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Abstract

The topology of undirected biological networks, such as protein-protein in-

teraction networks, or genetic interaction networks, has been extensively

explored in search of new biological knowledge. Graphlets, small connected

non-isomorphic induced sub-graphs of an undirected network, have been

particularly useful in computational network biology. Having in mind that

a significant portion of biological networks, such as metabolic networks or

transcriptional regulatory networks, are directed by nature, we define all

up to four node directed graphlets and orbits and implement the directed

graphlet and graphlet orbits counting algorithm. We generalise all exist-

ing graphlet based measures to the directed case, defining: relative directed

graphlet frequency distance, directed graphlet degree distribution similarity,

directed graphlet degree vector similarity, and directed graphlet correlation

distance. We apply new topological measures to metabolic networks and

show that the topology of directed biological networks is correlated with

biological function. Finally, we look for topology–function relationships in

metabolic networks that are conserved across different species.

3



I dedicate this dissertation to my parents and my brother for all

their love and support.

4



Acknowledgements

I wish to thank my supervisor, Dr. Nataša Pržulj, for giving me the opportunity to join
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thank Dr. Nöel Malod-Dognin, Dr. Pržulj’s post-doctoral researcher, for all insightful

discussions and guidance during my work on this dissertation. Also, I would like to

thank members of my viva examination committee, Prof. Dr. Jan Baumbach and Prof.

Dr. Murray Shanahan, for all the useful comments which led to the improved final

version of this manuscript.

I am especially grateful to all former and current fellow PhD students: Dr. Vuk
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1 Introduction

1.1 Motivation

A network (also called a graph) is a common model of a set of objects and their inter-

actions for describing and analysing data in numerous research areas. Different graph

theoretic approaches are used for analysing network data.

Computational network biology is an emerging research area that complements tra-

ditional biology and medicine. Computational analysis on ever-growing amounts of

available biological data offers new insight into research on the development of living

organisms, research on human diseases and the discovery of new drug targets. A number

of large-scale data sets were generated as a result of recent advances in high-throughput

techniques. These molecular data include information on interactions between biological

macromolecules, such as protein–protein interactions (PPI), genetic interactions (GI),

enzyme-substrate relationships and pathway maps. The concept of networks has been

introduced in systems biology as it accurately captures the inner workings of many com-

plex biological systems and reduces the complexity of biological data that is required

for performing computational analyses. Also, the fact that a specific network topology

comes as a direct consequence of biological processes occurring between the elements of

the underlying system, highlights the importance of the topology as a valuable source

of new biological knowledge. Graph theoretic approaches help to identify topological

properties which differ from the wiring which can be expected at random, revealing the

connection between a specific topological characteristic and a related biological function

or phenotype, such as disease.

The majority of current publicly available biological networks are undirected net-

works. For example, PPI networks, where nodes correspond to proteins and edges are

placed between two proteins if they physically interact, are networks with a highly ex-

plored topology. It was shown that proteins which are close in the PPI network are

more likely to perform the same function [1] which was used for inferring functions of

unannotated proteins: the direct neighbourhoods of proteins [1], n–neighbourhoods of

proteins [2], and shared neighbours of proteins [3] were examined looking for the most
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common functions among annotated direct neighbours. Several other methods have

shown that PPI network topology around proteins is a predictor of their function or

their involvement in a disease [4–6].

Graphlets, small connected non-isomorphic induced sub-graphs of an undirected net-

work, first introduced by Pržulj et al. [7], have been particularly useful: the local topol-

ogy around a protein in a PPI network was summarised into a topological “signature”

of a protein – graphlet degree vector (GDV) [4] and the similarity of these protein “sig-

natures” is a good indicator that proteins belong to the same protein complex, perform

similar biological functions, are coexpressed, involved in the same diseases, and are part

of the same sub–cellular components [4]. This topological measure of similarity was used

for predicting new melanogenesis related genes that were phenotypically validated [5]

and for identifying key cardiovascular disease genes [8]. In addition, Gligorijević et

al. [9] developed an integrative model for gene ontology (GO) reconstruction and gene

function prediction. They show that the GDV similarity between nodes contains com-

plementary information to the connectivity patterns, and integrating these two sources

of information boosts the quality of the integrative model by increasing the performance

of gene function and GO term association predictions.

In recent years, there is a growing trend in completing and exploring biological net-

works that are directed by nature, such as transcriptional regulatory networks, metabolic

networks, and effective connectivity brain networks [10–12]. Various network proper-

ties and measures exist for topological analysis of directed networks, such as properties

based on nodes’ degrees or network spectra. However, directed graphlets are still not

defined. In this dissertation, we define directed graphlets and directed graphlet-based

heuristics for analysis of directed networks. Furthermore, we show that our measures

outperform common existing measures for directed networks comparison. Finally, we

apply these new topological measures to show that topology of directed metabolic net-

works is correlated to biological information.

As was the case with the undirected graphlets [13], application of directed graphlets

and derived measures is certainly not limited to computational biology. For instance,

sociology, economy and technology are just some of the many research areas in which

the underlying complex interactions can be modelled using directed networks: social

interaction networks, world trade networks, citation networks, autonomous system net-

works etc. The set of new measures that we propose in this dissertation opens up a

window of opportunities for exploring these research areas from a new perspective.
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1.2 Dissertation Outline

In the remainder of this section, we introduce undirected and directed networks and

and give an overview of graph-theoretic measures for local network topology analysis,

network comparison and network modelling. In addition we provide a brief description

of different types of biological networks, as all applications presented in Chapter 4 of

this dissertation involve biological networks.

We use Chapter 2, to show that it is possible to tackle open problems in biology and

medicine using graph theoretic approaches on undirected biological networks. We first

give a short review of network-based approaches in research on complex diseases, in

particular cardiovascular diseases (CVD), as they are a leading health problem world-

wide [14]. We then present two case studies where we analyse CVDs using undirected

biological networks: (1) In the first study, we apply graphlet-based measures to the

human PPI network to identify key genes involved in CVDs.(2) In the second study,

we use human PPI and genetic networks to explore the reasons behind the protective

role of diabetes against the development of aneurysm. Using a topological measure of

brokerage - a measure that identifies “weak” points in a network, we find kinases that,

conditioned with diabetes pathways, can influence disruption of pathways responsible

for the development of aneurysm.

Motivated by the growing amounts of available directed biological network data, and

the usefulness of topological analysis in biological research described in Chapters 1

and 2, in Chapter 3 we introduce our new methodology for the analysis of directed

networks. We define directed graphlets and generalise the following undirected graphlet-

based measures to the directed case: relative graphlet frequency distance, graphlet

degree distribution similarity, graphlet degree vector similarity, and graphlet correlation

distance. Using synthetic networks and model network clustering, we then show that

directed graphlet-based measures outperform commonly used measures for comparison

of directed networks. In addition, in case of directed networks without anti-parallel

pairs of arcs, we find orbits that are redundant among up-to-four node graphlets.

In Chapter 4, we demonstrate the use of the new network measures introduced in

Chapter 3 by applying them to directed metabolic networks. Namely, we evaluate the

quality of topology-based clustering of metabolic networks of eukaryotic species accord-

ing to their taxonomic classification and confirm that graphlet-based measures outper-

form other common measures for directed network comparison. Further on, we show

that similar local topologies around genes in the human metabolic network correspond

to similar biological functions. Motivated by this finding we use directed graphlets to
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further explore metabolic networks of several eukaryotic species and find conserved rela-

tionships between topology around genes and their biological functions across different

species. We also show the predictive power of a gene’s directed graphlet signature in a

metabolic network for annotating the gene with biological functions.

Finally, in Chapter 5, we conclude the dissertation with a summary of our contribu-

tions, and discuss future work.

1.3 Networks and Network Properties

A network, also called a graph, is a mathematical object denoted as a pair G = {V,E},
where V is a set of vertices (nodes) and E is a set of edges that connect pairs of nodes

according to some relationship between them [15]. In an undirected graph, edges are

unordered pairs of vertices. In a directed graph, edges are ordered pairs of vertices, often

called arcs, directed edges, or arrows. A directed edge or arc e = (x, y) is considered to

be directed from x to y, where y is called the head and x is called the tail of the arc, y

is a direct successor of x, and x is a direct predecessor of y.

A graph can be represented as the |V | × |V | dimensional adjacency matrix A. In an

undirected graph, the entry Aij from matrix A takes a non-zero value or a zero value if

the nodes i and j are connected with an edge or not, respectively [15,16]. In a directed

graph, Aij is the number of arcs from node i to node j. In a weighted graph the values

in the matrix can be used to represent the edge weights. A graph can also be presented

in the format of an adjacency list: it is a |V | × 2 dimensional array representing nodes

in the network, with each node linked to a list of nodes that it is connected to. In case

of a weighted network an additional list of edge weights is necessary for each node.

The choice of network representation depends on computing requirements and the

type of the network. For example, for more sparse networks the adjacency list is more

memory efficient then the adjacency matrix. Also operations of adding or deleting nodes

from a network have a high computational cost in case of adjacency matrix because the

size of the matrix changes and it needs to be allocated again. However, operations on

edges are more computationally efficient if performed on adjacency matrices because

they require only a change in the value of the existing matrix elements. Another advan-

tage of matrix representation is that additional network information can be encoded in

the matrix. For example, the Laplacian matrix of a network contains information on

nodes degrees in the diagonal elements. It is calculated as the difference between: (1)the

matrix containing only nodes’ degrees as the diagonal elements and (2)the adjacency

matrix.
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Depending on the type of edges - whether they have an orientation or not - networks

(graphs) can be directed, undirected, or mixed. A network is weighted if values are

assigned to network edges. Note that in the case of an undirected graph the adjacency

matrix is symmetric, whereas in the case of a directed or mixed graph it is not. Here,

we list common network concepts:

• Multiple edges, also called parallel edges, are two or more edges with the same

pair of endpoints. In directed networks, multiple edges are edges with the same

ordered pair of endpoints [17].

• A loop is an edge whose endpoints are equal.

• A simple graph is an unweighed graph containing no loops or multiple edges. A

directed graph is simple if each ordered pair of vertices is the head and tail of at

most one edge [17].

• A neighbourhood of node i is a set of nodes adjacent to node i.

• A path is a simple graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list [17]. A directed path is

a simple directed graph whose vertices can be linearly ordered so there is an

edge with tail u and head v if and only if v immediately follows u in the vertex

ordering [17].

• The shortest path between nodes, also called a geodesic path [18], is such that no

shorter path between these nodes exists in the network.

• A graph is connected if each pair of vertices in the graph belongs to a path,

otherwise, the graph is disconnected [17]. A directed graph is weakly connected

if its underlying undirected graph is connected. A directed graph is strongly

connected if for each ordered pair (u, v) of vertices, there is a directed path from

u to v [17].

• A cycle is a path that starts and ends in the same node.

• An arc(x,y) inverted in a directed graph is arc(y, x).

• An anti - parallel pair of arcs is a pair of arcs such that one’s head/tail is the

other’s tail/head (e.g. arcs (x, y) and (y, x)).

• A sub-graph of graph G (V,E) is a graph G′ (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
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• An induced sub-graph of graph G (V,E) is a sub-graph G′ (V ′, E′) such that it

contains all edges in G between vertices V ′.

• A partial sub-graph of graph G (V,E) is a sub-graph G′ (V ′, E′) such that it does

not contain all edges in G between vertices V ′.

• An isomorphism of graphs G and H is a bijection f between the nodes of G and

H such that any two vertices i and j from G are adjacent in G if and only if f(i)

and f(j) are adjacent in H.

• A sub-graph isomorphism problem is a task where for given networks G and H, it

has to be determined whether graph G contains a sub-graph that is isomorphic to

H. This problem is NP-complete [19] which means that there are no polynomial

time exact solutions. NP denotes a set of all decision problems whose solutions

can be verified in polynomial time. P denotes a set of all decision problems whose

solutions can be found in polynomial time. A problem p is NP-complete if it is

in NP and if every problem in NP is reducible to p in polynomial time [20].

Note that there is still no proof whether NP-complete problems are solvable in

polynomial time (P = NP ) and this is one of the great unsolved problems of

mathematics [21, 22]. In the case that P = NP , the sub-graph isomorphism

problem would be solved in polynomial time.

Below are listed the properties which summarise the topological characteristics of net-

works. First we address the global network properties, which give an overview of the

network with respect to all its nodes and edges. Then we address the local network

properties, which describe the network topology using sub-graphs, namely motifs [23] or

graphlets [7]. We also list all network distance measures that are based on the discussed

properties. The distance measures address the network topology comparison problem

and quantify the topological correspondence between the two networks or between the

local topologies around nodes in the network.

Note that in this dissertation we do not address the network alignment problem

and thus we do not discuss existing network alignment algorithms. Network alignment

algorithms are another approach for the network comparison problem with the goal

of producing a mapping between nodes of two networks such that the correspondence

between the edges of the compared networks is maximised.
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1.3.1 Global Network Properties

• Degree distribution. The degree k of a node is the number of edges attached to

that node. The degree distribution d (k) shows the probability that a randomly

selected node has degree k, for all k ≥ 0 [16]. Nodes with the highest degree values

are called network hubs. Note that this is a very simplistic notion of a hub and that

identification of hubs in real world networks is often based on multiple network

attributes [24]. For example, in a brain network with vertices corresponding to

brain regions and edges representing inter-regional pathways, hub brain regions

were identified based on node degree, motif fingerprint, betweenness and closeness

centrality of nodes in the network [25]. Another example is a directed network

of web-pages [26], where nodes are ranked based on the relevancy of information

they contain. In that network, a hub was defined as a vertex that points to highly

ranked vertices [26,27].

The degree distribution captures only one aspect of network topology; networks

with completely different topologies can have the same degree distributions [28],

as illustrated in Figure 1.1. In social networks the degree of a node is sometimes

referred to as degree centrality, to emphasise its use as a centrality measure [18].

