normalisation restriction on

the coefficients α and β, that can be geometrically understood as the condition that the qubit’s

state has length one. We can take this geometric interpretation a bit further and parametrise

the quantum state in spherical coordinates

ψ = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, (1.2)

and understand the qubit as a vector in a sphere of radius one. This sphere is usually referred

to as the Bloch sphere, shown in figure 1.1. Note that in this representation, orthogonal states

are diagonally opposed rather than at right angles.

The three cartesian axes of the Bloch sphere form a set of three mutually unbiased bases

2Universal quantum computation can be achieved with states with only real amplitudes [19].
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Figure 1.1: Bloch sphere. The three cartesian axes correspond to the eigenstates of the Pauli
matrices.

[20], and the Bloch vectors pointing in those directions are the eigenstates of the Pauli matrices:

σX =

(
0 1

1 0

)
, σY =

(
0 −i
i 0

)
, and σZ =

(
1 0

0 −1

)
, (1.3)

where the matrices are written in the computational basis. These operators will be referred to

throughout the thesis as σX = X, σY = Y, σZ = Z. The eigenstates of the Z operator are the

computational basis states {|0〉, |1〉}, whereas the eigenstates of X and Y are {|±〉} and {|±i〉}
respectively.

Single-qubit logical gates can be understood as transformations (rotations and reflections)

of the states in the Bloch sphere. The most used single qubit gates are:

• Hadamard gate: H = 1√
2

(
1 1

1 −1

)
,

• Phase gate: P =

(
1 0

0 i

)
,

• π/8 gate: T =

(
1 0

0 eiπ/4

)
,

• Rotations with respect to one of the cartesian axes: Rσk(θ) = cos θ21 − i sin θ
2σk where

k ∈ {X, Y, Z}.

The most commonly used two-qubit gate, controlled-NOT (CNOT), has the same truth

table as the classical XOR gate, which flips the target (second) bit when the control (first) bit

is in the state 1:

|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉 and |11〉 → |10〉. (1.4)
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The use of the CNOT gate in conjunction with some of the single qubit gates can produce

entangled states, which show correlations with no equivalence in classical computation. For

example, the action of a CNOT gate with the Hadamard gate on a pair of computational basis

qubits yields:

|00〉 H1−−→ |+0〉 =
1√
2

(|00〉+ |10〉) CNOT−−−−→ 1√
2

(|00〉+ |11〉) . (1.5)

This state (which is one of the four maximally-entangled states referred to as Bell pairs [21]),

cannot be written as the product of two single-qubit states.

Other entangling gates such as controlled-Phase (CZ) can be obtained from combinations

of CNOT gates with single qubit gates; moreover any multi-qubit unitary can be obtained in

the same way [22], which makes this set of gates universal. A set of gates can perform universal

quantum computation (UQC) if they are sufficient to approximate any unitary operation to

an arbitrary accuracy via a quantum circuit. This universality is crucial as it ensures the

equivalence of different models of quantum computation.

1.2.1 Quantum algorithms and computational speedup

In 1936, Church and Turing [23, 24] first stated that there exists a limitation to what can be

computed, not imposed by our ingenuity in designing and implementing computational technol-

ogy, but universally imposed by the laws of Nature. The extended version of the Church-Turing

thesis states that any function naturally to be regarded as “efficiently” computable is “efficiently”

computable by a Turing machine3. In 1985, Deutsch [25] formulated a physical version of the

thesis, which is compatible with quantum theory and a ‘universal quantum computer’: “Ev-

ery finitely realisable physical system can be perfectly simulated by a universal model computing

machine operating by finite means”. The advantage of using quantum systems to perform com-

putational tasks was realised in the ’90s when a series of algorithms demonstrating quantum

speedup appeared. Grover’s search algorithm [6] shows an improvement in scaling from O(n) to

O(
√
n) with respect to classical algorithms, which has been proven optimal [26]. Deutsch-Josza’s

[27] algorithm shows exponential speedup with respect to a classical algorithm only if no margin

of error is allowed, and for a rather contrived problem. In 1994 Shor proposed an algorithm

that would become the best-known application for a quantum computer, as it allows to solve

problems in NP that are thought not to be in P, i.e. prime factoring and discrete logarithm,

in polynomial time4. Recent interest in quantum simulation [9, 8, 10, 11] has also shown how

problems that are considered intractable with classical computers today can be solved efficiently

using quantum processors.

The class of problems that are solvable in polynomial time by a quantum computer is usually

referred to as BQP. It is believed that this complexity class is different from BPP, the class of

problems solvable by a classical computer in polynomial time, but no proof has yet been found.

Shor’s algorithm provides the strongest evidence for this to be the case, but has a big drawback

3The notions of complexity theory used in this section are explicitly defined in appendix A.
4Both of these problems belong to the complexity class NP ∩ coNP and they have a similar internal structure

which is referred to as the Hidden Subgroup problem [28]. This has led to the insight that a promising approach
for the development of other efficient quantum algorithms is to consider other instances of this problem.
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as the problem of factoring is not proven to be classically hard5. The recently proposed problem

of BosonSampling [30, 31], which we introduce in chapter 2, constitutes the strongest evidence

that quantum computers have computational powers unattainable in classical systems.

1.2.2 Circuit model

The circuit model is an algorithmic model for quantum computing that closely resembles clas-

sical algorithms. Single-qubit and two-qubit operations are performed in sequence on a set of

qubits initialised in a fiducial state and the results are read at the end as the outcome of single-

qubit measurements. The entanglement and interference necessary for the quantum speedup is

built up during the computation and if any ancillary states are used during the computation,

their state must be erased so that they no longer interfere with the rest of the computation.

The following circuit diagram shows the most common representation of the quantum logic

gates presented earlier in this section:

|0〉 H • •

|0〉 RX(π)

|0〉 P

The procedure runs from left to right: preparation, single Hadamard gate, CNOT gates, rotation

and phase gates, measurement.

Circuit model key facts

• State Space: A quantum circuit operates on a number of qubits (or two-level quantum

systems), and therefore its state space is a 2n-dimensional complex Hilbert space. The

computational basis states are defined as product states of the form |x1, . . . , xn〉, where

xi = 0, 1.

• State Preparation: Any computational basis state |x1, . . . , xn〉 can be prepared in at

most n steps.

• Quantum Gates: Gates from an universal family of gates can be applied to any subset

of the qubits desired.

• Measurements: Measurements in the computational basis can be performed on one or

more qubits.

• Classical Computation: In principle it is not necessary for the computation, but it can

make certain tasks much easier.

• Procedure of the computation: Quantum algorithms are run by applying one-qubit

and two-qubit gates to the quantum systems, building up the amount of entanglement,

until the final measurement in the computational basis gives the result of the computation.

5The closely related problem of primality testing has been recently proven efficiently solvable by a classical
Turing machine [29].
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1.2.3 Measurement-based quantum computation

Prior to the Gottesman-Chuang [32] and Raussendorf-Briegel [33] proposals, the circuit model

was commonly used for quantum computation. Measurement-based quantum computation mod-

els are radically different to the circuit model (and have no classical analogue), as the resource

for the computation is prepared in advance and “offline”. This strategy has the advantage that

if errors occur at the preparation stage, the prepared state can be discarded and the procedure

can be repeated without any loss of information. There are two main approaches for mea-

surement based quantum computing: the generalised teleportation model [32] and the one-way

quantum computer model [33]. They have similarities such as the fact that all computation is

performed by doing measurements on a pre-prepared state, and differences, as the teleporta-

tion model requires two-qubit measurements whereas the one-way model only requires single

qubit measurements. A full study of their relationship can be found in [34]. It must be noted,

however, than in most of the literature, and in this thesis, a reference to Measurement-Based

Quantum Computing (MBQC) refers to the one-way model.

Generalised quantum teleportation

Quantum teleportation [35] is the process by which an unknown qubit can be teleported from

sender to receiver by communicating only two classical bits if they share a pair of maximally

entangled particles. First, a joint Bell measurement is performed on the unknown quantum

state and one of the qubits of the entangled pair. Then, the outcome of the measurement is

transmitted through a classical communication channel. Finally, rotations conditioned on the

outcome of the measurement are applied to the other qubit of the Bell pair to recover the

unknown state. Gottesman and Chuang realised that [32] if a unitary gate had been applied to

the entangled pair and then the pair was used to teleport a qubit, the output of the teleportation

procedure would be a transformed version of the input, where the transformation would be

dictated by the gate pre-applied to the entangled pair used for the teleportation. This procedure

has the advantage that a gate can be applied to any state. If the gate itself is difficult to apply

to an unknown state, the procedure can be performed by preparing the entangled state with

the applied gate directly. This procedure is a gate teleportation procedure, and can be used as

the basis of a fault-tolerant scheme for quantum computing.

As mentioned earlier, any universal quantum computation can be performed by using a

combination of CNOTs and single qubit gates. Gottesman and Chuang showed [32] how gate

teleportation can be used in the case of single and two-qubit gates, in particular the CNOT

gate. This implies that universal quantum computation can be performed using an alternative

set of gates, which does not require two-qubit gates except for the Bell measurement used

for teleportation. This scheme relies on the ability to prepare small entangled states such as

Bell pairs and Greenberger-Horne-Zeilinger (GHZ) states [1] and perform deterministic Bell

measurements. One of the advantages of this scheme is that it can be used to perform fault-

tolerant quantum computation. The protection against error comes from the fact that the gates

are pre-applied to the entangled pairs before they are ever used, therefore errors can be filtered

before any quantum information is teleported through the entangled pair.
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One-way quantum computer

In the one way model [33] the entire resource for the computation is supplied at the beginning

of the computation, in the form of a highly entangled multi-particle state. This state is usually

referred to as cluster state and it is the same for every computation, although it may vary in size.

The information is then processed by carrying a series of adaptive single qubit measurements.

This highly entangled multi-particle state is prepared by applying a pattern of entangling

gates to the qubits. The initial state of every qubit is |+〉 = |0〉+|1〉√
2

and they are subsequently

linked by applying entangling gates to form the cluster state. A generic cluster state of n

particles is not easy to write in any basis, but it can be efficiently described with a graph, where

each node of the graph represents a qubit and each bond denotes that the two sites have been

connected by an entangling controlled-Z gate (CZ) operation. The CZ operation when acting

on two qubits in the computational basis, flips the phase of the |11〉 state:

|00〉 → |00〉, |01〉 → |01〉, |10〉 → |10〉 and |11〉 → −|11〉. (1.6)

The preparation of the cluster state is easy in theory. One only has to apply a CZ gate

to every pair of qubits that need to be connected. It does not matter the order in which the

gates are applied as they commute with each other. In practice however, the preparation of

this highly-entangled cluster state can be technically difficult, not only because entangling such

a big number of particles is very challenging, but also because not all entangled states make

the cluster state a universal resource for quantum computation. A cluster state is a universal

resource for MBQC if any quantum state can be generated from its original state solely by local

(single-qubit) operations [36]. It has been shown that for the cluster state to be a universal

resource, it “must exhibit maximal (scaling of) entanglement with respect to essentially all types

of entanglement” [36, 37, 38]. For example, it can be shown that GHZ states or W-states [39]

are not universal resources despite being highly entangled. In both cases, at least one type of

entanglement is non-maximal [38], rendering these states inadequate as resources for MBQC.

The cluster can be shaped by applying Pauli gates. Measuring a qubit on the computational

basis (Z) effectively removes the qubit and all its bonds from the cluster, while measuring a

qubit in the X basis has the effect of redistributing the entanglement structure of the neigh-

bouring qubits (in a manner that highly depends on the structure of the measured qubit’s

neighbourhood). The information processing is done via sequential measurement of the qubits

in a certain basis. It is assumed that the correct algorithm is performed if all the measurement

outcomes are the +1 eigenstate, however, given the probabilistic nature of quantum mechanics,

this is not always the case. We can steer the computation back to its correct subspace by apply-

ing Pauli corrections to subsequent measurements. Therefore, measurement results determine

the basis of the following measurements on other qubits6. Finally the result of the computation

is read out by one last measurement in the computational basis.

In figure 1.2 we can see an example of a quantum algorithm performed using the MBQC

model. We initially start with a rectangular cluster state of 6 × 12 qubits, where qubits are

6This adaptivity of the measurements means that the computation cannot be performed instantaneously.
There exists a restricted class of quantum computations that is temporally unstructured and can be performed
instantaneously [40], but it is not universal.
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located at the vertices of the grid (grid lines are not shown). Measuring qubits in the Z basis

allows us to shape the grid into the shape we need for the performance of the algorithm. Despite

starting with 72 physical qubits, this algorithm is actually performed on only 3 logical qubits,

which are shown by the three horizontal yellow arrows. The yellow paths between the logical

qubits represent two-qubit gates as explained in the circuit model and the rest of the single-qubit

gates are performed by measuring the qubits in the X-Y plane.

Computational depth, k

L
og

ic
al

 q
u

bi
ts

, n

Measurements: 

in Z direction

in X direction 

in X-Y plane 

Information flow

Quantum gate

Figure 1.2: One-way quantum computation. Horizontal arrows indicate the information flow
and each of them represent a logical qubit. Vertical lines correspond to quantum gates performed
between the logical qubits. The small arrows show the direction in which the qubit is to be
measured in. Image from [33], copyright (2001) by the APS.

This model of computation has a huge technical advantage over the classic circuit model,

which makes it very appealing to implement quantum computation using certain physical sys-

tems. The cluster states can be produced offline and only when the resource is prepared cor-

rectly, the computation is performed. For many physical systems, performing entangling gates

is the most challenging part of the computation, but if we post-select on the successful prepa-

rations of the resource state, this model substantially increases the probability of a successful

computation. All that is required then is to be able to successfully perform single qubit gates

with high fidelity, which is less technologically demanding for many physical systems such as

superconducting qubits, ion traps and linear optics [41, 16, 42, 43].

MBQC model key facts

• State Space: A cluster state computation operates on n×k physical qubits (or two-level

quantum systems) for a quantum algorithm with leqn logical qubits. Its state space is a

2n×k-dimensional complex Hilbert space. The computational basis states are defined as

product states of the form |x1, . . . , xn×k〉, where xi = 0, 1. The graph state representation

is usually used.

• State Preparation: Before the computation starts a resource state must be prepared.
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This resource state is a highly entangled multi-particle state (cluster state), which is the

same (except for its size) for every computation.

• Quantum Gates: An entangling gate is performed on qubits in a product state to build

the resource state. Afterwards only single qubit measurements are needed.

• Measurements: Single qubit measurements can be performed in an arbitrary basis. (Or

if only measurements of the computational basis can be performed, single qubit rotations

must be performed alongside.)

• Classical Computation: Classical computation alongside the quantum computations

is a key feature of this model, as the basis of the measurements performed sequentially

depends on the results of previous measurements.

• Procedure of the computation: The entire resource for the quantum computation

is supplied at the beginning of the computation. The information is then processed by

carrying a series of adaptive single qubit measurements.

1.2.4 Adiabatic model

Although less relevant for the purpose of this thesis, we briefly mention for completeness a new

paradigm for quantum computation that was recently proposed [44] based on quantum adiabatic

evolution. Computation in this model is not performed by applying gates or measurements to

qubits, but rather the algorithm starts from a disordered state and it arrives at a solution to

the problem by performing what can be understood as a quantum local search. The procedure

for the computation is as follows:

• At time t = 0, the quantum mechanical system is described by a Hamiltonian HE , whose

eigenstates are easy to compute.

• The system is slowly transformed to the final Hamiltonian at time t = T , whose ground

eigenstates are the solution to the problem that needs to be solved. This process can be

described by a time-dependent Hamiltonian

H(t) = A(t)HE +B(t)HP . (1.7)

A(t) and B(t) are slowly varying monotonic functions such that A(0) = 1, B(0) = 0 and

A(T ) = 0, B(T ) = 1. According to the adiabatic theorem [45], if the evolution is slow

enough, i.e. T is long enough, and if there is a gap between the ground state eigenvalue

and the rest of the Hamiltonian’s spectrum, the state of the system at time t = T would

correspond to the ground state of HP , thus producing the solution to the problem.

• Measurement of the ground state allows for the extraction of the solution.

This model for quantum computation has been proven to be universal for quantum compu-

tation [46].
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1.3 Physical requirements of a Quantum Computer

A quantum computer is a multi-purpose quantum processor on which a variety of quantum

algorithms can be performed. The first characterisation of the physical requirements for an

implementation of a fault-tolerant computer was made by DiVincenzo [47]. He posed five

requirements for the implementation of fault-tolerant quantum computation, plus two additional

requirements for quantum communications:

1. A scalable physical system with well characterised qubits (two level systems

representing the states |0〉 and |1〉): By well characterised we mean that its physical

parameters must be accurately known, as well as the presence of couplings to other systems

or external fields.

2. The ability to initialise the state of the qubits in a simple fiducial state, such

as |000 . . .〉: This arises from the computing requirement that the initial state of any

computation must be known in advance.

3. Long relevant decoherence times, much longer than the gate operation time:

Decoherence has been identified as one of the principal mechanisms for the emergence of

classical behaviour, hence the requirement of long relevant decoherence times for quantum

computers. By relevant we mean that they should be the ones that apply to the particular

degree of freedom in which the qubit is stored. Shorter decoherence times can be toler-

ated by using quantum error correction techniques, which make experimental quantum

computing more feasible.

4. A “universal” set of quantum gates: The ability to perform any quantum computa-

tion can be reduced to the ability of performing a universal set of gates.

5. A qubit-specific measurement capability: The result of a computation must be read

out, which requires the ability to read the state of specific qubits. While 100% measure-

ment efficiency is desirable, it is possible to trade efficiency for resource consumption.

The main challenge is to build a quantum computer that simultaneously maintains the

abilities of controlling quantum systems and measuring them, while at the same time preserving

their isolation from the controlled parts of their environment. Quantum communications can be

the key to solve this, the disturbance can be kept to a minimum if the different components are

interconnected in such a way that measurements are made far away from the memories that need

to be kept isolated. DiVincenzo proposed two extra requirements for quantum communications:

The ability to interconvert stationary and flying qubits; and the ability to faithfully transmit

flying qubits between specified locations.

These physical requirements for a quantum computer were specifically formulated for the

circuit model and don’t fit well other models of computation such as the MBQC or adiabatic

models. In [48], a formal operational definition of a quantum computer is introduced as well

as general criteria for its implementation. In this formulation, a quantum computer is a device

that consist of a quantum memory whose quantum evolution can be controlled and from which

entropy can be extracted using an information-theoretic procedure (i.e. cooling). A readout

32



1.3. Physical requirements of a Quantum Computer

mechanism allowing the extraction of subsets of quantum memory must exist also. These criteria

are met when the quantum computers is a scalable device operating fault-tolerantly.

1.3.1 Real-world constraints

When considering implementations of a quantum computer, most proposals (including the pro-

posal in chapter 5 of this thesis) are mainly concerned about efficiency. An implementation is

deemed efficient if the number of resources and time (accounting for both quantum and classical

processes) necessary to perform a computation on n qubits scales as poly(n). Theoretically, this

is all that is needed. However not every efficient proposal can have a feasible implementation

in practice. For example, the first proposal for a linear optical quantum computer [2], which

we will review in detail in chapter 2, was theoretically efficient with a polynomial scaling of

resources, but the overhead was so large that it is impossible to build for all practical purposes.

Choosing the physical system that will ultimately be the main platform for quantum com-

puters is not easy. Technological problems that may seem unsurmountable today might be

solved in a few years time. However, as quantum computers are physical devices, the laws of

physics ultimately dictate what they can do or not [49]. The amount of information that clas-

sical computers are capable of processing and the rate at which they do so has doubled every

18-months for the last 40 years, which is known as Moore’s law [50]. However, Moore’s law is

not a law of Nature and rather an observation of human ingenuity (and economic power), and

it is expected it will soon reach saturation: Intel has already confirmed that their cadence in

chip production has slowed.

The largest transistor count in a single CPU today is of 5.5 billion transistors, with current

transistors being of the size of ∼ O(10)nm, we can imagine that even if we have quantum

processors, machines with more than a trillion components do not seem physically feasible.

There are other types of constraints too: if all our components need to be at mK temperature,

the size of the quantum computer will be restricted by cooling ability7, the clock speed (number

of operations per second) will be limited by the amount of available energy in the system [49],

but more energy means more noise and entropy limits the amount of information that can be

processed. The ultimate limits for computation are given by the laws of physics [49], but there

is no guarantee that these limits can really be reached.

1.3.2 Physical implementations for quantum computers

Various quantum technologies have been considered as good candidates for building quantum

computers. They each have their own advantages and challenges, and it is not clear today

which will be the final technology; it might not even be just one but a combination of several.

In this section we briefly mention the three technologies that (in our view) are most promising8.

Despite their differences, they have one significant factor in common: they are compatible with

microfabrication techniques which will allow each architecture to become modular and be made

from regular-sized chips.

7It is true that there exist large scale machines which operate at ∼ 2K such as CERN, but they would not be
considered efficient in the sense we describe here.

8A review of different technologies that are being developed for quantum computation can be found in [12].
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Ion traps with photonic links

Ions can be controlled and manipulated in macroscopic traps with a very high degree of accu-

racy [16]. Excellent control has been achieved in macroscopic ion traps with nearly 100% [15]

fidelity in all gates, however for current implementations there exists a harsh scalability factor:

only a bounded number of ions can be trapped and individually addressed in the chain. The

networked model for quantum computation [51], in which cells with a small number of qubits are

interconnected to perform quantum computation, is particularly well suited for this technology

and full-scale architectures have been proposed [15]. The entanglement between different cells

is obtained via entangling operations on photons emitted by ions in the different traps. This

operation is very slow however (∼ 300 times slower than any other gate [16]) and uses large

photonic switching networks which rapidly increase the photon loss rate. New very low-loss

photonic switches and better entangling operations are needed for this technology to be feasible

on a large scale. A new approach to overcome the scalability factor is that of integrated ion

traps [15], in which standard semi-conductor processing techniques can be used to fabricate

micrometer-scale surface-chip traps. Having integrated elements implies a scale reduction in

the size of the experimental components, however in these microscopic traps, multi-qubit en-

tangling operations become more challenging. This problem however does not appear to be a

fundamental limitation as it can be suppressed at cryogenic temperature or with an adequate

treatment of the trap surface.

Superconducting qubits

Superconducting systems exhibit generic quantum properties commonly associated with atoms,

such as quantised energy levels, entanglement and superposition of states [52]. As such, artificial-

atoms can be engineered from these systems and exquisite control can be achieved by using

electromagnetic pulses. Recent demonstrations [41] show the ability to perform single qubit

gates with 99.92% fidelity and two-qubit gates with 99.4% fidelity. Moreover, these fidelities

are within the fault-tolerant threshold [53] for the surface code [54] which has allowed the ex-

perimental implementation of a small surface code implementation of five qubits [41]. Although

this implementation of quantum computing benefits from microfabrication of the devices, it has

a number of shortcomings. The most important are the cross-talk between nanowires, which

hinders the construction of three dimensional qubit structures9 and the fact that they operate

at mK temperatures, which limits the number of qubits that can be implemented due to the

limited cooling capacity.

Linear optics

Single photons are very good carriers of information with low decoherence rates and very high

single-qubit gate fidelity [18, 56, 43, 57]. Non-deterministic two-qubit operations and photon loss

are a challenge for current technologies, but a series of theoretical advances in recent years (which

will be explained in detail in chapter 2) together with technological advances make this physical

system a competitive candidate for quantum computing. Throughout this thesis we will explore

9These are considered more advantageous for the implementation of fault-tolerance [55].
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in detail theoretical techniques that allow the optimisation of linear optical schemes for quantum

computing. Experimentally, there have been many technological advances [58, 56, 43, 59, 60]

which make this technology ever more feasible. In particular, integrated optical devices can be

nano-fabricated. The ability to miniaturise O(106) linear optical elements on a single chip [61],

is a very promising sign for the construction of linear optical quantum computers with millions

of elements per silicon chip in the future.

1.4 Thesis outline

This chapter has introduced the concept of quantum computers, the different computational

models, the physical requirements needed for a feasible implementation and the most promising

physical systems for the implementation of a quantum computer. In chapter 2, we focus on

linear optics (in particular integrated linear optics) as a physical system suitable for quantum

computing. We also give a detailed account of the most important proposals for Linear Optical

Quantum Computing (LOQC). We compare the resource efficiency of all proposed protocols

according to the number of entangled pairs that are consumed during the computation. In

chapter 3 we introduce the stabilizer formalism and explain how we can use it to build a simulator

for certain classes of quantum computations. This simulator (its main functions are detailed

in appendix D) not only allows to perform quantum error-correcting protocols, but given its

ability to visualise the quantum computations as transformations on a graph, it allows to build

a better intuition. This has allowed for the design of the LOQC protocol presented in chapter

5. In chapter 4, we focus on the creation of entanglement in linear optics. We review literature

results and propose new schemes to generate small entangled states. In chapter 5 we present a

new protocol for LOQC which is shown to be at least one order of magnitude more efficient than

previous proposals. It is a percolation-based protocol with constant depth which only requires

3-photon GHZ states and Bell pairs as resources, an improvement on previous protocols that

required larger entangled states. We conclude the chapter by presenting QNIX, which is a

linear optical architecture for quantum computing. We outline the necessary experimental

stages required for its construction and the overall structure. In chapter 6 we present a full

analysis of the resource efficiency of QNIX and introduce a new multiplexing scheme that allows

an optimal utilisation of resources. In chapter 7 we introduce basic concepts of fault-tolerance

and quantum error-correction (QEC) and outline how they can be implemented in the LOQC

protocol presented in chapter 5. Furthermore, three main ways of implementing fault-tolerance

and preliminary results on the efficiency are presented. Chapter 8 concludes this thesis with a

summary of the work presented and provides an outline of possible directions for future research.
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CHAPTER 2

LINEAR OPTICAL QUANTUM COMPUTING

2.1 Introduction

Having reviewed the computational advantages of a quantum computer and the necessary ele-

ments to build one, we now turn our attention to a particular physical system that can be used

for quantum computing: linear optics. To realise a scalable quantum computer using photons as

our physical system we will require low-loss optical networks and highly efficient single-photon

sources and detectors. This set up will yield the accurate controlled manipulation, interference

and measurement of single photons required to perform quantum computation

In this chapter, we review qubit encoding and operations in linear optics. We focus on

integrated systems, as our own proposal for a linear optical quantum computer (chapter 5) is

intended for such systems. We give a detailed overview of the proposals for a linear optical

quantum computer to date1. In particular, we present a full account of the resources consumed

by each proposal, as for a quantum computer to be viable, the resources required must scale

polynomially with the system size. Different proposals account for their resource consumption

in different ways: counting entangled states used, number of particular gates applied, number

of optical elements or level of encoding. In order to have a unified view of all these proposals,

as well as having an understanding of the computational costs of different strategies, we map

the resource consumption of each protocol to a single figure of merit: Bell pairs used per single

successful entangling gate. A full account of these calculations can be found in appendix B.

2.2 Linear Optics

Photonic systems are favourable candidates as qubits in a quantum computer [18]. There

are many degrees of freedom of the photon that can be used to encode qubits, and they are

relatively free of the decoherence that plagues other systems (fulfilling DiVincenzo’s criteria

1 & 3). Measurement is done using photon detectors (DiVincenzo’s 5), although photon loss

still poses a significant challenge for current technologies2. We require the ability to perform

single and two-qubit gates in order to be able to implement universal quantum computing

1There is one recent proposal [62] which we postpone until chapter 7, as unlike the proposals in this chapter,
it is mainly focused on fault-tolerance rather than scalability.

2In chapter 6 we compare the maximum photon loss per physical component required by some specific archi-
tectures with current state of the art component specifications.
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(DiVincenzo’s 4). Single-qubit gates can be easily performed, as will be shown later in the

chapter. These single-qubit gates are all we need to initialise the state to a fiducial state as

required by DiVincenzo’s criteria 2 provided access to single photon sources. However, two-

qubit gates are more challenging to implement. Nonetheless, they can be achieved and several

proposals for a linear optical quantum computer have been put forward.

2.2.1 Single photons as information carriers

There are several representations of single photons as information carriers. The two main

implementations are single-rail and dual-rail qubits. In the single-rail representation, the qubit

is carried by a single optical mode and the qubit degree of freedom is the photon number.

This implementation is not very common as the single qubit operations do not preserve photon

number and are therefore much more experimentally challenging. Also, from an error-correction

point of view, loss of a photon could be confused with an Pauli-X error in some instances.

Much more widely used is the dual-rail implementation, which encodes a qubit using two optical

modes. These modes can be polarisation, spatial modes, orbital angular momentum or time-bins

[63]. Most of the work in this thesis will be targeted towards polarisation and path encodings,

these two are treated similarly as one can be easily converted into the other.

In order to properly define the optical modes, we assume the electromagnetic field to be

quantised in terms of plane waves that extend to infinity in all directions3. Plane waves provide

a relatively simple quantisation in terms of the wave vector, but are not physical solutions.

Localised optical modes can be defined as a superposition of these plane waves, they have well

defined bosonic commutation relations and will be hereafter referred to as the physical modes

representing the qubits.

The computational basis states are defined for two optical modes â1 and â2 as follows:

|0〉L = â†1|0, 0〉1,2 = |1, 0〉1,2 and |1〉L = â†2|0, 0〉1,2 = |0, 1〉1,2 (2.1)

We will assume that these two modes are completely indistinguishable in any other degrees of

freedom and hence we suppress other mode information from our description.

Any linear optical operation on two modes can be described by a passive Bogoliubov trans-

formation of the optical modes, which is a transformation that does not mix the creation and

annihilation operators and can therefore be described as

â†1 → â′
†
1 = α11â

†
1 + α12â

†
2 (2.2)

â†2 → â′
†
2 = α21â

†
1 + α22â

†
2 (2.3)

where the transformation

(
α11 α12

α21 α22

)
is a unitary matrix.

All single qubit rotations can be written as mode transformations on â1 and â2, which can be

performed by the generalised beam-splitter and phase-shift transformations. These two-mode

operations can be described by the transformations of the creation and annihilation operators.

3For the full derivation of the quantisation, see [63].
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The most general U(2) transformation is given by

â†1 → cos θ â†1 − i eiϕ sin θ â†2 (2.4)

â†2 →− i e−iϕ sin θ â†1 + cos θ â†2 (2.5)

Here, the parameter θ describes the reflectivity of the beam-splitter and ϕ determines the phase

shift on the reflected mode of the beam-splitter. A beam-splitter with variable reflectivity

can also be implemented by using a Mach-Zehnder interferometer (MZI) with two balanced

beam-splitters and a phase-shifter, as it is shown in figure 2.1.

1

2

1’

2’

✓ '

Mirror

Beam splitter

Phase shifter

Figure 2.1: Most general transformation between two optical modes, implemented by a Mach-
Zehnder interferometer (MZI) and a phase-shifter on one output mode. Figure adapted from
[64], copyright (1994) by the APS.

It is important to note that not all qubit transformations are rotations in the Bloch sphere.

Some operations, like the Hadamard or Phase gates are reflections with respect to a particular

axis. These transformations can be achieved by adding by an extra mode-dependent phase shift

to a rotation.

Polarisation qubits

Polarisation is a natural degree of freedom to encode qubits as the polarisation transformations

are also generated by the Pauli matrices. It has historically been the most commonly chosen de-

gree of freedom in photonic systems as it is extremely stable in bulk optics [65]. Two orthogonal

polarisation modes are chosen as the computational basis states (eigenstates of the σZ matrix),

usually the horizontal and vertical polarisations (in some chosen reference frame) in the plane

parallel to the direction of the wave vector ~k. The diagonal and anti-diagonal polarisations then

correspond to the eigenstates of the σX matrix and the right and left circularly polarised states

correspond to the eigenstates of the σY matrix. They thus form a complete qubit basis, as they

cover the three orthogonal axes of the Bloch sphere.
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In the notation used previously to define qubits (logical modes) in optical modes we have

|0〉L = â†H |0, 0〉H,V = |1, 0〉H,V = |H〉 and |1〉L = â†V |0, 0〉H,V = |0, 1〉H,V = |V 〉 (2.6)

With respect to the wave vector ~k, the qubit basis states are defined as shown in figure 2.2.

|0i

|1i
|+i|�i

| + ii

|� ii

~k

Figure 2.2: Polarisation encoding of qubit basis states.

Transformations between optical states (i.e. polarisation rotations) can be implemented

using plates of a birefringent material, in which light of different polarisation travels at different

speed through the material [66].

A linear optical element that we will use often in this thesis is the Polarising Beam Splitter

(PBS). This element is made of a birefringent material, and aligned so that the angle of trans-

mission for two orthogonal polarised beams is different, thus it separates an incident beam of

light in two orthogonal beams of polarised light. For example, a PBS oriented in the H-V ba-

sis will always transmit horizontally-polarised photons and reflect vertically-polarised photons.

This corresponds to the mode transformation:

â†H,1 → â′
†
H,1 â†H,2 → â′

†
H,2 (2.7)

â†V,1 → â′
†
V,2 â†V,2 → â′

†
V,1 (2.8)

We can observe that the effect of this optical element on two indistinguishable qubits is to

exchange the vertical mode amplitudes.

In chapter 4 we will use the polarisation encoding to review the creation of entanglement

with linear optical elements and introduce new schemes for the generation of small entangled

states. We will solely use the creation operators and their transformations to describe the

states and operations, as this is the notation used in the Bosonic Simulator4 use to perform

calculations. The creation operators will be written as hmi v
n
j , where the subscript indicates the

spatial optical mode, the letter of the operator (h or v) indicates the logical (polarisation) state

and the superscript indicates the number of photons with said polarisation in that optical mode.

4See appendix E for a brief description of this simulator.
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Path encoded qubits

In this encoding the logical computational basis states are represented by the occupation of one

of two paths:

|0〉L = â†1|0〉1,2 = |10〉 and |1〉L = â†2|0〉 = |01〉 (2.9)

where the notation |ij〉 means i photons in the upper waveguide and j photons in the lower

waveguide (see figure 2.3). The control and manipulation of the photons in this encoding

is accomplished using combinations of beam-splitters and phase-shifters. In section 2.3 we

will explain in more detail how these optical operations are implemented in integrated optical

systems that use this encoding.

|0iL |1iL
Figure 2.3: Path encoding of the logical computational basis states.

Note that even though this type of encoding would imply always having an even number of

waveguides (as we would use two waveguides for each mode) having extra (ancillary) waveguides

as vacuum can be useful, as shown in the probabilistic implementation of a CNOT gate in the

coincidence basis by Ralph et al. [67].

Transformation between polarisation and path encodings

The polarisation and path encodings can be easily and deterministically converted one into the

other using a PBS as can be seen in figure 2.4.

↵|Hi+ �|V i

↵|10i

�|01i
+

PBS

45o

Mirror
↵|Hi+ �|V i

Figure 2.4: Linear optical circuit showing the transformation between polarisation and path
encodings, using polarising beams splitters (PBS) and half wave plate that implement a 45o

rotation on the state. Figure adapted from [18], copyright (2007) by the AAAS.
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2.2.2 Implementation of any U(N) in an optical multiport: Reck et al. scheme

Any lossless experimental linear optical setup can be described by a unitary operator, obtained

by multiplying together the matrix representations of each individual component. However, it is

not so obvious to see that the opposite is true, i.e. that any unitary operator U(N) on N modes

can be implemented by an optical interferometer5. This question was resolved by the proposal of

Reck et al.[64] of an algorithmic proof which shows that any discrete finite-dimensional unitary

operator can be constructed as an n× n multiport. Any unitary operator can be implemented

experimentally in this way as well, as can the measurement of any observable that corresponds

to any discrete Hermitian matrix.

The n × n unitary operator is reduced to a series of 2 × 2 matrices, representing the most

general element of U(2). Recall that this most general element corresponds to a lossless beam-

splitter with a phase-shifter in one output port. Reck et al. show that they can construct an

experiment equivalent to any U(N) matrix by using the generalised beam-splitter in successive

U(2) transformations that together span the N -dimensional Hilbert space. Their proof shows

the equivalence between the tasks of designing an optical experiment that implements an arbi-

trary U(N) matrix and factorising said unitary matrix into a product of block matrices, each

of which can be implemented using beam-splitters and phase-shifters. The successive decom-

position of the U(N) unitary into the series of U(2) operations is equivalent to setting up the

2 × 2 beam-splitters in series. The algorithm proposed is recursive and therefore valid in any

finite dimension. The maximum number of beam-splitters required is
(
N
2

)
= N(N−1)

2 , which

is quadratic in the number of modes. This decomposition is optimal as it has the exact same

number of parameters as needed to fully describe a U(N) matrix.

Figure 2.5: Reck et al. scheme: triangular arrangement of beam-splitters that implements a
U(N) matrix on an optical multiport. Image from [64], copyright (1994) by the APS.

The implementation of all U(N) matrices makes the measurement of any discrete Hermitian

operator possible. To do so, it is only required to implement the unitary that relates the

5The procedure to decompose a unitary matrix into two-level matrices was already well known, but not its
realisation as an optical circuit.

42



2.2. Linear Optics

eigenbasis of the Hermitian operator to the single mode occupation basis. Following the unitary

operator, we will have an array of N detectors, one per optical mode, each corresponding to

an orthogonal eigenstate. Detection of a photon on one of the output modes will correspond to

measurement of an eigenstate of the Hermitian matrix.

Recently, a reprogrammable version of the Reck scheme has been experimentally imple-

mented in integrated optics [43], with variable phase-shifters that allow the implementation of

all possible linear optical protocols up to the size of the circuit (6 modes) involving 35 adjustable

parameters. A series of six-mode experiments are shown [43], they showcase the versatility of

this construction and it is highlighted as a fundamental piece of technology for future linear

optical schemes.

2.2.3 Creating entanglement in Linear Optics

Creating entanglement between qubit modes using only linear optical elements is extremely

difficult. Without the use of extra resources6, the best we can do [68] is a probabilistic entan-

gling gate with 50% success probability. The difficulty of entangling two single photons can

be explained physically because photons don’t interact. The probabilistic entangling gate is

achieved through interference, not interaction [69].

Mathematically, this impossibility of creating entanglement can be explained due to the

linearity of the passive Bogoliubov transformations [63]. If the task of creating entanglement

were possible, the transformation |HH〉 → 1√
2

(|HH〉+ |V V 〉) would be a linear transformation

of the Bogoliubov coefficients. Using the previously defined Bogoliubov transformations we

have:

ĥ†1ĥ
†
2 → ĥ†1ĥ

†
2 + v̂†1v̂

†
2 (2.10)

which cannot be written as the product of two passive Bogoliubov transformations.

However, we have seen that the Reck scheme [64] gives us a recipe to build any unitary

operation onN optical modes usingO(N2) beams splitters and phase-shifters. It seems therefore

that we should be able to implement a quantum computation using such interferometers, as the

gates in a quantum computer can also be described as unitary operations. In particular, the

CZ operation is a 4 × 4 unitary operation on two qubit modes, can’t it be expressed in terms

of two optical modes? The subtlety lies in that the basis of the unitary matrices we are trying

to compare is quite different. A usual CZ gate is written on the basis {|00〉, |01〉, |10〉, |11〉},
which translated to the encoding in optical modes would be {ĥ†1ĥ†2, ĥ†1v̂†2, v̂†1ĥ†2, v̂†1v̂†2}. However,

the N = 4 interferometer operates on the basis {ĥ†1, v̂†1, ĥ†2, v̂†2} and in this basis, the mode

transformation cannot be written as a unitary matrix without mixing creation and annihilation

operators.

2.2.4 Computational complexity of linear optics

Entanglement is a fundamental component for quantum computing [70, 71], the fact that a two-

qubit gate cannot be realised deterministically in linear optics might lead to the wrong conclusion

that a linear optical system is easy to simulate classically. A recent result by Aaronson and

6In chapter 4 we explore how efficiently we can create entanglement using non-vacuum ancilla states.
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Arkhipov [30, 31] explores the computational complexity of classically simulating a linear optical

system and concludes that a model for non-interacting photons not only cannot be efficiently

simulable by a classical computer, but its complexity is far greater than that of NP problems7.

Aaronson and Arkhipov propose the problem of BosonSampling which is the problem of

sampling, either exactly or approximately, from the output distribution of a boson computer. A

boson computer is a model for non-universal quantum computation with non-interacting bosons,

which can be physically implemented using a linear optical network on m modes, into which

we input n identical photons. Four experimental realisations of the BosonSampling problem

have been shown [72, 73, 74, 75].

It has been shown that linear optics with adaptive measurements is universal [2] for BQP.

However, the boson computer is a quantum computing model that cannot implement a standard

quantum algorithm (Shor’s factoring algorithm [76], Grover’s search algorithm [6], etc) and

cannot even do universal classical computation. Yet, Aaronson and Arkhipov’s result provides

evidence that quantum computers have capabilities outside the entire polynomial hierarchy. If

a classical BosonSampling algorithm existed, then the polynomial hierarchy would collapse,

an event regarded as highly unlikely8.

Work by Caianiello [77] first showed that the amplitudes for n-boson processes can be written

as the permanents of n × n matrices. As was first shown by Valiant [78], computing the

permanent of a matrix is a complete problem for the class of counting problems associated with

NP problems9, if an exact efficient classical algorithm existed to solve a problem of this class,

this would imply P=NP. He coined the term # P to describe this class of problems. The key

contribution of Aaronson and Arkhipov is to show that there exists a connection between the

ability of classical computers to solve the approximate BosonSampling problem (drawing a

sample from a distribution that is close to the actual bosonic distribution) and their ability to

approximate the permanent of a random complex matrix10. If there existed an efficient classical

algorithm that solved approximate BosonSampling, this would imply that P#P = BPPNP

and hence the polynomial hierarchy would collapse to the third level.

It is an interesting fact that while BosonSampling is a hard problem and the ability to

solve it efficiently with a classical computer would have serious complexity consequences, the

same problem formulated for fermions lies in P. While the amplitudes of n-boson processes are

given by permanents of n× n matrices, in the case of fermions they are given by determinants.

Despite the similarity of the definitions of permanents and determinant, they are dramatically

different in their computational difficulty; the permanent is # P-complete while the determinant

can be calculated in O(n3) operations (and is therefore in P)11. However, what is even more

remarkable is that the computational difficulty of simulating bosonic and fermionic systems is

7See appendix A for a description of all complexity classes mentioned here.
8More details of what this would mean can be found in appendix A.
9The solution of an NP problem is whether a solution exists, whereas the solution to a # P problem is how

many solutions exist.
10Although polynomial-time algorithms for certain classes of matrix exist [79], an efficient algorithm for general

matrices has not been found.
11It should be noted that this does not imply that quantum computers built from bosonic systems have more

computational power than those built from fermionic systems. The BosonSampling proposal never uses bosons
as qubits, instead it exploits the coherence advantages of a bosonic non-interacting system to build a model which
is very computationally expensive to simulate classically.
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reversed when using the Monte Carlo method for approximating the ground state of a many-

body system. In a bosonic system, the ground state is easy to approximate, while in fermionic

systems, the cancellations between positive and negative terms (what is known as “the sign

problem”) make the ground state very hard to approximate.

2.3 Integrated optics

Politi et al. [56] were the first to implement quantum linear optics on chip. Prior to this work,

quantum experiments in linear optics were made using bulk optics: large scale components such

as beam-splitters and mirrors attached to optical benches, where photons were transmitted

through air (or occasionally via fibre) across the optical network. Bulk optics is an inherently

non-scalable scheme and not sufficiently reliable on a large scale. The development of photonic

waveguide technology [56] permitted the development of optical circuits in which the stability

and control over the optical path length is highly amplified with respect to what can be obtained

in bulk optics, with the added advantage that the circuit size is dramatically reduced. In these

circuits, quantum information is predominantly encoded in the path degree of freedom of the

photon, although polarisation encoding has also been demonstrated [80].

Beam-splitters are implemented in integrated photonics via directional couplers, which are

realised by bringing together the different waveguides close enough so that the evanescent field of

one of them can couple into the other one. By controlling the separation between the waveguides

or the length of the coupling region, different split ratios can be obtained and therefore this

implementation is entirely equivalent to a beam-splitter in bulk optics. Figure 2.6 shows the

implementation of a directional coupler, its schematic diagram in path encoding and a simulation

of the coupling of the path via the evanescent field.

Figure 2.6: Directional coupler, used in integrated photonics to implement the beam-splitting
operation: a. Schematic diagram of the directional coupler. b. Optical field propagation
simulation with vacuum in the bottom input port. Figure from [81], copyright (2011) by the
IET.

Variable phase-shifters can be implemented in integrated circuits, providing complete con-

trol over the phase of the qubit. For the silica-on-silicon materials used by the Bristol Photonics

group [81], the easiest way to implement reconfigurable phase-shifters is by using thermo-optical

switches. The thermo-optical switches use resistive elements fabricated on the surface of the
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chip, that via the thermo-optical effect can provide a change of the refractive index n by raising

the temperature of the waveguide structure by an amount of the order of 10−5K. The main

drawback of the thermo-optical switches is their slow reconfiguration times of milliseconds.

New fast-switches have been proposed in different material systems for integrated optics, such

as lithium-niobate [82, 83] which supports an electro-optic effect. Such switches have reconfigu-

ration times of the order of nanoseconds. In appendix G we give a table comparing the switching

speed and switching loss of different state-of-the-art switches compatible with integrated optics.

Beam-splitters with variable reflectivity can be achieved by combining directional couplers

and variable phase-shifters in a MZI configuration [65] (see figure 2.7). Complete control over

the relative phase and amplitude of the two paths in dual rail encoding can be achieved. This

MZI will act as a beam-splitter with variable reflectivity and is the basic building block to

construct more complicated networks on chip. The recent experimental realisation of the Reck

scheme [43] uses an array of these elements to perform a general unitary on N modes.

Figure 2.7: MZI constructed in integrated optics with two directional couplers and a variable
phase-shifter. Figure from [81], copyright (2011) by the IET.

Quantum interference can be studied with this device by looking at the visibility of the

Hong-Ou-Mandel (HOM) [69] dip in a two-photon experiment. The indistinguishability and

purity of two single-photon states can be assessed by making them interfere at a beam-splitter.

By changing the relative delay of the photons in arriving at the beam-splitter, a dip in the rate

of detecting one photon at each output of the beam-splitter can be observed in the case of indis-

tinguishable photons when the delay is near zero, i.e. when both photons arrive simultaneously

at the beam-splitter. This study was done by Matthews et al. [57], where they changed the

relative delay by continuously varying the relative phase φ between the two paths, their results

can be seen in figure 2.8. The visibility of the HOM dip is plotted against the phase shift,

showing both the theoretical fit (solid line) and experimental data. There are two insets that

show the HOM dip with a high visibility of 98.2 ± 0.9% for a reflectivity of 48.4 ± 0.5% (left)

and a low visibility of 12.9± 0.9% for a reflectivity of 94.1± 0.2% (right) visibility.

Integrated photonics significantly reduces the difficulty of realising optical experiments. The

complicated process of designing and implementing sophisticated interferometers in bulk optics

becomes much easier as the optical networks can be etched onto a chip that needs no further

alignment once made. Integrated implementations of the key components of photonic circuits

have been realised, obtaining very high fidelity results [56] that show the potential of this type

of implementation for linear optics. The miniaturisation and scaling of the optical circuits

allows for the creation of a modular architecture in which to perform quantum computation.
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Figure 2.8: Visibility of the Hong-Ou-Mandel experiment. We can observe how coincidences
disappear as the photons are made temporally indistinguishable. Figure from [57], copyright
(2009) by Macmillan Publishers Limited.

A modular technology for the quantum computer will be key for boosting its performance and

allow for hardware reconfiguration. In chapter 5 we described a linear optical architecture

proposal which has been created with integrated photonics in mind.

2.4 First proposals for Linear Optical Quantum Computing

In previous sections we have reviewed the basic operations of a linear optical system and showed

how it is not possible to create a deterministic entangling gate strictly using these operations.

