
Imperial College London

Department of Department of Physics

B-spline ADC: Many-body ab

initio theory for electron dynamics

in strong laser fields

Marco Ruberti

10 August

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Department of Physics of Imperial College London

and the Diploma of Imperial College London

1





Declaration of Originality

I herewith certify that all the results presented in this thesis are my own

and that all else has been appropriately referenced.

Marco Ruberti

3





Copyright Declaration

The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution Non-Commercial No Derivatives

licence. Researchers are free to copy, distribute or transmit the thesis on

the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any

reuse or redistribution, researchers must make clear to others the licence

terms of this work.

Marco Ruberti

5





Abstract

This thesis is focused on the development of an efficient first-principles the-

oretical and numerical method based on the many-electron algebraic dia-

grammatic construction [ADC(n)] schemes, in order to describe the corre-

lated ionisation dynamics in atomic and molecular systems interacting with

perturbative and non-perturbative laser fields.

The first line of research has focused on the calculation of total single-

photon photoionisation cross-sections, applying the Stieltjes-Imaging theory

to Lanczos pseudospectra of the ADC Hamiltonian in Gaussian basis. We

have established the accuracy of this technique by comparing the ADC-

Lanczos-Stieltjes ground-state cross-sections obtained using different lev-

els of many-body theory to the experimental ones for a series of organic

molecules. We have extended this method to excited states cross-sections

showing that a theoretical modelling of photoionisation from excited states

requires an intrinsically double excitation theory. However, above 80 eV

photon energy all three methods lead to inaccurate results due to the limita-

tions of the Gaussian basis to describe continuum wave-functions of ionised

electrons.

The second, main line of research, has therefore been dedicated to con-

structing and computationally optimising the first implementation of the

single [ADC(1)] and double excitations [ADC(2)] schemes in the B-spline

basis, which is able to accurately describe the strongly oscillating continuum

orbitals. As first application of this new method, we have calculated the

photoionisation cross-sections of noble gas atoms showing that the features

that pose a challenge for the GTO calculations are reproduced in a very good

agreement with the experiment. We also have developed a time-dependent

version with which we have calculated the HHG spectra of Ar, reproducing

the effect of the Cooper minimum, and CO2, quantitatively investigating

the multi-channel effects on its dynamical minimum. Finally we have pro-

vided a numerical answer to the highly topical question of coherence and
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ionic wavepacket formation in short pulse photoionisation.
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1. Introduction

The understanding of how a quantum system evolves in time and the pos-

sibility of visualising or even controlling the underlying correlated quantum

dynamics on its natural length- and time-scale are subjects in the very focus

of modern atomic, molecular and optical physics, and they inevitably move

into the field of view of other research areas as well, ranging from solid-state

physics over materials science to quantum chemistry and molecular biology.

Physical and chemical changes that occur in atomic and molecular systems,

including structural deformations and electronic motion, typically occur at

femtosecond (10−15 s) and attosecond (10−18 s) timescales.

The interaction of matter with light is a key process in physical systems

on any length scale. The absorption of light promotes electrons into excited

states. If enough energy is absorbed by an atom or a molecule, one or

more electrons can leave the system (i.e., ionization takes place). The most

common types of ionisation are single-photon and few-photon ionisations

[1, 2, 3], above-threshold ionisation [4, 5], and tunnel ionisation [6, 7, 8, 9].

In the last decade the remarkable progress in high harmonic generation

[4, 10, 11, 12, 13], made possible by the revolutionary advances in IR laser-

technology which allow one to produce sub-10 fs IR laser pulses with peak

intensities of more than 1016 W/cm2, has allowed one to generate ultrashort

(as short as 80 as [14]) VUV and XUV light pulses with broad spectral

bandwidths [15, 16, 17].

The laser pulses used in the HHG experiments are so intense that their

time-dependent electric fields are on the scale of the fields that valence

electrons experience in molecules and solids. Therefore, these laser pulses

distort significantly the potential of the electrons such that it is possible

for the electron to tunnel through or even travel over the barrier out of the

system (i.e., tunnel-ionization or barrier-suppression regime, respectively).

High harmonic emission occurs when an electron, liberated from a molecule

by an incident intense laser field, gains energy from the field and recom-
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bines with the parent molecular ion. The emission provides a snapshot

of the structure and dynamics of the recombining system, encoded in the

amplitudes, phases and polarization of the harmonic light. The HHG spec-

troscopy technique, which relies upon measuring the spectrum of coherent

radiation emitted by molecules aligned in space when interacting with the

intense laser fields, has proven to be a promising tool in revealing the struc-

ture as well as the electronic and nuclear dynamics in diatomic molecules,

with the potential for subangstrom spatial resolution and subfemtosecond

temporal resolution [18].

The groundbreaking development of the attosecond laser pulse [19] in

the extreme ultraviolet (XUV) spectrum where atoms and molecules can

be ionised has enabled the experimental study of attosecond physics [20],

i.e. the real-time study of most fundamental ultrafast motions of elec-

trons in atoms, molecules and condensed matter, which can be resolved

on a femtosecond or attosecond timescale. Time-domain studies of elec-

tronic motion in atoms, molecules and the condensed phase offer new ap-

proaches to understanding electronic structure and electronic correlations

[21, 22, 23, 24, 25, 26, 27]. For instance, the generation of attosecond pulses

was utilized to determine spatial structures of molecular orbitals [28] and

an interferometric technique using attosecond pulses was used to character-

ize attosecond electron wave packets [29]. Moreover, attosecond technology

demonstrated the ability to follow, on a sub-femtosecond time scale, pro-

cesses such as photoionization [30], Auger decay [31], and valence electron

motion driven by relativistic spin-orbit coupling [32]. Furthermore, the

availability of attosecond pulses fueled a broad interest in exploring charge

transfer dynamics following photoexcitation or photoionization [3].

When studying the electron motion and the corresponding hole-creation

dynamics during the ionisation process [23, 33] it is in general possible to

distinguish between two different types of electron dynamics: the bound-

free dynamics which happens when one electron is freed from the parent

system and the bound-bound electron dynamic which happens when the

electronic system has been excited in a bound non-stationary state. From

the experimental point of view, one of the techniques which has been very

successful to study in the time domain the bound-free dynamics in ionised

atoms and molecules such as Auger decay [31] and ICD [34] is the attosecond

streaking technique [31]. However, attosecond streaking is unable to trace
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the corresponding bound-bound dynamics such as hole migration [35, 36],

in which no secondary electron is emitted.

The measurement of bound electronic wave packets has recently attracted

widespread interest. One necessary condition for creating electronic motion

is the population of multiple electronic states. For example, after photoion-

ization, the state of the molecular ion can consist of a superposition of

different ionic eigenstates and can therefore undergo an internal non-trivial

dynamical evolution, which may take the form of hole-migration [35, 36, 37]

or hole decay typically with some non-exponential (oscillatory) behaviour

[38]. Other attosecond techniques have been introduced recently, such as

attosecond transient absorption [32, 33, 39], but so far it is limited to elec-

tron dynamics in the valence shell, because the initial ionization happens

through tunneling effect. Electronic wave packets have also been measured

in the valence-shell of atomic ions using sequential double ionization [40, 7]

and in the valence shell of neutral molecules using high-harmonic generation

spectroscopy [41, 42, 43].

In the last decade, much work has been done in the realm of ultrafast hole

migration following sudden ionization or excitation [36], which is believed to

be a universal response of extended molecules. This process occurs due to

the electron correlations within many-electron systems, and is predicted to

take place typically on the timescale from few to sub-femtosecond (i.e. into

the attosecond time domain) that is short with respect to the timescale of

nuclear motion [44]. It is currently a prominent goal in attosecond science

[20] to observe and fully characterise the hole migration process in order

to improve the understanding of the process and ascertain the role of hole

migration in determining photochemical and photophysical outcomes and

to prove that experimental methods based on attosecond measurement can

address correlation driven dynamics in extended quantum systems such as

biomolecules. The hole migration dynamic has not been clearly observed

yet, even though first promising experiments have been performed on amino-

acids molecules [45].

Recent experiments [46, 47] have demonstrated that electronically excited

ionic states can modify site-selective reactivity within tens of femtoseconds,

making hole migration processes a promising tool to control chemical reac-

tions. Up to now, theoretical calculations [36] investigating hole migration

phenomena have neglected the interaction between the parent ion and the
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photoelectron and assumed a perfectly coherent hole wave packet.

Moreover, the crucial requirement for creating bound electronic motion is

to create a coherent superposition between the prepared electronic states.

The coherence of the resulting ionic system is crucial to the theoretical

interpretation of the dynamical informations that can be obtained in time-

resolved (pump-probe) experiments [48], especially for applying strong field

ionisation to initiate charge migration [35, 36, 37] which is usually discussed

in the context of single-photon ionization in the sudden limit. The ques-

tion about the coherence of the ionic wavepacket formed after ionization

is especially relevant for molecules, where the much smaller energy separa-

tion between the eigenstates of the cation system with respect to the case

of atomic systems could in principle favour the establishment of a higher

degree of coherence. However, no quantitative studies have been performed

so far on molecules and therefore a theoretical method for predicting the

degree of coherence created by strong field ionisation or single photon XUV

ionisation in molecular systems is desirable.

The advancement of attosecond physics requires new theoretical compu-

tational tools in order to be able to simulate and predict the correlated

electron dynamics in atoms and molecules on the attosecond time-scale and

to interpret the experimental observations of atomic-scale electron dynam-

ics. The theoretical framework for the description of the electronic dynam-

ics on the ultra-fast time-scale is based on the time-dependent Schrödinger

equation (TDSE) [49]

+i h̄
∂ | Ψ (t)〉

∂t
= Ĥ | Ψ (t)〉 , (1.1)

which describes the time evolution driven by the Hamiltonian operator Ĥ

of a quantum system represented by the wavefunction | Ψ (t)〉.
While many well-developed theoretical techniques exist for the descrip-

tion of atomic photoionisation [50], the multi-centre molecular problem still

poses a formidable challenge to the theory. Even for the calculation of the

most basic single-photon molecular photoionisation cross-sections, the state

of the art theoretical methods either do not take into account sufficiently

the electronic correlation, see e.g. Refs. [51], or treat the photoionisation

continuum rather approximately, see e.g. Ref. [52]. Highly accurate many-

electron wave-functions and transition matrix elements are routinely ob-
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tained by the post-Hartree-Fock (post-HF) methods of ab-initio quantum

chemistry [49, 53, 54]. These methods are based on the use of finite sets of

square-integrable (typically Gaussian) single-electron basis functions.

The main focus of research in my PhD has been dedicated to construct-

ing and implementing the time-dependent (TD) B-spline ADC [55] ab-initio

method, which allows to obtain accurate solutions of the TDSE for the ion-

isation dynamics of correlated electrons in molecules. TD B-spline ADC is

a theoretical method that describes the temporal evolution of the electronic

wavefunction combining a detailed description of the electron correlation

[56] with an accurate representation of the electronic continuum states [57].

Having a detailed description of electron correlation is very important as

both molecular structure and dynamics emerge under the influence of inter-

atomic interactions between the electrons. In atoms and molecules each elec-

tron moves in the combined potential created by the ion core and all other

electrons. The electrons are usually entangled with each other while they

move and interact on the attosecond timescale. Therefore, multi-electron

dynamics, whose description requires a theoretical method which goes be-

yond the single-electron approximation, is a natural area of research for

attosecond science. For example, population of multiple electronic states of

the cation is well known to be achieved in molecular strong-field ionization

[58, 59, 60, 61, 62, 63]; this motivates the interest in studing the effect of the

interchannel electron-electron interactions on the resulting HHG spectra.

Successfully constructing and computationally optimising the first B-spline

implementation of the first- [ADC(1)] and second-order [ADC(2)] schemes

for electronic excitations enables one to mantain the same level of accuracy

for the description of many-electron effects that is common to bound states

in quantum chemistry and, at the same time, to overcome the difficulty of

representing the ionisation continuum inherent to the use of the Gaussian

Type Orbitals (GTO) basis set. Such an achievement allows the possibility

to accurately describe, with a completely ab-initio method, a series of many-

electron phenomena such as strong field multiphoton ionisation, creation of

ionic state wavepackets by sudden single-photon ionisation, high-order har-

monic generation, above-threshold ionisation and electron correlation-driven

hole migration in the time-resolved fashion on the atto-second scale, not only

in atoms but also in molecular systems and beyond single excitation theory

(e.g., TDCIS [64]).
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1.1. Personal contributions to the work

The contributions I have made to the following work are:

• I wrote the code for the ADC-Lanczos-Stieltjes excited states pho-

toionisation cross-sections, see Chapter 4.

• I wrote the entire B-spline ADC code, both the time-independent and

the time-dependent parts, including the two-electron integral trans-

formation between the primitive B-splines basis functions and the

Hartree-Fock (HF) basis functions and its optimisation (see Chap-

ter 5). The only thing which was already available was a program for

calculating the two-electron integrals between monocentric primitive

B-splines basis functions; therefore these integrals were used as input

for the newly-implemented B-spline ADC code.

• I produced and interpreted all the results which are presented in this

thesis, see Chapters 3, 4, 5, 6.

1.2. Outline

This thesis is organised as follows.

In Chapter 2 the theory is presented.

Section 2.1 is devoted to the definition and the description of the single-

photon ionisation cross-section observable for atomic and molecular systems.

In Section 2.2 the polarisation propagator is introduced in the context of

the many-body Green’s functions approach to calculate molecular excited

states.

A specific way of calculating the polarisation propagator for many-electron

systems, namely the algebraic diagrammatic construction (ADC) schemes,

is introduced in Section 2.3. The derivation of this ab-initio method to cal-

culate the electronic structure from the original diagrammatic approach for

the polarisation propagator is illustrated.

The complementary derivation of the ADC methods, via the Intermedi-

ate State Representation of the electronic Hamiltonian, and the relevant

aspects of the ADC approach to excited states are presented in Section 2.4.

An emphasis will be put on the theoretical and computational advantages
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provided by the ADC methods and an illustration of the wider application

range of the method in the ISR formulation will be provided.

Section 2.5 will concern the problem of treating electronic states which lie

in the electronic continuum, above the ionisation threshold. The Stieltjes

moment theory will be introduced and an explanation will be given on the

calculation possibilities that it offers, in addition to its own limitations.

The Lanczos iterative diagonalisation method is reviewed in Section 2.6.

This technique is used to diagonalise high dimension effective Hamiltonian

matrices with a recursive algorithm; Large-size Hamiltonian matrices natu-

rally occur for even medium-sized organic molecules such as the ones con-

sidered in Chapter 3.

The B-spline basis set is introduced and a generic description of its prop-

erties is given in Section 2.7.

The Arnoldi-Lanczos numerical algorithm for the wavepacket time prop-

agation calculations is discussed in Section 2.8.

Sections 2.9 and 2.10 will introduce two observables which will be cal-

culated in this thesis, namely the high-order harmonic generation spectrum

and the reduced ionic density matrix respectively.

Chapter 3 will present the application of ADC-Lanczos-Stieltjes method

to the calculation of total single-photon photoionisation cross-sections. The

accuracy of this technique will be established by comparing the theoreti-

cal ground-state cross-sections obtained using different levels of many-body

theory to the experimental ones for a series of organic molecules.

Chapter 4 will present the extension of the ADC-Lanczos-Stieltjes method

to excited states cross-sections showing that a theoretical modelling of pho-

toionisation from excited states requires an intrinsically double excitation

theory.

Chapter 5 will present the implementation of the single [ADC(1)] and

double excitations [ADC(2)] schemes in the B-spline basis, which is able

to accurately describe the strongly oscillating continuum orbitals, together

with a first static application of the new method, i.e. the calculation of a

series of photoionisation cross-sections of noble gas atoms.

Chapter 6 will present the first applications of the time-dependent version

of B-spline ADC. In Section 6.1 the calculation of the HHG spectrum of the

Ar atom will be presented, reproducing the effect of the Cooper minimum.

In Section 6.2, the multi-channel effects on the dynamical minimum present
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Atomic unit (a.u.) SI value Name (symbol)

Energy (me e
4

h̄2 ) 4.35975× 10−18 J Hartree (Eh)

Length ( h̄2

me e2
) 5.29177× 10−11 m Bohr radius (a0)

Time ( h̄3

me e4
) 24.1888× 10−18 s Jiffy

Table 1.1.: Conversion Factors from Atomic to SI Units.

in the CO2 HHG spectrum will be quantitatively investigated. Finally,

section 6.3 will provide a numerical answer to the highly topical question of

coherence and ionic wavepacket formation in short pulse photoionisation.

In this thesis atomic units (a.u.) are used. In Table 1.1 conversion factors

from a.u. to SI units are provided.
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2. Theory

2.1. One-photon ionisation cross-section

The main basic observable describing the electron dynamics of an atom or

molecule interacting with an ionising electric field and which can be mea-

sured in experiments and predicted theoretically at the same time, is the

single photon total photoionisation cross-section. Knowledge and under-

standing of this measurable quantity permits us to gain insight into the

electronic structure of the atomic and molecular systems. The total molec-

ular single-photon ionisation cross-section is defined as the probability per

unit time and per unit incident photon flux density, of ionising a molecule

by absorbing a photon [1]. This quantity describes the probability of the

physical process in which a molecule absorbs energy (one photon) from the

radiation field and as a consequence undergoes a transition between its ini-

tial electronic bound state and some final state in the electronic continuum,

i.e. one electron is emitted from the molecular region creating an electronic

hole with respect to the neutral system. Electron emission is one of the

most efficient decay mechanisms for molecules excited a few eV and higher

above the ionisation limit, such that decay patterns other than ionisation

are negligible and, consequently, the photoabsorption and photoionisation

cross-sections become nearly coincident in this energy range (the ionisation

yield is approximately 100%). Hence the measurement of the photoioni-

sation cross-section provides one of the most sensitive probes to study the

photoabsorption process in atoms and molecules.

The expression for the n-th excited state photoionisation cross-section in

SI units is given, in the case of randomly oriented molecules, by [1]

σn (E) =
πe2h̄

2ε0mec

dfn (E)

dE
=

πe2h̄

2ε0mec
g (E) , (2.1)

where the function g (E) = dfn(E)
dE represents the oscillator strength density

36



of the system and E = h̄ω stands for the photon energy (the energy dif-

ference between the final and the initial states involved in the absorption

process).

Within the dipole approximation and adopting the length gauge form for

the light-matter interaction Hamiltonian, namely

Ĥint = −D̂ · E (t) (2.2)

where E (t) is the electric field, the oscillator strength density function is

given by the dipole matrix element between the n-th excited state (Ψn,

where n = 0 indicates the ground state of the system Ψ0) and the final

continuum state (ΨE) of the N-electron system:

dfn (E)

dE
=

2meE

3h̄2

∣∣∣∣∣∣
〈

ΨE

∣∣∣∣∣∣
N∑
j

~rj

∣∣∣∣∣∣Ψn

〉∣∣∣∣∣∣
2

= g (E) . (2.3)

In cgs units the expression for the photoionisation cross-section is

σ (E) =
2π2

c
g (E) . (2.4)

Since in the photoionisation process the final states are in the electronic

continuum part of the spectrum, they are not L2 integrable [65] and they

can be instead normalised to δ-function in energy:

〈ΨE | ΨE′ 〉 = δ
(
E − E′

)
. (2.5)

From this formula it is possible to see that the continuum states have the

units of [E]−
1
2 . This definition of the electronic continuum states carries the

information about the exact density of states of the system in the continuum

range of the energy spectrum.

The cross-section can also be defined in terms of the electronic dynamical

(frequency-dependent) polarisabilty α (E)

σ (E) =
4πE

c
= [α (E)] (2.6)

This formula states that the cross-section is, for real values of the energy

E, proportional to the imaginary part of the polarisability. In fact, the
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polarisability as a function of a complex energy z can be expressed as the

following Riemann-Stieltjes integral

α (z) =

∫ ∞
ε0

df (ε)

ε2 − z2
(2.7)

where
df (ε)

dε
=
∑
j

fjδ (εj − ε) + g (ε) ≥ 0 (2.8)

represents the generalised expression for the oscillator-strength density func-

tion including the contribution from the discrete (bound states) part of the

energy spectrum. Therefore, by performing the integration and taking the

pole contribution it is possible to see that the imaginary part of α (E) on

the real E axis is given by

= [α (E)] =
π

2E

df (E)

dE
(2.9)

and therefore Eq. (2.4) follows immediately.

The formulas presented in this Section are written within the vertical

transition approximation (or fixed-nuclei approximation) which, for photon

energies sufficiently higher than the first ionisation threshold of the molecule,

may represent an acceptable simplification. This means that the nuclear

degrees of freedom are ignored throughout the calculation and the nuclear

geometry is frozen, i.e. it is assumed not to change in the course of the

electronic transition. The neutral equilibrium geometry is assumed for both

the initial neutral system and the final ionic system and the states appearing

in the formulas of this Section are the electronic states calculated making

use of the Born-Oppenheimer approximation [49].

The photoionisation cross-sections are characterised by a very compli-

cated and rich structure. This structure can show characteristic features

such as Cooper minima [1], Giant resonances, very narrow peaks correspond-

ing to Fano-shape resonances, Feshbach resonances and ’many-electron’ ef-

fects [66]. Therefore, their theoretical interpretation represents a power-

ful tool for investigating the molecular electronic structure and dynamics.

Having an efficient and accurate theoretical method in order to be able to

calculate and predict molecular photoionisation cross-sections is naturally

important especially in the cases where either the cross-sections are diffi-
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cult to be measured experimentally or a theoretical prediction is required

beforehand, as is the case for astrophysics applications [67]. As an example,

the photoionisation cross-section is an important parameter in the strong

field approximation (SFA) theory of high harmonic generation (HHG) [68].

2.2. The polarisation propagator

There are two possible strategies to calculate cross-sections starting from

Eq. (2.1): the first one is to use methods which directly provide a description

of the initial and final states of the system, and subsequently use these

states to compute their transition dipole matrix element (wave-function

methods) [49, 53, 54]; the second one is to rely on methods that directly give

the squared transition dipole matrix elements between the states, without

explicitly passing through the description of the states involved (propagator

methods, linear response methods) [69, 70, 71].

The polarisation propagator is the key-quantity needed to describe the

neutral excitation of a system, i.e. the excitations which do not change the

number of interacting particles in the system. It can be derived starting

from the two-particle Green’s function [72, 73, 74, 75, 76, 77, 78], which is

defined in the coordinate representation as follows:

G2 (x1, x2, x3, x4)=(−i)2 〈Ψ0 | T
[
Ψ̂ (x1) Ψ̂ (x2) Ψ̂† (x4) Ψ̂† (x3)

]
|Ψ0〉 .

(2.10)

Here Ψ̂ (x) , Ψ̂† (x) represent the fermionic field annihilation and creation

operators, that respectively annihilate and create a fermionic particle (elec-

tron) at the space-time point x = (r, t). In this Section, all the operators

are intended to be expressed in the Heisenberg picture, â (t) = e+ıĤtâe−ıĤt,

and are therefore time-dependent.

The symbol T in Eq. (2.10) stands for the time-ordering Wick opera-

tor, whose action consists of ordering the time-dependent field operators

on which it operates accordingly to their time argument in decreasing time

order. Additionally, by definition of T , in cases where both operators Ψ̂† (x)

and Ψ̂
(
x
′
)

have equal time argument t = t
′

the creation operator Ψ̂† (x)

always has to stand to the left of the corresponding annihilation operator

Ψ̂ (x).

Introducing a single-particle basis set of functions {φn (r)}, the annihila-
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tion and creation field operators can be expressed in the following way:

Ψ̂ (x) =
∑
n

φn (r) ân (t) Ψ̂† (x) =
∑
n

φ∗n (r) â†n (t) . (2.11)

The single-particle basis functions are usually chosen as the solutions of

some mean-field equations such as the Hartree-Fock equations.

By substituting these expressions for the field operators in Eq. (2.10), one

arrives at the so-called number representation for the two particle Green’s

function:

G(2)
pq,rs (t1, t2, t3, t4)=(−i)2 〈Ψ0 | T

[
âp (t1) âq (t2) â†s (t4) â†r (t3)

]
|Ψ0〉 (2.12)

where the indices p, q, r, s run over the single-particle basis states.

Starting from the two-particle Green’s function G
(2)
pq,rs (t1, t2, t3, t4), it is

then possible to define the following quantity

Rpq,rs (t1, t2, t3, t4) = G(2)
pq,rs (t1, t2, t3, t4)−Gpr (t1, t3)Gqs (t2, t4) (2.13)

where the quantity Gpq (t1, t2) represents the one-particle Green’s function

(or one-particle propagator) written in the number representation and it is

defined as follows

Gpq (t1, t2)=−ı〈Ψ0 | T
[
âp (t1) â†q (t2)

]
|Ψ0〉 . (2.14)

One way of calculating Gpq (t1, t2) is by solving the Dyson’s equation,

which allows one to express the exact one-particle Green’s function in terms

of the non-interacting (mean-field) one via the quantity Σpq

(
t, t
′
)
, which is

called the irreducible self-energy. The Dyson’s equation for the one-particle

Green’s function reads

Gpq (t1, t2)=G0
pq (t1, t2)+ G0

pr (t1, t3) Σrs (t3, t4)Gsq (t4, t2) . (2.15)

In Eq. (2.15) summation and time integration for repeated indices are im-

plied.

In a completely analogous way, Rpq,rs (t1, t2, t3, t4) can be expressed in

terms of the simplified quantity

R0
pq,rs (t1, t2, t3, t4) = Gps (t1, t4)Gqr (t2, t3) (2.16)
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by means of the so-called Bethe-Salpeter equation [79]:

Rpq,rs (t1, t2, t3, t4) = −R0
pq,rs (t1, t2, t3, t4)

−ıR0
pu,rt (t1, t6, t3, t5) Kp−h

uv,tz (t6, t7, t5, t8) Rvq,zs (t7, t2, t8, t4)

. (2.17)

The kernel Kp−h
uv,tz (t6, t7, t5, t8) is called the effective particle-hole (p-h)

interaction, or alternatively, the irreducible p-h vertex and it is defined as

the functional derivative of the self-energy Σpq

(
t, t
′
)

with respect to the one-

particle Green’s function of Eq.( 2.14). The quantities G(2), R and Kp−h

all depend of four time arguments (or, in the case of a time-independent

Hamiltonian, on three time-differences).

The polarisation propagator, or time-ordered density correlation function,

can be defined as the following limit

Πpq,rs

(
t, t
′)

= limt1,t3→t limt2, t4 → t
′
ıRps,qr (t1, t2, t3, t4) (2.18)

and it is therefore a two-point quantity, depending only on two time variables

(or, in the case of a time-independent Hamiltonian, on one time-difference).

In the coordinate representation it can be expressed as

Π
(
x, x

′)
=−ı 〈Ψ0 | T

[
Ψ̂† (x) Ψ̂ (x) Ψ̂†

(
x
′)

Ψ̂
(
x
′)] |Ψ0〉+

ı 〈Ψ0 | Ψ̂† (x) Ψ̂ (x) |Ψ0〉〈Ψ0 | Ψ̂†
(
x
′)

Ψ̂
(
x
′) |Ψ0〉 .

(2.19)

In order to understand the physical meaning of the polarisation propaga-

tor, it is useful to write it in the following form:

Π
(
x, x

′)
=−ı〈Ψ0 | T

[
ρ̂ (x) ρ̂†

(
x
′)] |Ψ0〉+ ı〈Ψ0 | ρ̂ (x) |Ψ0〉〈Ψ0 | ρ̂†

(
x
′) |Ψ0〉 .

(2.20)
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In Eq. (2.20) the quantity ρ̂ (x) = ρ̂† (x) = Ψ̂† (r) Ψ̂ (r) has been introduced:

it is the density field operator at point x = (r, t) and it can be explicitly

written as ρ̂ (r) =
∑N
i=1 δ (r− r̂i). It is now possible to see from Eq. (2.20)

that the polarisation propagator Π
(
x, x

′
)

is a quantity which describes the

propagation of a density disturbance from one point in space-time to another

(i.e. it creates a density disturbance at point x = (r, t) and propagates it

to x
′

=
(
r
′
, t
′
)
. (In a way analogous to the one the one-particle propagator

Gpq (t1, t2) propagates either a single particle added to the system or a single

hole created in the system).

The polarisation propagator in the number representation can be written,

in compact notation, as:

Π
(
x, x

′)
=
∑
pqrs

φ∗q (r)φp (r)φ∗r

(
r
′)
φs
(
r
′)

Πpq,rs (t) (2.21)

Π (t) = Π+ (t)+Π− (t) (2.22)

Π+
pq,rs (t)=−i〈Ψ0 | â†qâp

[
Q̂(0)e−i (Ĥ−E0)tQ̂(0)

]
â†râs |Ψ0〉 (2.23)

The operator Q̂(0) = 1̂− P̂ (0) represents the projector onto the ground state

orthonormal complement (i.e. the projector onto the excited states space).

Its presence in Eq. (2.21) takes into account, in a compact way, the product

term on the right-hand side of Eq. (2.20). Moreover, equation (2.21) makes

it evident that the polarisation propagator describes the time-evolution of

a neutral excitation on top of the exact ground state.

Due to the fact that a generic one-particle operator Ô can be written

as Ô =
∑
rs orsâr

†âs, the quantity Πpq,rs (t) can also be used to define any

time-ordered correlation function T (t) in the following way:

T (t)=
∑
pqrs

o∗pqorsΠpq,rs (t) = D†Π (t) D . (2.24)

The part T+ (t) = D†Π+ (t) D is also defined as the transition function

corresponding to the operator Ô.

When going into the spectral (frequency ω) domain

Π+
pq,rs (ω) =

∫ +∞

−∞
dt e+ı(ω+ıη)tΠ+

pq,rs (t) (2.25)
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it can be immediately noted that Π+
pq,rs (ω) can be written as a matrix of

resolvent-type matrix elements:

Π+
pq,rs (ω)=〈Ψ0 | âq†âp

[
ω − Ĥ + E0 + iη

]−1
âr
†âs |Ψ0〉

′
. (2.26)

In Eq. (2.25) the imaginary positive infinitesimal +ıη is introduced to guar-

antee the convergence of the Fourier transform between time and energy

representations. The prime in Eq. (2.26) indicates that the undesired con-

tribution

Π+
pq,rs=+〈Ψ0 | âq†âp | Ψ0〉〈Ψ0 | âr†âs |Ψ0〉 (ω + iη)−1 (2.27)

must be subtracted.

Repeating the same procedure for the Π− part, it is possible to see that

Π−pq,rs (ω)=Π+
sr,qp (−ω) . (2.28)

Accordingly to this equation the two parts Π+ (ω) and Π− (ω) contain

the same physical information and it is therefore sufficient to calculate the

former part.

Inserting the resolution of identity, expressed in terms of the exact excited

states of the system | Ψm〉, into Eq. (2.26), leads to the so-called Lehnman

representation of the polarisation propagator:

Π+
pq,rs (ω)=+

∑
m 6=0

〈Ψ0 | â†qâp | Ψm〉〈Ψm | â†râs |Ψ0〉
ω − (Em − E0) + iη

(2.29)

Π−pq,rs (ω)=−
∑
m6=0

〈Ψ0 | â†râs | Ψm〉〈Ψm | â†qâp |Ψ0〉
ω + (Em − E0)− iη

. (2.30)

Consistent with the fact that the polarisation propagator only describes

density fluctuations, the term m = 0 corresponding to the ground state is

not included in the summation.

Equation (2.29) makes the physical content of the polarisation propagator

manifest even more; as it is clear from the analytical structure of its spectral

representation, Π+
pq,rs (ω) provides informations on the excitation energies

of the system and on the squared transition moments 〈Ψm | â†râs |Ψ0〉 of the

corresponding excited eigenstates. More precisely, it has simple poles at the
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discrete excitation energies, and the corresponding residues are related to

the transition matrix element between the ground state and the respective

excited eigenstates. This means that the integration of the polarisation

propagator in the complex ω plane, around a closed path that includes only

a specific isolated pole, gives direct information about the squared transition

matrix elements from the ground state to the corresponding eigenspace of

Ĥ.

One of the ways in which the polarisation propagator can be calculated is

via its diagrammatic perturbation expansion, which is based on the following

partition for the total Hamiltonian of the system:

Ĥ = Ĥ0 + Ŵ . (2.31)

Here Ĥ0 is chosen to be the mean-field Hamiltonian, while Ŵ contains the

two-particle interaction part of the Hamiltonian. The diagrammatic pertur-

bation expansion can be obtained by making use of the Dyson’s expansion

for the time evolution operator in the interaction picture [72]

Û
(
t, t
′)

= T e−ı
∫ t
t
′ ŴI(τ)dτ =

=
∞∑
n=0

(−ı)n

n!

∫ t

t′
dt1

∫ t

t′
dt2 · · ·

∫ t

t′
dtnT

[
ŴI (t1) ŴI (t2) · · · ŴI (tn)

]

(2.32)

and of the Gell-Mann and Low theorem for representing the exact ground

state [72, 73, 74, 75, 76, 77]. This theorem relates the ground state of the

non-interacting system | Φ0〉 with an eigenstate of the interacting one

| Ψ′0〉 =
Û (0,±∞) | Φ0〉

〈Φ0 | Û (0,±∞) | Φ0〉
〈Φ0 | Ψ

′
0〉 = 1 . (2.33)

This relation is obtained assuming an adiabatic evolution of the | Φ0〉 state

under an adiabatic switching on (Ĥ (t) = Ĥ0 + e−ε|t|Ŵ ) of the perturbation

term Ŵ in the total Hamiltonian Ĥ. If we look at time as a parameter

and we assume that the local eigenvalues of the Hamiltonian do not show

44



crossing, we can say that the result of the adiabatic evolution of the non-

interacting ground state will be the interacting one; therefore the following

expression
|Ψ′0〉
〈Ψ′0|Ψ

′
0〉

can be substituted for the exact interacting ground state |
Ψ0〉 in the formula for the time-ordered polarisation propagator (Eq. (2.19)).

Doing so leads to an expression where Π
(
x, x

′
)

is written in terms of

expectation values of time-ordered products of creation and annihilation

operators on the non-interacting ground state | Φ0〉; these are exactly the

type of matrix elements for which Wick’s theorem [72] holds, allowing the

expansion of the polarisation propagator Π to be evaluated by means of the

Feynman diagrammatic techniques.

Moreover, by expanding both the numerator and the denominator of

Eq. (2.33) with the use of the Dyson’s formula (Eq. (2.32)), it is possible

to see that the only contributions to the polarisation propagator are those

coming from the terms that can be represented by connected Feynman dia-

grams (linked cluster theorem) [72, 76, 77]. Consequently, the perturbation

expansion of the time-ordered polarisation propagator can be expressed in

diagrammatic ways as:

Πpq,rs

(
t− t′

)
= −ı

∞∑
n=0

(−ı)n

n!

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 · · ·

∫ +∞

−∞
dtn

〈Φ0 | T
[
ŴI (t1) ŴI (t2) · · · ŴI (tn) â†q (t) âp (t) â†r

(
t
′)
âs
(
t
′)] | Φ0〉connected .

(2.34)

In the next Section the algebraic diagrammatic construction (ADC(n))

schemes for the polarisation propagator will be presented. Since the ADC

approximations for the time-ordered polarisation propagator are based on

its diagrammatic perturbation expansion, they assume the validity of the

Gell-Mann and Low theorem. This is only valid if there is no crossing,

and therefore if there is no changing in the symmetry of the ground state

when the perturbation is adiabatically switched on. Moreover, they also

assume both the non-interacting and the interacting ground states to be

non-degenerate (closed shell systems). In fact, in general for open shell sys-

tems the adiabatic limit does not hold for a single Slater determinant state
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but the initial state that adiabatically converges to the exact interacting

ground state consists of a linear combination of different Slater determinants

instead. Therefore, the ADC theory presented in the following Section is

intended to be strictly valid only for closed-shell systems.

2.3. ADC(n) approximation schemes for the

polarisation propagator

The ab-initio many-body Green’s function ADC(n) methods have been first

introduced for calculation of excitation and ionisation energies of closed

shell species [56, 80] and since then generalised for the description of double

[81] and triple [82] ionisation energies. In this thesis the relevant ADC(n)

schemes are the ones for the calculation of closed-shell systems excitations;

these schemes have been originally derived as approximations to the polari-

sation propagator, based on an algebraic reformulation of its diagrammatic

perturbation theory [56].

In this Section I am going to describe how this derivation was performed;

I will consider the transition function TD (ω) for the one-particle dipole

operator D̂, which is given by:

T (ω) = D†Π+ (ω) D . (2.35)

The same final results will apply to the transition function associated to any

one-particle operator Ô or pairs of operators, being valid for Π+ (ω) itself.

It is important to note the following detail: consistent with the fact that

in the perturbation expansion of the polarisation propagator, obtained by

means of the Dyson and Gell-Man and Low formulas, the unperturbed

zeroth-order non-interacting ground state is chosen to be the single Slater-

determinant ground state of some mean-field zeroth-order theory, the orbital

basis set chosen to represent the field operator Ψ̂ (x), which also are associ-

ated with the creation (â†r) and annihilation (âs) operators, must be taken

to be the eigenbasis of the same mean-field Hamiltonian. Therefore the

one-particle indices appearing in the formal expression of Eq. (2.26) and in

the diagrams expressions can be divided into two groups representing occu-

pied mean-filed orbitals and virtual mean-field orbitals. Within the ADC

framework the mean-field Hamiltonian chosen as zeroth-order Hamiltonian
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is the Hartree-Fock Hamiltonian.

The ADC construction starts with the formulation of a specific guess for

the algebraic form of the polarisation propagator and/or the corresponding

transition functions. In particular, the way the transition function is written

in the ADC formulation is the following:

T (ω) = F† [ω1−K−C]−1 F . (2.36)

In Eq. (2.36) the square matrices K and C are assumed to be ω-independent

Hermitian matrices and in principle their dimensionality is given by the di-

mension of the entire excited state space, which I will denote by X; they are

therefore defined within the configuration space consisting of all the possible

p-h, 2p-2h, 3p-3h etc. excitations with respect to the HF mean-field ground

state. The same applies to the vector F.

The quantities C and F are respectively called the modified/effective

interaction matrix and transition moments. The matrix K denotes the

diagonal matrix of zeroth-order excitation energies

Kai,bj = δabδij (εa − εi) n̄ani = 1 (2.37)

Kabij,cdkl = δacδbdδikδjl (εa + εb − εi − εj) n̄an̄bninj = 1 (2.38)

etc., where nk denotes the occupation number of the one-electron spin-

orbital k in the HF meanfield ground state and n̄k = 1 − nk. From the

partition in Eq. (2.36) it can be noted that this contribution has been ex-

plicitely separated from the, so far unknown, matrix C.

Moreover, it is useful to note that the vector F can also be expressed as

F = f ·D =
∑
rs

drsfrs , (2.39)

where frs is a rectangular matrix of dimension (X)×
(
N2
)

called the effective

transition amplitudes matrix and N is the dimension of the one-particle

Hilbert space.

Inserting the expression of Eq. (2.39) into the general ADC formula for

the polarisation propagator (see Eq. (2.36)), it is possible to see that the
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latter can be written as

Π+
pqrs (ω) = f †pq [ω1−K−C]−1 frs . (2.40)

Therefore, obtaining the expression for the quantity f , it is possible to work

out the vector F relative to every one-particle operator Ô, including the one

corresponding to the dipole moment operator D̂.

From now on I will consider only the Π+ (ω) part of the polarisation

propagator because, as previously mentioned in Sec. 2.2, Π+ (ω) and Π− (ω)

contain the same physical information.