The centrality measures will be discussed further later on. The average degree of

a network is the arithmetic average of the degrees of all nodes in the network.

In directed networks there exist two different types of degrees for a node: (1) the

in-degree of a node is defined as the number of edges that are pointing to the

node, (2) the out-degree is defined as the number of edges that are pointing from

the node. The total degree of the node in the directed network is given as the

sum of its in- and out- degrees.

Figure 1.1. Different topologies with the same degree distributions. The topologies
of two graphs shown in the figure differ: Graph A consists of two connected
components (two triangles), while Graph B is a single connected component.
Still, both graphs have the same number of nodes (six), the same number of
edges (six), and the same degree distribution (each of the six nodes in the graph
has the degree of two).
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When comparing networks using their degree distributions, the most common

approach is computing the Euclidian distance between the distributions of the

two networks. If di and dj are the degree distributions of the two networks I and

J being compared, then the Euclidian distance Edist(di, dj) is given as:

Edist(di, dj) =

√√√√max(ki,kj)∑
k=0

(di(k)− dj(k))2; . (1.1)

where ki and kj are maximum degrees in networks I and J , respectively. It is

possible to differently weight or normalise distributions before computing the Eu-

clidian distance in order to reduce or emphasise the significance of some elements

in the distribution.

• Clustering spectrum, Average clustering coefficient. The clustering coef-

ficient is the probability that two nodes j and k, connected to node i, are also

connected among themselves [29, 30]. The clustering coefficient of a node i is

defined by

Ci =
2Ki

ki(ki − 1)
, k ≥ 2; (1.2)

where Ki denotes the number of edges between neighbours of the node i and ki

denotes the degree of the node i. Ci = 0 for k < 2. The average clustering

coefficient of a network is calculated as the average value of clustering coefficients

over all nodes in the network [31]:

C̄ =
1

n

n∑
i=1

Ci, (1.3)

where n denotes number of nodes in the network. Clustering spectrum of the

network, C(k), is the distribution of the averages of clustering coefficients of all

nodes of degree k in the network, over all k.

• Average path length. The shortest path length lij between nodes i and j is the

minimum number of edges that form a connected path between these nodes. The

average path length in the network is defined as

〈l〉 =
2

N(N − 1)

∑
〈i,j〉

lij ; (1.4)

where the sum is over all different pairs of i, j [32].
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• Network diameter and network radius. In a connected graph, the eccentric-

ity of a node is the maximum distance between the node and any other node in

the graph. The maximum eccentricity is denoted as the network diameter. The

minimum graph eccentricity is denoted as the network radius. Note that the di-

ameter of the network is also defined as the maximum distance within the network

(described above): D = max(lij). Here we also mention the small-world prop-

erties of a network [33]. In small world networks, the shortest distance between

two randomly chosen nodes grows proportionally to the logarithm of the number

of nodes in that network [29]. Social networks and some biological networks ex-

hibit small-world network characteristics—they have much smaller diameters than

would be expected at random [29].

• Centrality Measures

– Degree centrality. As mentioned above, degree centrality is equivalent

to the degree of a node. In terms of centrality, the degree relates to the

importance of a node, based on the number of neighbouring nodes.

– Eigenvector centrality. This is an extension of degree centrality: the im-

portance of the vertex increases based on the importance of its neighbouring

nodes [18]. Relative scores are assigned to nodes based on the concept that

having high-scoring nodes as neighbours contributes more to the score of the

node than having low-scoring neighbours. Eigenvector centrality of a node i

can be calculated using [34]:

xi = k−11

∑
j

Aijxj ; (1.5)

where A is the adjacency matrix of the network, and k1 is the largest of the

eigenvalues of matrix A. The eigenvector centrality of a node has a higher

value if the node has many neighbours, and/or his neighbours are important.

Another generalisation of degree centrality is Katz centrality [35] of a node,

which measures the number of all nodes that can be connected with the node

through a path. The contributions of more distant nodes are penalised using

an attenuation factor α ∈ (0, 1). The centrality measure with the trade name

PageRank [36] is used as a central part of Google’s web ranking technology.

It can be observed as a variation of Katz centrality where the centrality that

a node derives from its neighbours is proportional to their centrality divided

by their out-degree [18] (a network of webpages being a directed network).
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Spectral network theory analyses the topology of a network by using the eigen-

values and eigenvectors of network matrices. If X is a matrix describing the

network (Laplacian or adjacency matrix) [37], then the eigendecomposition of

X is given as X = φλφT , where λ = diag(λ1, λ2, ..., λn) is the diagonal matrix

with the sorted eigenvalues as elements and φ = (φ1|φ2|...|φn) is the matrix

of columns containing sorted eigenvectors. The graph spectrum is defined as

the set of eigenvalues s = λ1, λ2, ..., λn, where λ1 ≤ λ2 ≤ ... ≤ λn. Note

that the eigenvalues of a matrix are real numbers in the case of a symmetric

matrix, i.e. A = AT , which means that the spectra of undirected networks

are real numbers. Two networks are called cospectral if they have the same

eigenvalues.

Networks can be compared based on their spectra by calculating the spectral

distance. If s1 and s2 are network spectra of two graphs G and H, then the

spectral distance is defined as the Euclidian distance d(G,H) between the

spectra s1 and s2 [37]:

ds(G,H) =

√∑
i

(λ1i − λ2i )2; (1.6)

If the lengths of the spectra are different, 0 valued eigenvalues are added to

the smaller spectrum while preserving the correct magnitude ordering. Graph

spectrum can be computed using Laplacian matrix, normalised Laplacian

matrix, adjacency matrix, shortest path length matrix etc. It was shown

that the spectral distance computed using Laplacian matrices is the most

appropriate for classification and clustering experiments [37]. Thus, in our

experiments we use spectral distance based on Laplacian matrices and denote

it simply as spectral distance.

– Closeness centrality. The farness of a node is defined as the sum of its

shortest paths to all other nodes, and its closeness is defined as the inverse

of the farness [38]. For node v it is calculated as:

Cc(v) =
1∑

u∈V dist(u, v)
; (1.7)

where dist(u, v) is the distance between nodes u and v and V is the set of

nodes in the network. Therefore, the more central the node is in a network,

the lower its total distance to all other nodes is.
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– Betweenness centrality. This quantifies the number of times a node lies on

the shortest path between two other nodes in the network [39]. Betweenness

centrality of a node i can be calculated using [18]:

xi =
∑

s 6=i,t 6=i,s 6=t

nist
gst

, (1.8)

where nist is the number of shortest distances between s and t that pass

through node i, and gst is the total number of shortest distances between

nodes s and t. The convention is that
ni
st
gst

equals 0 if gst is 0. Equation 1.8

can be normalised by dividing it with the total number of node pairs in the

network.

– K-shell decomposition. K-shell decomposition of a network is conducted

by iteratively removing and grouping nodes based on their degrees. The steps

of the algorithm are:

1. All nodes of degree ≤ 1, along with their edges, are removed from the

network. All removed nodes form the 1-shell of the network;

2. In the resulting network, all nodes of degree ≤ 2, along with their edges

are removed from the network, forming the 2-shell;

3. The decomposition process is repeated until all nodes are assigned to one

of the k-shells.

The largest value of k for which the resulting network is not empty is called

kmax, and the corresponding sub-network is called kmax-core, or the core of

the network. Nodes corresponding to higher degree shells are more central

in the network, but are not necessarily hubs [40].

1.3.2 Local Network Properties

• Network Motifs. A network motif is a pattern that occurs at a statistically

significant frequency in the network [23]. Motifs are partial sub-graphs. The pro-

cess of finding motifs is as follows: (1) occurrences of different patterns of interest

in a network are counted, (2) the network is randomised conserving the nodes

degrees, (3) the frequencies of the patterns are counted in the randomised net-

work, where the null model is Erdös-Renyi (ER) random network model (random

network models will be described in more detail in section1.4), (4) steps 2 and

3 are repeated to find the frequency distribution for topological patterns in the
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set of randomised networks, (5) statistical significance of the frequency of each

sub-graph in the original network is determined from the frequency distributions

obtained in (4) using the Z-score as follows [41]:

Zi =
(Nreali− < Nrandi >)

std(Nrandi)
, (1.9)

where Nreali is the number of times the sub-graph appears in the original network,

and < Nrandi > and std(Nrandi) are the mean and standard deviation of its

appearances in the randomised networks, respectively. The normalised Z-score of

the sub-graph in question is called the sub-graph’s significance profile SP and for

a sub-graph i it is calculated as:

SPi =
Zi

(
∑
Z2
i )

1
2

. (1.10)

This normalisation emphasises the relative significance of sub-graphs, rather than

the absolute. Normalisation enables the comparison of networks of different sizes

because the motifs in large networks tend to have higher Z values than those

in smaller networks. It is possible to group networks according to similar motif-

spectra [41]. Obviously, network motifs can be identified both for directed and

undirected networks and indicate the main organisational principles within a net-

work. An example is the feed forward loops that are shown to be over-represented

in signalling networks [42] which is in line with how the signals are propagated

though such networks. A drawback of network motifs is that they are dependent

on the choice of a network null model [43]

• Graphlets. Graphlets are the small, connected, non-isomorphic induced sub-

graphs of a network first introduced by Pržulj et al. [7]. Recall that an induced

sub-graph of a network G is a sub-graph that contains all edges between its nodes

which are present in G; this is different to a partial sub-graph that contains only

some of these edges (above defined network motifs are partial sub-graphs). They

can appear in the network at any frequency and thus are not dependent on a

null model. All 30 two to five node graphlets, denoted by G0 to G29 are shown

at the top of Figure 1.2. Three highly sensitive measures of network local struc-

tural similarities are based on graphlets: the Relative Graphlet Frequency Dis-

tance (RGF distance) [7], Graphlet Degree Distribution Agreement (GDD agree-

ment) [44] and Graphlet Correlation Distance (GCD) [13]. Also, the Graphlet
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Degree Vector (GDV), or node signature, captures the topology of a node’s neigh-

bourhood. Comparing the signatures of two nodes provides a highly constraining

measure of local topological similarity between them - Graphlet Degree Vector sim-

ilarity [4]. As a large part of this dissertation deals with the generalisation of all

graphlet-based measures to a directed case, in the following section we elaborate

upon graphlet-based network properties in more detail.

1.3.3 Graphlet-based Measures for Analysing Network Topology

The Graphlet Degree Vector [4] (GDV) is a generalisation of the degree of a node

and it counts the number of all two to five node graphlets that the node touches, taking

into account different “symmetry groups” within each graphlet (numbered from 0 to

72 in the top panel of Figure 1.2). These symmetry groups are called automorphism

orbits (detailed in [44]). For example, it is topologically relevant whether a node touches

graphlet G4 at the middle node, or at one of the end nodes (top of Figure 1.2). These

counts are coordinates in the 73-dimensional Graphlet Degree Vector (GDV) of a node.

An illustration of a GDV of node v is given in the bottom panel of Figure 1.2.

The similarity between GDVs of nodes u and v in graph G is computed as follows [4].

If ui is the ith coordinate in the GDV of node u, and vi is the ith coordinate in the GDV

of node v, then the distance between these two coordinates is computed as:

Di(u, v) = wi ×
|log(ui + 1)− log(vi + 1)|
log(max(ui, vi) + 2)

. (1.11)

In formula (3.1), wi represents the weight of coordinate i, which takes into account

dependencies between orbits, as described in [4]. Namely, the occurrence of some orbits

is dependent on the occurrence of other orbits. For example, the difference in the

number of orbits 3 that a node touches implies the difference in the number of orbits

that contain orbit 3, such as orbits 14 and 72. This observation is applied to all orbits

and the distinction is established between “more important” and “less important” with

higher and lower values of wi respectively. To compute wi, each orbit i is assigned a

value oi that denotes the number of orbits that affect orbit i. Each orbit also affects

itself. For example, o15 = 4 because orbit 15 is affected by orbits 0, 1, 4, and itself.

Finally wi is computed as follows:

wi = 1− log oi
log 73

. (1.12)

The total distance between the GDVs of nodes u and v, normalised in [0, 1] range, is
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Figure 1.2. 73 Graphlets and graphlet degree vector (GDV) of a node. Top:
Graphlets with up to five nodes, denoted by G0, G1, G2, . . . G29. They contain 73
“symmetry groups,” denoted by 0, 1, 2, . . . , 72. Within a graphlet, nodes belong-
ing to the same symmetry group are of the same shade [44]. Bottom: An illus-
tration of the GDV of node v. GDV (v) = (2, 2, 1, 0, 2, 2, 0, 0, 1, 0 . . . , 0), meaning
that v is touched by two edges (orbit 0, illustrated in green and red in the first
panel), two times as end-node of one graphlet G1 (orbit 1, illustrated in the sec-
ond panel), the middle node of one graphlet G1 (orbit 2, illustrated in the third
panel), two times as end-node of graphlet G3 (orbit 4, illustrated in the fourth
panel), two times as a middle node of graphlet G3 (orbit 5, illustrated in the
fifth panel), and touched by graphlet G5 (orbit 8, as illustrated in the most right
panel).

calculated as:

D(u, v) =

∑72
i=0Di∑72
i=0wi

. (1.13)

Finally, the GDV similarity of the two nodes is computed as:

S(u, v) = 1−D(u, v). (1.14)
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The GDV similarity between proteins in the human PPI network has already been

used to successfully predict protein function and involvement in disease [4–6,45].