In fact, prior to the work of Knill, Laflamme and Milburn (KLM), it was believed that in order

to achieve a two qubit gate, it was necessary to use a non-linear material for any practical

implementation of optical quantum computing. A CZ entangling gate could be achieved by

using a cross-Kerr non-linear material [63]. Interaction of the photons with this material for long

enough time, would implement a phase-shift dependent on the state of the photons. However,

it was found [84] physically impossible to create cross-Kerr non-linearities large enough while

keeping the noise levels low enough for performing quantum information tasks.

The alternative, proposed in the KLM [2] paper, was to artificially create the necessary

non-linearity by using measurement. This measurement-induced non-linearity [85] yields non-

deterministic entangling operations, which would in principle not seem sufficient to be able to

perform large computations. However, a series of proposals have shown how a full linear-optical

quantum computer can be constructed with a polynomial number of resources.
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2.4.1 The Knill, Laflamme & Milburn protocol

In their seminal paper of 2001, Knill, Laflamme and Milburn (KLM) showed [2] that opti-

cal quantum computation was possible using only linear optical elements (beam-splitters, phase

sifters, single photon sources and photo-detectors with feedforward) if one allowed for probabilis-

tic gates. The probabilistic two-qubit gate uses the quantum interference of ancillary photons

at a beam-splitter and single-photon detection to induce interactions non-deterministically, and

then, after the measurement of the ancillary photons has been performed, one can know if the

probabilistic gate has succeeded according to the detection pattern obtained. To achieve a de-

terministic gate the success probability of the non-deterministic gate can be boosted by using

teleportation.

KLM’s scheme to perform a 2-qubit entangling gate in a near deterministic fashion is a

combination of 3 ideas:

• Using elements of linear optics, perform a non-deterministic entangling gate on two logical

qubits, with high probability of failure. This gate, shown in figure 2.10 implements a

conditional sign flip (CS) by combining two Non-linear phase Shifts (NS), shown in figure

2.9, one in each mode, with overall success probability of 6.25%.

Figure 2.9: Non linear phase shift (NS) on
a single mode. Figure from [2], copyright
(2001) by Macmillan Publishers Limited.

Figure 2.10: Conditional sign flip
(CS).Figure from [2], copyright (2001)
by Macmillan Publishers Limited.

• Improve the performance of this non-deterministic entangling gate by combining it with

quantum teleportation, obtaining a entangling gate that succeeds with probability p =
n2

(n+1)2
, where n is an integer corresponding to the number of photons in a large ancillary

entangled state, created and stored “offline”. Increasing values of n correspond to increas-

ingly complicated teleportation circuits. In figure 2.11 a CS gate with boosted probability

is shown.

• Boost the success probability even further by using quantum error correcting codes, until

the gate is near deterministic, allowing for scalable quantum computation. When the

teleportation gate fails, it has the effect of acting as a Z measurement with a known

outcome on the qubit which was going to be teleported. Therefore, using error correcting

codes that protect qubits against the effects of Z measurements improves the probability

of a successful teleportation. An example of such an encoding is shown in figure 2.12. The

logical qubit can always be recovered as long as the measurement result and the qubit

that was measured are both known.
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Figure 2.11: Conditional phase shift with probability boosted to 25%. Figure from [2], copyright
(2001) by Macmillan Publishers Limited.

|0〉 → 1√
2

(|00〉+ |11〉)

|1〉 → 1√
2

(|01〉+ |10〉)

Figure 2.12: Encoding to protect against Z measurements.

This scheme, however, requires tens of thousands of optical elements per entangling gate to

achieve a high probability of success. And furthermore, the teleportation circuits require the

use of entangled states, the higher the success probability of the teleportation circuit (which

is a function of n), the bigger the entangled state required (the number of photons required

in the entangled state scales as 4n). For example, the gate shown in figure 2.11 has n = 1

and therefore requires a 4 photon GHZ state. In the estimates quoted in their proposal [2], in

order to be able to perform a gate with 95% or higher success rate, they require “300 successful

CZ9/16 gates per logical two qubit gate”. Translating this estimate into the number of Bell

pairs 12 required to perform a single successful logical gate, this scheme requires 6.014 · 106 Bell

pairs per single logical two qubit operation. It is clear that, despite being theoretically scalable,

further improvements were required to make this scheme experimentally feasible.

Improvements on KLM

It is necessary to mention that following the KLM proposal [2] for a full linear-optical quan-

tum computer, several protocols were proposed with slight variations and improved resource

requirements:

• Franson et al. [86] : New teleportation circuits were proposed, which boosted the prob-

12To estimate the Bell Pair equivalent of the multi-photon entangled states required, we have used the most
efficient theoretical linear optical circuits, shown in chapter 4. Full resource calculations for all schemes in this
chapter are shown in appendix B.
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ability of successfully teleporting a qubit to 1 − 1
n2 . However this was at the expense of

having a failure mode that effectively changed the balance of the coefficients of the state,

instead of just applying a Pauli gate, which made the error correction much harder.

• Spedalieri et al. [87] : This scheme is based on the redefinition of the teleported state,

which they take from single-rail to a dual-rail qubit. This small change allows for simple

error detection in the teleported gates.

2.4.2 The Yoran & Reznik protocol

Building on ideas from the KLM proposal, in 2003 Yoran and Reznik proposed a new scheme

[88] that reduced the resources required per logical gate. Their idea, although unrelated with

the MBQC model [33], shares the same concept of pre-preparing states of multiple entangled

photons. The structure of these states is dictated by the form of the quantum circuit that one

wishes to implement (similar to how the cluster state is shaped using Z measurements prior

to performing the computation). They introduce the chain state, shown in figure 2.13, which

manifests maximal pairwise entanglement.

Figure 2.13: Schematic description of a chain state of n+1 photons. Figure from [88], copyright
(2003) by the APS.

Each rectangle in figure 2.13 represents a single photon with its polarisation and path degrees

of freedom represented respectively by the empty and full circles 13. The path degree of freedom

of each photon in the chain is maximally entangled with the polarisation degree of freedom of

the next photon in the chain. Each one of these chain states, represents the world line of a single

photon, meaning that all the operations that are sequentially applied on a quantum circuit, in

this representation would each be applied to a different photon of the chain. A state can be

fully teleported from one end of the chain to the other, and any single qubit operation can be

similarly applied using one of these chains. In order to perform a computation, the relevant

gates are first applied to different chains, and the input states are subsequently teleported in.

In figure 2.14 and 2.15 we can see how a three qubit computation can be translated into a linked

state. Once this state has been built, the three inputs are teleported through the state.

The construction of the states is done step-by-step and they require that the gates used to

build the linked state have a probability larger than 1/2 for the combined process of link/gate

generation. This restricts them to using the teleported CZ gates proposed in [2] with n ≥ 3.

One last trick they propose is to add inert links to each chain. The inert links will be

photons onto which no gate is applied. For each qubit (a chain in figure 2.15) that takes part

in n two-qubit gates (denoted by Gij in figure 2.15), a chain of 2n links is constructed and the

13It is worth noting that this entire scheme can be equally understood in terms of path degree of freedom alone,
with four possible modes per photon.
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Figure 2.14: Three qubit circuit imple-
mented by the photonic states in fig-
ure 2.15. Figure from [88], copyright
(2003) by the APS.

Figure 2.15: Linked photonic state
needed for generating the circuit in fig-
ure 2.14. Figure from [88], copyright
(2003) by the APS.

gates are applied to every second link. The purpose of the added inert links is to prevent the

backwards spread of the failure of gates, avoiding the destruction of gates and links that had

previously been constructed. This allows them to reduce the number of CZ9/16 gates by an

order of magnitude (from about 220 to 23).

The reduction in the number of elementary operations is dramatic. KLM [2] required 300

successful applications of their CZ9/16 per logical gate (that had an intrinsic 5% error), whereas

this proposal only requires five successful applications of CZ9/16 KLM gate per logical two qubit

gate. They estimate that for the successful application of these gates, they require “∼ 23 CZ9/16

applications on average for every logic gate”. However, to use the trick of having additional inert

links, we must also include the application of three CZ4/9 per gate. Translating the number

of gates into number of Bell required to perform a single logical gate we have that this scheme

requires 2.9 · 105 Bell pairs on average per logic gate. This is an improvement of an order of

magnitude with respect to KLM, but it still consumes too many Bell pairs per logic gate to

have a feasible implementation.

2.5 Optical Quantum Computation with Cluster States

As photons don’t interact, entangling operations are very challenging in a full linear optical

scheme, and only probabilistic gates are possible14. The challenge would be diminished if

these gates were allowed to fail, and the procedure could be repeated until all the necessary

entanglement had been created. The cluster state model (presented in chapter 1) poses an

alternative to the circuit model for systems that have unreliable or non-deterministic two-

qubit operations. All the entanglement needed is created when preparing the resource state,

offline. The actual quantum computation is done by performing a series of reliable single qubit

measurements. Therefore this model for quantum computation is particularly well suited to

linear optics. It is then understandable that great improvements in resource requirements were

achieved by tailoring the protocols to this model.

14It was recently shown that the success probability can be taken to unity at the expense of consuming infinite
multi-photon entangled states, see chapter 4.
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2.5.1 The Nielsen protocol

In 2004, Nielsen [89] proposed a scheme for LOQC combining optical quantum computation

with linear optics and cluster states. He used the same ideas as KLM for the entangling gates

(both schemes use CZ gates with probability n2

(n+1)2
), except that he didn’t require the use of

error correcting codes to overcome non-determinism. His scheme results in logical gates that

work deterministically as opposed to the 5% error experimented by KLM’s entangling gates.

The idea he proposes is to build up the cluster state by non-deterministically adding extra

qubits to the cluster state using CZ4/9 and CZ1/4 gates and, once this is achieved, perform

the rest of the operations according to the KLM scheme. The cluster is built by attempting

to add a site connected by a single bond (with success probability p = 2
3 after teleportation)

or attempting to add a site connected by a double bond (with success probability of p = 4
9 , as

two single successful bonds are required). Figure 2.16 shows the procedure of growing a cluster

state by adding a new qubit, S, to it. If this qubit is only linked to qubit B (single bond), we

will have a success probability of p = 2
3 , while if this qubit has bonds to both qubits A and B

(double bond), we will have a success probability of p = 4
9 . It can be calculated that for every

two attempts of adding a site to the cluster, the average number of sites added is 2
9 . The key

idea is that failure of a gate does not destroy the cluster state, it only removes a single qubit

from it.

Figure 2.16: Cluster state construction. A new site S is added, if it only has a bond to qubit B
the process succeeds with probability p = 2/3, but if it has two bonds, one to qubits B and one
to qubit A, the process suceeds with probability p = 4/9. Figure from [89], copyright (2004) by
the APS.

In terms of the resources required to simulate a standard quantum circuit, Nielsen concludes

that the fairest estimate needs 24 successful CZ4/9 gates per entangling gate. Each of these

gates is composed of 70 beam-splitters, 30 photo-detectors and 12 single-photon preparations,

which means that the number of elements required per single entangling gate is O(102), which is

an improvement of 2 orders of magnitude over the KLM proposal. However, Nielsen’s proposal

is still very expensive in terms of the number of Bell pairs required per single logical entangling

gate. Requiring 24 successful CZ4/9 per logical entangling gate means a requirement of 54

8-photon entangled states, which on average need 1.075 · 104 Bell pairs for their preparation. It

is, again, an improvement of 2 orders of magnitude from KLM’s requirements, but it is still a

very expensive logical entangling gate.
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2.5.2 The Browne & Rudolph protocol

In 2005 Browne and Rudolph [90] followed up on Nielsen’s ideas by introducing two so-called

fusion mechanisms that allowed the construction of entangled photonic states (cluster states).

Their proposal has the advantage that they don’t require photon-number discriminating detec-

tors (for one of the gates) or elaborate interferometers with multiple beam-splitters in series.

Also, there is a key difference in the type of interference used for the entangling gates. While

KLM, Yoran and Reznik’s and Nielsen’s approach rely on Mach-Zehnder-type interference [91],

Browne and Rudolph only make use of the HOM coincidence form [69], therefore only requiring

stability over the coherence length of the photons and not needing to maintain phase stability

of the interferometer.

The main resources used are two-photon polarisation-entangled Bell states that can be

obtained via linear optics and photodetection with success probability p = 3
16 from four single

photons15 [92]. They introduce two fusion gates, Type-I and Type-II, which are shown in figure

2.17.

Type-I Type-II

PBS

Polarization 
rotator

Detector

45o

Figure 2.17: Type-I and Type-II fusion gates. Their action of cluster states is depicted in figures
2.18 and figure 2.19. Figure (modified) from [90], copyright (2005) by the APS.

The Type-I fusion gate takes two spatial modes and mixes them at a PBS, then it rotates

the polarisation degree of freedom of one of the output modes by 45o and measures it with a

polarisation discriminating photon counter. The gate succeeds when only one polarised (either

H or V) photon is detected (which happens 50% of the time) and fails if zero or two photons

are detected. When the gate succeeds, the two separate qubits become fused in a single qubit

that inherits all the bonds from the input qubits, but when it fails, the gate has the effect of

measuring both qubits in the computational basis (see figure 2.18). We can map the success

and failure outcomes of this gate to two different evolutions of the qubits in the cluster state.

When this gate succeeds, the unitary operation is a CNOT gate performed between both qubits

followed by a measurement of the target qubit in the computational basis, while if the gate fails,

the evolution would be measurements in the computational basis. The failure outcome would

split any cluster we are trying to build, and therefore this not an optimal gate. In addition, this

gate is not protected against photon loss. As we only measure one of the modes, it could be

15In fact this probability can be boosted to p = 1
4

by using an extra switch and a correction linear optical
circuit [92].

53



2. LINEAR OPTICAL QUANTUM COMPUTING

the case that the gate fails but one of the qubits is lost and leading to the incorrect assumption

that the gate has succeeded. This can introduce a Pauli error in our computation [93].

Browne and Rudolph introduce the use of “redundant encoding”, whereby a single qubit on

the cluster is represented by multiple photons: |φ0〉|0〉+|φ1〉|1〉 → |φ0〉|0〉⊗n+|φ1〉|1〉⊗n. A Pauli

X measurement on the redundant photons would not split the cluster but would rather remove

the photon measured from the redundant encoding and combine the adjacent qubits into one

single qubit that inherits the bonds of the input qubits, maybe adding a phase. Type-II fusion

gates are an evolution of Type-I gates that make use of this redundant encoding to generate

two-dimensional clusters. They take two input modes and rotate each of them by 45o before

mixing them in a PBS. Then, they measure them in the rotated basis. This gate is successfully

applied to a single photon of each of a pair of logical qubits when a single photon is detected

at each detector, its effect is to project the pair of logical qubits into a maximally entangled

state (|φ±〉). When the gate fails (as heralded by zero or two photons in one of the modes),

it performs a measurement on the X basis on each of the photons, removing them from the

redundant encoding (but not destroying the logical qubit).

Cluster states can now be efficiently constructed using these two gates, as can be seen in fig-

ures 2.18 and 2.19. First, linear clusters can be constructed by using Type-I fusion gates (see fig-

ure 2.18), and higher dimensionality can be achieved by fusing linear clusters with Type-II gates

(see figure 2.19). In fact, by using redundant encoding, all gate operations could be made with

the Type-II fusion gate. This has the advantage of not needing photon-number-discriminating

detectors and naturally detecting loss errors. However, as two photons are measured in this

gate, Bell states are not a sufficient resource for building a cluster (a Type-II fusion gate applied

to a pair of Bell states would produce another Bell state if successful) and one would have to use

three-photon clusters instead, which increases the resource requirements but still keeps them

below previous proposals.

Figure 2.18: Successful action of Type-I
fusion gate. Figure from [90], copyright
(2005) by the APS.

Figure 2.19: Action of Type-II fusion gate.
Figure from [90], copyright (2005) by the
APS.

This proposal significantly reduces the number of linear optical elements required to perform

a single successful entangling gate. It moves away from the complexity of the KLM CZ gates

with multiple teleportation procedures and replaces them with a maximum of 4 polarisation

rotators and one PBS, plus two detectors, which are not always required to be number-detecting.

But the savings are not only in the number of linear optical elements. This scheme requires

on average only 52 Bell pairs to implement a two-qubit logical gate. This is a two orders of

magnitude saving with respect to Nielsen’s proposal, and therefore substantially decreases the

complexity of realising LOQC in practice.
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2.6 Parity-encoded optical quantum computing

A crucial feature of the KLM teleported gates [2] is that their failure mode implements a Z

measurement on the qubit that was to be teleported. Protecting against such measurements,

as proposed in [2] can significantly improve the success probability of the computation. In

the parity encoded schemes proposed in [94, 95], an incremental approach to the encoding is

proposed, simplifying the process of gate attempts and recovery, and outlining procedures to

performing a universal set of gates on the encoded qubits.

2.6.1 The Hayes, Gilchrist, Myers & Ralph protocol

This proposal [94] is a variation of the KLM protocol, in which they make use of an incremental

approach to error correction in order to boost probability of success. They use the teleported

gates introduced in [2] with qubits encoded to protect against teleportation failures and com-

putational basis measurements. Their logical unencoded qubits correspond to the polarisation

states of a single photon. The proposed encoding follows the original KLM encoding against

teleporter failures (see figure 2.12), where the logical |0〉 corresponds to a state with even parity

and the logical |1〉 corresponds to an odd parity state. Hence the name of parity encoding.

|0〉(n) ≡ |+〉
⊗n + |−〉⊗n√

2
≡ |even〉(n)

|1〉(n) ≡ |+〉
⊗n − |−〉⊗n√

2
≡ |odd〉(n)

Figure 2.20: Parity encoding. The index n represents the number of component qubits on which
the logical state is encoded.

This encoding of the logical state will protect it against computational basis measurements

on any of the physical qubits, as any such measurement will only reduce by one the level of

encoding. This can be easily explained by noting that 〈0|ψ(n)〉 = |ψ〉(n−1) and X〈1|ψ(n)〉 =

|ψ〉(n−1), where X can be acting on any single qubit. Therefore, a Z-measurement followed by

the conditional application of an X gate leaves the logical qubit in the correct encoded states,

but encoded in one less physical qubit than before.

In this paper they propose an incremental encoding scheme instead of using the concatenated

approach presented in [2]. Component qubits are added to the encoded state incrementally, and

whenever a Z-measurement occurs, the component qubit that has been removed from the state

can be replaced by using a non-deterministic encoding circuit. The procedure for applying the

logical gate follows a repeat-until-success strategy, and the success of the computation reduces

to maintaining an appropriate level of encoding throughout the computation.

To be able to perform universal quantum computation, they need to be able to implement

gates from the set {Xθ, Z, CNOT,Zπ/2}, where Xθ = cos θ21 + i sin cos θ2X. Gates from the

set {Xθ, Z} can be performed easily on the logical qubit. The logical Z can be performed by

applying a Z gate to all physical qubits, while the Xθ can be performed by applying the rotation
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to any one of the physical qubits. The gates {CNOT,Zπ/2} can be performed more efficiently

by applying re-encoding circuits to a subset of component qubits that have had the desired

operation performed on them. A CNOT is performed by first applying a CNOT between a

pair of component qubits corresponding to different logical qubits and then encoding the state

until it has reached the size of the original state. In the event of teleportation failures, the

entire subset of component qubits will be lost and the CNOT should be reattempted again on

another qubit. Once the re-encoding has been achieved successfully, the unaltered qubits can

be measured out. Similarly, the Zπ/2 gate is performed by suitably rotating a component qubit

and encoding from the rotated qubit until the subset again reaches the size of the original state.

The authors calculate that in order to obtain an encoded CNOT with 95% success probabil-

ity, they require on average 90 physical CS gates and 32 elimination circuits. This is a significant

improvement over the 1000 elimination circuits and less than 2250 CS circuits required to obtain

the same encoded gate using the original KLM proposal. In terms of the entanglement con-

sumed, we can calculate that they would require 1.92 · 103 Bell pairs per single encoded logical

gate. This is an improvement of one order of magnitude over Nielsen’s scheme [89], which was

the best proposed scheme at the time (2004).

2.6.2 The Gilchrist, Hayes & Ralph protocol

An improvement on the parity-encoded scheme [94], can be achieved by using the fusion gates

proposed in [90]. The new scheme presented in [95] makes use of some features of cluster state

computation, but essentially retains the KLM circuit-based approach.

The linear optical gates used for encoding and building the resource state for teleportation

are the fusion gates Type-II and Type-I. A rotated version of the Type-II gate (without the input

wave-plates) can be used to add n qubits to an encoded state |ψ〉(m) by fusing it to a resource

state |0〉(n+2). If the gate succeeds, the logical state will be encoded in m + n physical qubits,

whereas if the gate fails the outcome will be the product state |ψ〉(m−1)|0〉(n+1) on which the gate

might be attempted again. The Type-I gate, combined with a Hadamard operation, can also be

used to build up the resource state. This approach has the advantage over using the Type-II,

that it only loses one qubit for both input states. However it has the big disadvantage that

whenever it fails, it completely destroys all entanglement in both input states. A combination

of both these approaches is deemed the most resource efficient [95].

Gates from the set {Xθ, Z} can be performed deterministically on a logical qubit in the same

manner as in the previous version of the parity encoded scheme [94]. The Zπ/2 and CNOT gates

are performed non-deterministically on the encoded qubits. It is important to note the difference

with the previous version of this scheme, where gates are performed on a subset of component

qubits that are then re-encoded. The Zπ/2 gate is performed by first applying the Zπ/2 gate

to one of the physical qubits and then fusing the logical state to a pre-prepared resource. The

CNOT gate is performed by first entangling the control and target states to a resource state

(using one Type-I and one Type-II fusion gates) and subsequently measuring the remaining

qubits of the control qubit in the computational basis. Depending on the parity of the result,

a bit flip might need to be applied. A circuit diagram of both these operations can be found in

figure 2.21.
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Figure 2.21: a) Implementation of a Z90 (= Zπ/2) gate on the encoded parity state. b) Imple-
mentation of a CNOT gate on the encoded parity state. The Type-I and Type-II fusion gates
are denoted by fI and fII respectively. The thickness of the lines represent the encoding level.
Figure from [95], copyright (2007) by the APS.

The resource consumption of this scheme depends heavily on the level of encoding chosen.

It is necessary to estimate the optimal level of encoding, as if the level is too low there is

a significant probability that the logical state might be destroyed after a series of failures.

However, increasing the level of encoding is costly and might incur in unnecessary resource

waste. The authors compute the level of encoding and resources required to achieve an encoded

CNOT gate with different success probabilities. In order to have the fairest comparison possible

with previous schemes, we chose to compare the resources consumed by the CNOT gate with

96.4% success probability, as it is the closest to the 95% CNOT used in other schemes. For this

gate, logical qubits require 6 levels of encoding, for which 1.84 · 103 Bell pairs are required. We

can see that this is a slight improvement on the resources needed in the previous parity encoded

scheme, with the advantage that higher success probabilities can be achieved for the entangling

gates.

2.7 Percolation-based Linear Optical Quantum Computing

All the schemes mentioned so far have one thing in common: they all rely on a repeat-until-

success strategy. This means that each step in the computation is going to be repeated until the

successful gate is achieved. This strategy, however, implies that the procedure does not have a

fixed physical depth. Fixed physical depth is necessary, as in a circuit with unbounded depth

photons will have to be constantly re-routed, requiring a large network of switches. For current

technologies photon loss remains a significant challenge, and it is the switching networks that

mostly contribute to photon loss, with about one order of magnitude more loss than any other
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component [96, 97, 98]. Furthermore, each photon will have a different error rate, which will

depend on the number of linear optical elements and switches it has travelled through. This

inhomogeneity in the error rates has an impact on the error and loss correcting codes that can be

applied, making it potentially extremely challenging. The fusion gates have a 50% probability

of failure (which is heralded by detection patterns in the photon detectors) and to keep track of

that, the design would have to implement large amounts of active-switching type of feedforward,

that would allow for the quantum system to be routed into different configurations depending

on the success or failure of the entangling gates in order to build the intended photonic state.

This obstacle of active feedforward can be overcome by using results of percolation theory, as

proposed in [99].

The proposed way of constructing a cluster state in percolation based models [99] is by in-

tegrating together, via the fusion gates, smaller clusters of entangled photons (micro-clusters),

that are more easily produced. What makes percolation models so distinct from previous strate-

gies is that they propose a ballistic construction of the cluster: the physical-layer entangling

gates are attempted once and only once. With the exception of the very last reconfigurable

measurement needed for MBQC, the operations that one photon will go through are completely

mapped before hand and no control needs to be applied. Percolation-based cluster state schemes

are applicable to any physical system with a probabilistic component either in the presence of

qubits or in the implementation of entangling gates. These would respectively correspond to

site or bond percolations models. Examples representative of site percolation are Mott hole

effects and optical lattices [100], while bond percolation instances are found in atoms in optical

cavities [101] and photonic systems [102]. These percolation models, however, assume the abil-

ity to create small entangled states (GHZ states) on demand. This is a stringent demand, and

for linear optics it is still work in progress.

2.7.1 Percolation theory

The phenomenon of percolation is studied in classical statistical mechanics and concerns the

behaviour of connected clusters in graphs that have lost some of their bonds (and/or sites) due

to a randomised process occurring with a probability p. In figures 2.22, 2.23 and 2.24 we can

see an example of such randomised process and the different regimes that exist depending on

the value of p. In this example we demonstrate site percolation, where in a regular rectangular

lattice, each site is coloured with probability p and left blank with probability 1 − p. We can

see that for low values of p the lattice is almost all fully occupied by the empty sites, whereas

for high values of p, almost all sites are occupied and connected in a giant cluster that spans

the entire lattice.

At the centre of percolation theory is the idea of a percolation threshold pc which dictates the

global properties of the lattice. The size of the connected components in the lattice will depend

almost exclusively on the value of p with respect to the critical value pc. We can differentiate

two distinct phases in the percolation, sub-critical p < pc and super-critical p > pc, shown

in figures 2.22 and 2.24 respectively. In the case of small lattices such as the one presented

as an example, the transition between phases is smooth due to boundary effects, however, for

infinite lattices, there are two very distinct phases of the system differentiated by a clear phase
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Figure 2.22: p = 0.20. Sub-
critical regime.

Figure 2.23: p = 0.55. Crit-
ical regime.

Figure 2.24: p = 0.90.
Super-critical regime.

transition.

The main result in percolation theory is that above the percolation threshold, there always

exists an infinite crossing cluster that spans the entire lattice. For p < pc, all clusters in the

lattice are finite and the biggest connected component has a size that scales as O(logN) [103],

N being the linear dimension of the lattice. For p > pc, the size of the biggest connected

component scales as O(N). This fact can be used to easily assess if a particular instance of a

percolation problem is in the sub-critical or super-critical regime when the percolation threshold

is unknown. Another important result which is closely related is that the correlation length of

the lattice is finite in the subcritical regime, so there is an exponential decay of correlations,

whereas in the supercritical regime the correlation length is infinite. In figure 2.25 we present

the two most significant signatures of percolation.
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Figure 2.25: Most significant percolation signatures. (a) Scaling of the biggest connected com-
ponent as a function of the percolated lattice size. This biggest component scales as logN where
N is the size of the lattice when we are in the sub-critical regime, but it scales as O(N) in the
supercritical regime, where it becomes a spanning cluster that covers most of the lattice. (b)
Probability of percolation as a function of p. The percolation threshold marks a phase transition
between the sub-critical and super-critical phases.

In the context of one-way LOQC, the regular lattice corresponds to a highly-connected

cluster state, whose bonds/sites are effectively removed due to failure of probabilistic entangling

gates together with photon loss. The percolation threshold marks a phase transition in the

computational power of the resource state generated [104, 105], which, assuming BQP 6=BPP,

distinguishes the states that can be used for universal quantum computation from those which
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cannot. It has been proven [105] that the entanglement width [37, 38] of the cluster state can

be used as an order parameter in the phase transition in computational power. Only lattices

in the super-critical regime have an infinite correlation length, which therefore implies that

the requirement on the scaling of entanglement [37, 38] mentioned earlier is satisfied in this

regime. The sub-critical regime cannot yield a universal resource and, in fact, can be simulated

classically [104, 105].

A key point is that in the case of these engineered systems, the randomised process that

creates a percolated lattice does not relate to the classical probabilistic parameters of a physical

model, but rather it arises from the statistical character of measurement in quantum theory.

It is also important to note that the statistical nature of the gates applied might not only

affect the existence of a bond between the site qubits, but also the existence of the sites them-

selves, and therefore the model might not be pure site/bond percolation model16. There exist

mixed site-bond percolation models which are a natural generalisation from the pure percola-

tion models. In these generalisation, sites and bonds are allowed to be randomly occupied with

different probabilities (ps and pb respectively), and it reduces to the pure model when ps = pb.

The percolation threshold is now a critical curve in the plane (ps, pb). The general shape of

this curve is not yet known. Different proposals have been put forward [106, 107], which match

very well some lattices, however the extensive numerical results shown in [108] show that a

relationship describing all lattices has not yet been found.

2.7.2 The Kieling, Rudolph & Eisert protocol

The protocol that Kieling, Rudolph and Eisert [99] put forward proposed a change of paradigm

for LOQC. All previous proposals had assumed large amounts of active switching, where the

quantum systems were re-routed at will into different possible coherent interactions with other

systems in order to cope with the probabilistic nature of the linear optical gates. In this proposal

[99], it was shown that it was possible to eliminate all active feedforward once initial pieces of

cluster state had been obtained. These pieces were used as the building blocks of the cluster

state, using fusion gates [90] in order to obtain correlations between them.

The building procedure is ballistic, meaning that it is only attempted once. Small clusters

of photonic states are fused together and the resulting lattice is processed forward without

any re-routing of the quantum states. As the fusion operations have a success probability of

50%, the cluster that is obtained by this procedure has missing links, it is an instance of bond

percolation in the chosen lattice. It is worth remembering that the probability of missing links

is directly related to the efficiency of performing Bell measurements in linear optics17.

The proposed way to deal with the randomness of the lattice is to coarse-grain the underlying

percolated lattice into a logical lattice where logical qubits correspond to blocks of the percolated

lattice, as shown in figure 2.27. Some classical computation is needed to make use of the

renormalised blocks, as inside each of these blocks we need to identify a series of crossing paths

that connect through the boundaries of the lattice to adjoining renormalised blocks. From

16A similar effect occurs when we consider models with randomised processes for the occupancy of both sites
and bonds. For example, probabilistic entangling gates in combination with photon loss.

17See chapter 4 for a more in depth explanation of the maximum efficiency on Bell state discrimination.
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Figure 2.26: Building a cluster state from small photonic clusters. Successful fusion gates are
denoted by blue ovals and failed fusion gates by red ovals. Note that the fusion gates represented
here are on a rotated basis, which is described in detail in chapter 5, figure 5.4.

percolation theory [109, 103] we know that all these paths are within the spanning cluster.

Figure 2.27: Renormalisation procedure: blocks of the percolated lattice give rise to sites in the
renormalised lattice. Figure from [99], copyright (2007) by the APS.

The spanning cluster (infinite-crossing cluster in the thermodynamic limit of the super-

critical regime) can be identified using polynomial time classical algorithms, which is an efficient

process in the system size. Algorithms such as the Hoshen-Kopelman algorithm [110] can

identify the crossing clusters in each block using O
(
k3
)

steps, where k is the block size.

To reduce the spanning cluster to a regular lattice, it suffices to find “T-junctions” (or

three-way connections) and use these to build an hexagonal lattice [104, 105] (see figure 2.28).

A hexagonal lattice can be used to perform MBQC, although it might be preferable to reduce it

to a square lattice. All unused qubits can be cut out using X and Z measurements appropriately.

Once we have our percolated lattice, the sequence of single-qubit measurements required

for MBQC can be determined by an offline classical computation. This scheme reduces con-

siderably the amount of feedforward needed and has, at most, a sub-linear overhead per qubit

in comparison to deterministic gates. For this logical lattice to be the resource required for

MBQC, it is necessary that is is in the supercritical regime in order to have the appropriate

scaling of the entanglement width.
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Figure 2.28: Example of a renormalisation of a percolated rectangular lattice into an hexagonal
lattice. The left lattice shows the percolated lattice. In the lattice on the right, light grey qubits
have been measured in the Z basis and red and blue qubits in the σX basis. Figure from [104],
copyright (2007) by Springer.

In their proposal [99], Kieling, Rudolph & Eisert first show how it is possible to build a

cubic 2-dimensional lattice using 7-qubit clusters as the initial resource. They then show how

this resource can ultimately be reduced down to a 4-qubit cluster. Techniques both to increase

the probability of occupancy of a bond p and to decrease the critical probability pc (also known

as percolation threshold) are used.

From the beginning, they consider 3-dimensional lattices. The advantage of 3-D lattices

is that they have more favourable percolation properties, i.e. a lower percolation threshold,

for lattices of the same correlation number (vertex degree). In the first instance they choose

to build a cubic lattice, which has a critical probability pc = 0.249 and coordination number

6. As the fusion probability is 50%, starting from 7-qubit star cluster and aligning each arm

along one axis yields a lattice in the super-critical regime. They show that the overall resource

requirements of O
(
L2+3ε

)
7-qubit cluster states (where L is the size of the renormalised block

and ε can be chosen arbitrarily small), is only a sub-linear overhead with respect to deterministic

gates (O
(
L2
)
).

To further reduce the size of the initial resource, they turn to the diamond lattice as it

is the 3-D lattice with lowest coordination number (vertex degree 4) and a bond percolation

threshold of pb = 0.389. Percolating the diamond lattice would require 5-qubit star clusters; the

success probability of the fusion gates used to build up the cluster is 50%, which is well above

the percolation threshold, ensuring the existence of the spanning cluster. To further reduce the

initial resource needed, they turn to the concept of the covering lattice, which is a lattice that

has a site localised on each bond of the original lattice, and each such site is connected to all its

closest neighbours. From percolation theory, it is known that the bond percolation threshold of

a lattice is equivalent to the site percolation threshold of its covering lattice [111, 109]. Thus,

they can use 4-qubit clusters (which have the connectivity of a complete graph, i.e. GHZ states)

to build the covering lattice of diamond, the pyrochlore lattice, by fusing neighbouring corner

qubits. This lattice, despite not being two-colourable, can be reduced to a universal resource
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state [99].

Finally, they also address other imperfections in the lattice such as the loss of photons once

the cluster has been created. To correct such imperfections, they use the standard technique in

MBQC of measuring all the surrounding qubits in the Z basis, effectively removing the lost qubit

from the cluster. They perform numerical simulations showing that they can tolerate losses up

to 10% using a heralded loss model18. They suggest two strategies to more efficiently cope with

loss. The first is fixing the block size, which would have an effect on the site occupancy of the

logical lattice. Then fault-tolerant schemes [55] could be used above the respective fault-tolerant

threshold [112]. The second strategy is to use loss-tolerant encodings such as the tree encodings

introduced in [113] in the initial states to suppress photon loss.

It is important to compare the resource requirements of this percolation scheme with the

other repeat-until-success strategies. The authors show [99] that the overhead in resources is

only sub-logarithmic in comparison to having deterministic gates. When calculating resources

for previous schemes, we calculated the number of Bell pairs consumed per single successful

CZ gate. In the percolation scheme, individual CZ gates are not realised, and the analogous

operation to a successful CZ gate is the formation of a bond between two neighbouring logical

qubits (renormalised blocks).

Figure 2.29: Dependence of the diamond lattice block size k3 on the size L of the renormalised
lattice. Figure from [99], copyright (2007) by the APS.

The most economic percolation scheme proposed in [99] is building the pyrochlore lattice

from 4-qubit cluster states. Each of these 4-qubit clusters require on average 12 Bell pairs

to be built. When considering a renormalised block, which is made out of k3 physical qubits

and already has all correlations to neighbouring renormalised qubits, we can estimate that the

number of Bell Pairs required per single renormalised block is ∼ 12k3. The values for the

renormalised block k depend on the size of the renormalised square lattice as shown in figure

2.29. It is clear the the resource consumption of this percolation protocol is higher than the

most efficient of repeat-until-success strategies. Although more resource-efficient schemes can

be proposed (chapter 5), there is a price to be paid for a ballistic strategy that requires no

re-routing.

18Note that a heralded loss model is not experimentally justifiable, as there is no witness of the loss of a photon
until a detector fails to measure a photon.
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2.8 Discussion

In this chapter we have a presented a literature review of LOQC. We have discussed the linear

optical operations that can be used for the processing of quantum information and particu-

larly focused on integrated optics as a promising physical implementation. We have seen that

entangling two-qubit gates are very difficult to implement in linear optics, as photons don’t

interact, and deterministic entangling gates cannot be achieved [114] unless an infinite amount

of resources is used [111, 115]. One way to get around this problem is to perform prepare small

entangled states that can be used as resources in quantum information protocols. In chapter 4

we will present a number of schemes to generate this small entangled states.

In this chapter, we have also reviewed in detail all proposed protocols for LOQC from the

original KLM [2] to the most recent percolation-based approaches. These protocols use different

techniques and resources, but in order to compare them fairly we have calculated the number of

Bell pairs required per single entangling gate in each case. This comparison, which is provided

in detail in appendix B, shows that, although the number of resources required has gone down

since the first proposals, most of the repeat-until-success schemes consume too many resources

to be experimentally viable. The percolation-based approaches are the most promising as they

have a fixed physical depth, i.e. the number of optical elements each photon encounters in its

optical path is bounded. This is necessary to have bounded loss rates as photons don’t have

to be constantly re-routed though switching networks and it makes the experimental design

much more amenable. In chapter 5 we will present a novel percolation scheme in which we have

lowered the initial resource requirements to only 3-GHZ and Bell pairs. This scheme, unlike

Kieling et al ’s [99], is built using loss tolerant gates exclusively. On top of these advantages we

also show that it is at least an order of magnitude more resource efficient.
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CHAPTER 3

SIMULATION OF STABILIZER COMPUTATIONS

3.1 Introduction

The stabilizer formalism was introduced [116] as a description of a certain subclass of quantum

computations. It has proven to be extremely useful for analysing and understanding certain

processes, most important of all, error-correcting codes. The key idea of the stabilizer formalism

is to work in the Heisenberg picture [117], that is to work with operators rather than quan-

tum states. Not only can the states themselves be described by operators, but the quantum

operations they undergo are also described by the evolution of the operators rather than by

the evolution of the states themselves [117]. Only a subclass of all possible quantum opera-

tions (local Clifford operations) can be described using this formalism; this subclass, however,

contains some very important processes. In particular, the stabilizer formalism can be used to

describe and study some quantum protocols, such as teleportation, the GHZ paradox, linear

error-correcting codes and superdense coding [116].

The focus of this chapter will be the simulation of stabilizer computations, which can be

efficiently performed on a classical computer [117]. We also make a brief mention of their

main application, quantum error-correcting codes. For the most part we are concerned with

simulation efficiency as well as methods that allow the visualisation of the computations. This

proves a very useful tool to gain insight into the inner structure of different algorithms. Any

process that can be described in the stabilizer formalism can be simulated graphically, which

leads to a better understanding of the process itself. The techniques for simulating stabilizer

computations are extremely useful when considering protocols to build cluster states for MBQC

and understanding quantum error correction procedures, which are two crucial steps for the

construction of a fault-tolerant linear optical quantum computer. The implementation of the

techniques described in this chapter as a simulator (functions of which are detailed in appendix

D) has been essential for obtaining some of the results in chapters 5 and 7.

In this chapter, sections 3.2 and 3.3 are a literature review based on [116, 118, 117, 70, 119,

120, 121, 122, 123, 38]. Section 3.4 contains adaptation of the work in the cited papers, distilled

in algorithms to use in a computer simulation, this last section is my own work. Throughout this

chapter there will be a running example illustrating the concepts explained. These examples

will be shown in boxed spaces for clarity.
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3.2 Stabilizer Formalism

A pure quantum state1 can be described by its vector representation in Hilbert space: |ψ〉 ∈ H.

However, there is an alternative representation, in which quantum states are described by the

operators they are the +1 eigenvalue of, and that is the Stabilizer Formalism [116]. Some

examples are:

|0〉 →+ 1 eigenvalue of Z,

|1〉 →+ 1 eigenvalue of − Z,
|+〉 →+ 1 eigenvalue of X,

|−〉 →+ 1 eigenvalue of −X
|00〉+ |11〉√

2
→+ 1 eigenvalue of X1X2 & Z1Z2.

More generally, we say that |ψ〉 is the +1 eigenvalue of some operators and it is stabilized

by them. By stabilize we mean that that if we apply these operators to the state, the state

will remain unchanged. The stabilizer formalism is restricted to states that can be stabilized

by strings of Pauli operators [118].

The power of the stabilizer formalism comes from the use of group theory. The group that

describes all the operators in the formalism is the Pauli group Pn on n qubits. This group

is composed of tensor products of all Pauli matrices (including the identity matrix) over each

of the qubits, with the multiplicative factors of ±1 and ±i. The Pauli matrices form a closed

group with very simple commutation relations. For example, the Pauli group for one qubit is

P1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

The Pauli group on n qubits Pn is defined by the tensor of the n Pauli groups for one qubit;

Pn ≡ P1 ⊗P1 ⊗ · · · ⊗P1.

Using this group, we can define stabilizers more precisely. Let S be an Abelian subgroup of Pn,

we define VS to be the set of all n qubit states that are stabilized by all the elements of the

group. This means that

S stabilizes VS ∈ H ⇔ VS = {|ψ〉 ∈ H : Gi|ψ〉 = (+1)|ψ〉 ∀ Gi ∈ S}.

Therefore we can describe a particular subspace of qubit states VS by its stabilizer group S.

The stabilizer group S must be Abelian, since only commuting operators can have simultaneous

eigenvectors. We can reduce the representation by describing the group (or subgroup) by its

generators. The generators of a group are the smallest set of independent elements of the group

that can be used to produce all the other elements belonging to that group. This is the most

compact way of describing a group [70]. We will use the notation S = 〈G1, . . . , Gk〉, where k is

the number of generators of the group. It should be noted that to see if a particular vector is

1There is a version of the stabilizer formalism that includes mixed states [120], but we don’t review it here.
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stabilized by a group S, it suffices to check that is stabilized by each one of the generators, as

if it is stabilized by the generators, it will certainly be stabilized by products of the generators.

The number of generators of the group also contains the information of the number of basis

elements that span VS .

The description of both states and processes is done through the evolution of the stabilizer

operators. The application of a unitary operator U to a quantum state ∈ VS (described by the

stabilizer group S) can be described in terms of operators as the conjugation of each generator

of S, Gi with U :

|ψ〉 = Gi|ψ〉, |ψ〉 → U |ψ〉 ≡ Gi → UGiU
† for all i. (3.1)

This transformation could take the Pauli operators in the stabilizer to a large class of unitary

operators. However, given that the states that can be described by the stabilizer formalism are

eigenstates of the Pauli matrices, the stabilizer formalism only considers a restricted class of

unitaries: the gates that leave the Pauli group fixed under conjugation. This set of operators

form a group N(P), the normaliser of the Pauli group, which is usually called the Clifford group

for its relation to the usual Clifford groups [124, 125, 126].

N(P) = {H ∈ Pn : HGH† = G ∀ G ∈ P}.

The group is generated by the operators Hadamard (H = |+〉〈0|+ |−〉〈1|), Phase (S = |0〉〈0|+
i|1〉〈1|) and CNOT (CNOT = |0〉c〈0|⊗ It + |1〉c〈1|⊗Xt). The matrix description of these gates

is given in section 3.2.3.

The number of operators needed to describe a stabilizer state is given by the following

theorem:

Theorem 1. Let S = 〈G1, . . . , Gk〉 ∈ Pn where k is the smallest number of generators for S,

then the dimension of the subspace stabilized by S is dim VS = 2n−k.

Proof. See [70] for proof.

When k = n, the stabilizer group describes a unique state state, whereas if k < n there are

extra degrees of freedom. In many error correction codes, these extra degrees of freedom are

used to encode a protected logical qubit (see subsection 3.2.2).

State transformation is also described in terms of operators: there are two type of transfor-

mations we might want to do on our states, unitary transformations and measurements.

• Unitary transformations: The unitary transformations (|ψ〉 → U |ψ〉) that we can do

on the quantum states are restricted to operations on the Clifford Group. Therefore if

|ψ〉 ∈ VS is stabilized by S = 〈G1, . . . , Gk〉, then |ψ′〉 = U |ψ〉 ∈ V ′S is stabilized by

S′ = 〈UG1U
†, . . . , UGkU

†〉.

• Measurements: We consider an observable A ∈ Pn. The projector associated with

this observable is defined as Pm = 1
2 (I + (−1)mA) with m = 0, 1 being the measurement

result.
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1. A commutes with Gi ∀i ∈ {1, . . . , k}. There is no randomness in the measurement

result as the quantum state is an eigenstate of the observable measured. Therefore if

|ψ〉 ∈ VS is stabilized by S = 〈G1, . . . , Gk〉, after the measurement Pm|ψ〉 = |ψ〉 ∈ VS

is stabilized by S = 〈G1, . . . , Gk〉.

2. A does not commute with Gi ∀i ∈ {1, . . . , k}. The quantum state is not in an eigen-

state of the observable measured and therefore the measurement outcome is random.

The observable might anti-commute with more than one generator (G1, . . . , Gl), but

we can choose one of them (G1) and multiply all the other non-commuting one by the

chosen one, so that we end up with a set of generators out of which only one of them

anti-commutes with the observable measured (S = 〈G1, G1G2, . . . , G1Gl, Gl+1, . . . , Gk〉).
The observable measured will substitute this non-commuting generator in the sta-

bilizer group multiplied by a phase (−1)m. Therefore if |ψ〉 ∈ VS is stabilized

by S = 〈G1, . . . , Gk〉, after the measurement |ψ′〉 = Pm|ψ〉 ∈ V ′S is stabilized by

S′ = 〈(−1)mA,G1G2, . . . , G1Gl, Gl+1, . . . , Gk〉.

Example:

This is an example to illustrate concepts introduced. We will use the same state through-

out all examples in this section, all of which will appear in boxes such as this one.

We define the stabilizer state ψE with its representation as a stabilizer subgroup SE :

ψE → SE = 〈X1Z2, Z1X2Z3, Z2X3〉. (3.2)

Unitary evolution: An example of a unitary evolution would be the application of a

Hadamard on qubit 2:

SE
H2−−→ S′E = 〈X1X2, Z1Z2Z3, X2X3〉. (3.3)

Measurement of observable A:

• A commutes with all generators:

A = X1X3 ∈ SE ⇒ SE
A−→ S′E = SE . (3.4)

• A doesn’t commute with all generators:

A = X1 /∈ SE ⇒ SE
A−→ S′E = 〈(−1)mX1, X1Z2, Z2X3〉 6= SE . (3.5)

This formalism has been called [117] a Heisenberg representation of part of Quantum Compu-

tation. The operators, rather than the states, evolve in time, and the processing of information

is described by some transformation rules that are to be applied to the operators. It is therefore

completely equivalent to describe the operators as a set of transformation rules rather than

unitary matrices. It suffices to define these operators as transformations of X and Z operators,
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as these generate the Pauli group up to phases.

Operator transformation rules:

H : X → Z, Z → X,

S : X → Y, Z → Z,

CNOT : X ⊗ 1→ X ⊗X, 1⊗X → 1⊗X, Z ⊗ 1→ Z ⊗ 1, 1⊗ Z → Z ⊗ Z,
CZ : X ⊗ 1→ X ⊗ Z, 1⊗X → Z ⊗X, Z ⊗ 1→ Z ⊗ 1, 1⊗ Z → 1⊗ Z.

Any quantum computation on a state ψ ∈ VS involving only Clifford operations and Pauli

measurements can therefore be expressed in terms of the transformation of the operators in the

stabilizer group S.