Having written the propagator in the ADC formal algebraic form, the

key assumption to be made as the basis of the ADC approach is that the

quantities C and F possess a well defined perturbation expansion:

F (n) =
n∑
l=0

F[l] (2.41)

C (n) =
n∑
l=1

C[l] . (2.42)

The perturbation is again defined, see Eq. (2.31), as the difference between

the full interacting Hamiltonian Ĥ and the independent-particles mean-field

Hamiltonian ĤM.F.:

Ŵ = Ĥ − ĤM.F. . (2.43)

The ADC(n) propagator is built using the quantities C (n) and F (n) and

takes the following form

Tn (ω) = F† (n) [ω1−K−C (n)]−1 F (n) . (2.44)

The physical informations are extracted from the exact or approximate ADC

quantities C and F as follows: the vertical excitation energies are given by

the eigenvalues of the Hermitian M = K + C matrix, because these are

the poles of the propagator. The corresponding eigenvalue problem can be

written in compact matrix notation as

MV = ωV (2.45)

where ω and V denote respectively the diagonal matrix of eigenvalues and
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the matrix of the corresponding column eigenvectors. The transition mo-

ments are given by

〈Ψm | D̂ | Ψ0〉 = V†m · F =
∑
rs

drsV
†
m · frs . (2.46)

In order to obtain explicit expressions for the ADC(n) effective quantities

C and F it is useful to substitute their formal perturbative expansions in

the ADC form of the polarisation propagator and to explicitly expand the

resulting total expression in powers on the perturbation. By doing so, a

formal perturbation expansion for the polarisation propagator in powers

of n is obtained; this formal algebraic expansion is not complete, because

it misses the terms of order greater than n arising from F[l] l ≥ n + 1

and/or C[l] l ≥ n+ 1, but it nevertheless includes all the terms up to order

n. Indeed, all the terms that can give rise to nth-order contributions in

the propagator algebraic perturbation expansion are contained in F (n) and

C (n).

The algebraic expansion is therefore complete up to order n and can in

turn be compared to the alternative, but in principle equivalent, diagram-

matic perturbation expansion up to the same order n. In other words,

the basic assumption is that the perturbation expansion of T through the

quantities F and C must be the same as the one already known from dia-

grammatic perturbation theory. This procedure, performing this compari-

son through a sequence of definite orders n of perturbation theory, allows

to successfully determine subsequent higher order contributions to the M

and F ADC quantities and thus generate, in a systematic way, a hierar-

chy of consistent nth-order approximations schemes referred to as ADC(n)

schemes.

The required equivalence of the perturbation expansions, diagrammatic

and algebraic, at every order can be formally written as

Tn (ω) =
n∑
l=0

T [l]
n (ω) +O (n+ 1) (2.47)

T [n] (ω) = D†Π+[n] (ω)D (2.48)

where the quantity T [n] (ω) = D†Π+[n] (ω)D is obtained form the re-

spective Feynman diagrams. For example, for second order ADC scheme,
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namely ADC(2), the defining equations are the following:

T
[0]
2 (ω) = T [0] (ω) (2.49)

T
[1]
2 (ω) = T [1] (ω) (2.50)

T
[2]
2 (ω) = T [2] (ω) (2.51)

where

T
[0]
2 (ω) = F †[0] [ω1−K]−1 F [0] (2.52)

T
[1]
2 (ω) = F †[1] [ω1−K]−1 F [0] + F †[0] (0) [ω1−K]−1 F [1]+

+F †[0] [ω1−K]−1C [1] [ω1−K]−1 F [0]

(2.53)

and

T
[2]
2 (ω) = F †[2] [ω1−K]−1 F [0]+F †[0] [ω1−K]−1 F [2]+F †[1] [ω1−K]−1 F [1]+

+F †[1][ω1−K]−1C [1][ω1−K]−1F [0] +F †[0][ω1−K]−1C [1][ω1−K]−1F [1]+

+F †[0] [ω1−K]−1C [2] [ω1−K]−1 F [0]+

+F †[0][ω1−K]−1C [1][ω1−K]−1C [1][ω1−K]−1F [0]

. (2.54)

From a technical point of view it is important to note that Feynman di-
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agrams describe the whole polarisation propagator. This means that after

having performed all the associated time integrations and Fourier trans-

forms, in order to obtain the diagrammatic perturbation expansion con-

tributing only to the Π+ part, the contribution of each Feyman diagram of

order n must be expressed as the sum of the contributions of the correspond-

ing (n+ 2)! time-ordered Goldstone diagrams [72]. Goldstone diagrams are

obtained starting from a definite Feynman diagram, which is drawn by con-

vention with a specified ordering of the point vertices, by drawing all the

possible different orderings of the n+ 2 time vertices t, t1, t2, . . . , tn, t
′
. The

Goldstone diagrams can therefore be divided into two classes according to

the ordering of the external times, t > t
′

and t < t
′

respectively. The first

class t > t
′

of Goldstone diagrams contributes only to the Π+ (ω) part of the

polarisation propagator while the second class (t < t
′
) to the Π− (ω) part;

mixed terms are not present and hence it is possible to calculate the two

parts independently, as expected from the fact that they contain identical

physical information.

In Fig. 2.1 the Feynman diagrams for the polarisation propagator in

Abrikosov notation [72] are reported up to second order. The Abrikosov

notation differs from the usual Goldstone-Feynman notation in the fact

that the interaction wiggle lines are replaced by interaction points to which

the antisymmetrised interaction matrix element Vij[kl] = Vijkl − Vijlk is as-

sociated and therefore, in this notation, the total number of diagrams is

considerably reduced. At second order the number of Goldstone diagrams

contributing to Π+ (ω) per each Feynman diagram is 12; at first order the

number is 3. In total there is one Goldstone diagram at zeroth order, three

Goldstone diagrams contributing at first order, and sixty at second order.

The determination of an explicit expression for the ADC quantities gives

rise to an explicit expression for the ADC(n) polarisation propagator itself

which is complete up to order n in perturbation theory with respect to

the electron-electron interaction (it includes all the Feynman diagrams up

to order n) and also includes higher-order diagrams in the form of infinite

partial (incomplete) summations.

As an example, this procedure for the zeroth and the first non-trivial order

(ADC(1)) is presented in the following. The diagrams for T (ω) are obtained

from the Goldstone diagrams for Π+ (ω) by associating the transition matrix

elements d∗pq and drs with the upper and lower external vertex respectively
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Figure 2.1.: Feynman diagrams up to second order for the polarisation prop-
agator in Abrikosov notation [72].
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Figure 2.2.: Zeroth order Goldstone diagram for the Π+ (ω) part of the
polarisation propagator.

and summing over all the p,q,r,s indices.

At zeroth order there is only one Goldstone diagram, represented in

Fig. 2.2. The expression corresponding to this diagram is

X (1) =
∑
ai

(d∗ai)
n̄ani

(ω + εi − εa)
(dai) . (2.55)

Thus we immediately have the identification

Kai,bj = δabδij (εa − εi) (2.56)

F
[0]
ai = dai . (2.57)

In Fig. 2.3 the three first order Goldstone diagrams corresponding to

the first order Feynman diagram contributing to the Π+ (ω) part of the

polarisation propagator, and therefore to T (ω), are represented. In every

diagram the dotted lines indicate the external vertices. Naming them X(1),

X(2) and X(3) respectively, the explicit expressions for these diagrams read

as follows:

X (1) =
∑
a,i

∑
b,j

(d∗ai)
n̄ani

(ω + εi − εa)

(
−Vaj[bi]

) n̄bnj
(ω + εj − εb)

(dbj) (2.58)

53



Figure 2.3.: First order Goldstone diagrams for the Π+ (ω) part of the po-
larisation propagator.

X (2) =
∑
a,i

∑
c,k

[
d∗kcV

∗
ac[ki]n̄cnk

(εa + εc − εk − εi)

]
n̄ani

(ω + εi − εa)
(dai) (2.59)

X (3) =
∑
a,i

∑
c,k

(d∗ai)
n̄ani

(ω + εi − εa)

[
dkcVac[ki]n̄cnk

(εa + εc − εk − εi)

]
(2.60)

These terms fit directly into the algebraic expansion terms giving rise to

the following identification:

C
[1]
ai,bj ≡ Cai,bj (1) = −Vaj[bi] = −〈aj || bi〉 (2.61)

F
[1]
ai =

∑
c,k

dkcVac[ki]
(εa + εc − εk − εi)

, (2.62)

where the convention that occupied (hole) and non-occupied (virtual) or-

bitals in the mean-field reference state are denoted respectively by the letters
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i, j, k, l,m, n, . . . and a, b, c, d, e, f, . . . has been adopted. All the quantities

are expressed in terms of spin-orbitals.

Of course it is possbile to transform these expressions rearranging the

products of two ω denominators into a sum of single ω denominators, con-

sequently obtaining a different identification of the various algebraic terms.

However, even though there is no uniqueness, it is not possible to transfer

contributions from F to C, whatever identification is used. In this sense the

modified interaction matrix C is maximal and thereby uniquely determined.

As is clear from the expressions of Eq. (2.61) and Eq. (2.62), at the

ADC(1) level of theory the explicit excited states manifold is the one con-

sisting of all the p-h excitations on top of the mean-field ground state,

and therefore only the p-h part of both C (1) and F[1] is obtained when

performing the comparison procedure at first order. The first order terms

corresponding to higher excitation configurations (2h-2p, 3h-3p, etc.) do

not contribute to the polarisation propagator at first order, but only at

higher orders.

Of particular interest is the second order ADC(2) level of theory, where

the dimension of the secular matrix coincides with the excitation manifold

spanned by all the p-h and 2p-2h excitations with respect to the mean-field

reference state. The number of Goldstone diagrams for the second order

part Π+ (ω) is 60.

Within ADC(2), the perturbation expansion order of the secular matrix

elements extend through second, first and zeroth order respectively in the

one-hole-one-particle (1h1p) block, the 1h1p-two-hole-two-particle (2h2p)

coupling block and the diagonal 2h2p block. In a similar way the p-h and

2p-2h parts of the effective transition amplitudes have perturbation expan-

sions respectively through first and second order. An extension of the ADC

scheme, not strictly consistent with the polarisation propagator and referred

to as ADC(2) extended, is obtained by using the first-order expansion for

the 2p-2h block; in the strict ADC(2) level of approximation the 2h-2p block

of the secular matrix M [2] is diagonal and no couplings between 2h-2p ex-

citations are included. In the extended version called ADC(2)x this block

is augmented with the first order couplings stemming from the higher-order

ADC(3) scheme [83]. This is an ad-hoc extension and certainly introduces

some imbalances in the description of the excited states and the ground state

generally leading to an underestimation of excitation energies; however, as
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a main result, this improves the treatment of doubly excited states and in

general of states with a strong admixture of double excitations (strongly

double-excitation character states).

At the third order level ADC(3) the expansion manifold is the same as

at the ADC(2) level (the dimension of the secular matrix M and of the

effective transition amplitudes vector F does not change), while the pertur-

bation expansions of the matrix elements extend through the next order of

perturbation theory (3,2,1 respectively for the blocks of M and 3,2 for those

of F).

The ADC(2) matrix can be therefore concisely written as

M (2)ADC[2] ≡MADC[2] =

(
M11 (2) M12 (1)

M21 (1) M22 (0)

)
(2.63)

and the effective amplitudes F as

F (2)ADC[2] ≡ FADC[2] =

(
F1 (2)

F2 (1)

)
, (2.64)

where the numbers in square brackets indicate the maximum order of per-

turbation theory up to which the various matrix elements extend.

The explicit analytic expressions for the matrix elements of the 1h-1p

block of M, found by a procedure analogous to the one performed before

for the ADC(1) level, are given by

M
ADC[2]
ia,jb = M

[0]
ia,jb +M

[1]
ia,jb +M

[2]
ia,jb , (2.65)

where again the numbers in square brackets indicate the perturbation order

of the matrix elements. The second, first and zeroth order contribution are

respectively:

M
[0]
ia,jb = δijδab (εa − εi) = Kia,jb (2.66)

M
[1]
ia,jb = −〈aj || bi〉 (2.67)

M
[2]
ia,jb = M (2)

[2]A
ia,jb +M (2)

[2]B
ia,jb +M (2)

[2]C
ia,jb (2.68)
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M
[2]A
ia,jb = −1

4
δij
∑
c,kl

[
tackl 〈kl || bc〉+

(
tbckl

)∗
〈ac || kl〉

]
(2.69)

M
[2]B
ia,jb = −1

4
δab
∑
cd,k

[
tcdik〈jk || cd〉+

(
tcdjk

)∗
〈cd || ik〉

]
(2.70)

M
[2]C
ia,jb = +

1

2

∑
c,k

[
tacik 〈jk || bc〉+

(
tbcjk

)∗
〈ac || ik〉

]
(2.71)

The first order coupling 1h1p-2h2p block is given by

M
[1]
ia,menf = +δae〈mn || if〉 − δaf 〈mn || ie〉+ δim〈an || ef〉 − δin〈am || ef〉

(2.72)

where m < n , e < f is assumed and finally the zeroth order diagonal 2h-2p

block is given by

M
[0]
kcld,menf = δceδdfδkmδln (εc − εk + εd − εl) = Kkcld,menf (2.73)

where m < n , e < f and k < l , c < d is assumed.

In these expressions the quantity tacik stands for

tacik =
〈ac || ik〉

εi + εk − εa − εc
(2.74)

and 〈ac || ik〉 = 〈ac | ik〉 − 〈ac | ki〉 represents the antisymmetrised

matrix element of the electron-electron Coulomb interaction, in terms of

spin-orbitals χ (σ, r)

〈ac | ik〉 =

=

∫
dσ1dσ2

∫
d3r1d

3r2χ
∗
a (σ1, r1)χ∗c (σ2, r2)

1

| r1 − r2 |
χi (σ1, r1)χk (σ2, r2) .

(2.75)
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The expression for the effective transition matrix element are given by

F
ADC[2]
ai = dai +

∑
c,k

tacikdkc + F (2)
[2]A
ai + F (2)

[2]B
ai + F (2)

[2]C
ai +

10∑
I=1

F (2)
[2]I
ai

(2.76)

for the 1h1p block, where the second order part consists of 13 different

contributions and by

F
ADC[2]
abij =

∑
k

[
tabkjdki − tabkidkj

]
−
∑
c

[
tcbijdac − tcaij dbc

]
(2.77)

for the first order contribution to the 2h-2p block where a < b , i < j is

assumed.

From a computational point of view in an ADC(2) calculation the scaling

with respect to the number N of orbitals is N6 for the generation of the p-h

block and N5 for any iteration step in the diagonalising procedure.

Finally it should be noted that the algebraic form of Eq. (2.36) for the

polarisation propagator in the frequency domain results automatically, if

instead of inserting in Eq. (2.26) the resolution of identity in terms of the

ground state and the exact excited states of the system, one inserts the

resolution of the identity in terms of | Ψ0〉 and of some generic basis set

{| ΨI〉} in the excited states space called intermediate states, i.e.

1 =| Ψ0〉〈Ψ0 | +
∑
I

| ΨI〉〈ΨI | . (2.78)

Of course the explicit form of the secular matrix M and of F depends on

the particular set {| ΨI〉} chosen and the ADC form requires a specific set

of intermediate states.

2.4. Intermediate State Representation (ISR)

approach to ADC

Although the ADC(n) schemes for excited states of closed-shell systems

were originally derived as approximations to the polarisation propagator,

based on an algebraic reformulation of its diagrammatic perturbation theory

[56], they were later recognised [84] as being interpretable as wave-function

methods as well. In fact, ADC establishes a connection between propaga-
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tor and wave-function methods. The latter interpretation comes from the

explicit identification and construction of the intermediate states represen-

tation (ISR) that gives rise to the ADC form of the propagator, providing

an alternative and direct approach to the hierarchy of the ADC schemes

[84, 85].

The starting point of the ISR-ADC approach is the construction of the

so called correlated excited states (CES), defined as

| Ψ0
I〉 = Ĉ†I | Ψ0〉 , (2.79)

where the operators Ĉ†I denote the physical excitation operators correspond-

ing respectively to 1p1h, 2p2h etc. excitations,

Ĉ†I =
{
â†aâi ; â†aâ

†
bâj âk (a < b, j < k) ; â†aâ

†
bâ
†
câj âkâl (a < b < c, j < k < l) ; . . .

}
,

(2.80)

and | Ψ0〉 is the exact correlated ground state of the system.

Here, as before, the formulas are written adopting the familiar nota-

tion in which the subscripts a, b, c, ... refer to unoccupied virtual orbitals

(with respect to the mean-field single Slater determinant ground state),

and i, j, k, .... to the occupied orbitals. Physical excitation operators are

intended to be those operators which remove electrons from the occupied

orbitals of the zeroth order state and create electrons in the virtual orbitals

only. These intermediate states are divided in classes according to the num-

ber of excitations they involve; thus â†aâi | Ψ0〉 represent the first excitation

class, â†aâ
†
bâ
†
câj âkâl | Ψ0〉 the second and so on. In general the states will

be denoted as | Ψm
y 〉 where the index m represents the class to which they

pertain, while the index y identifies the specific state in that class.

This non-orthogonal CES basis set is complete in the space of the ex-

cited states of the N-electron system [86]. Including the ground state as

a zeroth order class one obtains a basis set for the entire Hilbert space of

the system. The advantage of using this basis set instead of the traditional

configuration (CI) states (physical excitations with respect to the zeroth

order ground state) is that ground state correlation is already built into

every basis vector, making it an ideal set to describe fluctuations of small

particles number away from the ground state. The price that one pays is the

lack of orthogonality of the N-electron basis states. However since the basis
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set is not linearly dependent, it may be straigthforwardly orthonormalised.

The orthonormalisation procedure affects the final basis and therefore any

related matrix representation of operators, but the spectra and the eigen-

states will remain invariant. The orthonormalisation procedure that gives

the intermediate basis representation reproducing the ADC quantities is

called Excitation Class Orthonormalisation (ECO).

ECO is a two-step procedure which consists firstly in Gram-Schmidt or-

thogonalisation of the excitation class under consideration with respect to

all the lower excitation classes and secondly in symmetric orthonormalisa-

tion within the excitation class itself. The states | Ψm#
y 〉 formed in this

first step are referred to as precursor states. Subsequently a symmetric or-

thonormalisation of the resulting precursor states is performed within the

given excitation class under consideration. The algorithm is sequential in

the sense that this procedure is applied consecutively to all the excitation

classes starting from the first.

As an example the procedure for the first (1h1p) excitation class gives

the following precursor states:

| Ψ1#
ai 〉 = â†aâi | Ψ0〉− | Ψ0〉〈Ψ0 | â†aâi | Ψ0〉 . (2.81)

The second step gives

| Ψ̃1
ai〉 =

∑
bj

| Ψ1#
bj 〉

(
S−

1
2

)
bj,ai

, (2.82)

where S is the overlap matrix of the first excitation class precursor states,

i.e.

Sbj,ai = 〈Ψ1#
bj | Ψ

1#
ai 〉 = 〈Ψ0 | â†j âbâ

†
aâi | Ψ0〉−〈Ψ0 | â†j âb | Ψ0〉〈Ψ0 | â†aâi | Ψ0〉

(2.83)

In a compact notation the excitation class orthogonalised (ECO) states can

be written as

| Ψ̃m
x 〉 = Q̂m−1

∑
y

| Ψm
y 〉
(
Smyx

)− 1
2 , (2.84)

where Smyx is defined as

Smyx = 〈Ψm
y | Q̂m−1 | Ψm

x 〉 (2.85)
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and

Q̂m = 1̂−
m∑
l=0

P̂ l (2.86)

is the projector operator onto the space orthogonal to the first m excitation

classes. Finally, every intermediate state can be expressed as

| Ψ̃I〉 = C̃†I | Ψ0〉 , (2.87)

where all the effects of the consecutive orthonormalisations are encoded in

the new creation operators C̃†I .

The orthonormalisation procedure is bijective in the sense that there is

a one-to-one correspondence between the initial states and the final or-

thonormal states. Hence, since both the projective and the symmetric oth-

onormalisation steps preserve the association of the final states with the

indices of the original overlapping correlated excited states, each of the or-

thonormal ECO-CES states is largely characterised, as the initial states, by

specific hole and particle indices and by a specific excitation class index.

The Gram-Schmidt procedure leads to formal expansions in terms of the

correlated ground state for the successive classes of intermediate states and

becomes rather lengthy for higher excitation classes.

Inserting these expansions in the respective sub-blocks of the ISR/ADC

matrices, one obtains closed form expressions depending on the exact ground

state wave-function and energy. The representation of the shifted electronic

Hamiltonian operator Ĥ − E0 in the ECO-CES space reads:

HIJ = 〈Ψ̃I | Ĥ − E0 | Ψ̃J〉 = 〈Ψ0 | C̃I
[
Ĥ, C̃†J

]
| Ψ0〉 . (2.88)

At this point Møller-Plesset (MP) Rayleigh-Schrödinger (RS) perturba-

tion theory is introduced to describe the ground state correlation, i.e. | Ψ0〉

| Ψ′0〉 =| ΦHF
0 〉+ | Ψ[1]′

0 〉+ | Ψ
[2]′

0 〉+ | Ψ
[3]′

0 〉+ . . . , (2.89)

in which the first order correction | Ψ
[1]′

0 〉 contains only double excitations

(2h2p) with respect to the Hartree-Fock (HF) ground state, | ΦHF
0 〉, while

| Ψ[2]′

0 〉 contains single, double, triple and quadruple excitations, and E0:

E0 = 〈ΦHF
0 | Ĥ | Ψ′0〉 = E

[0]
0 + 〈ΦHF

0 | Ŵ | Ψ′0〉
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E
[n]
0 = 〈ΦHF

0 | Ŵ | Ψ[n−1]′

0 〉. (2.90)

In these formulas the ground state is denoted with the prime superscript

as | Ψ
′
0〉 to remember that, in RS perturbation theory, intermediate nor-

malisation is assumed for the ground state in the sense that it satisfies the

following relation

1 = 〈ΦHF
0 | Ψ′0〉 . (2.91)

It is important to realise that in the expressions for the intermediate ADC

states the normalised ground state

| Ψ0〉 =
| Ψ′0〉[

〈Ψ′0 | Ψ
′
0〉
] 1

2

(2.92)

must be used in conjunction with its own perturbation expansion that is

simply recovered from the perturbation expansion for | Ψ
′
0〉 as reads up to

third order as

| Ψ0〉 =| ΦHF
0 〉+ | Ψ[1]′

0 〉+ | Ψ
[2]′

0 〉 −
1

2
| ΦHF

0 〉
(
〈Ψ′0 | Ψ

′
0〉
)[2]

+

+ | Ψ[3]′

0 〉−
1

2
| ΦHF

0 〉
(
〈Ψ′0 | Ψ

′
0〉
)[3]
−1

2
| Ψ[1]′

0 〉
(
〈Ψ′0 | Ψ

′
0〉
)[2]

+O [4] . (2.93)

For example, the expansion of the first excitation class states up to second

order reads

| Ψ̃1
ai〉 = â†aâi | ΦHF

0 〉+â†aâi | Ψ
[1]′

0 〉+â
†
aâi | Ψ

[2]′

0 〉− | Φ
HF
0 〉〈Ψ[2]′

0 | â†aâi | ΦHF
0 〉−

−1

2

∑
bj

â†bâj | Φ
HF
0 〉〈Ψ[1]′

0 | â†j âbâ
†
aâi | Ψ

[1]′

0 〉+O [3] (2.94)

while the second excitation class states up to first order are given by:

| Ψ̃2
aibj〉 = â†aâ

†
bâj âk | Φ

HF
0 〉 + â†aâ

†
bâj âk | Ψ

[1]′

0 〉−

− | ΦHF
0 〉〈Ψ[1]′

0 | â†aâ
†
bâj âk | Φ

HF
0 〉 + O [2] .
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(2.95)

We see from these expressions how for each intermediate state there exists

a correspondence between the excitation class to which it belongs and the

configuration (CI) states from which it receives the major contribution.

In this new perspective the ADC secular matrix M is defined as the

representation H of the shifted electronic Hamiltonian Ĥ −E0 in the space

of these intermediate correlated excited states

MADC
IJ = 〈Ψ̃I | Ĥ − E0 | Ψ̃J〉 . (2.96)

The vertical excitation energies are obtained by solving the eigenvalue

problem HV = ωV and the excited eigenstates of the system are therefore

given in the basis of the intermediate states:

| Ψn〉 =
∑
I

VI,n | Ψ̃I〉 . (2.97)

Thus, basically, explicit construction of the eigenstate wave-function be-

comes possible in the ISR approach. Having this explicit expression for the

excited states of the system the transition moments of the type 〈Ψm | D̂ |
Ψ0〉 are given by

〈Ψm | D̂ | Ψ0〉 = V†m · F =
∑
rs

drsV
†
m · frs , (2.98)

where drs are the matrix elements of the dipole operator on the one particle

orbitals choosen as basis set functions. The matrix of effective transition

amplitudes f and the associated vector F are defined correspondingly by:

fI,rs = 〈Ψ̃I | â†râs | Ψ0〉 , FI = 〈Ψ̃I | D̂ | Ψ0〉 . (2.99)

Once we have established the way these intermediate states are con-

structed and perturbatively expanded, we can recover the hierarchy of ADC(n)

approximations exactly at each order n by truncating the ECO intermediate

states manifold at some limiting excitation class and simultaneously truncat-

ing the resulting perturbation expansions for the included classes in a way

consistent with the polarisation propagator results. In general a method
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that is consistent with the ADC form of the polarisation propagator to a

certain order n needs only the 1h1p-1h1p block expanded to that order. It is

sufficient to use lower orders for the higher excitation blocks included. The

orders up to which each sub-block must be calculated is of course the same

as the orders appearing in the M matrix. The orthonormal complement of

the truncated manifold is by definition expanded at zeroth order, the cor-

responding states reducing to configurations states, and every diagonal or

coupling block involving them is evaluated with the mean-field zeroth-order

Hamiltonian with the result that this space becomes completely uncoupled,

in the Hamiltonian matrix, to the effective truncated space. By definition

the couplings between the ground state and all other intermediate states

are exactly zero at all orders, and consideration of both the ground state

and the spaces of uncoupled higher excitations are therefore removed from

the computation altogether.

In the ADC(1) scheme the Hamiltonian matrix reduces to the Configura-

tion Interaction Singles (CIS) one, while the transition moment with respect

to the ground state are improved and are expressed as

〈Ψ̃a
i | D̂ | Ψ0〉 = dai +

∑
v

∑
o

〈va || oi〉
εo + εi − εv − εa

dov (2.100)

where 〈va || oi〉 is the antisymmetrised two-particle Coulomb integral in

physicists’ notation and the two indices v and o run over the virtual and the

occupied canonical (Hartree-Fock) orbitals respectively. Therefore ADC(1)

can be already considered as an improved version of CIS.

At the ADC(2) level the matrix in the whole space of the system can be

represented as

HADC[2] = H[0] +H1,1[1] +H1,1[2] +H1,2[1] +H2,1[1]. (2.101)

where Hi,j[n] represents the n-th order term in the expansion of the ihip-

jhjp block of the ADC Hamiltonian matrix. The ADC(2) secular matrix

can also be expressed in the following closed form expression [87]

MADC[2] =

 〈Ψ0 | τ̂µ1

[
Ĥ + 1

2

(
Ŵ T̂

[1]†
2 + T̂

[1]
2 Ŵ

)]
τ̂ †ν1 | Ψ0〉 〈Ψ0 | τ̂µ1Ŵ τ̂ †ν2 | Ψ0〉

〈Ψ0 | τ̂µ2Ŵ τ̂ †ν1 | Ψ0〉 〈Ψ0 | τ̂µ2F̂ τ̂
†
ν2 | Ψ0〉


(2.102)
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where the operator T̂
[1]†
2 defines the first order correction to the HF ground

state in the sense that | Ψ
[1]′

0 〉 = T̂
[1]†
2 | ΦHF

0 〉 (the subscript 2 indicates

that the correction consists of double excitations) and the operators τ̂µ1

and τ̂µ2 respectively represent the single and double excitations operators

in a compact way. The ADC(2) secular matrix has also been recognised

[88] to be the symmetrised version of the secular matrix resulting within

the configuration interaction singles with perturbative doubles correction

CIS(D∞) method, i.e.

MADC[2] =
1

2
MCIS(D∞) +

1

2

(
MCIS(D∞)

)†
. (2.103)

One of the peculiar features of ADC is that the ADC matrices have the

property that ground state correlation is built into each matrix element via

perturbation theory, and the extent to which this is done is described by

the ADC order n. In the ADC ground state correlation is estimated in a

size consistent manner, via perturbation theory. Excitations on top of the

ground state feel a dressed interaction, due to the local ground state corre-

lation, but the ground and excited states have the exact same correlation

character away from this region. Furthermore, much of the intrinsic error

of ground state RS perturbation theory is cancelled out since only the en-

ergy differences between the ground and the excited states of the system

are directly computed. While correlation is treated in a balanced way be-

tween ground and excited states, excitations of different classes are handled

differently. The scheme discussed above, i.e. ADC(2), is most accurate

for excitations of mainly p-h character (the qualitative definition of such

a state can be made independent of methodology by the use of reduced

density matrices [89]) ). These should be the most experimentally relevant

excitations of a system, although excitations of 2h-2p character are an im-

portant manifestation of electron correlation, and this effective truncation

is closely related to the efficiency of the scheme.

One of the main advantages of ADC(n) methods is that the basic compu-

tational procedure consists in the diagonalisation of a Hermitian secular ma-

trix using RS perturbation theory to evaluate the secular matrix elements.

While at second order there are the same number of degrees of freedom as

in either the Configuration Interaction with Single and Double excitations

(CISD) [49] and the Equation Of Motion Coupled Cluster with Single and
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Double excitations (EOM-CC-SD) methods [54], the equation to be solved

for excited states energies is a Hermitian eigenvalue problem and, at the

same time, the method is size-consistent, therefore obtaining two of the pri-

mary advantages of the CISD and EOM-CCSD methods respectively. The

ADC equations are indeed separable in the sense that local and nonlocal ex-

citations are strictly decoupled, and the ADC results for both energies and

for transition moments are size-consistent (size-intensivity property) [90].

Moreover the ADC(n) schemes are compact relative to the corresponding

truncated CI expansions [90], i.e. the dimension of explicit configurations

space required in the ADC(n) secular problem, in order for the energies

of the resulting principal (1h-1p character) eigenstates to satisfy a certain

level of perturbation theoretical accuracy, is systematically smaller than the

dimension needed in CI expansions of comparable accuracy. As an exam-

ple the ADC truncation error resulting from restricting the configuration

space to singles and doubles excitation classes (in ADC(3)) is of order 4

(for the excitation energies of single excitations) as compared to a second

order error for the same truncation in the CI case. In this respect the ADC

schemes are also superior to the Coupled Cluster (CC) methods where the

corresponding truncation error is of order 3.

While the results are obviously the same as in the polarisation propagator

approach, in the original ADC procedure explicit expressions for the matrix

elements of M and f are obtained without the need to specify the interme-

diate state representation. Even though the ISR approach to the derivation

of explicit ADC expressions becomes quite cumbersome beyond second or-

der and here the original diagrammatic derivation is more advantageous,

within the ISR formalism it is possible to define the ADC representations

of other operators other than the Hamiltonian, because we have the explicit

expression for the basis set giving rise to ADC representation.

Moreover, using the expansion in terms of ECO intermediate states, the

ADC approximation forms can also be derived for quantities which have no

direct diagrammatic perturbation expansion, such as high order (quadratic,

cubic, etc.) response functions.

The reformulation of the ADC methods as wave-function methods us-

ing the intermediate state representation (ISR) has led to applications of

the ADC-ISR technique to the calculation of properties of and transition

moments between excited [85], singly ionised [91] and doubly ionised [92]
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bound states.

In the excited states context, the ADC-ISR representation of any one-

particle operator was recently derived at the second order level [85]. This has

opened the possibility of calculating the transition dipole moments between

any pair of electronic excited states of the system (i.e. the dipole matrix in

the system’s excited states Hilbert space) at the ADC(2) level:

〈Ψm | D̂ | Ψn〉 = V†m ·D ·Vn =
∑
ij

V ∗m,iDIJVn,j (2.104)

where DIJ are the matrix elements of the dipole operator on the ISR many-

electron basis set functions [85]:

DIJ = 〈Ψ̃I | D̂ | Ψ̃J〉 = 〈Ψ0 | C̃ID̂C̃†J | Ψ0〉 . (2.105)

The perturbative theoretical consistency of the results depends on the ex-

citation class of the states considered. At the ADC(2) level the properties

and the transition moments between excited states with mainly single ex-

citations contribution are treated consistently through second order. The

representation of the dipole operator at the ADC(2) level has the following

structure

DADC[2] = D[0] +D1,1[2] +D1,2[1] +D2,1[1]. (2.106)

The matrix elements of the hp-hp block of this matrix in spin-orbital form

can be expressed by:

Dai,bj = D
[0]
ai,bj +D

[2]
ai,bj = δijdab − δabdji +

7∑
k=1

D
[2],k
ai,bj . (2.107)

There is indeed no first-order contribution to this block. Considering this

part of the matrix: the first second-order part, D
[2],1
ai,bj , contains the second

order contributions to the one-particle density matrix elements ρ
[2]
ia

D
[2],1
ai,bj = −δij

∑
l

ρ
[2]
lb dal − δab

∑
c

ρ
[2]
jc dci + h.c. (2.108)

Therefore a strictly consistent treatment ofD1,1[2] at the ADC(2) level would

require one to evaluate the ground state one-particle density matrix at least

through second-order in perturbation theory (through its strict second order
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expression)

ρ
[2]
ia = 〈Ψ0 | â†aâi | Ψ0〉[2] = 〈Ψ[2]

0 | â
†
aâi | ΦHF

0 〉. (2.109)

Finally another remarkable advantage of the ISR approach to ADC is

that, having access to both energetic information in the ADC effective

Hamiltonian and a state space resolution for the wave-function via the ISR,

now makes it possible, in the ADC formalism, to numerically time-propagate

a state [i.e. to solve the time-dependent Schrödinger equation (TDSE)] and

to consequently analyse the state of the system as a function of time, having

direct access to it via its expansion coefficients in the ECO-ISR basis [93].

2.5. The Stieltjes moment theory technique for

the bound-continuum matrix elements

The calculation of photoionisation cross-sections requires the knowledge of

many-electron wave-functions belonging to the continuum part of the spec-

trum. The basic computational problem one faces here is taking into ac-

count both the scattering character of the photoionised state wave-function

and the electron correlation. In the previous sections the ADC(n) meth-

ods used to calculate excited states and excitation energies of electronic

atomic and/or molecular systems have been highlighted. However, many-

electrons states calculated using Gaussians as single particle basis functions

can not be used directly in Eq. (2.3) to compute an approximation to the

oscillator-strength density in the electronic continuum df(E)
dE . The reason is

that, due to the use of finite sets of square-integrable (typically Gaussian)

single-electron basis functions, the computed molecular eigenstates in the

continuum energy region are discrete and L2-normalised. These states will

therefore give an inaccurate result because of the incorrect way they take

into account the molecular continuum density of states.

Having the proper description of the continuum ionised states is important

and essential in order to compute differential cross-sections and recover the

angular distribution of the emitted electrons (for example to calculate the

asymmetry parameter β2, or to compute partial differential cross-sections,

in which the state of the produced ion is exactly identified). For this aim

it is important to know the asymptotic behaviour of the continuum wave-
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functions far from the nuclear framework and therefore to have a detailed

representation of the matrix elements between bound states and the de-

generate states in the continuum. This is not given by any standard L2

calculation based on Gaussian one-electron basis functions.

However, in order to compute the total integral cross-section, dependent

only on the energy of the photon absorbed by the system, for which the

less demanding oscillator strength density as a function of the excitation

energy in the electronic continuum is required, common quantum chemistry

single-particle basis functions, such as the Gaussian basis functions, can be

successfully used. In other words, in order to obtain this physical quantity

it is possible to use the same basis sets that have been widely applied to the

calculation of bound states in quantum chemistry.

In the L2 basis-set approach to the continuum a lot of use is made of the

Stieltjes-Chebyshev imaging (SI) technique [94] that is implemented to avoid

the construction of the electronic continuum scattering functions | Ψf
E〉. The

SI technique can be seen as a practical and mathematically well defined

procedure to obtain the correct continuum normalisation starting from a

general discretised spectrum formed by energies and oscillator strengths ob-

tained from an L2 calculation. It is, in fact, not directly concerned with the

computation of states in the continuum, its aim being to extract from an L2

basis-set calculation of transition probabilities the oscillator-strength den-

sity in the energy region properly belonging to the continuum excitations.

Thus it may be applied either to the results yielded by separate calculations

of initial and final states, or to those arising from a direct evaluation of the

transition matrix elements. Moreover it can be used at different levels of

accuracy in the description of the initial and final states.

With the purpose of making the most out of purely L2 basis-set results, L2

pseudostates are introduced to provide a representation of both the discrete

and continuum portions of the photoionisation spectra. The information to

create photoionisation spectra is contained in the pseudo-frequencies and

oscillator strengths, {εi, fi} i = 1, ......, N .

The εi values represent the difference between the energy of the i-th final

state and the energy of the initial state and the fi are given by the squared

transition dipole moments between the initial and the final states; both

set of quantities can be directly obtained from an L2 ADC(1) or ADC(2)

calculation.
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Basically a finite set of eigenstates with eigenvalues larger than the ioni-

sation energy will offer a discretised description of the electronic continuum.

These discretised states in the continuum do not have the correct continuum

degeneracy, but are used to calculate approximate excitation energies from

a bound initial state and the related oscillator strengths that altogether will

form the discretised variational spectrum of interest. Additionally, as these

final states are variationally determined, the distribution of the discretised

oscillator strengths on the energy axis is strongly dependent on the L2 basis

set employed.

The SI approach to photoionisation cross-sections is based on the hy-

pothesis that this variational discretised L2 spectrum above the ionisation

threshold, even if clearly inadequate to describe the exact structure of the

continuum, allows one to obtain good converging approximations for at least

the lowest spectral moments, S(n), of the oscillator-strength density, g (ω).

These type of spectral moments are defined as

S (n) = 〈Ψ0 | D̂†Ĥn+1D̂ | Ψ0〉 , (2.110)

where n is the order of the spectral moment.

It is possible to express the spectral moments (2.110) in terms of the exact

bound {Ψj} and continuum {ΨE} eigenstates of the Hamiltonian using the

resolution of identity:

S (n) =
∑
j

En+1
j | 〈Ψ0 | D̂ | Ψj〉 |2 + (2.111)

+

∫ ∞
Ethreshold

En+1 | 〈Ψ0 | D̂ | ΨE〉 |2 dE .

From this equation it is clear that these are spectral moments of the oscillator-

strength density function g (E) ∝ E | 〈Ψ0 | D̂ | ΨE〉 |2. The calculation

of g (E) and hence of σ (E) is directly connected to the knowledge of the

lowest spectral moments which, as already mentioned, are supposed to be

obtained with sufficient accuracy by L2 calculations.

Indeed, looking carefully at g (E) it is immediately recognisable that the

only part of the continuum wave-function actually needed in order to com-

pute the matrix element is the one that has a non-zero overlap with the

localised function D̂ | Ψ0〉. Assuming that this function is non-zero only
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within a finite interaction region, one can express the spectral moments us-

ing the resolution of identity in terms of the variationally calculated discrete

L2 eigenstates {Φα} spanning this region:

S (n) ≈
∑
α

En+1
α | 〈Ψ0 | D̂ | Φα〉 |2 . (2.112)

Thus it becomes clear that if there is an L2 variationally calculated set

of states which forms a complete basis set spanning the interaction region,

then the spectral moments can be calculated exactly.