Relative graphlet frequency is defined as Ni(G)
T (G) , where Ni(G) is the number of

graphlets of type i, i ∈ 1, ..., 29 in the network G, and T (G) =
∑29

i=1Ni(G) is the total

number of graphlets in G [7]. The relative graphlet frequency distance D(G,H) for the

two graphs G and H is defined as:

D(G,H) =
29∑
i=1

|Fi(G)− Fi(H)| , (1.15)

where Fi(G) = −log(Ni(G)
T (G) ) [7]. The logarithm of graphlet frequency is used to avoid

dominance of the most frequent graphlets in the networks over less frequent ones. Rel-

ative graphlet frequency was used to compare PPI networks with different types of ran-

dom networks and to show that PPI networks are closest to geometric random graphs

with respect to this parameter [7]. The model networks will be described further in

Section 1.4.

Graphlet Degree Distribution (GDD) is analogous to degree distribution: for

each of the 73 automorphism orbits (Figure 1.2), the distribution of nodes that are

touching a particular graphlet at the node belonging to a particular orbit is calculated

(for a particular orbit we count the number of nodes touching a graphlet at that orbit).

This results in spectrum of 73 graphlet degree distributions, where the degree distri-

bution is one of them (the first one). Networks can be compared based on the GDD

agreement measure which is defined as follows: Let djG be GDD for the jth automor-

phism orbit in network G. The normalised distribution for the network G is defined

as [44]:

N j
G(k) =

SjG(k))

T jG
; (1.16)

where djG is scaled as SjG(k) =
djG(k))
k to decrease the contribution of larger degrees in

GDD, and then the distribution is normalised with respect to its total area:

T jG =
∞∑
k=1

SjG(k). (1.17)
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The distance between normalised jth distributions for the two networks G and H is [44]:

Dj(G,H) =
1√
2

( ∞∑
k=1

[N j
G(k)−N j

H(k)]2

) 1
2

, (1.18)

where the resulting value is between 0 and 1, 0 meaning that the jth GDDs are identical.

Further, jth GDD agreement is obtained as:

Aj(G,H) = 1−Dj(G,H). (1.19)

Finally, the GDD agreement between two networks is defined either as the arithmetic

or geometric mean of all GDD agreements over 73 automorphism orbits [44]. This

measurement was used to show that PPI networks are best modelled by geometric

random graphs [44]. More on the topic of network modelling is covered in the following

section.

Graphlet Correlation Matrix and Graphlet Correlation Distance. Recall

that when the GDV similarity between two networks was calculated, the dependencies

between orbit counts were observed. By exploiting these dependencies, a new concept,

Graphlet Correlation Matrix, and a new measure for comparing the network topologies,

Graphlet Correlation Distance, were introduced [13]. In addition, the redundant orbits

were identified and eliminated. Namely, there exist 17 linear equations describing all

redundancies amongst the 73 graphlet orbits, which means that only 56 orbits are non–

redundant. Of 15 orbits for up to 4-node graphlets, 11 of them are non–redundant.

The dependencies (correlations) between non–redundant orbits over all nodes in a net-

work are motivation for computing a Spearman’s Correlation between graphlet degrees

and constructing the Graphlet Correlation Matrix (GCM) of the network as follows [13].

First, it is observed that there are fewer dependencies between the 11 non–redundant

orbits for up to 4-node graphlets, than between the 56 non–redundant orbits for up to

5-node graphlets. This means that up to 4-node graphlets introduce less noise in the

new network statistic, so the new statistic takes into account only 11 non-redundant

orbits on up to 4-node graphlets. For each node in a network a Graphlet Degree Vector,

corresponding to the 11 non-redundant orbits, is constructed. Then a matrix containing

rows of Graphlet Degree Vectors is formed. Its number of rows equals the number of

nodes in the network and the number of columns equals 11 (number of orbits). For a

given network N, the Spearman’s Correlation coefficients between all pairs of columns

of the above described matrix are computed and presented in a 11× 11 symmetric ma-
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trix of the network N, named GCMN [13]. In this way, the topology of the network N

is summarised into an 11 × 11 sized symmetric matrix with values in the interval [-1,

1]. Note that some graphlets, and hence orbits, may not appear in the network, which

would result in an entire column of zeros. Spearman’s correlation coefficient can not be

calculated if all the values of one of the vectors are the same (zero is the only possibility

in the case of GDV), and this problem is solved by introducing a dummy node in the

network with a GDV vector containing only values that equal 1. This way the correla-

tion between non-existing orbits is 1, and the correlation between a non-existing orbit

and any other orbit, whose column has non-zero values, is close to 0.

The Graphlet Correlation Distance (GCD) between networks N1 and N2, charac-

terised with GCMN1 and GCMN2 , is calculated using the Euclidean distance of the

upper triangle values of GCMN1 and GCMN2 . GCD is free of redundancies and en-

codes information about local network topology. It outperforms other measures both

on synthetic and real world networks [13] and has been used to track dynamics of the

world trade network (WTN). It was also used to discover broker and peripheral roles

of countries in WTN and the correspondence of these roles to economic prosperity or

poverty, respectively [13].

GCD-11 denotes the graphlet correlation distance that is computed from the GCM

of non-redundant 2- to 4-node graphlet orbits. Similarly, GCD-73 denotes the graphlet

correlation distance that is computed from the GCM of all 2 to 5-node graphlet orbits.

1.4 Random Network Models

A network model is a random network with specific and predefined network proper-

ties. A network model that is well fitted to a real world network can provide better

understanding of real world network data. For example, as we will discuss in Section

1.5, biological data are still incomplete and noisy due to sampling, biases in data col-

lection and interpretation, and limitations in technology [46,47]. If it is possible to find

an adequate theoretical network model that fits a network, i.e. precisely reproduces

the network’s structure and laws, then that model can be used to predict missing data.

Also, a well-fitting model can provide easier computational manipulation of the network

data and help understand the mechanisms of biological processes and evolution within

the cell [48]. We evaluate our new measures for the comparison of directed networks by

evaluating their performance on clustering model networks (see Chapter 3.2).

Here we present the rules for constructing network models commonly used for study-

ing biological networks: Erdös-Rényi (ER) graphs, Scale-free (SF) random graphs,
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Stickiness-index-based model, Small-world network model, and several types of Geo-

metric graph (GEO) models. In Chapter 3 we go into further detail in regards to how

we generate directed network models.

• Erdös-Rényi (ER) graphs. This is the earliest random graph model. An ER

graph G(N,M) is constructed so that M edges are randomly placed between

N nodes with the same probability p [49]. These graphs have Poisson degree

distributions (for small number of nodes in the network it is binormal), their

average diameter is an order of log(n), they have low clustering coefficients for low

p, and generally exhibit the small-world property for p > 2
N(N−1) [50]. Note that,

according to Watts-Strogatz definition of small world networks [29], the small-

world properties include short (logarithmically growing) average path lengths and

high clustering coefficients. Real life networks, in general, are not well described

using Erdös-Rényi model. Regarding biological networks, which have power-law

degree distributions and high clustering coefficients, it was shown that ER model

poorly captures their properties [7].

However, random graphs can be generalised by constructing the generalised ran-

dom model ER-DD graph, in the sense that edges are randomly chosen in the

same way, but the degree distribution has to fit the degree distribution of the real

network that is being modelled (this was applied to world wide web networks and

networks of collaboration between scientists) [51]. An ER-DD graph is constructed

in the following way: (1) the number of “stubs” (that will be filled by edges) is

assigned to each node, based on the degree distribution of the real network to be

modelled [24], (2) edges are created between pairs of nodes with stubs picked at

random, and each time the number of stubs left available at the corresponding

end nodes of the edges is decreased by one, (3) multiple edges between the same

pair of nodes are not allowed.

• Scale-free (SF) random graphs. These networks have a power-low degree

distribution [52]. They can be generated by iteratively adding nodes to a small

seed network, so each new node is attached to existing nodes proportionally to

their connectivity. This is the rich get richer principle, known as Barabási-Albert

preferential-attachment model (SF-BA) [52]. The probability that a newly added

node in the network will be connected to node i among n existing nodes is p(vi) =
di∑n

j=0 dj
, where di is the degree of the node i. Clustering coefficient and average

diameter of SF-BA networks are low.

32



Another way of generating scale-free networks (when N → ∞) is to duplicate

existing edges in a way that they keep their existing interactions with the proba-

bility 0 < π < 1 [53]. SF networks capture the degree distribution of PPI networks

which follows a power-law [54]. Note that it has been shown that subsets of scale-

free networks are not scale-free [55]. Since currently available PPI information

is incomplete, the fact that current PPI networks have power-law degree distri-

butions therefore does not guarantee that a complete PPI network would share

the same property. Also, Vasquez et al. [56] proposed the Scale-free gene du-

plication and divergence model (SF-GD) that generates networks with power-low

degree distribution, and fits PPI networks better than the preferential-attachment

model, mentioned above. The principle for building SF-GD networks is as follows:

(1) a newly added gene to the seed network inherits the same connections that a

randomly chosen existing node has (a duplication step), (2) the new node and the

selected node are connected with probability p, (3) in the mutation (divergence)

step, each edge that the new node inherited is deleted with a probability q. This

process is completed when the network reaches desired size and density.

• Stickiness-index-based model (Sticky). This is a random graph model, where

a connection between two proteins is inserted according to the degree, or “sticki-

ness”, of the two nodes involved [57]. This idea is based on the assumption that

in a biological network, the proteins that partake in more interactions have many

binding domains and it is highly likely that such proteins interact among them-

selves. The stickiness index of a node i is calculated as Si = ki√∑
j∈V ki

, where

V is a set of nodes in the network, and ki is the degree of the node i. Sticky

networks mimic degree distribution, clustering coefficient and average diameter of

real-worlds networks well.

• Small-world model. This model was proposed by Watts and Strogatz in [29].

It starts as a circle model (ring lattice) with n vertices in which every vertex has

a degree of c, but for each node one of its edges is removed with a probability p

and replaced with an edge that connects the node to a uniformly randomly chosen

node in the network. The parameter p controls the interpolation between circle

model and random graph (for p = 0 the circle model is present, while for p = 1 we

have a random graph). This model captures both high clustering coefficient and

the small-world effect of real networks. However, the small-world model does not

mimic the degree distribution of real world networks well. An alternative to this

model is not to remove any edges from the circle when adding random additional
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edges between nodes [18].

• Geometric graphs (GEO). For a set of nodes distributed in space and a con-

stant value ε, two nodes are connected if the “distance” between the nodes is

within the value of a distance threshold ε. The value of constant ε is chosen so

that the resulting network would capture the number of edges in the network that

is being modelled. If the nodes are distributed uniformly at random in space,

these are called geometric random graphs [7]. These uniform geometric graphs

have high clustering coefficients and a small average diameter, like real worlds

networks, but differ in type of the degree distribution – GEO networks follow a

Poisson degree distribution.

It has been shown that PPI data are better fit by GEO than SF model [7,44]. Note

that the choice of a network property that can be used to examine the fit of a model

is non-trivial, and using different network properties can yield different results.

In order to examine the fit of GEO model and PPI networks Memǐsević et al.

in [48] created a “network fingerprint” that integrates several network properties:

the average degree, the average clustering coefficient, the average diameter, and

graphlet frequency. The results showed that the structure of PPI networks is most

consistent with noisy GEO networks.

The GEO model was later refined into a Trained Geometric Model (TGEO) [58],

which learns the structure of a PPI network, and therefore captures most of the

network’s properties from the real data, instead of reproducing the properties. In

this model, nodes are not distributed in a metric space at random, but the distri-

bution plearned in the metric space is learned from the real data, which results in

the power-law degree distribution of the TGEO network. Only the high confidence

part of S. cerevisiae PPI network was used to train the model. A 3-dimensional

Euclidian unit cube was chosen as a metric space, into which the nodes were em-

bedded. The embedding algorithm that was used [59] is based on the premise

that network connectivity information corresponds to Euclidian proximity (simi-

larly to geometric random graphs). The model was evaluated by comparing it to

PPI data networks using main global network properties, and it was outperformed

only by the standard geometric random model. When using GDDA measure for

comparison, this model outperformed others. Note that for more noisy networks,

both GEO and TGEO models were outperformed by other models.

Pržulj et al. [60] introduce two network models that use the principles of geometric

graphs to model the evolutionary dynamics of PPI networks: Geometric Model
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with Gene Duplication and Divergence (GEO-GD) expansion and GEO-GD with

the probability cut-off. Both models govern growth of the network from a small

seed network by adding new nodes in a way that imitates gene duplications (GD)

and mutations. GEO-GD is a biologically motivated model for PPI networks: (1)

genes and proteins exist in a multidimensional biochemical space, (2) the dupli-

cated gene is placed at the same point in space as its parent and then, if not

eliminated by natural selection, is slowly separated keeping some of the parent’s

interactions and gaining some new ones, (3) the difference in their properties is

proportional to their distance in this abstract space. The process of generating

GEO-GD networks imitates this scenario as follows: (1) A small number of nodes

are distributed randomly in the space—seed network; (2) Each new node is in-

troduced as a duplicated node of a randomly selected node in the network; (3)

The new node is moved randomly from its parent node in the metric space. In the

GEO-GD expansion (GDE) model, the new node moves a random distance within

the value of 2 × ε. For a GEO-GD with the probability cut-off (GDP) model a

node can move from its parent for a random distance of ε with the probability

p or for a random distance 10 × ε with the probability 1 − p. Note that when

generating GEO-DD networks we use the GDE approach.

GEO-GD networks have power-low degree distributions, high clustering coeffi-

cients and low network diameters. A GDD agreement measure was used to ex-

amine the fit of the GEO-GD model and PPI networks. It outperformed other

networks models for high confidence parts of the yeast interactome, closely fol-

lowed by scale-free duplication model from [56].