3.2.1 Gottesmann-Knill Theorem

Theorem 2. A quantum computation involving only state preparations in the computational

basis, Clifford group transformations and measurements of Pauli observables can be efficiently

simulated by a classical computer [117].

The proof of this theorem is implicit in our description of the stabilizers formalism above,

as the method for doing this computation would simply be to keep track of the stabilizer

generators, and this would scale polynomially in n. In section 3.3.4 we will give a full account

of computational complexity of each simulation step.

It must be noted that the quantum computation described here is not universal, as the

set of gates applied does not constitute a universal set. We need to add the π/8 gate (T =

|0〉〈0| + eiπ/4|1〉〈1|) to the gates in the Clifford group to make the computation universal (see

proofs in [70]).

3.2.2 Error correction with Stabilizers

The stabilizer formalism has been particularly useful for representing a subclass of quantum

codes and understanding the structure of said codes. It has been particularly fruitful in the

field of quantum error correction, as it can fully describe several important codes such as Shor’s

nine qubit code [76], CSS codes [127, 128] and topological codes [129, 55]. All these error

correcting codes belong to the class of stabilizer codes C(S): an [n, k] stabilizer code on n

physical qubits is defined [70] as the vector space VS , of dimension 2k, stabilized by the a

subgroup S of Gn, where S has n− k independent generators.

The Hilbert space can be partitioned in subspaces via the eigenvalues of the generators in

the stabilizer set:

H = ⊕s̄Cs̄ , s̄ = (s1, . . . , sk), si = ±1 for all i,

where s̄ is defined as the syndrome vector. Different syndrome vectors are associated with the

different subspaces in which the Hilbert space is partitioned. The classification of any state in

the Hilbert space into one of these subspaces can be done in the following way

|ψ〉 ∈ Cs̄ ⇔ Gi|ψ〉 = si|ψ〉 for all i = 1, . . . , n− k.
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The codespace of a stabilizer group is defined as

C = C(+1,+1,...,+1).

The dimension of the codespace is: dim C = dim Cs̄ = 2n−k for any s̄. This follows from

theorem 1 and implies the existence of t = n− k virtual/logical qubits.

Logical operators for t encoded qubits: We choose H1, . . . ,Ht ∈ Pn so that H1, . . . ,Hk,

G1, . . . , Gk forms a complete and mutually commuting set of independent Pauli elements of Pn.

Our logical Z operators are defined as Z̄i = Hi, and the logical X operators as X̄i ∈ Pn such

that X̄iZ̄iX̄
†
i = −Z̄i and X̄iZ̄jX̄

†
i = Z̄j for j 6= i. These logical operators map codewords to

codewords, i.e. X̄i, Z̄i : Cs̄ → Cs̄.

The uncorrectable errors perform a logical operation on the encoded qubits and they com-

mute with the stabilizer generators, hence they are not detected. They are described by the

centraliser of the stabilizer group S in the Pauli group P, which in this case corresponds with

the normaliser of S, N(S) = {E ∈ Pn : EgE† ∈ S ∀g ∈ S}.
Given an encoded state |ψ〉 in a stabilizer code S, {Ei} with Ei ∈ Pn is a set of correctable

Pauli errors if E†iEj 6∈ N(S)−S (see [70] for proof). The error detection is done by measuring

G1, . . . , Gk ∈ S and obtaining the syndrome vector s̄ = (s1, . . . , sk). We determine: F ∈
Pn such that FGiF

† = siGi for all i. A decoder algorithm is used to determine what is the

error correction that needs to be implemented. The error correction is made by applying F † over

the state with errors. This action corrects the noise as given an error E ∈ Pn such that EPE† =

FPF †, F †E ∈ S therefore the error is corrected.

In chapter 7 we give further details of the error detection and correction procedures, focusing

on some topological codes that are particularly relevant for LOQC.

3.2.3 Stabilizer circuits

Stabilizer circuits are quantum circuits whose action can be described using the stabilizer for-

malism. We re-state the basic components of the stabilizer formalism organised as preparation,

processing and readout:

• Initialisation: Qubits are initialised in the computational basis states: |0〉, |1〉.

• Gates:

– Single qubit Hadamard gate: H = 1√
2

(
1 1

1 −1

)
.

– Single qubit Phase gate: P =

(
1 0

0 i

)
.

– Two-qubit entangling CNOT gate: CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

• Readout: Measurement in the computational basis.
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From the Gottesman-Knill theorem [117], we know that these operations a can be efficiently

simulated in a classical computer. The quantum states that can be prepared using stabilizer

circuits lie on the octahedron [130] shown in figure 3.1. It should be noted that the octahedron

lies inside the Bloch sphere and they only touch at the points corresponding to the eigenstates

of the Pauli matrices.

Figure 3.1: Stabilizer octahedron embedded in Bloch sphere. Image concept from [130], copy-
right (2005) by the APS.

It was shown by Bravy and Kitaev [130], that if we combine stabilizer circuits with some

ancilla qubits prepared in a particular magic state, even if those ancillas are noisy, we can

simulate universal quantum computation. Given that the stabilizer formalism can be efficiently

simulated on a classical computer, magic states are then the resource for quantum speed up for

this model. Recent remarkable results [131] have linked magic states to contextuality, which

provide a fundamental characterisation of uniquely quantum phenomena.

3.2.4 Graph States

Graph states are an important and useful subclass of the stabilizer states. Given an undirected

graph defined by a set of vertices and edges G = (V,E), a graph state is the quantum state

resulting in putting qubits in the |+〉 state at each vertex and performing CZ gates where the

vertices are. It is easy to realise that cluster states, which were defined in chapter 1 as resource

states in the MBQC model [33], are just a subclass of graph states, where the qubits are placed

in a rectangular grid.

The stabilizer operators describing a particular graph state are given by

Ki = Xi

∏

i∼j
Zj , ∀i ∈ V, Ki ∈ Pn where j ∼ i means j and i are adjacent.

It can be easily shown why these are the stabilizers for a graph state (see figure 3.2.4). The

cluster is built by applying CZ gates to qubits initially in the state |+〉. As the stabilizer of the
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initial state is the X operator on every qubit, its action leaves the state invariant.

Example:

|+〉 × |+〉 × |+〉 × Z

|+〉 × × ≡ |+〉 X × × ≡ |+〉 × × X

|+〉 × |+〉 × |+〉 × Z

Commuting a stabilizer operator through the graph building process. Image concept

from Terry Rudolph’s “Introduction to Quantum Information” lecture notes [132].

The commutation of an X operator with a CZ gate generates a correlated Z operator on

the other qubit involved in the CZ gate:

CZ(I ⊗X)CZ = Z ⊗X, (3.6)

which means that after the action of the CZ gates (which belong to the Clifford group as they

can be generated by the multiplication of Hadamards and CNOTs), the stabilizer description

of the Xi operator is
∏
XiZj where j are the adjacent sites to i.

The stabilizer subgroup is defined as S = 〈Ki〉 ∀i ∈ V , and it has n independent generators

([Ki,Kj ] = 0, ∀i, j ∈ V ) for n qubits. This means that the stabilized subspace, according to

theorem 1 is 1-dimensional, and therefore the cluster state is uniquely defined up to a global

phase. An interesting corollary is that graph states do not encode any logical qubit.

Example:

The graph state that corresponds to the stabilizer subgroup SE = 〈X1Z2, Z1X2Z3, Z2X3〉
is

1 2 3

It is not only the case that every graph state has a stabilizer description, but it is also true

that every stabilizer state has a graph state description [121]. We will explain this in section

3.3.2, with the help of a binary representation of the stabilizers.

3.3 Simulation

The Gottesman-Knill theorem gives us a recipe for efficiently simulating stabilizer computations

on a classical computer: represent quantum states by operators and track the computation by

the change of these operators. In this section, we go into further details of this simulation. We

specify the representation of the code in binary, we provide algorithms to link the stabilizer and

graph representation of a state and introduce a novel representation that improves performance.
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3.3.1 Binary representation of a stabilizer code

To implement a code on a classical computer that will allow us to simulate a (non universal)

quantum computation via the Gottesmann-Knill theorem, we need to be able to describe the

stabilizers and the unitary operations on them efficiently in the language of binary vector spaces.

In his thesis [118], Gottesman gives a binary representation for a stabilizer code that allows us

to do exactly that. In this approach, we exploit the homomorphism between the Pauli group

under matrix multiplication, (P1, ·), and a two-dimensional binary vector space under modulo

2 addition, (Z2
2,+). Each stabilizer generator is represented by a string of bits, where the Pauli

operator on each qubit is represented by two classical bits according to the following rules:

I → 00,

X → 10,

Y → 11,

Z → 01.

In this encoding, information about the overall phases of the Pauli operators is lost. We can

recover this information by adding an extra bit string representing these phases.

A set of k stabilizer generators on n qubits is represented by a matrix of 2n rows and k

columns with entries that are either 0 or 1. With a slight abuse of notation, we will denote

the stabilizer matrix that represents the stabilizer subgroup by S. Each column represents a

stabilizer generator gi, the first n rows represent the Z operator on each of the n qubits, and the

last n rows represent the X operator on each of the n qubits. For example, here we show how

a stabilizer would be mapped to a bit string, which would then be a column on the stabilizer

matrix:

X1X2Z3I4Y5 ⇒ 10︸︷︷︸
X1

10︸︷︷︸
X2

01︸︷︷︸
Z3

00︸︷︷︸
I4

11︸︷︷︸
Y5

⇒ 11001︸ ︷︷ ︸
X

| 00101︸ ︷︷ ︸
Z

.

The general form of the matrix S is as follows

S =







z11 z21 . . . zn1 ← q1

z12 z22 . . . zn2 ← q2

...
... . . .

...
...

z1n z2n . . . znn ← qn

x11 x21 . . . xn1 ← q1

x12 x22 . . . xn2 ← q2

...
... . . .

...
...

x1n x2n . . . xnn ← qn

↑ ↑ ↑
g1 g2 gn

(3.7)

where the columns, gi, are the stabilizer group generators in the binary picture and the rows
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correspond to the operators acting on each qubit, qj .

Therefore, in this binary picture, an operator (such as the generators Gi) acting on a group

of qubits is represented by a binary string with 2n bits.

Example:

The stabilizer matrix representation of the state ψE is

SE =




0 1 0

1 0 1

0 1 0

1 0 0

0 1 0

0 0 1




(3.8)

where the columns of the matrix, g1, g2, g3 correspond to the stabilizer generators in the

binary picture.

Two operators A and B commute if and only if their binary string representations a and b,

where (a, b ∈ Z2n
2 ), are orthogonal with respect to the symplectic inner product:

[A,B] = 0 ⇐⇒ aT · P · b = 0, (3.9)

where P is the symplectic inner product on the space Z2n
2 . Its matrix representation is given by

P =

[
0 1

1 0

]
. (3.10)

In this picture, the stabilizer subgroup corresponds to a n-dimensional linear subspace of

Z2n
2 (a matrix of n columns with 2n bits each). The stabilizer subgroup is abelian, which in

the binary picture can be expressed by saying that it is its own orthogonal complement with

respect to this symplectic inner product:

ST · P · S = 0. (3.11)

The generator matrix for the stabilizer state, S, is not unique. Multiplying the generators of

the stabilizer subgroup together produces a new member of the generator group. In the binary

picture this operation corresponds to a change of generator basis. Operationally, a change

of basis of the stabilizer generators amounts to multiplying each sub-matrix (SX and SZ) of

the generator matrix S to the right with an invertible n × n matrix, R, which performs the

basis change in the binary subspace [121]. This is the same kind of operation as changing the

coordinates of vectors in linear algebra, except that here, for convenience, we multiply on the

right.

S ·
[
R

R

]
=

[
SZ

SX

][
R

R

]
=

[
S′Z
S′X

]
= S′. (3.12)
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Example:

Change of basis: An example of change of basis in the generators would be defining a

stabilizer subgroup SF = [g1g2g
′
3] where g′3 = g1 · g3 (or equivalently addition modulo

2), gi being the columns of the matrix representation of SE . As we have only performed

a change of basis by multiplying two of the stabilizer generators together, the matrix

representations of SE and SF are related by the change of basis matrix R

R =




1 0 1

0 1 0

0 0 1


 . (3.13)

The matrix representation of the stabilizer state ψF is

SF =




0 1 0

1 0 0

0 1 0

1 0 1

0 1 0

0 0 1




(3.14)

It is worth remembering that although their representation is different, i.e. SE 6= SF ,

ψE = ψF as both sets of generators stabilize the same quantum state.

The operations on the stabilizer state in its binary representation are just the transforma-

tions of Z2n
2 which preserve the symplectic product. These are a subgroup of the Clifford group

as they don’t include phase changes. This ensures that we remain in the valid stabilizer sub-

space up to overall phases. We will hereafter refer to these operations as Clifford operations, as

they are equivalent in this binary representation2.

SC = Q · S, STC · P · SC = 0⇒ ST ·QT · P ·Q · S = 0, (3.15)

but ST · P · S = 0. Therefore, any Clifford operations on the stabilizer matrix can be described

[121] by a 2n× 2n matrix Q that satisfies

QT · P ·Q = P. (3.16)

The local Clifford group, which acts individually in each qubit, is generated by the operators

X, Y, Z, H, P . If no entangling gates are applied (which would act on the operators of two

qubits at a time) the matrix Q, which represents the action of the local Clifford group, has a

2When we implement these operations in the simulation described later in the chapter, we include extra binary
bits to account for the phases.
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block structure, and each block has diagonal structure.

Q =

[
A B

C D

]
⇒ Qi =

[
Aii Bii

Cii Dii

]
, (3.17)

where the matrices A, B, C, D represent transformations between the SZ and SX subspaces:

A : SZ → SZ B : SX → SZ

C : SZ → SX D : SX → SX .
(3.18)

As Q implements Clifford operations, which are invertible, this implies that each sub-matrix

Qi is invertible. With all these considerations, we can write the most general local Clifford

transformation of the stabilizer group in the binary formalism as

S′ = Q · S ·R. (3.19)

3.3.2 Reduction to graph states

As we have briefly mentioned earlier, a graph is a mathematical structure G = (V,E) formed

by a set of vertices V and a set of edges E. Edges connect two vertices, and if there is only

one edge between any two vertices and no edge connecting a vertex with itself (self-loop) the

graph is considered a simple undirected graph [133]. Any undirected graph can be completely

described by an adjacency matrix, θ, which is an n× n matrix where θij = 1 ⇐⇒ {i, j} ∈ E.

This matrix is symmetric and with the elements of the main diagonal all zero.

A graph state is a quantum state defined on a graph, where qubits correspond to vertices of

the graph and entangling (CZ) operations between qubits correspond to edges. In the binary

picture, the representation of a graph state would be

SG =

[
θ

1

]
. (3.24)

Theorem 3. Every stabilizer state is equivalent to a graph state under local Clifford operations

[121].

Proof. See proof in appendix C. �

There are two corollaries that can be extracted from this theorem:

• The theorem implies that the disregard of overall phases is justified.

• We can restrict our attention to graph states when studying the local equivalence of

stabilizer states.

The action of local Clifford transformations on graph states can be described in terms of

pure graph operations [121]. Let us first introduce the so-called local complementation graph

operation ci: Given a graph G = (V,E), performing a local complementation on a vertex i ∈ V
consists on first finding the neighbourhood of that vertex N(i) ∈ V , i.e. the vertices j ∈ V
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Example:

Local Clifford operation:

We apply the local Clifford operation H1P3 on the state ψE , obtaining the state ψG:

ψE
H1P3−−−→ ψG ⇒ SE

H1P3−−−→ SG = 〈Z1Z2, X1X2Z3, Z2Y3〉 (3.20)

The binary matrix representation of this state is

SG =




1 0 0

1 0 1

0 1 1

0 1 0

0 1 0

0 0 1




(3.21)

The matrix representation of the local Clifford operation is

Q =

(
A B

C D

)
=




0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(3.22)

We can verify from this matrix the local Clifford operations applied to each qubit:

Q1 =

(
0 1

1 0

)
≡ H1 Q2 =

(
1 0

0 1

)
≡ 12 Q3 =

(
1 1

0 1

)
≡ P3 (3.23)

such that (j, i) ∈ E, and then replacing N(i) by its inverse, which is equivalent to putting edges

between vertices that are not connected and disconnecting the vertices that were originally

connected. An example of such local complementation on a graph can be seen in figure 3.2. It

was shown in [121] that the operations ci can be realised a local Clifford operations. Reversely,

any Clifford operation can be performed by a sequence of local complementations.

3.3.3 Local Clifford equivalence

Recall that in the previous section, we deduced the operational form in the binary picture for

Local Clifford (LC) operations, a block matrix Q with diagonal blocks, in equation (3.17). Any

local Clifford operation is given by the tensor factor of n Qi matrices, one for each qubit, each of

the invertible. Therefore, given two stabilizer states S1 and S2, they are LC-equivalent iff there

exist an operator Q such that Q · S1 = S2 up to a basis change [122]. See proof in appendix C.
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Find neighbourhood Invert neighbourhood

Figure 3.2: Local complementation on the red vertex. The neighbourhood and its inversion are
marked in the intermediate steps in yellow.

LU-LC conjecture

The LU-LC conjecture concerns the equivalence under local operations of two graph states:

Given two graph states that are equivalent under local unitary (LU) operations, does this imply

that they are LC-equivalent? It has been shown that two stabilizer states are equivalent under

Stochastic Local Operations and Classical Communication if they are LU-equivalent [134]. This

implies that entanglement is conserved under LU operations and hence the equivalence classes

under local unitaries can be used to classify states according to their entanglement. As we have

shown above, algorithms exist to efficiently determine if two stabilizer states are LC-equivalent.

If the LU-LC conjecture were true, we could efficiently compute entanglement classes of stabilizer

states.

We have seen that any stabilizer state can be represented by a graph, and therefore a local

Clifford operation can always be described in graph-theoretic terms (as the transformation from

the graph state equivalent to the stabilizer state to the graph state equivalent to the stabilizer

states after the Clifford operation has been performed). If the conjecture were true, this would

imply that any question regarding stabilizer states could be stated in graph-theoretic terms,

allowing us to use tools from combinatorics and graph theory to study entanglement properties

of the stabilizer states.

This conjecture was an open problem for a number of years, with all the evidence pointing

towards it being true: it was proven that LU equivalence implied LC equivalence for certain

classes of states [123, 135], numerical evidence was put forward that confirmed the equivalence

for stabilizer states of up to 7 qubits [136] and it was shown that the conjecture would be true

given that a certain statement about quadratic forms was true [137]. However, the conjecture

was disproved [138] by finding a counter example to said statement about quadratic forms in a

stabilizer state of 27 qubits, found by systematic computer search.

3.3.4 Efficiency of the classical simulation

From group theory we know that any finite group G has a generating set of size at most

log2 |G|, so if |ψ〉 is a stabilizer state over n qubits, the stabilizer group S has a generating set

of n = log2 2n. Using an extended version of the standard form described above (including an

row column for the phase), each generator takes 2n+1 bits to be specified: n bits to specify the
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X operators, n bits to specify the Z operators and a bit to specify the phase (which is always

+1 or -1). As there are n generators of the stabilizer group, the total number of bits needed to

specify |ψ〉 is n(2n+ 1).

The updates on the stabilizer state can be done in polynomial time if we keep track of these

n(2n+1) bits. The updates corresponding to the unitary gates are very efficient, requiring O(n)

time for each gate. Each unitary operation on one qubit changes at most one Pauli operator

(the one corresponding to the qubit to which the operation is applied) in each stabilizer, each

Pauli operator is represented by 2 classical bits and we have n stabilizers, therefore we perform

2n operations. If the unitary operation is performed on two qubits, the same arguments holds

but in this case we are updating 2 Pauli operators per stabilizer, performing 4n operations.

The updates corresponding to measurements are not as efficient. First, we check whether the

measurement outcome will be determinate or random (depending if the measurement operator

commutes with all the stabilizers or not) takes O(n) steps (we have to check one bit in each

stabilizer, n in total). If the outcome is random, updating the state takes O
(
n2
)
. As explained

in a previous section, when the measurement operator doesn’t commute with at least one

stabilizer, we choose only one of the stabilizers that do not commute, we multiply any other

stabilizer that doesn’t commute by this first chosen one and substitute the chosen stabilizer

by the measurement operator. We multiply the chosen stabilizer by at most n − 1 others,

each stabilizer multiplication involving n bit modulo 2 multiplications, therefore explaining the

bound O
(
n2
)

on the random outcome measurement.

However, in the case where the outcome is determinate the decision on the measurement

result takesO
(
n3
)

time in practice due to the Gaussian elimination process needed to update the

stabilizers in order to isolate the measurement operator from the stabilizer operators to find the

measurement result. There exists a faster algorithm for Gaussian elimination ofO
(
n2.3727

)
[139],

however the software used for our simulation, Mathematica, and indeed most mathematical

softwares, have their in-built Gaussian elimination procedure using Bareiss algorithm [140, 141].

3.3.5 Improved simulation using Destabilizers

Aaronson and Gottesman presented [120] a novel idea for improving the classical simulation of

stabilizer circuits, in which both deterministic and random measurements can be performed in

O(n2) time. This improvement in the time of the computation comes with a cost in the number

of bits needed to specify the state, which is multiplied by a factor of 2. The main idea of the

algorithm is to, in addition to the n stabilizers, store n “destabilizers”, which are a set of Pauli

operators that together with the stabilizers generate the full Pauli group Pn. The number of

bits required to store now is 2n(2n+ 1).

The algorithm performs the operations in an extended version of the binary matrix we used

before to represent the stabilizers, and which Aaronson and Gottesman call tableau. Its form
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for an n qubit state is:




x11 · · · x1n z11 · · · z1n r1

...
. . .

...
...

. . .
...

...

xn1 · · · xnn zn1 · · · znn rn

x(n+1)1 · · · x(n+1)n z(n+1)1 · · · z(n+1)n r(n+1)
...

. . .
...

...
. . .

...
...

x(2n)n · · · x(2n)n z(2n)n · · · z(2n)n r(2n)

0 0 0 0 0 0 0




=




Dx Dz ri

Sx Sz rn+i

0 0 0


 .

(3.25)

Rows 1 to n of the tableau represent the destabilizer generators (R1, . . . , Rn ) and rows

Rn+1, . . . , R2n represents the stabilizer generators 3. The last column of the tableau represents

the phase of a particular stabilizer or destabilizer, ri = 0 means a positive phase and ri = 1 a

negative phase. The last row is added to the tableau as scratch space.

Example:

The binary matrix representation of the stabilizer state SE using the destabilizer algo-

rithm is

SE =




0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 1 0 0

0 1 0 1 0 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0




. (3.26)

The algorithm as described in [120] proceeds through the gates in order and performs some

operations on the entries of the tableau according to the type of gate implemented. One im-

portant subroutine is the group operation on Pn, defined as the sum modulo 2 of two rows.

The tableau algorithm has some invariants under its action [120]:

1. Rn+1, . . . , R2 generate S(|ψ〉), and R1, . . . , R2n generate Pn.

2. R1, . . . , Rn commute.

3. For all h ∈ {1, . . . , n}, Rh anticommutes with Rh+n (every destabilizer anticommutes with

its corresponding stabilizer).

4. For all i, h ∈ {1, . . . , n} such that i 6= h, Ri commutes with Rh+n (every destabilizer

commutes with the rest of stabilizers).

3Note that now the stabilizer operators are the rows of the matrices instead of the columns as in the previous
sections. In each section we follow the notation of the relevant papers.
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In this formalism, the commutation or anti-commutation of the operators is given by the

symplectic inner product:

Ri ·Rj = xi1zj1 ⊕ . . . xinzjn ⊕ xj1zi1 ⊕ . . . xjnzin. (3.27)

This tableau procedure obtains deterministic measurement outcomes in only O(n2) steps.

For a deterministic outcome, we need that the measurement operator Za must commute with

the stabilizers, so
n∑

h=1

chSh = ±Za (3.28)

for a unique choice of c1, . . . , cn ∈ {0, 1}. If we can determine the coefficients ci’s, then by

summing the corresponding Sh’s we can learn the measurement outcome (sign of Za). The

coefficients are given by:

ci ≡
n∑

h=1

ch(Di · Sh) ≡ Di ·
n∑

h=1

chSh ≡ Di · Za(mod 2). (3.29)

So we just have to check if Di commutes with Za, or equivalently if xia = 1.

3.3.6 Performance comparison

Mathematica is a programming language that stands out for its ability to manage lists, with a

wide range of internal functions that make the manipulation easier. We have reproduced the

tableau algorithm on Mathematica, not only the basics functions as described in [120]: CNOT,

Hadamard, Phase and Measurement in the standard basis; but also other routines that allow

visualisation of cluster states as graph states. The full list of operations that have been so far

implemented in the Mathematica code with their descriptions are given in appendix D.

We can make a quick comparison of the efficiency of this improved stabilizer algorithm [120]

with the usual matrix representation of a circuit. For this comparison we will be using a circuit

with only the allowed operations in. The chosen circuit implements an instance of Simon’s

algorithm, described by the following circuit:

|0〉 H • H Z

|0〉 H • • H Z

|0〉 H • H Z

|0〉 Z

|0〉 Z

This procedure uses Simon’s algorithm [142] to learn about a “hidden shift”, s of a function

f , defined as the string that satisfies f(x) = f(y) where y = x⊕s. The function is the following

linear map from 5 bits to 4 bits: f(a, b, c, d, e) = (a+ b, b+ c, c+ d, d+ e) [120]. The presence of

multiple Hadamard operations in this circuit makes it impossible to use techniques for sparse
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matrices that are commonly used to reduce classical computation time by eliminating operations

on zero elements.

We simulate the action of this circuit for 5 qubits (3+2), 9 qubits (5+4) and 13 qubits (7+6)

to compare the scaling. Table 3.1 shows the Mathematica CPU runtime in ms (all calculations

performed on the same computer). We can clearly see the advantage, while the runtime of the

stabilizer algorithm scales as O(n2) as expected, the runtime for the matrix calculation scales

exponentially in the number of qubits.

5 qubits 9 qubits 13 qubits

Stabilizer 6.2 18.3 43.5
Matrix 6.2 322.9 443542

Table 3.1: Runtime(ms) in Mathematica

3.4 Algorithms for the visualisation of stabilizer codes

In this section, we present the algorithms derived from the work in [121, 122] and some exten-

sions. These algorithms are described here so that they can be reproduced in any programming

language, and they have been adapted for the most efficient implementation of Gottesman-

Knill theorem, i.e. the CHP code [120]. The visualisation of these algorithms is built on

Mathematica’s graph functionality to represent the cluster states. The full list of functions of

this Mathematica package and their documentation can be found in the appendix D.

There exists in the literature a similar simulator that performs all operations on graph states

[143], which can have a more compact description of the stabilizers (if and only if the graphs

have low vertex degree with respect to the number of qubits) but the same time complexity

as the tableau formalism [120]. In this algorithm, the stabilizer state is represented by the

adjacency matrix of the graph and a series of vertex operators that act on individual qubits.

It might be surprising at first that they use a unique graph representation to a stabilizer state

whereas, as can be seen following the proof of theorem 3 in appendix C, one stabilizer state

can have many valid graph representations (under the application of local Hadamards). The

key is that one stabilizer state can have different graph and vertex operator representations,

but they completely and without ambiguity define it. In the tableau representation, we do not

use these extra vertex operators (which would account for the extra Hadamard operations) and

therefore there isn’t a one to one correspondence between graph states and stabilizer states. In

the simulator proposed in [143], one stabilizer state could be represented as a graph with vertex

operators in different ways, but any one of those representations uniquely defines the stabilizer

state.

The basic functions for the tableau simulator such as H,P,CNOT and measurements in

different basis are described in detail in the original paper [120]. There are many functions in the

Mathematica package that have the purpose of dealing with the in-built functionality and will

therefore not be described here. The following functions are of interest for the implementation

of a full cluster state simulator, with the option to visualise the transformation of the stabilizer

states as graph states.

82



3.4. Algorithms for the visualisation of stabilizer codes

Note that all operations described in the following algorithms are performed modulo 2.

Find basis change between two stabilizer states

Input: Two stabilizer states in their tableau form.

Procedure:

• Check that both stabilizer states have the same number of qubits, n.

• Define the n× n basis change matrix, R.

• Define Sx1 and Sx2 as the Sx sub-matrix of the tableaus for the two stabilizer

states, following the notation from equation (3.25). Do similarly for Sz1 and Sz2.

• Solve the system of equations:

R · Sx1 = Sx2,

R · Sz1 = Sz2,

Det[R] 6= 0.

• If a solution exists, identify the corresponding transformation of the stabilizers:

S′i → Si · Sj .

Output: If the system of equations has a solution, output it in the form of the matrix R

and as a transformation of the stabilizer, S′i → Si · Sj . If there is no solution to the system of

equations, output a message conveying so.

Apply basis change

Input: A stabilizer in its tableau form and the basis change R as an n× n matrix.

Procedure:

• Identify from the tableau the number of qubits in the stabilizer, n. Check it corre-

sponds with the dimensions of matrix R.

• Redefine the sub-matrices of the tableau as




R ·Dx R ·Dz R · ri
R · Sx R · Sz R · rn+i

0 0 0


 . (3.30)

Output: The stabilizer tableau after the basis change.

Find local Clifford equivalence between two stabilizer states

Input: Two stabilizer states in their tableau form.

Procedure:
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• Identify from the tableaus the number of qubits in each stabilizer, n1, n2. The

number of qubits should be the same, n1 = n2 = n.

• Define Sx1 and Sx2 as the Sx sub-matrix of the tableaus for the two stabilizer

states, following the notation from equation (3.25). Do similarly for Sz1 and Sz2.

• Define the matrix Q that describes the local Clifford operation. It is formed of four

diagonal matrices

Q =

[
A B

C D

]
. (3.31)

The elements of the diagonal matrices are labelled ai, bi, ci, di respectively.

• Solve the set of equations given by:

(
Sz1 Sx1

)
·
(
A C

B D

)
·
(
Sx2

Sz2

)
= 0, (3.32)

ai · di + ci · bi = 1. (3.33)

The last set of equations ensures the unitarity of each local Clifford operation, which

is given by Qi =

[
ai bi

ci di

]
.

• This set of equations can have many different solutions, each corresponding to a set

of local operations that can be applied to the qubits in order to transform the state.

Each solution is therefore a set of Qi matrices (representing single qubit Clifford

operations), one for each qubit. There are only 6 single qubit Clifford operations:

{1, H, P, PH,HP,HPH}. From the Qi matrices the algorithm can identify the

correct single qubit Clifford operation for each individual qubit.

Output: If the two stabilizer states are local Clifford equivalent, the algorithm outputs the

list of all the possible local Clifford operations Q, both in matrix form and as a list of operations.

Apply local Clifford operation

Input: A stabilizer in its tableau form and the basis change Q as an 2n× 2n matrix.

Procedure:

• Identify from the tableau the number of qubits in the stabilizer, n. Check the

dimensions of matrix Q are correct.

• Define Sx, Dx, Sz and Dz from the tableaus for the stabilizer state, following the

notation from equation (3.25).

• From matrix Q, identify the matrix blocks A, B, C, D .
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• Redefine the sub-matrices of the tableau as




Dz · C +Dx ·D Dz ·A+Dx ·B ri

Sz · C + Sx ·D Sz ·A+ Sx ·B rn+i

0 0 0


 . (3.34)

Output: The stabilizer tableau after the operation has been applied.

Trace out product state qubits

Input: A stabilizer state in its tableau form.

Procedure:

• Identify from the tableau the number of qubits in the stabilizer, n.

• Define the S matrix as the Sx and Sz sub-matrices of the tableau, following the

notation from equation (3.25).

• Count the number of non-zero elements in each row of S. If there is only one this

corresponds to a qubit in a product in the eigenvector of X or Z. If there are two

non-zero elements, but they are on the same column of the sub-matrices Sx and

Sz, the qubit is on an eigenstate of the Y operator. Make a list, l, with all qubits

that are on an eigenstate of one of the Pauli operators. These are the qubits we will

remove from the tableau.

• Remove the columns of the tableau that correspond to the qubits in list l.

• The removal of these qubits causes some rows in S to be all zeros. The number of

rows that will be all zeros corresponds to the number of qubits removed. Delete

those rows (stabilizer operators) and their corresponding destabilizer operators from

the tableau. The number of stabilizers should now be the same as the number of

qubits that remains in the cluster, as required for a well defined tableau.

Output: The stabilizer state containing only the qubits that are not in a product state. A

message informs of which qubits from the original state have been removed and what qubits

remain indicating the map between the old labelling and new labelling (as the formalism names

the qubits 1→ n according to their arrangement in columns).

Identify possible options to transform stabilizer state into graph state

Input: A stabilizer state in its tableau form.

Procedure:

• Identify from the tableau the number of qubits in the stabilizer state, n.

• Identify the rank k of the sub-matrix Sx, defined following the notation on equation

(3.25).
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• If k = n, the graph state associated with is uniquely defined and no Hadamard

gates need to be applied to any qubit.

• If k < n, we run a sub-routine that finds all possible sub-matrices of Sx with rank

k. For simplicity this sub-routine should first perform Gaussian elimination on the

matrix Sx. If there exists only one sub-matrix with rank k, then the graph state is

uniquely defined. If there exist more than one sub-matrix that fulfils this property,

the sub-routine should output all the combinations of columns (which correspond

to qubits) that form a sub-matrix of rank k together with the first k rows (as we

performed Gaussian elimination, full rank sub-matrices will always be in the first k

rows).

• If k < n, we determine which qubits require the application of a Hadamard gate in

order to convert the stabilizer state into a graph state. These qubits correspond to

the columns that weren’t part of the full-rank sub-matrices obtained above. There

are as transformation options as full-rank sub-matrices.

Output: The algorithm outputs if the graph state associated with the stabilizer state is

uniquely defined or not. If k = n there is not further output. If k < n, the algorithm outputs a

series of lists. Each list contains the qubits on which we need to perform Hadamards in order

to convert the stabilizer state into a graph state.

Comments: The sub-routine that finds all possible sub-matrices of Sx with rank k is by far

the most computationally complex function in the entire implementation of the code. Finding

one full rank sub-matrix is an efficient process if one uses QR decomposition algorithms, such

as Gram-Schmidt decomposition [144] or Householder reflections [145], both of which have a

computational complexity of 0(n3), where n is the number of columns and rows.

The problem of finding all possible full rank k× k sub-matrices requires finding all possible

combinations of rows and columns that yield an invertible matrix. The search space becomes

exponentially large, as it scales with the binomial coefficient

(
n

k

)
which scales exponentially in

n.

This is the only algorithm in the entire simulation code for which the scaling is not polyno-

mial.

Transform stabilizer state into graph state

Input: A stabilizer state in its tableau form and a list of qubits. This list will be empty if

the sub-matrix Sx is invertible (see output from previous function).

Procedure:

• Identify from the tableau the number of qubits in the stabilizer state, n.

• Apply Hadamard to the qubits given in the input list (if there are any). This will

make the submatrix Sx full rank.

• Calculate the inverse Inv matrix of the Sx submatrix.

86



3.4. Algorithms for the visualisation of stabilizer codes

• Build a tableau were Dx′ is an all zero n×n matrix, Dz′ is an n×n identity matrix,

Sx′ = Inv · Sx which should correspond to an identity matrix and Sz′ = Inv · Sz.
Add the phases column set to zero and the extra scratch-space row.

Output: The stabilizer in tableau form, such as Sx = 1n×n and Sz = θij is the adjacency

matrix of a simple graph.

Comments: The graph state representation of a stabilizer state has no information of the

phase of the stabilizer operators, hence the phase column can be set to zero.

Implement an arbitrary single qubit Clifford gate given in the Heisenberg repre-

sentation

Input: A stabilizer state in its tableau form, the qubit on which the operation will be

performed, k, and a list of transformation rules given by : {X,Y, Z} → {±σa,±σb,±σc}, where

a, b, c are used to indicate the corresponding Pauli operator.

Procedure:

• Identify from the tableau the number of qubits in the stabilizer state, n.

• Transform the list of rules into if statements for each of the operators represented

in binary.

• Loop over all stabilizers (rows of the tableau). For each row, read the operator

corresponding to qubit k (given by the combination of columns k and k + n) and

apply the corresponding rules by executing the binary if statements. The overall

phase of each operator (given by column 2n+1) should also be updated accordingly.

Output: The stabilizer in tableau form after the arbitrary single-qubit Clifford gate has been

applied.

Comments: It can be noted that as the operator Y = iXZ, it shouldn’t be necessary to

specify what is the transformation for the operator Y given the other two. However, the phase

of the operator Y posed a problem as X and Z do not commute but we cannot enforce this anti-

commutation in the tableau formalism, hence the extra condition of requiring transformation

rules for Y .

Implement an arbitrary two-qubit Clifford gate given in its Heisenberg representa-

tion

Input: A stabilizer state in its tableau form, the two qubits on which the operation will be

performed, i and j, and two lists of transformation rules given by : {1i⊗σXj ,1i⊗σYj ,1i⊗σZj} →
{±σai ⊗ σaj ,±σbi ⊗ σbj ,±σci ⊗ σcj}, and {σXi ⊗ 1j , σYi ⊗ 1j , σZi ⊗ 1j} → {±σai ⊗ σaj ,±σbi ⊗
σbj ,±σci ⊗ σcj} where a, b, c are used to indicate the corresponding Pauli operator and i, j the

corresponding qubit.

Procedure:

• Identify from the tableau the number of qubits in the stabilizer state, n.
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• Transform both lists of rules into if statements for each of the operators represented

in binary.

• Loop over all stabilizers (rows of the tableau). For each row:

– Copy the row onto the scratch space at the bottom of the tableau.

– Read the operator corresponding to qubits i and j (given by the combination

of columns i− i+ n and j − j + n).

– Find which rules or combination of rules apply: if one of the operators is the

identity, we will only need one rule, but if none is the identity, find a rule from

the first set that has the same operator as qubit j and one from the second set

that has the same operator as qubit i.

– Apply rule from the second set on the row and the rule from the first set onto

the copy of the stabilizer in the scratch space.

– Determine which operators are represented in qubits i and j of both copies

of the operator, from a lookup table in the programme determine any phase

adjustments necessary to account for anti-commutation (i.e. ZX = −XZ =

−Y ).

– Adjust the overall phase if the transformation rules requires it.

Output: The stabilizer in tableau form after the arbitrary two-qubit Clifford gate has been

applied.

3.5 Discussion and outlook

In this chapter we have reviewed the stabilizer formalism [116], which is a Heisenberg representa-

tion of a certain class of quantum operations [117]. We have focused on a binary representation

of the algorithm that allows an efficient classical simulation of the formalism [118]. A signifi-

cant result from the literature [121] is that all stabilizer states can have a graph representation

and therefore the quantum operations can be understood as a series of graph transformations.

When the stabilizer operations are simulated classically, this graphical representation allows to

follow a series of stabilizer operations as the evolution of the connectivity of a graph. This

provides a very helpful intuition of the action of different quantum operations and a novel way

to do calculations, as we can use not only stabilizer operations but also graph operations to

understand equivalences between states and operations. For this purpose, we have presented a

series of algorithms that turn the theoretical results from the literature [122, 121, 123, 134] into

algorithms for the most efficient classical simulator of the stabilizer formalism, Aaronson’s and

Gottesman’s CHP code [120]. We have implemented this code on Mathematica; the code’s main

functions can be seen in chapter D.

The most important application of the stabilizer formalism is the description of quantum

error correction codes. The simulator based on the algorithms presented in this chapter (and

which is described in detail in appendix D) has proved extremely useful to understand some

quantum error-correcting codes and to obtain some of the results presented in chapter 7.
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CHAPTER 4

GENERATING PHOTONIC STATES

Achilles had overtaken the Tortoise, and had seated himself

comfortably on its back.

“So you’ve got to the end of our race-course?” said the

Tortoise. “Even though it DOES consist of an infinite series

of distances? I thought some wiseacre or other had proved

that the thing couldn’t be done?”

What the Tortoise said to Achilles.

Lewis Carroll

4.1 Introduction

In chapter 2 we reviewed most of the linear optical protocols for quantum computing, and

although quite different, they all require one key ingredient: small entangled states. As we

have seen previously, two-qubit entangling operations cannot be performed deterministically on

photons and therefore the preparation of these states is extremely challenging. So far only gener-

ation of two and three qubit heralded entangled states have been experimentally demonstrated1

[147, 148]. In this chapter we present a series of theoretical schemes to generate n-photon GHZ

states from single photon sources and give a full account of the success probability and resource

cost of these schemes.

After explaining briefly the key concepts of parametric down-conversion sources, we focus

on the optical implementation of Bell-state measurement. Recently proposed new schemes

[111, 115] can achieve higher that 50% probability of success by using non-vacuum ancillary

modes. We use adapted versions of these schemes to increase the probability of generating n-

GHZ states from single photons, which are heralded from parametric down-conversion sources2.

We present different schemes, which can use Bell pairs or single photons as input states, and can

have different success probabilities depending on the number of resources used and the level of

loss tolerance required. We finally compare the cost involved in a near-deterministic generation

1Here we are referring to schemes where each photon represents a qubit, and not experiments such as [146],
where one photon can be the physical support of different qubits in its different degrees of freedom.

2Schemes such as proposed in [149], which use correlated parametric down-conversion processes, are not
studied in this chapter. They could provide a new interesting approach and, in conjunction with some of the
techniques presented in this chapter, could provide a new avenue for the generation of small entangled states.
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when using multiplexed schemes.

4.2 Conventions

Throughout this chapter we will use certain conventions that we introduce here.

• We encode qubits in the polarisation degree of freedom of photons3, the notation used

for the creation operators is as introduced in chapter 2: the operators will be written as

hmi v
n
j , where the subscript indicates the spatial optical mode, the letter of the operator (h

or v) indicates the logical (polarisation) state and the superscript indicates the number of

photons with said polarisation in that optical mode. The eigenstates of the X operator

will also have a specific letter associated, as this will simplify many equations in the

chapter: |+〉i = (hi + vi)/2 = pi and |−〉i = (hi − vi)/2 = mi.

• We will represent states by the action of the creation operators for the different modes

acting on the vacuum, where the vacuum should be understood at the end of all state

equations. For example, the Bell state |φ+〉 will be represented as

∣∣φ+
〉

1,2
=

1√
2

(|H1H2〉+ |V1V2〉)→
1√
2

(h1h2 + v1v2) . (4.1)

• The labelling convention we will be use is that optical modes continue in straight lines

through the optical circuits. This is compatible with the definition of the action of the

PBS in chapter 2, i.e. the spatial mode is transmitted through the PBS while the vertical

mode is reflected.

• In order to understand the optical diagrams better, we will colour-code the most used

operations: 45o-rotated PBS, Type-I fusion gate and Type-II fusion gate, which can be

seen in figure 4.1.

Type-I 
fusion

Type-II
fusion

PBS

Polarization 
rotator

Detector

45o

Rotated
PBS

Single photon

Figure 4.1: Colour convention for the rotated PBS and the fusion gates.

3As highlighted in chapter 2, path encoding and polarisation are equivalent representations that can be easily
interconverted. Therefore, all protocols stated in this chapter are equally valid for path encoded systems. We
have chosen to work with polarisation as the representation of the linear optical circuits is more compact.
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• All detectors represented in the linear optical circuits of this chapter are assumed to be

capable of distinguishing polarisation and number of photons. In the case of polarisation,

this can easily be performed experimentally by substituting each detector by a PBS that

leads on to two detectors, each of which will detect photons of one polarisation. High-

efficiency number-resolving detectors [60] are possible, although not yet widely available,

but other techniques such as cascading arrays of photon detectors [59] can be used to

resolve the number of photons in each mode.

• When studying the effect of different linear optical circuits on an input state, it is useful

to expand the wave function as a summation of terms, for example

∣∣ψ−
〉

1,2

∣∣ψ−
〉

3,4
=

1

2
h2h4v1v3 −

1

2
h1h4v2v3 −

1

2
h2h3v1v4 +

1

2
h1h3v2v4. (4.2)

We will refer to the individual terms of the input state wavefunction as “initial terms”

and to the individual terms in the output state as “final terms”. This convention is useful

for the analysis of many linear optical circuits. In many, it is necessary to understand

which initial terms generated certain final terms in order to optimise photonic entangled

state generation.

4.3 Photon sources and entanglement operations

Entanglement is a crucial resource for quantum computation, albeit a difficult one to attain

for linear optical systems. We want to achieve entanglement between qubit modes, however

as mentioned in chapter 2 it is not possible to achieve this deterministically. It is important

to distinguish the type of entanglement we require for LOQC protocols, which is at the level

of the mode operators used to describe qubits [63], from other types of entanglement such as

NOON states or squeezed states. Details on these other types of entangled photonic states

can be found in [150, 63]. In this section we will briefly introduce heralded photon sources

and Bell-state measurements, which will be used in subsequent sections to generate entangled

photonic states.

4.3.1 Spontaneous parametric down-conversion sources

Spontaneous parametric down conversion (SPDC) is a non-deterministic process that is widely

used to produce high-quality photon sources4. In the simplest terms, a nonlinear crystal is

stimulated with a pump beam photon, which leads to the spontaneous appearance of two

correlated photons in the output modes, which are historically called signal and idler [150].

There are two types of SPDC processes: type-I in which the polarisation of the signal and idler

photons is the same and orthogonal to that of the pump, and type-II where the signal and

idler photons have orthogonal polarisations. The Hamiltonian describing the down-conversion

process is that of a two-mode squeezer [63] and in the case of a type-II SPDC source, the state

4A thorough review of other mechanisms to generate single photons can be found in [58].
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created is given by

S(λ)|0〉 =
√

1− λ2

∞∑

n=0

λn|φn〉 (4.3)

where

|φn〉 =
1√
n+ 1

n∑

m=0

(−1)mhmS v
n−m
S hn−mI vmI . (4.4)

The parameter λ of the down-conversion depends on the intensity of the incident laser but

usually is very small, thus the lower order terms have the most contribution. In particular,

when only the first and second order terms are present the state generated is

S(λ)|0〉 '
√

1− λ2|0〉+
λ

2
(hIvS + vIhS) =

∣∣ψ+
〉
I,S
, (4.5)

which is a superposition of vacuum and a maximally entangled state. One of the most common

uses of this type of sources is to produce heralded single photons, as putting a photon detector

on the signal mode will herald the presence of a single photon on the idler mode. Bell states

can also be heralded if higher order terms of the expansion are used [151]. This is done by

combining two beam-splitters with a two-fold detection of the third order term (O(λ3)).

In this brief introduction we have aimed to summarise the key concepts which are required to

understand the content in upcoming sections. A detailed explanation of the non-linear physical

processes in SPDC sources can be found in [150].

4.3.2 Bell measurements in Linear Optics

A Bell state measurement (BSM) is the projection of two qubits onto maximally entangled states

(Bell states). It is a crucial feature of many quantum protocols such as quantum computation

[32], quantum teleportation [35] and quantum communication [152]. However, as we have seen

in chapter 2, it is not possible to perform a deterministic two-qubit entangling gate in linear

optics and hence a deterministic BSM is not possible either. In this section we focus on how

probabilistic BSM can be performed and what success probability can be attained.

Optical Bell state measurement

Braunstein and Mann first proposed [153] a scheme to measure the optical version of the Bell

operator by generalising the HOM interferometer [69] to allow for states with arbitrary polari-

sations. The set up requires a beam-splitter that implements the mode transformations:

h1 →
1√
2

(h1 + i h2) , v1 →
1√
2

(v1 + i v2) , (4.6)

h2 →
1√
2

(h2 + i h1) , v2 →
1√
2

(v2 + i v1) , (4.7)

and two detectors that distinguish polarisation and photon number, see figure 4.2. This linear

optical device allows to unambiguously distinguish two of the four Bell states. To understand

why this is the case, we look at how the four Bell states transform under the action of the
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beam-splitter:

∣∣ψ+
〉

=
1√
2

(h1v2 + v1h2)
BS−−→ i√

2
(h1v1 + h2v2) (4.8)

∣∣ψ−
〉

=
1√
2

(h1v2 − v1h2)
BS−−→ 1√

2
(h1v2 − h2v1) (4.9)

∣∣φ±
〉

=
1√
2

(h1h2 ± v1v2)
BS−−→ 1√

2

(
h2

1 + h2
2 ± v2

1 ± v2
2

)
(4.10)

BS

Figure 4.2: Optical scheme to measure in the Bell basis. Two of the four Bell states can be
unambiguously discriminated using this setup.