The moment problem consists of recovering the continuous function df(E)
dE ≡

g (E) ∝ E | 〈Ψ0 | D̂ | ΨE〉 |2 from a finite number of its spectral moments

obtained within the L2 approximation (2.112). It is important to note that

within the non-relativistic theory the spectral moments diverge for n > 1

[95], and thus the SI approach must rely on the use of negative spectral

moments.

The starting point is to find some Stieltjes integral expressed in terms of

the measure df (ε). The formula in Eq. (2.7) for the complex polarisability

is perfect for this purpose. According to the Stieltjes approach, convergent

approximations to the polarisability that are valid in the entire complex

plane, including the real axis, are given in the form

α (z) =

∫ ∞
ε0

dF (n) (ε)

ε2 − z2
+Rn

(
z2
)

n = 1, 2, . . . . . . .

The functions F (n) (ε) are cumulative histogram-like oscillator-strength

multistep functions built with the so-called principal quadrature pseudospec-

tra
{
ε

(n)
i , f

(n)
i

}
i = 1, ......, n and are defined as

F (n) (ε) = 0 0 < ε < ε
(n)
1 ,

F (n) (ε) =
i∑
l=1

f
(n)
l ε

(n)
i < ε < ε

(n)
i+1 ,

F (n) (ε) =
n∑
l=1

f
(n)
l ε(n)

n < ε .

(2.113)
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The cumulative oscillator strength obtained in this way approximates the

exact oscillator strength density function, converging to it for large values of

n if the first 2n moments are accurately reproduced by the L2 calculation.

This is formally expressed by the Chebyshev relation [94, 96]

F (n) (ε− 0) < F (n+1) (ε− 0) ≤ f (ε) ≤ F (n+1) (ε+ 0) < F (n) (ε+ 0)

(2.114)

which shows that F (n) (ε) gives upper and lower bounds on F (ε) at the

points ε
(n)
i .

Although, as already mentioned, variational L2 calculations will, in gen-

eral, produce a variational spectrum that is strongly basis-set dependent

in the continuum portion of the spectrum, the corresponding quadrature

pseudospectrum is virtually independent of the basis, as long as the ap-

proximated spectral moments can be considered to converge to the correct

ones.

The quadrature pseudo-excitation energies and pseudo-oscillator strengths

correspond to the abscissae and weights of a generalised quadrature of order

n for the polarisability integral taking df(ε)
dε as a weight function.

The SI computational procedure [96] includes construction of the quadra-

ture pseudospectrum, which is defined by the following 2n equations:

S (−2k) =
n∑
i=1

f
(n)
i[

ε
(n)
i

]2k , k = 1, 2, . . . , 2n . (2.115)

Thus, the first 2n moments reconstructed from the L2 variational calcu-

lation give rise to an n-term smoothed (n � N) principal pseudospectra{
ε

(n)
i , f

(n)
i

}
i = 1, ......, n. These quadrature pseudospectra are then used

to determine the cumulative oscillator strength function, F (n) (ε).

The SI approximation to the oscillator strength density is found by dif-

ferentiating the Stieltjes-Chebyshev cumulative function, according to the

Stieltjes derivative definition (different from the Dirac convention for step-

wise functions).

For the polarisability on the real axis, differentiating this approximate

cumulative function according to the Stieltjes derivative definition, one finds

g(n) (ε) = 0 0 < ε < ε
(n)
1
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g(n) (ε) =
1

2

(
f

(n)
i+1 + f

(n)
i

)
(
ε

(n)
i+1 − ε

(n)
i

) ε
(n)
i < ε < ε

(n)
i+1

g(n) (ε) = 0 ε(n)
n < ε . (2.116)

Therefore we obtain the following formulas for the polarisability on the

real axis

= [α (ω)] =
π

2ω
g(n) (ω) + =

[
Rn
(
ω2
)]

< [α (ω)] = <
[
Rn
(
ω2
)]

+ P

∫ ∞
ε0

g(n) (ε)

ε2 − z2
dε .

The functions g(n) (ε) provide convergent approximations to the oscillator-

strength density in the continuum that will converge to the correct value

with increasing order n of the quadrature pseudospectrum. It should be

noted that differentiating according to the Stieltjes approach (differently

from the Dirac convention approach) is essential in order to obtain the

proper energy unit normalisation (and the correct density of states factor).

The Stieltjes derivative of these cumulative oscillator-strength distribu-

tions converges to the correct oscillator-strength density in the limit of large

n independently of the particular one-electron basis set used, if this is suf-

ficient to reproduce accurately the first 2n moments, and consequently the

photoabsorption cross-section profile in the electronic continuum spectrum

of the system (photoionisation cross-section) converges to the exact one

σ(n) (ω) =
2π2

c
g(n) (ω)→ σ (ω) . (2.117)

The reason for using the most advanced correlation methods available is to

have a better convergence of the calculated spectral moments to the correct

ones, at least for the lower moments. Hence the problem finally consists

of calculating the n-order quadrature pseudospectrum given the first 2n

spectral moments. In order to do this, the moment problem of Eq. (2.115)

can be linearised by a Padé aprroximant to give the polarisability integral

as
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α (z) =
n∑
i=1

S (−2k) z2(k−1) + Rn
(
z2
)

=
n∑
i=1

f
(n)
i[

ε
(n)
i

]2
− z2

+ Rn
(
z2
)

=

=
Pn−1

(
z2
)

Qn (z2)
+Rn

(
z2
)

(2.118)

Pn−1

(
z2
)

=
n−1∑
i=0

a
(n)
i z2i, Qn

(
z2
)

= 1 +
n∑
i=1

b
(n)
i z2i (2.119)

and the pseudospectrum is then obtained from the roots and residues of the

Padé approximant.

The coefficients a
(n)
i and b

(n)
i can be obtained by solving a set of linear

equations:

n∑
i=1

S (−2m+ 2i− 2) bni = −S(−2M − 2) for n ≤ m ≤ (2n− 1)

anm =
m∑
i=0

S (−2m+ 2i− 2) bni for 0 ≤ m ≤ (n− 1) . (2.120)

As long as the S (−2k) are moments of a non-decreasing distribution, a

nontrivial solution of Eq. (2.120) can always be found. However the numer-

ical implementation of the resulting formulas for the coefficients in terms of

the moments is not convenient if a very large number of moments are re-

quired, because the spectral moments are highly redundant and the required

accuracy with which they must be computed in order to avoid numerical

problems is high.

Thus, when the spectral moments are given by the variationally deter-

mined pseudospectra, it is preferable to employ algorithms which use more

stable quantities, instead of the spectral moments themselves, to compute

the Padé approximants. Most of the algorithms make direct use of the N

term variational pseudospectral quantities {εi, fi} i = 1, ......, N , without

using the spectral moments explicitely. The approach used in this thesis is

the one suggested by Langhoff [97], which is based on the continued frac-

tion approximation of a Stieltjes integral different from the polarisability,

74



namely

β (z) =

∫ ∞
ε0

εdf (ε)

ε− z
= S (0)+S (−1) z+S (−2) z2+....+S (−2n+ 1) z(2n−1) .

(2.121)

In this case both even and odd negative moments are involved in the Taylor

expansion and can be used to compute the quadrature pseudospectra.

The most serious limitation of this technique is its energy resolution ca-

pability. In fact any discretised representation of the electronic continuum

is in general characterised by a finite resolution that is proportional to the

number of states per unit energy interval. The density can be quite differ-

ent in different energy regions and is basis-set dependent. One can think

to increase it by increasing the dimension of the basis set in order to have

a better energy resolution. However, apart form the linear dependence

problems that one usually encounters with Gaussians, the additional prob-

lem in this respect is that, as previously outlined, the discretised spectrum

which is used to compute the approximate oscillator-strength density is

the optimised quadrature pseudospectrum. Consequently, even though this

pseudospectrum definitely offers a more uniform and basis-set independent

representation of the continuum, it cannot unfortunately improve the en-

ergy resolution because, in general, its dimension will be much smaller than

the dimension of the input variational spectrum. This is true in cases where

only a limited number of the computed low order moments satisfactorily

approximate the correct values and can consequently be employed in the SI

calculation. Therefore it is only possible to obtain a discrete set of Stieltjes

derivatives values (i.e. of oscillator-strength density values), that can be

generally fitted or interpolated to get the correct continuum dependence of

the oscillator-strength density on the energy. This will in general smooth

out any narrow resonance structure eventually present in the spectrum. The

only way to obtain better results is to make the pseudospectrum denser in

the energy region around the resonance structure. This can be achieved by

increasing the order of the pseudospectrum, i.e. the number of spectral mo-

ments employed. Nevertheless the resolution can be moderately improved,

it has proved to be almost impossible to extract a reasonable continuum

normalisation from an L2 discretised spectrum in the neighbourhood of a

narrow resonance position.

The SI technique is in principle generalisable to any discretised spectrum
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formed by energy values and intensities as long as these are positive quanti-

ties. It has been also effectively applied to the calculation of Auger intensi-

ties, shake-off intensities as well as two-photon ionisation cross-sections [94].

Additionally it has been used, in combination with L2 ADC calculations,

to estimate the linewidth Γε of a resonance structure in the photoionisation

spectrum

Γε = 2π | 〈Φd | Ĥ − Ed | Φε〉 |2

due for instance to the presence of a discrete state | Φd〉 belonging to a

closed channel, embedded and interacting with the continuum states | Φε〉
of other open channels both in the case of a neutral system (autoionisation

widths) and an ionic system (Auger-decay widths) [98, 99].

All the Stieltjes calculations reported in this thesis have been performed

in quadruple numerical precision.

2.6. Lanczos iterative diagonalisation method

The main computational bottleneck of SI in its original formulation [94] is

that the direct application of the SI procedure requires a full diagonalisation

of the many-electron [e.g. ADC(n)] Hamiltonian matrix, i.e. the calculation

of the full variational pseudospectrum of discretised final states obtainable

from the specific molecular ab-initio method adopted. The basis sets typ-

ically used consists of a part describing the near nuclei behaviour, such

as cc-pCV(D-T-Q)Z basis, augmented with Kaufmann-Baumeister-Jungen

(KBJ) Gaussian functions optimised for the representation of continuum

wave-functions [100]. In the case of ADC(1), full diagonalisation is achiev-

able because the dimension of the resulting Hamiltonian matrix scales as

N2, where N is the number of one-electron basis-functions used in the calcu-

lation. However, obtaining the full pseudospectrum is typically not feasible,

not even for a typical small organic molecule such as C2H4, for ab-initio

methods going beyond single electronic excitations, e.g. ADC(2). Indeed,

Hamiltonian matrix dimensions for polyatomic molecules represented using

high-quality single-electron basis sets in computational schemes going be-

yond single excitations easily exceed millions, making these Hamiltonians

not amenable to full diagonalisation. This effectively restricts the use of the

technique to either small systems (e.g. atoms, diatomics) or to low-accuracy
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ab-initio approximations for the photoionised states (e.g. single-excitation

schemes).

This drawback of the Stieltjes imaging technique was realised early on by

Nesbet [101] and a number of methods for overcoming this problem have

been proposed since then [101, 102, 103]. In Ref. [104], it was proposed that

this difficulty can be overcome by applying the moment theory SI procedure

to the relatively low-dimensional block-Lanczos pseudospectrum of the full

ADC(n) electronic Hamiltonian. The so called ADC-Lanczos-Stieltjes ap-

proach has been proved efficient not only for the ground state photoionisa-

tion cross-sections, but also for the autoionisation widths of excited states

[98]. Moreover, very recently, an analogous Lanczos-Stieltjes approach has

been developed for the coupled cluster pseudospectra by Cukras et al. [105].

Within the Lanczos method [106, 107, 108], the Hamiltonian is repre-

sented in the basis of the so-called Lanczos states, | Φj〉, which are obtained

by Gram-Schmidt orthogonalisation of the Krylov states

| ψj〉 = Ĥj | ψ0〉 j = 0, 1, 2, . . . , N − 1 . (2.122)

By the Gram-Schmidt procedure, after N steps, an orthonormal basis of

the N-dimensional Krylov subspace is obtained, and the representation of

the Hamiltonian projected on this subspace has the following tridiagonal

form:

HN =



α0 β1 0 0 0 0 0

β1
. . .

. . . 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0
. . .

. . . βN−1

0 0 0 0 0 βN−1 αN−1


. (2.123)

This tridiagonal matrix representation of the Hamiltonian in the Krylov

subspace can also be directly constructed through the following general

three-term recurrence relation:

HΦj = αjΦj + βjΦj−1 + βj+1Φj+1 (2.124)
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with

αj = Φ†jHΦj (2.125)

Φ̃j+1 = HΦj − αjΦj − βjΦj−1 (2.126)

βj+1 =‖ Φ̃j+1 ‖ (2.127)

and

Φj+1 =
Φ̃j+1

βj+1
. (2.128)

The initial normalised state | ψ0〉 in the Lanczos construction is usually

chosen to have maximal overlap with the Hamiltonian eigenstates that are

of interest in the given physical problem. Obviously, it is assumed that

neither | ψ0〉 itself nor all the other Φj Krylov states are eigenvectors of H,

otherwise the algorithm terminates.

The Lanczos states of successive orders can be used to construct a series of

approximations to the Hamiltonian. The N -th order Lanczos approximation

Ĥ(N) to Ĥ is of the form

Ĥ(N) =
N∑

j,k=0

| Φj〉〈Φj | Ĥ | Φk〉〈Φk | (2.129)

and its eigenvalues and eigenvectors of the operator ,

Ĥ(N) | χ(N)
α 〉 = E(N)

α | χ(N)
α 〉 , (2.130)

form the so-called Lanczos pseudospectrum. With increasing N, the Lanc-

zos pseudospectrum becomes a subsequently better approximation to the

spectrum of Ĥ.

A generalisation of the Lanczos technique to the case of a set of initial

states is called block-Lanczos method [107]. The Lanczos (block-Lanczos)

method is useful not only for diagonalising Hamiltonian matrices of large

dimensions, but also for calculating functionals of the Hamiltonians. Indeed,

the following approximate relations hold:

F
(
Ĥ
)
≈ F

(
Ĥ(N)

)
=

N∑
α=0

| χ(N)
α 〉F

(
E(N)
α

)
〈χ(N)
α | . (2.131)

Consequently it can also be used for the calculation of the spectral moments
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of the type of (2.110). To this end, the original Hamiltonian has to be

substituted by its Lanczos representation:

Sn ≈ S(N)
n =

N∑
α=0

(
E(N)
α

)n
| 〈Ψ0 | D̂ | χ(N)

α 〉 |2 . (2.132)

While the non-negative moments of the order 0 ≤ n ≤ 2N can be calculated

exactly by Eq. (2.132) with the appropriate choice of the initial Krylov

state, i.e. | Φ0〉 = D̂ | Ψ0〉 in the case of photoionisation calculations,

(or block of states) [107], the negative moments required for the Stieltjes

imaging can be calculated only approximately. Since the Lanczos (block-

Lanczos) algorithm approximates most effectively the eigenstate subspace

spanned by the starting vector (or vectors), one has to consider the physical

properties of the system when choosing the initial Krylov state. In the case

of photoionisation cross-section the final states of the process that we wish

to resolve are of 1h1p type and have the symmetry of the D̂ | Ψ0〉 state.

Therefore, we choose our starting vectors for the block-Lanczos iterations as

the full set of 1h1p ADC intermediate states of the appropriate symmetry.

2.7. B-splines basis-set

With the aim of performing ionisation dynamical calculations, i.e. wavepacket

time-propagation calculations where part of the electronic wave-function es-

capes from the atomic or molecular region, most of the work completed in

my PhD has been devoted to the implementation of the B-splines basis set

within the ab-initio ADC method.

The reason for employing B-splines as radial basis functions is that, with

respect to our purpose, the description of the continuum states requires

basis sets which could reproduce the oscillating behaviour of the electronic

wave-function up to big distances from the molecular region. Traditional

L2 basis functions, such as Slater Type Orbitals (STOs) or Gaussian Type

Orbitals (GTOs), are not adequate to represent the rapidly oscillating con-

tinuum states of an ionised electron far away from the molecular region,

since numerical linear dependencies rapidly occur as the basis set increases.

B-splines, conversely, are very flexible functions and are able to provide

a very accurate representation of both bound and continuum states with-
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out running into numerical dependencies even for large bases. The use

of such a pre-determined quasi-complete set of one-particle orbitals elimi-

nates the need of any a priori procedure in selecting the parameters for the

Gaussian-type or Slater-type functions required in the standard L2 quan-

tum chemistry calculations which often depend upon non-trivial treatment

to minimise the linear dependence embedded in the choice of basis func-

tions. This feature makes them superior to the other more conventional L2

basis sets and computationally competitive with the “local” finite-difference

methods [109]. B-splines produce smooth curves with continuous derivatives

at every point. Since they are defined in a restricted space, usually referred

to as a box, one has to define a certain knot sequence with which discretis-

ing the radial coordinate, depending on the target system. The continuum

wave-functions can be correctly reproduced by using a linear grid of points

and a sufficient density of B-splines.

The monocentric B-spline basis, used in the work reported in this the-

sis, is composed of spherical harmonics for the angular part and B-splines

functions for the radial coordinate. Single particle orbitals are therefore

expressed as linear combinations of products of B-splines and spherical har-

monics

ψn =
∑
j

ΦjCjn (2.133)

Φilm =
1

r
Bi(r)Ylm(θ, φ) (2.134)

The spherical harmonics are then defined by

Yl,m(θ, φ) =

√(
2l + 1

4π

(l −m)!

(l +m)!

)
Pml (cos θ) eimφ, (2.135)

where Pml (x) is a generalised Legendre polynomial and the normalisation

is chosen such that∫ 2π

0

∫ π

0
Y ∗l1,m1

(θ, φ)Yl2,m2(θ, φ)sin (θ) dθdφ = δm1m2δl1l2 . (2.136)

Here δmn represents the Kronecker delta. Spherical harmonics obey the
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following relations

Yl,−l(θ, φ) =
1

2ll!

√(
(2l + 1)!

4π

)
sinl (θ) e−ilφ (2.137)

Yl,0(θ, φ) =

√(
2l + 1

4π

)
Pl(cos θ) (2.138)

Yl,−m(θ, φ) = (−1)mY ∗l,m(θ, φ) . (2.139)

The use of B-splines in the atomic problem has been pioneered by Shore

[110] and employed in the atomic and molecular context by several authors

[111]. Although the first applications were to static properties, it has turned

out that B-splines are possibly even more important for the calculation of

dynamic properties such as multiphoton excitation, above-threshold ionisa-

tion (ATI) and high-order harmonic generation (HOHG) for atoms in the

single-electron approximation [112]. Theory and computational aspects of

B-splines are well documented in the literature [113]. In the following a brief

review of the most relevant aspects and properties of the B-spline basis set

will be given.

B-splines [57] are one-variable piecewise polynomial functions (pp-functions),

characterised by their polynomial order k (maximum degree k − 1), de-

signed to generalise polynomials for the purpose of approximating arbitrary

functions on some finite interval [0, Rmax]. In order to completely describe

the B-spline basis functions, the following set of quantities must be in-

troduced: a radial interval [0, Rmax] divided into l adjacent subintervals

Ij = [ξj , ξj+1] by a sequence of l + 1 points ξj in strict ascending order

0 = ξ1 < ξ2 < . . . < ξl+1 = Rmax; the ξj are usually called breakpoints

(bps). A second sequence of non-negative integers νj , j = 2, ..., l is associ-

ated with interior bps ξj , j = 2, ..., l and define continuity condition Cνj−1

at the associated bps ξj . Finally another sequence of points {ti} in ascend-

ing order, called knots, which are not necessarily distinct and may be in

part coincident:

0 = t1 ≤ ... ≤ tn = Rmax . (2.140)

81



They are associated with the sequences ξj and νj in the following way:

t1 = t2 = . . . = tµ1 = ξ1

tµ1+1 = . . . = tµ1+µ2 = ξ2

. . .

tµ1+µ2+...+µi−1+1 = . . . = tµ1+...+µi−1+µi = ξi

. . .

tn+1 = . . . = tn+µl+1
= ξl+1 , n = µ1 + . . .+ µl

where the integer µj defines the multiplicity of the knots ti at ξj and are

given by µj = k − νj . Note that in this Section {ti} identify the spatial

position of the knot points and do not have to be confused with the time

variable.

Given the knots sequence, a family of B-splines of order k can be defined

at any specific point r, using the following Cox-de Boor recursion relation

[113]

Bk
j (r) =

r − tj
tj+k − tj

Bk−1
j (r) +

tj+k+1 − r
tj+k+1 − tj+1

Bk−1
j+1 (r) (2.141)

together with the definition for the B-splines of order k = 1

B1
j (r) = 1 if tj ≤ r ≤ tj+1

B1
j (r) = 0 otherwise . (2.142)

These formulas give rise to the algorithm employed for the practical eval-

uation of B-splines: given a point r, one generates by recursion the values
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of all the k B-splines which are non-zero at r. Each B-spline is therefore a

function made up of different polynomial pieces on adjacent subintervals, of

a fixed order k, joined with a certain degree of continuity at the bps.

The polynomial continuity at the knots is controlled by the knot multi-

plicity. For r = ξj , B (r) is Ck−µj−1, where µj is the multiplicity at ξj (the

class Cn specifies the maximum derivation order n for which the derivative

function Dn f is still continuous over a specified interval). The maximum

multiplicity is k, giving discontinuous functions, the minimum is 1 (simple

knots), giving Ck−2 B-spline functions. There is no point in demanding

more than Ck−2 continuity, since otherwise f (r) reduces to a single poly-

nomial over all the interval and therefore some discontinuity is the essence

of pp-functions.

A single B-spline function Bk
i (r), defined by the order k > 0 and a set of

k+ 1 consecutive knots (at most k adjacent subintervals), has the following

properties:

• Bk
i (r) is a pp-function of order k over [ti, ti+k]

• Bk
i (r) > 0 for r ∈ ]ti, ti+k[

• Bk
i (r) = 0 for r 6∈ ]ti, ti+k[

• The B-spline basis is not orthogonal. Bk
i (r) 6= 0 over ]tj , tj+1[ for

i = j − k + 1, . . . , j, which implies that there are exactly k non-zero

B-splines on each interval Ij and that

∫
Bk
i (r)Bk

j (r) dr = 0 for |i− j| ≥ k

∫
Bk
i (r)Bk

j (r) dr ≥ 0 for |i− j| < k (2.143)

• B-splines are normalised as
∫
Bk
i (r) dr = 1 over the whole interval

[tk, tn+1].
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• Each B-spline is indexed by the index i of the left knot (ti) corre-

sponding to the first interval Ij = [ξj , ξj+1] where the B-spline starts

to be different from zero.

In order to have a complete polynomial basis over the entire interval,

a maximum multiplicity is imposed at the extremes of the interval µ1 =

µl+1 = k, namely t1 = . . . = tk = ξ1 and tn+1 = . . . = tn+k = ξl+1; this

makes the first and last basis functions different from zero for r = 0 and

r = Rmax. Boundary conditions at the origin, ψ (0) = 0, are satisfied by

simply removing the first B-spline from the basis set. Similarly, it is possible

to enforce the same condition at the outer boundary by removing the last

B-spline. If necessary, numerical stability can be improved by removing also

the next-to-last B-spline, thereby forcing the first derivative to go to zero:

ψ′ (Rmax) = 0. The most common choice for knot multiplicity at inner bps

is unity, corresponding to maximum continuity, that is Ck−2, unless there

is a known singularity at some point, where continuity may be reduced

by suitably increasing the knot multiplicity. This choice is typical of the

B-spline bases commonly employed and has also been made in the work

described throughout this thesis. With this choice the total number of B-

spline functions n is given by n = l + k − 1. Continuity may be relaxed at

the inner bps by increasing the associated knot multiplicity there.

The derivative of a B-spline of order k, being a pp-function of order k−1,

can also be expressed as a linear combination of B-splines of the same order:

DBk
i (r) =

k − 1

ti+k−1 − ti
Bk−1
i (r)− k − 1

ti+k − ti+1
Bk−1
i+1 (r) . (2.144)

Once these definitions have been introduced, it is possible to express any

function f (r) in a B-spline basis set over an interval [a, b]:

f (r) =
n∑
i=1

CiBi (r) (2.145)

Hence the pp-function f (r) is a linear combination of B-splines, made of l

polynomial pieces of order k, one for each subinterval Ij . In this expansion of

an arbitrary function f (r) in terms of B-splines the number of contributing

terms is reduced to k, hence a minimal number of operations is needed.

Since the B-spline functions are non-negative definite and have a minimal
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support, the expansion coefficients of an arbitrary function f (r) are close

to the function values at the knots. The main consequence is that wild

oscillations in the coefficients are avoided, cancellation errors are minimal

and numerical stability is maximal. In general, when approximating ana-

lytic functions, it is best to employ high-order splines, compatible with the

numerical stability and roundoff errors, typically in the range k = 7 − 10.

The error will be bound by [57]

ε ∼
hkj |Dkf(ηj)|

k!
(2.146)

where hj is the width of the interval Ij and ηj is contained in Ij . This is

the main advantage of B-splines over global bases, in that the error can

be controlled by the step size, in an analogous manner to finite-difference

approaches, but retaining all the advantages of basis set expansions. The

completeness property of the basis may be characterised by the fact that for

a given threshold, ε, all sufficiently smooth functions will be approximated

within ε, provided that the derivatives are conveniently limited, that is up

to a cut-off on the maximum local value of the derivatives. B-splines are

then capable of describing both bound and strongly oscillating continuum

states with the important property that the limit on the maximum kinetic

energy of the states represented can be tuned by the choice of the interval

step hj = tj+1 − tj .

In practice calculations, stable evaluation of splines is accomplished by

the recursion algorithm and is efficiently implemented in the subroutine

BSPLVP [113], which requires as input values the spline order k, the knot

sequence, the value of the abscissa r and the index of the ’left’ knot ti.

The latter can be located given the abscissa and the knot sequence, by

subroutine INTERV [113]. The routine returns the values of the k B-splines

that are nonzero at r, that is Bi−k+1 (r) , ..., Bi (r). Another subroutine,

called BSPLVD [113], can also be used in order to obtain their derivatives,

which are evaluated as combination of B-splines of lower order. In quantum

mechanical applications mostly overlap and Hamiltonian matrix elements,

i.e. definite integrals involving B-splines and their derivatives, are involved.

These are best computed to machine accuracy employing Gauss-Legendre

(GL) integration [114] of appropriate order over each subinterval Ij , which

is essentially exact in high order. GL integration of order n (n points) is
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indeed exact for a polynomial integrand of order 2n or less. Therefore k

GL points integrate exactly the product BiBj , and a little more is usually

completely accurate even for nonpolynomial integrands, provided there is

no singularity present in the interior of Ii.

The evaluation of the B-spline radial two-electron integrals

Rl (pq, rs) =

∫
Bp (r1)Bq (r1)

rl<
rl+1
>

Br (r2)Bs (r2) dr1dr2 (2.147)

is carried out by direct two-dimensional numerical integration as reported

in [115, 116]. Because of integrand singularity at r1 = r2 integration in the

two r1 ≤ r2 and r1 ≥ r2 regions has to be performed separately. This gives

very accurate results, close to machine precision. Computer time for two-

electron B-spline integral evaluation, although sizeable, is not the major part

of the total cost for the basis sets presently employed. Also, since B-splines

separated by more than k intervals are disjoint, that is Bi(r)Bj(r) = 0 for

|i− j| > k, the five-dimensional array Rl (pq, rs) is strongly banded. If it is

stored making maximum use of the integral symmetry, that is

p ≥ q , r ≥ s , pq ≥ rs

p− q ≤ k , r − s ≤ k (2.148)

the total storage needed scales approximately as(
1

2
n2k2

)
lmax , (2.149)

where lmax is the maximum angular momentum included in the calculation.

Therefore it is possible to keep the whole integral set in main memory even

for quite sizeable radial basis size n.

The first step in the calculations reported in this thesis is the solution of

the discretised closed-shell Hartree-Fock (HF) equations,

ĥHFψn = εnψn , (2.150)
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where ĥHF is the spin-free ground-state Fock operator of the neutral system,

ĥHF = ĥ0 +
∑
occ

(2Ĵocc − K̂occ) (2.151)

which consists of the sum of the kinetic energy part and the Coulomb po-

tential due to the nuclei, i.e. ĥ0, and of the direct Ĵocc and exchange K̂occ

Coulomb interactions between the electrons [49].

In the molecular case Eq. (2.150) is solved for every irreducible repre-

sentation of the molecular point symmetry group, and the expansion of

the wave-function ψn contains all the spherical harmonics angular functions

Ylm(θ, φ) belonging to the particular irreducible representation. In the case

of linear molecules with D∞h as symmetry point group, such as N2 or CO2,

the axial angular momentum m is a good quantum number for the sys-

tem. This means that the number of spherical harmonics belonging to the

irreducible representations, and therefore entering the expansion of the cor-

responding symmetric orbitals, is equal to Lmax + 1 for σg and to Lmax

for all the other irreducible representations (σu, πg, πu, etc.), where Lmax is

the maximum angular momentum used in the calculation. In the atomic

case, the HF equations can be projected upon the l-m spherical harmonic

subspace and they simplify in the following way

ĥHFl ψlm,n(r) = εl,nψlm,n(r) . (2.152)

Solving Eq. (2.150) self-consistently, we obtain a quasi-complete set of

discretised one-particle functions ψλ,n corresponding to electronic orbitals

with defined symmetry λ (in the atomic case λ stands for the pair of or-

bital angular momentum quantum numbers l,m) and variable energy (both

negative and positive) defined by the Hartree-Fock effective one-particle

Hamiltonian. Therefore, both the set of occupied HF orbitals and the full

orthogonal complement of virtual orbitals, expressed in terms of B-splines

basis functions, are obtained. These canonical orbitals are then used to

construct the ADC many-body Hamiltonian. Therefore the ab-initio cal-

culation is not performed working directly with primitive B-splines and as

a consequence the one- and two-electron integral transformation from the

original B-spline basis to the HF basis set must be computed. Computa-

tional details will be given in Sec. 5.1 of Chapter 5. Since ADC is formulated
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as a perturbative theory with respect to the HF mean-field Hamiltonian, the

canonical ADC(n) formulas are valid only in terms of HF orbitals. Apart

from the case of the first order ADC(1) level of theory, they become much

more complicated if a different orbital set is used.

Care has to be taken with the choice of the knot sequence defining the B-

spline basis set. For simple equidistant knots each Bi (r) is just a translation

by one interval of the previous one. If the knots are not equidistant the

shape of B (r) changes smoothly with the change of the knot. In a bound-

state calculation, the set of B-splines of order k and total number n is often

defined with an exponentially increasing knot sequence [57],

ξi = rmax
eγ

i−1
n−1 − 1

eγ − 1
. (2.153)

The choice of such a knot sequence satisfies the need for a more densely pop-

ulated set of B splines near the nucleus in order to accommodate the fast

rising inner s orbitals at small radius r. The short-range region, where the

wave-function oscillates quickly and correlation effects are stronger, needs

separate consideration since the optimal grid distribution requires an ap-

proximately exponential spacing between knots. On the other hand, a more

evenly populated set of B-splines at larger r is required if the oscillating

behaviour of the positive-energy orbitals at large distance has to be prop-

erly represented. Unlike bound states, continuum states are ever-oscillating

functions and thus vary up to infinity. Therefore, there are no reasons for

not choosing a linear breakpoint sequence which divides the radial coor-

dinates into equally spaced grid points. The B-spline knot sequence we

use is the parabolic-linear sequence, which is a mix of these two types of

sequences: a short-range dense one which concentrates points near the nu-

cleus with quadratically increasing knot spacing, which is better adapted to

bound states, and a linear knot spacing sequence for larger values of r nec-

essary for continuum states description. The connection between these two

regions is made at an intermediate radial distance r0, imposing continuity

of the breaking point function ξi and of it’s first derivative. The explicit

parabolic-linear knot sequence formula is:

ξi = α(i− i0)2 for 1 ≤ i < i0 ξi = h(i− i0) for i0 ≤ i ≤ n (2.154)
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Basis set Index Rmax (a.u.) Nsplines 23cm Linear Region step h (a.u.) 24cmQuadratic coefficient α (a.u.) R0 (a.u.)

Set 1 21.0 45 0.6 0.0295 2.392

Set 2 47.0 87 0.61 0.032 2.595

Set 3 33.0 97 0.367 – 0.0

Set 4 60.0 157 0.4 – 0.0

Set 5 120.0 200 0.6 – 0.0

Set 6 160.0 205 0.78 – 0.0

Set 7 320.0 410 0.78 – 0.0

Table 2.1.: B-splines basis sets employed in the calculations; for every basis
set the dimension of the discretisation box, the number of B-
spline functions and the step in the linear grid region are given.

The intermediate radius is defined by the index i0 in the following way

r0 = ξi0 = rmax(i0−1)
2n−i0−1 and the quadratic and linear coefficients by α = r0

(i0−1)2

and h = rmax
(n−i0) respectively.

As already mentioned, the range of kinetic energies accurately described

by the B-spline basis set can be tuned changing the knot spacing in the

linear region. The long range knot spacing is related mainly to the minimum

wavelength we want to describe for the photoelectron, considered as a free

particle, which cannot be much smaller than the grid step otherwise the B-

spline basis hardly describes the oscillating behaviour of the wave-function.

The maximum energy Emax of the discretised continuum states is set by

both the B-spline order k and the breakpoint spacing. At large distance,

a continuum wave-function oscillates with a wavelength given by 2π
k , k =√

2E and the number of B-splines contained in one wavelength has to be

large enough to fully reproduce the two sign switches. For B-splines of order

10, such as the ones used in the present work, it is sufficient to satisfy the

following condition: hmax ≈ λmin
π = 2

k . This condition leads to an error on

the continuum wave-function phase that never exceeds 0.1 rad.

The basis sets used in the calculations presented in this thesis are listed in

Table 2.1. The basis denoted as Set 1 and Set 2 are of the parabolic-linear

type and they both present a knots spacing in the linear region of 0.6 a.u.,

much wider compared to the minimum spacing in the short range region

of about 0.03 a.u. The B-spline basis denoted as Sets 3-7 are associated

with linear knot sequences in the entire radial range instead. In the present

total photoionisation cross-section Stieltjes calculations we are able to limit

the size of the B-spline set to a modest n (e.g., n = 45 and Rmax = 21
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Figure 2.4.: a – graphical representation of B-spline basis Set 3, with
Rmax = 33 a.u.; the knot sequence is linear and the total num-
ber of B-spline functions is 97. b – magnification of the B-spline
functions in the radial region close to the origin. c – magnifica-
tion of the B-spline functions in the radial region close to the
box boundary.

a.u. in our ADC(2) calculations), which is sufficiently large to take into

account adequately the transition dipole moments of the excited states in

the continuum with respect to the ground state. Set 4 is a linear basis set,

and it has been used for the calculation of the Ar cross-section in the energy

region of the core excitations from the 2p and 2s orbitals. In this case the

linear spacing used is about 0.4 a.u. corresponding to the possibility of

describing electrons with kinetic energy of about 300 eV. The B-spline Set

3 is represented graphically in Fig. 2.4.

Finally it must be mentioned that one of the most useful advantages of

making use of B-spline functions is that they have the property of approach-

ing completeness as much as desired by refining the corresponding knot

sequence [57]. For example, the density of discretised continuum states rep-

resented by the basis can be increased arbitrarily by simply increasing the

90



extension of the grid, i.e. Rmax, while maintaining at the same time fixed

the spatial density of knots. This procedure can be done without being

concerned about linear dependencies issues, which are commonly present

with the use of Gaussian type orbitals instead.

In the approach used in this thesis, the ADC Hamiltonian diagonalisa-

tion procedure only provides a discrete set of many-electron wave-functions.

These are the particular stationary solutions satisfying the boundary condi-

tions Ψ(ri = Rmax) = 0, i = 1, ..., Ne, where Ne corresponds to the number

of electrons, due to the fact that the problem has been restricted to a fi-

nite part of the space. Nevertheless, these functions can be interpreted as a

discrete representation of the true electronic continuum with a different nor-

malisation with respect to the energy unit one and with different asymptotic

behaviour with respect to the scattering eigenstates of the system. Several

techniques [117] have been developed in the last 20 years in order to cor-

rectly obtain, from a L2 B-spline calculation, normalised scattering states

satisfying the correct asymptotic behaviour for photoionisation problems in

the multi-channel case.

2.8. Time propagation scheme in the presence of

attosecond laser pulses: Arnoldi-Lanczos

algorithm

The focus of the second part of this thesis is on electronic-wavepacket time-

propagation calculations where the atomic/molecular correlated electronic

system, described by the B-spline ADC Hamiltonian, interacts with an ion-

ising time-dependent electric field. Within TD-ADC, the time-dependent

problem is solved making the following ansatz for the time-dependent elec-

tronic wave-function:

| Ψ(t)〉 = C0(t) | Ψ0(t)〉+
∑
n

Cn(t) | Ψn(t)〉 (2.155)

where the coefficients C0(t) and Cn(t) refer to the ground-state and to the

ECO-CES ADC configuration basis states respectively. Propagation of the

B-spline ADC many-electron wave-function allows one to achieve a real-

istic ab-initio description of a series of many-electron phenomena in the
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time-resolved fashion on the atto- and femto-second scale. In such numer-

ical experiments, in which the electrons can reach very big distances from

the molecular region (∼ 1000 a.u.) during their interaction time with the

laser electric field, the computational cost can become very high because

of the dimension of the radial spherical box required. Indeed, the need of

large numerical boxes in order to fully describe the electronic wavepacket

throughout the interaction leads to a corresponding increase in the number

of B-spline basis functions to be used and consequently to a final increase in

the number of two-electron integrals to be calculated and in the dimension

of the matrices to be propagated.

However, in many calculations one is interested in describing physical phe-

nomena which happen within a limited region of space nearby the atomic or

molecular system, not being influenced by the physics outside of that region.

Therefore, in such circumstances the use of smaller boxes is desirable and

convenient; however, although computationally cheaper, it introduces the

problem of artificial reflections of the part of the wavepacket which reaches

the box boundaries. This problem can be overcome with the implementation

of absorbing boundary conditions, which is achieved in the work reported in

this thesis by the use of the so-called complex absorbing potentials (CAPs)

[118]. The use of a complex-absorbing potential has been demonstrated to

be of practical value when dealing with ionisation or electronic decay pro-

cesses, since it has the purpose of absorbing the emitted particle and allows

one to limit the spatial extension of the basis-set. Indeed, CAPs artificially

dampen those parts of the wave-function which penetrate the outer region

of the grid, i.e. the region where the CAP itself is set different from zero,

and ensure that the amplitude of the wave-function remains zero close to

the edges of the box.

With the addition of the CAP term −iW the form of the total time-

dependent (no longer Hermitian) Hamiltonian of the system reads

ˆ̃H = Ĥ0 + D̂E(t)− iŴ (2.156)

where Ĥ0 is the field-free Hamiltonian and D̂E(t) is the laser-atom interac-

tion in length form and within the dipole approximation. The Ŵ potential

is a real non-negative function that vanishes in the inner region of space.
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The form of the CAP used is this thesis is the following:

Ŵ = 0 for r < rCAP

Ŵ = η(r − rCAP )2 for r ≥ rCAP . (2.157)

The CAP starts at a radius rCAP , which defines the size of the inner re-

gion, and is characterised by a strength coefficient η which regulates the

smoothness and steepness of the CAP profile. Small enough reflections can

essentially be achieved by making the CAP strength η sufficiently small;

therefore it is possible to propagate the initial wavepacket by H̃ rather than

by the original Hamiltonian Ĥ, without changing the values of the propa-

gated wave-function at points where the CAP vanishes, i.e. for r ≤ rCAP .