Finally, we distinguish between two different types of network models: descriptive

models and network-driven models [60]. Descriptive models describe general properties

of a particular type of network (e.g. PPI network), for example by reproducing the type

of degree distribution characteristic for that type of network, or by modelling the princi-

ple (e.g imitating gene duplication). Such are, for example, Scale-free (SF) duplication

model or GEO-GD model. On the other hand, Stickiness-index-based model, ER-DD

model and TGEO model are network-driven because they need a particular network

example to reproduce its structure.
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1.5 Biological Networks

In a biological network, biological elements and the relations between them correspond

to nodes and edges. For example, an edge in a protein network is placed between

two proteins if they bind together to perform their biological function, which results in

a protein-protein interaction (PPI) network. However, an edge between two proteins

can also correspond to a common trait between two proteins, such as being targeted

by the same drug, or causing the same disease–associations that exist in the scientific

literature, thus resulting in a type of an association network. Other highly exploited

biological networks are genetic interaction networks, metabolic networks and transcrip-

tional regulation networks. In this section we provide further details on these networks.

Recent advances in high-throughput techniques have resulted in a number of large-

scale biological data sets. Table 1.1 lists commonly used databases of biological knowl-

edge. These databases contain the biological information necessary for building different

types of biological networks: interactions and relationships among biological macro-

molecules and metabolites, such as protein-protein interactions (PPI), genetic interac-

tions or enzyme-substrate relationships. Available data also include gene functional

annotations, pathway maps, information on genetic disorders and disease associations.

To give an example of the scale of available data, BioGRID currently1 lists 771,245 com-

bined (physical and genetic) raw interactions between 56,907 genes (proteins) across 56

species, while DRYGIN contains 5,482,948 genetic interactions for S. cerevisiae. A lim-

iting factor regarding the reliability of the networks is certainly the quality of data.

As discussed before, although large amounts of biological data are available, they are

still noisy and incomplete [46,47]. This is influenced by biases introduced by screening

techniques used for obtaining the data - they may not be sensitive enough to detect all

the changes in the system [61]. Also, the outcomes of experiments depend on the strin-

gency of experimental conditions: overly stringent conditions can lead to false negative

interactions, as opposed to false positive results obtained from experiments that were

not stringent enough. Another bias is introduced by the focus of the research - in partic-

ular, some genes/proteins can be more interesting to scientists, thus their interactions

are explored more often. An example of this is disease related genes. This can result in

the existence of false hubs in the network, without reflecting the true network topology.

In addition, not all biological processes can be accurately represented as interactions

(edges in the network) between two elements because a biological process can require

more than two elements and involves different types of interactions.

1June 2015
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Database

name

Type of data Number of organisms Ref.

BioGRID PPI and genetic interactions 56 [62]

HPRD PPI, disease associations,

posttranslational modifications,

tissue expression, subcellular

localisation, and enzyme/substrate relationships

1 (H. sapiens) [63]

DIP Experimentally determined PPI 10 [64]

HomoMINT PPI experimentally verified in model organisms

for H. sapiens

1 (H. sapiens) [65]

I2D PPI 7 [66]

KEGG Pathway maps, diseases, drugs, orthology

groups, genes, relations within genes, metabo-

lites, biochemical reactions and enzymes

3900 [67]

OMIM Information on genes and genetic disorders 1 (H. sapiens) [68]

DRYGIN Genetic interactions 1 (S. cerevisiae) [69]

RegulonDB Transcriptional regulation information 1 (E.coli) [70]

Reactome Pathways data 19 [71]

SCOP 3D structure information for proteins Not classified according

to species

[72]

Table 1.1. Databases of molecular interaction data.

Here we list commonly analysed networks of interactions between different biomolecules.

• Protein-protein interaction (PPI) networks. Proteins are the main build-

ing blocks of a living organism. In PPI networks, proteins correspond to nodes

in the graph, with an edge between any two nodes whose corresponding pro-

teins interact. These interactions occur when proteins bind together to perform

their biological function within a cell. PPIs are essential to many processes in

the cell and therefore PPI networks have been a focus of research in systems bi-

ology. Advances in proteomics led to large quantities of PPI data. There are

several methods for detecting protein-protein interactions. Most commonly used

are Yeast Two-Hybrid (Y2H) screening [73] which results in binary data, and Mass

Spectrometry (MS) [74] of purified complexes which results in co-complex data.

These are high-throughput methods which, in contrast to small-scale techniques,

result in less biased interactions. In the same way the sequence data provides an

overview of the genome, the PPI data will hopefully give us an analogues view of

the interactome [75]. Currently collected PPI networks are noisy and are just a

sample of the complete networks [75], and incompleteness has an effect on over-
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all network topology [76]. Still, as discussed throughout Chapters 1 and 2 of

this dissertation, PPI network topology has provided insights into new biological

knowledge. Note that many PPIs are undirected and represent “stable” interac-

tions in which interacting partners stay bound (such as in protein complexes).

However some interactions are “transient” which means that interacting partners

are bonded at different times depending on conditions (this happens in signalling

cascades). This means that ideally a PPI network would contain both directed

and undirected edges and its topology would be time-dependent. This type of

edge information is currently not available on systems-level scale, therefore PPI

networks are represented as undirected static networks [77], with the exception of

some studies which assign weights to the edges to include the information about

confidence of the interactions [78].

• Genetic interaction networks. In a genetic network, genes correspond to nodes

in the graph, while edges represent functional associations between genes. An in-

teraction between two genes occurs when the observed phenotype that is a result

of simultaneous mutations in the genes is not just an expected combination of phe-

notypes of single mutations. For, example two genes that do not cause lethality

when individually mutated, can cause lethality if mutated simultaneously. Note

that the expected phenotype of simultaneous mutations would be based on the

multiplicative phenotype fitness model - when the combined deletion of two genes

results in phenotype which is multiplication of effects caused after single dele-

tions [79–81]. Genetic interactions are classified as negative, if the phenotype of

double mutants is significantly worse than expected from the phenotypes of single

mutants, or positive if the phenotype of double mutants is better [82]. Negative

genetic interactions often do not correlate with PPIs or protein associations in

protein complexes, because they often contain pairs of genes which are involved in

parallel pathways [79, 83]. Genetic interactions can be identified using synthetic

genetic array (SGA) experiments [84] or synthetic lethal analysis by microarray

(SLAM) experiments [81].

• Metabolic networks. A series of successive biochemical reactions for a spe-

cific metabolic function forms a metabolic pathway. When representing metabolic

pathways as a graph, nodes correspond to metabolites, and directed edges are

metabolic reactions. A metabolic network then represents the union of all metabolic

pathways within a cell and is a complex network of reactions and integrating pro-

cesses that generate mass, energy, information transfer, and specify the fate of
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the cell [85–87]. Edges in a metabolic network representing biochemical reactions

(chemical conversions of metabolites from one form to another) can be directed

or undirected, depending on the reversibility of a specific reaction. It is common

practice that reactions in a metabolic network are replaced with enzymes that

catalyse them (or genes/proteins that produce these enzymes). Thus, there are

different representations of metabolic networks: bipartite networks in the form of

metabolite–enzyme, metabolite–gene or metabolite–protein interactions. If the re-

action nodes (enzymes, genes or proteins) or metabolite nodes are removed and the

remaining nodes are connected under the condition that they were at a distance

2 in the original bipartite network, the result is a simple metabolic network con-

taining genes, proteins, enzymes or metabolites. An example of such metabolic

modelling is the network of nodes which represent enzymes and directed edges

placed between the nodes (enzymes) if a product of one enzyme is the substrate

of the other [88]. This means that interacting enzymes in the original bipartite

network had the following roles: one enzyme catalysed the reaction whose product

was a substrate for a reaction catalysed by the other enzyme.

In Chapter 4 we analyse metabolic networks in the form of gene–gene interactions

(genes that encode for enzymes).

• Transcriptional regulation networks. Living cells are the product of gene

expression, a process that regulates which genetic information will be turned into

gene products. Gene expression programs depend on the recognition of specific

promoter sequences by transcriptional regulatory proteins. How a collection of

regulatory proteins associates with genes across a genome can be described as a

transcriptional regulatory network [89]. Just as metabolic networks describe the

potential pathways that may be used by a cell to accomplish metabolic processes;

a network of regulator–gene interactions describes the potential pathways cells use

to regulate global gene expression programs [89]. The nodes in a transcriptional

regulation network represent genes and a directed edge exists if the product of

one gene (a protein) regulates the transcription of another gene. In particular,

this protein binds to regulatory DNA regions of a gene targeted with a directed

interaction resulting in its over-expression or under-expression. These interactions

are identified based on relative mRNA levels of the genes.

• Signal transduction networks Nodes in these networks correspond to pro-

teins and the directed edges represent the signals propagated from one protein

to another, encompassing the complex signalling mechanisms inside the cells [90].
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These signals represent cellular responses by means of pathways as an answer to

internal and external stimuli.

• Protein Structure Networks. A protein structure network represents a 3D

structure of a protein. Proteins are linear polymers (polypeptides) built from

amino acids. The amino acids in a polypeptide chain are linked by peptide bonds.

Once linked in the protein chain, an individual amino acid is called a residue. In

network representations of protein structures residues correspond to nodes and

inter-residue interactions correspond to edges, forming residue interaction graphs

(RIGs) [91]. The two amino acids are considered connected if the distance between

them is less than 7.5Å (Å—Angstrom is 10−10 meters).

In addition to the above networks, there exists the notion of disease networks, which

consist of biomolecules involved in a particular disease or group of diseases and are

used for exploring relationships between different diseases. For example, Goh et al.

[92] constructed a bipartite “diseasome” network, where one partition consisted of a

set of diseases and the other of a set of disease genes (by definition of a bipartite

network, all edges in the network go between the partitions). They used it to generate

two network projections: the disease–gene network and the human disease network

(which they found to be clustered according to major disorder classes). By exploring

centrality and peripherality of genes in the gene network, they showed that contrary

to essential human genes which encode hub proteins, the majority of disease genes do

not encode hubs, and are localised in the periphery of the network [92]. Janjić and

Pržulj [93] demonstrated the existence of a topologically and functionally homogeneous

“core sub-network” of the human PPI network, which is enriched in disease genes, drug

targets, and a small number of genes that have theoretically been proposed as absolutely

necessary for tumour formation and that are usually referred to as “driver genes” [94].

They call this sub-network the “Core Diseasome” [93] and postulate it is the key to

disease onset and progression; hence it should be the primary object of therapeutic

intervention. They find this sub-network purely computationally by utilising the k−core

decomposition algorithm [95,96] applied to the human PPI network. We will come back

to this network in Chapter 2 during the study of key cardiovascular disease genes.
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2 Undirected Biological Networks in

Researching Complex Diseases:

Cardiovascular Disease (CVD) Case

Studies

In this chapter, we present two studies which show how the topology of biological

networks can be successfully used to complement existing knowledge in biology and

medicine; in particular in research of cardiovascular diseases. We choose cardiovascular

diseases, a group of diseases of the heart and blood vessels, as an example, because they

are currently a leading health problem worldwide [14] with more people dying every

year from CVDs than from any other cause [97].

First, we give a short overview of the existing approaches which use topological prop-

erties of biological networks to tackle open questions in CVD research [98]. We then

present our published study [8] that examines the PPI network wiring around genes

involved in CVDs and identifies a subset of CVD-related genes that are statistically sig-

nificantly enriched in drug targets and driver genes [94] - genes that have been proposed

to drive onset and progression of a disease. Our identified subset of CVD genes has a

large overlap with the Core Diseasome, which has been postulated to be the key to dis-

ease formation and hence should be the primary object of therapeutic intervention. This

indicates that our approach identifies key genes responsible for CVDs. Thus, we use it

to predict new CVD genes and validate over 70% of our predictions in the literature.

Finally, we show that the predicted genes are functionally similar to currently known

CVD drug targets, further confirming a the practical potential of biological network

analysis in improving therapy choices for CVDs.

Finally, we present our published research [99] on the protective role of diabetes

on the development of aneurysm, a phenomenon suggested in recent studies with still

unknown biological mechanisms. We postulate the existence of genes that disrupt the

pathways needed for the onset of aneurysm in the presence of diabetes. Motivated by the

significance of genetic interactions for understanding disease-disease associations, we use
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both protein-protein interaction and genetic interaction data. We use brokerage [100],

a topological measure that identifies proteins in this sub-network which, if removed,

severely affect the interconnectedness of their neighbourhood, enabling such proteins

to disrupt the pathway they are in. We identify a set of proteins with statistically

significant brokerage values and find this set to be enriched in biological functions that

have already been suggested as possible causes of diabetes-aneurysm dissociation.

2.1 Review of Network-based Approaches in Researching

Cardiovascular Diseases

Cardiovascular diseases (CVDs) cover a broad range of disorders which affect differ-

ent parts of the cardiovascular system and include coronary diseases, carotid diseases,

peripheral arterial diseases and aneurysms. They remain the leading health problem

which affects more than 80 million individuals in the United States alone [14]. By 2020

it is expected that Brazil, Russia, India, and China will contribute significantly to a

global increase of 4% in deaths caused by CVDs [101].

For addressing the complex nature of these diseases, integrative approaches that would

take into account the co-action between multiple causes behind CVDs are methods

of choice. This is why different systems biology approaches have been used in CVD

research, which has recently been reviewed in [102–105].

2.1.1 Exploring Disease Through Network Topology

The topology of PPI networks has widely been explored and used for inferring the in-

volvement of proteins in biological functions and processes, as discussed in Chapter 1 of

this dissertation. This also applies to inferring involvement of proteins in diseases. The

guilt by association approach [1] for inferring functions of unannotated proteins in PPI

networks was used to associate genes with diseases using linkage methods (nomencla-

ture adopted from [106]). In that sense, it has been shown that directly linked proteins

in the human PPI network are more likely to cause similar diseases [107, 108] (simpli-

fied concept illustrated in Figure 2.1, panel A). A variant of the linkage method was

successfully applied to discover genes related to Alzheimer’s disease [109].