We can immediately see why only two states are distinguishable. The state |ψ−〉 is invariant

under the action of the beam-splitter and retains one photon in each spatial mode, being the

only one of the four Bell states which does so. The beam-splitter transformation on the states

|ψ+〉, |φ±〉 bunches both photons in the same spatial mode, however in the case of |ψ+〉 the

photons have different polarisations while in the case of |φ±〉 they have the same polarisation.

Hence, when two photons of the same polarisation are detected in the same spatial mode, it is

not possible to determine which of the two |φ±〉 was in the input.

It is possible to tailor which two of the four Bell pairs are distinguishable, as linear optical

operations allow the transformation of every Bell state into every other. Therefore, any two of

the four Bell states can be unambiguously discriminated using a beam-splitter, but only two

of them. Considering equiprobable Bell states, this means that the success probability of the

BSM is 50%.

A complete BSM using only linear optical elements and vacuum ancillary states has been

shown impossible [114]. In fact, for setups that use linear optical elements, classical feed-forward,

perfect number-resolving detectors and vacuum ancillary modes, the maximum efficiency of the

BSM is 50% [154]. The key point to realise is that these proofs are only valid when we don’t

allow any ancillary states. A way to improve the success probability has already been presented

in chapter 2, the KLM scheme [2] proves that the success probability can be increased up to unity

by using entangled states in ancillary modes, in combination with a rather complicated protocol.

However, recently two schemes have been proposed which implement the Bell measurement

operator with a probability higher than 50% using much simpler interferometers than KLM.
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Boosting success probability with ancilla states

The no-go theorem for performing BSMs in linear optics with higher than 50% probability

[114, 68] assumes that only vacuum ancillary modes are used. It was recently shown that

introducing entangled ancilla pairs or single photos improves the success rate to 75%. Moreover,

the introduction of 2m occupied ancillary modes yields a Bell-state measurement with a success

rate 1− 2−(m+1). It must be noted however that this does not mean the introduction of 2m−1

entangled pairs, but the introduction of large m-photon entangled states.

Grice first showed [111] that using interference with ancillary photons, a Bell measurement

can be boosted to be arbitrarily complete. This boosting happens in stages, starting with non-

boosted BSM which succeeds with probability 50%, which we will call stage m = 0, to a series

of boosted BSM with success probability 1− 1
2m+1 . The way interference improves the success

probability can be understood from studying the simplest case, i.e. interference with a Bell

pair, which is shown in figure 4.3.

1 3

2 4

Figure 4.3: Improved scheme to measure in the Bell basis, using a Bell pair ancilla (photons 3
and 4). Two Bell states can be unambiguously discriminated with 100% success probability, and
the two other with 50% success probability, yielding a scheme with overall success probability
of 75%, when considering equiprobable Bell states. Figure adapted from [111], copyright (2011)
by the APS.

In the case of the BSM boosted with a Bell pair in figure 4.3, the degeneracy of the detection

pattern for |φ±〉1,2 is reduced due to the interference with a Bell pair |φ+〉3,4 (using |φ−〉3,4 would

yield similar results). We define nH and nV as the total number of photons with horizontal

and vertical polarisation respectively and ni as the number of photons in spatial mode i. The
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detection patterns that yield distinguishable states are:

nH & nV odd, n1 + n3 even→
∣∣ψ+

〉
1,2

∣∣φ+
〉

3,4
, (4.11)

nH & nV odd, n1 + n3 odd→
∣∣ψ−

〉
1,2

∣∣φ+
〉

3,4
, (4.12)

nH & nV even, nH = 2 & n1 + n2 even→
∣∣φ+
〉

1,2

∣∣φ+
〉

3,4
, (4.13)

nH & nV even, nH = 2 & n1 + n2 odd→
∣∣φ−
〉

1,2

∣∣φ+
〉

3,4
. (4.14)

Due to the interference with the Bell pair in modes 3 and 4, the measurement outcomes for

|φ±〉1,2 are of two kinds: either all photons have the same polarisation, i.e. nH = 4 or nV = 4,

or half the photons are horizontally polarised and half vertically polarised, i.e. nH = nV = 2. In

this latter case, n1 + n2 is even for |φ+〉1,2 and odd for |φ−〉1,2. As the probability of obtaining

a detection pattern with nH = 2 for|φ±〉1,2 is 50%, it follows that |φ±〉1,2 can be unambiguously

distinguished with 50% probability. Thus, the success rate in distinguishing equiprobable Bell

states goes from 50% to 75%.

This process can be repeated in stages using increasingly complicated interferometers. Each

stage also requires an increasing number of resources, where the resources are increasingly bigger

GHZ states, for boosting to a probability 1− 1
2m+1 we need resources

{2m−1 × |0〉
⊗2 + |1〉⊗2

√
2

, 2m−2 × |0〉
⊗4 + |1〉⊗4

√
2

, . . . ,
|0〉⊗2m + |1〉⊗2m

√
2

}. (4.15)

As was shown in [111], this process can be iterated, with each iteration making half of the

remaining indistinguishable initial terms distinguishable, hence the probability is increased by
1

2m in the mth iteration5. It can be noted that the size of the resources increases exponentially,

and it must also be noted that the resources required to prepare these ancilla states also increase

exponentially (this will be shown later in the chapter). For example, to achieve a success

probability of ∼ 97%, the scheme would require the use of 30 entangled photons, making the

scheme highly impractical. However, the first stage of this improvement process, which only

requires a Bell pair, has been shown to be very useful (see chapter 5).

It was realised by Ewert and van Loock [115] that in fact, at least for the first stage of the

boosting process, it is not necessary to require a Bell pair, and single photons are enough to

boost the success probability. In this case, instead of inputting one photon per mode however,

there are two photons, one in vertical and one in horizontal polarisations, in modes 3 and 4. This

BSM scheme can be seen in figure 4.4. As there are more photons, the measurement patterns are

slightly different, but they are in the same spirit as Grice’s: at each stage the indistinguishability

of |φ±〉 is reduced by half. Just as in Grice’s scheme, more complex interferometers and larger

entangled states6 are required to push the success probability closer to unity. Although this

improved BSM achieves 75% success probability in the first stage, it was shown [115] that using

only single photons the success probability could be further boosted to 78.125% by using the

5This process of attempting to reach 100% success probability by taking smaller and smaller steps at each
stage is reminiscent of Zeno’s paradox of Achilles and the tortoise.

6To achieve the same scaling as Grice’s scheme, Ewert and van Loock also require entangled states for stages
with m > 1.
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single photons in the interferometer for the m = 2 boosting stage. This was found by numerical

simulation and is not an extension of the analytical proof, hinting that although these schemes

improve BSM, they are not optimal strategies.

1 2

34
h

v

h

v

Figure 4.4: Improved scheme to measure in the Bell basis, using 4 single ancillary photons.
Two Bell states can be unambiguously discriminated with 100% success probability, and the
two other with 50% success probability, yielding a scheme with overall success probability of
75% when considering equiprobable Bell states.

The proof of scaling in this new strategy [115] follows the same steps as [111] so it can

be easily understood that these two proposals are intimately related. What is not so obvious

is that both schemes are performing the same unitary operation on the input state, and they

only differ in the ancilla state used. On first inspection, the interferometers are obviously

different. Grice’s scheme for the stage m = 1 implements the series of linear optical operations:

BS1,3 → BS2,4 → BS1,2 → BS3,4 where BSi,j indicates a beam-splitter operation in modes

i, j and the arrows show the order of the operations. It can be checked that the operation

performed on the optical modes is equivalent to doing the same beam-splitter operations in a

different order, i.e. BS3,4 → BS1,2 → BS1,3 → BS2,4. Looking at the operations in this order,

we can see that BS3,4 acts on the ancilla modes before any interference takes place with photons

1 & 2, and can therefore be absorbed in the preparation of the ancilla state. The other three

beam-splitters now implement exactly the operation of Ewert and van Loock’s interferometer.

The fact that both these schemes are actually the same but using different ancilla states

seems to hint that there is an equivalence between these states. We have found a task for which

one Bell pair and 4 single photons are equivalent resources. Understanding this equivalence

better could lead to the design of even more efficient BSM schemes which would benefit LOQC

enormously.

4.3.3 Fusion gates

In chapter 2 we introduced the fusion gates [90], which are crucial to the resource efficiency

improvement of the Browne-Rudolph protocol for LOQC. We also explained their action on

the formation of linear and two-dimensional cluster states. In this section, we review these

gates in more detail, focusing on the mode transformation they implement on input photons.

In particular, we justify the mapping of the different detection patterns to the projections on
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the qubit subspace. This mapping was briefly provided in [90], we reproduce it here in detail

to prove the validity of the procedure used to determine the mapping. This same procedure

is used later in the chapter to determine the mapping of rotated and boosted fusion gates. In

figure 4.5 we reproduce the fusion gates as linear optical circuits in the polarisation basis.

Type-I Type-II

Figure 4.5: Type-I and Type-II fusion gates in polarisation basis. Figure adapted from [90],
copyright (2005) by the APS.

The Type-II fusion gate [90] performs a successful fusion when one only one photon is

measured at each detector and fails when both photons are detected in the same mode. A

successful fusion on two modes, 1 and 2, is equivalent to a projection of the measured photons

in the subspace: { |++〉+ |−−〉√
2

,
|++〉 − |−−〉√

2

}

1,2

(4.16)

and the exact state in the subspace can be known from the measurement outcomes:

h1h2 and v1v2 → |++〉+ |−−〉√
2

, (4.17)

h1v2 and v1h2 → |++〉 − |−−〉√
2

. (4.18)

A failed fusion is equivalent to a projection of the measured qubits on the subspace:

{|+−〉, |−+〉}1,2 (4.19)

with

h2
1 and v2

1 → |+−〉, (4.20)

h2
2 and v2

2 → |−+〉. (4.21)

We can justify these mappings by studying the evolution of the detected outcomes (final

terms) through the Type-II fusion gate “in reverse”, i.e. using the detected outcomes as inputs

on the time-reversed Type-II fusion gate to see what are the initial terms that have generated
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them:

h1h2 →
1

2
(p1p2 +m2p2 +m1p1 +m1m2) , h2

1 →
p2

1

2
+m2p1 +

m2
2

2
, (4.22)

h1v2 →
1

2
(p1p2 +m2p2 +m1p1 +m1m2) , h2

2 →
p2

2

2
+m1p2 +

m2
1

2
, (4.23)

v1h2 →
1

2
(p1p2 −m1p1 +m2p2 −m1m2) , v2

1 →
p2

1

2
−m2p1 +

m2
2

2
, (4.24)

v1v2 →
1

2
(p1p2 +m1p1 −m2p2 −m1m2) , v2

2 →
p2

2

2
−m1p2 +

m2
1

2
. (4.25)

Whenever we apply a fusion gate to a pair of photons it is assumed that there is only one

photon per mode, thus the terms that have more than one photon in any input mode (such as

pama) cannot possibly have triggered the detectors, therefore we have:

h1h2 →
1

2
(p1p2 +m1m2) , h2

1 → m2p1, (4.26)

h1v2 →
1

2
(p1p2 +m1m2) , h2

2 → m1p2, (4.27)

v1h2 →
1

2
(p1p2 −m1m2) , v2

1 → −m2p1, (4.28)

v1v2 →
1

2
(p1p2 −m1m2) , v2

2 → −m1p2, (4.29)

which shows the correspondence shown previously.

To do a similar procedure for the Type-I gate we have to consider the final terms including

the mode that is not measured (mode 2 in this calculation). This gate succeeds when one and

only one photon is detected in mode 1 and fails when two photons are detected.

h1 → |0〉〈00|+ |1〉〈11|, (4.30)

v1 → |0〉〈00| − |1〉〈11|, (4.31)

h2
1 → |01〉, (4.32)

v2
1 → −|01〉. (4.33)

We follow the same procedure as before to justify this mapping. We first input the final

terms into the reversed Type-I gate:

h1h2 →
1√
2

(h1h2 + h2v2) , h2
1 → h1v2 +

h2
1

2
+
v2

2

2
, (4.34)

h1v2 →
1√
2

(v1v2 + h1v1) , h2
2 → h2

2, (4.35)

v1h2 →
1√
2

(h1h2 − h2v2) , v2
1 → −h1v2 +

h2
1

2
+
v2

2

2
, (4.36)

v1v2 →
1√
2

(h1v1 − v1v2) , v2
2 → v2

1. (4.37)
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Restricting the initial terms to those that only have one photon per mode we have:

h1h2 →
h1h2√

2
, h2

1 → h1v2, (4.38)

h1v2 →
v1v2√

2
, h2

2 → 0, (4.39)

v1h2 →
h1h2√

2
, v2

1 → −h1v2, (4.40)

v1v2 →
−v2v2√

2
, v2

2 → 0. (4.41)

We can see that detecting h1 heralds the projection h1h2 + v1v2 and detecting v1 heralds

h1h2 − v1v2. Therefore, the successful detection of one photon in mode 1 implements the

Kraus operators |0〉〈00| ± |1〉〈11|, where the sign is determined by the polarisation of the mode

detected. When two photons are detected in mode 1, this is equivalent to a measurement in

the computational basis of the input modes.

The fusion gates perform an entangling operation with 50% probability, and when they

fail they measure the qubits involved in the X (Type-II) or Z (Type-I) bases. The success

probability of these gates can be improved by using the boosted BSM schemes presented earlier,

we present new boosted fusion gates in the following section. Moreover, the measurement basis

in which photons are measured in the success and failure cases can be modified to adapt it

for different scenarios where the original gates might not be performing the optimal entangling

gate. An example is the generation of a large cluster state from micro-clusters, as proposed in

Kieling et al ’s LOQC protocol. Their scheme suggests using Type-I fusion gates, which are not

loss tolerant, however Type-II does not perform the required entangling operation. Variations

on the Type-II gate are studied in section 4.6.

Boosted Fusion gates

We have presented results which have shown how the probability of successfully implementing

BSMs in linear optics can be improved to different extents by using resources such as Bell

pairs [111] or single photons [115]. As the Type-II fusion gate is in essence a rotated BSM,

they too can be improved. We present two boosted fusion gates that perform the exact same

projection as the original fusion gates presented in the previous section, but with a boosted

success probability of 75%. These gates can be seen in figure 4.6.

In figure 4.6 we present two versions of the Type-II boosted gate. These proposals are based

on [111, 115] and therefore require one Bell pair and four single photons respectively to boost

the success probability to 75%. All the photons are measured (the two input photons and

the ancillary Bell state) hence the boosted gate is loss tolerant in the same was as the original

Type-II, and the success or failure of the gate is given by the detection pattern. These detection

patterns for the boosted version are the same as the ones in the BSM schemes they are based

on and we will omit them here. It is worth mentioning that both these proposals inherit the

loss-tolerance of the original Type-II fusion gate.

We have mentioned boosting the Type-II fusion gate but not Type-I. Type-I is not a full

BSM as not all photons that enter the gate are measured, therefore it is not possible to use the
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Original Type-II Boosted Type-II
psucc = 50% psucc = 75%

1 2
1 2

3 4
1

2

3
4

5

6

Requires 1 Bell Pair
Requires 4 single 

photons
No ancilla

Figure 4.6: Boosted Type-II fusion gate. Photons 1 and 2 represent the photons on which the
gate is applied, while photons 3 and 4 are the ancillary states. As they are adaptations of
the boosted BSM schemes by Grice and Ewert-van Loock, they use a Bell pair and 4 single
photons as resource states. Both these gates have the exact same success and failure outcomes
as the original Type-II fusion gate and only their success probabilities differ. Here and in future
figures, the navy octagon represents the boosted Type-II fusion gate.

same boosting technique as in Type-II. It is possible that improvements can also be made to

improve the success probability of the Type-I fusion gate, but they have not been found yet.

4.4 Ballistic circuits for generation of small entangled states

In this section we present a series of linear optical circuits that project an initial state into a

GHZ state by using a series of Type-I and Type-II gates. The original results in this section are

based on the Bell pair generator and 3-GHZ generator proposed in [92, 93, 147]. We propose

generalised circuits to generate n-GHZ states and improve their success probability by using

the boosted fusion gates introduced in the previous section.

4.4.1 Bell pair generation from single photons

The scheme for generating “event-ready” entangled pairs was first proposed by Zhang et al.

[147]. The scheme, shown in figure 4.7 (a), produced Bell pairs with probability ps = 3/16 upon

detection of two photons in different modes (this includes spatial and polarisation modes). The
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detection patterns that herald a Bell pair in this circuit are:

Measuring h1h3 heralds
h2h4 + v2v4

8
, h1v3 heralds

v2h4 + h2v4

8
,

v1h3 heralds
v2h4 + h2v4

8
, v1v3 heralds

h2h4 + v2v4

8
,

h1v1 heralds
h2v2 + h4v4

8
, h3v3 heralds

h2v2 + h4v4

8
.

The probability of obtaining a Bell pairs is therefore 6 “success” detection outcomes7 times the

probability of each of those outcomes, i.e. 1/32. Therefore the probability of producing an

“event-ready” Bell pair is ps = 3/16.

21 34

2

4

Mirror

D20

PBS

R⇡/2

P⇡/2

BS

BS2/3

(a) (b)

Figure 4.7: Scheme for generating a Bell pair from single horizontally polarised photons. (a)
Main linear optical circuit. Four single photons prepared in the horizontal polarisation are put
through the circuit. Upon measurement of two photons in different modes, a Bell pair in modes
2 and 4 is heralded, which occurs with probability 3/16. (b) Correction circuit. A “failure” case
where two photons of the same polarisation have been measured in the same detector can be
turned into a correctly formed GHZ state by applying the correction circuit. Upon measurement
of vacuum in detector D′2, the outcome of the circuit will be a Bell pair, which brings the success
probability up to 1/4. Note however that a switch is required to apply the correction circuit.
Figure adapted from [92], copyright (2007) by the APS.

This Bell pair generation scheme was improved to have a success probability of ps = 1/4

by Joo et al. [92], who showed that when adding an extra correction circuit, some failure

outcomes could be transformed into a Bell pair. This correction circuit is shown in figure 4.7

(b). Previously considered “failure” detection patterns such as having two photons in the same

mode (e.g. h2
2) produced an unbalanced entangled state, in which the coefficients of the terms in

the superposition were not equal. The correction circuit executes procrustean distillation [132]

upon the detection of vacuum on mode 2′. This circuit therefore probabilistically balances the

terms in the superposition, generating a Bell pair with probability 1/16, and therefore making

the final success probability for generating a Bell pair from single photons equal to ps = 25%.

7Note that the outcomes heralded by detection outcomes h1v1 and h3v3 are not Bell pairs per se but can be
deterministically converted into one by applying a PBS to modes 1 and 3.
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A key intuition that can be drawn from this scheme to generate Bell pairs (and helps under-

stand how upcoming schemes work) is that the rotated PBS is turning the single photons into

probabilistic Bell pairs. These probabilistic Bell pairs can be fused in different configurations

to generate larger post-selected entangled states. It is assumed that the single photons are all

horizontally polarised, and therefore the action of the rotated PBS is given by

h1h2
rPBS1,2−−−−−→ 1

2
(h1h2 + v1v2) +

1

4

(
h2

1 − v2
1 + h2

2 − v2
2

)
. (4.42)

This state is a mixture of a Bell pair with a state that has two photons on the same spatial

mode. The terms from this latter part will always be measured at the same detector, therefore

triggering an erroneous outcome. Measuring always n out of the 2n modes ensures the presence

of the correct number of photons in the output modes.

4.4.2 3-GHZ states from single photons

In [93], Varnava et al. propose a linear-optical circuit to generate 3-GHZ states from single

photons. Its design serves as a basis for the n-GHZ generators presented in the following

sections. In this generation scheme, six single horizontally polarised photons are introduced

in the linear optical circuit and whenever three photons are detected at any three detectors,

the remaining three photons are projected onto a 3-GHZ state. This scheme is different from

the Bell pair state generation circuit presented earlier, as in this case two photons in the same

spatial mode but different polarisation never constitute a valid detection pattern, whereas this

was in the case of the Bell pair generator. The single photons are considered deterministic, and

it was shown in [93] that this protocol is robust to loss. Not only photons lost in the circuit

would herald an incorrect detection pattern, but it was found that in this circuit, loss at the

input could be understood as independent and identically distributed (iid) loss on the final

state.

12 3 4

5 6

Figure 4.8: Linear optical circuit that generates a 3-GHZ state from single horizontally polarised
photons with 1/32 success probability. The successful generation is heralded by one (and only
one) photon being detected in each detector. Figure adapted from [93], copyright (2008) by the
APS.
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The photons are first put in pairs through rotated PBSs. After the interference at the

rotated PBSs, half the modes (even-labelled) enter a Type-I and Type-II gates, while the other

half of the modes (odd-labelled), which are considered the output modes, support the photons

into which the GHZ state will be projected. The detection of three photons in the even-labelled

modes, one in each spatial mode, heralds the successful generation of a 3-photon GHZ state.

To calculate the probability of outputting the right state, we can simulate the evolution of

the initial terms through the optical elements and then calculate the probability of the final

terms that generate a GHZ state. This is the same technique that is used in [93], but it is

cumbersome and lengthy, particularly in the case of the generation of n-GHZ states. We can

shorten this calculation by realising that at each PBS, a similar effect to the one shown in

equation (4.42) occurs: the state becomes a 50:50 mixture of terms that have one photon per

spatial mode and terms that have more than one photon per spatial mode. As the successful

GHZ generations are contingent on the detection of one and only one photon per spatial mode,

only half of the terms in the state will lead to a successful detection. Therefore, the success

probability of a GHZ generating scheme can be estimated by counting the number of PBSs

involved. If a scheme has n (rotated or not rotated) PBSs, the success probability is

ps =
1

2n
. (4.43)

The probability of the GHZ generating protocols presented in following section can be calcu-

lated in this way8. However, whenever a PBS is involved in a boosted fusion, the entire boosted

fusion will count as a
(

3
4

)
factor.

4.4.3 Generation of larger GHZ states from single photons

The 3-GHZ generation scheme can be extended to a 4-GHZ generation scheme (presented in

figure 4.9) in an obvious manner, this new circuit projected 8 pairs of photons into a 4-GHZ

state with probability ps = 1
128 . After pairs of single photons first pass through rotated beam-

splitters, the interferometer can be considered as divided in two branches, photons 2 and 4

interfere at a central beam-splitter before interfering along each branch with other photons (2

with 6 and 4 with 8). Upon a successful detection of one and only one photon per mode, a

4-photon GHZ state is heralded on the odd-labelled modes.

Considering the interferometer as divided in two branches allows to easily generalise it for

bigger GHZ states. More photons can be added to the two branches by adding extra Type-I

gates along each branch. As it was the case before, only half of the photons interfere in the

Type-I and Type-II gates, and they do so after interfering in pairs with the photons that will

support the GHZ in rotated PBSs. The generalised n-photon GHZ state generator can be seen

in figure 4.10.

Assuming deterministic single photons sources, the success probability of these scheme is

given by

psucc =
1

2n−1
, (4.44)

8Note that this technique is not applicable to the Bell pair generation circuit as the valid detection patterns
are not only those with one photon per spatial mode.
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12 3 4

5 678

Figure 4.9: Linear optical circuit for the generation of a 4-GHZ state from single photons with
1/128 success probability. The successful generation is heralded by one (and only one) photons
measured at each detector.

Figure 4.10: Linear optical circuit to generate an n-GHZ from single photons. All input photons
are assumed to be horizontally polarised. The success probability of this procedure is psucc =

1
2n−1 .

which can be easily verified using the strategy explained in section 4.4.2. It is worth noting that

these circuits benefit from the same kind of loss tolerance as the 3-GHZ generation scheme, as

can be shown using the techniques in [93].

Even though the circuits presented in this section involve Type-II fusion gates, there is no

advantage in boosting these. The boosted fusion gates don’t require the successful detection of

one photon per mode and rather they require that the detected patterns satisfy some statistical

requirements (number of horizontally polarised photons, number of photons between two spatial

modes, etc). Due to the effect of the rotated PBSs, it is possible for the correct statistics in

the detection patterns to be achieved when there is the wrong number of photons in the output

modes, and therefore the circuit does not herald the correct output state.

4.4.4 Adaptation to use Bell pairs

The linear optical circuit presented in previous sections can be easily adapted to use Bell pairs

instead of single photons, as the purpose of rotated PBSs is to create a probabilistic Bell pair

from the input single photons. Removing these rotated PBSs and inputting one photon out of

each Bell pair increases the probability of generation of a n-GHZ state by 2n.
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The two-branch structure of the generating scheme proposed has two disadvantages. On one

hand, the number of linear optical elements the photons go through is not balanced: out of the

n/2 photons that interfere in the branches, two photons pass through n
2 +2 beam-splitters while

the rest only pass through 2 beam-splitters. Therefore there are two photons with a radically

increased loss rate due to the number of linear optical elements they encounter in their path.

On the other hand, the scheme uses predominantly Type-I fusion gates and only two Type-II

gates. This is not ideal as it is only known how to boost Type-II fusion gates.

The n-GHZ generator can be restructured to solve both these issues: the photons that

interfere at fusion gates will do so predominantly at Type-II fusion gates, in such a way that

each photon only ever goes through a maximum of two beam-splitters (three if we want to

implement this scheme with single photons). In this design the majority of measurements (all

in case of even n and all-but-one in case of odd n) are part of a Type-II fusion gate, which can

be boosted using the schemes presented earlier.

In this configuration 4.11, each photon interacts only with two PBSs and one polarisation

rotator. Also, out of (n− 1) PBSs, bn−1
2 c are involved in a Type-II gate (and the rest are not

involved in measurements) so now we are boosting much more efficiently. The number of Bell

pairs that we need to generate and n-GHZ state using this configuration is n + bn−1
2 c, n to

create the state and bn−1
2 c to boost the fusion gates. The use of boosted fusion gates further

increases the success probability to

ps =

(
1

2

)dn−1
2
e(3

4

)bn−1
2
c
. (4.45)

Figure 4.11: Optimised scheme for the generation of n-photon GHZ states from Bell pairs.
All the measurements are part of Type-II fusion and therefore we can substitute the original
Type-II fusion in this scheme for one of the boosted Type-II gates. Note that this circuit can
also be used to produce GHZ states from single photons if each input Bell pair is substituted
by a pair of single photons after they have passed a rotated PBS. The success probability when

using Bell pairs as inputs and boosted Type-II fusion gates is ps =
(

1
2

)dn−1
2
e (3

4

)bn−1
2
c
.

Introducing the boosted fusion gates in the GHZ generation makes the detection patterns

that herald the GHZ state quite complicated. It is also worth noting that when using these

gates, some of the heralded outcomes are GHZ states with some rotations. In appendix F

we have explained in detail what detection patterns herald the correct outcome in the case of

3-photon and 4-photon GHZ states.
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4.4.5 Giving up loss tolerance for higher success probability

Linear optical circuits for the generation of GHZ states with a higher success probability can

be obtained at the cost of losing some of the in-built loss tolerance. This improvement comes

from an observation on cluster state construction as described in the Browne-Rudolph protocol

[90]. In all the circuits proposed so far, we always have 2n photons (single or in Bell pairs),

out of which n are measured to herald the n-GHZ state on the remaining n photons. This is

necessary when generating states from single photons, due to the effect of the rotated PBSs.

However, when using Bell pairs as the starting point, we don’t need to measure n qubits

necessarily. Browne and Rudolph [90] show how linear clusters can be grown from Bell pairs by

using the Type-I gate. Linear clusters and GHZ states are different, except in the case when

n = 3, in this case they are LC equivalent, i.e. equivalent under some local rotations. Therefore,

if a three qubit linear cluster can be built from two Bell pairs using a Type-I gate, so can a

3-photon GHZ state. This observation is also applicable to larger GHZ states, each n-GHZ state

can be created using n− 1 Bell pairs as resources instead of n as before, and only n− 1 photons

are measured. In figure 4.12 we present the linear optical circuit corresponding to 4-GHZ state

and the generalised circuit.

2 1 3 4

5 6

7 8

(a) (b)

Figure 4.12: Higher success probability schemes for the generation of GHZ states from Bell
pairs. (a) Generation of a 4-GHZ state from 4 Bell pairs, with 28.125% success probability.
(b) Generalisation to an n-GHZ generator which consumes (n − 1) + bn−1

2 c Bell pairs and

has a success probability of
(

1
2

)bn−1
2
c (3

4

)bn
2
−1c

. Note that this generation schemes are not loss
tolerant, in the sense that a failure outcome combined with a loss can be heralded as a successful
outcome.

This higher success probability comes at a cost, however. All the circuits presented in

previous sections are loss tolerant, in the sense that if the correct number of photons are detected

in the appropriate modes we can be sure that the output state is a GHZ9. Therefore, there is

no chance of confusing an unsuccessful generation in conjunction with loss with a successful

generation.

In these new circuits with higher success probability, it is possible that a failure outcome

combined with the loss of a photon is mistaken for a successful generation. As an example, let’s

9For the 3-GHZ generation scheme, it was proven in [93] that loss of photons in the input state of these circuits
can have two effects, it either affects a mode that is measured, in which case the output state is rejected, or it
has the same effect as if the loss had happened after the generation procedure, i.e. on the GHZ itself. This type
of iid loss has not been proven for general n-GHZ generation schemes.
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examine the 4-GHZ generation circuit in figure 4.12 (a). Photons 1, 3, 5, 7 and 8 interfere in

the circuit but only photons 1, 5, 7 and 8 are measured. It can be the case that either photon

1 or photon 3 are lost (or in fact never enter the interferometer), but that the detector in mode

1 still measures one photon. This would herald the successful generation of a 4-GHZ state,

whereas there will be no entanglement formed between photons 2 (or 4) and 6. This circuit is

not loss tolerant in the same way as the Type-I gate is not loss tolerant.

This trick to enhance success probability cannot be used in the case of optical circuits in

which we input single photons for the same reason we couldn’t use boosted gates with single

photons. In the case of single photons, any interference between photons from different pairs is

preceded by the action of the rotated PBSs on the single photon pairs. As explained previously,

the action of this linear optical element created a Bell pair when the state is post-selected to

have one photon in each mode. However, we don’t post-select until the very end and therefore

we need n detectors in order to ensure that the correct number of photons are on the output

modes.

4.5 Removing stochasticity by multiplexing

Stochasticity is fundamentally present in any linear optical setup. There are two main sources of

this stochasticity: on one hand, no on-demand deterministic sources of photons currently exist10

and therefore state preparation is probabilistic; on the other hand, deterministic entangling gates

are fundamentally impossible unless infinite resources are consumed. In this section, we review

the idea of multiplexing (MUX), which is has been proposed as a way to remove stochasticity

from linear optical experiments. In particular, we want to use multiplexing to be able to produce

on-demand n-GHZ states.

A commonly used approach for the generation of single photons is the use of non-deterministic

heralded single-photon sources such as the SPDC sources introduced earlier in the chapter. Such

probabilistic sources cannot on their own be a basis for quantum technologies, as the probability

of generating p indistinguishable photons decreases exponentially with p. A way of overcom-

ing the scalability problem of these sources is to use a multiplexed layout of non-deterministic

sources [155, 156, 157, 158, 159, 160], i.e. repeat them in parallel (either spatially or temporally)

and integrate all the outcomes via a switching network. Using a switching network and a high

enough number of repetitions, the successful event can be located at a spatiotemporal bin of

choice making the emission asymptotically deterministic. In figure 4.13 we can see examples of

spatial and temporal multiplexed sources. The successful event is heralded, which prompts a

reconfiguration of the spatial switch or the length of the delay line, to locate the photon in the

desired spatiotemporal bin - m0t0 in the case presented in figure 4.13.

When creating a deterministic on-demand source using a multiplexing scheme, by determin-

istic we really mean with a probability of emission higher than some desired threshold, ps. The

number of repetitions, k, needed in the multiplexing scheme is determined by the probability of

emission of the source, pη and the desired probability of emission, ps. We calculate the number

10There have been several proposals for deterministic single-photon sources based on artificial-atom systems
[58], however none of these proposals currently achieves success probabilities necessary to be considered deter-
ministic single-photon sources.
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Figure 4.13: Schematic layout for spatial and temporal multiplexing. Note that the axes for
space and time have been interchanged in the figures in order to highlight the equivalence of
both methods. Both devices emit one photon in the spatiotemporal mode m0t0, in spatial MUX
an N×1 switch (realised with a MZI) located the emitted photon in mode m0, while in temporal
MUX a delay line is used to change the temporal mode of the photon.

of repetitions by solving the equation

1− (1− pη)k ≥ ps, (4.46)

which gives the minimum number of repetitions needed so that the probability of at least one

successful event is higher than ps. Of course on average many more successful events will have

been generated.

This estimation of the number of multiplexing stages needed is a simplified version, as it

doesn’t take into account the effect of loss. A full analysis of the effect of loss on multiplexed

single-photon sources can be found in [161].

4.5.1 Log-tree scheme

Once all the probabilistic events have been generated in the multiplexed source, we require a way

of placing one of the successful events in the spatiotemporal bin of choice. Switching networks

allow for this re-routing of photons. We require a reconfigurable switch of N × 1 modes, where

N is the number of multiplexed events. One way to construct such a switch is to decompose it

in a logarithmic tree of 2× 2 switches. This yields a required depth of log2N + 1 switches. The

heralded photons are stored in delay lines while a classical control determines the configuration

of the switch and sets it in place.

As the number of switches required scales as the logarithm of the number of multiplexed

events, we can optimise the use of switches by having a number of multiplexed events that is

N = 2dlog2 k+1e, (4.47)
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where k is given by the relation (4.46).

Spatial log-tree scheme

In a spatial multiplexing scheme we have N photon sources which are pumped simultaneously

to produce N probabilistic single photons, all in the same time bin and different spatial modes.

From the successful photon generations, one is chosen to be placed in the output mode. The

switch configuration is set for this event to happen while the photons are stored in delay lines.

The chosen single photon is then located through the output port while the rest of optical modes

are re-routed to a detector. Figure 4.13 shows an example of the spatial log-tree arrangement of

switches for N = 4 multiplexed events, which places the red qubit in the output port while the

remaining modes are routed to a detector or beam dump. The 2×2 switches can be implemented

by using a MZI with a variable phase-shifter.

Temporal log-tree scheme

In a temporal multiplexing scheme we have a probabilistic source which is pumped N times to

generate a series of photonic events in different time bins and the same spatial mode. Differently

to what happens in the spatial case, the switches will have to change their configuration for the

different time-bins in order to re-route the chosen photon to the output port while the rest of

successful events are measured11. This fast reconfigurability imposes technological restrictions

on the switches. Figure 4.13 shows an example of the temporal log-tree scheme, for N = 4

multiplexed events. The reconfigurable switches change the length of the delay we subject the

photons to, in order for the chosen photon to come out of the output port in the required time

bin.

4.5.2 Cost of near-deterministic generation of GHZ states using a multi-

plexed scheme

The advantages of using GHZ generating schemes that have higher success probabilities be-

comes more apparent when we consider the multiplexing of such schemes in order to produce

deterministic GHZ states. Current technologies have not yet produced deterministic sources of

entangled states12, which are crucial for LOQC protocols such as Kieling et al.’s percolation

scheme and a novel scheme we will present in chapter 5 of this thesis. In figure 4.14 we compare

the Bell pair consumption of both schemes when multiplexed to form a near-deterministic GHZ

source.

It is clear that generating GHZ state from Bell pairs has a much higher success probability

(
(

1
2

)dn−1
2
e (3

4

)bn−1
2
c

compared with 1
2n−1 ) and is therefore preferable. However, when we don’t

have access to Bell pairs on-demand, the question remains whether it is better to use a ballistic

circuit to generate GHZ states directly from single photons, or whether it would be more

resource efficient to first generate Bell pairs from the single photons and then use the optimised

11Measuring generated photons at this stage is a waste. In chapter 6 we study the advantage of a different
multiplexing scheme in order to improve resource efficiency of the LOQC architecture.

12Proposals for quantum dot sources [162] and multiplexed probabilistic single photon sources [155, 156, 157,
158, 159, 160] have not yet achieved a near-deterministic regime.
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Figure 4.14: Comparison of proposed n-GHZ generation schemes. We calculate the number of
Bell pairs consumed when multiplexing the GHZ generation in order to have a near-deterministic
GHZ source that emits a GHZ state with probability p. The two-branch scheme consumed
more Bell pairs as it produces a GHZ states with lower probability. The difference in Bell
pair consumption increases exponentially as the probability of the near-deterministic source
approaches unity.

GHZ generating scheme that uses Bell pairs. To assess which strategy is best, we calculate the

number of multiplexed photons required to produce a 3-GHZ. We plot the results in figure 4.15.

For the strategy that uses the ballistic 3-GHZ generator from single photons, we first mul-

tiplex single photons sources of efficiency η and then multiplex the ballistic 3-GHZ generator.

The number of photons consumed is 6 · k1 · k2 where k1 is the number of multiplexed events

required to produce a single photons with probability p1 and k2 is the number of multiplexed

events required to produce a 3-GHZ state from deterministic photons, the factor 6 portrays

that each ballistic 3-GHZ generator requires 6 photons. The probability of generating a 3-GHZ

state using this procedure is p6
1 · p2.

For the strategy that has the intermediate step of generating Bell pairs, there are three

stages of multiplexing. First, we multiplex k1 single photon sources to produce a single photon

with probability p1. Then we multiplex k2 Bell pair generators, each using 4 single photons

as input, to produce a single Bell pair with probability p2. Finally we multiplex k3 3-GHZ

generators, each consuming 4 Bell pairs, to produce a single 3-GHZ with probability p3. As

in each multiplexing state, the input states are assumed deterministic, the final probability of

emission is given by p4
1 ·p4

2 ·p3 and the number of single photons consumed is 16 ·k1 ·k2 ·k3. Note

that we are using the loss-tolerant 3-GHZ generator from Bell pairs that has 37.5% of success.

In order for this to be a fair comparison, we use the circuits that have the same loss tolerance.

As different values for p1 and p2 can give the same final probability we optimise the results to

minimise the number of probabilistic source emissions.

In figure 4.15 we present the comparison of the number of bins necessary to produce a 3-GHZ

state using each strategy. By “bins” we mean the number of times that a heralded probabilistic

single-photon source has to be pumped to produce a single photon. As we can see from figure
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4.15, the optimal strategy depends on the source efficiency. For high efficiency sources, the

strategy that generates 3-GHZ states directly from single photons is optimal, while for very

low efficiency sources, it is better to add an intermediate stage of Bell pair generation in the

process.
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Figure 4.15: Comparison of strategies for the generation of 3-GHZ states, where the ballistic
strategy that generates the GHZ state directly from single photons is marked in blue and the
strategy that has an intermediate stage where Bell pairs are produced is marked in yellow. (a)
Comparison of strategies when using a high efficiency source η = 10%. In this case (and for
efficiencies higher than this) the ballistic generation is more resource efficient. (b) Comparison
of strategies when using a low efficiency source η = 1%. In this case (and for efficiencies lower
than this) the generation with an intermediate stage is more resource efficient.

4.5.3 Using probabilistic Bell pairs to generate GHZ states

In the calculations we have presented so far referring to the generation of GHZ states, we have

always assumed that we multiplex heralded single photon sources. However, the “heralded”

property of the source comes from the fact that the output of the source is a Bell pair and we

measure one mode in order to herald the presence of a single photon in the other mode. This

strategy is extremely expensive, and it seems a waste to use these probabilistic Bell pairs to

only herald single photons.

The key realisation is that in order to herald n single photons from probabilistic sources we

measure n modes in a system with 2n modes. This is very similar to some of the circuits we

have presented so far, where 2n photons are used to create n-GHZ states. These measurements

not only herald the correct state, but also herald the presence of photon pairs in the correct

modes. Therefore we can remove the multiplexing stage of single photons and directly input the

probabilistic pairs into the GHZ generator. It must be noted that in this case, the measurement

of n photons is necessary as we need to herald the sources, and therefore the schemes presented

in section 4.4.5 cannot be used.

In figure 4.16 we present the generation of a 3-GHZ state from probabilistic SPDC sources.

This circuit has a success probability of 25% when it has deterministic Bell pairs fed into it,

and success probability η3/4 when the Bell pairs are probabilistic, where η is the efficiency of

111



4. GENERATING PHOTONIC STATES

1 3 4 5 62

Probabilistic sources
S1 S2 S3Efficiency ⌘

Figure 4.16: 3-GHZ generation using Bell pairs from probabilistic SPDC sources. The success
probability of this circuit is η3/4 where η is the efficiency of the sources.

the source13. In order to compare the efficiency of this approach with generating a 3-GHZ with

deterministic single photons (after they have been multiplexed from the source) we will count

the number of bins necessary in each case to produce a near-deterministic GHZ state.
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Figure 4.17: Comparison of 3-GHZ multiplexing generation schemes. For three different source
efficiencies, we plot the number of probabilistic source emissions as a function of the probability
of generating a GHZ state. In green we represent the results for the scheme where we herald
single photons from the SPDC sources and multiplex them in order to use them as deterministic
in the “3-GHZ from single photons” scheme. In yellow, we represent the results of using the
scheme presented in figure 4.16, where the output of SPDC sources is fed directly into a 3-GHZ
generator. We can see that the optimality of the strategy depends on the source efficiency,
with the ballistic approach (where we don’t multiplex single photons) being more beneficial for
higher source emission rates.

In figure 4.17 we present the comparison of both strategies for three different source effi-

ciencies. In the case with the single photon multiplexing stage, as it was explained earlier, we

require 6 · k1 · k2 bins and the probability of generating the 3-GHZ is p6
1 · p2. For the case

that simulates the circuit presented in figure 4.16, we only have one stage of multiplexing. The

optimality of these strategies depends on the efficiency of the source (in a similar way as we

saw in the previous section). For low source efficiency η < 10%, it is more favourable to add a

13Note that we have not used the boosted version of this scheme. Although using the boosted version would
give a success probability 1.5 times larger, the extra η factor due to the source efficiency would effectively give a
lower probability.
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multiplexing stage at the level of single photons, while for high source efficiency η > 10% it is

better to use the probabilistic Bell pairs directly from the source.

This strategy that uses directly the probabilistic Bell pairs emitted by the sources has one

further good quality. So far we have been assuming that in the case when one of the sources

doesn’t fire, we discard the event as a failure. However, certain detection patterns with a lower

than expected number of measured photos can herald smaller entangled states. For example,

in the case of the 3-GHZ generation circuit presented in figure 4.17, studying the possible

measurement outcomes when only two photons are detected (hence implying one of the sources

has not fired) we realise that if source S3 doesn’t emit a photon pair, the circuit generates a

heralded Bell pair. From the three detectors in the circuit we cannot tell which source did not

produce a Bell pair (and it is necessary to know in which mode the generated Bell pair is in

order to consider it heralded), but adding an extra detector in mode 6 allows us to determine

if it was source 3 that did not produce a Bell pair. In the case where only two photons are

detected (and the measurement pattern corresponds to one that we would consider successful),

detecting vacuum on mode 6 heralds a Bell pair in modes 2 and 4. A full analysis of the output

states showing that this is true can be found in appendix F.

4.6 Rotated Type-II

As we have seen previously, it is helpful to view the fusion gates as two effective projections to

understand their effect on the cluster states defined on the photons. The fusion gates presented

so far always perform the BSM in the same basis, meaning that the effective projective mea-

surement on the qubits is also in the same basis. By changing the basis of the BSMs, we change

the effective projections and can therefore achieve different cluster operations. In this section

we will illustrate how a fusion measurement affects the structure of a graph state. We will give

the results of other possible rotated fusion gates condensed in figure 4.18. As we will see in this

figure, the graph state changes significantly after a success or failure outcome, with differences

not only in the graph structure but also in the amount of entanglement in the unmeasured

qubits. The ability to choose the success and failure outcomes appropriately will be very useful

to optimise the construction of a big cluster state from small entangled states, which we do in

chapter 5.

The procedure for obtaining the effective projections is the same as was used to justify the

projective measurements in the case of the fusion gates and will therefore be omitted here. The

different effective projections of rotated fusion gates can be seen in figure 4.18.

We now show how two star graph cluster states (LC equivalent to a GHZ) can be fused

together using the Type-II fusion gate. Expressed in Dirac notation, these states are:

|GHZ4〉|GHZ4〉 =
1

2
(|0 + ++〉+ |1−−−〉) (|0 + ++〉+ |1−−−〉) . (4.48)

A successful Type-II fusion would yield

(〈++|+ 〈−−|√
2

)

2,6

|GHZ4〉|GHZ4〉 =
1√
2

(|0 + +0 + +〉+ |1−−1−−〉)1,3,4,5,7,8 , (4.49)
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which is a star graph with the middle qubit redundantly encoded, while the failure of the fusion

gate would yield

(〈++|)2,6 |GHZ4〉|GHZ4〉 = (|0 + +0 + +〉)1,3,4,5,7,8 , (4.50)

which is a disconnected graph.

Note that doing the projection on the other state of each subspace would just introduce a

Z rotation on half of the state. Changing the polarisation rotation of the photons before they

interfere at the PBS yields different subspaces onto which the state of the photons is effectively

projected to, resulting in different fusion operations on the cluster states. Doing a similar

analysis for the different rotated fusion gates, we obtain the results presented in figure 4.18. In

this figure, some of the graph states have two qubits without a bond between them, we use this

notation to denote redundantly encoded qubits.
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Figure 4.18: The different rotated versions of the Type-II gate can be seen in this figure, where
the effective projection on the qubits and the final state of the rest of the photons is given, in
Dirac notation and as a graph.

We have presented the action of the rotated fusion gates on two star graph states as this

operation is crucial for percolation-based LOQC protocols. We can see how the rotated gate at

the bottom of figure 4.18 has the optimal success and failure outcomes for the task of generating

large clusters from small GHZ states: when it succeeds the two central sites of the star graph

are linked by a cluster edge, while when the gate fails, the two measured photons are removed
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from the cluster but no more entanglement is destroyed14. However the optimality of one gate

or another is highly dependent on the input states and the intended final graph structure, other

protocols with different input states might benefit more from using one of the other rotated

fusion gates.

4.7 Discussion and outlook

In this chapter we have provided varied optical circuits that produce GHZ states from differ-

ent resources and with different probabilities of success. In figures 4.20 and 4.21 we present

summaries of these linear optical circuits. Figure 4.20 shows the generation of Bell pairs, 3-

photon, 4-photon and n-photon GHZ states from single photons with the correspondent success

probabilities and the resources needed for each circuit. Equally, figure 4.21 shows the genera-

tion of 4-photon and n-photon GHZ states from Bell pairs with resources required and success

probabilities.

It must be noted that the optimal strategy for building GHZ states is not known. The results

presented in this chapter improve the efficiency of the generation but they are not proven, or

in fact thought of, to be optimal. In figure 4.19 we plot the number of deterministic Bell

pairs consumed when generating GHZ states. As we can see the consumption of resources

grows exponentially. The new generation schemes proposed have been obtained mainly by

generalising previous results and exploiting the intuition gained from considering the fusion

gates as cluster building operations. New methodologies are necessary in the search for an

optimal GHZ generation circuit.
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Figure 4.19: Deterministic Bell pairs consumed when multiplexing the GHZ generation scheme
in figure 4.11. The number of resources needed grows exponentially with the size of the generated
GHZ state.