Due to the presence of the CAP the time-propagation is not unitary and

therefore does not conserve the norm of the wave-function and the average

energy of the system.

In this thesis the time-dependent Schrödinger equation (TDSE) for the

unknown coefficients C0, Cn of the B-spline ADC many-electron wave-function

is solved with the use of the general complex Lanczos, or Arnoldi-Lanczos,

algorithm [119, 120]. The Lanczos algorithm (Sec. 2.6) has been proved

to be very efficient as a time propagation scheme for the non-relativistic

Schrödinger equation [121] and is widely used in treating nuclear-dynamics

problems [122, 123, 124]. The more general Arnoldi-Lanczos algorithm is

suited to describe time-propagation with non-Hermitian Hamiltonians as

well as the usual Hermitian ones. Indeed, it can be used efficiently when a

complex-absorbing potential [118] is added to the Hamiltonian, which then

becomes complex symmetric.

Using this algorithm, one actually replaces the full or partial diagonali-

sation of the large Hamiltonian matrix, in our case the ADC matrix, and

the consecutive time propagation of the eigenvalues, with a repetitive di-

agonalisation of much smaller Hessenberg matrices. In this way, the time-

propagation becomes applicable to large basis sets, which are practically

inaccessible within approaches demanding a full diagonalisation of the sec-

ular matrix.

It is known that the time-dependent Schrödinger equation has a formal
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solution

| Ψ(t)〉 = Û(t, 0) | Ψ(0)〉 = T exp

(
− i
h̄

∫ t

0
Ĥ(t

′
)dt
′
)
| Ψ(0)〉 . (2.158)

where T exp is the so-called chronological exponent which represents the

evolution operator Û (t, 0).

If the system Hamiltonian is time-independent, then the evolution oper-

ator describing the evolution of the system from time t to time t + ∆t is

given by

Û (∆t) = Û (t+ ∆t, t) = exp

(
− i
h̄
Ĥ∆t

)
. (2.159)

The latter is also approximately true for a time-dependent Hamiltonian if,

for a sufficiently small time increment ∆t, the variation of the Hamiltonian

is negligible. In that way, it is possible to represent the evolution operator

as a product of such operators, propagating the wave-function from t to

t + ∆t, for which Eq. (2.159) is valid. In other words, a time interval can

be divided into many small intervals with duration ∆t and the evolution of

the wave-function is represented as successive small steps.

It is obvious that if the initial state is an eigenfunction of H one gets

| Ψ (t)〉 = exp
(
− i
h̄E0t

)
| Ψ (0)〉, where E0 is the eigenvalue of H corre-

sponding to the eigenvector | Ψ (0)〉. In that way, if the eigenvalues and

eigenvectors of the Hamiltonian are known, i.e. if the Hamiltonian matrix

has been diagonalised, the time propagation is straightforward. Unfortu-

nately, the full diagonalisation can be performed with reasonable expense

only for relatively small systems or at a low level of approximation. Since

the processes we want to treat result mainly from electronic correlation, the

level of approximation should be as high as possible, which leads to large

secular matrices even for small systems. It should be mentioned that if some

knowledge of the system and the electronic process under study is available,

one may encounter situations where not all the eigenstates are needed, i.e.

a partial diagonalisation can be sufficient. Nevertheless, even in such cases

the determination of the usually many eigenstates needed is very costly for

multi-electron systems.

The Arnoldi-Lanczos algorithm leads to the following polynomial expan-

sion of the exponential in the evolution operator:
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Û (∆t) ≈
K∑
j=1

cjPj

(
− i
h̄
Ĥ∆t

)
(2.160)

where Pj
(
− i
h̄Ĥ∆t

)
is a polynomial of degree j, and cj are the expansion

coefficients.

This polynomial expansion is obtained by projecting the Hamiltonian of

the system at time t onto the Krylov subspace constructed starting from

the normalised state vector of the system at the same time t, i.e. V0 = ψ(t),

and spanned by the vectors Vj = Hjψ (t) j = 0, 1, 2, . . . ,K − 1. Here H

and ψ(t) are respectively the matrix representations of Ĥ and | Ψ(t)〉 in

some suitable basis.

Within the Arnoldi-Lanczos algorithm, in order to build the reduced

Hamiltonian matrix HK , the Krylov vectors are constructed recursively in

the following way: assuming the set of the first, orthonormalised, j vectors,

the Hamiltonian is applied to the j-th one and the resulting (j+1)th vector is

first recursively orthogonalised with respect to the previous j vectors, start-

ing from the first one, and then normalised. Obviously, it is assumed that

none of the Vj is an eigenvector of H, otherwise the algorithm terminates

immediately. Therefore, in this case, the recursive procedure for building

the reduced Hamiltonian matrix HK within the K-dimensional Krylov sub-

space, usually referred to as the modified Gram-Schmidt orthogonalisation

scheme, reads as

Ṽ
(1)
j+1 = HVj

for i = 1, ....., j

βij = V †i Ṽ
(i)
j+1 Ṽ

(i+1)
j+1 = Ṽ

(i)
j+1 − βijVi

Vj+1 =
Ṽ

(j+1)
j+1

βj+1,j
βj+1,j =|| Ṽ (j+1)

j+1 || .

(2.161)
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In this way, starting with a normalised state V0 = ψ(0) one constructs

an orthonormal basis V0, ..., VK−1 for the K-dimensional Krylov subspace,

which represents a very good approximation to the Hilbert subspace to

which the state of the system at time t+∆t belongs and in which the reduced

Hamiltonian HK is represented as a complex upper Hessenberg matrix, i.e.

a matrix which has zero entries only below the first subdiagonal,

HK
ij = V †i HVj =

=



β0,0 β0,1 · · · · · · · · · · · · β0,K−1

β1,0
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . .

...

0 0
. . .

. . .
. . .

. . .
...

0 0 0
. . .

. . .
. . .

...

0 0 0 0
. . .

. . . βK−2,K−1

0 0 0 0 0 βK−1,K−2 βK−1,K−1


.

(2.162)

If the Hamiltonian is Hermitian, the matrix HK becomes symmetric, and

thus tridiagonal. In that sense, the Hermitian Lanczos discussed in Sec. 2.6

is just a special case of the more general complex Lanczos-Arnoldi algorithm.

In order to assure numerical orthogonality of the Krylov space basis set,

at each step, each state vector is orthogonalised twice with respect to the

previous ones. Therefore the final formulas for the reduced Hamiltonian

matrix are:

Ṽ
new (1)
j+1 = Ṽ

(j+1)
j+1

for i = 1, ....., j
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βcorrection
ij = V †i Ṽ

new (i)
j+1 Ṽ

new (i+1)
j+1 = Ṽ

new (i)
j+1 − βcorrection

ij Vi

βfinalij = βstandardij + βcorrection
ij .

(2.163)

This re-orthogonalisation procedure is also known as the Kahan-Parlett

”twice is enough” algorithm [106] and provides a very good accuracy for the

orthogonality of the resulting Krylov basis states.

In the computational implementation of this scheme used in this thesis,

it is possible to fix the maximum number of iterations requested, i.e. the

maximum allowed dimension of the Krylov space. Moreover, the algorithm

is stopped when the norm of the (j+1)-th Krylov vector candidate becomes

smaller than a certain fixed threshold value, which, in this work, has been

taken as the numerical precision of the calculator. If the norm condition is

not violated the algorithm continues and therefore the new Krylov vector

reads

βj+1,j =|| Ṽ new (j+1)
j+1 || Vj+1 =

Ṽ
new (j+1)
j+1

βj+1,j
. (2.164)

If instead the norm of the (j + 1)-th Krylov vector candidate is smaller

than the fixed threshold value, then the iterations are stopped and the di-

mension of the resulting Krylov space is smaller than the maximum allowed

value. Then, the propagation operator Û (∆t) can be approximated by its

representation in the Krylov subspace:

ÛK (∆t) = exp

(
− i
h̄
HK∆t

)
. (2.165)

Consequently the propagated vector we are interested in will be approxi-

mated by

Ψ (t) ≈ ÛK (∆t) Ψ (0) . (2.166)

The propagation of the initial wave-function is hence performed in the

projected subspace by the upper Hessenberg Hamiltonian HK , which is
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much smaller than the full Hamiltonian and therefore much easier to diag-

onalise. After the diagonalisation the propagator can be expressed in the

following form:

ÛK (∆t) = Z† exp

(
− i
h̄
DK∆t

)
Z , (2.167)

where Z is the eigenvector matrix of HK , and DK is its diagonal matrix of

eigenvalues. The propagated vector is constructed from the eigenvalues and

eigenvectors of the matrix HK and reads:

Ψ (t) = exp

(
− i
h̄
HK∆t

)
Ψ (0) =

K−1∑
j=1

ajVj , (2.168)

where its coefficients onto the Krylov space basis vectors read

aj =
K−1∑
n=0

Zjn exp

(
− i
h̄
λn∆t

)(
Z−1

)
n0
. (2.169)

In Eq. (2.169) the λn denote the eigenvalues of the matrix HK . The propa-

gated wave-function is then used as the initial vector for the next iteration,

Eq. (2.161).

One has a very convenient estimate of the error, i.e., the difference be-

tween the propagated and exact wave-functions, when using the Lanczos

integrator. This error is proportional to the magnitude of the first vector,

VK , lying outside of the Krylov space used [125]. This quantity can be

used to adjust either the time-step size ∆t or the maximum order K al-

lowed. Since in all the time-dependent calculations reported in this thesis

the Hamiltonian of the system is time-dependent, restrictions on the size

of ∆t can be important. All the results presented in this thesis have been

obtained using a value, for both the time-step ∆t and the maximum Krylov

space dimension allowed K, at which the convergence of the calculated

physical quantities has been achieved.

From the computational point of view this complex version of the Lanczos

scheme is obviously more time consuming with respect to the Hermitian

version, since in addition to the diagonalisation of the reduced Hamiltonian,

in this case an upper Hessenberg matrix, one needs to perform an inversion

of its eigenvector matrix, Z, which is now not unitary. Nevertheless, for non-

Hermitian cases the Lanczos-Arnoldi algorithm appears to be very efficient.
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The most important feature of the Arnoldi-Lanczos algorithm is that,

when computing the tridiagonal matrix HK , the full Hamiltonian matrix H

is needed only for a simple matrix vector product and remains unchanged

during the whole procedure. This allows the treatment of dynamical prob-

lems in which the size of the resulting system Hamiltonian is relatively large,

for which the full diagonalisation is either very expensive or even impossible.

The time propagation can be performed representing the operators ma-

trices both in the ECO-CES configuration basis set or in the Hamiltonian

eigenvectors basis set. In the second scheme, after the Hamiltonian has

been diagonalised, the dipole and CAP matrices are transformed to their

representations in the basis of the Hamiltonian eigenvectors through the

following formula:

Deigen = Z†DECO−CESZ , (2.170)

CAPeigen = Z†CAPECO−CESZ , (2.171)

where Z is the matrix of eigenvectors of the Hamiltonian.

The main advantages of this approach are that the dense Hamiltonian ma-

trices do not have to be stored anymore, reducing the dynamical memory

requirements of the calculation. However the CAP matrices will generally

become dense and therefore will need to be fully stored. The second ad-

vantage of this scheme is that the basis states immediately have a clearer

physical interpretation. Indeed, it becomes easier to calculate the rate of

ionisation caused by the laser pulse, just by looking at the population of the

bound eigenstates of the system at the end of the pulse. Therefore, it is not

necessary to wait for all the outgoing ionised wavepacket to be absorbed by

the CAP and to look at the resulting loss of norm of the wave-function, as

is the case for the first scheme. However, the full diagonalisation can be

performed with reasonable expense only for relatively small basis sets.

In order to guarantee the convergence of the Arnoldi-Lanczos algorithm,

which depends crucially on the spectral radius of the Hamiltonian, in the

first propagation scheme we removed from the numerical simulation the

ECO-CES configurations with a zeroth-order energy higher than a certain

threshold value. In an analogous way, in the second propagation scheme

the unphysical high energy eigenstates have been removed from the prop-
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agation. The threshold value for the cutoff energy which has been used

in the calculations performed in this thesis is 40 a.u.; with this choice the

Arnoldi-Lanczos algortihm converges well at each time step and, moreover,

the removal of these high energy virtual orbitals does not change at all the

physical results we are looking at.

2.9. High harmonic generation (HHG) spectrum

One of the observables that is calculated in this thesis is the high-order

harmonic generation spectrum of atoms (Ar) and molecules (CO2). High-

order harmonic generation (HHG) spectroscopy has become a powerful tool

to resolve ultrafast electron dynamics in atoms and molecules [126, 127]

and also to investigate the geometric structure of molecules on an ultrafast

time scale [128, 129, 130, 131, 132, 133, 60]. HHG occurs when an elec-

tron is removed from the parent molecule under the action of an intense

infra-red (IR) laser field and is forced to recollide with the parent ion less

than one period of the field oscillations later. High-harmonic generation

can be described by the widely used three-step model [126]. The HHG pro-

cess begins with strong-field ionisation, in which a high-intensity (≈ 1014

W/cm2) linearly polarised laser field distorts the molecular potential such

that a portion of the bound electron wavepacket can tunnel-ionise. When

an intense laser pulse ionises a molecule, its wave-function splits into two

components: a free electron wavepacket and its associated ion, and the neu-

tral molecule. The laser field pushes the liberated electron away from the

ion and then drives it back [126]. There, if it has not drifted too far away

from the parent ion, the electron can recombine with the ion, reforming the

neutral molecule in its original state and producing coherent radiation in

the form of high order harmonics of the incident light. The coherence in

this quantum process comes from the fact that the final state of the system

is the same as the initial one. The emission of radiation results from the

recombination of an electron and a molecular ion and thus constitutes an

inverse photoionisation process. Consequently, it is highly sensitive to the

electronic structure of the target with the advantage that a broad range of

photoelectron energies are probed simultaneously [134, 135, 136]. Moreover,

different states of the molecular ion between ionisation and recombination

provide different channels for this process. For each channel, specific elec-

100



tronic structure is encoded onto the harmonic amplitude and phase. These

channels are different pathways that take the system from the same ini-

tial to the same final state via different states of the ion. They provide a

basis for recording multielectron dynamics, including dynamics of electron

rearrangement upon ionisation. Since the technique can be combined with

nonadiabatic alignment, measurements can be performed in the molecular

frame, revealing the detailed electronic structure of molecules [137]. High

time resolution arises from the fact that different harmonics are emitted at

different time-delays between ionisation and recombination, within a frac-

tion of a laser cycle [131, 132, 133, 138, 139, 140]. Within the single-molecule

response, several so-called ’quantum’ trajectories of the liberated electron

that return to the parent ion with the same kinetic energy but at different

times t can be identified, see e.g. [141]. These trajectories can be grouped

into ’short’ and ’long’, depending on whether they return to the parent ion

before or after the highest-energy trajectory with the energy 3.17Up. Here

Up = E2

4ω2 is the average electron oscillation energy, E and ω are the laser

field strength and frequency [141]. The harmonic cutoff is determined by

the maximum recollision energy of the ionised electron plus the ionisation

potential Ip [68]:

Ωcutoff = 3.17Up + 1.32Ip (2.172)

Here 3.17Up is the maximum energy that the liberated electron can gain be-

tween the ionisation and the recollision events [126]. The additional energy

0.32Ip is picked up by the returning electron in the strong-field regime, due

to the offset of the point of tunnel ionisation from the origin of the Coulomb

potential [68].

In this thesis, in order to compute the dipole acceleration which is required

for describing high-harmonic generation, we first calculate the expectation

value of the electric dipole moment z(t) [142] and then we calculate its

second time derivative. The HHG spectrum then reads

SHHG(ω) =
1

20

1

3πc3

∣∣∣∣∣
∫ ∞
−∞

[
d2

dt2
〈z〉(t)

]
e−iωt dt

∣∣∣∣∣
2

. (2.173)

This quantity takes into account the contributions to the HHG spectrum

from both the short and long trajectories, including the interference be-
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tween the two. Differently, in a molecular gas macroscopic propagation of

harmonic radiation associated with short and long trajectories is different in

terms of both the phase-matching (which allows the harmonic field emitted

from different molecules in the gas to sum coherently) and the divergence.

In typical experiments on high harmonic generation, the geometry of the

experimental setup suppresses the so-called ’long’ trajectories and favours

the short ones.

The expectation value of the electric dipole moment z(t), as well as the one

of any single-particle operator Ô, onto the time-dependent wave-function of

the system is calculated using the expansion of Eq. (2.155) and reads

〈Ô〉(t) =
∑
n

∑
m

Cn(t)C∗m(t)Om,n . (2.174)

The coefficients C0 and Cn are known from the time propagation calculation.

The matrices Om,n in the ECO-CES representation, as well as the transition

moments from the ground state of the system to the ECO-CES states them-

selves, are evaluated consistently at the same level of the ADC(n) hierarchy

as the one used to time propagate the state of the system.

2.10. Reduced ionic density matrix (R-IDM)

Another important quantity that is calculated in this work is the reduced

ionic density matrix (R-IDM). Consider two systems A and B, with respec-

tive Hilbert spaces HA and HB. The Hilbert space of the composite system

is defined as the tensor product

HA ⊗HB . (2.175)

Denoting the state of the composite system AB by

| Ψ〉 ∈ HA ⊗HB , (2.176)

its density matrix ρ̂AB is defined as the projection operator onto the state

| Ψ〉 and reads as

ρ̂AB =| Ψ〉 〈Ψ | . (2.177)

In general there is no way to associate a pure state with each component
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subsystem A and B. However, it is possible to describe each subsystem with

a reduced density matrix. The reduced density matrix of subsystem A, ρ̂A,

is defined as the partial trace of ρAB over the basis states of system B:

ρ̂A
def
=

∑
j

〈j |B (| Ψ〉〈Ψ |) | j〉B = TrB ρ̂AB (2.178)

where the operator TrB represents the partial trace over system B. The

reduced density matrix for an entangled pure ensemble is a mixed ensemble.

On the other hand, if A and B are two distinct and independent systems,

their total pure product state can be written as | Ψ〉 =| ψ〉A⊗ | φ〉B and

consequently, the density matrix of the composite system reads as

ρ̂AB = ρ̂A ⊗ ρ̂B . (2.179)

In this case the reduced density matrix of the A subsystem becomes

ρ̂A =| ψ〉A〈ψ |A (2.180)

and it is therefore possible to associate a pure state | ψ〉A to the subsystem

A.

In the case where the two subsystems consist of a parent ion and a photo-

electron, the time-dependent reduced ionic density matrix (R-IDM) ρIonic(t)

is therefore constructed from the time-dependent N-electron state | Ψ(t)〉,
by taking the trace of the total density matrix for the N-electron system

ρ̂(t) =| Ψ(t)〉〈Ψ(t) | (2.181)

over the unobserved photoelectron:

ρIonic(t) = Tra[ρ̂(t)], (2.182)

where Tra stands for the trace over all virtual orbitals.

Within the ADC(1) framework, where only explicit single excitations are

allowed, ρIonic(t) can be espressed as

[ρIonic(t)]i,j =
∑
a

〈Φ̃a
i | Ψ(t)〉〈Ψ(t) | Φ̃a

j 〉 =
∑
a

Cai (t)[Caj (t)]∗ . (2.183)
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The R-IDM diagonal matrix elements ρIonici,i , ρIonicj,j give the populations

of the ionic states i and j respectively. Knowledge of the time dependence

of these diagonal matrix elements reveals, for example, which ionic channels

are populated during the interaction of a molecule with an intense IR laser

pulse and therefore contribute more to the High-order Harmonic Generation

process. Moreover they provide information about the nature of the ionic

states populated after the end of the pulse.

The degree of coherence between the created hole states i and j is given

by

Gi,j(t) =
| ρIonic(t)i,j |√

ρIonic(t)i,iρIonic(t)j,j
. (2.184)

Totally incoherent statistical mixtures result in Gi,j(t) = 0. The maximum

achievable (perfect) coherence is given by Gi,j(t) = 1. Knowledge of the

off-diagonal matrix elements ρIonic(t)i,j , gives quantitative information on

the coherence degree Gi,j(t) between pairs of final ionic channels i and j

formed during the ionisation of the molecular system by the laser field and

consequently reveals the coherence properties associated with the electronic

wavepacket dynamics of the residual ion.

As we are interested in looking for the probability of ionising the system

and to form ionic species, the bound excited part of the wave-function must

be removed from the total wave-function before the trace is computed. This

means that formally the formulas remain the same, but the coefficients on

the single excited ECO-CES states, Cai , must now refer only to the ionised

part of the wave-function:

| Ψ(t)ionised〉 =| Ψ(t)〉 −
∑
n

〈Ψbound
n | Ψ(t)〉 | Ψbound

n 〉. (2.185)

In the strong field regime the bound state excitation of the system is

usually much smaller and negligible with respect to its ionisation; therefore

this modification has a very small (negligible) effect onto the resulting R-

IDM diagonal matrix elements. However the off-diagonal matrix elements

can be very sensitive to the presence of a bound state component in the

total wave-function; this is due to the fact that, in the bound excited states,

the excited electron remains close to the ion causing the coherence factor

to continue oscillating even a long time after the interaction of the system

with the laser pulse is over.
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The presence of the CAP has an impact on the dynamics of the reduced

ionic density matrix. Indeed, the norm 〈Ψ(t) | Ψ(t)〉 = Tr[ρ̂(t)] is not

conserved, and this reflects itself into a modification of the evolution of the

trace of the density matrix. With the introduction of a CAP the norm of the

density matrix experiences a decay and, since the probabilities of leaving

the atom in its ground state | C0(t) |2 and of creating 1h-1p excitations

should add up to one at all times, ρIonic(t) must be corrected for the loss of

norm.

The corrected ionic reduced density matrix that does not experience any

damping has been calculated in [143] and reads

ρIonici,j (t) =
∑
a

Cai (t)[Caj (t)]∗+

+2ei(εi−εj)t
∫ t

−∞

∑
a,b

wb,aC
a
i (t
′
)[Cbj (t

′
)]∗e−i(εi−εj)t

′
dt
′

(2.186)

where εi and εj are the ionisation potentials of the ionic state i and j re-

spectively.

Notice that the additional term on the right-hand side of Eq. (2.186) is not

modified at all by the subtraction of the bound part of the wave-function as

this part does not experience any loss of norm if the CAP starts sufficiently

far from the radial origin. This means that evaluating this term with the

coefficients of the total wave-function or the ones of its ionised part gives

exactly the same numerical result.
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Part II.

Results
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3. Total molecular ground state

photoionisation cross-sections

by ADC-Stieltjes-Lanczos

method: GTO-based

Benchmark calculations

The calculation of photoionisation cross-sections requires the knowledge of

many-electron wave-functions belonging to the continuum part of the spec-

trum. The main task here is to accurately take into account both the

scattering character of the photoionised state wave-function and the elec-

tron correlation. While many well-developed theoretical techniques exist

for the description of atomic photoionisation [50], the multi-centre molecu-

lar problem still poses a formidable challenge to the theory. The state of the

art theoretical methods for calculation of molecular photoionisation cross-

sections either do not take into account sufficiently the electronic correlation,

see e.g. Refs. [51], or treat the photoionisation continuum rather approx-

imately, see e.g. Ref. [52]. Highly accurate many-electron wave-functions

and transition matrix elements are routinely obtained by the post-Hartree-

Fock (post-HF) methods of ab-initio quantum chemistry [49, 53, 54]. These

methods are based on the use of finite sets of square-integrable (typically

Gaussian) single-electron basis functions.

In the work reported in this Chapter finite sets of square-integrable GTOs

have been used as single-electron basis functions. Hence the ADC-Lanczos-

Stieltjes scheme is used to compute the photoionisation cross-sections and

a systematic study of the accuracy of the new technique at the ADC(1),

ADC(2) and ADC(2)x levels of ab-initio theory is presented using a test set

of molecules for which accurate experimental total ionisation cross-sections

are available.
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Hence in these calculations the ADC Hamiltonian is treated using the iter-

ative block-Lanczos diagonalisation and the resulting Lanczos pseudospec-

trum is then used in the SI procedure to compute photoionisation cross-

section. It is important to emphasise again that studies such as the follow-

ing would be impossible without exploiting the convergence properties of

the Lanczos pseudospectrum.

The ab-initio description of the discretised photoionised molecular states

is based on the ADC many-electron Green’s function approach. A hierarchy

of ab-initio methods of the ADC type [80] is used. Construction of the

ADC Hamiltonian matrices requires carrying out restricted HF calculations

and transforming the electron repulsion integrals from the atomic orbital

(AO) basis to the molecular orbital (MO) basis. Throughout this work,

these tasks are performed using MOLCAS 7.6 quantum chemical program

package [144]. The standard Gaussian basis sets used in the present study

have been obtained from Ref. [145]. Kaufmann-Baumeister-Jungen (KBJ)

continuum-like diffuse Gaussian functions [100] are systematically used in

each calculation to augment the standard basis sets, for a strictly necessary

better representation of the discretised electronic continuum.

The calculated cross-sections have been restricted to the energy range of

up to 100 eV, thus including valence-type excitations but excluding excita-

tions of the core electrons [146]. The Stieltjes imaging procedure is carried

out in quadruple precision using the algorithm of Sec. 2.5. The photoioni-

sation cross-sections presented are obtained as interpolation of the discrete

points corresponding to several (up to a maximum of five) successive Stielt-

jes orders for which approximate stationarity of the results is achieved. The

interpolation procedure analyses the points generated by each Stieltjes or-

der and finds which orders and how many satisfy this stationarity condition

and then interpolates them alltogether. The converged and interpolated

Stieltjes orders are different in each case and their number varies between 3

and 5; nonetheless, for all of the molecules studied in this thesis, the reliable

Stieltjes orders are typically from n = 5 up to n = 15. This gives an idea

of the number of principal representation states and the energy resolution

it is possible to achieve with the method presented. For all systems cor-

relation consistent basis sets of the cc-pCVnZ type have been used, with

n=T or n=Q depending on the system and on the specific atom within the

molecule.
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Molecule Basis set 22cmADC(2) matrix dimension 22cmKrylov space dimension

H2O 25.7cmO:cc-pCVQZ+(10s10p4d); H:cc-pVQZ+(5s5p5d) 157653 3390

HF 25.7cmF:UN-cc-pCVQZ+(10s10p10d4f); H:UN-cc-pVQZ+(6s6p6d2f) 181236 3800

NH3 25.7cmN:UN-cc-pCVTZ+(5s5p5d); H:UN-cc-pVTZ+(3s3p) 121376 3920

CH4 25.7cmC:UN-cc-pCVQZ+(6s6p6d2f); H:UN-cc-pVTZ+(4s4p2d) 209682 3980

C2H2 25.7cmC:cc-pCVTZ+(10s10p10d4f); H:cc-pVTZ+(6s6p6d2f) 252025 3170

C2H4 25.7cmC:cc-pCVTZ+(7s10p10d4f); H:cc-pVTZ+(3s3p3d) 411931 3870

CH3OH 25.7cmC,O:UN-cc-pCVTZ+(2s4p3d); H:UN-cc-pVTZ+(1s1p) 182194 3960

CO2 25.7cmC,O:cc-pCVTZ+(5s6p6d2f) 391838 3920

Table 3.1.: The basis sets employed, the dimension of the ADC(2) matri-
ces and the dimension of the Lanczos pseudospectrum space,
for which the converged cross-section has been obtained, are re-
ported for each molecule studied in this thesis.

3.1. Molecular photoionisation cross-sections by

ADC-Lanczos-Stieltjes method

The accuracy of the method is established by comparing the ADC-Lanczos-

Stieltjes cross-sections in the valence ionisation region to the experimental

ones for a series of eight molecules of first row elements for which high-

quality experimental cross-sections are available in the literature: HF, NH3,

H2O, CO2, H2CO, CH4, C2H2, and C2H4.

The deviation of the ADC-Lanczos-Stieltjes cross-sections from the ex-

perimental ones has been quantified computing their energy-dependent and

energy-averaged relative discrepancies over the photon energy region cov-

ered. It is found that the inclusion of large Gaussian exponents for the

accurate description of the localised core electrons can lead to a significant

improvement in the cross-section. In some cases uncontracting the basis

set leads to an improvement in the cross-section, while in other cases it did

not make a substantial difference. For every molecule the convergence of

the results of the spectral moments and of the cross-section, with respect

to the choice of the details of the basis sets, i.e. with respect to the choice
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of the number of KBJ exponents and the number of angular momenta in

the cc-type basis set, has been checked; only the results obtained using the

basis set at which the convergence has been achieved are reported in the

following. In Table 3.1 a fully uncontracted basis set is denoted by the prefix

UN.

Experimental total photoionisation cross-section as well as a series of SI

results obtained via full diagonalisation of the ADC(1) matrix and block

Lanczos diagonalisation of the ADC(2) and ADC(2)x matrices are reported

in Figs. 3.1- 3.8 for the molecules considered. The basis set employed, as

well as the dimension of the ADC(2) (x) matrices and that of the Lanczos

pseudospectrum space for which the convergence in the cross-section has

been obtained are reported in Table 3.1. Also average relative deviations

are reported in Table 3.2.

3.1.1. Water

Fig. 3.1 shows the experimental total photoionisation cross section of the

H2O molecule as well as a series of Stieltjes imaging results obtained via full

diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisation of

the ADC(2) and ADC(2)x Hamiltonian matrices.

The details of the calculations can be found in Table 3.1. One can see

that the agreement between the experimental and the theoretical cross sec-

tions improves dramatically from ADC(1) to ADC(2) level, but not nearly

as much when going from ADC(2) to the ADC(2)x level. The experimental

measurement in [147] were perfomed using the dipole (e,2e) electron scat-

tering technique, in the more recent [148] the dipole (e,e) spectroscopy tech-

nique has been used, while in [149] the cross-section is measured directly

with photoabsorption techniques, by use of a double ionisation chamber.

The ADC(2) and the ADC(2)x results essentially coincide with the newer

experimental data [149, 148] (apart from the sharp feature at 15 eV), but

show visible deviation from the older experimental results around 20-30 eV

[147]. In Table 3.2 relative deviations of the theoretical results from the

newer experimental data are cited.
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Figure 3.1.: Total photoionisation cross-section of H2O. Triangles – exper-
imental result of Ref. [147], crosses – experimental results of
Ref. [149], squares – experimental result of Ref. [148], dashed-
dotted line – ADC(1)-Stieltjes result, dashed line – ADC(2)-
Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3390 eigenvalues and eigenvectors, full line –
ADC(2)x-Lanczos-Stieltjes cross-section obtained using block-
Lanczos pseudospectrum of 3390 eigenvalues and eigenvectors.

3.1.2. Hydrogen Fluoride

Fig. 3.2 shows the experimental total photoionisation cross section of the

HF molecule as well as a series of Stieltjes imaging results obtained via full

diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisation

of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of the

calculations can be found in Table 3.1. The most recent experimental result

that is possible to find in the literature is from 1981 and the experimental

method used in that work [150] is the magic-angle dipole (e,2e) spectroscopy

technique. The theoretical ADC results reported here show that, although
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ab-initio level C2H4 C2H2 CH4 CO2 CH2O H2O HF NH3 average

ADC(1) 19.3 % 29.5 % 27.5 % 16.9 % 24.9 % 16.8 % 8.1 % 22.7 % 20.4 %

ADC(2) 15.8 % 18.6 % 22.5 % 7.3 % 17.5 % 7.9 % 7.2 % 19.0 % 14.0 %

ADC(2)x 12.4 % 14.6 % 17.7 % 7.3 % 16.4 % 7.8 % 7.6 % 17.6 % 12.1 %

Table 3.2.: Relative deviations of the ADC-Stieltjes photoionisation cross-
sections from the experimental results across the energy range
of ionisation threshold to 100 eV.

the higher-order schemes lead to a much improved peak position, they do

not reproduce precisely the cross-section peak height and the cross-section

shoulder above 40 eV (see Table 3.2 for the average relative deviations of

the computed hydrogen fluoride cross-sections from the experimental one).

However, these theoretical results are in good agreement with the previous

theoretical multichannel random phase approximation (MC-RPA) results of

Cacelli et al. [151]. This suggests a revision of the experimental cross-section

for HF.

3.1.3. Ammonia

Fig. 3.3 shows the experimental total photoionisation cross section of the

NH3 molecule as well as a series of Stieltjes imaging results obtained via full

diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisation

of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of the

calculations can be found in Table 3.1. As in the case of water and hydrogen

fluoride, one can see that the agreement between the experimental and

the theoretical cross sections improves with the order of the ADC scheme,

with the difference between ADC(1) and ADC(2) being more critical than

between ADC(2) and ADC(2)x. The experimental measurement in [152]

were perfomed using the dipole (e,e) spectroscopy technique, while in [153]

the cross-section is measured directly by use of a double ionisation chamber.

Average relative deviations of the computed ammonia cross-sections from

the experimental one [152] are given in Table 3.2. The main contribution

to the deviation comes from the tail of the cross-section in the energy range

above 60 eV.
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Figure 3.2.: Total photoionisation cross-section of HF. Squares – experimen-
tal result of Ref. [150], dashed-dotted line – ADC(1)-Stieltjes
result, dashed line – ADC(2)-Lanczos-Stieltjes cross-section ob-
tained using block-Lanczos pseudospectrum of 3800 eigenvalues
and eigenvectors, full line – ADC(2)x-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3800
eigenvalues and eigenvectors.

3.1.4. Methane

Fig. 3.4 shows the experimental total photoionisation cross section of the

CH4 molecule as well as a series of Stieltjes imaging results obtained via

full diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisa-

tion of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of the

calculations can be found in Table 3.1. The experimental measurement in

[154] were perfomed using the dipole (e,e) spectroscopy technique. One can

see that the agreement between the experimental and the theoretical cross

sections improves with the order of the ADC scheme. The highest-order

ADC(2)x result essentially coincides with the experimental one apart from
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Figure 3.3.: Total photoionisation cross-section of NH3. Squares – exper-
imental result of Ref. [153], crosses – experimental result of
Ref. [152] dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using
block-Lanczos pseudospectrum of 3920 eigenvalues and eigen-
vectors, full line – ADC(2)x-Lanczos-Stieltjes cross-section ob-
tained using block-Lanczos pseudospectrum of 3920 eigenvalues
and eigenvectors.

the value at the peak that is underestimated by about 5 Mb. This underesti-

mation of the maximum height of the peak is characteristic to some degree of

the computed photoabsorption cross-sections of acetylene and ethylene (see

below). Average relative deviations of the computed methane cross-sections

from the experimental one are given in Table 3.2.

3.1.5. Acetylene

Fig. 3.5 shows the experimental total photoionisation cross section of the

C2H2 molecule as well as a series of Stieltjes imaging results obtained via
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Figure 3.4.: Total photoionisation cross-section of CH4. Squares – exper-
imental result of Ref. [154], dashed-dotted line – ADC(1)-
Stieltjes result, dashed line – ADC(2)-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3980
eigenvalues and eigenvectors, full line – ADC(2)x-Lanczos-
Stieltjes cross-section obtained using block-Lanczos pseu-
dospectrum of 3980 eigenvalues and eigenvectors

full diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisa-

tion of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of

the calculations can be found in Table 3.1. Acetylene photoionisation has

been well studied theoretically, in particular sharp resonance features in the

fixed-geometry valence cross-sections have been revealed [155]. The limited

resolution of the SI procedure does not allow one to reproduce such fine

structures, however due to vibrational broadening the experimental values

can be directly compared to the SI results. Among the available experimen-

tal data, the most recent and extended set has been reported by Cooper et

al. [156], who deduced it using dipole (e,e) and (e, e-ion) spectroscopies and

these data have been choosen to compare the theoretical cross-section with.
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Figure 3.5.: Total photoionisation cross-section of C2H2. Squares – exper-
imental results of Ref. [156], dashed-dotted line – ADC(1)-
Stieltjes result, dashed line – ADC(2)-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3170
eigenvalues and eigenvectors, full line – ADC(2)x-Lanczos-
Stieltjes cross-section obtained using block-Lanczos pseu-
dospectrum of 3170 eigenvalues and eigenvectors.

The same experimental method has been used by Cooper et al. to measure

the photoabsorption cross-sections of ethylene and methane. One can see

that the agreement between the experimental and the theoretical cross sec-

tions improves with the order of the ADC scheme. In particular, the position

of the cross-section main peak at 15.5 eV is reproduced essentially exactly

by the ADC(2)x scheme. The height of the peak is smaller with respect to

the experimental measured value, being underestimated by about 5 Mb as

in the case for methane. This difference is due to the energy resolution of

the SI procedure. For the same reason also the double hump structure in the

energy region between 13 eV and 16 eV is only aprroximately reproduced by
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Figure 3.6.: Total photoionisation cross section of C2H4. Squares – ex-
perimental results of Ref. [157], dashed-dotted line – ADC(1)-
Stieltjes result, dashed line – ADC(2)-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3870
eigenvalues and eigenvectors; full line – ADC(2)x-Lanczos-
Stieltjes cross-section obtained using block-Lanczos pseu-
dospectrum of 3870 eigenvalues and eigenvectors.

the SI cross-section presented here, resulting in a small shoulder at 13 eV.

Average relative deviations of the computed acetylene cross-sections from

the experimental one are given in Table 3.2.

3.1.6. Ethylene

Fig. 3.6 shows the experimental total photoionisation cross section of the

ethylene molecule as well as a series of Stieltjes imaging results obtained via

full diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisa-

tion of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of the

calculations can be found in Table 3.1. The experimental measurement in
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[157] were perfomed using the dipole (e,e) spectroscopy technique. One can

see that the agreement between the experimental and the theoretical cross

sections improves significantly from the ADC(1) to the ADC(2) scheme.

The highest-order ADC(2)x result, while more accurate in the tail region

from 30 eV to 100 eV, does not improve the agreement with the experi-

mental one in the main peak region. As in the case of acetylene, also the

ethylene cross-section exhibit a sharp double hump structure in the energy

region around 18 eV at the top of the peak, which is missed by both ADC(2)

and ADC(2)x and is attributed to the resolution of the SI. On the contrary,

the maximum value of the measured cross-section (≈ 61 Mb) is better repro-

duced, comparing to methane and acetylene. Average relative deviations of

the computed ethylene cross-sections from the experimental one are given

in Table 3.2.

3.1.7. Formaldehyde

Fig. 3.7 shows the experimental total photoionisation cross section of the

H2CO molecule as well as a series of Stieltjes imaging results obtained via

full diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisa-

tion of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of the

calculations can be found in Table 3.1. The experimental measurement in

[158] were perfomed using the dipole (e,e) spectroscopy technique. One can

see that the agreement between the experimental and the theoretical cross

sections improves with the order of the ADC scheme. Both ADC(2) and

ADC(2)x methods struggle to reproduce the very sharp peak near 13 eV and

the structure of the main peak at 18-20 eV, but give a better representation

of the tail of the cross-section than the ADC(1) result. Average relative de-

viations of the computed formaldehyde cross-sections from the experimental

one are given in Table 3.2. As in the case of ammonia, the main contribu-

tion to the average deviation comes from the tail of the cross-section, in the

energy range above 30 eV.