Graphlet-based methods have shown that the PPI network topology around a protein

is a predictor of its involvement in disease [5,6]. In particular, GDV similarity between

proteins in the PPI network was used as a similarity measure for clustering proteins

using a series of clustering methods, resulting in clusters significantly enriched in cancer
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and disease related proteins. This lead to predictions of new melanogenesis-related

genes purely from the topology of the human PPI network, and the predictions were

phenotypically validated [5,6]. The concept of associating genes with the disease if they

are in the same cluster of the disease related genes is illustrated in Figure 2.1, panel B.

The clustering is based on the topological properties of the nodes in the network. Note

that this is different from clustering the network by identifying its topological modules:

locally dense neighbourhoods in the network which are called communities [110]. It is

generally accepted that a subset of nodes is a good community if the induced sub-graph

is dense, with relatively few connections between the included nodes and nodes that are

in the remaining part of the graph [111]. These topological modules often correspond to

functional modules (the aggregation of nodes similar in function) and disease modules

(the set of components that contribute to a specific disease phenotype [106]).

Integrative approaches for identifying functional modular structures in biological net-

works were thoroughly reviewed by Mitra et al. [112]. Accordingly, module-based meth-

ods work with the assumption that nodes which belong to the same topological or func-

tional module are likely to be involved in the same disease. The concept of associating

genes with a disease if they are in the same community in the network is illustrated

in Figure 2.1, panel C. These methods have often been applied in studies relating to

cancer [113–115]. Another example of this principle are the modules identified using

community discovery algorithm from [116], which led to the discovery of new links be-

tween Alzheimer’s disease and CVDs [117]. Several module-based methods have been

applied to research of CVDs, which will be elaborated upon in more detail later in this

survey.

An interesting survey [118] on the different methods that use network topology for

predictions of disease genes pointed out that many of the methods that rely on clustering

algorithms or linkage-based inference are outperformed by random-walk-based methods.

Random walkers diffuse along the network starting from disease involved nodes with

the same probability of visiting any neighbouring node. The most visited genes are

considered to be on the disease pathway and potentially involved in a particular disease.

The concept of associating genes with a disease based on the random walk principle is

illustrated in Figure 2.1, panel D. A method for prioritising candidate disease genes

using random walk analysis was tested on 110 disease-gene families and significantly

outperformed methods based on local distance measures, such as linkage-based methods

or methods based on shortest paths to disease proteins [119].
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Figure 2.1. Using network topology to uncover elements involved in a disease.
Panel A: Green nodes are associated with a disease based on their neighbouring
disease nodes (shown in red). Panel B: Nodes with blue borders are part of
the same cluster based on a similar topology around them. The green node is
associated with disease based on the cluster’s enrichment in disease nodes (shown
in red). Panel C: Nodes with blue borders are part of the same community in the
network. The green node is associated with disease based on the community’s
enrichment in disease nodes (shown in red). Panel D: Node shown in green is
associated with the disease, as a common node on shortest paths between nodes
related to disease (shown in red). Figure is taken from Sarajlić et al. [98].
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2.1.1.1 Revealing new CVD knowledge through network topology

The emerging interest in the molecular interaction networks of various cardiovascu-

lar diseases has resulted in a number of association, gene-expression, PPI, and tran-

scriptional regulatory networks being examined to study atherosclerosis [120], in-stent

restenosis [121], heart failure, and CVDs in general [102, 103, 122, 123]. Many of these

networks were constructed using experimental data combined with literature mining,

with the aim of identifying a broader set of genes involved in a particular CVD. Such

CVD networks are a valuable platform for exploring disease mechanisms.

Several approaches further explored the topological properties of CVD networks in

search of new CVD knowledge. In Table 2.1, we give a short overview of such ap-

proaches: we specify the CVD network that was explored, the type of molecular data

and interactions that were used, the type of topological analysis that was performed and

the aims of the topological analysis. Note that the vast majority of the above-presented

topological analyses focused on CVD sub-networks in isolation, rather than observing

them as parts of a larger, more complete interaction network, such as the entire human

PPI network. This may be a limiting factor when exploring the interplay between the

genes involved in different CVDs, or when targeting genes that have previously not been

linked to CVDs. The importance of observing the neighbourhood of disease genes in

the entire PPI network was emphasised in one of the studies related to atherosclero-

sis [124] where a functional enrichment test performed only on differentially expressed

genes failed to detect biological processes related to disease progression. However, the

network that included both differentially expressed genes and genes that have high con-

nectivity with them in the entire PPI network, was functionally enriched in relevant

biological processes.

There are only few approaches from Table 2.1 that identify new genes relevant to

CVDs relying solely on topological properties of entire PPI network. For example, Zhang

et al. [125] introduced a computational method based on six network topological features

(degree, neighbour count of disease genes, ratio of disease genes among neighbours,

betweenness centrality, clustering coefficient, mean shortest path length to disease gene),

and constructed a combined classifier to predict candidate genes for coronary artery

diseases. There is huge potential in analysing CVD-related molecular sub-networks

and their topology in the context of complete biomolecular interaction networks. Such

approaches could give better insight into the interconnectedness of different CVDs. They

could help discover novel CVD genes and the pathways responsible for the dependency

between different disorders.
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Network Type of data/interac-

tions in the network

Topological analysis

performed on the data

Aims of topological

analysis Ref.

Heart failure

(HF) network

HF relevant genes,

genes differentially

expressed in HF and

dilated cardiomiy-

opathy (DCM), PPI

data

Connectivity of nodes Relationship between

gene connectivity and

gene co-expression lev-

els and their biological

functions

[126],

[127]

Network of

atherosclerosis

Literature associa-

tions, gene-expression

data

Network modules iden-

tified based on close-

ness centr.

GO enrichment of net-

work modules [128]

Network of is-

chemic dilated

cardiomyopathy

(ICM)

Genes differentially

expressed in ICM,

cardiac myocytes

proteins, PPI data

Number of edges be-

tween network clusters

Correlation between

number of edges be-

tween network clusters

and differential gene

expression patterns

[129]

CVD “functional

linkage network”

(CFN)

CVD proteins, PPI

data

Degree distribution,

betweenness centr.,

modularity measure

Associating functional

modules (highly con-

nected sub-graphs)

with diseases

[130]

Congenital

hearth disease

(CHD) network

Known CHD genes,

genes differentially

expressed in CHD,

PPI data

Sub-networks based

on shortest paths and

current flow (network

was modelled as an

electrical circuit)

Functional sub-network

analysis in search of

key pathways of CHD

[131]

Networks for

analysis of car-

diac develop-

ment, hypertro-

phy and failure

Gene co-expression

data

Network modules based

on hierarchical cluster-

ing and shared network

neighbours

Identifying common

modules in networks

of different type of

myocardial tissue

[132]

Human PPI net-

work

PPI data Node degree, neigh-

bourhood enrichment,

betweenness centr.,

clustering coef., short-

est path length

Inferring coronary

artery disease genes

based on topological

information

[125]

Human PPI net-

work

PPI data Clustering nodes based

on graphlet degree

vector similarity

Inferring new CVD

genes based on clusters’

enrichment in CVD

genes

[8]

Table 2.1. Methods that explore the topology of biological networks in CVD re-
search.

In the next section, we present two studies that use the topology of biological net-
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works for inferring proteins’ involvement in CVDs [8] and for explaining the mechanisms

behind the interplay of CVDs and diabetes [99].

2.2 CVD Case Studies

2.2.1 Network Topology Reveals Key Cardiovascular Disease Genes

We explore the relationship between the wiring around proteins (we use terms protein

and gene interchangeably) in the human PPI network and their involvement in CVDs.

In particular, we find clusters of proteins with similar wiring to the proteins already

known to be involved in CVDs and identify a consensus set of CVD genes from clusters

that are statistically significantly enriched in CVD-related genes. Then, to validate

potential gene candidates that might drive CVD onset and progression and are drug

targets, we find that this consensus set of genes is enriched in drug targets and driver

genes and that it has a large overlap with the Core Diseasome [93]. We also find that

many of these genes are functionally similar to known CVD drug targets. Hence, we call

this consensus set Key CVD Genes and we use the same methodology to predict new

CVD gene candidates. We validate that the predicted genes are functionally similar to

currently known CVD drug targets, indicating that our methodology may be used for

finding new genes relevant for CVD therapy (see paragraph Therapeutic Properties of

Key and Predicted CVD Genes).

2.2.1.1 Methods

Our methodology for identifying the key CVD and prediction of new therapeutically

relevant CVD genes is shown on the flowchart in Figure 2.2). Below, we describe all the

steps taken in more detail.

Data sets. We use the latest human PPI network data from I2D, version 2.0.0 1, be-

cause I2D integrates most of the available PPI data 2. We remove all self-interactions, as

well as any low confidence (originating from only one source) and predicted interactions.

To further reduce noise in the PPI network, we remove all proteins with degree lower

than 4, since their low connectivity may be a result of a lack of experiments performed

1http://ophid.utoronto.ca/
2http://ophid.utoronto.ca/ophidv2.204/statistics.jsp
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Is it due to chance?

10 CVD genes17 non-CVD genes

Are they statistically

significantly similar

to any CVD genes?

17 predicted CVD genes

10 ’’Key CVD Genes’’

Literature validation

Overlap of genes from enriched clusters

obtained for different values of       .

Result: 10 CVD genes and 17 non-CVD genes.

No

Yes

Yes

Yes

Yes

No

Are they in the Core Diseasome?

Is this statistically significant?

Are they in PPI core?

Are they in CVD subnetwork core?

Are they statistically significantly 

enriched in driver genes and

drug targets?

PPI network;

Known CVD genes.

Topological clustering of

genes in PPI network.

Identifying clusters significantly

enriched in CVD genes.

Validated 

predictions

Predicted new CVD genes

1 

2

3

4

5

6

7

8

input parameters

Figure 2.2. Flowchart of our approach. Parallelograms denote inputs and outputs. Rect-
angles denote analyses. Rhombuses denote choices to be made. Figure is taken
from Sarajlić et al. [8].
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for detecting their interactions, i.e. they may be involved in false negative interactions.

The resulting human PPI network has 82,649 interactions between 7,551 proteins.

We obtain the list of genes involved in CVDs from two sources to increase coverage:

(1) Disease Ontology (DO) Lite3 [133] and (2) pathways from KEGG database, down-

loaded in September 2012. The list includes genes known to be involved in the following

CVDs in DO: aortic-aneurysm, atherosclerosis, brain-ischemia, cardiovascular-disease,

cerebrovascular disorder, heart-disease, heart-failure, intermediate-coronary-syndrome,

ischemia, moyamoya-disease, pseudoxanthoma-elasticum (which later may result in the

form of premature atherosclerosis), stroke, Takayasu’s-arteritis, thrombophilia, throm-

bophlebitis, vascular-dementia, vascular-disease, and vasculitis. We obtain additional

genes from the following KEGG pathways: hypertrophic cardiomyopathy, arythmogeni-

cright ventricular cardiomyopathy, dilated cardiomyopathy, and viral myocarditis. This

results in the set of 656 CVD-related genes, out of which we analyse 423 genes that are

present in human PPI network.

We download the drug target data from DrugBank4: there are 1,245 drug targets in

our PPI network, among which 199 are known CVD genes.

Similarity measure. We use GDV similarity [4] to measure the topological similar-

ity between two proteins in the PPI network. As mentioned in the Chapter 1, GDV

similarity between proteins in the human PPI network has already been used to suc-

cessfully predict protein function and involvement in disease [4–6,45]. Here, we examine

its usability for predicting CVD-related genes. We use it to make clusters of proteins

with similar wiring in the PPI network as described below.

Clustering methods. By using the above described GDV similarity between proteins

in the human PPI network, we obtain clusters of proteins with similar wiring around

them in the PPI network. Clustering is a hard problem and a major research area in

its own right. Some clustering methods, such as K-nearest neighbours (KNN), produce

overlapping clusters, while others, such as K-medoids, or Hierarchical clustering, pro-

duce clusters with non-overlapping sets of elements. We use a method that produces

non-overlapping clusters to avoid enrichments in clusters that are due to cluster over-

lap. Note that the success of a particular clustering method depends on the input data

and can be different for different networks [134]. Discussing the reasons for different

performance of different clustering methods is beyond the scope of this thesis. Since the

3http://django.nubic.northwestern.edu/fundo/
4http://http://www.drugbank.ca/
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choice of the best clustering method is data dependent, we try two methods described

below (step 1. in Figure 2.2).

Hierarchical clustering (HIE). This method creates a dendrogram that represents

a cluster tree, which is a multilevel hierarchy meaning that clusters at one level of the

hierarchy are joined into a cluster at the next level. The process of creating clusters

starts by assigning each node to its own cluster and follows by finding the “closest” pair

of clusters to merge into a single cluster. Recall that we specify the closeness between

a pair of nodes based on their GDV similarity. If there are many closest pairs, a single

pair is chosen randomly. Then, we compute the “closeness” between the newly formed

cluster and each of the old clusters as the average of GDV similarities between the nodes

of the clusters. Again, the closest pair of clusters is merged into a single cluster. This

process repeats until all nodes are clustered into one cluster. In order to create the

desired number of disjoint clusters it is necessary to cut the hierarchical tree at some

point. We denote the minimal number of clusters that are obtained with a cut by KH .

K-medoids clustering (KM). A medoid is a node in a cluster whose average dis-

tance to all other nodes in the cluster is minimal. The algorithm randomly picks KKM

nodes as cluster medoids and assigns all remaining nodes to KKM clusters. Each node

is assigned to the cluster with the medoid minimally distant from the node in question.

Ties are broken randomly. Then, in each cluster, a new medoid node is found with

respect to the nodes of the cluster. All non-medoid nodes in the network are then re-

assigned to new KKM clusters with these new medoids. These steps are repeated until

the same set of nodes is chosen as cluster medoids.