All these schemes have been designed using fusion gates. What is really significant about

the original [90] and modified (boosted and rotated) fusion gates is that their success and

failure outcomes can be mapped to projective measurements in the qubit basis. Therefore they

can be used to construct other photonic states (in particular those that can be described as

graph states) by just considering them as cluster state operations. The use of these gates in

14Note that this rotated fusion gate introduces some imaginary phases in the description of the cluster state.
As these are known phases, they can be taken into account when implementing an MBQC protocol.

115



4. GENERATING PHOTONIC STATES

combination with cluster state simulators, such as the one described in chapter 3, provides a

novel way to design new photonic generation circuits.

The boosted fusion schemes provide the advantage of increased success probability when

performing BSMs, but have not been proven optimal. In fact, numerical results from [115]

suggest they are indeed not so. The fact that the Grice and Ewert-van Loock BSMs can be

written as the same unitary operation and they only differ in the ancillary states used (Grice

using Bell pairs while Ewert-van Loock uses single photons) suggests an equivalence between

these resources which appear so different. Investigating this equivalence and formalising the

resource which boosts the success probability of BSM is an interesting future line of research.

In order to compare the efficiency of all the schemes presented we have performed multi-

plexing calculations, to associate a cost in terms of photonic states to the success probability

given for each of these schemes. One striking trend that can be observed is that lower source

efficiencies favour generation schemes with more intermediate multiplexing stages. As the effi-

ciency of photon sources improves, the most efficient generation schemes will be those with few

or no multiplexing stages, which will benefit any LOQC proposal and will reduce the loss rate

introduced by active switching.

Throughout this chapter we have provided estimates for the number of resources needed

for the different schemes. The numbers are very large and might look discouraging. However,

given some reasonable assumptions about future technologies (clock rate ∼ 1GHz, 1 micron

distance between waveguides in the wafer and 1 foot of propagation distance per ns time bin),

it is possible to show that a common-sized silicon wafer such as 12′′×12′′ can store up to 3.1 ·106

time bins. Therefore any of the multiplexing schemes we have presented can be comfortably

stored in these wafers. We reiterate that the schemes presented in this chapter are the best we

know of, but have not been proven optimal. Devising a systematic approach to find the optimal

schemes is the next natural step to improve efficiency and reduce the number of resources

consumed.
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Figure 4.20: Summary of entangled states generation from single photons.

117



4. GENERATING PHOTONIC STATES

Bell Pairs

Success probability: 

Resources:

Output:

Success probability: 

Resources:

Output:

Success probability: 

Resources:

Output:

4-photon GHZ

4-photon GHZ

n-photon GHZ

3

23
= 37.5%

32

25
= 28.125%

✓
1

2

◆bn�1
2 c✓

3

4

◆bn
2 �1c

4 Bell Pairs

6 Bell Pairs

Bell pairs

2 1 3 4

5 6

7 8

(n� 1) + bn� 1

2
c

2 1 3 4

5 6

9 10

78

1211

Most efficient

Loss tolerant

Figure 4.21: Summary of entangled states generation from Bell Pairs

118



CHAPTER 5

A PERCOLATION-BASED SCHEME FOR

LINEAR OPTICAL QUANTUM COMPUTING

5.1 Introduction

In the literature review presented in chapter 2, we presented the most significant proposals

for LOQC since KLM’s [2] first proof of principle. Recent demonstrations [58, 56, 43, 59, 60]

have made significant progress towards fulfilling the experimental requirements needed in those

proposals. In particular, the use of integrated photonics to implement large-scale, complex in-

terferometers on a chip shows great promise. However, active feed-forward remains challenging,

it requires fast switching which is a dominant source of photon loss and has not yet been ex-

perimentally demonstrated in an integrated device. Fast (GHz) switching, required for optical

feed-forward, is expected to be the leading source of heat and power consumption in a large-scale

device. It is therefore desirable to avoid fast switching and feed-forward where possible.

Of previous approaches to linear optical quantum computing, only Kieling et al ’s proposal

[99] is ballistic - meaning that active switching is not required for the process of cluster state

generation from the small resource states. It is thus the most suitable previous approach

to LOQC in an integrated setting. It has a number of shortcomings, however. Firstly, it

requires 4 or 5-photon entangled states as input, which are costly and difficult to generate in a

(near)-deterministic manner. Secondly, it is not constructed from loss-tolerant components, and

therefore photon loss during the process will lead to the generation of an undesired state. In the

scheme presented in this chapter, we adapt advances in Bell state measurement [111, 115] to the

ballistic cluster state generation scheme, to provide a new approach to scalable ballistic LOQC

with significant advances on Kieling et al ’s approach. Off-line resources are reduced to 3-photon

entangled states (local-Clifford equivalent to GHZ states), while all gates are loss-detecting. The

scheme has an in-built robustness to loss and will succeed, without additional loss-encoding,

even if ∼ 1% of the photons entering the gates are lost. As seen in chapter 4, deterministic

n-qubit entangled state generation becomes experimentally more challenging with increasing n,

and the reduction to resource states to only 3 photons is thus a significant improvement. A

full resource comparison, demonstrating at least an order of magnitude reduction in resources

compared with earlier schemes, is also presented.

It must be noted that the scheme presented here and Kieling et al.’s are very different from

other LOQC schemes, as in these schemes, once the resource state enters the cluster generation
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stage, any photon will only ever interfere with one and only one other photon1.

5.2 Boosted fusion mechanisms in the context of percolation

Browne and Rudolph proposed [90] two different fusion gates, Type-II and Type-I for combining

cluster states, as introduced in earlier chapters. Previous percolation schemes for LOQC [99]

have made use of both these gates. Type-I performs a logical fusion operation in the compu-

tational basis, as presented in chapter 2, and only consumes one photon. However it is not

robust to loss, and lost photons can be translated to logical errors [93]. A success event is

heralded by the detection of a single photon, while detection of two photon or the vacuum

indicates failure. However, when combined with loss these distinct events can become mixed.

A failure that would have been heralded by detection of two photons, when one of the photons

is lost, becomes a heralded success, hence the introduction of logical errors in the lattice. In

contrast, Type-II fusion detects incident photons separately, and all photons entering the gate

are measured. Any loss events can be identified, as the total number of detected photons will

be measurably reduced by loss. The generalised Type-II gates, presented in chapter 4, share

this loss detecting property. All photons must reach the detectors for the gate to succeed.

Original Type-II

Boosted Type-II

psucc = 50%

psucc = 75%

1 2

1 2

3 4

1

2

3
4

5

6

Requires 1 Bell Pair

Requires 4 single 
photons

F

Figure 5.1: Boosted Type-II fusion gate, marked here onwards as an hexagon labelled “F”.
Photons 1 and 2 represent the photons on which the gate is applied, the rest are ancillary
photons. The implementation based on [111] requires a pair of maximally entangled photons,
while the implementation based on [115] requires 4 single photons. The boosted gates have
the exact same success and failure outcomes as the original Type-II but with a higher success
probability. Note that all photons are measured.

The basic building block of our scheme is Browne and Rudolph’s Type-II fusion gate, which

can be used to connect small cluster state fragments into a large cluster state for MBQC. This

gate is equivalent to a Bell state measurement in a rotated basis. We use the boosted versions

of the Type-II gate as proposed in chapter 4. The advantage of using Type-II fusion instead of

1It follows that this proposal is different from a boson computer such as the one described in section 2.2.4,
which is a non-interacting model for bosons.
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Type-I as previous proposals [99], is that this gate detects lost photons and therefore does not

introduce logical errors [93]. This enables us to develop a ballistic scheme with a lattice which

a 50% Type-II gate would leave below the percolation threshold, but which 75% probability

Type-II gates percolate to a universal resource.

5.3 Building the percolated lattice

The phenomenon of percolation has been long studied [109] in classical statistical mechanics as

a prototype phase transition on graphs that have lost some of their bonds and/or sites due to

a randomised process. As discussed in chapter 2, a ballistic strategy for LOQC can be imple-

mented, where small photonic clusters are probabilistically fused together forming a percolated

graph. This graph will define a cluster state, whose bonds/sites are effectively removed due

to failure of probabilistic entangling gates together with photon loss. The percolation thresh-

old marks a phase transition in the computational power of the resource state generated [104],

which distinguishes the states that can be used for universal quantum computation from those

which cannot. Having a universal resource is equivalent to saying that most of the bonds of the

lattice are present.

Thus, our aim is to build a cluster state with gates that succeed with a probability higher

than the percolation threshold. We want the cluster to be regular mainly because that implies

that it can be built with a static linear optical scheme, which makes it simpler to realise

experimentally. The resource state used to build the cluster would then be fed into a static linear

optical network. The cluster construction is completely ballistic, all operations are independent

and can be performed systematically on the input states as they enter the static network. The

fusion gates needed to build first the micro-clusters that will go in each site of the lattice, and

then the final cluster state, are performed independently of the success or failure of other fusions.

In fact, all fusions could be performed in the same time step. In practice however, at any given

point of the computation, only part of the cluster state will be formed (see section 5.9.2 for

more details); this will reduce the amount of loss and error introduced by delays and/or photon

memories. The advantage of this scheme is that it doesn’t require multiplexing or feedforward,

which speeds up the construction process and lowers the loss rate of each photon.

To be able to successfully perform UQC, only a 2-dimensional cluster state is required,

even when using percolation [105]. However, the percolation thresholds for 2D lattices are

comparatively high, and given that we have to account for the effect of probabilistic entangling

gates and loss of qubits, 2D graphs become quite impractical and 3D lattices show much better

prospects. It must be noted that the coordination number of each site in a 3D lattice is on

average bigger than on a 2D lattice, and therefore the construction of 3D lattices is more

expensive in terms of the number of entangling operations needed per site. As mention in

chapter 2, the most favourable lattice to implement in a percolated scheme is the diamond

lattice, as it is the 3D lattice with the lowest coordination number, namely 4, and yet it shows

a low percolation threshold (in fact much lower than the 2D square lattice, which has the same

coordination number per site in the lattice [108]).

In this work, we represent the internal structure of a diamond lattice as brickwork in 3
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dimensions (Fig. 5.2). If one takes the diamond lattice and rearranges the directions of the bonds

so that they all make right angles with each other, we find that the diamond lattice is isomorphic

to brickwork in 3 dimensions, and indeed this description is very useful when arranging the

micro-clusters to be fused (both in the computational simulation and the experiment). The

diamond lattice is formally isotropic, however its depiction as brickwork is not. It is as if

we had stretched the diamond lattice in one direction but not in the others. This does not

change the connectivity, but it does change the average number of connections that a site has in

each direction. There is a greater average connectivity in the ~x direction and thus a preferred

direction for percolation. As will be shown later, we have also optimised the process by which

the lattice is generated to take advantage of this anisotropy.

In figure 5.2 we can see how the GHZ states are arranged to create the brickwork structure.

For each site in the final lattice, we use three 3-GHZ states to create a five-qubit micro-cluster.

Each micro-cluster is created by performing two rotated Type-II fusion gates [90], as described

in figure 5.3. The 5-star micro-cluster will be created when both fusions succeed, however in the

case of failure the outcomes will still create connectivity in the lattice, contributing still to the

percolation of the whole lattice. In the case where we have formed a five qubit star graph state,

all the qubits in the exterior are equivalent, however in the cases where failures have happened

the way in which we arrange those external qubits affects the connectivity of the lattice. We

have shown in figure 5.3 the arrangement that is most suitable for our scheme and that allows

us to obtain the lowest percolation threshold.

Part of the final cluster

Fused with qubits from the layer below

Fused with qubits from the layer above

Fused to create entanglement across a layer

Fused to create the nodes

~x

~y~z

Figure 5.2: Full layout of a layer of the diamond graph using 3-photon GHZ states as input.
The legend at the bottom of the figure shows the role of each photon. There are two types of
rotated fusion Type-II gate used (marked by orange and blue open circles), their effect on the
GHZ states is described in figures 5.3 and 5.4.

It is worth noting that in the case of failure of some of the fusion gates, the cluster will lose
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Figure 5.3: Probabilistic creation of star micro-clusters. The four outcomes correspond to both
fusions succeeding (with probability PSS), one failing and one succeeding (with probabilities
PSF and PFS) and both fusions failing (with probability PFF ). The structure of the photonic
states in each of these instances is also given.

bonds belonging to the lattice but it will also gain bonds that do not belong to the internal

structure of the lattice. Figure 5.6 shows an instance of the percolated lattice, where the diagonal

bonds give away the fact that the generated lattice is not a strict subgraph of the brickwork

lattice. This occurrence cannot be accounted for in a simple percolation model, however it is

beneficial for our scheme as we are mainly interested in increasing the connectivity of the lattice.

It has an impact on how the percolation threshold is calculated, which we will address later on.

When attempting to fuse three 3-GHZ states in order to obtain a micro-cluster, there is only

one valid success outcome. However, the failure outcomes (when both or either of the gates fail)

can contribute to create entanglement across the lattice and the way these failure outcomes are

connected can greatly enhance the percolation probability. In figure 5.5 we show two different

schemes for micro-cluster formation, which differ in the failure outcomes. It can be seen that

scheme B has optimised connectivity along the ~x direction of the cluster. This micro-cluster

will connect along the ~x direction to other micro-clusters through qubits 1 & 2, along the ~y

direction through qubit 3 and along the ~z direction through qubit 4. In scheme B, there always

exists a path from qubit 1 to qubit 2, whereas that is not the case in scheme A or other similarly

connected schemes, hence the optimisation. We can check this optimisation numerically and

show that the brickwork lattice has a percolation threshold along the length pc ∼ 63.8% with

scheme A and pc ∼ 62.5% with scheme B. Scheme A and B differ only in the organisation of the
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p

(1� p)

F

Figure 5.4: Fusion of 5-qubit micro-cluster to form the final lattice. We show the two possible
outcomes of the attempted fusion of two 5-qubit micro-clusters, where p is the fusion success
probability.

photons in the case of fusion failure. As can be seen from figure 5.3, we are not using Type-II

fusion directly, but we are applying a certain SU(2) prior to it. These rotations have the effect

of preserving more entanglement in the failure outcomes than the regular Type-II gate (see

chapter 4 for a full description of all possible rotations and outcomes). Up to a point, we can

adapt Type-II fusion to have the success and failure outcomes most convenient for our scheme.

Using Type-II (or a BSM) directly with no adaptation would lead to an overall less connected

lattice (such as presented in an alternative scheme [163]), with a higher percolation threshold

of ∼ 70%. Having a lower percolation threshold is important, not only because it allows for a

higher tolerance for loss, but also because the expected size of the final perfect lattice (after the

percolated lattice has been renormalised) depends on how far above the percolation threshold

p is [105]. The overhead in resources increases as p→ pc.

5.4 Percolation properties

To assess the percolation properties of the lattice, we use a Monte-Carlo simulation in which we

produce many random instances of the lattice and find whether a percolating cluster exists for

each instance. In each independent run, our simulation builds the lattice sequentially, modelling

the action of the success and failure of the fusion gates and attempts to find a percolation path.

In doing so, we achieve a more realistic picture compared to the simpler alternative of deleting

nodes from a perfectly formed lattice. This approach also allows us to collect the information

which will ultimately be fed to a classical percolation algorithm. For each set of parameters,

the simulation is run 104 times to ensure that statistical error in the data is . 1%.

In figure 5.6 we present an instance of the lattice, where we can see why this lattice is

not the typical percolated diamond lattice (even when expressed as brickwork). As mentioned
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Figure 5.5: Here we present two different ways in which the connectivity of the micro-clusters
can vary when the fusions fail. Scheme B has optimised connectivity along the ~x direction,
there always exists a path from qubit 1 to qubit 2, which are the qubits that connect to the
other micro-clusters along the ~x direction.

earlier, the failures of some of the fusion gates produce correlated bond losses together with the

appearance of new diagonal bonds that can be seen in the figure. It must be noted that the

presence or absence of the bonds will be known from the pattern of successes and failures of

the fusion gates. Thus in any experimental set up, the structure of the percolated lattice could

be inferred by a simple classical algorithm.

5.4.1 Calculating the percolation threshold

In percolation theory, percolation properties are defined for infinite dimensional clusters. It is in

that limit where plotting the probability of percolation versus the probability of occupancy (in

site, bond or mixed site-bond models) yields a step Heaviside function. However, for computa-

tional results, simulating an infinite lattice is impossible and we extract results from the analysis

of smaller lattices. In fact in most models, Bose-Einstein statistics are assumed as the best ap-

proximation for the step function in the finite lattice case. However, this presumes knowledge

about the model, in particular about the linearity of the dependence between our figure of merit

(i.e. the occupancy) and the connectivity of the lattice. This is a justified assumption in most

models, however in the model we are considering, the dependence is not as simple. Consider a

single bond between micro-clusters, for example the bond between qubits 1 & 2 in figure 5.7.

For that bond to exist, we require three separate fusion events to succeed, however if one of

them fails, as is the case for the fusions between qubits 2 & 3 in the same figure, we can end up

creating an extra bond, which is not in the regular lattice structure we have been considering.
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Y

Z

X

L

Figure 5.6: Instance of the percolated cluster (10 × 3 × 3), highlighted in blue is the spanning
cluster. In addition to the orthogonal bonds which are expected in the canonical brickwork
lattice, we see some diagonal bonds these are the result of failed fusions during the creation of
microclusters.

It is obvious then, that we cannot assume a linear dependence between the lattice connectivity

and the fusion probability. But we can still find the percolation threshold without making such

assumptions.

Succesful
Fusion

Failed
Fusion

1 2 3

4 5 6

1 2 3

4 5 6

Extra bond

Figure 5.7: Pattern of fusions success and failure. Bonds between qubits only exist if all the
fusions between the qubits have succeded, as it is the case between qubits 1 & 2. If some fusions
fail, we may end with no bond at all (as it is the case for qubits 4 & 5, or with correlated bond
losses together with extra bonds outside the internal lattice structure, as it is the case for qubits
2, 3 & 6.

Let us define Π (p, L) as the probability that a lattice of linear dimension L percolates

when built with fusion gates that succeed with probability p. In the case of the infinite lattice

we would have that Π = 0 if p < pc and Π = 1 if p > pc, however in the case of a finite

lattice Π(p) for a set L, it will be a smooth function instead of the Heaviside step function due

to finite-size corrections. To find the percolation threshold without making any assumptions
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about the functional form of Π(p, L) we use known results about the critical point in the context

of renormalisation. The basic idea of renormalisation is the self-similarity of the lattice at the

critical point (percolation threshold) [109]. The correlation length, ξ, can be defined as the

typical cluster diameter, it diverges at the percolation threshold as that is the point where the

infinite cluster first appears [103] and it grows monotonically with the occupancy p. What this

means is that the size of any cluster at the percolation threshold is much smaller than the

correlation length at the percolation threshold (which is infinite) and therefore all the clusters

are similar to each other in an average sense.

When performing renormalisation on a lattice, we replace a cell of the lattice (that comprises

many sites) by a supersite, provided that the linear dimension of the cell b is much smaller than

the correlation length of the lattice ξ. At the percolation threshold, because of the self-similarity

of large lattices, the properties of a renormalised lattice will be the same as the original lattice

and therefore we will have Π(pc, L) = Π(pc, L/b). That is to say that the value of Π(pc, L) does

not depend on the renormalisation parameter and must therefore have the same value for all

lattices of different size but with the same shape and dimension. We can thus conclude that

to calculate the percolation threshold when we only have access to data in finite lattices, we

should obtain values of Π(p, L) for different p and Li and we find the threshold by estimating

were the functions of Π(p, Li) intersect.
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Figure 5.8: Results for simulations on a bulk of cluster of L= 15, 20, 25. Each cluster contain
L3 sites and has been generated from 3 · L3 GHZ states.

We perform the simulation by generating instances of the lattice with fusion success prob-

ability p. In figure 5.8 we have represented the results for lattices of different linear dimension

and found the value for the percolation threshold, which is estimated to be pc ' 0.625. We

conclude that lattices built according to our scheme, using boosted fusion gates with success

probability of 75%, are well above the percolation threshold, and are therefore universal for

quantum computing.

It must be noted that the boosted gates we have presented cannot achieve the entire range

of success probabilities (see chapter 4) that we consider in our numerical simulations. But the
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exercise of analysing all the values for p gives us insight into the behaviour of the model and

allows us to find the percolation threshold for this scheme. The approach we have taken in this

work has the intention of solving a difficulty in the generation of a cluster state in LOQC, but

this model could be applied to any other physical system with probabilistic gates.

5.5 A single qubit channel

In traditional MBQC, a single qubit is replaced by a linear cluster (figure 1.2). When two-

qubit operations are required, a bond (gate) is created between two linear clusters (qubits).

In a paradigm where the creation of entanglement between qubits is probabilistic (such as in

MBQC), a three-dimensional piece of cluster state can be used to implement a single functional

qubit. If there exists a spanning path through the cluster, information can flow through the

channel, allowing the computation to progress. We can then calculate how many operations we

can perform on this single qubit.

The cluster channel is parametrised by a fixed cross section (width and height) and variable

length, which corresponds to the computational depth. The cross section of this cluster is

directly related to its percolation properties: a larger cross section gives a higher percolation

probability. Given a desired length, we must choose a cross section in order to have a percolation

probability higher than some desired probability of success. In figure 5.9 we show the percolation

probability for different cross sections, as a function of the length. We have chosen square cross

sections because the brickwork lattice’s percolation properties are isotropic in the cross section

plane. It was confirmed in preliminary simulations that this geometry performs better than

rectangular shaped cross sections.
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Figure 5.9: Percolation probabilities as a function of the length, for lattices of square cross
section L2. The length of the cluster correlates to the computational depth of the lattice. The
exponential decay shown has a decay constant γ which depends on L, the best fit we have found
is γ = ee

0.413L
.

As we can see from figure 5.9, for a cross section of 6 × 6 qubits, we can make the cluster

very long. Because of computational constraints, simulating large clusters is very challenging.

We fit an exponential decay function to the data, obtaining an estimated variance of 10−7.
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From this fit we extrapolate that for L = 6, a cluster of length 9000 would be obtained with

probability greater than 1− 10−3.

5.6 Loss tolerance

A question that naturally arises in large-scale schemes for LOQC is tolerance to photon loss.

This scheme has been designed with loss robustness from the outset. The Type-II boosted

fusion gates can detect all losses that happen in the photons incident in the fusion gates. Our

scheme is operating well above the percolation threshold for the lattice, and this headroom

leads to a natural loss tolerance. The incoherence induced in the state by a loss error can be

fixed by measuring neighbours of lost qubits in the Z basis2, thus cutting all bonds from the

lost qubit to the cluster state. We have simulated the building of the lattice where each photon

has probability pl of being lost, and when a loss is detected, we measure all neighbours of the

lost qubits in the Z basis to cut it out. In figure 5.10, we can see the loss tolerance of a cubic

lattice of L = 25 in blue, in orange we have highlighted the constant success probability of 90%

for comparison. The success probability of the fusion gates used has been taken to be 75%. As

we can see, the probability of having a spanning path is larger than 90% for loss rates of up to

1.6%.
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Figure 5.10: Loss tolerance (blue) for a cubic lattice of linear dimension L = 25. The indi-
vidual photon loss is used as a single parameter that encompasses loss errors from the sources,
waveguide photon absorption and detector inefficiencies.

We want to stress that this is a natural loss tolerance of the system. Previous proposals

[99] have given thresholds for heralded loss, where the location of all loss errors in the final

lattice is known. Heralded loss is not experimentally justified in LOQC and only serves as an

upper bound for loss tolerance. In order to compare our scheme with previous work we have

performed the same kind of heralded loss simulations (shown in figure 5.11) and found that in

2Other strategies, such as measuring stabilizer operators that allow for an indirect [113] Z measurement on
the lost qubit, could also be used.
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this scenario we could tolerate loss rates up to 15%, which is an improvement of 5% on the

numerical results reported in [99].
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Figure 5.11: Heralded loss tolerance (blue) for a cubic lattice of linear dimension L = 25.

5.7 Scaling of resources

In this section we will explain the renormalisation of the lattice (following the procedure intro-

duce by [99]) and assess the scaling, assuming that we have GHZ and Bell pairs on demand3

(for this account of resources we will be using Grice’s version of boosted fusion). In figure 5.12

we show the procedure of renormalising the lattice: we take cubic pieces of the lattice and treat

each of them as a renormalised qubit. When fusing the qubits that lie on the sides of these cubes

we are applying CZ gates in the renormalised lattice. It must be noted that the entire cluster

would be created as one big piece in the experiment, as opposed to first building renormalised

qubits and then making a cluster out of these qubits.

In figure 5.12 we can see a realistic example of the renormalisation procedure, in which cubic

pieces of the lattice become the new renormalised qubits. Within these renormalised qubits the

part of the lattice highlighted in blue shows the spanning cluster while the orange highlights

the disconnected parts of the cluster. As mentioned in previous sections, the lattice percolates

better along the length in comparison with the other directions, which means that sometimes

the renormalised qubit will be able to connect to other renormalised qubits along the length

but not in other directions. When this is the case we won’t be able to perform a CZ gate

between the renormalised qubits (shown in figure 5.12 in red). These CZ gates that connect

qubits across the width correspond to gates between logical qubits, which are more flexible as

we can delay them or reconfigure the circuit slightly, therefore not posing a significant problem

for the scheme.

Let’s assume that our renormalised qubit is a cubic section of the lattice containing L3

physical qubits. We renormalise figure 5.9 to show what is the probability of percolation when

3For linear optical circuits that generate this resources from single photons, see chapter 4.
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Figure 5.12: View of the lattice in terms of the renormalised qubits, which are cubic pieces of
the lattice.

we fuse a certain number of these renormalised qubits, see figure 5.13. When we extrapolate

the results for L = 6 to see how many we can fuse before the probability drops below 90%,

we find that we can have a computational depth of 1500 before this occurs. For L > 6 the

computational depth that can be achieved will be much higher.

We want a code with computational depth of k (by which we mean the number of measure-

ments we will want to perform in each logical qubit; in the MBQC model, this corresponds to

the number of qubits on one line of code). We also want to have n logical qubits (see figure 1.2

in chapter 1 where notation is more clearly indicated). For these variables, the values of the

quantities involved and resources needed is:

• Number of renormalised qubits: (n · k).

• Total number of lattice sites: (n · k) L3.

• Number of 3-photon GHZs needed: 3(n · k) L3.

• Number of fusions: 4(n · k) L3.

• Number of optical elements needed per fusion (success rate of 75%): 15 polarisation

rotators and 4 PBSs.

The variables that correlate with the size of the computer/computation are n and k as we

don’t expect to change the encoding (L). It might be the case that for some small computations

we choose a smaller renormalised qubit to save resources, but for big computations, choosing a
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Figure 5.13: Probability of having a percolating path and therefore information flow, after
fusing a number of renormalised qubits in line. The probability shows an exponential decay
with the number of qubits fused, however for L ≥ 6 the decay seems negligible when fusing
O(102) renormalised qubits.

renormalised qubit of L = 6, 7, 8 should be good enough for all, and therefore L3 can be taken

as a constant. Lower k values could be used if a loss tolerant code was used for the logical

qubits, in which a failed percolation would be treated as a qubit loss. Therefore as the size of

the computation only affects variable n and k, we can take it as if (n · k) was the size of the

computation and the dependence of the resources on this variable is linear: given on demand

3-photon GHZ and Bell pairs, the scaling is linear on the size of the computer.

5.8 Comparison with previous percolation schemes

When designing a feasible architecture for quantum computing, the size of the machine (in terms

of number of components and resources required) is one of the biggest concerns. The following

comparison shows that our design utilises at least an order of magnitude fewer resources than

the design of Kieling et al. [99]. To show this we extract data presented in their paper and

compared it with ours under the same conditions.

In figure 4 of their paper [99], the authors show the dependence of the diamond lattice block

size k3 on the size L of the renormalised square lattice for three different sets of site bond

probabilities (psite, pbond). The overall success probability threshold P (L) was chosen to be 1
2 .

In our work, we have performed all the simulations, assuming the GHZ states are provided

deterministically. For the scheme comparison to be fair, we choose to compare with the data

points that correspond with the data set (1.00, 0.5). From the data used to produce figure 5.9

in our paper, we extract for different ks, what is the maximum value of L we can reach with

Π(L) ≥ 1
2 .

For a cluster size O(102), Kieling et al.’s scheme requires a renormalised qubit of size k = 7
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whereas our scheme4 can do with a renormalised qubits of size k = 3. This is already a significant

improvement. But the difference becomes much greater once we consider the number of Bell

pairs that are needed to build each renormalised qubit and the entire cluster.

To obtain this comparison, we will first calculate how many Bell pairs are needed to obtain

a GHZ with probability greater than 99.9999%.

• The data in [99] is obtained for 4-photon GHZ states. For each 4-photon GHZ state we

need 3 Bell pairs and the Linear Optical Network (LON) works with probability 1
4 . In

order to have a deterministic 4-photon GHZ we must repeat the generation procedure t

times, where t is such that 1− (1− 1
4))t ≥ 1⇒ t = 51. In total we consume 3× 51 = 153

Bell pairs in the generation of a deterministic 4-photon GHZ state.

• For this proposal we require deterministic 3-photon GHZ states. For each attempt at

generating one, we need 2 Bell pairs and the LON works with probability of success 1
2 . In

order to have a deterministic 3-photon GHZ we must repeat the generation procedure t

times, where t is such that 1− (1− 1
2))t ≥ 1⇒ t = 21. In total we consumer 2× 21 = 42

Bell pairs in the generation of a deterministic 3-photon GHZ state.

With these numbers, we can transform the data of the size of the renormalised qubit for

different cluster sizes into the number of consumable resources used. In figure 5.14 we can see

the number of Bell pairs required to build an L×L lattice of renormalised qubits. We can clearly

see that the resources required to build a renormalised cluster state are an order of magnitude

smaller in our proposal in comparison with the scheme presented in [99]. It must be noted that

we do not expect this block renormalisation strategy to be the best use of the percolated lattice.

In [99] it is used to obtain an analytic proof of the scaling, and we use it preliminarily to be

able to compare this proposal to [99]. In chapter 7 we will consider this approach among others

in order to implement fault-tolerant LOQC.

To provide a quantitative resource comparison of the data presented in figure 5.14, we

calculate the ratio between the number of Bell pairs needed to build a cluster state of a similar

size for both schemes. Comparing points with L of the same order of magnitude, we find that

[99] uses at least 14% more Bell pairs than our scheme to build the cluster state. We want

to emphasise that our scheme offers further benefits in addition to this reduction in resources.

The main differences between this proposal and [99] are the size of the resource states used to

build the cluster state and the type of gate that is applied to these resource states in order to

built the cluster state. In terms of resources, it is clear from the results presented here that

building the cluster out of smaller GHZ states consumes less resources overall, the number of

Bell pairs needed to probabilistically create the GHZ is lower and the probability of success is

higher. It is also important to note that generation of smaller GHZ states implies a LON with

fewer switches and fewer optical components, which reduces the overall loss rate of the photons.

In the following section we will give more details about the experimental implementation of this

proposal.

The type of gate used in [99], is the Type-I gate introduced in [90], this gate only measures

one photon out of the two photons that go into the gate. A failure of the gate combined with

4More details can be found in appendix B.
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Figure 5.14: Comparison of the number of Bell pairs consumed to build the entire L×L cluster
for different cluster sizes (L)

the loss of a photon would produce a false positive, inducing a logical error on the cluster [93].

In our proposal we only use the Type-II boosted gate which was introduced in chapter 4. This

is a loss tolerant gate as it measures all the photons involved, and as such it can never be the

case that a loss of a photon transforms into a logical error. Therefore, the improvements of

our scheme over the scheme presented by Kieling et al. [99] are not only the reduction of the

amount of resources needed, but also on the overall robustness of the construction, which is

indicated by the 5% improvement on the heralded loss tolerance.

5.9 QNIX: a blueprint for linear optical quantum computing

In previous sections we have proposed a protocol for LOQC that is at least one order of mag-

nitude more efficient than any protocol proposed before. However, when designing quantum

computing architectures, not only resource scaling but also experimental feasibility must be ad-

dressed. In this section, we present a schematic view of QNIX, an experimental implementation

of LOQC. We show all the necessary steps required to achieve UQC, from the generation of

the necessary resource states to the kind of feedback control needed to perform MBQC. Cur-

rent state-of-the-art experimental implementations are still not efficient enough to build such

a universal quantum computer, however our architectural proposal only requires moderate im-

provements on the component specifications and not a completely different technology in order

to successfully build a full-scale universal quantum computer.

One of the main advantages of percolation schemes for LOQC is that they yield an archi-

tecture with fixed computational depth. The number of optical elements in the photon path is

fixed and reconfigurability only required for the basis of the final measurement of the qubit.
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The architectural design we present in this chapter is dynamical, meaning that the cluster

state will be built sequentially and there will be a classical control unit that will determine

the measurement basis of the qubits based on continuous feedback from the fusion outcomes in

the cluster-building layer, and the measurement outcome of previously measured qubits. This

process will be repeated for every layer of the cluster state until the computation is finished.

This LOQC proposal is aimed at an implementation in integrated optics, in which minia-

turised semiconductor chips are used to manipulate light. The ability to condense the linear

optical operations in chips that can be easily integrated together yields a modular and mono-

lithic architecture, with the advantage that chip integration in wafers (thin layers of silicon)

provides intrinsic stability of optical phase and mode-matching. A number of experiments in

quantum chemistry [164], quantum computing [72] and quantum metrology [165] have been

recently successfully performed in this setup, and the ability to “fabricate entire 200 mm wafers

populated with hundreds of thousands of working devices” [61] has also been demonstrated,

making integrated optics a leading physical system for quantum computing. Multi-purpose

reconfigurable chips have also been demonstrated [43], with a wide range of experiments exem-

plified on the same chip. This reconfigurability at the single chip level means that any large-scale

architecture built from these elementary units can be fine-tuned and made multi-purpose.

The material in this section is the result of collaborative work with Pete Shadbolt, Dan

Browne, Terry Rudolph and numerous members of the Centre for Quantum Photonics at the

University of Bristol, in particular Jeremy O’Brien, Gabriel Mendoza, Jacques Carolan, Nick

Russell and Josh Silverstone. The design of the deterministic 3-GHZ generator with minimised

switching and the adaptation of the theoretical framework to the physical implementation are

my main contributions.

5.9.1 Active switching only in state preparation

Active switching has the highest effect on the photon loss rate, not only because currently avail-

able state-of-the-art switches introduce at least one order of magnitude more loss per component

than any other linear optical element [96, 97, 98], but also because theoretical simulations have

shown that the performance of switches has the highest effect on loss thresholds [62]. It is there-

fore desirable to reduce the number of active switches to a minimum in the QNIX architecture.

A key feature of the percolation scheme presented in this chapter is that it is ballistic, meaning

that there is no active switching in the protocol, with the exception of the last reconfigurable

measurement which cannot be avoided, as it is required by the MBQC and future QEC protocols

that may be implemented. However, the protocol assumes that we have access to on-demand

3-GHZ states and ancilla states to boost the fusion gates. This is not a realistic assumption as

even the production of deterministic single photons has not yet been achieved experimentally

[65]. Nonetheless, adding a single layer of switching for the state generation allows us to use

non-deterministic single photon sources to implement this protocol.

In order to be able to produce on-demand 3-GHZ states from non-deterministic single-

photon sources, we require a nested multiplexing scheme5. In this scheme, on-demand single

5Experimental source efficiency [58] is still lower than 10%, therefore according to the results in figure 4.15, a
nested multiplexing scheme will be more resource efficient than using probabilistic single photons.
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Figure 5.15: Schematic arrangement of probabilistic sources and switching networks that allow
the construction of a deterministic 3-GHZ generator. In the outer-most layer, we have proba-
bilistic single photon sources that generate photons in a multiplexed scheme. Photons (marked
in red and grey) are generated, but only the events marked in red will proceed through the
switching network to the next layer. Once these photons pass the switching network they are
considered deterministic as they are located in the appropriate bins to enter the probabilistic
3-GHZ generators. Again, the successful outputs of the 3-GHZ generators are marked in red and
grey, but only the red one will proceed through the switching network to become the determin-
istic 3-GHZ produced by this generator. Dashed grey lines indicate the spatial-temporal bins
in which photonic events are produced, and the orange and white partitions allow to identify
the multiplexing events corresponding to each probabilistic 3-GHZ generation. Note that this
is a simplified version of the design, as due to its complexity, it would be difficult to condense
in one informative figure: the number of spatial and temporal multiplexing layers, as well as
the number of photons needed for each stage is reduced from what is actually needed.

photons are first produced from probabilistic single photon sources, and then used to generate

3-GHZ states. These in turn are also multiplexed in order to produce on-demand 3-GHZ states

to feed the percolated lattice generator. A schematic view of this nested multiplexing scheme

can be seen in figure 5.15. The purpose of this figure is to give an idea of the general layout

of the deterministic generator. It must be noted that this figure is not accurate in the number

of multiplexed spatiotemporal bins required, or the number of photons required for the 3-GHZ

generators. An accurate figure of the deterministic 3-GHZ generation would be too complex to

be informative. Accurate calculations of the number of multiplexing stages required to build
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3-GHZ states from single photons are given in chapter 6.

Probabilistic single photon sources are multiplexed both spatially and temporally. The

successful production of single photons is known, as heralded single-photon sources are used, and

therefore we know the spatiotemporal bins where the photons are located and can reconfigure

a switching network in order to put forward the chosen single photons. After these switching

networks, the single photons that come out of the output ports can be considered deterministic,

and therefore the probabilistic 3-GHZ generators are fed on-demand single photons as required.

The probabilistic 3-GHZ generators, which use the design first proposed in [93], require 6

deterministic single photons (not only three as shown in figure 5.15) and produce one 3-GHZ

state with probability 1/32. The success or failure of the 3-GHZ generation is also heralded by

the measurement pattern of the detections. This particular generation circuit has been chosen

as we showed (see appendix G) that it required less multiplexing stages and could tolerate

higher loss rates per active component in the switching network.
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Figure 5.16: (a) All 3-GHZ states that are used to build the diamond percolated lattice can be
classified in six types according to the fusion operations they undergo. The enclosed 6 states
can be generated by the elementary unit of the wafer, shown in (b). (b) Modular cell which
generates the enclosed 6 GHZ states of (a). Note that they have connections to the surrounding
cells to created an interconnected cluster. Each of the coloured boxes represents a deterministic
3-GHZ generator, shown in (d) and figure 5.15. (c) Wafer (flat sheet of silicon) onto which
modular cells (b) are etched. They interconnect in order to produced the percolated cluster as
shown. (d) Deterministic 3-GHZ generator, shown in detail in figure 5.15.

In figure 5.16 we show how the deterministic 3-GHZ generator is integrated in the percolated

cluster state generator. The deterministic 3-GHZ states that are used to build the percolated

cluster can be classified in 6 classes depending on the fusion operations they undergo. Therefore,
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the elementary unit of the wafer deterministically generates one of each of the 6 classes, this unit

is repeatedly etched on a wafer a number of times, corresponding to the cluster size required.

There are 6 deterministic 3-GHZ generators per elementary unit, these can be directly located on

the wafer where the fusions happen, or can be located in a different wafer and the deterministic

3-GHZ states are forwarded to the fusion wafer. The ancilla states required for the fusions can

be generated in a similar way to the 3-GHZ states in the state generation layer, we have not

included them in the schematic view of the architecture to simplify the structure while keeping

the key stages.

5.9.2 A dynamical architecture with fixed physical depth

The QNIX architecture is dynamical. In standard MBQC the cluster state is assumed to be

generated in advance and only after the building process is finished, all the measurements are

performed. However, storing a photonic cluster state for as long as the computation needs to

run would be catastrophic, as the loss rate would increase dramatically due to the long delays.

To avoid this situation, we propose to build the cluster state dynamically, so at any given point

of the computation, only part of the cluster is created. The part where the earlier operations

were performed is already measured and the part where future operations will take place has

not been generated yet. The size of the percolated cluster that needs to be stored in the delay

lines (which we refer to as “stored cluster”) at any point mainly depends on the speed of the

classical control in calculating the basis of the last reconfigurable measurement. MBQC only

imposes the constraint that all the correlations of a qubit must already have been formed before

any measurement takes place. However, the success of local percolation algorithms should be

taken into account, since if the stored cluster is made too small, the path-finding algorithm

might fail even when we are in the super-critical percolation regime6.

In figure 5.17 we present a schematic view of the full QNIX architecture. Active switching is

only present in the 3-GHZ generation layer and in the unavoidable reconfigurable measurement

at the end of the computation. The fixed physical depth can be appreciated as the number of

layers each photon goes through is fixed. For the qubits that are used to build the correlations

of the cluster there are only two steps, generation of entangled state (which can be estimated to

O(10) optical elements) and fusion. For the qubits which are part of the percolated cluster there

are three steps: generation of the entangled state, long delay and reconfigurable measurement.

The size of the computation only affects the width of the wafers and the running time, as a

bigger cluster will need to be produced, but it doesn’t affect the number of operations performed

on a single qubit. The fusion operations that create the cluster are set in a static network

that generates time layers of the percolated lattice, which in figure 5.17 are represented by

the planes perpendicular to the time direction. The fusion outcomes allow us to visualise the

inner structure of the percolated cluster and it’s therefore used by the classical control unit to

calculate the final measurement basis of the qubits, which is sent to the measurement layer. The

6In the super-critical percolation regime a spanning cluster and hence a spanning path always exists. However,
when the path-finding algorithm only has access to local information, it will not always choose the correct path,
which will lead to diminished percolation probability. Initial simulations have shown that the performance will
highly depend on the algorithm used, however the probability of percolation throughout the full lattice will be
lower as we make the stored cluster smaller.
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outcomes of the final reconfigurable measurement are sent back to the classical control unit in

order to reconfigure future measurements to account for the negative outcomes in MBQC, loss

and errors. The time that the classical control unit needs to calculate the measurement basis

of the qubits is the time that we require the cluster to be stored in long delays. Therefore, not

only improvements on the quantum computing protocols and experimental implementations are

needed, but also fast algorithms for the classical computation are needed to reduce loss error

rates and improve overall efficiency.
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Figure 5.17: Schematic view of the dynamical QNIX architecture. It has only one layer of active
switching in the generation of 3-GHZ states, in which waves of deterministic 3-GHZ states are
produced. These deterministic GHZ are fused in an array of fusion operations that is static and
requires no reconfiguration. The percolated cluster is generated and its exact internal structure
can be inferred from the fusion operations outcomes. These outcomes are sent to a classical
control processing unit while the percolated cluster is stored in long delay lines. The classical
control unit performs path-finding algorithms on the cluster and, combining this information
with the measurements necessary to perform MBQC and QEC, decides the measurement basis
of the final reconfigurable measurement, which is then instructed and sent to the final layer
of detectors. The outcome of these final measurements is fed back to the classical control to
perform adjustments in the measurement basis of future layers. The fixed physical depth of this
architecture is easily perceived in the figure as the number of computational layers applied to
single photons.
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5.10 Discussion and outlook

We have presented a ballistic scheme for the construction of a linear optical cluster state that

is universal for MBQC. While we have not explicitly included error-correcting codes to provide

robustness to loss and errors in the final photonic computational cluster state, the universality

of the cluster state implies a number of ways forward, incorporating tree-clusters [113] or the

surface code [166, 54] as loss-error and general-error correcting codes . Raussendorf’s 3D cluster

encoded surface code [55], in particular, seems well suited to ballistic generation. There are a

number of approaches which can be followed, which are discussed further in chapter 7.

To implement this scheme with only 3-photon GHZ as resources we have proposed a boosted

fusion mechanism based on [111] and [115] that works with 75% probability, which is well

above the percolation threshold (pc = 62.5%) of this lattice. We have shown the robustness

of the scheme in the presence of small amounts of photon loss (up to 1.6%) and its favourable

resource scaling. Even though this scheme was devised with linear optics in mind, it applies

for any physical system with probabilistic gates, and if that probability is higher than 75% it is

conceivable that the resources needed could be reduced much further.

For this scheme to be implemented experimentally, it would need a near-deterministic 3-

photon GHZ source. It is not yet known what is the optimal way of producing these photonic

states, options range from multiplexing a linear optical circuit such as that proposed in [93],

using a similar scheme to the multiplexed single photon source such as [161], to producing a

3-photon linear cluster (local Clifford equivalent to a GHZ) with a quantum dot [162]. As

any linear optical fully loss detecting gate must necessarily measure all photons incident on it,

the 3-photon GHZ is the minimal resource for a loss-detecting BSM-based ballistic scheme. A

ballistic LOQC scheme based solely on single-qubit or 2-qubit resources remains desirable, but

this would require an approach other than the Bell-state-measurement-based scheme proposed

here.

We have explored one way of producing 3-GHZ states and integrated it into a full architec-

tural blueprint of the percolation-based LOQC protocol, where we have used current technolo-

gies, such as log-tree switching networks and non-deterministic single photon sources, showing

that they can in principle be used to build a photonic quantum computer. Having this archi-

tectural view allows a more detailed discussion of technological considerations and brings the

theoretical proposal closer to a experimental realisation. Improvements on the architecture can

be made by studying it from both the theoretical and experimental point of view. In chapter 6

we will present a new type of multiplexing scheme based on a technological consideration which

improves resource efficiency significantly.

Ballistic generation of cluster states for MBQC remains the most attractive approach to

scalable linear optical quantum computing. By developing a loss-tolerant and significantly

more resource efficient scheme, we have shown that new theoretical ideas continue to ameliorate

the technical challenges of building a scalable linear optical quantum computer.

140



CHAPTER 6

IMPROVING RESOURCE EFFICIENCY

6.1 Introduction

In chapter 5, we showed that an adaptation of recent improvements on Bell-state measurements

[111, 115] to the percolation cluster state generation scheme [99] allows for a new approach to

ballistic LOQC with significant reductions in resource consumption. Furthermore, we presented

a technological blueprint for the implementation of this scheme, considering all the necessary

steps to achieve the required states and probabilities.

In this chapter, we present a collection of results that are related to the resource efficiency

of the proposed linear optical architecture in chapter 5. Efficiency considerations made in

the abstract theoretical model must be tailored to the intended experimental setup, so that

adjustments and improvements can be made. In this chapter we show preliminary results

on a new type of multiplexing scheme, Relative Multiplexing (RMUX), and its effects when

applied at a single level of the architecture. RMUX is an example of an observation inspired

by technological considerations that has drastic implications on both the theoretical efficiency

of the scheme and the experimental requirements for optical components. We also show how

wasteful current state generation is and how improvements can be made by applying RMUX at

all levels of the architecture.

These results have been obtained in collaboration with Gabriel Mendoza, Pete Shadbolt,

Josh Silverstone and Terry Rudolph. In particular, it was Gabriel Mendoza who came up

with the original idea of relative multiplexing, and Terry Rudolph who suggested reusing the

redundant states created in the multiplexing process to boost the success probability of the

percolated lattice. The calculation and simulation results are my own work.

6.2 Relative Multiplexing

When considering multiplexing of probabilistic operations (as explained in chapter 4), there

exists the underlying assumption that the flagged successful event will be always relocated to

the same spatial mode or temporal bin. That is, out of all the events that have succeeded,

one is chosen and pushed forward in the architecture, using an array of switches to locate

it in a predetermined optical mode. This type of multiplexing scheme will be referred to as

“Homogeneous MUX”. If we only required the generation of a successful event in any bin,

we wouldn’t need to use switches at all (thus reducing the loss rate of the photonic state), we
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would only need to have the knowledge of the mode in which that photon is located. The only

reason we might want to change the optical mode of a photon is because we want to have it

synchronised with other events. For the purposes of the architecture presented in chapter 5,

the fusion operations where HOM interference takes place require photons to be synchronised.

However, there isn’t any reason to move the mode of both photons that are going to be involved

in the fusion, we only require them to be in the same mode (whichever that is), and moving

only one of them would achieve the same purpose. This relative synchronisation of events is

the heart of RMUX.