3.1.8. Carbon Dioxide

Fig. 3.8 shows the experimental total photoionisation cross section of the

CO2 molecule as well as a series of Stieltjes imaging results obtained via full

diagonalisation of the ADC(1) matrix and block-Lanczos diagonalisation
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Figure 3.7.: Total photoionisation cross-section of CH2O. Squares – exper-
imental result of Ref. [158], Dashed-dotted line – ADC(1)-
Stieltjes result, dashed line – ADC(2)-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3960
eigenvalues and eigenvectors, full line – ADC(2)x-Lanczos-
Stieltjes cross-section obtained using block-Lanczos pseu-
dospectrum of 3960 eigenvalues and eigenvectors.

of the ADC(2) and ADC(2)x Hamiltonian matrices. The details of the

calculations can be found in Table 3.1. The experimental measurement in

[159] were perfomed using the dipole (e,e) spectroscopy technique. One can

see that the agreement between the experimental and the theoretical cross

sections improves with the order of the ADC scheme. The double narrow

peak at near 20 eV is reproduced by Stieltjes imaging as a single peak.

The main difference between the ADC(2) and ADC(2)x results is in the

region of the cross-section minimum that is described more accurately by

the ADC(2)x scheme.

Finally, the oscillations present in the experimental cross section in the
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Figure 3.8.: Total photoionisation cross-section of CO2. Squares – exper-
imental result of Ref. [159], Dashed-dotted line – ADC(1)-
Stieltjes result, dashed line – ADC(2)-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3920
eigenvalues and eigenvectors, full line – ADC(2)x-Lanczos-
Stieltjes cross-section obtained using block-Lanczos pseu-
dospectrum of 3920 eigenvalues and eigenvectors.

30-60 eV range are missed completely by the ADC(1) result and they are not

yet fully reproduced by the second order ADC(2) and ADC(2)x SI results.

More specifically it is possible to abserve that the first plateau around 35

eV is well reproduced by both second order methods, while the second one

at 55 eV is not. This is due to the low resolution of the converged Stieltjes

orders, interpolated to obtain the cross-sections, in the 45-65 eV energy

range. Average relative deviations of the computed carbon dioxide cross-

sections from the experimental one are given in Table 3.2.
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Figure 3.9.: Relative deviations of the ADC-Stieltjes photoionisation cross-
sections from the experimental results averaged on the eight
molecules calculated, as a function of the energy in the en-
ergy range of ionisation threshold to 100 eV. Dashed-dotted
line – ADC(1)-Stieltjes result, dashed line – ADC(2)-Lanczos-
Stieltjes cross-section, full line – ADC(2)x-Lanczos-Stieltjes
cross-section.

3.2. Summary

Stieltjes imaging has been long established as an efficient way of calcu-

lation of total photoionisation cross-sections using discretised continuum

pseudospectra of the final states. However, the accuracy of this technique

is limited by both the ability of the chosen L2 basis set to represent contin-

uum functions within the interaction volume and the numerical instability

of the computational algorithm of the Stieltjes-Chebyshev moment theory.

In view of these limitations, it could be doubted that improving the many-

body theoretical description of the ionised system leads to significantly bet-

ter cross-sections justifying the required higher numerical effort. Indeed,
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the resulting difference in the calculated cross-sections might fall within

the margins of the inaccuracy incurred by the basis set and the Stieltjes

imaging procedure. The first results on ADC-Lanczos-Stieltjes method pre-

sented [104], indicated that this is actually not the case and full inclusion

of double electronic excitations does lead to more accurate Stieltjes imaging

cross-sections. However, the initial work dealt only with two atomic and one

molecular system. In the present work, it has been shown beyond doubt

that the trend seen in Ref. [104] is characteristic of molecules of first row

atoms in the valence energy region. Within the specific family of post-HF

many-electron methods used here (ADC), ADC(2) leads to clear, substan-

tial improvement over the single-excitation ADC(1) theory for all molecules

considered, while for some of them, even a more demanding ADC(2)x level

of theory leads to better agreement with the available experimental data (see

Table 3.2). On average, the precision gain achieved with ADC(2)x relative

to ADC(2) in the considered energy window (from ionisation threshold up

to 100 eV) is about twice smaller than the precision gain of ADC(2) relative

to the single-excitation ADC(1) method.

It is instructive to analyse the relative deviations of the three ab-initio

methods as function of photon energy (Fig. 3.9). Indeed, one observes

that below 60 eV both ADC(2) and ADC(2)x methods lead to impressive

agreement with experiment with the relative deviations below 10%. At

higher photon energies inaccuracy of all the ADC schemes grows reaching

20% level around 80 eV. Since this behaviour does not does not depend

on the level of ab-initio theory, it is concluded that it has to do with the

limitations of the Gaussian single-electron basis sets.

The present work establishes the ADC-Lanczos-Stieltjes method as an

efficient and reasonably accurate technique for molecular cross-sections in

the valence region. Indeed, even within an unoptimised straightforward

implementation of the method on the Intel Core i7-2600 processor, typical

CPU time required for the cross-section calculations presented here is of the

order of a few hours.
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4. Total photoionisation

cross-sections of molecular

excited electronic states by

algebraic diagrammatic

construction-Stieltjes-Lanczos

method

Photoionisation cross-sections from atoms and molecules in their electronic

ground states have been widely studied and described in numerous exper-

imental and theoretical works [50, 147, 149, 150, 151, 153, 152, 154, 155,

156, 157, 158, 159, 160]. On the other hand, experimental characteriza-

tion of photoionisation processes starting from electronically bound excited

states can be very demanding since the initial states in this case are usually

unstable and their lifetime due to radiative [161] or non-radiative decay (vi-

brational relaxation of the excited electronic state to lower energy electronic

states due to vibronic coupling, e.g. at conical intersections) [162] varies

from nanoseconds to a few tens of femtoseconds respectively. Experimental

measurements of total photoabsorption cross-sections of electronically ex-

cited systems are scarce and mostly concentrate on near-threshold atomic

photoabsorption as well as do the theoretical calculations [163]. Recently,

however, due to the advent of ultrashort laser sources in few-femtosecond

and attosecond domains [19], it has become possible to perform pump-probe

experiments with time resolution fully sufficient to “look inside” the shortest

lifetimes of the molecular excited states [20]. This development opens the

possibility of studying coherent electron dynamics in microscopic systems on

its natural few-femtosecond or sub-femtosecond time-scale. A basic pump-

probe experiment of such kind would consist of an excitation of a molecule
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with a short pump pulse to form an electronic wavepacket of the ground

and a series of excited states, which is probed with a delayed ionising XUV

pulse. Broad-band XUV absorption by such a wavepacket is governed by

interfering ionisations from distinct bound states into the same continuum

state. As a result, the ionic yield (or the transient absorption strength)

shows modulation as a function of the pump-probe pulses time delay, allow-

ing one to follow the wavepacket dynamics. Very recently, an experiment

of such kind has been indeed performed [164], and the interpretation of

the experimental results was given using the time-dependent density func-

tional theory (TDDFT). Modelling the pump-probe experiments of the type

of Ref. [164] requires phase information for the description of interference

between the excitation-ionisation pathways and cannot be achieved using

cross-sections. However, calculation of cross-sections of the plausible inter-

mediate (excited) states of these schemes can teach us a lot about the level

of the ab-initio description required for the full modelling. To this end,

in the present Chapter, the L2 ab-initio ADC-Lanczos-Stieltjes method for

the molecular ground-state total photoionisation cross-section is extended to

the calculation of photoionisation cross-sections of molecular electronically

excited states [165] using the intermediate state representation (ISR) of the

dipole operator in the ADC many-electron basis set in order to compute

the dipole transition moments between the excited states of the molecule.

The comparison between the results obtained using different levels of the

many-body theory, i.e. ADC(1), ADC(2) and ADC(2)x is shown for the

first two singlet excited states of CO, N2 and H2O both at the ground state

and the excited state equilibrium nuclear geometries.

4.1. ADC-Lanczos-Stieltjes Photoionisation

cross-sections of molecular excited states:

application to H2O, N2 and CO.

The basic computational details of excited state cross-section calculations

are analogous to the ones for the ground-state photoionisation calculations

described in the previous Chapter. However, here the computational proce-

dure presents some differences: it consists of building the ADC Hamiltonian

matrix in the symmetry space to which the initial state belongs; block-
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Davidson diagonalisation of the initial Hamiltonian to obtain the eigenvec-

tor of the initial state; construction of the ADC Hamiltonian matrix for the

dipole-allowed final symmetry space; and finally the block-Lanczos diago-

nalisation to obtain the final space pseudo-spectra. The transition dipole

moments are obtained according to Eq. (2.104) by contracting on the fly

the ISR dipole matrix with the fixed initial state eigenvector and the final

Lanczos pseudospectrum eigenvectors.

The basic physical difference between the ground state and the excited

state photoionisation becomes apparent if one considers these processes

qualitatively as transitions between single electronic configurations within

the frozen orbital approach (see Fig. 4.1). Indeed, applying the Slater-

Condon rules [49], one can easily see that the HF ground state can only be

excited into a 1h1p configuration, while a 1h1p excited state can be excited

both to another 1h1p and to a 2h2p configurations. This simple qualita-

tive argument suggests that inclusion of the 2h2p configurations into the

photoionisation theory is essential for the excited state processes. In what

follows the validity of this conclusion has been tested quantitatively.

In order to investigate how the different levels of ab-initio theory work for

the excited state photoionisation, calculations for different excited states of

three molecules have been performed: N2, CO and H2O, one of which (N2)

has been investigated experimentally in Ref. [164]. The calculated vertical

and (for CO and N2) adiabatic ADC(2) and ADC(2)x excitation energies

of the electronic states considered in this thesis are reported in Table 4.1,

together with the corresponding experimental values (the basis sets used for

the ADC calculations are reported further below). The lowest-lying singlet

excited state of water, 11B1 is a rapidly dissociating state, leading to the

H(2S) and OH(X2Π) formation as has been shown both experimentally

[166, 167] and theoretically [168]. The next 11A2 excited electronic state of

water is dipole forbidden and has been identified by electron-impact energy-

loss spectroscopy [169]. The 11A2 state is also predicted to be dissociative

and, similarly to the lower 11B1 state, is thought to be involved in the

predissociation processes of higher lying states [170, 168]. Thus, Table 4.1

gives no adiabatic excitation energies for the water excited states.

The results obtained for the vertical excitation energies are in a very good

agreement with the experimental ones and constitute an improvement over

the previously reported ADC results [171] due to the larger basis sets used
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24cmVertical excitation energies (eV) 24cmAdiabatic excitation energies (eV)

State

H2O 11B1

H2O 11A2

CO 11Π

CO 11Σ−

N2 11Πg

N2 11Σ−u

ADC(2) ADC(2)x Exp.

7.18 6.98 7.40-7.46[a,b,c,d,e]

8.82 8.63 9.09 [b]

8.85 8.32 8.51 [f ]

10.15 9.64 9.88 [f ]

9.55 8.98 9.31 [g]

10.31 10.13 9.92 [g]

ADC(2) ADC(2)x Exp.

– – –

– – –

8.11 7.63 8.07 [h]

7.57 7.12 8.07 [h]

8.58 8.10 8.59 [h]

8.69 8.40 8.45 [h]

Table 4.1.: Comparison between the ADC(2) and ADC(2)x values and the
experimental values for the vertical and adiabatic excitation en-
ergies of the 11B1, 11A2 excited states of water, the 11Π+

g and
11Σ−u excited states of N2 and the 11Π and 11Σ− excited states
of CO. [a] – Ref. [172], [b] – Ref. [169], [c] – Ref. [173], [d] –
Ref. [174], [e] – Ref. [175] [f] – computed in Ref. [176] via nu-
merical solution of the nuclear Schrödinger equation using the
spectroscopic rovibronic constants given by Huber and Herzberg
in Ref. [177]. [g] – calculated in Ref. [178] using the same proce-
dure as in Ref. [176]. [h] – Ref. [177]. All the energy values are
given in eV.
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Figure 4.1.: Schematic representation of a two-step dipole excitation process
within simple frozen orbital approach. In the first step, HF
ground state is excited by dipole (i.e. a single-electron operator)
to singly excited configurations (1h1p’s), whereas in the second
step each 1h1p can be excited to both 1h1p’s and 2h2p’s.

in these calculations. The calculated adiabatic excitation energies are also

in a good agreement with the experimental values, apart from the CO 11Σ−

state, where a larger discrepancy is observed. It should be noted that ADC

schemes are all based on HF solution of the ground state and their accuracy

is expected to deteriorate at internuclear distances significantly larger than

the ground state equilibrium geometry. Among the excited states consid-

ered here, CO 11Σ− state shows the largest distortion of the excited state

geometry relative to the ground state one, and the available precise com-

putations of the corresponding adiabatic transition energy are based on the

multiconfigurational and multireference approaches [179]. For almost all

excited states considered, the extended ADC(2)x does not lead to a clear

improvement over ADC(2), as could be expected for the states dominated by
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single excitations. The experimental-theoretical discrepancies in the vertical

excitation energies of water (see Table 4.1) partly result from the assign-

ment of the experimental value as the maximum of the band rather than

its centre of gravity (see Ref. [180] for the detailed analysis in the harmonic

approximation). The discrepancies between the ADC and the experimental

adiabatic excitation energies are affected by the lack of correction of the

theoretical values for the zero point energy differences. Apart from the CO

11Σ− state mentioned above, the ADC results reported in this thesis are

found to be in a very good agreement with previous theoretical calculations

of the vertical and adiabatic excitation energies in H2O, N2 and CO, see

Refs. [181, 182].

Fig. 4.2 and Fig. 4.3 show the total photoionisation cross sections of the

H2O molecule in the first 11B1 and the second 11A2 electronically excited

states, as a result of the Stieltjes imaging technique applied to the pseudo-

spectra obtained via full diagonalisation of the ADC(1) matrix and block-

Lanczos diagonalisation of the ADC(2) and ADC(2)x Hamiltonian matrices

in the dipole-allowed final symmetry spaces. Every cross-section reported

in this thesis is drawn as a function of the photon energy, starting from the

calculated photoionisation threshold of the respective initial excited bound

state.

The basis set employed, as well as the dimension of the ADC(2)x matrices

and that of the Lanczos pseudospectrum space for which the convergence in

the cross-section has been obtained are reported in Table 4.2. In both cases

the cross-sections have been calculated for two different nuclear geometries:

the equilibrium ground state geometry and the lowest energy C2v geometries

for the lowest excited states of H2O as calculated in Ref [182]. The latter

geometries correspond to the saddle points of the dissociative full potential

energy hypersurfaces of the excited water molecule.

At the photon energies close to threshold, all three methods give similar

results for the cross-section, with the quantitative differences being compa-

rable to those obtained for ground state photoionisation [104, 146]. However,

throughout the > 20 eV photon energy range, the ADC(1) cross-section rep-

resents, at both geometries, just a small fraction of the total one predicted

by the ADC(2) and the ADC(2)x methods. The main cross-section peak

is simply absent from the ADC(1) result. This inadequacy of the single

excitation theory can be easily explained by the previous qualitative con-
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Figure 4.2.: Total photoionisation cross section of the H2O molecule from
the first 11B1 electronically excited state at the ground state
equilibrium geometry (a) and at the excited state saddle point
geometry (b, see text for details). Dashed-dotted line –
ADC(1)-Stieltjes, dashed line – ADC(2)-Lanczos-Stieltjes, full
line – ADC(2)x-Lanczos-Stieltjes. See Table 4.2 for computa-
tional details.

siderations (see Fig. 4.1). Indeed the ADC(2) method produces a much

larger cross-section because it takes into account the Slater-Condon-allowed

transitions to the doubly excited final states. The dramatic change in the

cross-section profile occurring when going from the single excitation to the

double excitation methods tells us that the photoionisation channels leaving

the molecular ion in an excited state are not only significantly, but are actu-

ally starting to be the dominant ones already about 10 eV above threshold.

Contrary to the situation with the ground state cross-sections [104, 146],

the ADC(2) cross-sections differ quite strongly from the ADC(2)x ones.

Once the 2h2p final states become important, the interactions between the
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22cmMolecular state 22cmBasis set 22cmInitial dimension 22cmFinal dimension 22cmKrylov dimension

H2O 11B1 25cmcc-pVTZ + O(10s7p6d); H(3s3p2d) 46507 49785 6025

H2O 11A2 25cmcc-pVTZ + O(10s10p4d); H(3s3p2d) 45695 48665 8000

N2 11Πg 25cmN:cc-pCVTZ+(6s9p6d3f) 82777 87431 9600

N2 11Σ−u 25cmN:cc-pCVTZ+(9s9p9d6f) 125292 131499 11580

CO 11Π 25cmC,O:cc-pVDZ+(4s6p5d) 40749 44016 6700

CO 11Σ− 25cmC,O:cc-pVTZ+(4s6p5d2f) 88704 93744 10000

Table 4.2.: The basis sets employed, the dimension of the ADC(2)x matri-
ces in the initial and in the final dipole-allowed symmetry spaces
and the dimension of the final space Lanczos pseudospectrum,
for which the converged cross-section has been obtained, are re-
ported for each molecular initial excited state studied in this
thesis.
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Figure 4.3.: Total photoionisation cross section of the H2O molecule from
the second 11A2 electronically excited state at the ground
state equilibrium geometry (a) and at the excited state saddle
point geometry (b, see text for details). Dashed-dotted line –
ADC(1)-Stieltjes, dashed line – ADC(2)-Lanczos-Stieltjes, full
line – ADC(2)x-Lanczos-Stieltjes. See Table 4.2 for computa-
tional details.

2h2p configurations, first taken into account in the ADC(2)x method, start

playing a role as well. Looking, for example, at the photoionisation cross-

section from the 11B1 state calculated at the ground state nuclear geometry

it is possible to see that the ADC(2)x peak energy is shifted by around 8 eV

with respect to the ADC(2) value. The difference is appreciable also in the

60-100 eV energy range in which the ADC(2)x cross-section is considerably

lower than the ADC(2) prediction (see Fig. 4.2). The difference between

the ADC(2) and the ADC(2)x results is even more appreciable in the cross-

section from the 11A2 state (see Fig. 4.3).

In the previous ground state calculations [146], we have used starting
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Lanczos blocks consisting of all 1h1p intermediate states, |Ψ̃1〉, see Eq. (2.87).

In the present excited state calculations, this strategy is no longer the opti-

mal one, because of the importance of the doubly-excited configurations in

the final states of the absorption process. Instead, we have found it bene-

ficial to use a bigger starting block consisting also of the N 2h2p configu-

rations with the greatest dipole transition moments from the initial state,

〈Ψ̃2 | D̂ | ΨIn〉 calculated at the ADC(2) level. In the case of the first 11B1

excited state of the H2O molecule, the latter approach with N = 100 leads

to convergence after only 25 iterations, i.e. with 6025 Lanczos vectors in

contrast with the previous N = 0 approach where the Lanczos vectors used

would be 15665 (more than twice as many iterations). Every calculation re-

ported in this thesis was performed using both schemes for the initial block

and it was checked that both cases lead to the same convergent cross-section.

Unfortunately when the strict ADC(2) method is used, the scheme includ-

ing the 2h2p’s into the initial block is not applicable, because the nature of

the Hamiltonian matrix leads in that case to exact linear dependencies in

the Krylov space immediately after the first Lanczos iteration. This is due

to the fact that the double excitations block in the strict ADC(2) method is

diagonal, and therefore the result of the action of the Hamiltonian on any

doubly excited state is a linear combination of this state and of all the 1h1p

states it is coupled to. In other words, Hamiltonian action leads in this case

to a state lying in the starting Krylov space.

Simple qualitative considerations (see Fig. 4.1) suggest that the central

feature of the excited state cross-sections, namely the importance of the

double excitations, should not depend crucially on the molecular geometry.

The calculations performed at the saddle point geometry of the 11B1 excited

water molecule (see Fig. 4.2) show that this is indeed the case. The dramatic

differences between the ADC(1) and the doubly excited ADC(2)-ADC(2)x

calculated cross-sections are still present at the modified nuclear geometry.

The same turns out to be true for all the excited states cross-sections stud-

ied in this thesis. Nevertheless, some modifications in the excited states

ADC(2) and ADC(2)x cross-sections depending on the nuclear geometry

can be observed; in the case of the water 11B1 state the main peak shifts of

about 3 eV with respect to the ground state equilibrium geometry energy

position value, both in the ADC(2) and ADC(2)x cross-sections. Differ-

ently with respect to the ADC(2) cross-section, where the peak maximum
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Figure 4.4.: Total photoionisation cross section of the N2 molecule from
the first 11Σ−u electronically excited state in the ground state
(a) and excited state (b) equilibrium geometries. Dashed-
dotted line – ADC(1)-Stieltjes, dashed line – ADC(2)-Lanczos-
Stieltjes, full line – ADC(2)x-Lanczos-Stieltjes. See Table 4.2
for computational details.

increases by about 5 Mb, the height of the peak in the ADC(2)x result at

the excited state equilibrium geometry shows a slight decrease. The cross-

section dependencies on nuclear positions show up a bit stronger in the 11A2

excited state, where both the ADC(2) and the ADC(2)x peaks are shifted

of about 3 and 7 eV respectively, with the ADC(2) height being increased

of about 14 Mb while the ADC(2)x one being decreased by about 3 Mb at

the excited state saddle point geometry (Fig. 4.3).

In Figs. 4.4-4.7 the total photoionisation cross sections calculated fixing

as the starting state for the absorption process respectively the first 11Πg

and the second 11Σ−u excited states of the N2 molecule and the first 11Π and
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Figure 4.5.: Total photoionisation cross section of the N2 molecule from the
second 11Πg electronically excited state in the ground state
(a) and excited state (b) equilibrium geometries. Dashed-
dotted line – ADC(1)-Stieltjes, dashed line – ADC(2)-Lanczos-
Stieltjes, full line – ADC(2)x-Lanczos-Stieltjes. See Table 4.2
for computational details.

the second 11Σ− excited states of the CO molecule, are reported. The basis

set employed, as well as the dimension of the ADC(2)x matrices and that of

the Lanczos pseudospectrum space for which the convergence in the cross-

section has been obtained are reported in Table 4.2. For all of these excited

states the calculations are computed at two different nuclear geometries, the

ground state equilibrium one and the specific excited state equilibrium one

as taken from Ref. [177].

The difference between the ADC(2) and the ADC(2)x cross-sections at

the ground state nuclear equilibrium geometry is even more evident in the

N2 and CO molecules than in water. However in the excited states of the
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Figure 4.6.: Total photoionisation cross section of the CO molecule from the
first 11Π electronically excited state in the ground state (a) and
excited state (b) equilibrium geometries. Dashed-dotted line –
ADC(1)-Stieltjes, dashed line – ADC(2)-Lanczos-Stieltjes, full
line – ADC(2)x-Lanczos-Stieltjes. See Table 4.2 for computa-
tional details.

N2 and CO molecules studied in this thesis it is possible to notice that,

in general, the ADC(2)x cross-sections show smaller dependence, if any,

with respect to the nuclear geometry in comparison to the strict ADC(2)

ones. Therefore, the difference between the cross-sections calculated with

the two methods tends to increase with distortion of the nuclear equilibrium

geometry, even if not as much as it does in the case of the 11A2 excited state

cross-section of water molecule.

For all the four states considered, the ADC(2)x cross-section, in the nu-

clear ground state equilibrium geometry, exhibits a smaller peak at a lower

energy with respect to the ADC(2) one, this behaviour being confirmed
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Figure 4.7.: Total photoionisation cross section of the CO molecule from the
second 11Σ− electronically excited state in the ground state (a)
and excited state (b) nuclear equilibrium geometry. Dashed-
dotted line – ADC(1)-Stieltjes, dashed line – ADC(2)-Lanczos-
Stieltjes, full line – ADC(2)x-Lanczos-Stieltjes. See Table 4.2
for computational details.

at different nuclear geometries as well. Apart from the near-threshold en-

ergy region, the ADC(1) cross-sections are found to be strongly suppressed

in comparison with the ones calculated using double excitation theories.

Qualitatively, one could expect a single excitation theory to fail starting

from the energy region of the first satellite (2h1p-like) states of the ionised

system giving rise to the 2h2p-like final photoionisation states. For the

molecules considered here, the satellites in the molecular ion spectra first

appear about 10 eV above the ground state of the ion (see, e.g. Ref. [183]),

and indeed in this energy region, the ADC(2)x results already differ strongly

from the ADC(1) ones; on the other hand the strict ADC(2) results start to
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considerably differ from the single excitation theory ones at slightly higher

energies. (see Figs. 4.2-4.7).

4.2. Summary

In the present Chapter the ADC-Lanczos-Stieltjes method has been ex-

tended to compute photoionisation cross-sections of electronically excited

molecular states. Comparison of the series of excited state cross-sections

computed at the different levels of the ab-initio theory led us to conclude

that the single excitation ADC(1) method is inadequate for the description

of the excited state photoionisation even at the qualitative level. The rea-

son for the inapplicability of the first-order scheme is the double excitation

(2h2p) character of many of the final states of the process, which are conse-

quently omitted by the single excitation method. While this feature is fully

expected on the basis of the simple Slater-Condon rule analysis, the extent

to which the double excitations change the cross-section could be seen only

in a quantitative study such as the one performed here. The numerical

results reported in this Chapter show beyond doubt that the full inclusion

of double electronic excitations is absolutely necessary in order to produce

even a qualitatively accurate photoionisation cross-section. Moreover, it is

found that it is important to include the coupling between the double excita-

tions into the theory. Indeed, within the ADC family of methods used here,

ADC(2)x leads to a clear, substantial systematic difference with respect to

the strictly second-order ADC(2) theory for all molecules and geometries

considered. This is in sharp contrast to the case of the ground state cross-

sections, where ADC(2) and ADC(2)x results were found to be in much

better agreement [104, 146]. Since the doubly excited final states of the

excited state photoionisation are much better described by the ADC(2)x

theory, it has been assumed that the ADC(2)x cross-sections represent a

major improvement over the ADC(2) results.

These calculations demonstrate that a theoretical modelling of photoion-

isation of excited states requires an intrinsically double excitation theory

with respect to the ground state and can not be achieved by the standard

single excitation methods. There is no reason to assume that the failure of

the single-excitation theory for the excited state photoionisation is unique

to the ADC(1) scheme. Indeed, these results imply that any method that
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does not fully include the 2h2p final states, such as configuration inter-

action singles (CIS), Tamm-Dancoff approximation (TDA), random phase

approximation (RPA), linear response TDDFT, etc. can not be expected to

provide a correct description of the process. A separate issue is whether the

non-perturbative TDDFT calculations, such as performed in Ref. [164] can

describe ionisation of a many-electron wavepacket consisting of the ground

and a series of excited states. For the exchange-correlation functionals used

in Ref. [164], one would expect that in general the contribution of the dou-

ble excitation relative to that of the singles is subject to non-physical con-

straints stemming from the single-determinant description and as a result

the XUV ionisation probability should not be given correctly. Indeed, arte-

facts arising from the single determinant character of the wave-function have

been extensively discussed in the context of the related time-dependent HF

(TDHF) method [184]. However, in the cases where the exciting IR field

can be considered as an adiabatic perturbation, the initial (approximately

HF, i.e. single-determinant) ground state would physically evolve into a

TDHF-like state under the influence of the IR field. XUV ionisation of

such an adiabatic TDHF state should be given correctly by the TDHF or

TDDFT theory as long as the XUV intensity is in the perturbative regime.

These conditions are met by the experiment of Ref. [164]. From the cross-

section analysis presented in this Chapter it is clear however that careful

benchmarking of the performance of the non-perturbative TDDFT with

various exchange-correlation functionals in the time-dependent modelling

of excitation-ionisation schemes is highly warranted.
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5. B-spline Algebraic

Diagrammatic Construction:

Application to Photoionisation

Cross-Sections

In the previous two Chapters it has been shown that the ADC schemes

in conjunction with iterative block-Lanczos (BL) diagonalisation [106, 107,

108] and the Stieltjes-Chebyshev moment theory [94] can be used also for

accurate and efficient characterization of bound-continuum transitions, i.e.

for calculations of photoionisation cross-sections [104, 146, 165]. In the bulk

of the ADC work cited above and presented in Chapters 3 and 4, Gaussian

type orbitals (GTOs) have been used as a single-electron basis as is indeed

customary in the ab-initio quantum chemistry. However, the benchmark

study [146] reported in Chapter 3 indicates that it is the use of the GTOs in

the excitation ADC schemes that leads to the onset of major inaccuracies in

molecular photoionisation cross-section calculations at about 70 eV above

threshold. This trend has been shown to be general for a series of molecular

species and independent of the order of the employed ADC scheme [146].

Moreover, GTO-based ADC-Lanczos-Stieltjes method fails to reproduce not

only the narrow features of the cross-section due to excitation resonances

(as is fully expected of a moment theory technique), but even the much

broader features, such as Cooper minima, e.g. in argon photoionisation.

Very similar behaviour has been observed in a recent implementation of the

GTO/Stieltjes approach within linear response coupled cluster models for

electronic excitations [105]. Even very careful GTO selection cannot yield

converged high order moments, i.e high energy features and high resolution,

without running into linear dependence problems [105]. The inadequacy

of the GTO bases for the characterization of the molecular photoionisation

calls for an introduction of new basis sets, better suited for the description
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of the oscillatory continuum wave-functions across the interaction region.

Several such basis sets have been already introduced in the nineties within

the framework of the many-body methods that do not fully include double

electronic excitations and were successfully used for the solution of the time-

independent many-electron problems, e.g. for photoionisation cross-section

calculations, see e.g. Ref. [185].

In the present Chapter the first implementation of the ab-initio many-

body Green’s function method, algebraic diagrammatic construction (ADC),

in the B-spline single-electron basis [55], is presented. The work presented

in this Chapter addresses the single-electron basis set issue by construc-

tion B-spline versions of ADC schemes explicitly treating not only sin-

gle [ADC(1)], but also double [ADC(2)] excitations and applying them to

the ab-initio calculation of static (photoionisation cross-sections) quanti-

ties. The single-electron basis employed is composed of the spherical har-

monics for the angular part and a B-spline expansion for the radial co-

ordinate. In order to calculate the total photoionisation cross-sections of

nobel gas atoms and to perform a direct comparison of the performance

of the B-spline basis against the Gaussian type one, the Stieltjes imaging

(SI) [94, 104, 146, 165] technique, which allows one to obtain the correct

continuum oscillator-strength density, without going through the direct cal-

culation of the correctly energy-normalised wave-functions, has been used.

The present development paves the way for the application of the B-spline

ADC to both energy- and time-resolved theoretical studies of many-electron

phenomena in atoms, molecules and clusters.

5.1. Computational details

While this choice of the single-particle basis functions leads to higher compu-

tational effort than in the GTO case, it at the same time simplifies tremen-

dously the numerical algorithm mainly because of the absence of linear

dependencies to take care of; moreover, the minimal localised support of

the individual primitive B-spline basis functions allows to reduce the num-

ber of radial B-spline one-electron and two-electron integrals (Eq. (2.147))

to be calculated and dynamically stored in the RAM at the beginning of

the calculation as already shown in Eqs. (2.148) and (2.149). Computer

time for the evaluation of the radial two-electron integrals over the prim-
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itive B-spline functions is a minor part of the total computational cost of

the present calculations.

The main numerical procedure required in a B-spline-ADC calculation

consist of four key steps, namely:

1. Solution of the B-spline HF equations.

2. One- and two-electron integral transformations with simultaneous cal-

culation of the first order Hamiltonian and dipole matrix-elements on

the fly.

3. Calculation of the second-order matrix elements in the ADC(2) method.

4. Full/iterative diagonalisation of the ADC Hamiltonian and calculation

of the static physical quantity of interest (e.g. a cross-section) via the

SI technique or time-propagation of an initial state in order to obtain

the dynamic quantity of interest (e.g. HHG spectrum).

The first step consists of solving a set of one-particle integro-differential

equations with non-local terms, i.e. the Hartree-Fock equations. These

equations are solved iteratively, in each irreducible representation of the

electronic Hamiltonian, in the standard way [49].

The second step makes the integrals transformation from the primitive

B-spline basis set to the basis of the Hartree-Fock (HF) canonical orbitals.

Two-electron integral transformation from primitive orbital sets to atomic/molecular

working orbital sets is the most time consuming process for large-scale B-

spline ADC calculations.

The two-electron integrals over the primitive monocentric basis set func-

tions of Eq. (2.134), indeced with the integers 1,2,3,4, are defined as

(12 | 34) =

∫ ∫
Φ1 (r) Φ2 (r)

1

| r− r′ |
Φ3

(
r
′)

Φ4

(
r
′)
d3rd3r

′
, (5.1)

where

Φ1 (r) =
1

r
Bi1 (r)Yl1,m1 (θ, φ) . (5.2)

Two-electron integrals over the primitive monocentric basis set functions

can be factorised, using Eq. (5.2), into products of radial and angular con-
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tributions and consequently expressed as

(12 | 34) =
kmax∑

k=kmin,2

ANG (k, l1,m1, l2,m2, l3,m3, l4,m4)Rk (i1i2, i3i4) ,

(5.3)

where Rk (i1i2, i3i4) is the radial two-electron integral over the primitive

B-spline functions of Eq. (2.147), the two extremes of the summation over

the k index are given by

kmin = max (| l1 − l2 |, | l3 − l4 |)

kmax = min (l1 + l2, l3 + l4)

(5.4)

and the function ANG (k, l1,m1, l2,m2, l3,m3, l4,m4), which depends only

on the angular momentum quantum numbers of the orbitals and is the

result of the two-dimensional integration onto the angular variables, can be

expressed as

ANG (k, l1,m1, l2,m2, l3,m3, l4,m4) =

+k∑
q=−k

Y Y Y (l2, k, l1,m2, q,m1)Y Y Y (l3, k, l4,m3, q,m4)
4π

2k + 1
.

(5.5)

Finally, here the quantity YYY stands for the integral of the product of

three spherical harmonics and is given by

Y Y Y (l1, l2, l3,m1,m2,m3) =

∫ 2π

0

∫ π

0
Y ∗l1,m1

(θ, φ)Yl2,m2(θ, φ)Yl3,m3(θ, φ) sin θdθdφ =
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(−1)m1

√(
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

) (
l1 l2 l3

−m1 m2 m3

) (
l1 l2 l3

0 0 0

)
,

(5.6)

where

(
l1 l2 l3

−m1 m2 m3

)
is a Wigner 3j-symbol and is related to the

Clebsch-Gordan coefficients (l1l2m1m2 | l1l2lm) through

(
l1 l2 l

m1 m2 m

)
=

(−1)l2−l1+m

√
2l + 1

(l1l2m1m2 | l1l2l −m) . (5.7)

Using the relation between the canonical HF orbitals and the primitive

monocentric basis functions, which reads explicitely as

ψn =
∑
j

ΦjC
n
j =

∑
(l,m)

∑
i

Cnl,m,iYl,m(θ, φ)
1

r
Bi(r) , (5.8)

the two-electron integrals over the primitive monocentric basis set are trans-

formed to the HF canonical basis set as

(pq | rs) =
N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

Cpi1C
q
i2

(12 | 34)Cri3C
s
i4 , (5.9)

where N is the total number of HF orbitals.

However, a straightforward application of Eq. (5.9), simply looping over

all p, q, r, s, and then looping over all the primitive indices 1,2,3,4, gives rise

to a total number of numerical operations which scales as N8, where N is the

number of basis states. Indeed, this elementary approach would give eight

nested loops which, with a basis size required for a realistic calculation, is

beyond the power of present computers.

However, a careful analysis shows that the size of the problem can be

reduced to N5. Therefore a different sequential algorithm, which allows the

O
(
N8
)

process to be converted into four O
(
N5
)

consecutive steps, has been

implemented in major ab-initio quantum chemistry MO codes [49].

The trick is to convert one index at a time from the primitive orbitals to

the final orbitals basis. That is, starting with the matrix (tensor) (12 | 34),
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convert one of the indices (a ”quarter transform”), then convert the next

one, until a total of four quarter-transforms are accomplished. Therefore

the total 4-indices transformation can be thought of in the following way

(pq | rs) =

 N∑
i1=1

Cpi1

 N∑
i2=1

Cqi2

 N∑
i3=1

Cri3

 N∑
i4=1

Csi4 (12 | 34)

 . (5.10)

This is called factorizing the expression, and it helps reducing the cost

immensely. Therefore the transformation is performed with this common

four-step algorithm, giving a scaling of 4N5 with respect to the number of

orbitals to be transformed. In the B-spline basis set case an N5 scaling is

still large. Further reductions are possible depending on the type of basis

set, as discussed in the following for monocentric B-splines, and on the level

of ADC theory used.

Indeed, the first transformation step reads:

(12 | 3s) =
∑

(l1,m1)

∑
i1

∑
(l2,m2)

∑
i2

∑
(l3,m3)

∑
i3

N∑
d=1

∑
(l4,m4)

∑
i4

Csl4,m4,i4〈12 | 34〉

(5.11)

and, with the monocentric B-splines as primitive basis set, scales therefore as

O
(
N4
angN

2
B−splines(2jord − 1)22lmaxN

)
. Here the factor 2lmax comes from

the k loop in Eq. (5.3), lmax denotes the maximum angular momentum used

in the monocentric expansion and jord stands for the order of the B-spline

basis set used. Similar procedures are repeated three more times untill all

the four indices have been transformed.

Due to the number of basis functions involved, both the memory require-

ments and the time of the transformation can quickly become unaffordable

with the increase in the number of spherical harmonics and/or of the radial

B-spline functions used in the monocentric expansion (Eq. (2.134)). This

problem has been approached by calculating only the two-electron integral

types required by the ADC Hamiltonian and dipole matrix elements: in

the ADC(1) case only the integrals involving two virtual canonical orbitals

indices are needed, namely integrals of the type (vv—oo) and (vo—vo). In

the ADC(2) calculations two other types of integrals are required, namely

the (vv—vv), (vv—vo) and the less demanding (vo—oo) types [56].

Furthermore, use has been made of the Hamiltonian symmetry group to
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divide every type of integral calculation with respect to the quadruplet of

orbital irreducible representations involved. While in the atomic and linear

molecules calculations the full symmetry of the system is exploited, i.e. the

full rotational symmetry and the full D∞h or C∞v point group symmetry

respectively, in the general, non-linear, molecular case the biggest Abelian

symmetry subgroup of the molecule has been used. Following this strategy

it is possible to end up with an increased number of less demanding single

calculations to be performed.

In the cases where one of the final orbital indices is restricted to the

occupied HF orbitals, that is (vv—oo), (vo—vo), (vo—oo) and (vv—vo),

this index is the first one to be transformed. Doing so allows the scaling of

the first transformation to be considerably improved, as the loop over the

final transformed index reduces to a smaller loop over the occupied orbitals

in a certain symmetry space of the system, and to minimise the memory

allocation requirements after the first step. Moreover, the scaling can be

further improved noticing that the occupied orbitals are localised in space

within the molecular region; therefore, the loop over the radial B-spline

functions with the same radial argument as the transformed orbitals (i.e.

i3) can be truncated at an index value for which their overlap with the

occupied orbital becomes smaller than a certain threshold value. Looping

over higher indices would be useless as the resulting two-electron integrals

would have a negligible value; the same argument allows to reduce the

memory allocation requirements for the intermediate two-electron integrals

vectors as a considerable number of integrals is not required anymore in the

subsequent steps.

The scaling becomes then O
(
N4
ang NBspl N

Rocc
Bspl (2jord − 1)2 2lmax Nocc

)
,

where Nocc stands for the number of occupied HF orbitals and NRocc
Bspl denotes

the number of B-splines that overlap with the occupied orbitals. If extended

radial grids are used, this can give a considerable gain (up to a factor of 10

with the B-spline basis sets used in this thesis). In Table 5.1 the scalings of

the number of numerical operations required at any step of the two-electron

integral transformation for the cases of the (vo—vo) and (vv—oo) types of

integrals are reported.