Finding statistically significantly enriched clusters. For each cluster obtained

by using each of the clustering methods described above, we compute the enrichment in

CVD-related proteins. We compute statistical significance (p-value) of obtaining this or

higher enrichment purely by chance. The p-value is computed using the hypergeometric

cumulative distribution as follows. We denote the number of genes in the human PPI

network with M , the number of genes that are involved in CVDs with K, and the size of

the cluster in question with N . The p-value, or the probability that X or more disease

genes will be found in the cluster by chance, is computed as follows:

p = 1−
X−1∑
i=0

(
K
i

)(
M−K
N−i

)(
M
N

) . (2.1)
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We apply Benjamini-Hochberg false discovery rate (FDR) correction [135] on the

resulting p-values in order to take into account a possibility of obtaining significant

p-values in a large number of experiments purely by chance. We report such corrected

p-values. Sensible cut-offs for p-values are in the range from 10−2 to 10−8 [136]. We

use the p-value of 0.01 as a cut-off to define clusters statistically significantly enriched

in CVD-related genes.

First, we apply Hierarchical clustering to our PPI network. In different runs of the

algorithm, we choose the minimum number of resulting clusters KH to be: 50, 75, 100,

200, 500, 700, 1000 and 2000. These numbers are chosen to cover different sizes of

clusters in order to identify the optimal size at which the enrichment in CVD genes

would occur. Unfortunately, the obtained clusters were not statistically significantly

enriched with CVD genes, indicating that HIE can not be used for obtaining clusters of

CVD-enriched genes purely from the topology of the PPI network.

KM method produced clusters of proteins statistically significantly enriched in CVD

genes. The number of medoids, and therefore clusters, KKM , that we use are: 50, 75,

100, 200, 300, 500, 700 and 1000. KKM larger than 1000 caused clusters to be too small

for any statistical analyses. The obtained clusters depend on the initial random choice

of medoids, as previously explained. Hence, for each value of KKM mentioned above,

we repeat the experiment five times. To increase coverage, we take a union of genes

that are found in statistically significantly enriched clusters for all five experiments per

choice of KKM (step 2 in Figure 2.2). As a result, in CVD enriched clusters we identify

following gene sets:

• For KKM = 50: 86 CVD genes and 572 non-CVD genes;

• For KKM = 75: 48 CVD genes and 282 non-CVD genes;

• For KKM = 100: 54 CVD genes and 282 non-CVD genes;

• For KKM = 200: 75 CVD genes and 277 non-CVD genes;

• For KKM = 300: 13 CVD genes and 40 non-CVD genes;

• For KKM = 700: 17 CVD genes and 23 non-CVD genes.

To find the “most important” CVD genes, we apply an additional filter: we seek CVD

genes that are in the intersection of the above gene sets, obtained from statistically

significantly enriched clusters for different values of KKM (step 4 in Figure 2.2). We find

10 such genes (listed in Table 2.2) and analyse them further (see below).
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Gene GO term CVD

ABL1 Intracellular signaling cascade (BP),

Signal transducer activity (MF)

Viral myocarditis.

SHC1 Intracellular signaling cascade (BP),

Signal transducer activity (MF)

Atherosclerosis.

SP1 Enzyme binding (MF) Trombophlebitis.

AR Intracellular signaling cascade (BP),

Intracellular receptor-mediated signaling

pathway (BP),

Signal transducer activity (MF)

Atherosclerosis.

CTNNB1 Intracellular signaling cascade (BP),

Intracellular receptor-mediated signaling

pathway (BP),

Enzyme binding (MF),

Signal transducer activity (MF)

Arythmogenic right ventricular

cardiomyopathy(ARVC).

FYN Intracellular signaling cascade (BP) Viral myocarditis.

ACTB Enzyme binding (MF) Arythmogenic right ventricular

cardiomyopathy(ARVC), Hyper-

trophic cardiomyopathy (HCM),

Viral myocarditis, Dilated Car-

diomyopathy (DCM).

HDAC5 Heart failure.

EGFR Intracellular signaling cascade (BP),

Enzyme binding (MF),

Signal transducer activity (MF)

Trombophlebitis, Stroke.

ESR1 Intracellular signaling cascade (BP),

Intracellular receptor-mediated signaling

pathway (BP),

Signal transducer activity (MF)

Stroke, Atherosclerosis,

Cerebrovascular disorder.

Table 2.2. Functional annotation of the ten key cardiovascular disease genes. First
column: ten key CVD genes. Second column: GO terms that the genes are
annotated with. We only take into consideration GO terms in which this set
of 10 genes is statistically significantly enriched and that correspond to biological
functions that the three drug mechanisms of interest rely on. BP denotes biological
process, MF denotes molecular function of GO. Third column: CVDs that the
genes are associated with.

Finding the core of the cardiovascular diseasome. We apply the k-core decom-

position algorithm to the human PPI network [95,96]. Recall that The Core Diseasome

is obtained purely computationally by computing the kmax-core decomposition of the

human PPI network, along with the kmax-core decomposition of its sub-network of only

disease genes, described in [93]. Therefore, to investigate the importance of the 10
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above-described CVD related genes, we find the core of the human PPI network and

check if these 10 genes are in it. Also we find the core of the PPI sub-network consisting

only of CVD related genes, and we check if this set of 10 genes appears in it (step 5 in

Figure 2.2).

Gene name GO term PubMed

ID

CREBBP Receptor binding (MF), Signal transduction (BP). 14724353

MDM2 Enzyme binding (MF). 18375498

HDAC1 Enzyme binding (MF). 22226905

SMAD3 Enzyme binding (MF), Receptor binding (MF), Enzyme linked receptor

protein signalling pathway (BP).

22167769,

22633655

SMAD2 Enzyme binding (MF), Receptor binding (MF), Signal transduction

(BP), Intracellular signalling cascade (BP), Enzyme linked receptor

protein signalling pathway (BP).

20829218,

22049534

JUN Signal transduction (BP), Response to drug (BP), Enzyme linked re-

ceptor protein signalling pathway (BP).

22664133

BRCA1 Enzyme binding (MF), Receptor binding (MF), Signal transduction

(BP), Intracellular signalling cascade (BP).

22186889

MYC 22402364

SRC Signal transduction (BP), Intracellular signaling cascade (BP), Enzyme

linked receptor protein signalling pathway (BP).

22287273

EP300 Receptor binding (MF), Signal transduction (BP), Response to drug

(BP).

20375365

TP53 Enzyme binding (MF), Signal transduction (BP), Intracellular sig-

nalling cascade (BP), Response to drug (BP).

23074332,

22189267

GRB2 Receptor binding (MF), Signal transduction (BP), Intracellular signal-

ing cascade (BP), Enzyme linked receptor protein signalling pathway

(BP).

12639989

IKBKG Signal transduction (BP), Intracellular signal. cascade (BP). —

HSP90AA1/2 Signal transduction (BP). —

PIK3R1 Enzyme binding (MF), Receptor binding (MF), Signal transduction

(BP), Intracellular signalling cascade (BP), Enzyme linked receptor

protein signalling pathway (BP).

—

YWHAZ Signal transduction (BP), Response to drug (BP). —

YWHAQ Signal transduction (BP), Intracellular signalling cascade (BP). —

Table 2.3. Predicted CVD genes. First column: predicted CVD genes. Second column:
GO annotations of the gene. Third column: Validation that the predicted gene is
associated with a CVD – PubMed ID of the reference; “—” means that we found
no literature validation.

Since the core of the PPI network is known to contain driver genes and drug targets
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[93], we examine if any of the 10 genes are among the 15 known driver genes, or are

drug targets [94, 137–139] (step 5. in Figure 2.2). We obtain statistically significant

findings (detailed in section 2.2.1.2), which allow us to postulate that these 10 genes are

the Key CVD Genes. We further successfully validate this by checking the statistical

significance of the overlap between Key CVD Genes and the Core Diseasome [93] (step

6 in Figure 2.2).

Predicting New CVD Genes. We use the above-described method (steps 1-4 in

Figure 2.2) to predict novel CVD genes. We consider the 17 genes not currently known

to be involved in CVDs, that are in clusters statistically significantly enriched in CVD

genes, regardless of the value of the initial parameter KKM . Table 2.3 lists this set

of 17 genes, together with the GO terms in which the set is statistically significantly

enriched in and which correspond to biological functions that the three drug mechanisms

of interest rely on (which will be discussed later on in Section 2.2.1.2). Note that these

17 genes may have various GDV similarity to CVD genes, since all genes had to be

assigned to clusters. Hence, we seek only genes that are statistically significantly similar

in topology to CVD genes. To do that, we compute the distribution of GDV similarities

of all pairs of proteins in the human PPI network (Figure 2.3). The top 1% of the most

GDV-similar nodes have GDV similarity of at least 89% (corresponding to p-value of

0.01). Hence, amongst the 17 non-CVD genes, we look for those that are at least 89%

GDV-similar to a CVD gene (step 7 in Figure 2.2).

2.2.1.2 Results and Discussion

Here, we first reason about the importance of the 10 CVD genes identified by our

methodology (listed in Table 2.2). Then, we validate our predicted CVD genes (listed

in Table 2.3). Next we explain the therapeutic potential of the identified genes and

provide a comparison with other approaches. The results are summarised in Figure2.4.

The Key Cardiovascular Disease Genes. We examine the importance of the 10

key CVD genes as described in paragraph The Core of Cardiovascular Diseasome. We

ask if they are in the kmax-core of the PPI network and the kmax-core of the PPI sub-

network of CVD genes only (steps 5-6 in Figure 2.2), and if they are enriched in drug

targets and driver genes.

We compute the kmax-core decomposition of the PPI network using the algorithm

described in Section 1.3.1: it consists of 372 proteins (recall that the entire PPI network

has 7,551 proteins). There are 44 genes in the intersection between these 372 proteins
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Figure 2.3. The distribution of GDV similarity of protein pairs in the human
PPI network. Horizontal axis represents GDV-similarities of node pairs in the
network in bins of 1%. Vertical axis represents percentages of protein pairs that
have a particular GDV-similarity. The red line marks the threshold value of GDV
similarity (89%): all pairs of nodes with GDV similarity above this threshold
correspond to the top 1% of the most GDV-similar node-pairs (the area shaded
in green represents 1% of the area under the distribution curve). The figure is
taken from Sarajlić et al. [8].

and the entire set of 423 CVD proteins in the PPI network. Interestingly, all 10 key CVD

genes, are among these 44 CVD -related genes that are in the core of the human PPI

network. We calculate p-value for this to occur using the hypergeometric cumulative

distribution with respect to entire human PPI network and with respect to 423 CVD-

related genes. We find that both p-values are statistically significant, the first being

7.5 · 10−14 and the second being 5.5 · 10−11. Furthermore, the connected sub-network of

the PPI network that consists only of CVD-related genes has 362 proteins, and its core

consists of 43 genes. Again, all 10 key CVD genes are in this core (p-value = 2 · 10−10

with respect to the 362 CVD proteins).

Also, three of the key CVD genes: ABL1, CTNNB1, and EGFR, are among the 15

known driver genes (taken from [93]). The two p-values, computed as described above

are 7.5 · 10−7 (with respect to entire PPI network), and 1.85 · 10−4(with respect to 423

CVD genes).

We find that six out of the 10 genes are among the 1245 known drug targets that are

present in the human PPI network. Table 2.4 lists key CVD genes that are known drug

55



T
he C

ore D
iseasom

e
H

u
m

a
n
 P

P
I 
n
e
tw

o
rk

Figure 2.4. Summary of the results. The Core Diseasome of [93] is overlaid with the
results of this study. Green nodes are the Key CVD Genes (from Table 2.2),
which are in the Core Diseasome. Blue nodes are predicted CVD genes (from
Table 2.3) that we validated in the literature and that are in the Core Diseasome.
Red nodes are non-validated CVD gene predictions (from Table 2.3) that are
in the Core Diseasome. Triangular nodes are drug targets. Driver genes are
bordered in red. Figure is taken from Sarajlić et al. [8].

targets and number of drugs from Drugbank that target the corresponding gene. Since

199 out of 423 CVD genes in PPI network are known drug targets, the p-value of getting

6 to occur amongst 10 key CVD genes is not statistically significant. However, with

respect to entire PPI network, this finding is statistically significant (p-value = 0.0023).

Entrez ID Gene name Number of drugs

367 AR 40

2099 ESR1 61

25 ABL1 11

1499 CTNNB1 1

2534 FYN 2

1956 EGFR 10

Table 2.4. The Key Cardiovascular Disease Genes that are known drug targets.
First column: Entrez Gene ID. Second column: Official Gene Symbol. Third
column: the number of drugs from Drugbank that target the corresponding gene.
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We further validate the importance of our key CVD genes, by checking if they are a

part of the Core Diseasome (step 6 in Figure 2.2). We find that the following 8 out of the

10 key CVD genes are in the Core Diseasome: SHC1, EGFR, ABL1, CTNNB1, ESR1,

AR, SP1, HDAC5 (Figure2.4). We check the probability for this or higher enrichment

to occur purely by chance. This overlap is statistically significant with p-values of

9.9 · 10−15 and 1.3 · 10−9 respectively (p-values computed as described in the beginning

of this section). Note that GDV similarity measure is not necessary for the formation

of the Core Diseasome, while the 10 key CVD genes are obtained solely by using GDV

similarity. Hence, validating the importance of key CVD genes by checking their overlap

with the Core Diseasome is not computationally biased.

Validation of CVD Gene Predictions. We predict 17 new CVD genes, listed in

Table 2.3, as the result of the same methodology that we used to identify the key CVD

genes. We confirm that all of the 17 predicted genes are statistically significantly similar

to some of the CVD genes.

To validate our predictions, we perform literature curation for possible CVDs that

these 17 genes may be involved in. Later on, we also examine the therapeutic potential

of these predictions.

We perform the literature validations by text mining using CiteXplore5: for the 17

predicted genes, we search PubMed abstracts with CiteXplore using their official gene

symbols. In Table 2.3, we list the PubMed IDs of the literature references for the 12

genes that we found a validation for their involvement in CVDs. For more details on the

biological mechanisms for these findings please see Supplementary of the dissertation,

Section A.1.