F F F F F

F

F

(a)

(b)

(c)

Delay lines

Delay line

(d) switchN ⇥NswitchN ⇥ 1

switchN ⇥ 1

Figure 6.1: Comparison of relative MUX with homogeneous MUX in the task of synchronising
two photons for a fusion operation. (a) Temporal homogeneous MUX: two photons are syn-
chronised by delaying both to the same time bin. (b) Temporal relative MUX: two photons
are synchronised by delaying the photon ahead in time to the time bin of the second photon.
(c) Spatial homogeneous MUX: two photons are synchronised by re-routing both photons, each
through an N × 1 switch, to the same spatial mode. (d) Spatial relative MUX: two photons are
synchronised by using an N ×N switch on one photon to locate it in the same spatial mode as
the second photon. Figure courtesy of Pete Shadbolt.

Using RMUX, events don’t have to be synchronised to an overall clock cycle, but instead

they are only synchronised with respect to other events. The LOQC framework becomes asyn-

chronous as a whole and only photons that need to interfere at beam-splitters are lined up by

changing the relative delay between them. This new asynchronised paradigm allows for a better

usage of resources and less stringent requirements on optical components, as we will ilustrate

in following sections. The simplest version of RMUX can be seen in 6.1, where we show the
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6.2. Relative Multiplexing

synchronisation of two photons using homogeneous and RMUX.

As an example, let’s look at how temporal synchronisation of two photons in RMUX, where

only one of them passes through a switch, can be performed. Each clock cycle, is 2N time bins

long and photons are probabilistically generated in the first or last N time bins. Out of the two

photons involved in a fusion, the one that will go through the switches (referred hereafter as

photon 1) is always temporally ahead of the other photon (photon 2), as we can always delay

photons but not promote them ahead in time. Once both photons are generated and the delay

between them is calculated, photon 1 passes through a switching network with delay loops in a

binary division configuration (from 0 to 2N − 1), which locates photon 1 in the same time bin

as photon 2.

In this chapter we present results for a basic implementation of RMUX at only one level:

half the photons involved in fusion are assumed to not pass through any switches. However

it is not known if this is the optimal way of implementing RMUX, or an implementation with

variable delays on all photons would have better performance1. Even so, the results of the

simulations show the potential of this new multiplexing scheme.

6.2.1 RMUX in a percolated lattice

Recall the arrangement of fusions to build the 3-dimensional lattice proposed in chapter 5. The

GHZ states used to build the percolated lattice can be classified in 6 types according to the

fusions they undergo. In figure 6.2 we can see a portion of the lattice, with the different types

of GHZ states marked, as well as the fusions that the photons undergo. In figure 6.3 we can see

an arrangement of the generation of the GHZ states and the corresponding delays and fusions

to implement relative time multiplexing.
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Figure 6.2: Portion of the photonic lattice, in which we indicate the different GHZ states by
different colours and the label Gi. The fusions between them are also labelled FX . This notation
allows for a better understanding of figure 6.3, which shows the arrangement on chip of the GHZ
generation and the relative multiplexing of the fusion operations.

1Preliminary simulations suggest that an implementation with variable delays on all photons performs better.
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Figure 6.3: Arrangement of the GHZ state generators and fusion operations on chip. It must
be noted that this is just a concept figure, and the length of the waveguides has not been
arranged appropriately for timings. The notation of this figure follows that of figure 6.2. The
arrangements presented here will be repeated in a wafer (such as the concept figure 5.16) where
the different chips interconnect as shown. Short delays of one clock cycle in order to synchronise
fusions are marked with the letter T, while the switching networks required for the relative
multiplexing are marked with SN. The dashed lines represent elements from nearby 6-generator
structures. The qubits which undergo the long delays are the data qubits and are only subject
of one active element, the final measurement must be reconfigurable as required for the MBQC
protocol.

The arrangement in figure 6.3 has been chosen for several reasons. First, it implements

relative time multiplexing for every fusion, and we multiplex the same number of photons per

GHZ state. For the purposes of the numerical simulation, where micro-clusters are generated

with the different configurations (see figure 5.3) directly, we required that the photons that

were multiplexed in both micro-clusters, formed by GHZ states {G1, G2, G3} and {G4, G5, G6}
respectively, had the same delays. From figure 6.3, it can be noted that the operations and

delays of photons in GHZ states G1, G2 and G3 are the same as the operations and delays on

states G4, G5 and G6 respectively.

Loss from active elements:

We can classify the photons from the GHZ states in 3 classes, depending on the operation

performed on them, we will label them Types A, B and C. We consider only loss from active

elements and therefore delays and passive elements are considered lossless. This reflects the
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∼ O(10) difference in loss between active and passive components, as highlighted in chapter 2.

Type A photons will be part of the final cluster, i.e. the data qubits. To this type belong

photons labelled as G2(b) and G5(b). We want to minimise the number of active elements they

are subject to, and therefore we don’t put them through any multiplexing stage, they only have

one reconfigurable measurement (which cannot be avoided as it is part of the MBQC scheme).

Therefore the loss rate due to the switches for this type of photos is γsw. Note, that this type

of photon will have to go through a long delay line to allow time for the classical processing

(percolation, MBQC and QEC) to find the right measurement setting.

Type B photons will be measured in the fusion operations, but will not be actively delayed.

To this class belong photons G1(c), G2(a), G2(c), G3(c), G4(c), G5(a), G5(c) and G6(c). They

go through no active elements and therefore they have no loss due to switches.

Type C photons will be measured in the fusion operations, they are multiplexed in order to

put them in the right time bin. To this class belong photons G1(a), G1(b), G3(a), G3(b), G4(a),

G4(b), G6(a) and G6(b). They go through one stage of active switching, the switch has a log

tree depth j (which for this scheme we estimate to be ∼ 7− 9). Therefore the loss for this type

of photon is given by 1− (1− γsw)j .

In figure 6.4 we show the “world lines” of the different types of photons, i.e. the linear

optical elements they encounter from the 3-GHZ source to the detectors.

3 GHZ gen

3 GHZ gen

3 GHZ gen MUX

FUSION

FUSION

RECONFIGURABLE
MEASUREMENT

LONG 
DELAY

BALLISTICACTIVE SWITCHING

d~7

Prob. = 1

32

Type A

Type B

Type C

d=1

Classical path finding algorithm

Figure 6.4: World lines of the three types of photons according to this scheme. In this figure we
represent a schematic figure of the operations that each type of photon will go through in the
architecture and how they relate to the rest of the architecture. We can see that the outcome
of the fusion operations is fed as classical information to the path-finding algorithm, which uses
the information to decide the basis of the final reconfigurable measurement applied to the data
qubits.
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6.2.2 Results

The loss tolerance results reported in chapter 5 assumed that all photons involved in a single

fusion operation had the same amount of loss. This included both photons being fused, and

the ancilla photons used to boost the success probability of fusion. By using the relative time

multiplexing scheme presented in this chapter, we can distinguish between photons that go

through no switches (or just a reconfigurable measurement), photons that go through a switching

network, and ancilla photons. We want to make this distinction as the ancilla photons used to

boost fusion will be generated in a different manner and therefore, it is expected that they will

have a different associated loss rate. We have previously presented in chapter 4 two boosted

fusion mechanisms. One used Bell pairs as ancillas and the other used 4 single photons. To

account for loss in this scheme, we apply a simple model: if the number of photons detected is

less than the number expected, we count that fusion as failed due to loss. This is the simplest

scheme, as it doesn’t consider differences in loss tolerance between the two boosted fusion gates

or events that can be considered successful despite the loss of a photon2, extending our loss

model to account for these finer points is ongoing work. When using this model and trying to

design a scheme that minimises loss it is more convenient to work with the boosted fusion gate

that uses a Bell pair as resource, as the fewer photons that are involved in the fusion gate, the

lower the chance of failure due to loss.

In a first instance we will assume that ancilla photons are lossless and compare both the

homogeneous and relative time multiplexing to explore the advantages brought in by the latter.

The results can be seen in figure 6.5. It can be noticed that for a percolation probability

≥ 90%, the relative time MUX scheme can tolerate up to 7% photon loss, while the original

homogeneous MUX scheme could only tolerate 2.9%. Note that this result is compatible with

the 1.6% tolerable loss rate reported in chapter 5 for this same scheme, as there the loss rate of

all photons was considered the same and here we consider lossless ancilla photons.

In order to translate these theoretical loss rates into loss per component, we make the

assumption (justified in chapter 2) that loss is only present in the active components of the

scheme i.e. switches and reconfigurable measurements. This assumption can be relaxed later

on. We assume deterministic on-demand single photon sources and a log tree switching scheme,

as detailed in chapter 4.

From the percolation scheme, we can tolerate loss in the individual photons of the 3-GHZ

state up to a tolerable loss rate pl, which is ∼ 2.9% in the case of homogeneous MUX and ∼ 7%

in the case of RMUX. From the multiplexing stage we can accept all states that have at least

one photon i.e. they are not the vacuum. That means that if the loss rate per switch is γsw, and

the photon goes through m switches, the probability of not having been lost in the switching

process is (1− γsw)m. The probability of having been lost at any stage of the switching process

is 1 − (1 − γsw)m and we want this number to be smaller than the total loss per photon that

we can tolerate, pl ≤ 1 − (1 − γsw)m. Note that, as in the percolation scheme, the loss is

calculated per photon and not per GHZ state; that is the same calculation we do here, we do

not require the GHZ state to have a certain loss probability but rather the individual photons.

As mentioned above, we only have one stage of multiplexing after the 3-GHZ interferometer.

2There can be enough information from the detected photons to consider that the gate has succeeded or failed.

146



6.2. Relative Multiplexing

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
pl0.0

0.2

0.4

0.6

0.8

1.0
Π(p,L)

Relative time MUX

Homogeneous MUX

90%

Probability of photon loss

P
ro

ba
bi

li
ty

 o
f 

pe
rc

ol
at

io
n

Comparison of homogeneous and relative time 
multiplexing schemes

Figure 6.5: Comparison of tolerable loss in the presence of no ancilla loss. The use of the
RMUX scheme boosts the tolerable loss to more than twice what could be tolerated with the
homogeneous multiplexing scheme.

Single photons (for the purposes of this calculation) are assumed to be obtained on demand

from the single photon sources and passed through the 3-GHZ state generator, which is time

multiplexed. Each 3-GHZ state generator consumes 6 single photons and produces a 3-GHZ

state with probability 1/32. We have chosen this generation procedure from an alternative

procedure of a two-step generation, where we first generate Bell pairs from single photons and

then generate 3-GHZ from Bell pairs. The reason for this is numerical evidence, provided in

appendix G, that the generation of 3-GHZ states directly from single photons is more efficient

with deterministic sources. The number of time bins in each clock cycle will depend on the

number of multiplexing steps needed to obtain a GHZ state with the required probability.

However, it is not realistic to assume that the ancilla photons used to boost the fusion are

lossless. In fact, what we expect is that, unless we have deterministic Bell pair sources (from

matter based systems such as NV centres and quantum dots [58]), we will have a combined

threshold for percolation that will now depend on two variables, the loss rate of photons that

are actively delayed, and the loss rate of ancilla photons. Ancilla photons can be spatially or

temporally multiplexed, although spatial multiplexing will reduce the 3-GHZ chip complexity; as

we can have on-demand Bell pairs produced in a different chip that an act as a deterministic Bell

pair source3. We obtained the threshold of photon and ancilla losses by performing percolation

simulations, where the probability of a fusion suffering a loss, fl, is given as a function of the

GHZ photon loss pl and the ancilla photon loss al:

fl = 1− (1− pl)(1− al)2. (6.1)

Our ability to perform UQC depends on the percolation properties of the lattice as explained

in section 2.7. Mixed percolation thresholds can be obtained numerically to incorporate the

3Note that this simply separates the 3-GHZ and Bell-state generation, and does not reduce the complexity of
the overall scheme.
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Figure 6.6: Loss threshold trade-off for ancilla and photon loss. The grey shaded area highlights
the area of phase space where UQC is possible. We have marked the threshold for different
percolation probabilities. We have also indicated the tradeoff of ancilla and GHZ photons loss
when they have been generated with a particular strategy and multiplexed using the same
switches.

effect of photon loss on the percolation properties of the lattice. In figure 6.6, shaded in grey,

we can see the combination of photon loss and ancilla loss that can allow us to perform UQC.

We have marked three different thresholds depending on what percolation probability is desired,

90%, 95% or 99%. It might be surprising that, given the non-linear dependence on of the fusion

loss rate on pl and al, the threshold is linear. The fusion loss rate fl is indeed not linear with

respect to the individual photon loss rates, however, for the range of photon loss we are dealing

with, the leading term in the expansion is the linear term, dependent on pl + 2al, and the rest

of the terms are negligible, accounting for a maximum of 5% of the total fusion loss rate.

It is important to note that a point in the loss phase space cannot be chosen at will, it

depends entirely on how the GHZ states and ancillas have been created. In figure 6.6 we have

highlighted the best currently known strategy that assumes perfect photon sources. It uses

ballistic generation of the Bell states used as ancillas following the strategy outlined in [92],

and ballistic generation the GHZ states using the linear optical circuit outlined in [93]. If we

assume these building procedures for the photonic states and the same switches, we achieve the

results marked in the graph as “Ballistic strategy”. We have also marked specific points with

their corresponding loss rate per switch, γsw. We can see that UQC would be possible using

switches of ≤ −0.01dB, which translates to a loss rate of 2 · 10−3 per photon.

It must be noted that the log-tree switch is a conservative approach as there exist new

types of switches, such as the recently proposed MEMS switches [167] in which photons only

go through one active element overall. Repeating the same analysis to find how much loss

per active element we can tolerate (assuming no loss contribution from the passive elements as

above), we find that this type of switches gives us an order of magnitude advantage, allowing
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us to be in the UQC regime with switches that have ≤ −0.1dB loss per switch , or 2 · 10−2 loss

per photon.

6.3 Effective use of resources generated in multiplexing

Multiplexing, although effective, is extremely wasteful. When we calculate the number of rep-

etitions that have to be made in order to achieve an event with probability higher than p, we

are conservative and estimate the number of repetitions we need to get at least one successful

event. However, when we look at the number of successful events on average we can see that

there is a high waste of photonic states that could have been otherwise used.

6.3.1 Surplus of entangled states

For example, let’s look at the generation of a single 3-GHZ state from an array of probabilistic

single photon sources. We will assume that this single photon source has an emission rate, η, of

10%. We want to multiplex these sources so that they make an “almost” deterministic photon

sources, with emission probability p1 = 0.99. This means that we need to have multiplex k1

times, where k1 is given by

1− (1− 0.10)k1 ≥ p1 ⇒ k1 = 44. (6.2)

Using a log tree scheme for the switches, we have that the number of switches required for this

multiplexed event is

m1 = dlog2 k1e = 6. (6.3)

Therefore, the number of time bins per clock cycle are 2m2 = 64 and the average number of

single photons emitted per clock cycle is

64× 0.10 = 6.4 photons. (6.4)

From deterministic single photons, we consider the generation of 3-GHZ states using the

linear optics circuit (see chapter 4) that succeeds with 1/32 success probability. Again, we

require that this near-deterministic 3-GHZ source succeeds with probability p2 = 0.99, so we

need to multiplex at least k2 times, where k2 is

1−
(

1− 1

32

)k2
≥ p2 ⇒ k2 = 146. (6.5)

The minimum number of switches in the log tree scheme is

m2 = dlog2 je = 8. (6.6)

Thus, the number of time bins per clock cycle is 2m2 = 256 and the average number of 3-GHZ

states produced per clock cycle is
1

32
· 2m2 = 8. (6.7)
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We require 6 single photons per attempted GHZ generation. We have calculated that we

need to repeat the 3-GHZ generation procedure at least 256 times in parallel, therefore we need

256 × 6 = 1536 “deterministic” single photons. The concatenation of multiplexing schemes

means that we need 6 ·2m1 ·2m2 = 98304 single photon time bins per GHZ clock cycle. These are

the necessary time bins to ensure we have a GHZ state with probability higher than p6
1·p2 = 0.93.

However, on average, many more events will have succeeded. Per GHZ clock cycle we will

have 9830.4 single photons produced on average, which are enough to attempt the generations

of a 3-GHZ 9830.4/6 = 1638.4 times. The average number of these attempts that will be

successful (if attempted) is 1638.4/32 = 51.2. So, while attempting to almost deterministically

(ps = 0.997 = 0.93) produce a single 3-GHZ state, on average we have enough resources to

produce 51.

The number of surplus states that is wasted using this strategy depends on the source

efficiency and the required probability of success for the 3-GHZ states. We can reproduce these

calculations to obtain the number of extra resource states that could have been produced on

average when attempting to produce a single 3-GHZ with a certain probability of success ps.

Figure 6.7 shows the results of this simulation, where we present the most economical strategy:

the strategy is optimised to waste the least amount of resource states per “deterministic” 3-

GHZ.
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Figure 6.7: Number of 3-GHZ states that could have been produced on average when using a
multiplexing scheme that as a probability ps of at least generating one 3-GHZ. This results are
calculated for three different source efficiencies, indicated by the three colours of the graph.

It is interesting to note that for the same probability of generating at least one 3-GHZ state,

in some cases a source with 10% efficiency would generate a higher number of unused resources

than a source with 1% efficiency but less than the source with 0.1% efficiency (for example in

the case ps = 0.90). This is counterintuitive because we would expect a trend, however, the

average number of 3-GHZ that could have been produced is the multiplication of the source

efficiency (to the power of the number of photons used, i.e. six) times the number of time
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bins due to the multiplexing. For a source with very low efficiency, the number of time bins

increases dramatically. For example, for the case detailed above (ps = 0.93), we have that a

η = 0.1 efficiency source would a time bin count of 9.8 · 104, an η = 0.01 source would have

7.9 ·105 and the η = 0.001 source would have 1.3 ·107 time bins, which shows an increase of two

orders of magnitude of the number of time bins with respect to the η = 0.01 source, but their

efficiency differs only by one order of magnitude.

6.3.2 Impact of an efficient use of the generated resources

We have detailed above a very conservative and wasteful strategy to produce GHZ states, as

on average we are creating far more resources than we are using. One key realisation is that,

if we could use the resources to their full potential, we could be creating not only the states

that we need but also back ups that could boost the percolation probability of the lattice.

Instead on having one GHZ per clock cycle, we would have several, and therefore the strategy

for creating the micro-clusters could also be repeatedly performed in parallel. Having enough

perfectly formed micro-clusters in parallel, they could be considered deterministic (as it will be

unlikely that none out of many will succeed), and therefore so could the nodes of the lattice. In

this scenario, the percolation properties of the lattice will therefore only depend on our ability

to create bonds between the micro-clusters: we have moved to a pure bond percolation rather

than a mixed site-bond percolation.

The probability of obtaining a perfectly formed micro-cluster from three 3-GHZ states is

0.752 = 0.5625, we can calculate how many attempts are needed to produce a micro-cluster

with a probability high enough to be considered deterministic. Figure 6.8 shows the number of

attempts needed to obtain a perfectly formed micro-cluster (from deterministic 3-GHZ states)

with a certain probability. We also show for comparison, the average number of perfect micro-

clusters obtained if all resources from multiplexing are used and ps = 0.95. As we can see in

the figure, if all resources are used, the micro-clusters can be considered deterministic.

Looking at the percolation thresholds for the diamond lattice [168, 169], we find that the

bond percolation threshold is 0.39, which means that the lattice model percolates if the bond

occupancy is > 0.39. Thus, by using wisely the extra resources generated, we have shown that

we can boost the percolation probability in such a way that the non-boosted version of the fusion

gates is enough to achieve the supercritical regime. However using boosted fusion would allow

us to have an almost deterministic lattice, which would be a great advantage when considering

fault tolerant schemes, more details on this can be found in chapter 7.

To efficiently use all the resources generated in the multiplexing process, we need a very

well controlled network that allows us to group successful events as needed. But first, a deeper

theoretical understanding of the capabilities of RMUX and the limitations of the necessary

event re-routing is required. Relative multiplexing allows for half of all switching networks to be

eliminated, while re-routing requires clever algorithms (such as minimum-cost perfect matching

algorithms on bipartite graphs [170]) to group events appropriately (see figure 6.1). More

theoretical work studying the implementation of both these ideas is necessary to comprehend

the true capabilities of the scheme.
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Figure 6.8: In colour red, we have plotted the number of attempts needed to obtain a “deter-
ministic” micro-cluster (with probability higher than pm). We put as comparison, the number
of micro-clusters generated on average by the multiplexing scheme. As examples we have chosen
the generation of a 3-GHZ state with probability ps = 0.95 for the three source efficiencies. We
can clearly see that if all extra resources generated were used, we could consider micro-clusters
to be generated deterministically.

6.4 Discussion and outlook

In this chapter we have presented two main concepts. The first is relative multiplexing, which

expands on the insight that in order to achieve determinism in our scheme, we don’t need to

have all events synchronised to an overall clock cycle. Secondly we provide evidence of how

wasteful an absolute-time multiplexing scheme can be.

There are very immediate extensions to the calculations shown in this chapter. We could

include the effect of loss of passive elements and delays, consider the differences between boosted

fusion gates and extend the loss model to include contributions from passive elements. But the

main conclusion of these results is clear: applying the relative multiplexing idea at every level

of the percolation scheme, and using every generated resource can significantly improve the

performance of the linear optical quantum computer. We have seen the impact of relative

multiplexing when applied at only one level by reducing the loss tolerance requirements of the

active components by an order of magnitude. When used extensively throughout the scheme, we

expect that it will have a dramatic impact in the resource consumption and efficiency, which in

turn will allow us to lift restrictions at the component level. There are still challenges ahead, in

particular, to harness the power of relative multiplexing we need to develop a better theoretical

understanding of the algorithms required for matching photons and their efficiency bounds.
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CHAPTER 7

TOWARDS FAULT-TOLERANCE

We cannot clone, perforce; instead, we split

Coherence to protect it from that wrong

That would destroy our valued quantum bit

And make our computation take too long.

Quantum Error Correction Sonnet

Daniel Gottesman

7.1 Introduction

The crucial requirement for a quantum computer is that the internal computation needs to be

done in a “closed system”. Unlike classical digital computers, quantum computers are very

sensitive to noise and even the smallest amount of information leakage can cause irreversible

damage to the calculation. Therefore, the quantum system needs to be isolated from the rest

of the universe so that decoherence does not affect it. However, this is a difficult equilibrium to

achieve, as if the system is completely closed to the environment, decoherence would not affect it,

but we will not have access to the computation either. No system is truly free of decoherence,

but various quantum error correction techniques can help remove some decoherence from a

system.

Photonic systems are particularly resilient to the decoherence noise that affects other phys-

ical systems [18]. However, in the process of implementing a quantum computation, the control

operations performed on the photons will have sometimes unwanted effects that can be charac-

terised as noise. For example, inaccurately aligned linear optical elements, partial distinguisha-

bility, timing problems or sub-optimal experimental apparatus can all contribute to an intrinsic

error rate in photonic qubits, not to mention the far more pressing problem of photon loss.

Therefore, any LOQC architecture will need to implement a quantum error-correcting protocol

in order to successfully implement any quantum computing protocol. The implementation of

quantum error correction in linear optical systems is particularly challenging due to the lack

of deterministic gates, which are the key ingredient in standard approaches to fault tolerance.

Therefore, an approach different from the usual must be sought after.

In this chapter we present a brief overview of quantum error correction and topological

codes. We also give a summary of the first LOQC proposal [62] that takes into account the
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implementation of a fault-tolerant code in the optical lattice. This proposal is based on a

repeat-until-success strategy and it is therefore not suitable for the QNIX architecture, but it

becomes a benchmark for any future LOQC implementation of fault-tolerant codes. In section

7.4 we propose three different ways of implementing error-correction in the LOQC protocol

presented in chapter 5: renormalisation, concentration and percolated topological lattices. This

last approach is the most promising, however the error model differs from what is usually studied

in the literature and we must therefore investigate it in more detail. Preliminary results for

this error model are presented in section 7.5. These results have been obtained in collaboration

with James Auger (who has performed the numerical simulations in this section), Hussain

Anwar, Tom Stace, Dan Browne and Terry Rudolph. My contribution has been in determining

the mapping of bond loss errors in the cluster state picture to errors in the surface code and

building the simulator presented in chapter 3 which has been used to determine the bond loss

error mapping and to perform preliminary calculations for the three-dimensional Raussendorf

lattice.

7.2 Quantum Error Correction and topological codes

Quantum information is very sensitive to noise, and in order to perform quantum protocols that

compete with classical computation we need to be able to effectively remove the effect of the

environment from the qubits used for the computation. In classical error-correction, redundancy

is used to preserve information. However, the no-cloning theorem [171] forbids the copying of

unknown quantum states and therefore more intricate solutions must be devised. Shor [76]

proposed the first quantum error-correcting code that protected against all possible errors on a

single qubit, by encoding it in 9 physical qubits. The same principle is used in other quantum

error-correcting codes to store a small number of logical qubits in a large number of physical

qubits. In this section we will briefly review the basic concepts of quantum error correction and

will highlight a pair of codes that will be used later on in the chapter.

7.2.1 Foundations of the theory of quantum error correction

The theory of quantum error correction (QEC) studies how quantum information can be pro-

cessed reliably in the presence of noise. QEC codes are used to encode quantum states in a way

that is resilient against the effect of noise, and then decode this information when we wish to

recover the original state. Quantum states are encoded into a QEC code by performing unitary

operations. The effect of noise on the encoded state can be assessed by performing a series of

syndrome measurements to diagnose the type of error that has occurred. Once the type of error

has been determined, a series of unitary operations are performed on the physical qubits, which

recover the original encoded state. For an error to be correctable, it needs to fulfil a simple set

of operations, known as the quantum error-correcting conditions [70].

Theorem 4. (Quantum error-correcting conditions) Let C be a quantum code, and let

P be the projector onto C that leaves the encoded state unchanged. Suppose E is a quantum

operation with operation elements {Ei}. A necessary and sufficient condition for the existence
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of an error-correction operation R correcting E on C is that

PE†iEjP = αijP, (7.1)

for some Hermitian matrix α of complex numbers.

Proof. See [70] for proof.

The elements Ei for the noise E are called errors and if such R exists, they are considered a

correctable set of errors. It is usually the case that the exact type of noise affecting the system

is not known, and it is therefore useful to protect against an entire class of noise. The quantum

error-correcting conditions can be adapted to this scenario [70]:

Theorem 5. Suppose C is a quantum code and R is the recovery error-correcting operation

for a noise process E with operation elements {Ei}. Suppose F is a quantum operation with

operation elements {Fi} which are linear combinations of the Ei, i.e. Fj =
∑

imjiEi for some

matrix mji of complex numbers. Then the error-correction operation R also corrects the effects

of the noise process F in the code C.

Proof. See [70] for proof.

This theorem allows us to restrict the errors our quantum code needs to correct to a discrete

set, as any other error processes that can be described as combinations of this discrete set

can also be corrected for using the same recovery operation. For example, for single qubit

errors, as any operation elements that describe a single qubit error {Ei} can be described as a

linear combination of the Pauli matrices, it suffices to use an error-correcting code that protects

against Pauli error in order to protect against arbitrary single qubit errors.

The pressing question is then to determine how much noise, if any, a QEC code can protect

against and how many resources, i.e. physical qubits and correction operations will have to be

used in order protect against such noise. In 1997, Aharonov and Ben-Or proved [53] that noise

is no fundamental limit for the performance of large scale quantum computers:

Theorem 6. (Threshold theorem) Provided the noise in individual quantum gates is below

a certain threshold it is possible to efficiently perform an arbitrarily large quantum computation

with polylogarithmic cost in resources.

Proof. See [53] for proof.

7.2.2 Error model

The sources of error in a quantum system are varied, the most noteworthy are [172]:

• Coherent, systematic control errors associated with an incorrect knowledge of the dynam-

ics of the system. This type of errors occur when the apparatus used to implement the

quantum logic operations has not been characterised correctly and is implementing a dif-

ferent quantum operation than it was intended. This error is equivalent to the systematic

application of an undesired unitary gate operation.
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• Environmental decoherence. The environment can be modelled as another quantum sys-

tem which is coupled to the quantum system in which the computation is taking place.

This interaction with the environment (which is usually considered stronger the longer

the computation) cannot be included in the computation as we don’t have access to the

degrees of freedom of the environment, and hence can lead to incoherent errors.

• Qubit initialisation. This type of error can be modelled as either a coherent or incoherent

type of error depending on the physical system and the preparation procedure.

• Measurement errors are incoherent errors. An error on the measurement can be modelled

as unitary operation acting on the qubit prior to the measurement: ρ→ (1− p)ρ+ pXρX

where p is the probability of a measurement error, followed by a perfect measurement

on the computational basis. This leads to effective measurement operators given by

M0 =
√

1− p|0〉〈0| + p|1〉〈1|, M1 =
√

1− p|1〉〈1| + p|0〉〈0| which implies that after the

measurement the qubit will not be in a known state.

• Qubit leakage, in which the state of the qubit leaks to states outside the computational

space. This is usually the case as most systems utilised for qubits have more than two

levels. Recovery from leakage is possible in some cases, when it’s not, it is usually consid-

ered as qubit loss, which is modelled by tracing out the qubit from the state. This means

that the qubit cannot be directly measured or coupled to any other qubit. Qubit loss can

also happen, as in the case of linear optics, because of absorption of the physical system

by the environment, rather than the leakage of information to other levels. This error

usually requires additional techniques on top of the standard QEC protocols.

The modelling of error in a quantum system depends on the physical implementation itself,

however theorem 5 ensures that as long as we choose a discrete set of errors that span all

possible errors, our error-correcting procedure will succeed. Even in the case of incoherent

errors, they can be modelled as discrete coherent errors that occur with a certain probability.

There are several assumptions that are made about the nature of noise that a QEC code

protects against. In order to prove that a particular physical implementation can perform

robust quantum computation, these assumptions must be satisfied. Although in some estimates

of the computational threshold extra assumptions are made [54], we list here the most commonly

used ones:

• Constant error rate: The error rate is independent of the size of the QEC code.

• Weakly correlated errors: Errors must not be too strongly correlated, either in space or

in time.

• Parallel operation: We assume the ability to perform many gates in a unit of time, as it

is needed to perform the recovery operations.

• Reusable memory: Ancilla qubits are used to store the syndrome measurement and must

be replaced (or the information erased) quickly.
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The depolarising channel is an important type of quantum noise, in which a qubit is replaced

by the complete mixed state (I/2) with probability p:

ρ→ (1− p)ρ+ p
I

2
. (7.2)

This type of noise can be used to model most of the incoherent errors that might occur during

a quantum computation. A common way of parametrising it is

ρ→ (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) , (7.3)

where the state remains unchanged with probability (1− p) and the operators X,Y and Z are

applied with probability p/3. The depolarising noise model, where each of the Pauli errors

occurs independently is the most commonly used error model used in QEC protocols. It can

now be fully understood why the stabilizer formalism is such a great tool for QEC: in order to

model most errors, we only need to model Pauli errors, which can be efficiently simulated on a

classical computer using the stabilizer formalism.

7.2.3 Topological codes

In chapter 3 we introduced the stabilizer formalism and we briefly showed how it could be used

for error correction. Its effectiveness lies in the fact that it can easily protect against Pauli

errors, and as many errors can be written as linear combinations of Pauli errors, stabilizers is

all that is needed to protect against those. Stabilizer codes are usually described as a trio of

numbers: [n, k, d], where

• n is the number of physical qubits of the code,

• k is the number of encoded qubits in the code,

• d is the distance of the code, defined as the minimum distance between encoded logical

states, i.e. minimum number of physical qubits on which a local error has to occur in

order to become a logical error.

The error detection is performed by measuring the n − k stabilizer operators that define the

code.

A large class of stabilizer codes can be designed by the so-called Calderbank-Shor-Steane

(CSS) code construction [127, 128]. In the CSS code construction two classical linear codes

(satisfying certain conditions, omitted here) are used to built a quantum code that corrects

against X and Z errors, independently. Rounds of error detection are performed sequentially

(possibly with an intermediate step of applying H and CNOT gates). The main characteristic

of these codes is that the stabilizer operators used to detect the errors are all products of either

X operators or Z operators on individual qubits. A full review of this type of codes can be

found in [173].

Topological codes are a particular type of CSS code, where the quantum information is

topologically protected in a global degree of freedom, while the stabilizer operators defining

the code are strictly local. These codes are defined on lattices with particular topological
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properties, hence their name. The syndrome measurements find defects in the lattice, which

highlight the presence of errors. The process of error correction and recovery can be seen as

topological operations on a surface, and topologically protected quantum computation can be

performed by considering the defects as quasi-particles that implement logical gates on the

encoded quantum information when braided [129]. This, however, is far beyond the scope of

this thesis, a detailed review can be found in [174]. We will explain two topological codes in

more detail: the two-dimensional planar code and the three-dimensional Raussendorf lattice.

We will study the implementation of these two codes on a linear-optical lattice built according

to the procedure proposed in chapter 5.

Two-dimensions: planar code

The planar code is a type of surface code. Surface codes are a particular class of CSS codes

defined on a two-dimensional lattice. In particular, the planar code is defined on a L × L

lattice, where each edge of the lattice corresponds to a qubit (notice the difference with the

cluster states, where qubits correspond to the lattice nodes). The stabilizer operators that

describe the planar code are check operators that contain either only X operators or only Z

operators and they are usually referred to as star and plaquette operators respectively. There

is one star operator associated to each vertex of the lattice, which is a tensor product of X in

all the edges that meet at the vertex; and one plaquette operator associated to every “tile” of

the code, which is a tensor product of Z in all edges that surround the tile1. In figure 7.1 we

can see an example of these check operators. All the check operators commute with each other:

operators of the same kind commute trivially, while stars and plaquette operators commute as

the always overlap on either zero or two qubits. In this planar topology, all check operators can

be constructed with local gates. There exists a difference between check operators in the body of

the planar code and those defined on the boundaries, as check operators on the boundaries have

support on only 3 qubits rather than 4 (their weight has diminished). It is also important to

note than in our definition of the planar code, the lattice will have two types of boundaries (this

definition ensures the duality of the primal and dual lattice): a “plaquette boundary” or “rough

boundary” on which the plaquette operators have weight 3, while on the “star boundary” or

“smooth boundary”, it is the star check operators that have reduced weight.

According to theorem 1 (chapter 3), the number of encoded logical qubits supported by

the lattice is given by k = n − s where n is the number of qubits and s is the number of

independent check (stabilizer) operators. The planar code of dimension L is obtained from a

square lattice that has L2 − (L − 1)2 edges, where L is the number of edges between rough

boundary and rough boundary (or alternatively from smooth boundary to smooth boundary)

when following the shortest path between them. There are (L− 1)2 star an (L− 1)2 plaquette

operators and they are all independent. Therefore the number of logical qubits encoded in the

lattice is k = L2 + (L− 1)2 − 2(L− 1)2 = 1.

The logical operators that act on this logical qubit are stabilizer operators that commute

with the check operators but are not generated by the check operators. For the planar code, they

1An alternative view of the dichotomy of the check operators is to define them on the dual lattice, which has
a site per each bond of the lattice and vice versa. This however is outside the scope of this thesis, a detailed
explanation can be found in [54].
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Figure 7.1: Planar code. (a) Check operators that stabilize the code. Plaquette operators are Z
operators on the qubits surrounding a tile of the lattice, while star operators are X operators on
the qubits next to a vertex of the lattice. Note that on the rough boundary, plaquette operators
reduce weight to a 3-body operation, while the same reduction occurs to the star operators on
the smooth boundary. (b) Logical operators of the encoded qubit. The logical ZL operator is
defined as a chain of Z operators from rough to rough boundary. The logical XL is defined as
a chain of X operators from smooth to smooth boundary. Note that they overlap on one qubit,
which ensures anti-commutation.

are defined as chain operators that cross the lattice. The logical XL operator acts on the qubits

whose edge is parallel to a chain that extends from smooth to smooth edge2, while the logical

ZL operator acts on a chain of qubits that extends from rough to rough edge. The two logical

operators overlap on one qubit, which means that they satisfy the appropriate commutation

relation. An example of such logical operators can be found in figure 7.1 (b).

Because the information is topologically protected in a global degree of freedom, sparse local

errors on the qubits don’t corrupt the logical qubit. Single qubit errors are detected by the check

operators, and many chains of errors will be too. However, chains of errors with a particular

topology will not be detected by the check operators and might cause logical errors. In figure 7.2

(a) we show two examples of chains of errors that are not detected by the check operators, the

reason being that any check operator overlaps with two errors and therefore commutes with the

chain. There are two types of these undetectable error chains (usually called cycles): a trivial

cycle, which can be expressed as the product of check operators and therefore is also a stabilizer

of the computational subspace; and a non-trivial cycle, which cannot be expressed as a product

of check operators and although it commutes with all the check operators, it anti-commutes

with at least one logical operator and hence becomes a logical error.

The observed value of the measurement of check operators is called syndrome. When there

are no errors acting in the planar code, the code subspace corresponds to the +1 eigenvalue of

all check operators. Thus, errors can be detected when the measurement values turns negative

(such negative measurement outcomes are usually referred to as defects). Plaquette operators

will detect X errors and star operators will detect Z errors. As there are always two check

operators of each type overlapping in any one qubit, a single error will trigger a negative

2Or equivalently a chain of qubits in the dual lattice.
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Figure 7.2: Planar code. (a) Cycles of Z operators. The cycle marked in orange is a trivial
cycle as it is closed, it is not detected by the stabilizer operators and has a trivial action on the
XL operator. The cycle marked in red is a non-trivial cycle as it is open. It is not detected
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the code subspace. Similar cycles can be defined for the star operators. (b) Errors on the red
qubits are detected by the stabilizer operations. The plaquette and star check operators that
detect the error are highlighted in green and orange. An error detected by a plaquette is an X
error and an error detected by a star operator is a Z error. To correct for these defects, single
qubit operations (marked in green and orange) have to be applied in order to turn the chains
of errors into trivial cycles.

outcome on two check operators. If there is only one error, the adjacent check operators will

give a negative measurement outcome, however if there are chains of errors, the defects will be

at the end of the chain of errors. It is important to note that it is possible also to have errors

highlighted by one single check operator, as the error chains can extend to the boundary of the

lattice. In particular, X error chains can end at smooth boundaries and Z error chains can end

at rough boundaries. This means that defects can appear either in pairs or singly, and single

defects should be paired to the corresponding boundary.

The error recovery consists in turning the detected chains of errors into trivial cycles so

that they have no effect on the topologically protected qubit. In figure 7.2 (b) we can see an

example of some errors (marked in red) as they are detected by the syndrome measurement

of the plaquette and star operators, as well as successful correction that turns the errors in

trivial cycles. To determine what is a successful correction, algorithms such as the Minimum-

Weight Perfect Matching algorithm [175] are used to pair the defects appropriately. It is usually

assumed that pairs of defects (or defects and boundaries) that are close together have a higher

probability of having been generated by the same error. However, errors in the recovery or

errors in the syndrome measurements can lead to the transformation of these chains of errors

into non-trivial cycles, which are logical errors in the code.

The planar code has been shown to have high thresholds for both Pauli errors (11%) and

loss (50%) [176], making it an excellent choice for error correction in LOQC. However the effect

of bond loss in this code has not been studied, and we do so in section 7.5.
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Three dimensions: Raussendorf lattice

The main idea behind the Raussendorf lattice [55] is that “a three-dimensional cluster state is

a fault-tolerant fabric” that allows a cluster-state computation to be performed fault-tolerantly.

The qubits that form this three-dimensional lattice are arranged in the faces and edges of a

body-centred-cubic lattice, as shown in figure 7.3. Topologically protected quantum computa-

tion can be performed by defining three separate cluster regions: the vacuum, where local X

measurements are performed; primal defect and dual defect regions, where local Z measure-

ments are performed; and qubit regions, where qubits are measured on a basis in the {X,Y }
plane. These regions are then braided to perform logical protected gates. It is beyond the scope

of this thesis to describe the details of this procedure, they can be found in [55].

Figure 7.3: Unit cell of the Raussendorf lattice.

Each face of the unit cell of Raussendorf (figure 7.3) has a stabilizer element associated with

it, with an X operator acting on the face qubit (red) and Z operators acting on the qubits on

edges that form the face (blue). The stabilizer that measures the syndrome bit per cell of the

Raussendorf lattice corresponds to a six-body stabilizer with X operators in all the face qubits,

which protects the face qubits from Z errors. However, we don’t need to perform a six-body

measurement, we only need to make single X measurements on the face qubits and from them

infer the value of the six-body cell operator. The Raussendorf lattice is translationally invariant

if we move along the diagonal of the unit cell. This translation defines a new dual lattice and

each face of the primal lattice becomes and edge in the dual (and vice versa) and each site

becomes a cube or unit cell (and vice versa). The edge qubits are then protected by measuring

the stabilizer on the dual lattice.

The Raussendorf lattice can also be understood as a surface code evolving in time. In

the surface code, we performed rounds of measurements of check operators, alternating be-

tween plaquettes and stars. This is equivalent to measuring the syndrome measurements of the

Raussendorf lattice layer by layer. Errors in the Raussendorf lattice correspond to non-trivial

cycles, such as compact regions of error that span a dimension of the lattice. The Raussendorf

lattice has been shown [177] to have lower thresholds than the surface code for both Pauli errors

(0.6%) and loss (25%). However, it is particularly amenable for LOQC as it doesn’t require

many-body measurements to measure the check operators.
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7.3 First linear optical proposal of a fault-tolerant quantum

computer

A recent proposal by Li et al. [62] puts forward the first fault-tolerant protocol for LOQC that

includes every step from the initial generation of entanglement to the implementation of a fully

fault-tolerant quantum computation. They consider the errors and losses that happen at each

stage on the process and determine the resource requirements and per-component tolerable loss

rate.

Li et al. propose a specific protocol for LOQC based on the planar code, which they simulate

in time by creating a 3D lattice (each layer represents one clock cycle of the computation). Each

qubit in the surface code is encoded in a snowflake graph state [178, 179], which is their building

block for the 3D lattice and contains sufficient redundant encoding to create the planar code

correlations despite the probabilistic nature of the BSM used. Each building block has a core

qubit which will ultimately be part of the fault-tolerant code and several bridge units which

are used to create entanglement between the core qubits via probabilistic entangling operations

(PEO). The resources necessary to generate these complex multi-photon states are taken into

account and errors are assumed to happen at each individual component (with the exception of

single photon sources, which are assumed deterministic). It is also interesting to note that their

simulations confirm that the switching networks have the strongest impact on the loss tolerance

of the quantum computer, as we have highlighted in previous chapters.

Figure 7.4: Protocol for fault-tolerant LOQC. (a) 3D fault tolerant cluster built in a near-
deterministic manner once sufficiently complex building blocks have been created. Probabilistic
entangling operations are performed between several bridge units to create entanglement be-
tween the core (or data) qubits. (b) Description of the probabilistic entangling operation. Figure
from [62], copyright (2015) by the APS.

The authors give an estimate of the overall scale of resources, choosing the number of

detectors3 as a metric for the device size, assuming the number of other elements will scale

accordingly. The estimate that they require “upwards of 105 − 106 ” detectors per physically

encoded qubit. Assuming that each logical qubit is encoded in a surface code consisting of

∼ 1000 qubits [14], the total number of detectors for a 103 fault-tolerant quantum computer is

1011 − 1012. They also calculate that loss rates below ∼ 10−3 and error rates below 10−5 are

3As the authors do not consider temporal multiplexing, the number of detectors is twice the number of single
photons used in the scheme.
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required.

As the authors of this proposal point out, their result “only represents an upper bound on the

physical characteristics that are required of the components in an LOQC system” and further

optimisations and improvements will reduce the resource costs. Given the material presented

in this thesis, there are two ideas that have not been implemented in this proposal, but that

have been proven to successfully reduce the number of resource costs in other protocols: time

multiplexing and percolation.

The authors state that this protocol requires a number of physical components that is at

least 5 orders of magnitude greater than in comparable matter-based systems. Architectural

resource savings such as the ones mentioned in this thesis will reduce the difference in number of

physical components required with respect to matter systems. However, it is important to bear

in mind that a fault-tolerant quantum computer is expected to require require at least ∼ 106

data qubits in order to compete with current state-of-the-art classical computers [14]. Thus, all

physical implementations of a fault-tolerant quantum computer will need to demonstrate the

feasibility of their schemes for 109 qubits, counting the physical qubits needed to encode the

data qubits. On-chip silicon wafers of millimetre size with hundreds of thousands of working

devices have been demonstrated [61, 180] in classical linear optical experiments and therefore

it is realistically possible that architectural and technological improvements will make LOQC a

competitive candidate for a quantum computer.

The overall strategy used to build the topological lattice in Li et al.’s proposal is based on

a repeat-until success strategy. As discussed in chapters 1 and 2, not only is this strategy very

expensive in terms of resources, but the fact that it does not have a fixed physical depth makes

it very unfeasible experimentally. Furthermore, the large amounts of switching required in a

repeat-until-success scheme aggravates other important issues such as noise and photon loss. It

is therefore necessary to investigate alternatives to this first approach. In the following sections

we will focus on implementing QEC on a ballistic architecture which minimises switching and

has a fixed physical depth.

7.4 Transforming a percolated lattice into a topological code

The main error in a linear optical system is loss. Specific loss-tolerant codes already exist

[113, 181] and have been demonstrated [152], however as topological codes have been shown to

have high tolerance to loss errors in addition to Pauli-error tolerance, the possibility of using

those codes directly to protect against all possible errors is compelling. It is worth noting

that photonic implementations of topological codes have already been proposed for schemes

relying on deterministic quantum dot sources [182], although these sources are not yet within

our technological capability.

We have so far presented well-known fault-tolerant schemes as well as the first LOQC pro-

posal that considers the implementation of QEC. In this section, we will focus on the imple-

mentation of QEC in the LOQC architecture proposed in chapter 5. We propose three possible

ways of doing so: renormalising the cluster state into blocks that can become renormalised

qubits in the fault-tolerant lattice, concentrating the percolated lattice into the topological lat-
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tice and building the topological lattice directly using the percolated scheme. Out of these

three approaches, the last one seems the most promising, although extensive analysis needs to

be performed to understand the effect of bond losses on the fault-tolerant properties of the code,

which has not been studied before.

7.4.1 Renormalisation

To successfully implement UQC in a photonic lattice we need to implement error correction.

The simplest way to do so, is to embed a fault-tolerant lattice in the photonic lattice, using the

block renormalisation technique mentioned in chapter 5. It consists in picking regular blocks of

the percolated lattice and redefining them as one qubit of the topological lattice. Inside each

renormalised block, we find a crossing cluster that has the right connections to the neighbouring

renormalised qubits, as can be seen in figure 7.5. We believe the Raussendorf lattice [55] is the

best fault-tolerant lattice for this task, as it has very high thresholds for both logical errors

and, most significantly for LOQC, loss errors [177]. This lattice also has the huge advantage of

requiring only local measurements and not CNOT gates to implement error correction4.

Crossing clusters

Each qubit in the Raussendorf lattice 
corresponds to a crossing cluster in the 

percolated lattice.

The crossing clusters 
all interconnect

Figure 7.5: Each (renormalised) qubit of the Raussendorf lattice corresponds to a block of the
percolated lattice, where a crossing cluster with the necessary connections to adjacent blocks
can be found. The crossing clusters in each block of the percolated lattice interconnect, creating
a spanning cluster across the lattice which is topologically equivalent to the Raussendorf lattice.