However, even though these procedures considerably reduce the compu-

tational effort required by the transformation, the number of basis functions

used in B-spline ADC is well above the standards of a typical ab-initio cal-
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21.3cmTransf. step (vo—vo) (vv—oo)

1 27.2cmO

(
N4
ang

(
NRocc
Bspl

)2
(2jord − 1)2 2lmaxNocc

)
27.4cmO

(
N4
angNBsplN

Rocc
Bspl (2jord − 1)2 2lmaxNocc

)

2 27cmO

(
N3
ang

(
NRocc
Bspl

)2
(2jord − 1)NoccNvirt

)
27cmO

(
N3
angNBsplN

Rocc
Bspl (2jord − 1)N2

occ

)

3 27cmO
(
N2
angN

Rocc
Bspl (2jord − 1)N2

occNvirt

)
27cmO

(
N2
angNBspl (2jord − 1)N2

occNvirt

)

4 27cmO
(
NangN

Rocc
BsplN

2
occN

2
virt

)
27cmO

(
NangNBsplN

2
occN

2
virt

)

Table 5.1.: Scaling of the number of numerical operations required at any
step of the two-electron integral transformation for the cases of
the (vo—vo) and (vv—oo) types of integrals. Here Nvirt stands
for the number of virtual HF orbitals. With the use parallel
algorithm described in the text and schematically represented in
Fig. 5.1, these scalings, for each transformation step, must be
divided by a factor approximately equal to the number of cpu’s
used.
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culation and as a result, the numerical algorithm has to be further highly

optimised. Consequently, it becomes necessary to take advantage of the par-

allel computing environment [186, 187], which has become increasingly easy

to manage, in order to minimise the computer time for the transformation.

Each of the reduced single calculations has been massively parallelised,

both inter-nodes, with the standard MPI (message passing interface) tech-

nology in parallel computing environment, and intra-node with the OpenMP

(shared memory) technology. Indeed, as is well recognised in HPC commu-

nities, parallelization is now key for large-scale simulations in any research

field, no matter what kind of computers, vector or scalar parallel, are used.

The parallel transformation algorithm presented here makes it possible to

carry out large-scale calculations within the B-spline based post Hartree-

Fock ADC(n) theories on parallel computers.

However it must be mentioned that in general, although the MPI technol-

ogy allows to substantially reduce the memory requirement per single-node,

substantial global amount of RAM (spread across a high number of nodes)

is still needed for B-spline ADC calculations requiring a big dimension of

the one-electron basis set expansion and that, for such basis sets, assembling

the two-electron integrals is still a time-consuming task.

The parallel algorithm used in this work to perform the two-integral

transformation is described in the following. In details, while the vector

containing the radial two-electron integrals over the primitive B-spline ba-

sis functions (Eq. 2.147) is allocated in the RAM on each MPI node, since

the first transformation step, the dynamical memory allocation of the trans-

formed two-electron integrals vector is divided between the computational

MPI nodes available. This division is performed onto the first index of the

four-indices two-electron integral tensor VIJKL. Each of these pieces of the

two-electron integral vector undergoes the four indices transformations from

VIJKL to VPQRS locally on every node in parallel; only after the fourth and

last index transformation step is performed, the resulting partial contribu-

tions from every single node to the fully transformed vector of two-electron

integrals are broadcasted among each node where they are summed up to-

gether. Therefore, at the end of the algorithm, every node has access to

the fully transformed quadruple of two-electron integrals. The advantage of

this algorithm is that it turns out to never be necessary, at any intermediate

stage of the transformation, to have the full integral vector dynamically al-
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Figure 5.1.: Schematic representation of the way the two-electron integral
transformation is parallelised. The indices I,J,K,L refer to the
primitive basis functions of Eq. (5.2); the indices P,Q,R,S refer
to the Hartree-Fock canonical orbitals.
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located on a single node. The RAM allocation of every intermediate vector

of two-electron integrals is equally shared among the computational nodes.

Moreover, even if the full final transformed integrals vector can be bigger

than the full partially-transformed intermediate ones, its complete alloca-

tion onto a single node is not required because it can be computed piece by

piece sequentially. Additionally, the potentially serious bottleneck of heavy

wall-to-wall transmissions among processors during the intermediate stages

of the transformation, which arises from the need of all the primitive in-

tegrals for obtaining one single final integral over transformed orbitals, is

completely solved with the use of this algorithm.

With the use of the parallel algorithm described in the text and schemat-

ically represented in Fig. 5.1, the scalings for each transformation step of

Table 5.1, must be divided by a factor approximately equal to the number of

cpu’s used. A schematic representation of the way every specific quadruple

of two-electron integrals undergoes the 4-indices transformation in parallel

is given in Fig. 5.1.

The contributions to the first-order matrix elements of the ADC Hamilto-

nian and of the ADC transition moments are calculated on the fly at the last

step of the integral transformation. The integrals involved in the second-

order ADC matrix elements are instead stored on disk. The OpenMP tech-

nology is used to parallelise every intermediate transformation performed

on every node, reducing therefore considerably the time of the computation.

The third step, in the case of the ADC(2) level of theory, evaluates the

remaining terms of the ADC Hamiltonian matrix and transition moments

using the relevant two-electron integrals stored on disk. The matrices to deal

with in ADC(2) are of a size often up to 1,000,000 or greater. In ADC(1)

the linear scaling with respect to the number of basis functions is however

much more favourable. The value of the individual matrix element, which

at the first-order ADC(1) level represents a two-variable integral over a two-

body Coulomb interaction is in general small but non-zero and, as a result,

the matrix is non-sparse. At the second-order level the 1h1p-2h2p coupling

block is quite sparse, around 10/15%, while the 2h2p block is diagonal;

this simplifies enormously the computation and actually makes such type

of calculation possible.

The calculation is performed by dividing the matrix into a large number

of sub-matrices of a size storable on a single node. Every sub-matrix is
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calculated in parallel, with every node computing a partial contribution to

it. The same process is repeated for every sub-matrices, the number of

times this is done depending on the memory storage capabilities available

and on the matrix dimension. Therefore for memory reasons the different

sub-matrices are calculated sequentially one after the other, even if they are

independent one of each other. Nevertheless the extension to the parallel

computing environment speeds up substantially this step as well, because

every node just calculates its own specific contribution to the given sub-

matrix and moreover this calculation is OpenMP parallelised as well.

The fourth step involves the extraction of the relevant physical infor-

mation from the ADC Hamiltonian. In the particular case of a total cross-

section calculation, performed using the SI technique, the quantities of inter-

est are the pseudospectrum of the Hamiltonian and the transition moments

of the pseudo-eigenstates. A newly-implemented, parallelised, BL diagonal-

isation routine allows us to obtain a limited number of energy eigenvalues

and their corresponding eigenvectors by diagonalising the ADC(2) sparse

matrices generated in the third step. A direct diagonalisation is instead

performed in the ADC(1) calculations presented here. This is possible be-

cause with the B-spline basis sets used the ADC(1) matrices have typically

small enough dimension, being for example 1978 in the calculations on kryp-

ton atom reported in the following. The range of the B-spline and spherical

harmonics expansions over which such a full diagonalisation procedure is

still applicable, is quite large for the ADC(1) Hamiltonian, because of the

linear scaling of its dimension with respect to the number of one-electron

basis functions. Finally, given the pseudospectrum, it is possible to calcu-

late the transition amplitudes and ultimately the cross section. This latter

calculation can be performed on any single-node CPU.

5.2. Atomic photoionisation cross-sections by

combination of B-spline-ADC and Stieltjes

methods

The main goal here is to test the accuracy of the newly designed and imple-

mented B-spline ADC method at the ADC(1) and ADC(2) levels of ab-initio

theory for bound-free transitions by calculating a series of total photoionisa-
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Figure 5.2.: Total photoionisation cross-section of the He atom. Circles
– experimental result of Ref. [188], stars – B-spline-ADC(1)
result, from Stieltjes order 5 to 34; squares – B-spline-ADC(2)-
Lanczos-Stieltjes cross-section, using the Stieltjes orders 5 to
34. B-spline Set 2 was employed (see Table 2.1). With this
basis set, the ADC(1) and ADC(2) matrices for He have the
dimensions of 88 × 88 and 96500 × 96500 respectively. The
ADC(2) results was obtained using BL pseudospectrum of 3960
eigenvalues and eigenvectors.

tion cross-sections. A test set of noble gas atom cross-sections for which both

very accurate experimental results and a series of GTO-based calculations

are available is used. Especially the Ar and Kr atoms provide very good test

cases, because their cross-sections contain structured features, such as the

Cooper minimum in argon and the 3d-channel opening in krypton, which

so far have been found to be challenging for the GTO calculations.

As in the case of the GTO calculations [104, 146, 165], the Stieltjes imag-

ing (SI) technique [94, 104, 146, 165], which allows one to extract the cor-

rectly normalised oscillator-strength density in the electronic continuum,

has been used. This also enables us to verify the stability of the B-spline

results with respect to the Stieltjes order, providing yet another test of the
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Figure 5.3.: Total photoionisation cross-section of the Ne atom. Full red
line – experimental result of Ref. [188], full blue line – exper-
imental result of Ref. [189], circles – B-spline-ADC(1) result,
Stieltjes orders 5 to 34; squares – B-spline-ADC(2)-Lanczos-
Stieltjes cross-section, Stieltjes orders 5 to 20, obtained using
BL pseudospectrum of 26000 eigenvalues and eigenvectors. B-
spline Set 2 was employed (see Table 2.1). With this basis set,
the dimensions of the ADC(1) and ADC(2) matrices are respec-
tively 472× 472 and 379970× 379970.

accuracy of the basis set used and of its ability to reproduce the higher

spectral moments. Naturally, the accurate representation of these spec-

tral moments is the key factor responsible for the ability to describe such

features as Cooper minima. The deviation of the ADC(1) and ADC(2)

cross-sections from the experimental ones are quantified by computing their

energy-dependent and energy-averaged relative discrepancies over the cov-

ered photon energy region.

The radial B-spline basis set used in the following calculations are de-

scribed in detail in Table 2.1. Figs. 5.2, 5.3 show the experimental total

photoionisation cross section Ref. [188, 189] as well as a series of Stieltjes

imaging results obtained via full diagonalisation of the ADC(1) Hamiltonian
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matrix and Lanczos diagonalisation of the ADC(2) Hamiltonian matrix, of

He and Ne atoms.

Checking the convergence with the maximal angular momentum of the

spherical harmonics basis, it has been found that it is generally sufficient, as

expected for the one-photon absorption processes described in this work, to

truncate the angular expansion at values of Lmax corresponding to Loccmax +1,

where Locc
max is the maximum angular momentum of the occupied orbitals.

In the case of He, the results presented are the one for the Lmax = 2

spherical harmonics expansion, while for Ne atom the spherical harmonics

expansion used extends up to Lmax = 3. In the ADC(2) Ne calculations, 1s

orbital was frozen in both the singly and the doubly excited intermediate

states. The starting vectors for the BL scheme were choosen to be the

unit vectors corresponding to selected 1h1p intermediate states with the

transition moment from the ground state bigger than a fixed threshold value.

Throughout this work, the B-spline ADC(2) cross-sections converged with

respect to the number of Lanczos iterations are reported.

One can see that the agreement between the experimental and the the-

oretical cross sections improves with the order of the ADC scheme. The

highest-order ADC(2) result for He essentially coincides with the experimen-

tal one apart from the 2s-np 1P auto-ionisation resonance region around 60

eV. In the Ne calculation the ADC(1) result shows a displacement of the

main peak of about 5 eV, consistently with the GTO ADC calculation of

Ref. [104]. The ADC(2) result shows good agreement with the experiment.

As expected, in the Ne case as well, the use of SI leads to disagreement

between the ADC(2) cross-section and the experimental one in the autoion-

isation resonance region around 45.5 eV due to the 2s-np autoionising states.

This inability of the Stieltjes-Chebyshev moment theory to reproduce very

sharp spectral features is well known and apparently persists also in the

B-spline implementation.

At a first glance, the B-spline results have comparable accuracy to the

one obtained in Ref. [104] with the GTO-based ADC; however, if one looks

carefully at the high energy tail of the cross-section, much better agreement

with the experiment is obtained with the B-spline basis set. Details of this

analysis are given in Fig. 5.4.

The discrepancy in the Gaussian based calculation arose from the inability

of the Gaussian basis to provide a correct description for strongly oscillating
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Figure 5.4.: Relative deviations of the calculated ADC-Stieltjes photoioni-
sation cross-sections, averaged over Ne and He atoms, from the
experimental result, as a function of the energy in the high en-
ergy range, i.e. between 100 eV and 250 eV. Black full line –
B-spline-ADC(1)-Stieltjes result, red full line – GTO-ADC(1)-
Lanczos-Stieltjes result.

continuum states as well as for high Fourier components of the ground state

wave-function [146]. B-splines completely fix this error and give accurate

cross-sections up to arbitrary values of the energy, depending on the spatial

density on knots used, see discussion in Secs. 2.7 and 5.2.1. Average relative

deviations of the computed He and Ne cross-sections from the experimental

ones are given in Table 5.2.

The argon photoionisation cross-section is of particular interest for testing

the accuracy of the method due to the presence of the Cooper minimum that

is known to present a challenge for the GTO calculations. In Fig. 5.5 the B-

spline ADC(1) and ADC(2) theoretical photoionisation cross sections of Ar

up to 40 eV of photon energy are presented, together with the experimental

results of Chang et al. [190] and the most recent one of Samson et al.

[188]. The B-spline basis set parameters used for this calculations are given
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ab-initio level He Ne Ar Kr average

ADC(1) 6.2 % 12.0 % 11.6 % 7.9 % 9.4 %

ADC(2) 2.5 % 7.5 % 8.1 % 6.0 % 6.0 %

Table 5.2.: Relative deviations of the B-spline ADC-Stieltjes photoionisa-
tion cross-sections from the experimental results of Ref. [188]
across the energy range of ionisation threshold to 170 eV.

in Table 2.1. The spherical-harmonics expansion extends up to Lmax =

3. In the ADC(2) Ar calculations, the core 1s, 2s and 2p orbitals were

frozen in both the singly and doubly excited intermediate configurations.

Therefore, only the valence holes in the 1h1p and 2h2p state manifold are

allowed. One can see that the agreement between the experimental and the

theoretical cross sections improves with the order of the ADC scheme. The

overall behaviour of the cross-section is very well reproduced with B-splines

and the peak position is well reproduced even at the ADC(1) level. The

ADC(2) curve, on the other hand, matches better with the experimental

data in the energy region from the 3s ionisation limit at 28 eV up to 40

eV. The 3s ionisation limit, which is characterised by the accumulation of

autoionisation structures starting from 25 eV up to 28 eV is, however, not

resolved by these calculations, as in the case of Ne, due to insufficient energy

resolution intrinsic to the SI procedure. The average relative deviations of

the computed Ar cross-sections from the experimental ones are given in

Table 5.2.

Fig. 5.6 shows the total photoionisation cross section of Ar in the region

of the Cooper minimum [191]. The Lanczos convergence of the Cooper min-

imum shape proved more difficult in this energy region, and it was reached

only after almost 30000 iterations. Both ADC(1) and ADC(2) models re-

produce the shape of the minimum, with the ADC(2) providing a better

quantitative agreement with the experiment in terms of the Cooper mini-

mum position. In fact, ADC(2) gives an almost perfect prediction of the

position of the Cooper minimum at 49 eV, while the ADC(1) predicted

value is at about 53 eV. The position of the following maximum at 79 eV

is overestimated by almost 4 eV from the ADC(1) calculation, while it is

underestimated by the nearly the same amount from the ADC(2) one. As it
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Figure 5.5.: Total photoionisation cross-section of the Ar atom. Stars – ex-
perimental result of Ref. [188], crosses – experimental result of
Ref. [190], circles – B-spline-ADC(1) result, Stieltjes orders 5 to
18; squares – B-spline-ADC(2)-Lanczos-Stieltjes cross-section,
Stieltjes orders 5 to 18, obtained using BL pseudospectrum of
10000 eigenvalues and eigenvectors. B-spline Set 1 was em-
ployed (see Table 2.1). With this basis and excitation restric-
tions, the ADC(1) and ADC(2) matrices have dimension of
602× 602 and 396541× 396541, while the size of the BL pseu-
dospectrum for which the cross-sections convergence is obtained
is 10000.

is possible to notice the ADC(1) result is overall closer to the experimental

result of Samson et al. [188], while the ADC(2) curve is closer to the experi-

mental result by Chang et al. [190]. Both results are also in good agreement

with the B-spline TDLDA theoretical calculations in [192], in which the cor-

rect normalisation of the final continuum states was performed.

It is worth noting that the Cooper minimum is due to a change of sign

of the radial dipole matrix elements, which pass through zero at a certain

energy [191], and therefore it is already treatable within one-electron models

such as the simple SAE (single active electron approach), as has been verified
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Figure 5.6.: Total photoionisation cross-section of the Ar atom. Crosses
– experimental result of Ref. [188], pluses – experimental re-
sult of Ref. [190], circles – B-spline-ADC(1) result, Stieltjes
orders 25 to 34; squares – B-spline-ADC(2)-Lanczos-Stieltjes
cross-section, Stieltjes orders 25 to 34. The size of the BL pseu-
dospectrum for which the cross-sections convergence is obtained
is 30000.

within LDA in [192], although its precise energy position may be sensitive

to correlation effects. Moreover the possibility of describing properly the

Cooper minimum feature is strongly related to the ability of the basis set to

properly represent the continuum oscillating single-electron orbitals or, in

other words, on the accuracy of the basis set in giving good representation

of high order spectral moments in the Stieltjes imaging framework.

In Fig. 5.7 a series of Stieltjes approximations of various orders based on

the B-spline ADC(1) and ADC(2) calculation as well as the GTO-based

ones are shown for direct comparison. The GTO basis used is the fully

uncontracted cc-pCVQZ augmented with 5s7p7d4f KBJ continuum expo-
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Figure 5.7.: Total photoionisation cross-section of the Ar atom. Full red line
– experimental result of Ref. [188], full black line – experimen-
tal result of Ref. [190], circles – B-spline-ADC(1) result, from
Stieltjes orders 18 to 34; squares – B-spline-ADC(2)-Lanczos-
Stieltjes cross-section, from Stieltjes orders 18 to 34, obtained
using BL pseudospectrum of 30000 eigenvalues and eigenvec-
tors, stars – GTO ADC(2)-Stieltjes cross-section, from Stieltjes
orders 10 to 30.

nents [100]. Importantly, the GTO basis calculation fails completely in this

case, in contrast to the present B-spline based one. Clearly, the B-spline

calculation shows very good stability of the Stieltjes orders, in contrast to

the GTO calculation in which no convergence of the SI procedure can be

detected. This, of course, comes at the expense of the much larger size of

the B-spline basis that is free of the linear dependency problem.

Finally in Fig. 5.8 the Ar total cross section, in the energy region of the

core ionisation from the 2p and 2s orbitals, is presented. As it is possible

to notice, good agreement is found in this energy region as well, even if the
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Figure 5.8.: Total photoionisation cross-section of the Ar atom in the in-
ner valence energy region. Full line – experimental result of
Ref. [190]; squares – B-spline-ADC(1) result using B-spline Set
4 (see Table 2.1), from Stieltjes order 25 to 34. With this basis,
the ADC(1)has dimension of 1728× 1728.

position of the peak is shifted to higher energies due to the fact that the

core-ionised system is described just as a single hole configuration at the

ADC(1) level.

Fig. 5.9 shows the ADC(1) and ADC(2) theoretical photoionisation cross

section of Kr in the energy range from 14 eV to 50 eV, together with the

experimental results of Chang et al. [190] and the most recent ones of Sam-

son et al. [188]. The B-spline basis set parameters used for this calculations

are given in Table 2.1. The spherical-harmonics expansion extends up to

Lmax = 3 both in the ADC(1) and in the ADC(2) cases. In this ADC(2) Kr

calculation the 1s, 2s, 3s and 2p,3p and 3d orbitals, in both the singly and

the doubly excited intermediate configuration states, are frozen. Therefore,

only single excitations and double excitations from the 4s and 4p valence

orbitals have been allowed. This is enough to describe the outer valence

energy region (from the ionisation threshold to 80 eV) completely at the
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Figure 5.9.: Total photoionisation cross-section of the Kr atom in the
outer valence energy region. Circles – experimental result of
Ref. [188], stars – experimental result of Ref. [190]; squares – B-
spline-ADC(1) result using B-spline Set 4 (see Table 2.1), from
Stieltjes order 5 to 18. With this basis, the ADC(1) and ADC(2)
matrices have dimension of 1728× 1728 and 1921110× 1921110
respectively, while the size of the BL pseudospectrum for which
the cross-sections convergence was obtained used is 32000.

ADC(2) level.

As in the case of argon, the overall behaviour of the cross-section is very

well reproduced with B-spline ADC(1), even if the position of the peak is

shifted to higher energy with respect to the experimental one, by about 2

eV. As has already been shown using the GTO calculations [146] this is a

general feature of the ADC(1) level of theory that overestimates the final

state energies. The decreasing behaviour of the cross-section is correctly

displayed by both theoretical curves, but better agreement with the ex-

periment is obtained by the ADC(2) method. Average relative deviations

of the computed Kr cross-sections from the experimental one are given in

Table 5.2.
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Figure 5.10.: Total photoionisation cross-section of the Kr atom. Circles –
experimental result of Ref. [188], full green line – experimen-
tal result of Ref. [190]; stars – B-spline-ADC(1) result using
B-spline Set 1, from Stieltjes orders 5 to 34; circles – B-spline-
ADC(1) result using B-spline Set 4, from Stieltjes orders 5 to
34; squares – B-spline-ADC(2)-Lanczos-Stieltjes cross-section,
from Stieltjes orders 18 to 34, obtained using BL pseudospec-
trum of 30000 eigenvalues and eigenvectors.

Fig. 5.10 shows the ADC(1) and ADC(2) cross-sections for Kr in a higher

energy region which includes three inner ionisation limits: 3d, 3p and 3s.

In this ADC(2) Kr calculation the 1s, 2s, 3s and 2p and 3p orbitals, in

the doubly excited intermediate configuration states, have been frozen. The

interval from 3d up to 3p ionisation is about 100 eV wide and is characterised

by an experimental sigmoid shape with a broad maximum just below the 3p

limit. The theoretical curves in this range have the correct shape, but they

are at higher values than the experimental one. Moreover the SI prevents,

in this case, the possibility of reproducing the 3p and 3s channel-opening

step. At energies above the 3p and 3s limits the calculations give an almost

linear decreasing curve, with a negative slope that correctly reproduces the
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Figure 5.11.: Relative deviations of the B-spline-ADC-Stieltjes photoioni-
sation cross-sections from the experimental results averaged
on the four closed shell atoms calculated, namely He, Ne, Ar
and Kr, as a function of the energy in the energy range of He
ionisation threshold to 260 eV. Green line – ADC(1)-Stieltjes
result, red line – ADC(2)-Lanczos-Stieltjes result.

experimental one.

Finally, it is interesting to analyse the relative deviations of the two ab-

initio methods as a function of the photon energy in the same way it has

been already done in [146] for the GTO-ADC calculations. This is done in

Fig. 5.11 where one observes that below 100 eV both ADC(1) and ADC(2)

methods lead to impressive agreement with experiment with the relative

deviations around 14% and 4% respectively. Moreover, the precision de-

terioration at higher energies typical of the GTO calculations [146] is not

present any more, the average error stabilizing around 5% for both methods.

5.2.1. Stieltjes imaging stability

Finally, it is relevant to discuss more about the characteristics of the SI

technique when used together with B-splines basis sets. The accuracy of
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Stieltjes imaging technique is usually limited by both the ability of the cho-

sen L2 basis set to represent continuum functions within the interaction

volume and by the numerical instability of the computational algorithm of

the Stieltjes-Chebyshev moment theory. As already discussed, the B-spline

basis set removes the first limitation, accurately representing the continuum

functions within the interaction volume and making it possible to correctly

reproduce many high-order spectral moments. The immediate consequence

of this is that a considerable number of Stieltjes orders becomes reliable

and, as a result, the energy resolution is significantly improved. Even if this

resolution is in general not yet enough to describe very sharp features, e.g.

resulting from series of closely lying autoionisation resonances, the improve-

ment allows one to correctly describe the shape of the Cooper minimum in

the argon atom and the 3d channel opening in the krypton atom.

Fig. 5.12 shows how the Stieltjes orders converge towards the Cooper min-

imum in argon; as it is possible to see, low orders smooth out the minimum

because of the insufficient resolution while high orders correctly reproduce

it. This is why in the GTO calculations, in which only the low orders are

accurate, it is very challenging to obtain the correct Cooper minimum shape.

In the following it is shown how the stability of the Stieltjes procedure

is affected by the quality of the B-spline basis set. The stability of the

Stieltjes results can be quantified by the number of consequent Stieltjes

orders that consistently reproduce the same cross-section shape. In Fig. 5.13

the Stieltjes stability is analysed for the Ar cross-section in the energy region

from threshold up to 45 eV. The analysis is performed for each of the B-

spline sets of Table 2.1. One can see that in the case of Set 1, there are

many scattered points present in the set of high orders between n = 23 and

n = 34, i.e. at the same range of orders which gives the convergent Cooper

minimum within the same basis set at higher energy. However, when the

dimension of the box is increased maintaining the same grid step, a perfect

stability up to the last order n = 34 is obtained; this is shown in the top-

right panel where Set 2 results are plotted and it means that the accuracy

of this B-spline basis set is such that the higher Stieltjes orders correctly

reproduce the overall shape of the cross-section in an energy range of 170

eV. This happens because when the B-spline basis set changes from Set

1 to Set 2 the density of points, in the energy domain, the continuum is

discretised with increases.
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Figure 5.12.: Total photoionisation cross-section of the Ar atom in the
Cooper minimum energy region. Convergence with respect
to the Stieltjes order n is shown for a B-spline ADC(1) calcu-
lation done with B-spline Set 3. Different symbols represent
different orders as indicated in the legend. Full red line – ex-
perimental result of Ref. [188], full black line – experimental
result of Ref. [190].

Stability can be achieved also with a linear grid over the entire radial

range. As an example, results obtained using the B-spline Set 3 are shown

in the left-bottom panel of Fig. 5.13; they show scattered points at high

orders, mostly concentrated near the threshold, up to 22 eV. Set 3 can

be considered as an intermediate case, between Set 1 and Set 2, from the

point of view of the continuum discretization density. When the density of

continuum discretization is increased even more, perfect stability is achieved

also with a linear grid, as it is shown in the right-bottom panel of Fig. 5.13,

where the results obtained with the Set 4 are shown.

In order to provide a further comparison between the performance of the

B-spline basis set with respect to the GTO ones, Fig. 5.14 shows the stability

plot for the neon atom in the energy region from threshold up to 300 eV,
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Figure 5.13.: Stability of the photoionisation cross-section Stieltjes orders
results for the Ar atom, for the 4 different knots sequences
corresponding to B-spline Set 1-4 (see Table 2.1).

both for B-spline Set 4 and for two GTO basis sets. The Stieltjes orders

from n = 10 to n = 30 have been plotted. As is clear form the plot, no

Gaussian Stieltjes point stay on the correct profile. In such Gaussian basis

sets calculations, the cross-section is obtained only from the orders from

n = 5 to n = 9.

Fig. 5.15 and Fig. 5.16 show respectively the B-spline ADC(1) theoretical

photoionisation cross sections of the N2 and CO2 molecules in the energy

range from the first ionisation threshold to 140 eV, together with the ex-

perimental results of Samson et al. [193] and the ones of Chan et al. [159].

The B-spline basis set parameters used for this calculations are given in Ta-

ble 2.1. The spherical-harmonics expansion used in the calculation extends

up to Lmax = 30 for both molecules.

Also in the case of linear molecules, the B-spline results have comparable

accuracy to the one obtained in Ref. [104] with the GTO-based ADC in

the energy region close to the first ionisation threshold; however, as for the

atomic cross-section calculations, if one looks carefully at the high energy
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Figure 5.14.: Total photoionisation cross-section of the Ne atom. Squares
– B-spline-ADC(1) result using B-spline Set 4, from Stieltjes
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basis 2, namley cc-pCQTZ basis set augmented by 6s7p6d KBJ
diffuse continuumlike functions, up triangles– GTO-ADC(1)
result, Stieltjes orders 5 to 9 obtained with both GTO basis 1
and 2.

tail of the cross-section, much better agreement with the experiment is

obtained with the B-spline basis set.

In the case of the CO2 molecule, the first plateau which is present in the

experimental cross section at a photon energy around 35 eV and which was

well reproduced by both GTO-based second order ADC(2) and ADC(2)x

methods, see Fig. 3.8, is not reproduced by the B-spline ADC(1) result

reported here as its description requires the inclusion of double excitations.

On the other hand, the second plateau present in the experimental cross

section at around 55 eV, that was missed completely by both the first-order

ADC(1) and second-order ADC(2) GTO results, is now fully reproduced by
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Figure 5.15.: Total photoionisation cross-section of N2 molecule. Squares
– experimental result of Ref. [193], full line – interpolated B-
spline-ADC(1) result (Stieltjes orders 25 to 29).

the B-spline first order ADC(1) SI results. This is due to the fact that its

description requires just single excitations and that the low resolution of the

GTO converged Stieltjes orders, interpolated to obtain the cross-sections, in

the 45-65 eV energy range has been considerably improved by the B-spline

result. Indeed, while in the GTO calculations the relevant stable Stieltjes

orders used to obtain the interpolated cross-section were 6-10, the B-spline

Stieltjes orders show much higher stability and the reported cross-section

has been obtained interpolating the Stieltjes points accumulating from the

Stieltjes orders 25-29.

5.3. Summary

In the present work, the B-spline implementation of the first- and second-

order ADC schemes for electronic excitations has been presented. Pho-
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Figure 5.16.: Total photoionisation cross-section of CO2 molecule. Squares
– experimental result of Ref. [159], full line – interpolated B-
spline-ADC(1) result (Stieltjes orders 25 to 29).

toionisation cross-sections are natural computational targets for the newly-

implemented technique; therefore the advantages of the B-spline ADC have

been demonstrated here by performing a series of atomic photoionisation

cross-section calculations. In particular, it has been possible to correctly

predict the shape and position of the Cooper minimum in the total cross-

section of argon, within the SI moment theory technique. The superior ac-

curacy of the newly-implemented basis set is manifested also by its ability

to correctly reproduce the high-energy tails of the cross-sections that have

been shown to present a notorious difficulty for the GTO-based schemes

[146]. They are indeed reproduced by the B-spline ADC in excellent agree-

ment with the experiment. Total B-spline ADC(1) photoionisation cross-

sections of N2 and CO2 molecules are also presented; as in the case of the

noble gas atoms calculations, in the molecular case the high-energy tails are

found to be much better reproduced than with the analogous GTO-based
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ADC(1) calculations. Apart from the strongly improved accuracy, the B-

spline implementation leads to a remarkable stability of the cross-sections

with respect to the order of the Stieltjes-Chebyshev moment theory. While

the moment theory method leads to a straightforward comparison between

the performance of the GTO and B-spline bases, it is no longer a neces-

sity within the B-spline ADC. Indeed, one can obtain directly the correctly

normalised continuum eigenstates at arbitrary values of the energy in the

electronic continuum by employing methods of Refs. [115, 117]. This should

be one of the directions for future work. Another plausible direction of fu-

ture work is generalisation of the B-spline implementation to calculation of

the decay widths within the Fano-Feshbach formalism, see Refs. [99] on the

GTO-based Fano-ADC methods.

In view of the large (compared to GTO) size of the B-spline bases, opti-

mised implementation of the B-spline method within the MPI and OpenMP

protocols has been realised, making the future calculations of molecular sys-

tems entirely possible. The CPU time required for the type of cross-section

calculations presented in this thesis is, for example, of the order of a few

minutes for the ADC(1) method and of a few hours for the ADC(2) level of

theory, when using 20 computational cores.
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6. Time-dependent B-spline ADC:

many-electron laser driven

dynamics

6.1. High-order harmonic generation in Ar atom

In order to apply the correlated ADC schemes to the solution of time-

dependent many-electron problems involving ionisation, we have imple-

mented a time-dependent version of the ab-initio B-spline ADC method.

The time-dependent problem is solved within TD-ADC making the fol-

lowing ansatz for the time-dependent electronic wave-function:

| Ψ(t)〉 = C0(t) | Ψ0(t)〉+
∑
n

Cn(t) | Ψn(t)〉 (6.1)

where the coefficients C0(t) and Cn(t) refer to the ground-state and to the

ECO-CES ADC configuration basis states respectively.

The time-dependent Schrödinger equation (TDSE) for the unknown co-

efficients C0, Cn is solved via the short iterative Arnoldi-Lanczos algorithm

described in Sec. 2.8. Using this time propagation technique one has to deal

at each time step with a repetitive diagonalisation of an upper-Hessenberg

matrix much smaller then the full systems Hamiltonian. In this way, the

whole scheme becomes applicable to relatively large basis sets, which are

practically inaccessible within approaches demanding a full diagonalisation

of the secular matrix. The time propagation is parallelised both within the

MPI and OpenMP schemes. The allocation of the relevant Hamiltonian and

dipole matrices is distributed across the various MPI nodes and within each

node the matrix-vector multiplications required to build the Hessenberg

matrix are speeded up via OpenMP.

In this section a first application of the newly-implemented B-spline TD-
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ADC technique, by calculating the HHG spectrum of the Ar atom, is pre-

sented. Here we again concentrate on the effect of the Cooper minimum,

since besides its basic importance for photoionisation, it also has recently

drawn much attention in connection to the HHG by rare gases [194, 195].

Calculation of the HHG spectrum of the Ar atom interacting with an in-

tense and short infrared (IR) laser pulse allows for the illustration of the

effect of the Cooper minimum on the HHG spectrum by a fully ab-initio

single-atom simulation.

In the following calculation we have used the first-order method of the

ADC-hierarchy, namely ADC(1). The HHG spectrum is calculated here via

the expectation value of the electric dipole moment z(t), see Eq. (2.173).

The results presented were calculated making explicit use of the atomic

spherical symmetry. We used two laser pulses with a carrier frequency ω =

0.057 a.u. (800 nm), a full width at half maximum (FWHM) pulse duration

of τ = 413 a.u. (10 fs) and with a peak field strength of Emax = 0.075 a.u.

and Emax = 0.095 a.u respectively. These two values correspond to peak

intensities of I = 1.5× 1014 W/cm2 and I = 3.2× 1014 W/cm2 respectively.

The time-step used in the calculation is equal to 0.2 a.u. (1/500 of the IR

period) at which value the convergence of our final results is obtained.

The intensity profile of the stronger intensity infrared (IR) pulse is shown

in Fig. 6.1. The time-dependence of the ground-state depopulation which

occurs during the interaction of the Ar atom with the strong IR field is

given by 1− %0(t) = 1− | C0(t) |2 and it is plotted in Fig. 6.1 as well.

In the Ar HHG spectrum calculation, the size of the computational box,

Rmax, is dictated by the semiclassical picture of the process [126], i.e. it must

be large enough to contain the longest recolliding electronic trajectories.

The classical quiver amplitude of the electron for the higher intensity pulse

we are using is rHHG = Emax
ω2 = 30 a.u. The calculation is performed using

a radial grid radius Rmax = 120 and 200 radial grid points (B-spline basis

Set 5, see Table 2.1). A complex absorbing potential (CAP) has been used

in order to eliminate wavepacket reflection effects from the grid boundaries.

The form of the CAP used was the following:

Ŵ = η(r − rCAP )2 , r ≥ rCAP (6.2)

and with the addition of the CAP term the form of the total time-dependent
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Figure 6.1.: Time dependent IR electric field (in a.u.) used in the calcula-
tion. The IR peak intensity is 3.2 × 1014 W/cm2. Also shown
is ground state depletion (unitless) of the Ar atom.

Hamiltonian of the system reads

Ĥ = Ĥ0 + ẑE(t)− iŴ (6.3)

where Ĥ0 is the field-free Hamiltonian and ẑE(t) is the laser-atom interac-

tion in length form and within the dipole approximation. The CAP starts

at a radius rCAP = 100a.u. and has a strength η = 0.0005. The maximum

angular momentum employed was lmax = 70.

The HHG spectral intensity profile is shown in Fig. 6.2, for both the

two different IR intensities used. The smaller intensity used gives a cutoff

energy for the HHG emission at about 50 eV. The photon energy range

of 30-50 eV corresponds to a recollision electron energy range of 15-35 eV

and therefore no Cooper minimum is observed in the corresponding HHG

spectrum. Conversely, the higher intensity provides higher kinetic energy
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Figure 6.2.: ADC(1) high harmonics generation emission spectrum of the
the Ar atom interacting with an IR field. The red and black
curves refer to the 1.5×1014 W/cm2 and 3.2×1014 W/cm2 values
for the IR peak intensity respectively. The time duration of the
IR laser pulse used is about 21 fs and the wavelength is 800 nm.

for the returning electrons, and therefore makes it possible to see the Cooper

minimum shape in the HHG spectrum.

Our simulation shows that the Cooper minimum in the HHG spectra can

be reproduced by the B-spline TDADC method and its position indeed lies

slightly above 50 eV as found in the recent experiments [195]. The results

are also in good agreement with those of Ref. [196], obtained using the

time-dependent CIS technique. The position of the HHG Cooper minimum

is very much consistent with the photoionisation cross-section one. This

has to do with the final step of the HHG process [126], where the laser-

driven continuum electron recombines into the ground state emitting a single

photon in a process that is directly reversed relative to the photoionisation.
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6.2. Total and channel resolved ADC(1) high

harmonic generation spectra of aligned CO2

molecule

High-order harmonic generation spectroscopy (HHG) is a powerful tech-

nique to resolve ultrafast electron dynamics in atoms and molecules [128,

129, 130, 131, 132, 133, 60, 126, 127]. It has often been assumed that struc-

tures in the harmonic spectra reflect the geometry of the highest occupied

molecular orbital (HOMO) [128, 130, 134, 197, 198, 199, 200, 201, 202, 203].

Indeed, strong-field ionisation is exponentially sensitive to the ionisation

potential Ip, suggesting that after ionisation the molecular ion is left in its

ground electronic state (electron removal from HOMO in the Hartree-Fock

picture). In this case, even though rearrangement has occurred, only struc-

tural information will be recorded in the harmonic spectrum. However, in

molecular ions electronic excitations often lie within a couple of electron

volts from the ground state, leading to sizeable population amplitudes even

for exponential scaling of ionisation rates. The geometry of the molecular

orbitals is also crucial [204, 205] and can further increase relative popu-

lations of the excited electronic states of the ion (tunnelling from deeper

orbitals in the Hartree-Fock picture). The importance of different orbitals

in high harmonic generation has been pointed out in various experiments

[62, 206]. Moreover, clear evidence for strong-field ionisation from lower

orbitals has demonstrated the importance of including multiple orbitals in

the description of HHG [60, 62, 207].

Different states of the molecular ion between ionisation and recombination

provide different channels for the HHG process. The orbitals relevant for

ionisation and recombination are the Dyson orbitals, the overlaps between

the multi-electron ground state wave-function of the neutral system and the

ground/excited state wave-function of the ion, which, within the ADC(1)

method, coincide with the occupied HF orbitals of the neutral system [208].

For each channel, specific electronic structure is encoded onto the ampli-

tude and the phase of the harmonic emission signal. These channels are

different pathways that take the system from the same initial to the same

final state via different states of the ion. They provide a basis for record-

ing multielectron dynamics, including dynamics of electron rearrangement
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upon ionisation. Their interference records the relative phases between the

channels by mapping them onto the amplitude modulation in the harmonic

spectra. The phases between the channels, accumulated between ionisation

and recombination, encode the underlying electronic dynamics with attosec-

ond time resolution. The coherent sum of the multiple channels can thus

reveal both structural minima due to the recombination matrix elements or

dynamical minima that occur from destructive interferences between chan-

nels.