For genes IKBKG, HSP90AA1/2, PIK3R1, YWHAZ, and YWHAQ, we found no

evidence in literature for their link to cardiovascular diseases. However, due to the high

literature validation score of our CVD gene predictions (over 70% of our predictions are

successfully validated in the literature), we predict that these genes are also involved

in the processes related to cardiovascular diseases (step 8 in Figure 2.2). Two of these

genes (PIK3R1 and HSP90AA1) are part of the Core Diseasome, as shown in Figure

2.4. PIK3R1 is associated with cancer and over-nutrition, while HSP90AA1 is associated

with Alzheimer’s disease, cancer, eating disorder, herpes, and Fanconi’s anemia.

Therapeutic properties of key and predicted CVD genes. The five most com-

mon mechanisms by which drugs work are: (1) antibiotics, which disrupt bacterial

5http://www.ebi.ac.uk/citexplore/
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cells causing them to die, or interfere with their essential reproduction machinery; (2)

replacement drugs, which work by replacing substances missing from the body; (3)

enzyme-acting drugs, which modify the enzymatic activity; (4) receptor-acting drugs,

that either deliberately trigger cell surface receptors to activate the signalling machinery,

or bind to those receptors to prevent ligands from performing their intended function;

and (5) inter-cellular transport altering drugs, which modify the flow of molecules to

and from a cell, thus changing their chemical composition and hijacking communication

channels. Currently, therapeutic treatment of CVDs is achieved through drug mecha-

nism types (3), (4) and (5) [140–142], while (1) is argued to have non-beneficial, or even

harmful effects in treatment of CVDs [143]. This means that to be a CVD drug target,

a protein would need to have a biological function that would facilitate the workings of

the three above-mentioned drug mechanism types, (3), (4) and (5).

We use DAVID online tool6 to calculate Gene Ontology (GO) terms enrichments for

the set of 17 predicted CVD proteins and the set of 10 key CVD proteins. We upload

each gene set separately to DAVID and use the entire set of human genes as a back-

ground set. We consider GO terms that correspond to enrichments that have p-values

≤ 0.05 after the Benjamini-Hochberg false discovery rate (FDR) correction is applied.

We find that the 10 key CVD genes are statistically significantly enriched in the follow-

ing GO terms which correspond to biological functions that the three drug mechanisms

discussed above rely on: intracellular signalling cascade, intracellular receptor-mediated

signalling pathway, signal transducer activity, and enzyme binding. We list these GO

terms with their corresponding genes in Table 2.2. We find that the 17 predicted genes

are statistically significantly enriched with the following GO terms which correspond to

biological functions that the three drug mechanisms discussed above rely on: intracel-

lular signaling cascade, signal transduction, enzyme linked receptor protein signalling

pathway, response to drug, enzyme binding, and receptor binding. We list these GO

terms with their corresponding genes in Table 2.3. We also check 199 known drug tar-

gets among CVD genes and find that they are statistically significantly enriched, with

p-values ≤ 0.05, in biological functions that we list in Tables 2.2 and 2.3. This indicates

that our methodology identifies important drug targets.

Comparison with other approaches. Our methodology is based solely on network

topology. In particular, we rely on GDV similarity between proteins in the PPI network

because, as discussed in the Introduction, this measure was shown to be a good indi-

cator that proteins perform similar biological functions and are involved in the same

6http://david.abcc.ncifcrf.gov/
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diseases [4,144] and was used for predicting new melanogenesis related genes that were

phenotypically validated [5]. GDV similarity was also shown to be robust to random

addition, deletion and rewiring of up to 30% of edges in PPI networks [144]. In particu-

lar, none of these edge perturbations introduced a significant change in the distribution

of GDV similarities of orthologous protein pairs in human PPI network - these pro-

teins had higher signature similarities than randomly chosen protein pairs in the PPI

network, regardless the noise. Robustness to noise in PPI networks for graphlet-based

measures will be discussed in more detail in Section 2.2.2.1.

Here, we compare GDV similarity with baseline network-topology-based approaches

to justify the use of GDV similarity for analysing this particular dataset. We examine

clustering of proteins in the PPI network based only on the degrees (i.e. connectivity)

of the nodes in the network. This method fails to identify any clusters statistically

significantly enriched in CVD genes. Since the guilt-by-association approach, based on

protein interactors (neighbours) has become a relatively standard approach [1–3, 145],

we try to use it to identify “key” CVD genes. Hence, we look for statistically significant

enrichment in CVD genes among the neighbours of each CVD gene in the network.

There are 134 CVD genes that interact with sets of genes statistically significantly

enriched in CVD genes. Therefore one may expect that these 134 CVD genes may be

“key” for disease onset and therapy. Unfortunately this is not a case: this set of 134

genes is not statistically significantly enriched in the driver genes. Furthermore, it has

no statistically significant overlap with the Core Diseasome and kmax-core of the PPI

network. Hence, guilt-by-association can not be used to define key CVD genes.

To verify that our methodology did not produce statistically significantly enriched

clusters purely by chance, we randomised the topology of the PPI network respecting

the degree distribution (by relabelling the nodes in the network) and performed the

above described analysis on randomised networks (step 3 in Figure 2.2). We repeated

the randomisation 30 times both for KM and HIE clustering. This did not yield any

clusters statistically significantly enriched in CVD genes, which shows that specific

topology around genes in the PPI network is a major contributor to identifying key

CVD genes and making predictions.

Note that one of the aims of this chapter was to show that new biological knowledge

can be extracted solely from the topology of biological networks. The analysis of all

CVD genes and prediction of new ones has not previously been done using only network

topology, that is, our study is the first to use only topology to examine the importance

of CVD genes and predict new ones.
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2.2.2 Network Wiring of Pleiotropic Kinases Yields Insight into the

Relationship between Diabetes and Aneurysm

Abdominal aortic aneurysm (AAA) is a permanent dilatation of the abdominal aorta

and a leading cause of death amongst the older population [146]. Several studies sug-

gest diabetes plays a protective role against the development of aneurysm [147,148]. De

Rango et al. showed that the progression of small AAA is 60% lower in patients who

suffer from diabetes [148]. Prakash et al. also confirmed that diabetes is associated

with decreased rate of hospitalization due to thoracic aortic aneurysms (TAAD) [147].

This seems paradoxical, as diabetes is known to predispose cardiovascular diseases:

peripheral, coronary, and cerebrovascular diseases [148, 149]. Also, vascular diseases

are the principal cause of death and disability in people with diabetes and a common

macro-vascular manifestation for this is atherosclerosis [150]. Note that atherosclerosis

shares similar risk factors with aneurysm, such as male gender, higher age, hyperlipi-

daemia, and hypertension, and as such was considered as an underlying pathogenesis in

AAA [146,151]. However, a decreased prevalence of AAA in patients with diabetes may

suggest that atherosclerosis is an associated feature and not a cause of aneurysm [146].

Hence, we explore the possible mechanisms behind the protective role of diabetes on

the development of aneurysm and why there is no similar diabetes-atherosclerosis as-

sociation, as published work in this area is still inconclusive [148]. Therefore, to tackle

the problem we use high-throughput molecular network data.

We use both the human PPI network and the genetic interaction network to find an

explanation for the protective role of diabetes on aneurysm and why a similar relation-

ship is not present in the case of diabetes and atherosclerosis. We hypothesise that a

functional change of a protein on a pathway that is important for aneurysm could dis-

rupt this pathway, thus preventing the onset of the disease. We suspect that a mutation

of a gene on a pathway involved in diabetes is related to a functional change of a protein

on an aneurysm-related pathway, explaining the protective role of diabetes on the de-

velopment of aneurysm. To this end, we integrate PPI data with information from the

human genetic interaction network. In a genetic interaction network nodes correspond

to genes in the network and edges represent functional associations between them: an

interaction between two genes occurs when the result of simultaneous mutations in the

genes is not just a combination of phenotypes of single mutations [82]. It has been

shown that genetic interactions are critical for understanding disease evolution [94] and

a key to capturing disease-disease associations from molecular interaction data [152].

Although by definition a genetic interaction between two genes does not indicate a di-
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rect interaction, it can indicate how strongly the function of one gene depends on the

presence of the other, i.e., it can indicate how much the phenotype of one mutation is

modified by the presence of the second mutation [153]. Even the order in which mu-

tations occur in some cases is likely defined by the genetic interactions [94]. One such

example in cancer progression is when P53 dysfunction usually precedes BRCA loss of

function generating synthetic viability [94]. In the case of genetic interaction between

genes whose protein products directly interact, a mutation in one protein that affects

a physical interaction can be compensated by a mutation of its interacting partner, for

example, proteins S12 and L19 in Salmonella typhimurium [154].

2.2.2.1 Methods

The complete methodological work-flow of this study is presented in Figure 2.5. We

first identify pathways that play a role in formation of the three diseases. Then, we use

information from the human genetic interaction network to single out pathways that

contain genes (henceforth, we use terms protein and gene interchangeably), which take

part in genetic interactions such that one interacting gene is part of a diabetes-related

pathway while the other is part of an aneurysm- or an atherosclerosis-related pathway.

We use selected pathways to create a disease-related sub-network of the human PPI

network.

In search of genes whose change in functionality could disrupt a pathway, we rely on

the network topology and look for genes in this disease PPI sub-network with a local

topology that could explain a gene’s high “destructiveness” for the related pathway—

a set of “broker” genes. This set is statistically significantly enriched in biological

functions that facilitate mechanisms that have already been suggested as possible causes

of diabetes-aneurysm dissociation. We narrow down this set to 16 genes that are on

aneurysm- or atherosclerosis-related pathways and participate in genetic interactions

with genes from diabetes-related pathways. We find this set to be enriched in kinases and

in biological function of phosphorylation. This confirms our hypothesis that identified

proteins could disrupt the pathways, in particular, kinases can switch on and off proteins

on an aneurysm-related pathway, which can lead to prevention of aneurysm formation.

Importantly, two kinases from the set that are on both aneurysm- and atherosclerosis-

related pathways are pleiotropic, explaining why a mutation of such genes could disrupt

an aneurysm-related pathway but not affect the atherosclerosis-related pathway.

As discussed in Section 1.5, all currently available human PPI networks represent just

a fraction of the complete networks [75] and this incompleteness is reflected in the over-
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Figure 2.5. Work-flow of the study. Figure is taken from Sarajlić et al. [99].

all network topology [76]. It is therefore easy to question the validity of topology-based

analyses and results obtained on such incomplete networks. Nevertheless, graphlet-

based methods for network topology analysis were shown to be robust to different types
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of noise in a network, including network incompleteness [13,144,155]. Namely, Yaverǒglu

et al. [13] systematically compared robustness to noise of a number of topological similar-

ity measures: GDDA, RGFD, GCD-73, GCD-11, degree distribution distance, network

diameter, clustering coefficient and spectral distance. Noise robustness was evaluated

through the clustering of synthetic networks based on topological similarity when up to

90% of edges in the networks are randomly removed or rewired. Also, to account for the

fact that many real world networks are both noisy and incomplete, 40% of edges was

first randomly rewired in the networks and than randomly removed in the increments

of 10%. Graphlet-based measures showed high levels of noise robustness, with GCD-11

outperforming all other measures even for networks with 40 % of rewired and as much

as 80% of missing edges [13]. Interestingly, it was also shown that the performance of

GCD-11 only slightly decreases if as little as 30% of all graphlet degree vectors chosen

at random were used to form GCM-11 [13]. Robustness of GDVs to noise in the hu-

man PPI network was also tested by comparing the distribution of GDV similarities

between orthologous proteins in the network against the distribution of GDV similari-

ties between all proteins in the network when up to 30% of edges were added, deleted or

rewired at random [144]. None of these types of noise introduced any significant change

in the distribution of GDV similarities and orthologous proteins remained having sta-

tistically significantly higher GDV similarities than all other protein pairs in the PPI

network [144]. This is why we are confident that we can use topology based analysis

on the available biological networks, although noisy and incomplete, to address open

questions in biology and medicine. We are also motivated by a wide range of biologically

relevant and validated findings that were obtained through topological analysis of such

networks. Graphlet-based measures, for example, were used to predict new melano-

genesis related genes which were phenotypically validated [5, 6]. Also, experimentally

confirmed downstream signaling mechanism of nicastrin in breast cancer cells was iden-

tified using topological analysis of currently available human PPI network [156]. Below

we discuss our methodology in more detail.

Datasets: Biological networks. We obtain the human PPI network from Bi-

oGRID [157], release 3.2.106, September 2013. We analyze the largest connected com-

ponent of the network. To reduce noise we remove ubiquitin as the most connected

protein in the network, since proteins with a large number of non-specific interaction

partners might seriously bias the network topology leading to biased results. The re-

sulting PPI network has 13,410 proteins (nodes) and 116,552 interactions (edges).

We download the human genetic interaction (GI) network from BioGRID in Septem-
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ber 2013 (release 3.2.106). The network contains 986 genes and 1,295 genetic interac-

tions. To increase coverage we also construct a predicted human GI network using new

GI data on direct positive and negative genetic interactions in S. cerevisiae from Boone

Lab7, that they gave to us in September 2013. 8). The yeast GI network contains 4,365

genes and 266,750 interactions. Then, we use information on homologous genes between

H. sapiens and S. cereviseiae from Homologene database9, version build67, downloaded

in January 2014. There are 1,568 human genes that are yeast homologs. We create

a predicted human GI network as follows: for each genetic interaction between yeast

genes, we create a genetic interaction between their corresponding human homologs.

This network of predicted human genetic interactions contains 1,088 genes and 34,160

genetic interactions between them. We merge the human GI network from BioGRID

with the predicted human GI network, resulting in the final network of human genetic

interactions containing 1,983 genes and 35,454 interactions. In this manuscript we refer

to this network as the human genetic interaction (GI) network.