4Other implementations of QEC require the ability to perform CNOT gates between the data qubits and some
ancilla qubits in order to measure the syndrome. The Raussendorf lattice only requires local measurements to
measure the syndrome and it is therefore much more amenable for a system with non-deterministic two-qubit
gates such as LOQC.
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It must be noted that each block is not created separately, the photonic lattice is created

as a whole and it is during the classical post-processing where different photons will belong to

different “renormalised” qubits, which will be defined by the blocks. The dimensions of these

blocks will depend on the percolation probability that is required, and also the total photon

loss present in the fusion, fl. In the case of the diamond lattice, as it is mentioned in chapter

5, the percolation properties of the brickwork lattice are not isotropic, having one preferred

percolation direction. However, if these blocks are to be used to reproduce a structure such as

the one of the Raussendorf lattice, isotropic percolation probabilities are required and therefore

rectangular cuboid blocks will be optimal renormalised qubits.
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Figure 7.6: Number of GHZ states needed per renormalised block of the Raussendorf lattice as
a function of the total loss per fusion for different percolation probability requirements. Note
that the simulation results have been obtained using a fusion probability of 75%.

In order to assess how many 3-GHZ states need to be created per singular qubit (renor-

malised block) we run Monte-Carlo simulations to obtain the percolation threshold for different

rectangular cuboids with different aspect ratios as a function of fl. In figure 7.6 we can see

what is the trade-off, where the different points in the graph represent simulations of cuboid

renormalised blocks with different aspect ratios. The solid lines mark the exponential growth

of the size of the renormalised block as the fusion loss probability increases.

As we can see from figure 7.6, the scaling of this approach is very expensive. The simulation

results have been obtained in the case where every renormalised block has the same dimensions.

If this restriction is lifted and the block size is variable (determined only by the existence of

crossing clusters within a specific region) it is expected that the resource requirements would

be lower. However, even with variable block sizes, this strategy would still be making very poor

use of the cluster correlations already created, hence other strategies must be sought after. The

renormalisation strategy serves as a benchmark for any other strategy.
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7.4.2 Concentrating a universal lattice

A different way of using the percolated cluster is transforming the lattice to concentrate a

universal cluster state from the qubits in the percolated lattice. The faulty cluster can be

transformed into a universal resource for one-way quantum computation by using an algorithm

such as the one presented in [105], which transforms an L×L percolated lattice into an O(L)×
O(L) universal resource for MBQC, which in [105] is an hexagonal lattice. This approach scales

optimally, i.e. linearly, in the size of the original lattice. The algorithm that is proposed in [105]

can be summarised as follows: First a classical stage in which subsets of qubits with regular

hexagonal lattice as a topological minor5 are identified. The classical steps are:

• Identify O(L) disjoint paths that percolate though the lattice vertically and horizontally.

• Find “bridges” between horizontal paths, which are pieces of vertical paths that only enter

the vicinity of the horizontal path at one point. Discard every other bridge between two

horizontal lines to ensure that the global topology is that of an hexagonal lattice.

• Correct local errors by eliminating the superfluous edges in any intersection. Do so by

keeping only the shortest horizontal path through an intersection area.

After the subsets of qubits have been identified, the quantum stage of the algorithm applies

a series of Z and Y measurements to concentrate an hexagonal lattice from the qubits in the

identified subset. The quantum steps of the algorithm are:

• Measure in Z all qubits outside the subset identified by the classical algorithm. This has

the effect of disconnecting any measured qubits from the lattice.

• Topologically contract the graph into an hexagonal lattice by measuring Y on all vertices

with coordination number 2. A Y measurement on a qubit (j) with coordination number

2 can be described as a graph transformation by connecting the neighbours of qubit j

by an edge before disconnecting the vertex j from the lattice. This measurement thus

contracts the line and leaves the topology of the subgraph unchanged.

As can be observed in figure 7.7 the only qubits remaining in the lattice have all coordination

number 3 and they form a lattice topologically equivalent to a hexagonal lattice.

For the embedding of a fault-tolerant lattice onto the percolated lattice generated by the

proposed LOQC scheme, we would require a similar algorithm to find a 3D universal lattice

within the percolated photonic lattice. However, as the authors of [105] point out, an extension

of their algorithm to three dimensions would require a new approach. The proof of the validity of

their algorithm heavily relies on the planarity of the original lattice, which makes the argument

not applicable in 3D. There is ongoing work [183] trying to achieve an efficient6 algorithm for

this problem.

It is clear the improvement on resource efficiency that would be provided by an efficient

algorithm of this type. A block k3 of percolated lattice could be turn into an O(k)3 sized

5A topological minor is a graph obtained by removing the maximum subset of vertices from the original graph
that leaves the graph topology unchanged.

6With only polynomial overhead in time and space.

166



7.4. Transforming a percolated lattice into a topological code

Figure 7.7: Transformation of an L×L percolated lattice into an O(L)×O(L) universal lattice
for MBQC. Image adapted from [105].

universal lattice, whereas the renormalisation algorithm would use such a k3 to define a single

renormalised qubit in the universal lattice.

7.4.3 Percolated Raussendorf lattice

The Raussendorf lattice is a 3-dimensional lattice with coordination number 4, the exact same

characteristics that made the diamond lattice the best choice for percolation. In this section

we will focus on the percolation properties of Raussendorf lattice and the possibility of using a

percolated Raussendorf lattice directly to perform QEC.

Mixed site bond percolation threshold

As the Raussendorf lattice is not a commonly used lattice in condensed matter systems, to our

knowledge no numerical or analytical investigations of its percolation threshold exists in the

literature. To obtain the mixed percolation threshold, we performed Monte-Carlo simulations

in which we built a perfectly formed Raussendorf lattice and removed sites and bonds with

probability 1 − ps and 1 − pb respectively, where ps and pb are the probability of occupancy

of sites and bonds. We obtained the probability of percolation for different lattice sizes, ps

and pb and found the threshold following the procedure detailed in section 5.4.1. The resulting

numerical threshold is shown in figure 7.8, together with the mixed percolation thresholds of

other lattices, obtained from [108]. The data points for the Raussendorf lattice and the diamond

lattice are remarkably close, confirming their similar percolation behaviour, as expected given

their dimensionality and coordination number.

The mixed site-bond percolation threshold gives valuable information about the lattice and

can be used as a guide for designing percolation schemes. For the diamond lattice, we can easily

check that the percolation scheme works (before any optimisations) by calculating the effective

ps = 0.752 = 0.5625 and pb = 0.75 and confirming that they are (just) above the percolation

threshold. The fact that both thresholds are so similar means that a small variation of layout

167



7. TOWARDS FAULT-TOLERANCE

pb

+
+
+
+
+

Site occupancy

B
on

d 
oc

cu
pa

n
cy

Diamond

Raussendorf

Body Centre Cubic

Face Centre Cubic

Simple Cubic

Mixed site-bond threshold

++++
+++++

+++
+++
++
+++++++++++++++++++++

++++++
++++

++++
+++
+++
++
++
++

+++++++
+++

++
+++
++
++
++
++
++
+

+++++
+++

++
++
++
++

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.0
ps

Figure 7.8: Mixed site-bond percolation threshold for various lattices in 3D. The data points
of the Raussendorf lattice were obtained by numerical simulations while the data points for the
other lattices have been obtained from [108].

on the percolation scheme proposed in chapter 5 will produce percolated Raussendorf lattice

instead of percolated diamond.

Using a percolated Raussendorf lattice

In the percolation scheme for the diamond lattice, we were able to lower the percolation threshold

by applying rotations prior to the fusion gates. The percolated lattice obtained was not a

strict sub-lattice of the diamond, but the extra connectivity was beneficial. The case of the

Raussendorf lattice is different, as we are interested in both the percolation and error-correcting

properties of the lattice. The correlations created by the connectivity of the lattice is what makes

this lattice so useful to protect against errors and loss and thus, extra edges will be detrimental

to those correlations. Using the optimisation techniques we used for the diamond lattice would

imply that there would be cluster edges between primal and dual qubits of the Raussendorf

lattice, which would produce errors in the stabilizer measurements and the error correction.

Therefore, for the generation of the Raussendorf lattice we will use a differently rotated Type-II

boosted fusion that preserves the geometry of the Raussendorf lattice7.

Having this considerations, we build the Raussendorf lattice using an optical scheme similar

to the one presented in chapter 5. We run Monte-Carlo simulations to obtain the percolation

threshold as a function of the fusion gate success probability, which can be seen in figure 7.9.

The data presented in 7.9 has been calculated from performing 104 repetitions of each data

point.

Figure 7.9 shows that the percolation threshold can be estimated to be 69.8%. This thresh-

old, while higher than the threshold for diamond, is still lower than the fusion probability we

can achieve with the proposed boosted fusion gates (ps = 75%), proving that when building

7See chapter 4 for a comparison of all success and failure outcomes of the original and rotated fusion gates.
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Figure 7.9: Percolation threshold for a Raussendorf lattice built with a similar scheme as the
one presented in chapter 5. Note that the value of the percolation threshold, 69.8%, is higher
than it was for the diamond lattice. The reason for this is that we are using rotated type-II
gates that preserve less entanglement upon failure. These gates are beneficial, however, as they
preserve the internal structure of the Raussendorf lattice (hence the percolated lattice is a strict
sub-lattice of the Raussendorf lattice) which is required to take advantage of its QEC properties.

the cluster with our scheme, we are in the super-critical percolation regime. However, now we

are concerned with using not only the percolation but also the fault-tolerant properties of this

lattice. This lattice has very favourable properties for QEC codes, but its performance has

only been tested when Pauli errors or loss errors affect it [177]. We need to understand how

the fault-tolerant properties of the lattice behave when some of the correlations needed for its

functioning are never built in.

It is expected that this error model will have a threshold, a bond loss rate above which

the error correction fails. To be able to decide whether the lattice built with the linear optical

scheme is above or below that threshold we will need to refer to the tradeoff between the fusion

success probability and the bond loss rate. This tradeoff is provided in figure 7.10.

7.5 Topological codes under a bond loss error model

Bond loss is not a very well studied error model on topological codes. It can be hardly justified

for other physical systems, as in most implementations the many-body stabilizer operators are

measured by applying a series of two-qubit gates between the data qubits and some ancilla

qubits. Given this implied ability to perform two-qubit operations deterministically, a situation

where a missing cluster state bond cannot be replaced is hard to imagine. It is however a

situation that easily arises in LOQC as we have shown in the previous section, and we therefore

need to understand the effects of this type of error better. No definite results have yet been

achieved, with the exception of the incompatibility of a surface code for our LOQC construction,

which can be in any case argued unsuitable for other reasons as detailed later. In this section
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Figure 7.10: Bond loss rate in the Raussendorf lattice created by failed fusion gates. We can
see that for 75% fusion probability we have a high bond loss rate of 58%.

we present preliminary results obtained in the study of this error model.

7.5.1 Surface code

The error correcting properties of any topological lattice depend on the correlations between

qubits which are generated by the stabilizer operators. When an element of the lattice is missing,

the natural error correction of the lattice is therefore impaired. The planar code has been shown

to have good tolerance for qubit loss [176], QEC is still possible when the lattice has lost up

to 50% of its qubits. The key factor behind this tolerance is the fact that there are always

two stabilizers of each kind (plaquettes and stars) overlapping on any qubit. When losing a

particular qubit, both operators are affected. However, due to their overlap, we can define a

super-operator formed by the two original stabilizers multiplied together, and this allows the

code to retain its error-correcting properties.

We analyse the complementary case: the loss of bonds in the planar code lattice. The planar

code lattice can be built from a cluster state by performing regular Z and X measurements,

or alternatively, it can be built from one layer of the Raussendorf lattice. This last case is the

most appropriate in the context of this thesis, as we have shown how to build a Raussendorf

lattice using a linear optical scheme in previous sections. Nonetheless, the effect of bond losses

is the same in both cases, as the loss of a bond attached to a qubit that is measured in the Z

basis has no effect (that bond is always removed from the lattice by the Z measurement). In

figure 7.11 we can see a layer of Raussendorf lattice, where the qubits in green are measured in

X to build the planar code onto the blue qubits.

The bond loss model is very different to the qubit loss model for the surface code. While two

stabilizer operators of the same kind always overlap on a qubit, they never overlap on a bond
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X

X X

Figure 7.11: Planar code with a bond loss. Note that here the planar code is represented
in cluster state form as a layer of Raussendorf lattice: the qubits represented in blue can be
recognised as the planar code qubits from figure 7.1 while the green qubits are measured in the
X basis in order to form the correlations of the planar code on the blue qubits. The plaquette
operator marked in orange is broken, and the error chain marked in red will not be detected by
the code stabilizers.

and thus, we cannot redefine a super-plaquette8 to avoid the effect of the loss. What is more,

missing bonds in the lattice generates internal boundaries in the lattice, error chains between

qubits that have lost a bond, or between such qubits and the lattice boundary, commute with

all the stabilizers of the broken lattice and are therefore undetectable. One of such error chains

can be seen in figure 7.11 marked in red. If the lattice was perfect, that chain would be detected

by the plaquette operator marked in orange, but due to the bond loss it goes undetected.

The existence of these undetected error chains effectively reduces the code distance, as they

anti-commute with the logical operator of the code (in the case presented in figure 7.11, the

code distance has been reduced from 4 to 3). The code distance will therefore be determined

by smallest distance between lost bonds. If we have a bond loss rate given by p, the average

distance between bonds δ will scale as 1√
p . As the code distance will be limited by δ, when

δ < L, where L is the dimension of the lattice, increasing the size of the lattice will no longer

reduce the logical errors. We therefore expect to observe a pseudo-threshold: smaller codes will

show the presence of a threshold, which will vanish for lattices with L > δ.

The presence of the lost bonds in the code also breaks the degeneracy of the logical operators.

Usually we have a choice on the qubit support of the logical operator and all possibilities are

equally reliable to encode the logical qubit. However, if the logical operator is defined crossing a

path between two of these bond losses, it will have a much higher probability of being corrupted

than if it was defined far from these defects. Therefore, to improve performance when performing

8Note that star operators don’t suffer from this kind of errors and the duality of the planar code operators is
broken by this type of errors
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QEC simulations on a lattice with missing bonds, the first step will be to determine the optimal

logical operator given the configuration of bond losses present. In figure 7.12 we present the

results of a QEC simulation for bond loss rate p = 0.007, where first the optimal logical operator

is chosen by analysing the distances from each possible logical operator to the nearest lost bonds,

and then a usual QEC round of inputing Pauli noise and decoding the errors is performed. We

can clearly see how there is a threshold for small lattices, but it disappears as the code size

increases beyond δ.
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Figure 7.12: Probability of successful correction as a function of the computational error rate
in the presence of lost bonds. The results on the left are for lattices with L < δ, where the
threshold can be clearly seen. For lattices L > δ, the threshold disappears as we can see on the
figure on the right. Simulation results courtesy of James Auger.

In figure 7.10 we provided the bond loss rate of the Raussendorf lattice when built using

probabilistic fusion gates. For the fusion success probability of 75%, the bond loss rate was 58%.

This would give an average separation between bond losses of δ ∼ 1.3, which clearly makes this

QEC code unsuitable for our optical scheme. It should be also noted that given the destructive

nature of measurements in optics, only one round of error correction would be possible using a

surface code, which also makes the use of any surface code hard to justify for a linear optical

implementation.

Cluster bond loss as a logical error on the planar code subspace

To understand better the effect of the bond loss on the stabilizers of the planar code, we map its

effect to a logical operation on the qubits of the planar code. In figure 7.13 we show the cluster

state graph with a bond missing. We consider this bond loss prior to the X measurements that

would transform this cluster state into the planar code. The main consequence of losing a bond

is that we reduce the weight of one of the plaquette operators. The qubit that has lost a bond
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(marked in orange in figure 7.13) does not have the appropriate correlation to the qubits in one

of the plaquette operators that have support on that qubit. This broken plaquette no longer

commutes with the chain logical operator that crossed the lattice from rough edge to rough

edge (top to bottom in figure 7.13), and this chain logical operator is reduced to a chain that

ends at the broken plaquette. In order to restore the logical operator to its full length, a series

of two-qubit operations is needed.

Figure 7.13: Planar code with a bond loss. The plaquette operator marked in orange is broken,
the correction operation on the qubits of the planar code is a chain of CNOT operations. In the
figure, two chains are marked, one in black, one in purple.

By analysing the transformation of the stabilizers9 that change when the bond loss happens

(the reduced weight plaquette operator and the logical chain operator) we realise that the

transformation is equivalent to a chain of CNOT gates applied with control on the qubit with

the lost bond (highlighted in orange) and target on a chain of qubits that go from the broken

plaquette to the nearest smooth edge. Two examples of such chains of non-local CNOT gates

can be seen in figure 7.13. As the CNOT gates are self-inverse, the correction chains can also

be used to simulate the occurrence of this type of error on the planar code. It is an unnatural

error to happen if the planar code is built directly and not from a cluster state, as non-local

correlated errors are unlikely in most physical settings.

In the case of having many lost bonds, this correction (or error) chains can overlap (in figure

7.13 this would mean that one qubit would belong to both correction chains and belong to the

sets of black and purple qubits) and therefore more than one CNOT, each corresponding to

different bond losses, might be applied to the same qubits.

9For this analysis, we used Visual-CHP code presented in appendix D.
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7.5.2 Raussendorf lattice

We have shown that the bond loss errors on the planar code can only be corrected by performing

a series of two-qubit gates. However, that is not possible for the LOQC percolation scheme, as

we cannot perform deterministic two-qubit gates. In three dimensions however, the effect of a

lost edge in the lattice is not as detrimental. The stabilizer operators in the (3D) Raussendorf

lattice are cubic operators that overlap on the faces. As any lost edge will always be located

in a face of the cube, the argument of [176] does apply here: by multiplying together the

operators that overlap on the face that contains the lost edge to form a new super-operator, the

QEC properties of the lattice should be preserved (at least for bond loss rates lower than some

threshold that needs to be determined). In figure 7.14 we show an example of a missing bond,

whose effect can be cancelled by multiplying together the logical operators (defined on the red

qubits) of the two adjacent qubits.

Figure 7.14: A bond is missing in the overlapping face of the two cubes. The damaging effects
of the missing edge can be cancelled by multiplying together the two adjacent cubes to form a
super-cuboid.

Preliminary results suggest that the tolerance to bond loss of the Raussendorf lattice is much

higher than the tolerance of the planar code. However, many more simulations and studies need

to be performed in order to determine if using percolated Raussendorf lattice is a viable option

for LOQC.

7.6 Discussion and outlook

In this chapter we have presented a number of approaches to integrate error-correcting codes in

a linear optical architecture. We have focused on topological codes, as they have been shown

[176, 177] to have high thresholds for both Pauli errors and loss, which makes them highly
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appropriate for linear optics. We have presented three main approaches for the implementation

of QEC: renormalisation, in which blocks of percolated lattice form renormalised qubits of the

topological lattice; concentration, in which groups of qubits that are topologically equivalent to

the error-correcting lattice are selected and concentrated to form the topological lattice; and

finally the possibility of building a percolated topological lattice directly. This last possibility

is the most promising as it seems to be the most resource efficient implementation among the

rest, however, only preliminary studies have been performed.

Future work will include a topological analysis comparing the differences of 2D and 3D

lattices under such bond loss model. It is quite striking that increasing the number of dimensions

makes such a difference in the error correcting properties, and although the difference between

these codes can be understood from the arguments we have presented, a full mathematical proof

of the error-correcting properties of both codes is required. It will also be very interesting to

study other types of topological codes such as colour codes [184, 185] and the recently proposed

doubled colour codes [186, 187], under qubit loss and bond loss and their implementation on a

linear-optical setup.

A pending matter for LOQC is the full characterisation of errors, mapping photon errors

such as multi-photon contamination and mode-mismatch to Pauli error rates and loss. Only

fully understanding how these physical errors affect the encoded quantum information, we will

be able to devise schemes and implement codes that allow us to perform a full fault-tolerant

quantum computation.
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CHAPTER 8

CONCLUSION

Quantum computers promise computational capabilities far beyond what can be achieved with

classical computers, however they have not been built yet. A number of candidate systems

have proposed architectures to do so, and in this thesis we explored the suitability of linear

optical systems. After reviewing the advantages and challenges of this physical platform, as

well as the most important protocols for linear optical quantum computing proposed so far

[2, 88, 89, 94, 95, 90, 99], we presented investigations into all the different theoretical stages of

the construction of such a quantum computer.

Due to the linearity of the mode transformations in linear optics, entangling two-qubit opera-

tions cannot be achieved deterministically [114]. However, entangling operations and entangled

states are necessary for quantum computing [70]. In chapter 4 we reviewed schemes for the

optical implementation of Bell-state measurement, including some recent results [111, 115] that

show how the probability of successfully generating entanglement can be improved when using

ancillary photonic states. Using these results we boosted the success probability of Type-II

fusion gate [90], which is predominantly used when generating small entangled states, and pro-

posed a series of schemes for generating n-GHZ states. We studied the resource consumption

of all these schemes in near-deterministic nested multiplexed setups with probabilistic sources,

where the probabilistic generation is repeated multiple times in order to ensure the successful

generation of at least one entangled state. An interesting conclusion of the results presented is

that setups with higher source efficiency are more resource efficient when using fewer multiplex-

ing steps. This is a promising result for linear optics, because it is expected that the efficiency

of single-photon sources [58] will increase as the technology improves, and fewer multiplexing

stages means less loss due to active switching in the overall scheme. The results proposed in this

chapter are a step forwards, but are by no means optimal. New techniques need to be developed

to find optimal circuits in a more efficient manner and a better understanding of some of the

processes used is required. In particular, an analysis of the two proposed boosted Bell-state

measurements [111, 115] shows that they are not optimal and further research is needed to

improve their efficiency.

In chapter 5 we presented a ballistic scheme for the construction of a linear optical cluster

state that is universal for MBQC. Only 3-GHZ states and Bell pairs are necessary as resource

states, which implies that our schemes consumes one order of magnitude fewer resources that

other ballistic schemes proposed. Not only is our scheme more resource efficient but it has a

natural loss tolerance which allows to tolerate up to ∼ 1.6% photon loss without the use of
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specific loss tolerant codes. We not only proposed a theoretical scheme, but also integrated

this scheme into a full architectural blueprint, which has an important quality: it has fixed

physical depth, meaning the number of operations each photon is subject to is fixed. We have

used current technologies, such as probabilistic single-photon sources and log-tree switching

networks and showed that they are in principle sufficient to build a photonic quantum computer.

In chapter 6 we studied in detail the resource efficiency of the scheme proposed and introduce

a new multiplexing scheme that aims to optimise the use of resources. Instead of having a

quantum computer with a set clock-cycle, we proposed an asynchronous architecture in which

events are not synched to an overall clock cycle but only synchronised with other events when

interference needs to take place. We have presented the application of this idea on one level of

the architecture and showed the resulting resource savings. Understanding better the theoretical

aspects of this asynchronous scheme is a future line of research.

The integration of quantum error-correcting codes is fundamental in any quantum computing

architecture [70, 47]. In chapter 7 we presented a number of approaches for the integration of

fault-tolerant techniques in the linear optical architecture proposed in chapter 5. One of these

approaches seems particularly promising, which is the probabilistic construction of a fault-

tolerant lattice using the same techniques that were used to build the photonic cluster state

in chapter 5. However, the errors caused by the non-deterministic gates used to build the

cluster cannot be described by the type of error models commonly used in quantum error

correction. This new type of error model is analysed for the two-dimensional case using the

stabilizer simulator described in appendix D, but the analysis of a three-dimensional lattice

under this error model is ongoing work. Other errors in the linear optical architecture need to be

understood better, a full characterisation of physical errors and their mapping to computational

errors and loss is an important open question for this architecture.

In this thesis, we have aimed to fully understand the challenges of building a linear optical

quantum computer. We looked at every stage of the computation process, from the generation

of entangled states to the implementation of error-correction. We proposed schemes that ame-

liorate the challenges faced, but there’s still a long road ahead before the first linear optical

quantum computers can be built. However, recent experimental advances [58, 56, 43, 59, 60], in

particular the ability to nano-fabricate integrated devices with O(106) linear optical elements

on a single chip [61], reinforce the suitability of linear optics for quantum computing. The

results of this thesis, together with these experimental advances demonstrate that building a

linear-optical quantum computer is less challenging than previously thought.
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APPENDIX A

COMPLEXITY

This appendix contains a collection of complexity theory results that are mentioned throughout

the thesis and are relevant to the topic of this thesis.

A.1 Turing machine

A Turing machine is a device containing three main elements: an infinite tape, a read/write

head and a control device [188]. The infinite tape is divided into cells, these cells contain a

(possibly infinite) sequence of symbols from a finite set called the alphabet. The read/write

head moves along the tape and changes the symbols according to the instructions given by a

control device, which is a finite-state automaton. At each step of the computation, the control

device is in a particular state. The state of the control device and the symbol under the head

determine the action performed by the Turing machine: the value of the transition contains the

new state of the control device, the new symbol for the cell in the tape and the shift of the

read/write head.

A.2 Extended Church-Turing thesis

The Church-Turing thesis, named after Alan Turing [23] and his adviser Alonzo Church [24]

states that any function “naturally to be regarded as computable” is computable by a Turing ma-

chine, i.e. any natural model of computation will give you the same set of computable functions

as a Turing machine (or else a subset of them) [28]. The extended version of the Church-Turing

thesis states that any function naturally to be regarded as “efficiently” computable is “efficiently”

computable by a Turing machine.

The significance of the Church-Turing thesis is the statement that the limitations on what

can be computed are not imposed by our ingenuity in designing and constructing models of

computation or the technology that is used to do so, but the limitations are universal and set

by Nature.

A.3 Complexity classes

Problems in complexity theory are generally set as decision problems, with yes and no answers

or as counting problems, in which the answer is the number of solutions to said problem. In
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this appendix we list a few complexity classes that we mention throughout the thesis.

P: Polynomial-time

Class of decision problems solvable in polynomial time by a Turing machine.

Examples: Multiplication, primality testing.

NP: Nondeterministic polynomial-time

Class of decision problems such that, if the answer is yes, there exists a witness which is

polynomial in the size of the input and can be verified in polynomial time. If the answer is no,

there exists no witness that will fool a verifier that the answer is yes.

Examples: Factoring, graph isomorphism.

Co-NP: Complement of NP

Class of decision problems such that, if the answer is no, there exists a witness which is poly-

nomial in the size of the input and can be verified in polynomial time.

Examples: PRIME

NPH: NP-Hard

Class of decision problems such that any NP problem can be efficiently (Turing) reduced to it

(see notions of reducibility in the following section). They are as hard as any problem in NP.

Examples: Circuit satisfiability.

NPC: NP-Complete

Class of decision problems such that they are in NP and every problem in NP is reducible to

them. They are in both the complexity classes NP&NP −Hard.

Examples: 3-SAT, subset-sum.

BPP: Bounded-error Probabilistic Polynomial-time

Class of decision problems solvable by an NP machine such that:

• If the answer is yes, accept with probability 2
3 .

• If the answer is no, accept with probability 1
3

This is the class of feasible problems for a classical computer with access to a genuine random-

number generator.

Examples: Monte Carlo simulation of fermionic many-body systems.
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PH: Polynomial-Hierarchy

Class of decision problems solvable in polynomial time by a Turing machine with access to

infinite number of oracles of the preceding level in the hierarchy. An oracle (also usually called

“black box”) is an imaginary device that solves some computational problem immediately. AB

is the set of decision problems solvable by a Turing machine in class A augmented by an oracle

for some complete problem in class B. Define ∆P
0 = ΣP

0 = ΠP
0 = P . For i ≥ 0, define:

∆P
i+1 = PΣP

i , ΣP
i+1 = NPΣP

i , ΠP
i+1 = CoNPΣP

i .

For example, ΣP
1 = NP, ΠP

1 = coNP, ΣP
2 = PNP is the class of problems solvable in

polynomial time with an oracle for some NP-complete problem.

#-P: Sharp-P

Class of all problems that can be phrased as counting the number of solutions to an NP problem.

As this is a counting class and not a decision class, it is difficult to compare it with the other

decision classes. A simple solution is to consider the class P#P , which contains all problems

decidable by a P machine with access to a #P oracle. Toda’s theorem [28] says that P#P

contains the entire polynomial hierarchy PH, implying that this counting class is more powerful

than the entire PH.

Examples: Calculating the permanent of a matrix.

BQP: Bounded-error Quantum Polynomial-time

Class of decision problems solvable by a quantum Turing machine such that:

• If the answer is yes, accept with probability 2
3 .

• If the answer is no, accept with probability 1
3

One of the biggest open problem in complexity theory is the relationship between BQP and

the polynomial hierarchy. The intuition is that it is unlikely that BQP ⊂ PH, however an

oracle relative to which BQP 6⊂ PH has not yet been found. It was shown by Bernstein and

Vazirani [189] that BPP ⊆ BQP ⊆ P#P . This result implies that quantum computers are at

least as powerful as classical probabilistic computers and no more than exponentially faster.

Examples: Factoring, discrete logarithm.

A.4 Notions of reducibility

In computational complexity theory, a polynomial-time reduction is an algorithm for transform-

ing one problem into another problem, which is computable by a deterministic Turing machine

in polynomial time.

Cook reducibility

In Cook’s definition of reducibility, an algorithm to solve problem A with access to an oracle

for problem B is allowed to make multiple queries to the oracle, see figure A.1.
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Input Algorithm for A

Oracle 
for B

Output

one time step

Figure A.1: Cook reducibility

Karp reducibility

In Karp’s notion of reducibility, the input for problem A is taken through a function f which

transforms instances I of A into instances f(I) of B such that the size f(I) is polynomial in the

size of I and I is a yes instances ⇐⇒ f(I) is a yes instance. This means that only one query

is made to the oracle, see figure A.2.

Input for A Algorithm for BF

yes

no

Figure A.2: Karp reducibility

A.5 Collapse of the Polynomial Hierarchy

The Polynomial Hierarchy collapse to the ith level occurs when it can be proven that ΣP
i = ∆P

i .

Examples of this event are the collapse to the 0th level, occurring if it can be proven that P =

NP , and the collapse to the first level, occurring if NP = coNP . In complexity theory, many

results (such as the afore mentioned computational complexity of linear optics [30]) have the

conclusion that if a polynomial-time solution can be found on a Turing machine to a particular

problem, then the polynomial hierarchy would collapse to a certain level.

We can get an intuition to why the polynomial hierarchy should not collapse by looking at

the most well known1 instance of the problem, the collapse to the 0th level, i.e. the P vs NP

question. No proof exists to determine if both complexity classes are equal or not, however, it

is widely believed they are not equal (and the polynomial hierarchy doesn’t collapse). If NP

1One of the Clay Math Institute Millennium Problems.
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problems were solvable in polynomial time, then mathematical creativity could be automated

[28]; checking a mathematical proof would be as hard as finding a proof. Furthermore, there

exists the general belief that algorithms that solve NP problems in a way that is dramatically

better than brute force search don’t exist.

Collapse to the 0th level is the most dramatic polynomial hierarchy collapse, and it may be

possible that a collapse of the hierarchy to a higher level doesn’t have such striking consequences.

However, relying on intuition about complexity of problems is tricky, as there are algorithms

that have been for decades widely believed to be efficiently intractable, such as primality testing,

but have later been proven to have polynomial-time algorithms [29].
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APPENDIX B

RESOURCE COUNTING

When considering the resources needed to build a Linear Optical Quantum Computer, one

of the best ways to put all schemes on an equal footing is to compare them with respect to

a consumable resource (as optical elements can be reused in different ways according to the

particular scheme), i.e. photons. However, each scheme uses photonic states of different sizes.

To compare them, we will calculate the number of Bell Pairs needed on average to obtain each

photonic state. For this task, we will use the Linear Optical Networks (LON) for building GHZ

states described in chapter 4, as they are the most efficient we know. Note that we will be using

the most resource efficient networks from section 4, but these networks use gates that are not

loss tolerant.

There are two types of schemes we will be considering: repeat until success schemes, which

require feedforward (KLM [2] , Nielsen [89], Yoran-Reznik [88], parity encoding [94, 95] and

Browne-Rudolph [90] ) and ballistic schemes that don’t require feedforward (the percolating

scheme from [99] and the one presented in chapter 5). As the ballistic schemes are based

on percolation and not in the individual success of two-qubit gates, we will assess how many

resources are needed to build the final cluster state. For schemes with feedforward however, we

will first assess how many Bell pairs are needed per logical two-qubit gate.

B.1 Comparison of all proposed schemes

Both KLM and Nielsen’s scheme use the CZn2/(n+1)2 gate introduced in KLM, which performs

a CZ with success probability p = n2

(n+1)2
. Each attempt to implement this gate requires a

4n-photon entangled state.

Schemes with feedforward: we estimate average number of Bell Pairs per two-qubit gate:

• KLM scheme [2] : In their paper, they use the CZ9/16 gate, which requires a 12-photon

entangled state per implementation of the gate. They estimate that per single entangling

gate they need about 300 successful CZ9/16 ⇒ 300× 16
9 ≡ 534 12-photon entangled states.

To produce a 12-photon GHZ states, we need 11 Bell pairs and obtain the desired state

with probability (1
2)10 = 0.098%. On average we need 11 × 210 = 11264 Bell pairs per

12-photon GHZ state. Therefore, to implement a successful two-qubit gate in KLM, we

need 534× 11264 = 6.014 · 106 Bell pairs on average.

• Yoran-Reznik scheme [88]: In their paper, they use the CZ9/16 and the CZ4/9, which
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require a 12-photon and 8-photon entangled states repectvely per implementation of the

gate. They estimate that per single entangling gate they need about 23 CZ9/16 and 69

CZ4/16 gates. To produce a 12-photon GHZ states, we need 11 Bell pairs and obtained the

desired state with probability (1
2)10 = 0.098%. On average we need 11× 210 = 11264 Bell

pairs per 12-photon GHZ state. To produce a 8-photon GHZ state, we need 7 Bell pairs,

we obtain the desired state with probability 26 = 1.56%. On average we need 7×26 = 448

Bell pairs per 8-GHZ state. Therefore, to implement a successful two-qubit gate following

the scheme of Yoran and Reznik [88], we need 23×11264 + 69×448 = 2.9 · 105 Bell pairs

on average.

• Nielsen’s scheme [89] : In his paper, Nielsen calculates that to implement a two-qubit

logical gate he needs 24 successful CZ4/9 gates. Each of these gates requires an 8-photon

entangled state, therefore we need ⇒ 24× 4
9 = 54 8-photon entangled states. To produce

a 8-photon GHZ state, we need 7 Bell pairs, we obtain the desired state with probability

26 = 1.56%. On average we need 7× 26 = 448 Bell pairs per 8-GHZ state. Therefore, to

implement Nielsen’s scheme we need 24× 448 = 1.075 · 104 Bell pairs on average.

• Browne-Rudolph scheme [90] : In this scheme, to implement a two-qubit logical gate

they add an L-shape to the cluster. On average they calculate that they need 52 Bell pairs

on average to do it. This is a very low cost in comparison with the other schemes. The re-

source efficiency of this scheme is the result of combining the most efficient computational

model, MBQC, which already reduced resources in the case of Nielsen’s approach, and

the use of the most resource-efficient gates, the fusion gates. Other schemes either use the

MBQC model, or the fusion gates, but it’s their combination what makes the resources

necessary for the Browne-Rudolph scheme so low.

• Hayes-Gilchrist-Myers-Ralph scheme [94]: In this scheme, they estimate that for a

95% probability encoded CNOT, their scheme would require on average 90 physical CS and

32 elimination circuits. This translates into 1300 Bell states and 620 “elimination states”,

as shown in [94]. For the elimination states, the authors give a probabilistic preparation

procedure were only single photon states are required. However, this elimination states

are two-photon states that can be deterministically prepared from a Bell state by applying

a linear optical elements. Thus we will consider them in the Bell pair count. Therefore

these scheme requires 1.92 · 103 Bell pairs on average per single entangling gate.

• Gilchrist-Hayes-Ralph scheme [95]: To perform an entangling gate, a combination

of type-I and type-II fusion gates is used. The authors numerically explore the optimal

strategy, and conclude that the best way to obtain a resource of |0〉5 states is to first fuse

two Bell states (|0〉2) with a type-I gate, resulting in |0〉3 (with an average cost of 4|0〉2)

and then further fuse two |0〉3 states with type-I to form |0〉5. This has an average cost

of 16|0〉2 per |0〉5. Once there is a supply of |0〉5, it is advantageous to proceed by using

the type-II gate. The authors give a table of values of the average number of resources

consumed to perform an encoded CNOT gate with different success probabilities (the

success probability of the gate depends on the level of encoding used in the logical state).
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Here we compare the resources consumed by the gate which succeeds with 96.4% as it is

the closest to the 95% gate mentioned in the previous parity-encoded scheme. For this

gate, they use logical qubits with n = 6 levels of encoding, for which they need to prepare

115 |0〉5 states. Therefore on average we require 115 × 16 = 1.84 · 103 Bell pairs per

CNOT gate.

Schemes without feedforward: when considering the schemes that are based on perco-

lation, we should first look at the initial micro-clusters needed for each scheme and calculate

how many Bell pairs are needed on average to obtain them. In the Kieling-Rudolph-Eisert[99]

proposal, they suggest percolation schemes starting with 7-photon GHZ states, 5-photon GHZ

states and 4-photon GHZ states. The scheme we propose in chapter 5requires only 3-photon

GHZ states while obtaining the optimal scaling reported in [99].

• 7-photon GHZ state: To obtain a 7-photon GHZ states we need 6 Bell pairs and the LON

works with probability (1
2)5 = 3.125%. On average we need 6 × 25 = 192 Bell pairs to

obtain a 7-photon GHZ state.

• 5-photon GHZ state: To obtain a 5-photon GHZ states we need 4 Bell pairs and the LON

works with probability (1
2)3 = 12.5%. On average we need 4×23 = 32 Bell pairs to obtain

a 5-photon GHZ state.

• 4-photon GHZ state: To obtain a 4-photon GHZ states we need 3 Bell pairs and the LON

works with probability (1
2)2 = 25%. On average we need 3× 22 = 12 Bell pairs to obtain

a 4-photon GHZ state.

• 3-photon GHZ state: To obtain a 3-photon GHZ states we need 2 Bell pairs and the LON

works with probability (1
2) = 50%. On average we need 2 × 2 = 4 Bell pairs to obtain a

3-photon GHZ state.

We can see that having smaller micro-clusters saves orders of magnitude in terms of the

resources, even though the scaling obtained is similar (if not improved) to the one reported

with bigger microclusters.

Comparison when building a cluster state of dimensions L× L:

• Nielsen[89] : To build a cluster state, this scheme would require to perform O(L2) logical

two-qubit gates, therefore the number of Bell Pairs required would be O(104)O(L2).

• Browne-Rudolph[90] : This scheme would require O(10)O(L2) Bell pairs.

• Our percolation scheme: In our scheme, to build a cluster state of renormalised qubits,

we would require k3O(10)O(L2) Bell pairs, where k < 10.

The Browne-Rudolph proposal is more efficient in terms of the number of Bell pairs it

consumes than our proposed percolation scheme. Despite this advantage in terms of resources,

the percolation scheme has the advantage that it does not require active feed-forward and works

on a static LON, making the experimental realisation much more feasible and the loss rate much

lower.
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B.2 Comparison of percolation schemes

In figure 4 of their paper [99], the authors show the dependance of the diamond lattice block

size k3 on the size L of the renormalised square lattice for three different sets of site bond

probabilities (psite, pbond). The overall success probability threshold P (L) was chosen to be 1
2 .

In the scheme presented in chapter 5, we have performed all the simulations, assuming the

GHZ states are provided deterministically. For the scheme comparison to be fair, we choose to

compare with the data points that correspond with the data set (1.00, 0.5). From the data used

to produce figure 7 in our paper, we extract for different ks, what is the maximum value of L

we can reach with Π(L) ≥ 1
2 .
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L

2
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k
Size of renormalized qubit (k)

Kieling et al.

Our proposal

Figure B.1: Comparison of the size of the renormalised qubit (k) for different cluster sizes (L)

We can see that already there is a significant improvement in our scheme, as the size of the

renormalised qubit is reduced noticeably in our scheme with respect to Kieling et al.’s scheme

[99]. But the improvement becomes much greater once we consider the number of Bell pairs

that are needed to build each renormalised qubit and the entire cluster.

To obtain this comparison, we will first calculate how many Bell pairs are needed to obtain

a GHZ with 100% probability (± 0.0001%).

• The data in [99] is obtained for 4-photon GHZ states. For each 4-photon GHZ state we

need 3 Bell pairs and the LON works with probability 1
4 . In order to have a deterministic

4-photon GHZ (psucc = 1±10−6) we must repeat the generation procedure t times, where

t is 1 − (1 − 1
4))t ≥ 1 ⇒ t = 51. In total we consume 3 × 51 = 153 Bell pairs in the

generation of a deterministic 4-photon GHZ state.

• In our proposal we require deterministic 3-photon GHZ states. For each attempt at

generating one, we need 2 Bell pairs and the LON works with probability of success 1
2 .

In order to have a deterministic 3-photon GHZ (psucc = 1 ± 10−6) we must repeat the

generation procedure t times, where t is 1− (1− 1
2))t ≥ 1⇒ t = 21. In total we consume

2× 21 = 42 Bell pairs in the generation of a deterministic 3-photon GHZ state.
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With these numbers, we can transform the data in figure B.1 into number of consumable

resources used for different cluster sizes.
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Bell pairs consumed per renormalised qubit

Kieling et al.

Our proposal

Figure B.2: Comparison of the number of Bell pairs consumed per renormalised qubits for
different cluster sizes (L).
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Figure B.3: Comparison of the number of Bell pairs consumed to build the entire L×L cluster
for different cluster sizes (L).
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APPENDIX C

CONSTRUCTIVE PROOFS

In this appendix, we provide some formal proofs omitted in chapter 3. The steps in the vi-

sualisation algorithms presented in chapter 3 follow the steps in these constructive proofs and

therefore these proofs are needed to understand the validity of the algorithms.

C.1 Proof of theorem 3

Theorem. Every stabilizer state is equivalent to a graph state under local Clifford operations

[121].

Proof. Given an arbitrary stabilizer state S =

[
SZ

SX

]
, we want to prove the existence of a

local Clifford operation such that

Q · S =

[
S′Z
S′X

]
, (C.1)

where SX is invertible, so that it can act as a basis change for the stabilizer generators. Then,

S′ = Q · S · S′−1
X =

[
S′Z · S′−1

X

S′X · S′−1
X

]
=

[
S′Z · S′−1

X

1

]
. (C.2)

This new stabilizer state now corresponds to a graph state, SG as defined in chapter 3.

The sub-matrix S′Z · S′−1
X is symmetric from the property S′T · P · S′ = 0. Not in all cases the

submatrix SX of the stabilizer state S will be invertible. An example of this is the stabilizer

describing n qubits in the |0〉 state, in which case the SX matrix corresponds to a matrix of all

zeros. Therefore there must exist a local Clifford operation that transforms the matrix X into

an invertible block.

The first step we take is to perform a basis change (which in this particular case is equivalent

to Gaussian elimination) in the original stabilizer to bring it to the form

S →
[
RZ TZ

RX 0

]
, (C.3)

where RX is a full rank k × n matrix.

The symplectic self-orthogonality of the stabilizer group implies that T TZRX = 0. We prove
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this:

ST =

[
RTZ RTX
T TZ 0

]
⇒ ST ·P·S =

[
RTZ RTX
T TZ 0

][
RX 0

RZ TZ

]
=

[
RTZRX +RTXRZ RTXTZ

T TZRX 0

]
=

[
0

0

]
,

(C.4)

where we have used RTZRX = 0. This can be justified by observing that the sub-matrix SR =[
RX

RZ

]
is a stabilizer matrix of a bigger vector subspace (in which the stabilizer vector space

described by the matrix S is contained) and therefore we have that

[
STZ STX

] [ 0 1

1 0

][
SZ

SX

]
=

[
STZSX

STXSZ

]
=

[
0

0

]
. (C.5)

Therefore we have that for all stabilizer matrices STZSX = STXSZ = 0, which implies RTZRX =

0 and that gives us the relation T TZRX = RTZTX = 0. Because S has rank n (as it is a stabilizer)

and by construction RX has rank k, this implies that TZ has full rank and it’s therefore the

orthogonal complement of RX . As RX has rank k, it follows that it is an invertible k × k

sub-matrix. Without loss of generality we can write

RX =

[
R1
X

R2
X

]
, (C.6)

where we assume R1
X to be invertible (note that when transforming this constructive proof into

an algorithm we cannot make this assumption, see section 3.4 for more details). We can then

write the full stabilizer matrix in blocks:

S =




R1
Z T 1

Z

R2
Z T 2

Z

R1
X 0

R2
X 0



, (C.7)

where we have circled the invertible sub-matrices: R1
X is invertible by construction, T 2

Z is also

invertible, as a consequence of T TZRX = 0. We can prove this as follows:

Suppose that there exist a vector x such that
(
T 2
Z

)T
x = 0. We can define the n× n vector

v = (0, 0, . . . , x) which would satisfy STZv = 0 and therefore v = RXy for some y ∈ Zk2:

[
0

x

]
=

[
R1
X

R2
X

]
y =

[
R1
Xy

R2
Xy

]
. (C.8)

Since R1
X is invertible by construction, R1

Xy = 0 implies y = 0 ⇒ x = 0, which proves the

invertibility of T 2
Z . We want to have a lower block (the SX block invertible). As we can see

from the structure of S in equation (C.7), exchanging the lower parts of the SX and SZ blocks

would accomplish that, as both R1
X and T 2

Z are full rank. Logically, this exchange can be

achieved simply by applying the Hadamard operation on the qubits represented by the matrix
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rows of T 2
Z and R2

X . �

C.2 Assessing local Clifford equivalence

Given two stabilizer states S1 =

[
SZ1

SX1

]
and S2 =

[
SZ2

SX2

]
, they are LC-equivalent iff there

exist an operator Q such that Q · S1 = S2 up to a basis change [122]. We can use this to write

an equation that will allow us to find which LC operations, if any, can be applied to transform

one state into another.

The LC equivalence up to a basis change can be written as

Q · S1 ·R = S2 ⇒ ST1 ·QT · P ·Q · S1 ·R = ST1 ·QT · P · S2 ⇒ ST1 ·QT · P · S2 = 0. (C.9)

Writing this relation explicitly as a function of the matrix elements z1
ij , z

2
ij , x

1
ij , x

2
ij (which

correspond to SZ1 , SZ2 , SX1 , SX2 respectively) we have:

∑
z1
ijAjx

2
kj + x1

ijBjx
2
kj + z1

ijCjz
2
kj + xijDjz

2
kj = 0 (C.10)

with the constraint that AiDi +BiCi = 1 to insure invertibility of Q.

In order to establish if the two stabilizer states are LC-equivalent, the system of equations

is solved. If there exists a solution, we will obtain the LC operation directly in the form of the

Q matrix, otherwise the two states are not LC-equivalent.
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APPENDIX D

VISUAL-CHP

The following description of the operations implemented in the Mathematica Visual-CHP code

are of the form: Operation[variables ], with the same syntaxes as it should be used in the

code, followed by their description.

D.1 Internal functions

Destabilizer[tableau, i ] Extracts Destabilizer i from the cluster represented by tableau.

Stabilizer[tableau, i ] Extracts Stabilizer i from the cluster represented by tableau.

StabilizerSupport[tableau,list ] Outputs stabilizers that have support on the set of qubits

list.

RowSum[tableau, h, i ] Internal function equivalent to multiplying two stabilizer (or destabi-

lizer) generators together. Used to do measurements.

InvSubM[matrix ] Internal function to find a sub-matrix with the same rank as the full

matrix. Gaussian elimination is assumed to have been applied to the full matrix.

InvSubMAll[matrix ] Internal function that finds all possible sub-matrices with the same

rank as the full matrix. Gaussian elimination is assumed to have been applied to the full

matrix. The output of this function is just all the possible combinations of columns that

form a sub-matrix of rank k together with the first k rows.