If the minimum is structural as in argon, its position is largely indepen-

dent of the laser parameters including wavelength and intensity [134, 135,

195, 209]. If the minimum is dynamical, the interference of the orbitals can

be controlled directly by the intensity and the wavelength of the IR driving

laser field.

In addition to the relative phase of the channels, the structure of the

orbitals can lead to a significant phase variation in the recombination matrix

element that also affects the observed minimum position.

In the harmonic spectrum of the CO2 molecule, minima have been found

at vastly different positions in different experiments [130, 197, 198, 199,

61]. A spectral minimum observed in CO2 molecules aligned parallel to the

generating laser field was found at 39 eV in [130], at 54 eV in [197], and in a

range of intermediate positions, depending on the intensity, in [60, 61]. Even

though the structure of the molecule is the same, the minimum appears at

different places because it shifts with the laser intensity. Its position and

mobility reflect attosecond multielectron dynamics within the ion, including

electron rearrangement upon ionisation.

The two most common theoretical approaches for describing molecular

HHG are the semiclassical strong-field approximation (SFA) [68], which has

been extended to include Coulomb-interaction corrections [135, 210, 211,

212], and the single-active-electron (SAE) approximation [4, 213, 194, 214,

215], where the electron-ion interaction for many-electron systems is de-

scribed by a model potential [194]. A number of theoretical works based

on the SFA approximation and on extensions of this have been performed

during the last few years. Recent work suggests that the ionisation from

multiple orbitals (HOMO and HOMO − 2) is responsible for the inten-

sity dependence of the minimum position [60]; other works suggest that the

effect of the strong laser field on a single orbital can explain the intensity
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dependence [130, 197, 198, 216] in CO2 molecules aligned parallel to the

driving field, whereas another work suggests that both the interference of

multiple orbitals and their structural characteristics can affect the position

of the minimum [61, 217]. The results presented in [61] show that in ad-

dition to the interference of multiple orbitals (HOMO and HOMO-2), the

structure of the highest occupied molecular orbital (HOMO) affects the po-

sition of the minimum. Indeed, the interference of the recombining electron

with the 2-centre HOMO results in strong phase variation of the recombi-

nation matrix element with photon energy. It is now generally recognised

that the minimum present in the HHG spectrum of CO2 has a dynamical

nature and it is the result of the fact that more than one ionisation channel

contributes to the total intensity spectrum.

In this work we perform a fully 3-D ab-initio time-dependent calculation

for the electron dynamic of the CO2 molecule interacting with an high-

intensity ultra-short infrared (IR) laser pulse, calculating the high-order

harmonic generation spectra and quantitatively investigating the effect of

its multi-channel nature on the dynamical minimum. The calculation has

been performed using the molecular time-dependent version of the ab-initio

first order ADC(1) many-body Green’s function scheme for the polarisation

propagator, implemented in the B-spline single-electron basis set.

Our aim, besides testing the accuracy of the newly developed molecular

time-dependent code, is to accurately reproduce the experimental observa-

tions, for the first time using a completely 3-D ab initio method for this

purpose, while also understanding if more ionisation channels, other than

HOMO and HOMO − 2, contribute to the total CO2 HHG spectrum and

whether, and to which extent, the effect of the interchannel couplings onto

the dynamics of the various ionisation channels influences the position of

the dynamical minimum.

The interaction of the liberated electron with the ionic hole state, from

which it originates, is referred to as intrachannel interaction and leads for

large electron-ion distances to the 1/r behaviour of the Coulomb potential.

If the liberated electron is influenced by other molecular orbitals (channels)

the interaction is referred to as interchannel coupling [218]. Within the

ADC(1) scheme, both couplings between the different ionisation channels

contributing to the HHG spectrum, the one induced by the electric-field and

the one induced by the full Coulomb interaction, are taken into account.
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Hence, in this work, the effect onto the interference pattern, which orig-

inates from the different phases and intensities of the various harmonic

emission channels, due to both the electron rearrangement within the ion

driven by the electric field dipole couplings

Dai,bjE(t) = −δa,b〈i | d̂ | j〉E(t) i 6= j , (6.4)

and the multielectron dynamics driven by the inter-channel Coulomb cou-

plings

H
[1]
ai,bj = −Vaj[bi] = −〈aj || bi〉 i 6= j , (6.5)

is automatically included. Moreover, the residual electron-ion intrachannel

interaction is described in detail, including multipole effects. While the

couplings driven by the electric field can be included into the SFA approach,

Coulomb multichannel interactions [218] go beyond the independent-particle

picture and cannot be captured in the language of SFA and SAE.

In order to investigate the role of the different channels, and to better

understand the effect of their interaction, the HHG spectrum of CO2 was

calculated not only at the full ADC(1) level of ab-initio theory, but also at

two different levels of approximation. The first level of approximation con-

sists in setting to zero the interchannel coupling due to the electron-electron

Coulomb interaction and will be referred to as model-2 in the following; the

second and lower level of approximation consists of setting to zero both the

interchannel couplings due to the Coulomb interaction and the interchannel

couplings driven by the ionic dipole transitions induced by the IR electric

field and will be referred to as model-3 in the following.

Additionally, for each of these models, the orbital-resolved contributions

to the total HHG spectrum are also calculated. The orbital resolved spectra

that are presented in the following are obtained by performing the multi-

channel simulations, at the various level of approximation described above,

and calculating the contributions to the induced dipole coming from the

excited configurations corresponding to each specific occupied orbital i re-

spectively:

Di (t) = 〈Ψia,0 (t) | D̂ | Ψib,0 (t)〉 , (6.6)

where

| Ψia,0 (t)〉 = C0 (t) | Ψ0〉+
∑
a

Ci,a (t) | Φa
i 〉 . (6.7)

177



Therefore the single-orbital contributions obtained in model-3 are of the

pure single active electron flavour, while the contributions obtained within

the ADC(1) model and within model-2 take into account, at different levels

of accuracy, the effect of the channel couplings on each single-orbital resolved

spectrum.

The first step in the calculation is the solution of the discretised closed-

shell Hartree-Fock equations (Eq. (2.150)) which, in the molecular case is

solved for every irreducible representation (IRREP) of the molecular point

symmetry group. In the case of the carbon dioxide molecule, whose point

symmetry group is D∞h, the number of spherical harmonics belonging to

each IRREP is equal to Lmax+1 for Σg and to Lmax for all the other IRREPS

(Σu,Πu,Πg, .....). Here the maximum angular momentum used in the cal-

culation has been set to be Lmax = 50. Solving Eq. (2.150) self-consistently,

we obtain a quasi-complete set of canonical occupied and virtual HF molecu-

lar orbitals, expressed in terms of B-spline basis functions. The calculations

have been performed using a linear B-spline knot sequence with a radial box

radius Rmax = 160 a.u. and 205 radial grid points (B-spline basis Set 6,

see Table 2.1). The list of active Hartree-Fock occupied orbitals of the CO2

molecule used in the following calculations are, in energetically increasing

order, 4σg, 3σu , 1πu and 1πg. Therefore, in this work, we have included

a total of four ionisation channels that contribute to harmonic emission of

CO2 molecules; they respectively correspond to creating the CO2 ion in the

ground state 1Πg (channel X), in the first excited state 1Πu (channel A),

in the second excited state 1Σ+
u (channel B) and in the third excited state

1Σ+
g (channel C) respectively. Within ADC(1) they respectively consist of,

in the molecular orbital picture, the removal of a bound electron from the

HOMO, HOMO − 1, HOMO − 2 and HOMO − 3 HF orbitals. While

the correspoding experimental ionisation potentials are respectively 13.8,

17.3, 18.1 and 19.36 eV [219] and therefore span a 5.56 eV energy range,

the ADC(1) ionisation potentials obtained in this calculation are 15.3, 18.81,

19.6 and 20.7 eV spanning a 5.7 eV energy range. In Table 6.1 a comparison

between the experimental orbital/ionisation energies of the CO2 molecule

and the theoretical results obtained by means of two HF calculations per-

formed using the B-spline basis Set 6 and the cc-pcvTZ Gaussian basis set

respectively is shown. The GTO HF calculation was performed using the

MOLPRO quantum chemistry package [220].
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Experimental I.P.s (eV) [219] HF B-splines basis Set 6 I.P.s (eV) HF cc-pcvTZ GTO basis I.P.s (eV)

13.8 15.03 14.74

17.3 18.81 19.31

18.1 19.6 20.126

19.36 20.7 21.76

Table 6.1.: Orbital/ionisation energies of the CO2 molecule. Comparison
between the experimental values and the theoretical results ob-
tained by means of an HF calculation using the B-spline basis
Set 6 and the cc-pcvTZ Gaussian basis set.

In this work, the multi-electron ECO-CES configurations built with the

HF orbitals are both spin-adapted and point-symmetry group adapted ones.

Therefore we take into account the full symmetry of the molecule, not only

in the HF one-particle calculation but also in the many-electron ADC one.

The calculations have been performed for the case of a laser field linearly

polarised along the molecular axis, and therefore the quantum number M

representing the total electronic axial angular momentum is conserved. Con-

sequently, it is enough to consider only the two multi-electron spaces corre-

sponding to the irreducible representations Σ+
g and Σ+

u .

To simulate experimental conditions, the contribution of the ’long tra-

jectories’ has been filtered out. Indeed, in a molecular gas propagation of

harmonic radiation associated with short and long trajectories is different

in terms of both the phase-matching and the divergence. In typical experi-

ments on high harmonic generation, the geometry of the experimental setup

suppresses the so-called ’long’ trajectories and favours the short ones. To

account for this experimental aspect and eliminate from the theoretical spec-

trum the experimentally unobserved interference effects between the short

and long trajectories contributions, which could, in principle, wash out the

interference effects between the contributions from the various channels, the

absorbing radius, i.e. the radius at which the CAP starts to be different

from zero, has been set to approximately coincide with the classical quiver

amplitude of the highest return kinetic energy electrons rHHG = Emax
ω2 . At

this kinetic energy of return the two set of trajectories merge into one;

shorter trajectories which contribute to lower emission photon energies are

not absorbed while the longer trajectories, which also contribute to lower

high harmonic energies, are absorbed by the CAP. Therefore, the CAP acts
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as a filter which smoothly removes the long trajectories contribution from

the time-dependent calculated dipole D(t), suppressing the signal after the

most energetic ≈ Up electron trajectory. The CAP used in this calculation

has a strength η = 0.0005.

Differently from experiments, where the HHG spectrum measured can be

considered to be the result of a coherent average over molecular alignment

distributions, here the calculation has been performed for CO2 molecules

perfectly aligned along the IR laser field polarisation direction.

The cutoff is determined by the maximum recollision energy Ekin and by

the ionisation potential Ip as Ωcutoff = 3.17Up+ 1.32Ip. This means that, as

the ionisation energy of the HOMO−2 channel in CO2 is 4.3 eV higher than

that of the HOMO channel, the corresponding harmonic cutoff is shifted

by nearly 6 eV.

The ADC(1) harmonic spectrum of CO2 molecule has been calculated for

three different laser peak-intensities, namely I1 = 0.7 × 1014 W/cm2, I2 =

1.1 × 1014 W/cm2, I3 = 1.75 × 1014 W/cm2. The laser pulses used in the

calculation have a carrier frequency of ω = 0.057 a.u. (800 nm) and a

full width at half maximum (FWHM) pulse duration of τ = 2900 a.u. (70

fs). The time-step used in the calculation is equal to 0.2 a.u. (1/500 of

the IR period) at which value the convergence of our final results has been

obtained.

The calculated ADC(1) HHG spectra are shown in Fig. 6.3. As can be

seen, the ab-initio calculations performed here present a clear minimum

in the high harmonic spectrum of CO2, which shifts to higher orders with

increasing intensity, from H19 at I1 = 0.7 × 1014 W/cm2 to H27 at I3 =

1.75×1014 W/cm2. Varying the intensity of the fundamental field allows one

to vary the relative phase of the high-harmonic emission channels, thereby

controlling the photon energy at which the destructive interference occurs.

Therefore, the main features of the CO2 molecule HHG spectra, i.e. the

position of the dynimical minimum and its field intensity dependence, are

found to be reproduced by the B-spline ADC(1) calculations in very good

agreement with the various experiments which have been performed during

the past few years [130, 197, 198, 199, 61]. Indeed, experiment [130] confirms

that the harmonic minimum shifts approximately linearly with intensity.

In Table 6.2 the calculated positions of the dynamical minimum in the

CO2 HHG spectrum for the three different peak intensities of the IR laser
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Figure 6.3.: ADC(1) high harmonic generation emission spectrum of the
CO2 molecule interacting with an IR field. The time duration
70 fs and the central wavelength is 800 nm. The laser field is
linearly polarised along the molecular axis. Top panel – The
peak intensity of the IR laser pulse used is 0.7 × 1014 W/cm2;
central panel – The peak intensity of the IR laser pulse used is
1.1× 1014 W/cm2; bottom panel – The peak intensity of the IR
laser pulse used is 1.75× 1014 W/cm2.
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IR peak-intesity ADC(1) Model 2 Model 3

0.7× 1014 W/cm2 19 17 17

1.1× 1014 W/cm2 23 21 21

1.75× 1014 W/cm2 27 25 25

Table 6.2.: Calculated positions of the dynamical minimum in the CO2 HHG
spectrum for different peak intensities of the IR laser field and
for different level of theoretical approximation.

field and for the three different levels of theoretical approximation are re-

ported. Moreover, as it is possible to notice from Table 6.2, the interchannel

couplings play an important role in determining the structure of the spectra

and the position of the minimum in general depends on their inclusion in

the simulation.

In Fig. 6.4, the integrated high harmonic spectra of CO2, calculated with

respectively ADC(1), model-2 and model-3, are shown for the case of the

I1 = 0.7 × 1014 W/cm2 peak intensity IR laser field. As it is possible to

notice, the ADC(1) calculated minimum is shifted to a higher harmonic

order, 19, with respect to the minimum calculated with the other two mod-

els, which appears at harmonic order 17. Moreover, the ADC(1) plateau

harmonics show a smaller intensity with respect to both the model-2 and

model-3 ones (up to the harmonic order 21). Close to the cutoff region (har-

monic orders 23, 25 and 27) the inclusion of the dipole couplings between the

ionic channels increases the harmonic intensities with respect to the result

obtained with model-3, whereas the addition of the Coulomb driven inter-

channel couplings does not lead to significant modifications to the model-2

harmonic intensities.

In Fig. 6.5, the integrated orbital-resolved high harmonic generation spec-

tral intensities of CO2, calculated with respectively ADC(1), model-2 and

model-3, are shown for the case of the I1 = 0.7×1014 W/cm2 peak intensity

IR laser field.

The relative phases between contributions to the total HHG spectrum

from the different emission channels i and j can be extracted from the
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calculation in the following way:

Φi,j = arccos

Re
 D̃i (ω) D̃j

∗
(ω)

| D̃i (ω) || D̃j (ω) |

 . (6.8)

In Fig. 6.6, the cosine of the phase differences between the different channel

contributions are shown for the cases of the ADC(1), model-2 and model-3

calculations respectively.

Within model-3, both the influence of the laser field and the effect of the

interaction with the ionised electron on the bound electrons in the CO2

ion are neglected. In contrast to model-2, laser-induced transitions in the

molecular ion are not considered here and therefore the high-harmonic signal

is a coherent sum of the signals generated by ionising from and recombining

to the same molecular orbital. TheHOMO channel (black curve) dominates

the emission for lower harmonics up to harmonic number 15; the HOMO−2

channel (green curve) has a comparable contribution (the difference of the

contributions is less than an order of magnitude) starting from the harmonic

number 17 up to 21, taking over the HOMO contribution at the harmonic

number 19.

The cutoff in the harmonic spectrum is determined by the maximum en-

ergy of the recombining electron, which is fixed by the electric field ampli-

tude and the laser frequency, plus the ionisation potential Ip of the state into

which it recombines; thus, contribution from the deepest orbital with the

highest Ip naturally becomes relevant beyond the cutoffs of the harmonics

associated with the lower Ip channels. In the case of model-3, the HOMO−3

channel gives negligible contribution with respect to the HOMO− 2 chan-

nel, i.e. its contribution is always more than an order of magnitude less,

up to the harmonic cutoff (harmonic order 27) where the two contributions

have the same order of magnitude. Moreover, the HOMO− 1 channel (red

curve) shows even more negligible contribution throughout the spectrum, its

intensity being more than three orders of magnitude less than the one of the

most contributing channel at each harmonic order. This could be expected

because of the following: ionisation from the HOMO orbital along or per-

pendicular to the molecular axis will be suppressed [204, 205], owing to the

destructive interference of currents from the orbital ’lobes’ with opposite

signs. This effect weakens the contribution of the HOMO orbital, which
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Figure 6.4.: Black squares – high harmonic generation emission spectrum
of the CO2 molecule interacting with an IR field, calculated
using the full ADC(1) model with interchannel couplings; red
squares – high harmonic generation emission spectrum of the
CO2 molecule interacting with an IR field, calculated using
model 2: ADC(1) without interchannel Coulomb couplings;
green squares – high harmonic generation emission spectrum
of the CO2 molecule interacting with an IR field, calculated us-
ing model 3: ADC(1) without interchannel Coulomb and dipole
coupling (single-electron approximation). The peak intensity of
the IR laser pulse used is 0.7× 1014 W/cm2, the time duration
70 fs and the central wavelength is 800 nm.

184



13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

-9

-8.5

-8

-7.5

-7

-6.5

-6

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Photon energy (harmonic order)

-12

-10

-8

-6
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

-9

-8

-7

-6

lo
g

1
0
 (

In
te

g
ra

te
d

 s
p

e
c
tr

a
l 

in
te

n
si

ti
e
s)

ADC(1)

NO inter-channel couplings

π σg uπ gσ
u

Destructive interference

Destructive interference

Destructive interference

NO Coulomb inter-channel couplings

Figure 6.5.: Orbital resolved ADC(1) high harmonic generation emission in-
tegrated spectral intensities of the CO2 molecule interacting
with an IR field. Top panel – Full ADC(1) model; central panel
– model 2: ADC(1) without interchannel Coulomb couplings;
bottom panel – model 3 (independent particle approximation):
no Coulomb driven or electric field driven inter-channel cou-
plings. Black curve – intensity of the contribution to the HHG
spectrum from the HOMO orbital, πg; Red curve – intensity
of the contribution to the HHG spectrum from the HOMO− 1
orbital, πu; Green curve – intensity of the contribution to the
HHG spectrum from the HOMO − 2 orbital, σu; Blue curve
– intensity of the contribution to the HHG spectrum from the
HOMO − 3 orbital, σg. The peak intensity of the IR laser
pulse used is 0.7×1014 W/cm2, the time duration 70 fs and the
central wavelength 800 nm.
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otherwise would be completely dominant due to the much lower ionisation

potential. For channel A (HOMO−1), the molecular orbital favours ionisa-

tion perpendicular to the molecular axis, while for channel B (HOMO− 2)

it favours ionisation parallel to the molecular axis. At the independent-

electrons level of approximation the angular variation of ionisation rates and

recombination dipoles are such that high-harmonic emission for molecules

aligned along the laser driving field polarisation direction is dominated by

the channels corresponding to HOMO and HOMO − 2 (contrarily to the

perpendicular alignment case where it would be dominated by the HOMO

and HOMO − 1 channels) [60, 221, 222]. Therefore, within the single ac-

tive electron approximation, it is a good approximation to consider only

the two channels given by HOMO and HOMO − 2 when studying high

harmonic emission spectra of CO2 molecules aligned along the driving laser

field polarisation direction.

The total spectrum (Fig. 6.4) records the relative phase between the chan-

nels by mapping it into the amplitude modulations. As can be seen in

Fig. 6.6, within model-3 the minimum at harmonic order 17 in the total

spectrum corresponds to the destructive interference between the HOMO

and HOMO−2 channels; at harmonic order 17 cos
(
Φπg ,σu

)
is indeed nega-

tive and equal to −0.9. At the same harmonic order, the contribution from

HOMO − 3 interferes constructively and destructively with the one from

HOMO and HOMO − 2 respectively, but this interference does not affect

the amplitude modulation of the total HHG spectrum as the intensity of

the HOMO− 3 channel is more than an order of magnitude less than both

the HOMO and HOMO − 2 intensities.

Within the model-2 orbital resolved spectrum, the influence of the laser

field on the bound electrons in the CO2 ion is still included in the calcula-

tions, while the effect of the interaction between the ionised electron and the

remaining ion, on the latter, is neglected. While the HOMO channel (black

curve) still dominates the emission for lower harmonics up to harmonic or-

der 15, differently from model-3 here both the HOMO − 3 (green curve)

and the HOMO − 2 (blue curve) channels give a comparable contribution

to the HOMO channel for the harmonic orders 17 and 19 and they both are

larger than the HOMO contribution for the higher harmonics starting from

order 21. The spectral intensities from the HOMO − 2 and HOMO − 3

channels have the same order of magnitude starting from the harmonic or-
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der 17 up to the overall harmonic cutoff, where HOMO − 3 becomes the

channel contributing most (at harmonic orders 25 and 27). Therefore, the

interchannel dipole coupling between the HOMO−2 and HOMO−3 chan-

nels driven by the IR electric field increases the contribution of the lowest

Ip HOMO − 3 channel. However, even within the model-2 framework, the

HOMO−1 channel (red curve) still shows negligible contribution through-

out the spectrum.

As can be seen in Fig. 6.6, the minimum at harmonic order 17 in the total

HHG spectrum (Fig. 6.4) mainly corresponds to the destructive interference

between the HOMO and the HOMO−2 channels; at harmonic order 17 the

values of the two spectral intensities are very close to each other (Fig. 6.5)

and cos
(
Φπg ,σu

)
is negative and equal to −0.7 (Fig. 6.6). Although the

value of the spectral intensity for the HOMO channel is three times the

one for the HOMO − 3 channel, contribution to the minimum shape also

comes from their destructive interference; at harmonic order 17 cos
(
Φπg ,σg

)
is indeed negative and equal to −1.0 (Fig. 6.6). Correspondingly, the two

contributions from HOMO− 3 and HOMO− 2 show constructive interfer-

ence, cos
(
Φσu,σg

)
being positive and equal to +0.5.

As in the case of the model-2 and model-3 calculations, in the ADC(1)

orbital resolved spectrum the HOMO channel (black curve) also dominates

the emission for low order harmonics up to harmonic number 13; the emis-

sion intensity from HOMO − 2 channel (green curve) gives a comparable

contribution for the harmonic numbers 15, 17 and 19 and it takes over the

HOMO intensity for the higher order harmonics. In contrast to the non-

interacting electron (model-3 ) and the model-2 results, within the ADC(1)

framework, the harmonic emission from the HOMO−1 channel (red curve)

shows non-negligible contribution for harmonic orders 19, 21 and 23, reach-

ing its maximum specifically at harmonic number 21 where it becomes the

mayor contributing channel. The contribution of the HOMO − 3 channel

(blue curve) here is totally irrelevant up to harmonic order 23, from which

point HOMO − 3 becomes the mayor contributing channel up to the har-

monic cutoff. Below the position of the minimum and close to the harmonic

cutoff, the amplitude of the total HHG spectrum (Fig. 6.4) is predominantly

the result of the contributions from two channels; specifically the HOMO

and HOMO− 2 channels at harmonic order 15 and 17 and the HOMO− 2

and HOMO − 3 ones at harmonic orders 25 and 27. Conversely, for har-
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Figure 6.6.: Cosine of the relative phases between the contributions to the
HHG emission from the channels of CO2. Top panel – ADC(1)
calculation; central panel – model-2 calculation: ADC(1) with-
out interchannel Coulomb couplings; bottom panel – model-
3 calculation: ADC(1) without interchannel Coulomb and
dipole coupling (single-electron approximation). Black curve
– cos

(
Φπg ,πu

)
(HOMO and HOMO − 1 orbitals); red curve

– cos
(
Φπg ,σu

)
(HOMO and HOMO − 2 orbitals); green curve

–cos
(
Φπg ,σg

)
(HOMO and HOMO − 3 orbitals); blue curve

– cos (Φπu,σu) (HOMO − 1 and HOMO − 2 orbitals); ma-
genta curve – cos

(
Φπu,σg

)
(HOMO − 1 and HOMO − 3 or-

bitals); violet curve – cos
(
Φσu,σg

)
(HOMO−2 and HOMO−3

orbitals). The peak intensity of the IR laser pulse used is
0.7×1014 W/cm2, the time duration 70 fs and the central wave-
length is 800 nm.

188



monic orders 19, 21 and 23, the spectral intensities from three channels have

the same order of magnitude and therefore give comparable contribution to

the total HHG spectrum. The overall harmonic amplitudes at orders 19 and

21 are the result of the interference between the HOMO, HOMO − 1 and

HOMO− 2 channels. At harmonic order 23, HOMO− 1, HOMO− 2 and

HOMO − 3 are the main contributing channels instead. Therefore, in the

top panel of Fig. 6.6, for harmonic orders smaller than 23 the three curves

corresponding to respectively cos
(
Φπg ,πu

)
, cos

(
Φπg ,σu

)
and cos (Φπu,σu) are

plotted, while for harmonic order 23, 25 and 27 we plot the curves corre-

sponding to cos (Φπu,σu), cos
(
Φπu,σg

)
and cos

(
Φσu,σg

)
. In Fig. 6.6, the two

regions are separated by a vertical black line.

As can be seen in Fig. 6.6, in the ADC(1) calculation the minimum at

harmonic order 19 in the total spectrum (Fig. 6.4) mainly corresponds to

the destructive interference between the HOMO and the HOMO−2 chan-

nels; at harmonic order 19 the values of the two spectral intensities are very

close to each other (Fig. 6.5) and cos
(
Φπg ,σu

)
is negative and equal to −0.8

(Fig. 6.6). Although the value of the spectral intensity for the HOMO

channel is 2.5 times the one for the HOMO − 1 channel, contribution to

the minimum shape also comes from their destructive interference; at har-

monic order 19 cos
(
Φπg ,πu

)
is indeed negative and equal to −0.7 (Fig. 6.6).

The two contributions from HOMO − 1 and HOMO − 2 channels show a

small constructive interference as cos
(
Φσu,σg

)
is positive and equal to +0.15

(Fig. 6.6).

6.2.1. Summary

In the work presented in this Section we have investigated the relevance of

multiple-orbital effects during high-harmonic generation (HHG). We have

described the HHG process with the TD B-spline ADC(1) many-body ap-

proach and we have studied the impact of the full inclusion of the residual

electron-ion interaction on the HHG spectrum of the CO2 molecule.

We have found that the shape and position of the dynamical minimum in

the HHG spectrum of CO2 changes whether or not interchannel interactions

are taken into account, see Fig. 6.4 and Table 6.2. We have also seen that

neglecting interchannel interactions can lead to large modifications of up to

one order of magnitude in the HHG yield, especially in the plateau region
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(see Fig. 6.4). The results presented in this Chapter show that the inter-

channel couplings can play an important role in determining the relative

contributions to the total HHG spectrum from the different ionic channels,

also increasing the contribution of channels that would otherwise be negli-

gible in an independent electron model and significantly changing the phase

differences between the channel resolved harmonics. Consequently, the ar-

gument of low ionisation probability by the end of the pulse is not sufficient

to justify ignoring multiple-orbital contributions, such as the ones from the

HOMO−1 and HOMO−3 orbitals. While, after the end of the pulse, the

populations of these orbitals are relatively small, their contributions dur-

ing the pulse are not small and have, indirectly through the interchannel

couplings, an impact both on the HHG yield and on the position of the

dynamical minimum. In general, the population of an ionic channel at the

end of the ionising pulse does not map directly to its relevance in the HHG

mechanism.

Moreover, since multichannel effects in the residual electron-ion interac-

tion enter in the HHG spectrum, they cannot generally be neglected but

need to be understood in order to successfully use them for tomographic

imaging of molecular orbitals [128, 129].

6.3. Nature of the ionic wavepacket resulting from

ionisation of aligned CO2 molecule by

femtosecond strong field IR pulses

During an ionisation event, an electron is emitted from the molecular region

creating an electronic hole with respect to the neutral parent system. If the

initial neutral system was in a pure state, and could then be described by a

total N-electrons wave-function, then both the ionisation dynamics driven

by the laser field and the following field-free dynamics of the N electrons

can be described by a global N-electrons wave-function.

After the emitted electron has travelled a sufficient distance from the

parent cation system and therefore can be considered as no longer interact-

ing with the latter, it becomes possible to distinguish, among the initially

indistinguishable N electrons, between the photoelectron and the remain-

ing N-1 bound electrons which are still localised in the molecular region
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and therefore constitute the ionic electronic cloud. These two physically

distinguishable, spatially separated, sub-systems can be considered as non

interacting in the sense that the photoelectron basically behaves as a free

particle once it is far enough from the parent ionic system, and in turn, the

ion system undergoes an internal electron dynamic which can be considered

as not influenced by the emitted photoelectron.

Moreover, this type of process gives rise to a molecular ion which does not

have to be in an energy eigenstate. As a consequence after photoionisation

the state of the molecular ion can undergo an internal non-trivial dynamical

evolution, which may take the form of hole migration (i.e. motion of the hole

around the molecular frame) [35, 36] or hole decay typically with some non-

exponential (oscillatory) behaviour [38]. This will take place on a timescale

(< 10 fs) that may be short with respect to the timescale of nuclear motion

[44]. Ultrafast hole migration, following sudden ionisation or excitation, is

believed to be a universal response of extended molecules. This process

occurs due to the electron correlations within many-electron systems, and

is predicted to take place typically on the few to sub-femtosecond timescale

(i.e. into the attosecond time domain). It is currently a prominent goal in

attosecond science [20] to observe and fully characterise the hole migration

process in order to improve the understanding of the process and ascertain

the role of hole migration in determining photochemical and photophysical

outcomes and to prove that experimental methods based on attosecond

measurement can address correlation driven dynamics in extended quantum

systems such as biomolecules.

In order to follow the dynamical evolution of the system after ionisation,

it is essential to know the exact initial state in which the ion is produced, i.e.

the exact hole density of the molecular ion. The quantitative understanding

of the nature of the ionic state which is produced after the ionisation of the

molecular system eliminates any uncertainty about the initial conditions to

be fixed for describing and interpreting the post-ionisation electron dynam-

ics in the cation system, i.e. hole migration, as the initial state does not

have to be guessed anymore [35, 36].

Coherent population of two or more ionic eigenstates (for example the

states resulting from the removal, in the molecular orbital picture, of an

electron from the HOMO and HOMO − 1 orbitals respectively) implies

excitation of the bound electronic wavepacket in the ion. In experiments
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performed on the ionic system, quantum interference between these channels

records the wavepacket dynamics. This multi-state dynamic has two non-

trivial parameters: the initial relative phases φ between the ionic states

that could have been acquired during the ionisation interaction with the

laser field and their relative populations.

Moreover, the following questions arise: is the resulting electron dynamic,

which occurs within the ionic system, completely coherent? Will the par-

ent ionic produced system be describable by a statistical mixture or by a

coherent superposition of ionic eigenstates? When an experimental mea-

surement is performed on the ionic system without considering the photo-

electron, does the entanglement within the total N-electron wave-function,

between the photoelectron and the N-1 bound electrons constituting the

ion, dampen the observable time-dependent ionic electron dynamics? The

coherence of the resulting ionic system is crucial to the theoretical interpre-

tation of the dynamical informations that can be obtained in time-resolved

(pump-probe) experiments [35, 48]. In general, the entanglement present in

the total N-electron wave-function results in the non-separability of the lat-

ter into the antisymmetrised product of a single photoelectron wave-function

and a (N-1)-electron ionic wave-function. This lack of separability lowers

the coherence of the ionic sub-system, which therefore must generally be

described by a density matrix instead of a coherent wave-function. Co-

herence between different ionic (eigen)states requires them to ionise in the

same photoelectron continuum, as this leads to the complete separability

of the total N-electron wave-function and consequently to the possibility of

unambiguosly identifing a (N-1)-electron ionic wave-function.

With a view to achieving our main future goal of performing the study

of the coherence and of the nature of the ionic wavepacket resulting from

the ionisation by VUV/XUV ultrashort attosecond laser pulses, it is of

interest here to investigate the level of coherence and the nature of the ionic

wavepacket resulting from the strong field IR ionisation by ultrashort few

cycles IR laser pulses with a pulse duration of few femtoseconds. Therefore,

in this work, we have used an ultrashort IR laser pulse fixing the pulse

duration at 5.2 fs. The time dependent profile of the IR electric field used

in the calculation is shown in Fig. 6.7.

In the remaining part of this Chapter, the first calculation of the reduced

ionic density matrix (R-IDM) of the cation system produced in the non-

192



-100 -50 0 50 100
time (a.u.)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

E
le

ct
ri

c 
fi

el
d 

(a
.u

.)

Figure 6.7.: Time dependent profile of the IR electric field (in a.u.) used in
the calculation. The IR peak intensity is 1.5× 1014W/cm2.

perturbative ionisation of CO2 molecules by high-intensity ultra-short IR

laser pulses is presented. The R-IDM is obtained by tracing out the pho-

toelectron degree of freedom from the total time-dependent density matrix

of the system ρIonic(t) = Tra[ρ̂(t)]. The laser fields used in the following

calculations are linearly polarised and it is assumed that the CO2 molecules

are aligned along the electric-field polarisation direction. The IR field in-

tensities used in the calculations vary in the range from 2× 1013 W/cm2 to

2× 1014 W/cm2 and the IR field carrier frequencies from 0.13 a.u. to 0.038

a.u.. The results presented were obtained by means of a fully ab-initio 3-D

TDSE calculation which was performed using the recently developed molec-

ular time-dependent B-spline implementation of the algebraic diagrammatic

construction (ADC) many-body Green’s function method. Specifically, in

the following study, the first order ADC(1) scheme of the ADC(n) hierarchy

is used. A monocentric B-spline basis set is used to describe single-electron

orbitals. The calculations were performed using a linear B-spline knot se-

quence with a radial box radius Rmax = 320 a.u. and 410 radial grid

points (B-spline basis Set 7, see Table 2.1). In order for the photoelectron

wavepacket not to be absorbed before the end of the IR laser pulse, the

absorbing radius, i.e. the radius at which the CAP starts to be different

from zero, has been set to rCAP = 200 a.u. The CAP strength has been set

to η = 0.0005.

This newly developed numerical method has made it possible to give a

quantitative prediction on the degree of coherenceGi,j(t) =
|ρIonic(t)i,j |√

ρIonic(t)i,iρIonic(t)j,j
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[143] between pairs of final ionic channels i and j formed during the ioni-

sation of the molecular system by the non-perturbative IR laser field. The

numerator of the coherence degree between two ionic states i and j is given

by the absolute value of the complex off-diagonal ρIonic(t)i,j R-IDM matrix

element, while the denominator is given by the square-root of the product

of the two populations
√
ρIonic(t)i,iρIonic(t)j,j . Totally incoherent statisti-

cal mixtures result in Gi,j(t) = 0 while the maximum achievable (perfect)

coherence corresponds to Gi,j(t) = 1.

Additionally, in the cases where the final produced ionic wavepacket shows

an appreciable level of coherence, a quantitative prediction of the resulting

ionic wave-function coefficients is given. Therefore, the present calculations

provide a quantitative understanding about the nature of the ionic states

produced after the strong IR field ionisation of the CO2 molecule in the case

of laser fields linearly polarised along the molecular axis.

Coherence between different ionic states requires them to ionise in the

same photoelectron continuum; within the geometrical configuration used

in this study, where the CO2 molecular axis is perfectly aligned along the

linearly polarised electric field, coherence is possible between two different

pairs of ionic states: between the two Π symmetry states, i.e. | π−1
g 〉 and

| π−1
u 〉, and between the two Σ symmetry states, i.e. | σ−1

u 〉 and | σ−1
g 〉.

No coherence is possible between ionic states with different axial angular

momentum quantum number M . This is because the photons of the aligned

laser field do not carry any axial angular momentum, i.e. they have M = 0,

and therefore M is a conserved quantum number: the initial state of the

system is the CO2 Σ+
g ground state, which has M = 0, and therefore, in the

N-electron configuration states, the Π symmetry ionic states can be coupled

only to π symmetry electronic continuum states, while Σ ionic states can

only couple to σ symmetry electronic continuum ones. Therefore, ionic

states with different M do not share any electronic continuum. Conversely,

as the photon field changes the parity of the states, ionic states with different

parity (g and u) can share a common electronic continuum and therefore

have a certain degree of coherence.

In the cases where the final ionic states produced show a high level of

coherence, two normalised ionic wave-functions can be defined: one within
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the Π (|M |= 1) symmetry space of the ion

ΨΠ (t) = CΠg | π−1
g 〉+ CΠue

−i(Eπu−Eπg )te−iφπg−πu | π−1
u 〉 (6.9)

and one within the Σ (|M |= 0) symmetry space of the ion

ΨΣ (t) = CΣu | σ−1
u 〉+ CΣge

−i(EΣg−EΣu )te−iφΣu−Σg | σ−1
g 〉 . (6.10)

These resulting ionic wave-function coefficients and phases are given respec-

tively by

CΠg =

√
ρR−IDMπg ,πg

NormΠ
CΠu =

√
ρR−IDMπu,πu

NormΠ
e−iφπg−πu =

ρR−IDMπg ,πu√
ρR−IDMπg ,πg ρR−IDMπu,πu

NormΠ =
√
ρR−IDMπg ,πg + ρR−IDMπu,πu (6.11)

for the Π symmetry states of the ion, and by

CΣu =

√
ρR−IDMσu,σu

NormΣ
CΣg =

√
ρR−IDMσg ,σg

NormΣ
e−iφΣu−Σg =

ρR−IDMσu,σg√
ρR−IDMσu,σu ρR−IDMσg ,σg

NormΣ =
√
ρR−IDMπg ,πg + ρR−IDMπu,πu (6.12)

for the Σ symmetry states of the ion.

In an intra-channel model, where the Coulomb interchannel coupling has

not been included, the degrees of coherence are naturally constants and,

after the interaction with the laser field, do not depend on time anymore.

This is due to the fact that, within this model, the hole index is a good

quantum number and both the hole populations and the coherences can be

modified only by the laser electric field. However, in principle, the exten-

sion to the exact Coulomb interaction changes the situation. Interchannel

coupling causes the hole populations and the degree of coherence to remain

nonstationary as long as the photoelectron remains close to the ion. As

the distance between the photoelectron and the ion increases, the Coulomb

interaction between the photoelectron and the parent ion becomes less im-

portant and, consequently, the ionic populations and the degree coherence

converge to a stationary value. In the case of strong field IR ionisation stud-
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ied in this work, the ionisation amplitude scales exponentially with respect

to the electric field and therefore the ionisation events selectively happen at

the central highest peaks of the electric field profile, while being completely

absent at the tail of the laser pulse where the instantaneous intensity is not

strong enough to free any bound electron from the system. In the calcula-

tions reported in this Chapter, the numerical simulation was run for a time

sufficient for the emitted photoelectrons, which have mainly been produced

at the centre of the IR pulse, to reach after the end of the pulse a sufficient

distance from the parent ionic system, therefore making sure that the values

of the coherence degrees presented here are the final stationary ones.

In Fig. 6.8 we show the dependence of the final degrees of coherence

Gπg−πu and Gσg−σu (top left panel) on the IR field peak intensity, together

with the corresponding dependencies of the normalised relative populations

CΠg , CΠu and CΣu , CΣg of the CO2 ionic states (bottom panel) and of

their relative phases φπg−πu , φΣu−Σg (top right panel). The IR central

wavelength and the duration of the laser pulse used in the calculation are re-

spectively 800 nm and 5.2 fs. As it is possible to notice, both the Gπg ,πu and

Gσg ,σu final degrees of coherence have different values depending on the laser

pulse peak intensity. The Gπg ,πu degree of coherence shows a rapid increase

in the range of peak intensities from 0.2×1014 W/cm2 to 0.8×1014 W/cm2,

while its value can be considered stable in the very broad range of IR

peak intensities starting from 0.9× 1014 W/cm2 to 2.0× 1014 W/cm2. Con-

versely, the Gσg ,σu degree of coherence shows an oscillatory behaviour from

0.2 × 1014 W/cm2 to 0.6 × 1014 W/cm2, before starting to rapidly increase

up to 1.5 × 1014 W/cm2 above which its dependence on intensity becomes

weaker. Fig. 6.8 shows that a high degree of coherence between both the Π

symmetry (πg and πu) and the Σ symmetry (σg and σu) final ionic channels

can be obtained using an ultrashort IR laser pulse with a peak intensity in

the range from 1.1× 1014 W/cm2 to 2× 1014 W/cm2.

In order to understand the effect of the interchannel Coulomb couplings on

the coherence of the final ionic wavepacket, in Fig. 6.9 a comparison is shown

between the IR field peak intensity dependencies of the coherence degrees

calculated respectively with (ADC(1) and without (intrachannel model) the

inclusion of the interchannel couplings. The IR central wavelength and the

duration of the laser pulse used in the calculation are respectively 800 nm

and 5.2 fs.

196



0 0.5 1 1.5 2

IR intensity (10
14

 W/cm
2
)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li

z
e
d

 c
o

e
ff

ic
ie

n
ts

0 0.5 1 1.5 2

IR intensity (10
14

 W/cm
2
)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li

z
e
d

 c
o

e
ff

ic
ie

n
ts

0

0.2

0.4

0.6

0.8

1
F

in
a
l 

c
o

h
e
re

n
c
e
 d

e
g

re
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
la

ti
v

e
 p

h
a
s
e
 (

P
i)

σ σ

σ σ

π π

π π

u

u

u

u

g

g

g

g

-

-

-

-

u

π

σ

σ

π

g

g

u

Figure 6.8.: Top panel: Intensity dependence of the final degrees of coher-
ence Gπg−πu , Gσg−σu (left figure) and of the relative phases
φπg−πu , φΣu−Σg in units of π (right figure) between the final
ionic states produced during the ionisation of CO2 by an ultra-
short IR laser pulse. Bottom panel: Intensity dependence of the
absolute value of the Π symmetry CΠg CΠu (left figure) and Σ
symmetry CΣu CΣg (right figure) wave-function normalised co-
efficients. The IR central wavelength and the duration of the
laser pulse used in the calculation are respectively 800 nm and
5.2 fs. The laser field is linearly polarised along the molecular
axis.
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Figure 6.9.: IR peak intensity dependence of the final Gπg−πu (top panel)
and Gσg−σu (bottom panel) degrees of coherence between the
final ionic states produced during the ionisation of CO2 by
an ultra-short IR laser pulse, computed by means of the full
ADC(1) method (black full curve) and of ADC(1) without the
inclusion of the interchannel Coulomb couplings (intrachannel
model) (red dashed curve). The IR central wavelength and the
duration of the laser pulse used in the calculation are respec-
tively 800 nm and 5.2 fs.

As this comparison shows, interchannel coupling affects the coherence in a

significant way. As it is possible to see, especially for the case of the Gσg−σu

degree of coherence, interchannel coupling leads to an enhanced entangle-

ment between the photoelectron and the parent ion resulting in a reduced

coherence within the ion. When the photoelectron is still in immediate con-

tact with the parent ion, the coherence properties of the ionic system are

affected by its interaction with the photoelectron, which can be thought of

as a bath. As it is well known [223], the system-bath interaction leads to

a reduction in the coherence of the system. With time, as the photoelec-

tron moves further away from the ionic system, the Coulomb interaction
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between the parent ion and the photoeletron becomes less important and

the coherence converges to a stationary value. The fact that the coherence

between the higher lying πg and πu hole states is less affected by the inter-

channel coupling indicates that higher photoelectron kinetic energies lead to

a smaller occurrence of system-bath interactions, with a consequent increase

in the degree of coherence among the hole states. On the other hand, the

interchannel couplings due to the low kinetic energy photoelectrons explain

the decrease of the ADC(1) Gσg−σu degree of coherence with respect to the

intrachannel result.

In order to understand how the coherence in the ionic system is achieved,

it is possible to identify two different mechanisms that can lead two different

ionic states to ionise in the same photoelectron continuum. The first mech-

anism consists of the direct ionisation from the molecular neutral ground

state giving rise, with different probabilities, to both the two different ionic

states. Direct ionisation in both channels is then followed by the strong

laser field driven acceleration of the respective photoelectrons in the same

continuum. Since no interaction between the two ionic states is involved

in the formation of the coherence, the one described is an independent-

channel process. The Hamiltonian terms responsible for these processes are

respectively

Dai,0E(t) = 〈Ψa
i | D̂ | Ψ0〉E(t) , (6.13)

and

Dij
ai,bjE(t) = +δi,j〈a | d̂ | b〉E(t) a 6= b . (6.14)

In Fig. 6.10 a schematic representation of this first mechanism is shown.

In the case of an ultrashort laser pulse with broad spectral bandwidth,

the absorption of a different number of IR photons from the two different

ionic channels can lead to the same final electronic continuum state. The

condition to ionise in continuum states with the same final energy is

Ei +
∑
k

nkωk = Ef

Ei − Ei−jgap +
∑
l

nlωl = Ef
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Figure 6.10.: Schematic representation of the first mechanism which can
lead two different ionic states to ionise directly in the same
photoelectron continuum state.

∑
k

nk =
∑
l

nl −M M = 0, 1, 2, 3, 4, 5, 6, 7, . . . (6.15)

where both ωk and ωl stand for one of the many frequencies components

contained in the spectral bandwidth of the pulse and Ei−jgap stands for the

difference between the ionisation potentials of the two ionic states i and j.

In the case studied in this work where the two different ionic states have

different parity, since the absorption of a single photon gives rise to a parity

change in the state of the excited electron, in order for the two channels to

ionise in a continuum state with the same parity the condition of Eq. (6.15)

can extend only to odd values, 1, 3, 5, . . ., of the integer M .

The second mechanism consists of the electron rearrangement within the

ionic system driven by the coupling between the electric field and the transi-

tion dipole matrix element between the ionic eigenstates. The Hamiltonian

term responsible for this process is given by

Di 6=j
ai,bjE(t) = −δa,b〈i | d̂ | j〉E(t) i 6= j . (6.16)

This term is responsible for transitions between the different ionic states
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Figure 6.11.: Schematic representation of the second mechanism which can
lead two different ionic states to ionise directly in the same
photoelectron continuum state. The dipole transitions be-
tween the two different ionic states can lead them to share
the same electronic continuum.
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and does not affect the electron in the continuum, which acts as a specta-

tor. However, this mechanism can change the ionic states the photoelectron

is associated with in the configuration expansion of the total wave-function,

leading to either an increase or a decrease in the overlap between the elec-

tronic continua of the different ionic channels involved in the transition. In

Fig. 6.11 a schematic representation of this second mechanism is shown.

In order to investigate the role of the two different mechanisms contribut-

ing to the final coherence degree between the produced ionic states, in

Fig. 6.12 we show the comparison between the results obtained using the

full ADC(1) approach and the ones obtained freezing either the first or the

second mechanism respectively.

In Figs. 6.13 and 6.14 we also show the IR peak intensity dependence

of the normalised relative final population coefficients of respectively the Π

symmetry (πg and πu) and Σ symmetry (σg and σu) ionic channels of CO2

computed with the three different models. The IR central wavelength and

the duration of the laser pulse used in the calculation are respectively 800

nm and 5.2 fs.

When the second mechanism is frozen, no ionic transitions driven by the

electric field are possible and the only process that can remove an elec-

tron from the occupied πu (HOMO-1) and σg (HOMO-3) orbitals is tunnel

ionisation into the continuum. This model will be referred to as model-1.

In the second approach only the πg (HOMO) and σu (HOMO-2) occupied

orbitals can directly tunnel ionise in the continuum, while the only mech-

anism that can remove an electron from the lower lying occupied orbitals

πu (HOMO-1) and σg (HOMO-3) is the electron rearrangement within the

ionic system driven by the electric field. This model will be referred to as

model-2. As can be seen in Fig. 6.12, the dependence on intensity of the

degrees of coherence predicted by the full ADC(1) model resemble the ones

obtained using model-2. In the case of the Gπg−πu degree of coherence,

the ADC(1) and the model-2 results basically coincide, while the values of

the degrees of coherence obtained using model-1 are considerably smaller.

In the case of the Gσu−σg degree of coherence, the values predicted by the

ADC(1) calculation are smaller (by about 0.1-0.2) with respect to the ones

obtained with the model-2 calculation, but the two curves have the same

dependence on intensity. Conversely the dependence on intensity of the

Gσu−σg degree of coherence obtained using model-1 is different. Gσu−σg
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Figure 6.12.: IR peak intensity dependence of the final Gπg−πu (top panel)
and Gσg−σu (bottom panel) degrees of coherence between the
final ionic states produced during the ionisation of CO2 by an
ultra-short IR laser pulse, computed with the use of the follow-
ing three different models: Black full curve – Full ADC(1); Red
dashed curve – ADC(1) without electric-field induced inter-
channel dipole couplings; Green point-dashed curve – ADC(1)
with frozen direct ionisation into the continuum from orbitals
HOMO− 1 and HOMO− 3. The IR central wavelength and
the duration of the laser pulse used in the calculation are re-
spectively 800 nm and 5.2 fs.
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Figure 6.13.: IR peak intensity dependence of the final Π symmetry
CΠg , CΠu normalised relative population coefficients for the
πg and πu ionic channels of CO2, computed with the use of
the following three different models: Black full curve – Full
ADC(1); Red dashed curve – ADC(1) without electric-field in-
duced interchannel dipole couplings; Green point-dashed curve
– ADC(1) with frozen direct (tunnel) ionisation into the con-
tinuum from orbitals HOMO − 1 and HOMO − 3. The IR
central wavelength and the duration of the laser pulse used in
the calculation are respectively 800 nm and 5.2 fs.

remains approximately constant in the range of intensities which extends

from 0.5 × 1014 W/cm2 to 1.5 × 1014 W/cm2 and it shows a very slow in-

creasing behaviour for higher intensities. Model-1 predicts larger values for

the Gσu−σg degree of coherence with respect to the ADC(1) result, up to the

intensity value of 1014 W/cm2. At higher intensities the difference between

the predictions of the two models become smaller and at 2×1014W/cm2 the

first direct mechanism seems to become the predominant one for Gσu−σg .

However, in general, the ADC(1) results considerably differ from the ones

obtained with model-1. This is due to the fact that, as is seen in Figs. 6.13

and 6.14, in the case of an IR field linearly polarised along the molecular
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Figure 6.14.: IR peak intensity dependence of the final Σ symmetry
CΣu , CΣg normalised relative population coefficients for the
σg and σu ionic channels of CO2, computed with the use of
the following three different models: Black full curve – Full
ADC(1); Red dashed curve – ADC(1) without electric-field in-
duced interchannel dipole couplings; Green point-dashed curve
– ADC(1) with frozen direct (tunnel) ionisation into the con-
tinuum from orbitals HOMO − 1 and HOMO − 3. The IR
central wavelength and the duration of the laser pulse used in
the calculation are respectively 800 nm and 5.2 fs.

axis studied in this work, the main mechanism responsible for the removal

of an electron from the lower lying occupied orbitals πu and σg is, especially

for the case of πu, the ionic transitions to the partially empty (as meanwhile

they have been tunnel ionised by the strong IR electric field) higher lying πg

and σu orbitals driven by the electric field and therefore the formation of the

coherence between the ionic states is governed by this second mechanism.

Moreover, it is also possible to see that in the case of the Gσg−σu coherence,

the contributions from the two mechanisms show destructive interference,

as, at each intensity, the value of the final degree of coherence obtained

when both mechanisms are included (ADC(1)) is smaller than the largest
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between the values obtained with model-1 and model-2.

Finally in Fig. 6.15 we show the dependence of the final degrees of co-

herence Gπg−πu and Gσg−σu (top panel) on the central frequency ω of the

IR pulse, together with the corresponding dependencies of the normalised

relative populations CΠg , CΠu and CΣu , CΣg of the CO2 ionic states (bot-

tom left panel) and of their relative phases φπg−πu , φΣu−Σg (bottom right

panel). The laser field is linearly polarised along the molecular axis. The

IR peak intensity used in the calculation is 0.8×1014 W/cm2 and the pulses

remain ’single cycled’ as the carrier frequency ω is changed. As it is possible

to notice, the GΣg ,Σu degree of coherence increases at longer wavelengths,

starting from 800 nm, while the Gπg ,πu coherence shows a much weaker de-

pendence onto the central frequency of the IR laser pulse, remaining almost

constant in the range of frequencies from 0.4 a.u. to 0.7 a.u.

6.3.1. Summary

In this Section we have calculated the final degree of coherence between the

ionic states of CO2 formed after ionisation by an intense ultrashort IR laser

pulse linearly polarised along the molecular axis. In the cases where the final

ionic states produced show an appreciable level of coherence, we have been

able to give a quantitative prediction of the resulting ionic wave-function

coefficients. We studied the dependence on intensity of the coherences and

of the final populations of the ionic states, showing that a high degree of

coherence between both the Π symmetry (πg and πu) and the Σ symmetry

(σg and σu) ionic channels can be obtained using an ultrashort IR laser pulse

with a peak intensity in the range from 1.1×1014 W/cm2 to 2×1014 W/cm2.

Additionally, we find that interchannel coupling leads to an enhanced

entanglement between the photoelectron and the parent ion resulting in

a reduced coherence within the ion. Therefore, interchannel coupling ac-

companying the hole creation process can be expected to affect attosecond

experiments investigating hole migration processes in photoionised systems.

Moreover, we were able to identify the main mechanism responsible for the

establishment of the final coherence; we found that the formation of the

coherence between the ionic states of CO2 is governed by the electron rear-

rangement within the ionic system caused by the dipole transitions between

the different ionic states driven by the IR electric field. Finally it was shown
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that the πg − πu final coherence is weakly affected by the central frequency

of the ultrashort pulse in the frequency range from 0.4 a.u. from to 0.7

a.u., while using wavelengths longer than 800 nm leads to higher degrees of

coherence between the Σg and Σu hole ionic states. This study paves the

way to the general theoretical understanding of the initial conditions that

drive the time-dependent electron dynamics that can be induced in the ionic

system produced after photoionisation.
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7. Conclusion and perspectives

The aim of this thesis has been the implementation of an efficient first-

principles theoretical and numerical method based on the many-electron

algebraic diagrammatic construction [ADC(n)] schemes, in order to de-

scribe the correlated multi-electron ionisation dynamics induced in atomic

and molecular systems by laser pulses both in the perturbative and non-

perturbative regime. The basic theoretical problem in the description of

atomic and molecular photoionisation is the need to take into account

both the scattering character of the photoionised electron continuum wave-

function and the electron correlation responsible for the many-electron ef-

fects. Within the ADC(n) framework it is possible to describe the electron

correlation at different levels of approximation depending on the specific

ADC method n used within the ADC hierarchy. The ADC(n) schemes have

originally been developed and applied in the Quantum Chemistry (QC) com-

munity to the calculation of properties of bound electronic systems using,

as single-particle basis set, the Gaussian Type Orbitals which have notori-

ous limitations when used to describe continuum wave-functions of ionised

electrons.

However, with the use of the ADC-Lanczos-Stieltjes technique introduced

in [104] and based on the application of the Stieltjes-Imaging moment theory

to the Lanczos pseudospectra of the GTO-based ADC electronic Hamilto-

nian, one of the main basic observables describing the electron dynamics of

an atom or molecule interacting with an ionising electric field and which can

be, at the same time, measured in experiments and predicted theoretically,

i.e. the single photon total photoionisation cross-section, becomes accessible

(with reasonable accuracy) also with the use of a GTO basis set. Therefore,

with the aim of comparing the accuracy of the different ADC(n) schemes

in describing the effects of electron correlation in the ionisation dynamics

and of establishing the ADC-Lanczos-Stieltjes method introduced in [104]

as an efficient and reasonably accurate ab-initio tool for theoretical predic-
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tion of total molecular photoionisation cross-sections in the valence energy

region, a series of total photoionisation cross-sections calculations have been

presented in Chapter 3. The accuracy of this method has been established

by comparing the ADC-Lanczos-Stieltjes ground state cross-sections calcu-

lated at different levels of the ab-initio many-body theory, i.e. ADC(1),

ADC(2) and ADC(2)x, in the valence ionisation region, to the experimental

ones for a series of eight molecules of first row elements for which high-

quality experimental cross-sections are available in the literature: HF, NH3,

H2O, CO2, H2CO, CH4, C2H2, and C2H4 [146]. Stieltjes imaging has been

long established as an efficient way of calculation of total photoionisation

cross-sections using discretised continuum pseudospectra of the final states.

However, the accuracy of this technique is limited by both the ability of

the chosen L2 basis set to represent continuum functions within the inter-

action volume and the numerical instability of the computational algorithm

of the Stieltjes-Chebyshev moment theory. In view of these limitations,

it could be doubted that improving the many-body theoretical description

of the ionised system leads to significantly better cross-sections justifying

the required higher numerical effort. Indeed, the resulting difference in the

calculated cross-sections might fall within the margins of the inaccuracy in-

curred by the basis set and the Stieltjes imaging procedure. The first results

on ADC-Lanczos-Stieltjes method presented [104], indicated that this is ac-

tually not the case and full inclusion of double electronic excitations does

lead to more accurate Stieltjes imaging cross-sections. However, the initial

work dealt only with two atomic and one molecular system. In the present

work, it has been shown beyond doubt that the trend seen in Ref. [104]

is characteristic of molecules of first row atoms in the valence energy re-

gion. It is shown that, within the specific family of post-HF many-electron

methods used here (ADC), the second-order ADC technique [ADC(2)] that

includes double electronic excitations leads to clear, substantial systematic

improvement over the first-order single-excitation ADC(1) theory for all the

molecules considered and to very good agreement with experiment for pho-

ton energies below 80 eV, while for some of them, use of a more demanding

ADC(2)x level of theory leads to better agreement with the available ex-

perimental data (see Table 3.2). On average, the precision gain achieved

with ADC(2)x relative to ADC(2) in the energy window considered (from

ionisation threshold up to 100 eV) is about twice smaller than the preci-
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sion gain of ADC(2) relative to the single-excitation ADC(1) method. The

analysis of the relative deviations of the three ab-initio methods as function

of photon energy has shown that below 60 eV both ADC(2) and ADC(2)x

methods lead to impressive agreement with experiment with the relative

deviations below 10%. At higher photon energies, the inaccuracy of all the

ADC schemes grows, reaching the 20% level around 80 eV. Since above 80

eV photon energy all three methods lead to significant deviations from the

experimental values, this behaviour does not depend on the level of ab-initio

theory; the inaccuracy in this photon energy range is attributed to the lim-

itations inherent to the use of the Gaussian single-electron basis sets, which

are not adequate to represent the rapidly oscillating continuum states of

high kinetic energy ionised electrons as present, rapidly increasing, numer-

ical linear dependencies as the basis set increases. In summary, the work

presented in Chapter 3 has established the ADC(2)-Lanczos-Stieltjes tech-

nique as an efficient and reasonably accurate ab-initio tool for theoretical

prediction of total molecular photoionisation cross-sections in the valence

energy region. Indeed, even within an unoptimised straightforward imple-

mentation of the method on the Intel Core i7-2600 processor, typical CPU

time required for the cross-section calculations presented here is of the order

of a few hours.

Moreover, we extended the L2 ab-initio ADC-Lanczos-Stieltjes method to

the calculation of total photoionisation cross-sections of molecules in elec-

tronically excited states [165]. Comparison of the series of excited state

cross-sections for the CO, N2 and H2O molecules, computed both at the

ground state and the excited state equilibrium geometries and at differ-

ent levels of the ab-initio many-body theory, i.e. ADC(1), ADC(2) and

ADC(2)x, led us to conclude that, in contrast to the ground state pho-

toionisation case, the single excitation ADC(1) method is inadequate for

the description of the excited state photoionisation even at the qualitative

level and that the inclusion of double electronic excitations for description of

excited state photoionisation is essential. The reason for the inapplicability

of the first-order scheme is that many of the final states of the process have

double excitation (2h2p) character and this class of possible final states is

completely omitted by the single-excitation ADC(1) method. While this

feature is fully expected on the basis of the simple Slater-Condon rule anal-

ysis, the extent to which the double excitations change the cross-section
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could be seen only in a quantitative study such as the one performed here.

The numerical results reported in Chapter 4 show beyond doubt that the

full inclusion of double electronic excitations is absolutely necessary in or-

der to produce even a qualitatively accurate photoionisation cross-section.

Moreover, it is found that it is important to include the coupling between

the double excitations into the theory. Indeed, within the ADC family

of methods used here ADC(2)x leads to clear, substantial difference from

the strict second-order ADC(2) theory for all molecules and all geometries

considered. This is in sharp contrast to the case of the ground state cross-

sections, where ADC(2) and ADC(2)x results were found to be in much

better agreement [146]. Since the doubly excited final states of the excited

state photoionisation are much better described by the ADC(2)x theory, it

is assumed that the ADC(2)x cross-sections represent a major improvement

over the ADC(2) results. In summary, the calculations reported in Chap-

ter 4 demonstrated that a theoretical modelling of photoionisation of excited

states requires an intrinsically double excitation theory with respect to the

ground state and can not be achieved by the standard single excitation

methods.

There is no reason to assume that the failure of the single-excitation the-

ory for the excited state photoionisation is unique to the ADC(1) scheme.

Indeed, these results imply that any method that does not fully include the

2h2p final states, such as configuration interaction singles (CIS), Tamm-

Dancoff approximation (TDA), random phase approximation (RPA), linear

response TDDFT, etc. can not be expected to provide a correct description

of the process. A separate issue is whether the non-perturbative TDDFT

calculations, such as performed in Ref. [164] can describe ionisation of a

many-electron wavepacket consisting of the ground and a series of excited

states. For the exchange-correlation functionals used in Ref. [164], one would

expect that in general the contribution of the double excitation relative to

that of the singles is subject to non-physical constraints stemming from the

single-determinant description and as a result the XUV ionisation probabil-

ity should not be given correctly. Indeed, artefacts arising from the single

determinant character of the wave-function have been extensively discussed

in the context of the related time-dependent HF (TDHF) method [184].

However, if the exciting IR field can be considered as an adiabatic pertur-

bation, the initial (approximately HF, i.e. single-determinant) ground state
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would physically evolve into a TDHF-like state under the influence of the

IR field. XUV ionisation of such an adiabatic TDHF state should be given

correctly by the TDHF or TDDFT theory as long as the XUV intensity is in

the perturbative regime. From the cross-section analysis presented in Chap-

ter 4, it is clear however that careful benchmarking of the performance of

the non-perturbative TDDFT with various exchange-correlation functionals

in the time-dependent modelling of excitation-ionisation schemes is highly

warranted.

The main focus of research in my PhD has been dedicated to overcoming

the difficulty of representing the ionisation continuum inherent to the use of

the GTO basis set, by abandoning the GTO L2 approach and successfully

constructing and computationally optimising the first B-spline implementa-

tion of the first- [ADC(1)] and second-order [ADC(2)] schemes for electronic

excitations, which has been presented in the second part of this thesis and

applied to the ab-initio calculation of photoionisation cross-sections, which

are natural computational targets for the newly-implemented technique and

dynamic quantities (high-order harmonic generation spectra, reduced ionic

density matrices).

The implementation of the time-dependent version of the B-spline method

has been based on the solution of the TDSE via the Arnoldi Lanczos algo-

rithm. The advantages of using the B-spline basis set is that the B-splines

basis functions give an accurate representation of the true electronic contin-

uum, making it possible to describe highly oscillating discretised continuum

wave-functions and therefore overcoming the limitations inherent to the use

of Gaussians.

By performing a series of atomic photoionisation cross-section calcula-

tions, we have demonstrated the advantages of the B-spline ADC showing

that the cross-section features that pose a challenge for the Gaussian basis

calculations are found to be reproduced by the B-spline ADC in excellent

agreement with the experiment [55]. In particular, we have been able to cor-

rectly predict the argon Cooper minimum shape and position in the total

cross-section within the moment theory technique. The superior accuracy of

the newly implemented basis set is also manifested by the ability to correctly

reproduce the high-energy tails of the cross-sections that we have shown to

present a notorious difficulty for the GTO-based schemes [146]. Total B-

spline ADC(1) photoionisation cross-sections of N2 and CO2 molecules are
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also presented; as in the case of the noble gas atoms calculations, also in

the molecular case the high-energy tails are found to be much better re-

produced with respect to the analogous GTO-based ADC(1) calculations.

Apart from the strongly improved accuracy, the B-spline implementation

leads to a remarkable stability of the cross-sections with respect to the or-

der of the Stieltjes-Chebyshev moment theory. While the moment theory

method leads to the straightforward comparison between the performance of

the GTO and B-spline bases, it is no longer a necessity within the B-spline

ADC. Indeed, one can obtain directly the correctly normalised continuum

eigenstates at arbitrary values of the energy in the electronic continuum by

employing methods of Refs. [115, 117]. This should be one of the directions

for future work. Another plausible direction for future research is general-

isation of the B-spline implementation to calculation of the decay widths

within the Fano-Feshbach formalism, see Refs. [99] on the GTO-based Fano-

ADC methods. In view of the large (compared to GTO) size of the B-spline

bases, optimised implementation of the B-spline method, both the time-

independent and -dependent versions, within the MPI and OpenMP proto-

cols has been realised, making the future calculations of molecular systems

entirely possible. A lot of optimisation, both regarding the time consump-

tion and the dynamical memory requirements and issues, was performed

on the two-electron integral transformation from the primitive monocentric

B-spline basis set functions to the HF canonical orbitals required within

the ADC formalism. The CPU time required for the type of cross-section

calculations presented in this thesis is, for example, of the order of a few

minutes for the ADC(1) method and of a few hours for the ADC(2) level of

theory, when using 20 computer cores.

By calculating the high-order harmonic generation spectrum of the Ar

atom we presented the first strong-field time-dependent application of the

new ab-initio B-spline ADC technique [55], showing that the effect of the

Cooper minimum on the high-order harmonic generation spectrum of Ar is

correctly predicted by the time-dependent ADC calculation in the B-spline

basis.

We also performed a fully time-dependent ab-initio calculation for the

electron dynamic of the CO2 molecule interacting with an high-intensity

ultra-short infrared (IR) laser pulse, calculating the high-order harmonic

generation spectra for different field intensities and quantitatively investi-
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gating the multi-channel effects on its dynamical minimum. The results

presented in Chapter 6 show that the main features of the CO2 molecule

HHG spectra, i.e. the position of the dynamical minimum and its field in-

tensity dependence, are found to be reproduced by the B-spline ADC(1)

calculations in a very good agreement with the various experiments which

have been performed during the past few years [130, 197, 198, 199, 61].

Indeed, the calculated ADC(1) HHG spectra calculations performed here

present a clear minimum in the high harmonic spectrum of CO2, which

shifts, almost linearly, to higher orders with increasing intensity, from H19

at I1 = 0.7×1014 W/cm2 to H27 at I3 = 1.75×1014 W/cm2. We have inves-

tigated the origin of the minimum by performing an orbital resolved analysis

of the CO2 HHG spectrum, taking into account the inter-channel couplings

driven by the Coulomb interaction and the ionic dipole transitions induced

by the IR electric field. We have found that the inter-channel couplings

can play an important role in determining the relative contributions to the

total HHG spectrum from the different ionic channels, and consequently its

overall structure, increasing the contribution of channels that would other-

wise be negligible in an independent-electron model. We also found that the

position of the minimum in general depends on their inclusion in the simu-

lation and that neglecting these multichannel interactions can lead to large

modifications of up to one order of magnitude in the HHG yield, especially

in the plateau region (see Fig. 6.4). These calculations demonstrate that

many-body effects enter in the HHG spectrum and therefore they cannot

generally be neglected but need to be understood in order to successfully

use them for tomographic imaging of molecular orbitals [128, 129].

As a last application of the newly-implemented TD B-spline ADC code,

we performed a study about the nature and internal coherence of the ionic

wavepacket formed after strong field ionisation of the CO2 molecule. We cal-

culated the final degree of coherence between the ionic states of CO2 formed

after ionisation by an intense ultrashort IR laser pulse linearly polarised

along the molecular axis. In the cases where the final ionic states produced

show an appreciable level of coherence, we were able to give a quantita-

tive prediction on the resulting ionic wave-function coefficients. We studied

the intensity dependencies of the coherences and of the final populations of

the ionic states, showing that a high degree of coherence between both the

Π symmetry (πg and πu) and the Σ symmetry (σg and σu) ionic channels
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can be obtained using an ultrashort IR laser pulse with a peak intensity

in the range from 1.1 × 1014 W/cm2 to 2 × 1014 W/cm2. Additionally, we

have found that interchannel coupling leads to an enhanced entanglement

between the photoelectron and the parent ion resulting in a reduced co-

herence within the ion. Therefore, interchannel coupling accompanying the

hole creation process can be expected to affect attosecond experiments in-

vestigating hole migration processes in photoionised systems. Moreover, we

were able to identify the main mechanism responsible for the establishment

of the final coherence; we have found that the formation of the coherence

between the ionic states of CO2 is governed by the electron rearrangement

within the ionic system caused by the dipole transitions between the differ-

ent ionic states driven by the IR electric field. Finally it was shown that the

πg − πu final coherence is weakly affected by the central frequency of the

ultrashort pulse in the frequency range from 0.4 a.u. from to 0.7 a.u., while

using wavelengths longer than 800 nm leads to higher degrees of coherence

between the Σg and Σu hole ionic states. The present calculations provide

a quantitative understanding about the nature of the ionic states produced

after the strong IR field ionisation of the CO2 molecule in the case of laser

fields linearly polarised along the molecular axis.

This study paves the way to the general theoretical understanding of the

initial conditions that drive the time-dependent electron dynamics that can

be induced in the ionic system produced after IR ionisation and measured

in pump-probe scheme based experiments. Indeed, after photoionisation,

the state of the molecular ion can consist of a superposition of different

ionic eigenstates and can therefore undergo an internal non-trivial dynam-

ical evolution, such as hole-migration [35, 36], Auger decay and so forth.

These processes are the focus of the major attosecond electron dynamics

research within the attosecond scientific community [20]. In order to fol-

low the dynamical evolution of the system after ionisation, it is essential to

know the exact initial state in which the ion is produced, i.e. the exact hole

density of the molecular ion. The quantitative understanding of the nature

of the ionic state which is produced after the ionisation of the molecular

system eliminates the uncertainty about the initial conditions to be fixed

for describing and interpreting the post-ionisation electron dynamics in the

cation system, i.e. hole migration, as the initial state does not have to be

guessed anymore. Moreover, the coherence of the resulting ionic system is
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crucial to the theoretical interpretation of the dynamical informations that

can be obtained in time-resolved (pump-probe) experiments [48].

The groundbreaking development of the attosecond laser pulse [19] in

the extreme ultraviolet (XUV) spectrum where atoms and molecules can

be ionised has enabled the experimental study of attosecond physics [20],

i.e. the study of ultrafast motions of electrons in atoms, molecules and

condensed matter, which can be resolved on a femtosecond or attosecond

timescale.

Our main goal for future works is the application of the newly-developed

time-dependent many-electron B-spline ADC theory for atomic and molec-

ular interaction with strong IR and attosecond XUV laser pulses to the

ab-initio description of strong field multiphoton ionisation, creation of ionic

state wavepackets by sudden single-photon ionisation, high-order harmonic

generation, above-threshold ionisation, electron correlation-driven hole mi-

gration, etc.

The advancement of attosecond physics requires new time-resolving meth-

ods and new attosecond spectroscopies. Therefore, future perspective also

include the application of the time-dependent B-spline ADC method to two

new types of attosecond spectroscopies of electron-hole dynamics, high-order

harmonic generation (HHG) based spectroscopy [224] and single-photon

laser-enabled Auger decay (spLEAD) spectroscopy [225].

Auger decay is one of the main relaxation processes of an inner-shell hole

in the atom or molecule. A valence electron fills the vacancy in the inner

shell and raises the energy of the system, which in turn ionises another va-

lence electron. In summary, it is an autoionisation process of which the net

result is the emission of an electron from the system. Auger decay typically

takes place in a few femtoseconds to hundreds of attoseconds and the rate

can be measured accurately by streaking [31]. Attosecond streaking [31] is

a state-of-the-art technique used to resolve ultrafast electron dynamics. It

relies on the emission of electrons from the system triggered by attosecond

pulses, and driving those electrons with phase-controlled IR field. By sam-

pling the time evolution of the electron signal as a function of the phase

delay between the IR field and the attosecond pulse, one can retrace the

process back to the dynamics of the system that leads to the emission. In

some cases of electron-hole dynamics such as hole migration [35, 36], no

secondary electron is emitted, and therefore streaking is unable to trace the
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dynamics. Other attosecond techniques have been introduced recently, for

example attosecond transient absorption [32], but so far it is limited to elec-

tron dynamics in the valence shell, because the initial ionisation happens

through tunneling effect.

The HHG spectroscopy of Auger-type transitions has been proposed the-

oretically by Leeuwenburgh et al. [224]. In the XIHHG process, while one

electron is emitted from the atomic or molecular system through either tun-

neling or photoionisation and then accelerated in the IR field, another core

electron is ionised by the XUV pulse. Recombination of the electron driven

back to the parent ion by the IR field and consequent production of HHG

radiation can occur only if, meanwhile, the excited ionic system has not

undergone Auger decay or an Auger-type transition, as the core hole would

not exist anymore and therefore recombination would be suppressed and

no HHG photon would be emitted. Since the energy of the emitted HHG

photon is mapped to the time elapsed after the ionisation [226] and the in-

tensity of the HHG radiation varies linearly with the survival probability of

the initial hole, a profile for the attosecond electron hole dynamics of the ion

can be constructed. In the work presented in [224], the survival probability

in krypton and the electron-hole dynamics in trans-butadiene and propanal

were reconstructed from the simulated HHG spectrum. The reconstructed

curve fit the original one well. However the calculation was based on the

plane wave approximation for the description of the electronic continuum

wave-function, even though the kinetic energy of the electron may not be

high enough to justify this approximation. Performing a calculation using

the time-dependent B-spline ADC method, one can get a better description

of the wave-function in the continuum and hence a more accurate result and

understanding of the underlying physical processes.

The electron-hole dynamics in an inner-valence ionised molecule with en-

ergy below the double ionisation potential (DIP) can be probed by inducing

Auger decay with a single photon. The photon provides energy to an outer-

valence electron so that it is energetic enough to go through Auger decay.

The technique of laser-enabled Auger decay (LEAD) has already been re-

alised experimentally on argon ion in the multiphoton regime [227]. The

difference between LEAD and spLEAD is that the latter one is more sen-

sitive to the initial configuration mixing of the ion as many transitions are

forbidden by the many-body selection rules. On the other hand, multi-
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photon absorption makes many more transitions possible with the result

that the final Auger decay can arise from many different configurations,

therefore losing the information regarding the initial electron-hole dynam-

ics. Within a certain range of energy, spLEAD is the only possible process

that is able to produce a doubly charged ion starting from a singly charged

one. Therefore measuring the probability of double ionisation is equiva-

lent to measuring the probability of the spLEAD transition. A theoretical

calculation of the spLEAD probability and the survival probability of the

initial state has been performed by Cooper and Averbukh [225]. The re-

sults indicate a correspondence between the two quantities in terms of the

time evolution pattern. Since the calculation was done with the use of a

GTO L2 single-electron basis set, the theoretical model did not include a

description and the effects of the phase component of the dipole. With the

use of the time-dependent B-spline ADC numerical tool, the phase of the

matrix elements can be accurately calculated and naturally included in the

calculation, therefore obtaining a real ab-initio simulation of the spLEAD

based pump-probe spectroscopy.

Initially, we plan to apply the TD B-spline ADC method to the HHG

and spLEAD spectroscopies of ultrafast atomic processes, such as Auger

decay in neon 1s and spLEAD in neon 2s, to test the methodology. As a

second step, we plan to simulate the electron-hole dynamics of molecular

systems, such as glycine, where we expect the results to uncover effects, such

as the molecular-orbital (MO) picture breakdown [228], which would never

appear in a simplified theoretical model. The strong electron correlation

in an ion with energy near DIP causes the excited state configurations to

overwhelm the ground state in the wave-function of the ion. The electrons

no longer have well-defined orbitals, and the MO picture of the ionisation

breaks down. The time dependence of the wave-function becomes significant

due to the abundance of the excited state configurations. Theoretical studies

of such molecules with TD B-spline ADC may also help us understand

attosecond hole migration in large molecules such as peptides, short chains

of aminoacids, as suggested in [35]. So far the phenomenon has not been

observed experimentally, but hopefully this work will lead to the very first

experimental verification of the electron-correlation-driven hole migration.

In order to be able to apply the TD B-spline ADC method to molecules

as large as glycine, we plan to extend the actual implementation based on a

219



One Centre Expansion (OCE), where the functions are centred on a single

origin, to a multicentre basis set approach. The multicentre approach con-

sists of adding off-centre functions, located at non-equivalent nuclei, to the

B-spline expansion and permits to improves dramatically the convergence

of the calculation for most molecules [229]. Two different types of approach

are possible: a mixed B-spline/GTO, where the added off-centre radial func-

tions are GTO’s or a full multicentre B-spline basis approach, where all the

radial functions located at the different centres are represented as B-splines.

Traditionally, a multicentre basis set is constituted by GTO or STO func-

tions that yield fast convergence for the lowest bound states with a limited

number of basis functions. Increasing the basis represents a difficult task

because numerical linear dependencies rapidly come up. This is due to the

large overlap between functions on different centres. One of the advantages

of using a complete spherical B-spline functions approach lies on the fact

that their local nature permits to control the overlap between functions and

avoid numerical linear dependence problems [57]. In this approach the ra-

dial and angular parts of the basis set are expanded over several suitable

centres to correctly describe bound and continuum states. These centres

are:

• The centre of mass of the molecule, associated with a large spherical

box of radius ROmax to correctly describe the long range behaviour of

the continuum wave-functions.

• The position occupied by each nucleus i, associated with smaller spher-

ical boxes of radius Rimax; this boxes are generally quite small (1 a.u.)

in order to avoid significant overlap with the expansions performed on

neighbouring centres.

The addition of these off-centre basis functions will solve the convergence

problem that the spherical harmonics monocentric expansion presents when

applied to the description of orbitals localised in distant off-centre atomic

nuclei. Our goal is to efficiently implement the calculation of the two-

electron integrals in this multicentre B-spline basis set, and consequently

apply the TD B-spline ADC correlated method to large molecules, such as

benzene and amino-acids.

In summary, the present development paves the way to the ab-initio study

of these phenomena not only in atoms but also in molecular systems and
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beyond single excitation theory (e.g., TDCIS [64, 143, 196]), as is indeed

essential, e.g. [165], in order to describe the dynamical phenomena involv-

ing photoabsorption from excited states of the system and will allow the

possibility to accurately describe a series of many-electron phenomena in

the time-resolved fashion on the atto-second scale.
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