D.2 Cluster building commands

PlusProductState[n ] Generates a product state of n qubits in |+〉.

ZeroProductState[n ] Generates a product state of n qubits in |0〉.

LinearC[n ] Generates a linear Cluster of n qubits.

ClosedC[n ] Generates a linear Cluster of n qubits with periodic boundary conditions .

RectangularC[n, m ] Generates a rectangular Cluster of n rows and m columns.

TriangularC[n, m ] Generates a triangular Cluster of n rows and m columns.
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GHZ[n ] Creates a GHZ state of n qubits .

FromAdj[matrix ] Builds a cluster state from an adjacency matrix. It eliminates self con-

necting nodes. If the matrix is not symmetric, it will print a warning and not build the

tableau.

FromStabilizers[input ] Obtains cluster states from a list of stabilizers in the form {“ooooo”,

“ooooo”, etc} where o can be x, X, y, Y, z, Z, i, I. It does not immediately write the

destabilizers, first the graph should be defined using ToGraph[] or ChooseG[].

FromEditedC[x ] To be used straight after x=PrintGraphInteractive[], the function will

automatically write the cluster in tableau form from the Graph Editor data.

DrawC[ ] Opens up a graph editor that allows you to draw any cluster state you want. When

the cluster is finished, close the editor and the function will automatically write the cluster

in tableau form from the Graph Editor data.

D.3 Quantum Operations

Hadamard[tableau, qb ] Applies a Hadamard gate to qubits qb in cluster tableau. qb can be

a single qubit or a list of qubits.

Phase[tableau, qb ] Applies a Phase gate to qubits qb in cluster tableau. qb can be a single

qubit or a list of qubits.

Cnot[tableau, {control, target} ] Applies CNOT gate to qubits control and target in cluster

tableau. It also accepts a list of control-target pairs.

Cz[tableau, {qubit1, qubit2} ] Applies CZ gate to qubits qubit1 and qubit2 in cluster tableau.

qb can be a single qubit or a list of qubits. It also accepts a list of qubit pairs.

MeasureZ[tableau, qubit ] Measures Z on qubit qubit of cluster tableau. States if all the

stabilizers commute with the measurement or not (measurement is random or determinate)

and gives back the measurement result in print as well as updating the state. The qubit

that is measured out remains in the description of the state, there is no renaming of the

qubits.

MeasureX[tableau, qubit ] Measures X on qubit qubit of cluster tableau. States if all the

stabilizers commute with the measurement or not (measurement is random or determinate)

and gives back the measurement result in print as well as updating the state. The qubit

that is measured out remains in the description of the state, there is no renaming of the

qubits.

MeasureY[tableau, qubit ] Measures Y on qubit qubit of cluster tableau. States if all the

stabilizers commute with the measurement or not (measurement is random or determinate)

and gives back the measurement result in print as well as updating the state. The qubit

that is measured out remains in the description of the state, there is no renaming of the
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qubits. In the case of the Y measurement, the outcome is not relevant as both Y and −Y
will give the same outcome (because in the code we can’t make the operators X and Z

anti-commute, that is taken into account in the update rules for unitary gates but not in

this measurement).

BitFlip[tableau, qubit ] Implements a bit flip (X) on qubit in the cluster represented by tableau.

PhaseFlip[tableau, qubit ] Implements a phase flip (Z) on qubit in the cluster represented by

tableau.

BPFlip[tableau, qubit ] Implements a bit and phase flip (Ȳ = XZ) on qubit in the cluster

represented by tableau.

GateQ[tableau, qubit, rules ] Implements a single qubit gate on qubit from cluster represented

by tableau, given by : {X,Y, Z} → rules, where rules is of the form {“±o”, “±o”, “±o”}
where o can be x,X, y, Y, z, Z, i, I.

GateQQ[tableau, qubit1,qubits2, rules1, rules2 ] Implements an arbitrary two qubit gate on

qubit1 and qubit2 from cluster represented by tableau, given by the rule lists: {1i ⊗
σXj ,1i ⊗ σYj ,1i ⊗ σZj} → rules1 and {σXi ⊗ 1j , σYi ⊗ 1j , σZi ⊗ 1j} → rules2, where

rules1 and rules2 are of the form {{“±o”, “±o”}, {“±o”, “±o”}, {“±o”, “±o”}} where

o can be x,X, y, Y, z, Z, i, I.

FusionIdS[tableau, qubit1, qubit2 ] Implements the successful Fusion Gate Type-I in a deter-

ministic way on qubits qubit1 and qubit2 of the cluster represented by tableau.

FusionIdF[tableau, qubit1, qubit2 ] Implements the failed Fusion Gate Type-I in a determin-

istic way on qubits qubit1 and qubit2 of the cluster represented by tableau.

FusionI[tableau, qubit1, qubit2 ] Implements the Fusion Gate Type-II with success probability

p on qubits qubit1 and qubit2 of the cluster represented by tableau.

FusionIIdS[tableau, qubit1, qubit2 ] Implements the successful Fusion Gate Type-II in a de-

terministic way on qubits qubit1 and qubit2 of the cluster represented by tableau.

FusionIIdF[tableau, qubit1, qubit2 ] Implements the failed Fusion Gate Type-II in a deter-

ministic way on qubits qubit1 and qubit2 of the cluster represented by tableau.

FusionII[tableau, qubit1, qubit2 ] Implements the Fusion Gate Type-II with success probabil-

ity p on qubits qubit1 and qubit2 of the cluster represented by tableau.

Swap[tableau, qubit1, qubit2 ] Implements a SWAP gate between the qubits qubit1 and qubit2

of the cluster described by tableau.

D.4 Cluster Operations

JoinC[cluster1, cluster2 ] Joins 2 clusters (represents them as one tableau, there are no links

between them, the CZ or fusion gates would have to be applied later). Naming of the

qubits starts in cluster 1 and carries on in cluster 2.
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EliminateQ[tableau ] Eliminates unentangled qubits from a cluster (it will only eliminate them

if they are in a product state with the rest of the cluster). Useful after measurements to

speed up computation.

PosG[tableau ] Shows the possible groups of qubits on which the Hadamards can be applied

in order to put the cluster described by tableau in graph form. If the choice is unique, it

says so in a message.

ChooseG[tableau, list ] Transforms the cluster state given by tableau to a graph state allowing

to choose onto which qubits the Hadamard gates are applied. These qubit are inputed as

a list of the form {q1, q2, q3, ...}.

ToGraph[tableau ] Takes a cluster given by tableau and rewrites the stabilizers in graph state

form. If the choice of graph is not unique and it matters for subsequent computations

PosG[] and ChooseG[] should be used instead.

LComp[tableau, nodes ] Performs local complementation on a list of nodes nodes = {n1, n2, ...}
of cluster tableau.

D.5 Output

PrintStabilizers[tableau ] Obtains the stabilizers in the cluster tableau as a string of Xis and

Zjs.

PrintDestabilizers[tableau ] Obtains the destabilizers in the cluster tableau as a string of Xis

and Zjs.

GetAdj[tableau ] Obtains the adjacency matrix that describes the cluster tableau in graph

form. If the cluster is not in graph form it outputs a warning and the function ToGraph[]

or ChooseG[] should be used.

PrintGraph[tableau ] Plots the graph corresponding to a particular cluster state given by

tableau. The cluster state should be in graph form, if not it will print a warning saying

so. A warning saying that self loops are not displayed will appear if a stabilizer has the

operator Y instead of X.

PrintAllGraph[tableau ] Prints all graphs that can correspond to the cluster state given by

tableau, depending on which qubits are the Hadamard gates applied. A warning saying

that self loops are not displayed will appear if a stabilizer has the operator Y instead of

X.

PrintGraphInteractive[tableau ] Plots the graph corresponding to a particular cluster state

given by tableau in an interactive editor. Nodes can be moved around, added and deleted.

Edges can be added and deleted as well. If we want to use the edited graph, call

FromEditedC[] straight afterwards. A warning saying that self loops are not displayed

will appear if a stabilizer has the operator Y instead of X.
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APPENDIX E

BOSONIC SIMULATOR

We briefly describe the Mathematica-based BosonicSimulator which has been used to obtain

all the results in chapter 4.

• States are represented by the bosonic creation operators following the same notation as

in chapter 4: hni v
m
j .

• Linear optical elements are described by the transformation rules on the creation opera-

tors. The most commonly used are:

– Beam-splitter of transmitivity η acting on modes a and b:

BS[a,b,η] = {ha →
√
ηha + i

√
1− ηhb, hb →

√
ηha + i

√
1− ηhb, (E.1)

va →
√
ηva + i

√
1− ηvb, vb →

√
ηva + i

√
1− ηvb} (E.2)

– 45o Polarisation rotator :

PolRot45[a] =

{
ha →

ha + va√
2

, va →
ha − va√

2

}
(E.3)

– PBS:

PBS[a,b] = {ha → ha, hb → hb, va → vb, vb → va} (E.4)

• The action of a series of linear optical elements ({1, . . . , n}) on the optical modes is

simulated by applying the rules to the original state (by using Mathematica’s rule trans-

formation engine): state \. op1 \. op2 . . . etc, where opi represents the transformation

rules of the operator applied in ith position of the series. At the end of the sequence it

is usually convenient to expand all the final terms. For example, the application of two

polarisation rotators and a PBS on two horizontal photons is simulated as:

hahb \. PolRot45[a] \. PolRot45[b] \. PBS[a,b] → hahb
2

+
vavb

2
+
hava

2
+
hbvb

2
(E.5)

• Several functions allow to post-select states based on variable such as number of photons

on a mode, number of horizontally or vertically polarised photons in total, number of

photons spread over certain modes, particular patterns, etc.
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E. BOSONIC SIMULATOR

• The probability of each of the terms in the final state (or of a state after post-selection)

is calculated by using a norm operation that accounts for the multiplicative factors of the

creation operators, i.e. each operator hi has a weight of
√
i!.
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APPENDIX F

DETAILS ON 3-GHZ AND 4-GHZ STATE

GENERATION

F.1 Boosted 3-GHZ generation from Bell pairs

We take the ballistic circuit to generate a 3-GHZ from single photon and rewrite it so that the

input are Bell pairs. This circuit has 3 Bell pairs as input and perform a Type-I fusion gate and

a Type-II fusion gate on 3 of the input qubits (one from each Bell pair). This gate succeeds with

25% probability (each fusion gate works with 50% probability). We use a Grice-type scheme to

boost the Type-II fusion gate which will now work with 75% probability.

2 1 3 4

5 6

7 8

Figure F.1: Optical circuit to generate a 3 qubits GHZ ballistically from Bell pairs with 37.5%
probability. The dashed lines between pairs of photons indicate that they belong to the same
Bell pair.

The boosted 3-GHZ ballistic circuit is shown in figure F.1. The input for this circuit are 4

Bell pairs (the three original Bell pairs and the pair used to boost the success probability of the

Type-II fusion gate). The success probability is boosted to 37.5%. In the non-boosted version,

the procedure succeeded when only one photon was detected in each mode. In the boosted

version, the postselection patterns that indicate success are increased, but in some of the cases

the output state is a GHZ state to which a Pauli rotation has been applied. However, given a

particular pattern measured, we can always know which Pauli rotation has been applied to the

state, and therefore it can be corrected.
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In this circuit, we pair the photons in Bell pairs as 1 & 2, 3 & 4, 5 & 6, 7 & 8, where 7 &

8 is the pair used to boost and 1, 3, 5, 7 and 8 are the photons measured (therefore the GHZ

will be located in photons 2, 4 and 6). The notation ni means the number of photons in that

mode or with that polarisation (for example nV is the total number of photons with vertical

polarisation, n2 is the number of photons in mode 2 and nh1 is the number of photons in mode

1 that are horizontally polarised).The post-selections that indicate a successful procedure are:

• (n1 + n5) = 2 & n1 + n7 + nh3 odd ⇒ (h2h4h6 + v2v4v6)/
√

2 with probability 6.25%

• (n1 + n5) = 2 & n1 + n7 + nh3 even ⇒ (h2h4h6 − v2v4v6)/
√

2 with probability 6.25%

• (n1 + n5) odd & nH even ⇒ (h2h4v6 + v2v4h6)/
√

2 with probability 12.5%

• (n1 + n5) odd & nH odd ⇒ (h2h4v6 − v2v4h6)/
√

2 with probability 12.5%

Therefore, whenever we obtain a GHZ out of our circuit, 1
6 of the time we obtain |000〉+|111〉√

2
,

1
6 of the time we obtain |000〉−|111〉√

2
, 1

3 of the time we obtain |001〉+|110〉√
2

and 1
3 of the time we

obtain |001〉−|110〉√
2

.

We can compare the boosted and non-boosted versions of this circuit by comparing the

number of Bell pairs needed on average to create a single 3-GHZ state.

• Not Boosting: The overall procedure has a success probability of 25%. On average we

need to repeat the procedure 4 times to obtain a 3-GHZ state. Each procedure needs 3

Bell pairs to fuse and none to boost. Therefore we need 3 Bell pairs per procedure and

12 Bell pairs in total per 3-GHZ state.

• Boosting: The overall procedure has a success probability of 37.5%. On average we need

to repeat the procedure 2.66 times to obtain a 3-GHZ state. Each procedure needs 3 Bell

pairs to fuse and 1 Bell pair to boost. Therefore we need 4 Bell pairs per procedure and

10.67 Bell pairs in total per 4-GHZ state.

We can see that the boosted version of this circuit is more resource efficient and we can say

that 1 3-GHZ state is equivalent to 11 Bell pairs.

F.2 Boosted 4-GHZ generation from Bell pairs

We take the ballistic circuit to generate a 4-GHZ from single photons and rewrite it so that

the input are Bell pairs. This circuit has 4 Bell pairs as input and performs two Type-II

fusion gates on 4 of the input qubits (one from each Bell pair). This gate succeeds with 12.5%

probability. We use a Grice-type scheme to boost the Type-II fusion gates which will now work

with 75% probability rather than 50% as in the non-boosted version. The circuit has an extra

beam-splitter that we cannot boost and that multiplies the success probability by 1
2 .

The boosted 4-GHZ ballistic circuit is shown in figure F.2. The input for this circuit are 6

Bell pairs (the four original Bell pairs and the two pairs used to boost the success probability

of the Type-II fusion gate). The success probability is boosted to ∼ 28% . In the non-boosted

version, the procedure succeeded when only one photon was detected in each mode. In the
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2 1 3 4

5 6

9 10

78

1211

Figure F.2: Optical circuit to generate a 4 qubits GHZ ballistically from Bell pairs with 28.125%
probability.

boosted version, the post-selection patterns that indicate success are increased, but in some of

the cases the output state is a GHZ state to which a Pauli rotation has been applied. However,

given a particular pattern measured, we can always know which Pauli rotation has been applied

to the state, and therefore it can be corrected.

In this circuit, we pair the photons in Bell pairs as 1 & 2, 3 & 4, 5 & 6, 7 & 8, 9 & 10,

11 & 12, where 9 & 10 and 11 & 12 is the pair used to boost and 1, 3, 5, 7, 9, 10, 11 and 12

are the photons measured (therefore the GHZ will be located in photons 2, 4 6 and 8). The

post-selections that indicate a successful procedure are:

• (n1 + n5) = 2 & (n3 + n7) = 2 & (n1 + n3 + n9 + n12) even ⇒ (h2h4h6h8 + v2v4v6v8)/
√

2

with probability 1.562%

• (n1 + n5) = 2 & (n3 + n7) = 2 & (n1 + n3 + n9 + n12) odd ⇒ (h2h4h6h8 − v2v4v6v8)/
√

2

with probability 1.562%

• (n1 + n5) odd & (n3 + n7) odd & nH even ⇒ (h2h4v6v8 + v2v4h6h8)/
√

2 with probability

6.25%

• (n1 + n5) odd & (n3 + n7) odd & nH odd ⇒ (h2h4v6v8 − v2v4h6h8)/
√

2 with probability

6.25%

• (n1 + n5) = 2 & (n3 + n7) odd & (n1 + n9 + nh3 + nh7 + nh11 + nh12) odd ⇒ (h2h4h6v8 +

v2v4v6h8)/
√

2 with probability 3.125%

• (n1 + n5) = 2 & (n3 + n7) odd & (n1 + n9 + nh3 + nh7 + nh11 + nh12) even ⇒ (h2h4h6v8−
v2v4v6h8)/

√
2 with probability 3.125%

• (n1 + n5) odd & (n3 + n7) = 2 & (n3 + n12 + nh1 + nh5 + nh9 + nh10) odd ⇒ (h2h4v6h8 +

v2v4h6v8)/
√

2 with probability 3.125%

• (n1 +n5) odd & (n3 +n7) = 2 & (n3 +n12 +nh1 +nh5 +nh9 +nh10) even ⇒ (h2h4v6h8−
v2v4h6v8)/

√
2 with probability 3.125%
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Therefore, whenever we obtain a GHZ out of our circuit, 1
18 of the time we obtain |0000〉+|1111〉√

2
,

1
18 of the time we obtain |0000〉−|1111〉√

2
, 2

9 of the time we obtain |0011〉+|1100〉√
2

, 2
9 of the time we

obtain |0011〉−|1100〉√
2

, 1
9 of the time we obtain |0001〉+|1110〉√

2
, 1

9 of the time we obtain |0001〉−|1110〉√
2

1
9

of the time we obtain |0010〉+|1101〉√
2

and 1
9 of the time we obtain |0010〉−|1101〉√

2
.

We can compare the boosted and non-boosted versions of this circuit by comparing the

number of Bell pairs needed on average to create a single 4-GHZ state.

• Not Boosting: The overall procedure has a success probability of 12.5%. On average we

need to repeat the procedure 8 times to obtain a 4-GHZ state. Each procedure needs 4

Bell pairs to fuse and none to boost. Therefore we need 4 Bell pairs per procedure and

32 Bell pairs in total per 4-GHZ state.

• Boosting: The overall procedure has a success probability of 28.125%. On average we

need to repeat the procedure 3.56 times to obtain a 4-GHZ state. Each procedure needs 4

Bell pairs to fuse and 2 Bell pairs to boost. Therefore we need 6 Bell pairs per procedure

and 21.33 Bell pairs in total per 4-GHZ state.

We can see that the boosted version of this circuit is more resource efficient and we can say

that 1 4-GHZ state is equivalent to 22 Bell pairs.

F.3 3-GHZ generation from probabilistic SPDC sources

In section 4.5.3, chapter 4 we mentioned that one of the advantages of using the probabilistic

Bell pairs emitted from the SPDC sources directly to generate 3-GHZ states is that even when

some of the sources don’t emit a Bell pair, some measurement outcomes yield (upon detection

of vacuum on one of the output modes) a smaller entangled state. Here we show all the possible

detection patterns that only measure 2 photons (instead of the three that would herald a 3-GHZ

state) for the case when one of the sources has not produced a Bell pair. In table F.1 we show

the outcome of the circuit when one of the sources didn’t fire and a particular pattern was

detected. We can see that in the case where source 3 does not fire, the generated state is a Bell

pair for many of the detection outcomes. The crucial point is that this Bell pair is on modes 2

and 4, whereas the output state in the cases where source 2 or 1 does not fire (which is never a

Bell pair) always has support on mode 6. Therefore, heralding vacuum on mode 6 when only 2

photons have been detected in modes 1, 3 and 5 allows to herald a Bell pair in modes 2 and 4.
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Detection pattern Source 3 Source 2 Source 1

h1h3
1

4
√

2
(h2h4 + v2v4) 1

4
√

2
v2 (h6 + v6) −1

4
√

2
h4 (h6 + v6)

h1h5
1

4
√

2
(−h2h4 + v2v4) 1

4
√

2
v2 (−h6 + v6) 1

4
√

2
h4 (h6 − v6)

h1v1 0 0 0
h1v3

1
4
√

2
(h2h4 + v2v4) −1

4
√

2
v2 (h6 + v6) 1

4
√

2
h4 (h6 + v6)

h1v5
1

4
√

2
(h2h4 +−v2v4) 1

4
√

2
v2 (h6 + v6) 1

4
√

2
h4 (h6 − v6)

h3h5 0 h2h6
4

v4v6
4

h3v1
1

4
√

2
(−h2h4 + v2v4) 1

4
√

2
v2 (h6 + v6) 1

4
√

2
h4 (h6 + v6)

h3h3
−h2v4

4 0 0

h3v5 0 −h2v6
4

−v4h6
4

h5v1
1

4
√

2
(h2h4 + v2v4) 1

4
√

2
v2 (−h6 + v6) 1

4
√

2
h4 (−h6 + v6)

h5v3 0 −h2v6
4

−v4h6
4

h5v5
−h2v4

4 0 0
v1v3

1
4
√

2
(−h2h4 + v2v4) −1

4
√

2
v2 (h6 + v6) 1

4
√

2
h4 (h6 + v6)

v1v5
−1

4
√

2
(h2h4 + v2v4) 1

4
√

2
v2 (−h6 + v6) 1

4
√

2
h4 (−h6 + v6)

v1v5 0 h2h6
4

v4v6
4

Table F.1: Output of the 3-GHZ generation circuit portrayed in figure 4.16 when only two
photons have been detected in modes 1, 3 and 5. The different outputs are classified according
to the detection pattern and which was the source that did not produce a Bell pair.
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APPENDIX G

SWITCH LOSS

G.1 Switch loss calculations in multiplexed GHZ generators

We calculate the amount of loss per switch that we can tolerate when generating GHZ states

and multiplexing using a log-tree scheme, given the tolerable loss rate in the percolation scheme

presented in chapter 5. We assume deterministic on-demand single photon sources and lossless

passive elements (as justified in chapter 2). Using the percolation scheme presented in chapter

5, we can tolerate loss in the individual photons of the 3-GHZ state up to pl ∼ 1.5% using

homogeneous MUX and up to pl ∼ 2.9% using RMUX. Using the multiplexing stage we can

accept all states that have at least one photon i.e. they are not the vacuum. That means that

if the loss rate per switch is γsw, and the photon goes through m switches, the probability of

not having been lost in the switching process is (1− γsw)m. The probability of having been lost

at any stage of the switching process is 1− (1− γsw)m and we want this number to be smaller

than the total loss per photon that we can tolerate, pl ≤ 1 − (1 − γsw)m. Note that as in the

percolation scheme the loss is calculated per photon and not per GHZ state, that is the same

calculation we do here, we do not require the GHZ state to have a certain loss probability but

rather the individual photons. The calculations on this appendix are repetitive, but they allow

a better understanding of the efficiency of each scheme.

G.1.1 Approach A: Multiplexing 3 photon GHZ generators from single pho-

tons

In this first approach there is only one stage of multiplexing after the 3-GHZ interferometer.

Single photons are obtained on demand from the single photon sources and passed through the

3-GHZ state generator, which is time or spatially multiplexed. Each 3-GHZ state generator

consumes 6 single photons and produces a 3-GHZ state with probability 1/32.

We want to generate a 3-GHZ state from single photons with probability for example ps ≥
0.95, that means we need to multiplex k times where k is given by

1−
(

1− 1

32

)k
≥ 0.95 ⇒ k = 95. (G.1)

We assume the switchboard is made out of a log-tree of 2 × 2 switches (such as described

in chapter 4), the number of switches required for a multiplexing of k events is given by m =
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dlog2 ke+ 1. In this case

m = dlog2 95e+ 1 = 8. (G.2)

As stated in the preliminaries we require that

pl ≤ 1− (1− γsw)m (G.3)

where pl1 = 0.015, pl2 = 0.029 and m = 8. Therefore

0.015 ≤ 1− (1− γsw)8 ⇒ γsw ≤ 0.19%, (G.4)

0.029 ≤ 1− (1− γsw)8 ⇒ γsw ≤ 0.37%. (G.5)

In figure G.1 we plot the results of this same calculation for values of p ∈ (0.9, 1).
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Figure G.1: Approach A: Multiplexing steps, number of switches and loss per switch as a
function of the probability of obtaining a GHZ state out of the multiplexed process. The
number of multiplexing stages and number of switches is the same for both values of pl. We
can see how the RMUX scheme (yellow), which gives a tolerable loss rate of pl2 = 0.029 permits
less stringent specifications on the individual switches.

G.1.2 Approach B: Multiplexing 3-GHZ generators from Bell Pairs

In this approach we assume we can obtain Bell pairs on demand from post selecting higher order

terms of an SPDC source or from a quantum dot source. There is only one stage of multiplexing

after the 3-GHZ interferometer. We use the boosted version of the 3-GHZ generator, thus each

3-GHZ state generator consumes 4 Bell pairs and produces a 3-GHZ state with probability

37.5%.

We want to generate a 3-GHZ state from Bell Pairs with probability for example ps ≥ 0.95,

that means we need to multiplex k times where k is given by

1− (1− 0.375)k ≥ 0.95 ⇒ k = 7. (G.6)

We assume the switchboard is made out of a log-tree of 2 × 2 switches (such as described

in chapter 4), the number of switches required for a multiplexing of k events is given by m =

dlog2 ke+ 1. In this case

m = dlog2 7e+ 1 = 4. (G.7)
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As stated in the preliminaries we require that

pl ≤ 1− (1− γsw)m (G.8)

where pl1 = 0.015, pl2 = 0.029 and m = 4. Therefore

0.015 ≤ 1− (1− γsw)4 ⇒ γsw ≤ 0.38%, (G.9)

0.029 ≤ 1− (1− γsw)4 ⇒ γsw ≤ 0.73%. (G.10)

In figure G.2 we plot the results of this same calculation for values of p ∈ (0.9, 1).

0.92 0.94 0.96 0.98 1.00
p0

2
4
6
8

10
12
14

k
Multiplexing steps

0.90 0.92 0.94 0.96 0.98 1.00
p4.0

4.5

5.0

5.5

6.0

m
Number of switches

0.92 0.94 0.96 0.98 1.00
p0.000

0.001
0.002
0.003
0.004
0.005
0.006
0.007

Loss per switch
�sw

pl = 0.015

pl = 0.029

Figure G.2: Approach B: Multiplexing steps, number of switches and loss per switch as a
function of the probability of obtaining a GHZ state out of the multiplexed process. The
number of multiplexing stages and number of switches is the same for both values of pl. We
can see how the RMUX scheme (yellow), which gives a tolerable loss rate of pl2 = 0.029 permits
less stringent specifications on the individual switches.

G.1.3 Approach C: Multiplexing Bell pair generators from single photons

and 3-GHZ generators from Bell Pairs

In this approach we have two stages of multiplexing. First we generate Bell pairs from single

photons, multiplex, then we use the Bell pairs to create 3-GHZ states and multiplex before

entering the percolation scheme. Single photons are obtained on demand from the single photon

sources and passed through the Bell pair generator, which is time or spatially multiplexed. Each

Bell pair generator consumes 4 single photons and produces a Bell pair with probability 1
4 if

we allow for active switching within the Bell pair generator (one switch) or with probability 1
8

if we don’t allow for active switching. We will treat these two strategies separately, labelling

them Approach C1 and C2 respectively.

Here the probability of having a successful GHZ out of the multiplexing in the end will be

the product of the probability of having successfully multiplexed a 4 Bell pairs out of the Bell

Pair generation, pBP , and the probability of having successfully multiplexed the GHZ out of

the GHZ generator from Bell Pairs, pGHZ . Thus

p = p4
BP · pGHZ . (G.11)
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Approach C1

The probability of generating a Bell Pair is 1
4 and the circuit itself, before multiplexing, requires

one switch. Say we want to generate a Bell Pair with probability pBP ≥ 0.95, that means we

need to multiplex k1 times where k1 is given by

1− (1− 1

4
)k1 ≥ 0.95 ⇒ k1 = 11. (G.12)

We assume the switchboard is made out of a log-tree of 2 × 2 switches (such as described

in chapter 4), the number of switches required for a multiplexing of k events is given by m =

dlog2 ke+ 1. In this case

m1 = dlog2 11e+ 1 = 5. (G.13)

The next step is to create GHZ states from Bell Pairs, this step is exactly the same as the

calculation in Approach B rewritten here for convenience.

We want to generate a 3-GHZ state from deterministic Bell Pairs with probability for ex-

ample pGHZ ≥ 0.95, that means we need to multiplex k2 times where k2 is given by

1− (1− 0.375)k2 ≥ 0.95 ⇒ k2 = 7. (G.14)

The number of switches required for a multiplexing of k2 events is given by m2 = dlog2 k2e+ 1.

In this case

m = dlog2 7e+ 1 = 4. (G.15)

The total number of switches that a photon has to go through is m = m1 + m2 + 1, the

probability of obtaining a GHZ state at the end of the process is given by p = p4
BP · pGHZ ,

which is the case of this example is 0.77.

We require that

pl ≤ 1− (1− γsw)m (G.16)

where pl1 = 0.015, pl2 = 0.029 and m = 10. Therefore

0.015 ≤ 1− (1− γsw)10 ⇒ γsw ≤ 0.15%, (G.17)

0.029 ≤ 1− (1− γsw)10 ⇒ γsw ≤ 0.29%. (G.18)

In figure G.3 we plot the results of this same calculation for values of p ∈ (0.8, 1). As we

can see in the figure, to obtain the same overall probability of creating a GHZ state, there are

different choices of pGHZ and pBP that we can take, and it is possible to optimise the choice so

as to maximize the amount of loss that we can tolerate per switch (or equivalently, minimising

the number of switches that a photon has to pass through). In figure G.4 we show this optimal

choice.

Approach C2

The probability of generating a Bell Pair is 3
16 and the circuit itself, before multiplexing, doesn’t

require any switch. Say we want to generate a Bell Pair with probability pBP ≥ 0.95, that means
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Figure G.3: Approach C1: intermediate stage where Bell pairs are generated with probability
1
4 . Multiplexing steps, number of switches and loss per switch as a function of the probability
of obtaining a GHZ state out of the multiplexed process.The number of multiplexing stages
and number of switches is the same for both values of pl. We can see how the RMUX scheme
(yellow), which gives a tolerable loss rate of pl2 = 0.029 permits less stringent specifications on
the individual switches.
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Figure G.4: Approach C1 optimised: Multiplexing steps, number of switches and loss per
switch as a function of the probability of obtaining a GHZ state out of the multiplexed process.
Optimised to minimise the number of switches. The number of multiplexing stages and number
of switches is the same for both values of pl. We can see how the RMUX scheme (yellow), which
gives a tolerable loss rate of pl2 = 0.029 permits less stringent specifications on the individual
switches.

we need to multiplex k1 times where k1 is given by

1− (1− 1

8
)k1 ≥ 0.95 ⇒ k1 = 23. (G.19)

We assume the switchboard is made out of a log-tree of 2 × 2 switches (such as described

in chapter 4), the number of switches required for a multiplexing of k events is given by m =

dlog2 ke+ 1. In this case

m1 = dlog2 11e+ 1 = 6. (G.20)

The next step is to create GHZ states from Bell Pairs, this step is exactly the same as the

calculation in Approach B rewritten here for convenience.

We want to generate a 3-GHZ state from deterministic Bell Pairs with probability for ex-

ample pGHZ ≥ 0.95, that means we need to multiplex k2 times where k2 is given by

1− (1− 0.375)k2 ≥ 0.95 ⇒ k2 = 7. (G.21)

The number of switches required for a multiplexing of k2 events is given by m2 = dlog2 k2e+ 1.

In this case

m = dlog2 7e = 4. (G.22)
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The total number of switches that a photon has to go through ism = m1+m2, the probability

of obtaining a GHZ state at the end of the process is given by p = pBP · pGHZ , which is the

case of this example is 0.9.

We require that

pl ≤ 1− (1− γsw)m (G.23)

where pl1 = 0.015, pl2 = 0.029 and m = 10. Therefore

0.015 ≤ 1− (1− γsw)10 ⇒ γsw ≤ 0.15%, (G.24)

0.029 ≤ 1− (1− γsw)10 ⇒ γsw ≤ 0.29%. (G.25)

In figure G.5 we plot the results of this same calculation for values of p ∈ (0.8, 1). In figure
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Figure G.5: Approach C2: Multiplexing steps, number of switches and loss per switch as a
function of the probability of obtaining a GHZ state out of the multiplexed process. The
number of multiplexing stages and number of switches is the same for both values of pl. We
can see how the RMUX scheme (yellow), which gives a tolerable loss rate of pl2 = 0.029 permits
less stringent specifications on the individual switches.

G.5 we plot the results of this same calculation for values of p ∈ (0.8, 1). As in the approach

C1 we can see that to obtain the same overall probability of creating a GHZ state, there are

different choices of pGHZ and pBP that we can take, and it is possible to optimise the choice so

as to maximise the amount of loss that we can tolerate per switch (or equivalently, minimising

the number of switches that a photon has to pass through). In figure G.6 we show this optimal

choice.
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Figure G.6: Approach C2 optimised: Multiplexing steps, number of switches and loss per
switch as a function of the probability of obtaining a GHZ state out of the multiplexed process.
Optimised to minimise the number of switches. The number of multiplexing stages and number
of switches is the same for both values of pl. We can see how the RMUX scheme (yellow), which
gives a tolerable loss rate of pl2 = 0.029 permits less stringent specifications on the individual
switches.
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G.1.4 Comparison

We compare all the schemes studied so far.
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Figure G.7: Comparison of all multiplexing approaches

While it is obvious that starting from Bell Pairs we need less switches and therefore we can

tolerate more loss per switch, we can also see that out of the schemes that start with single

photons, approach A seems optimal: it is better to multiplex just once instead of optimising at

different steps. This result ties in with the results presented in chapter 4, where schemes with

less multiplexing stages were more resource efficient when paired with higher efficiency sources.

Approach C2 is more efficient than approach C1, which can be understood from the fact that

in the Bell generation, approach C1 uses one switch to improve probability from 3/16 to 1/4,

whereas each switch effectively allows to improve probability by a factor of 2. In other words,

that extra switch is not being optimally utilised.

G.2 State of the art

There are different technologies that allow for the realisation of optical switches, the most com-

mon are the electro-optical switches [190], carrier-based switches [191], micro-electro-mechanical

switches (MEMS) [167, 192], thermo-optical switches [193] and nonlinear optical loop mirror

(NOLM) based switches [96]. It is beyond the scope of this thesis to fully explain how each of

these switches works, there are many parameters (such as power consumption, heat dissipation,

working temperatures, material used, size, etc) which make them suitable for different optical

implementations. Here however we are mainly concerned with switching loss and speed, as

those are the parameters that mostly affect the theoretical design. In table G.1 we can see a

comparison of the switching loss and speed of these optical switches.

Technology Switching loss Switching speed

Electro-optic effect 3 dB 18 GHz
Carrier injection 5.5 dB 1MHz - 10 GHz

MEMS 0.77 dB 1 MHz
Thermo-optic 0.23 dB 100 kHz

NOLM 0.6 dB 5 GHZ

Table G.1: State of the art in switches
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[75] Nicolò Spagnolo, Chiara Vitelli, Marco Bentivegna, Daniel J. Brod, Andrea Crespi, Fulvio
Flamini, Sandro Giacomini, Giorgio Milani, Roberta Ramponi, Paolo Mataloni, Roberto
Osellame, Ernesto F. Galvão, and Fabio Sciarrino. Experimental validation of photonic
boson sampling. Nature Photonics, 8(June):3–9, 2014.

[76] Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical
Review A, 52(4):2493–2496, 1995.

[77] E. R. Caianiello. On quantum field theory I: explicit solution of Dysons equation in
electrodynamics without use of feynman graphs. Il Nuovo Cimento, 10(12):1634–1652,
1953.

[78] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[79] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM,
51(4):671–697, 2004.

[80] Linda Sansoni, Fabio Sciarrino, Giuseppe Vallone, Paolo Mataloni, Andrea Crespi,
Roberta Ramponi, and Roberto Osellame. Polarization entangled states measurement
on a chip Linda. Proc. of SPIE, 8072:80720Q–80720Q–6, 2011.

[81] M.G. Thompson, A. Politi, J.C.F. Matthews, and J.L. O’Brien. Integrated waveguide
circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2):94, 2011.

219



BIBLIOGRAPHY

[82] Damien Bonneau, Mirko Lobino, Pisu Jiang, Chandra M. Natarajan, Michael G. Tanner,
Robert H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Mark G. Thompson, and Jeremy L.
O’Brien. Fast path and polarization manipulation of telecom wavelength single photons
in lithium niobate waveguide devices. Physical Review Letters, 108(5):1–5, 2012.

[83] Kevin T. McCusker, Yu-Ping Huang, Abijith S. Kowligy, and Prem Kumar. Experimental
Demonstration of Interaction-Free All-Optical Switching via the Quantum Zeno Effect.
Physical Review Letters, 110(24):240403, 2013.

[84] Jeffrey H. Shapiro. Single-photon Kerr nonlinearities do not help quantum computation.
Physical Review A, 73(6):062305, 2006.

[85] Stefan Scheel, Kae Nemoto, William Munro, and Peter Knight. Measurement-induced
nonlinearity in linear optics. Physical Review A, 68(3):032310, sep 2003.

[86] J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman. High-fidelity
quantum logic operations using linear optical elements. page 13, 2002.

[87] Federico M. Spedalieri, Hwang Lee, and Jonathan P. Dowling. High-fidelity linear optical
quantum computing with polarization encoding. Physical Review A, 73(1):012334, jan
2006.

[88] N. Yoran and B. Reznik. Deterministic Linear Optics Quantum Computation with Single
Photon Qubits. Physical Review Letters, 91(3):037903, jul 2003.

[89] Michael A. Nielsen. Optical Quantum Computation Using Cluster States. Physical Review
Letters, 93(4):040503, jul 2004.

[90] Daniel E. Browne and Terry Rudolph. Resource-efficient linear optical quantum compu-
tation. Physical Review Letters, 95:2–6, 2005.

[91] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light. Cambridge University Press, 1999.

[92] Jaewoo Joo, Peter Knight, Jeremy O’Brien, and Terry Rudolph. One-way quantum com-
putation with four-dimensional photonic qudits. Physical Review A, 76(5):052326, nov
2007.

[93] Michael Varnava, Daniel Browne, and Terry Rudolph. How Good Must Single Photon
Sources and Detectors Be for Efficient Linear Optical Quantum Computation? Physical
Review Letters, 100(6):060502, feb 2008.

[94] A. J. F. Hayes, A. Gilchrist, C. R. Myers, and T. C. Ralph. Utilizing encoding in scal-
able linear optics quantum computing. Journal of Optics B: Quantum and Semiclassical
Optics, 6(12):533–541, dec 2004.

[95] Alexei Gilchrist, A. J. F. Hayes, and T. C. Ralph. Efficient parity-encoded optical quantum
computing. Physical Review A, 75(5):052328, may 2007.

[96] Timothy M. Rambo, Kevin McCusker, Yu-Ping Huang, and Prem Kumar. Low-loss all-
optical quantum switching. 2013 IEEE Photonics Society Summer Topical Meeting Series,
3(c):179–180, 2013.

[97] Yang Zhang, Amir Hosseini, Xiaochuan Xu, David Kwong, and Ray T. Chen.
Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded
multimode-interference couplers. Optics letters, 38(18):3608–11, 2013.

220



BIBLIOGRAPHY

[98] Zhen Sheng, Zhiqi Wang, Chao Qiu, Le Li, Albert Pang, Aimin Wu, Xi Wang, Shichang
Zou, and Fuwan Gan. A Compact and Low-Loss MMI Coupler Fabricated With CMOS
Technology. IEEE Photonics Journal, 4(6):2272–2277, 2012.

[99] K. Kieling, T. Rudolph, and J. Eisert. Percolation, Renormalization, and Quantum Com-
puting with Nondeterministic Gates. Physical Review Letters, 99(13):130501, sep 2007.

[100] Olaf Mandel, Markus Greiner, Artur Widera, and Tim Rom. Controlled collisions for
multi- particle entanglement of optically trapped atoms. October, pages 937–940, 2003.

[101] M. Trupke, J. Metz, A. Beige, and E. A. Hinds. Towards quantum computing with single
atoms and optical cavities on atom chips. Journal of Modern Optics, 54(11):1639–1655,
jul 2007.

[102] Yuan Liang Lim, Sean D. Barrett, Almut Beige, Pieter Kok, and Leong Chuan Kwek.
Repeat-until-success quantum computing using stationary and flying qubits. Physical
Review A, 73(1):012304, jan 2006.

[103] Geoffrey Grimmett. Lectures on Probability Theory and Statistics, volume 1665 of Lecture
Notes in Mathematics. Springer Berlin Heidelberg, 1997.

[104] K. Kieling and J. Eisert. Percolation in quantum computation and communication. In
Quantum and Semi-classical Percolation and Breakdown in Disordered Solids, (Springer,
Berlin, 2009), pages 287–319. dec 2007.

[105] Daniel E. Browne, Matthew B. Elliott, Steven T. Flammia, Seth T. Merkel, Akimasa
Miyake, and Anthony J. Short. Phase transition of computational power in the resource
states for one-way quantum computation. New Journal of Physics, 10(2):023010, feb 2008.

[106] M. Yanuka and R. Englman. Bond-site percolation: empirical representation of critical
probabilities. Journal of Physics A: Mathematical and General, 23(7):L339–L345, 1990.

[107] J. M. Hammersley. A generalization of McDiarmid’s theorem for mixed Bernoulli per-
colation. Mathematical Proceedings of the Cambridge Philosophical Society, 88(01):167,
1980.

[108] Yuriy Yu. Tarasevich and Steven C. van der Marck. An investigation of site-bond per-
colation on many lattices. International Journal of Modern Physics C, 10(07):14, jun
1999.

[109] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Computer, 1(4):192,
1994.

[110] J. Hoshen and R. Kopelman. Percolation and cluster distribution. I. Cluster multiple
labeling technique and critical concentration algorithm. Physical Review B, 14(8):3438–
3445, oct 1976.

[111] W. P. Grice. Arbitrarily complete Bell-state measurement using only linear optical ele-
ments. Physical Review A, 84(4):042331, oct 2011.

[112] Christopher Dawson, Henry Haselgrove, and Michael Nielsen. Noise Thresholds for Optical
Quantum Computers. Physical Review Letters, 96(2):020501, jan 2006.

[113] Michael Varnava, Daniel Browne, and Terry Rudolph. Loss Tolerance in One-Way
Quantum Computation via Counterfactual Error Correction. Physical Review Letters,
97(12):120501, sep 2006.

221



BIBLIOGRAPHY

[114] Lev Vaidman and Nadav Yoran. Methods for reliable teleportation. Physical Review A,
59(1):116–125, 1999.

[115] Fabian Ewert and Peter van Loock. 3/4 - Efficient Bell Measurement with Passive Linear
Optics and Unentangled Ancillae. Physical Review Letters, 113(14):140403, sep 2014.

[116] Daniel Gottesman. Class of quantum error-correcting codes saturating the quantum Ham-
ming bound. Physical Review A, 54(3):1862–1868, sep 1996.

[117] Daniel Gottesman. The Heisenberg Representation of Quantum Computers. arXiv,
9807006:20, 1998.

[118] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, may
1997.

[119] David Jennings. Lecture Notes: Quantum Error-Correction, Stabilizers and Measurement-
Based Quantum Computation. 2013.

[120] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical
Review A, 70(5):052328, nov 2004.

[121] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical description of the
action of local Clifford transformations on graph states. Physical Review A, 69(2):022316,
2004.

[122] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Efficient algorithm to rec-
ognize the local Clifford equivalence of graph states. Physical Review A, 70(3):034302,
2004.

[123] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local unitary versus local
Clifford equivalence of stabilizer states. Physical Review A, 71(6):062323, 2005.

[124] Beverley Bolt, T. G. Room, and G. E. Wall. On the Clifford collineation, transform and
similarity groups. I. Journal of the Australian Mathematical Society, 2(01):60, apr 1961.

[125] Beverley Bolt, T. G. Room, and G. E. Wall. On the Clifford collineation, transform and
similarity groups. II. Journal of the Australian Mathematical Society, 2(01):80, apr 1961.

[126] Beverley Bolt. On the Clifford collineation, transform and similarity groups. (III) Gen-
erators and involutions. Journal of the Australian Mathematical Society, 2(03):334, feb
1962.

[127] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Physical
Review A, 54(2):1098–1105, 1996.

[128] Andrew Steane. Multiple-Particle Interference and Quantum Error Correction. Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 452:2551–
2577, 1996.

[129] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,
303(1):2–30, jan 2003.

[130] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford
gates and noisy ancillas. Physical Review A, 71(2):022316, feb 2005.

[131] Mark Howard, Joel Wallman, Victor Veitch, and Joseph Emerson. Contextuality supplies
the ’magic’ for quantum computation. Nature, 510(7505):351–355, 2014.

222



BIBLIOGRAPHY

[132] Terry Rudolph. Lecture Notes: Introduction to Quantum Information. 2011.

[133] John Harris, Jeffry L. Hirst, and Michael Mossinghoff. Combinatorics and Graph Theory,
volume 51 of Undergraduate Texts in Mathematics. Springer New York, New York, NY,
2008.

[134] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local Equivalence of Stabi-
lizer States and Codes. Proceedings of the 16th international symposium on mathematical
theory of networks and systems (MTNS). KU Leuven, Belgium, page 182, 2004.

[135] Bei Zeng, Hyeyoun Chung, Andrew W. Cross, and Isaac L. Chuang. Local unitary versus
local Clifford equivalence of stabilizer and graph states. Physical Review A, 75(3):032325,
2007.

[136] M. Hein, J. Eisert, and H. J. Briegel. Multiparty entanglement in graph states. Physical
Review A, 69(6):062311, 2004.

[137] D. Gross and M. Van Den Nest. The LU-LC conjecture, diagonal local operations and
quadratic forms over GF(2). Quantum Inf. Comput., 8(3-4):263, 2007.

[138] Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The LU-LC conjecture
is false. Quantum Information and Computation, 10(1):97–108, 2010.

[139] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
Proceedings of the 44th symposium on Theory of Computing - STOC ’12, page 887, 2012.

[140] E.H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination.
Math. Comp., 22(2):565–578, 1968.

[141] Eric W. Weisstein. “Gaussian Elimination.”. From MathWorld–A Wolfram Web Resource.

[142] D.R. Simon. On the power of quantum computation. In Proceedings 35th Annual Sym-
posium on Foundations of Computer Science, volume 26, pages 116–123. IEEE Comput.
Soc. Press, 1994.

[143] Simon Anders and Hans J. Briegel. Fast simulation of stabilizer circuits using a graph-
state representation. Physical Review A, 73(2):022334, feb 2006.

[144] Peter Petersen. Linear algebra. 2012.

[145] Alston S. Householder. Unitary Triangularization of a Nonsymmetric Matrix. Journal of
the ACM, 5(4):339–342, oct 1958.

[146] Xi-Lin Wang, Xin-Dong Cai, Zu-En Su, Ming-Cheng Chen, Dian Wu, Li Li, Nai-Le Liu,
Chao-Yang Lu, and Jian-Wei Pan. Quantum teleportation of multiple degrees of freedom
of a single photon. Nature, 518(7540):516–519, feb 2015.

[147] Qiang Zhang, Xiao-Hui Bao, Chao-Yang Lu, Xiao-Qi Zhou, Tao Yang, Terry Rudolph,
and Jian-Wei Pan. Demonstration of a scheme for the generation of event-ready entangled
photon pairs from a single-photon source. Physical Review A, 77(6):062316, jun 2008.

[148] Mehul Malik, Manuel Erhard, Marcus Huber, Mario Krenn, Robert Fickler, and Anton
Zeilinger. Multi-photon entanglement in high dimensions. arXiv, 1509.02561:1–19, 2015.

[149] Philip Walther, Markus Aspelmeyer, and Anton Zeilinger. Heralded generation of mul-
tiphoton entanglement. Physical Review A - Atomic, Molecular, and Optical Physics,
75(1):1–5, 2007.

223



BIBLIOGRAPHY

[150] Cristopher Gerry and Peter Knight. Introductory Linear Optics. Cambridge University
Press, 2005.
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