Datasets: Disease genes. We obtain a list of genes involved in aneurysm using sev-

eral sources to increase coverage: KEGG DISEASE database [158], OMIM database [68]

and Disease Ontology Lite10. We find in total 53 genes related to aneurysm, out of which

37 are present in the human PPI network. We find genes involved in atherosclerosis in

the OMIM database and Disease Ontology (DO) Lite. We find in total 205 atheroscle-

rosis related genes, out of which 184 are present in the human PPI network. We obtain

genes involved in diabetes from KEGG DISEASE database, OMIM database and Dis-

ease Ontology Lite. To increase coverage, we also include genes from the following

pathways in the KEGG PATHWAY database: Type I diabetes mellitus, Type II dia-

betes mellitus, and Maturity onset diabetes of the young. We find in total 503 diabetes

genes, out of which 423 are present in the human PPI network. All data on disease

genes are downloaded in November 2013. We then identify pathways that play a role

in formation of the three diseases as follows.

7http://www.utoronto.ca/boonelab/
8We thank Charlie Boone for giving us his unpublished complete set of genetic interactions in baker’s

yeast.
9http://www.ncbi.nlm.nih.gov/homologene

10http://django.nubic.northwestern.edu/fundo
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Pathway KEGG ID p-value

Pathways in cancer hsa05200 2.1 × 10−3

Cytokine-cytokine receptor interaction hsa04060 4.5 × 10−3

Vascular smooth muscle contraction hsa04270 1.2 × 10−2

Intestinal immune network for hsa04672 1.9 × 10−2

IgA production

MAPK signaling pathway hsa04010 2.6 × 10−2

Viral myocarditis hsa05416 3.7 × 10−2

ECM-receptor interaction hsa04512 5.0 × 10−2

Colorectal cancer hsa05210 5.0 × 10−2

Table 2.5. Pathways related to aneurysm. First column: Pathways that are statistically
significantly enriched in genes related to aneurysm. Second column: KEGG ID of
the pathway. Third column: p-value of statistical significance of the enrichment.

Datasets: Pathways. We download all pathways relevant for diabetes melli-

tus from KEGG PATHWAY database in November 2013: Type I diabetes mellitus

(hsa04940), Type II diabetes mellitus (hsa04930), and Maturity onset diabetes of the

young (hsa04950). These pathways have 47, 48, and 25 genes in the human PPI net-

work, respectively. KEGG PATHWAY database does not list a set of pathways directly

related to aneurysm, so we identify pathways that may play a role in formation of this

disease by checking the enrichment of all available KEGG pathways in genes known to

be involved in this disease. Among all 282 pathways from KEGG, we find 8 pathways

that are statistically significantly enriched in aneurysm genes (p-value threshold of 0.05).

The obtained pathways and their KEGG IDs are listed in Table 2.5.

Henceforth, we refer to these pathways as “aneurysm pathways”. Similarly, we iden-

tify 23 “atherosclerosis pathways,” listed in Table 2.6.
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Pathway KEGG ID p-value

Cytokine-cytokine receptor interaction hsa04060 5.9 × 10−10

Type I diabetes mellitus hsa04940 5.9 × 10−7

Toll-like receptor signalling pathway hsa04620 9.2 × 10−7

Hematopoietic cell lineage hsa04640 4.4 × 10−5

Allograft rejection hsa05330 2.2 × 10−4

Complement and coagulation cascades hsa04610 2.7 × 10−4

Graft-versus-host disease hsa05332 3.4 × 10−4

NOD-like receptor signalling pathway hsa04621 7.7 × 10−4

ECM-receptor interaction hsa04512 1.0 × 10−3

Focal adhesion hsa04510 3.9 × 10−3

Hypertrophic cardiomyopathy (HCM) hsa05410 4.8 × 10−3

Chemokine signalling pathway hsa04062 6.3 × 10−3

Intestinal immune network for IgA production hsa04672 6.9 × 10−3

PPAR signaling pathway hsa03320 6.9 × 10−3

Dilated cardiomyopathy hsa05414 7.4 × 10−3

Prion diseases hsa05020 1.0 × 10−2

Systemic lupus erythematosus hsa05322 1.1 × 10−2

Pathways in cancer hsa05200 3.1 × 10−2

Asthma hsa05310 3.4 × 10−2

Autoimmune thyroid disease hsa05320 3.7 × 10−2

Jak-STAT signalling pathway hsa04630 3.8 × 10−2

Arrhythmogenic right ventricular hsa05412 3.9 × 10−2

cardiomyopathy(ARVC)

Cell adhesion molecules (CAMs) hsa04514 4.5 × 10−2

Table 2.6. Pathways related to atherosclerosis. First column: Pathways that are sta-
tistically significantly enriched in genes related to atherosclerosis. Second column:
KEGG ID of the pathway. Third column: p-value of statistical significance of the
enrichment.

Note that the same pathways can be involved in several diseases. For example,

cytokine-cytokine receptor interaction pathway hsa04060 is enriched both in aneurysm

and atherosclerosis genes (see Table 2.7). This is not specific to diseases that we study

here as it is well known that some pathways are involved in many diseases, e.g. MAPK

signalling pathway has been involved in many human diseases including Alzheimer’s

disease, Parkinson’s disease, amyotrophic lateral sclerosis and various types of can-

cers [159].
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Pathway name KEGG ID Disease

Colorectal cancer hsa05210 An

MAPK signalling pathway hsa04010 An

Viral myocarditis hsa05416 An

Type I diabetes mellitus hsa04940 D, At

Pathways in cancer hsa05200 An, At

Vascular smooth muscle contraction hsa04270 An

Type II diabetes mellitus hsa04930 D

Maturity onset diabetes of the young hsa04950 D

Cytokine-cytokine receptor interaction hsa04060 An, At

Dilated cardiomyopathy hsa05414 At

Graft-versus-host disease hsa05332 At

Systemic lupus erythematosus hsa05322 At

Arrhythmogenic right ventricular hsa05412 At

cardiomyopathy (ARVC)

Focal adhesion hsa04510 At

Jak-STAT signalling pathway hsa04630 At

Asthma hsa05310 At

Hypertrophic cardiomyopathy (HCM) hsa05410 At

Hematopoietic cell lineage hsa04640 At

Toll-like receptor signalling pathway hsa04620 At

PPAR signalling pathway hsa03320 At

NOD-like receptor signalling pathway hsa04621 At

Prion diseases hsa05020 At

Allograft rejection hsa05330 At

Chemokine signalling pathway hsa04062 At

Table 2.7. The 24 pathways containing genes that participate in specific genetic
interactions. First column: the 24 pathways that contain genes that are part
of genetic interactions with one gene in a diabetes pathway and the other in
an aneurysm or an atherosclerosis pathway. Second column: KEGG ID of the
pathway. Third column: disease to which the pathway is related to (An denotes
Aneurysm, At denotes Atherosclerosis, D denotes Diabetes).

Then, we use information from the human genetic interaction network to single out

24 pathways, of the pathways related to the three diseases. We choose pathways that

contain genes, which take part in genetic interactions such that one interacting gene

is part of a diabetes - related pathway while the other is part of an aneurysm - or an

atherosclerosis -related pathway. The 24 pathways, together with their KEGG IDs, are

listed in Table 2.7. We use selected pathways to create a disease-related sub-network of

the human PPI network as follows.
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Datasets: Disease PPI sub-network. We postulate that a mutation of a gene on a

diabetes pathway is related to a functional change of a protein on an aneurysm pathway,

such that it would disable the aneurysm pathway from causing the disease. A question

remains why does diabetes not have a similar effect on atherosclerosis. As discussed

in the Introduction, genetic interactions can point us to gene pairs such that a gene

mutation on one gene can be indicative of a change in another gene’s function. Hence,

we identify pairs of genes involved in genetic interactions such that at least one gene

is from a diabetes pathway while the other is from an atherosclerosis or an aneurysm

pathway. We find 31 genes that take part in such genetic interactions. We find that 24

pathways involved in one or more of the 3 diseases contain these 31 genes. We induce

a sub-network of the human PPI network on all proteins from these 24 pathways. This

sub-network contains 958 proteins and 3,370 interactions. Henceforth, we refer to it as

the “disease PPI sub-network.”

In search of genes whose change in functionality could disrupt a pathway, we rely on

the disease PPI sub-network topology and look for genes in this disease PPI sub-network

with a local topology that could explain a gene’s high “destructiveness” for the related

pathway—the broker genes. We describe a broker gene property using the Simmelian

brokerage measure [100] and find brokers in the disease PPI sub-network, as follows.

Brokerage measure. The Simmelian brokerage [100] is a measure that describes

the significance of a node for the interconnectedness of its local neighbourhood in the

network. To our knowledge, this measure is the only topological measure that quantifies

the importance of a node for maintaining the connectivity between its neighbouring

nodes. High brokerage of a node implies high topological importance for the connectivity

between nodes in its neighbourhood. In other words, if the functionality of a protein that

has a high brokerage score would be altered, this would influence the interconnectedness

of the protein’s neighbourhood, which in our disease PPI sub-network is a part of the

pathway in which this protein plays a role.

Simmelian brokerage of a node i is calculated as follows: Bi = ki− (ki − 1)Ei, where

ki is the degree of node i, and Ei is the “local efficiency” of node i in the network,

calculated as:

Ei =
1

ki (ki − 1)

∑
lεNi

∑
mεNi,m 6=l

1

dlm
, (2.2)

where Ni denotes the neighbourhood of node i (the sub-network induced on the first

neighbours of node i), and dlm denotes distance between nodes l and m. The local

efficiency is normalised to 0 ≤ Ei ≤ 1, so that the “local brokerage” of a node, Bi, takes
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values: 1 ≤ Bi ≤ ki. By definition, brokerage values for the nodes with degree 1 are

equal to zero.

To be able to compare proteins based on their brokerage in the disease PPI sub-

network, we normalise the described brokerage measure by scaling to the range [0, 1],

as follows: Bi,n = Bi−1
ki−1 , where Bi,n is the normalised brokerage of node i.

Note that a high node degree does not implicate high brokerage (see first two rows of

Table 2.8).

Calculating brokerage values. We calculate the brokerage values for all nodes of

degree higher than 2 in the disease PPI sub-network. We assign nodes into bins in

increments of 0.01 of brokerage values. We only take into account genes with degree

higher than 2 for the following reasons. We are not interested in nodes with degree 1, as

such local topology can not confirm or refute our hypothesis (we are looking for nodes

whose removal will affect the interconnectedness of its first neighbours, and node with

degree one has just one first neighbour). Also, there are 100 genes in the disease PPI

sub-network with degree 2 whose neighbours are not directly connected. This means

that their normalised brokerage equals 1. The number of such proteins is higher than the

number of the remaining proteins in the disease PPI sub-network whose local wiring

is non–trivial and yields brokerage scores of 1, so inclusion of degree 2 nodes would

introduce noise to our analysis. The brokerage distribution is shown in Figure 2.6.

In the remainder of this section, we explain how we model the disease PPI sub-network

and identify statistically significant brokerage values.

Modeling the disease PPI sub-network. We generate 60 random networks

with the same number of nodes and edges as in the disease PPI sub-network for each

of the six commonly used random network models (totaling 60 × 6 = 360 random

networks): Erdos-Renyi random graphs (ER) [49], Erdos-Renyi random graphs with

the same degree distribution as the data (ER-DD) [18], Geometric Random Graphs

(GEO) [160], Geometric Random Graphs with Gene Duplications and Mutations (GEO-

GD) [60], Scale free Barabasi–Albert type networks (SF–BA) [52], and stickiness-index-

based networks (STICKY) [57].

To find the best fitting network model, we compare the disease PPI sub-network with

these random networks using graphlet degree distribution agreement (GDDA) measure

[44]: GDDA measures how similar the networks are in terms of distributions of small

induced sub-graphs - graphlets [7]. The arithmetic average of scaled and normalised

distributions of all 73 graphlets results in GDDA value in range [0,1]. We use GDDA
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Figure 2.6. Distribution of brokerage values in the disease PPI sub-network. X–
axis: brokerage values in bins of 0.01. Y–axis: numbers of proteins in the disease
PPI sub-network that have a given brokerage. Figure is taken from Sarajlić et
al. [99]

since it is a very sensitive measure for comparing network structure [44, 155]. The

average GDDA values obtained for the GEO-GD, GEO, STICKY, SF-BA, ER-DD

and ER network models are 0.85, 0.839, 0.825, 0.777, 0.755 and 0.673, with standard

deviations of 0.01, 0.007, 0.007, 0.005, 0.006 and 0.008, respectively. Hence, GEO-GD

and GEO models both provide a good fit to the disease PPI sub-network based on

the best average GDDA value. Hence, we choose GEO-GD random network model for

modeling the disease PPI sub-network.

Statistically significant brokerage values. We find statistically significant bro-

kerage values by using GEO-GD as a well–fitting network model to the disease PPI

sub-network. We generate 1,000 GEO-GD networks with the same number of nodes

and edges as the disease PPI sub-network and calculate their brokerage distributions,

again including only nodes with degree higher than 2. For each bin k and the corre-

sponding node count, Ck, in the distribution shown in Figure 2.6 for the disease PPI

sub-network, we calculate the p-value that corresponds to the probability of obtaining

Ck or more nodes in this bin by chance. We do this by comparing Ck for the disease
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PPI sub-network with the corresponding node counts in the 1,000 GEO-GD networks.

We identify the statistically significant brokerage bins by using the threshold of 0.01 (p–

value). We further examine the proteins with the brokerage scores in the statistically

significant bins.

Note that when performing this statistical analysis, we have used different bin sizes.

Comparing the results, the bin size of 0.01 resulted in the most natural barrier between

statistical significance of low brokerage values and high brokerage values (see Figure 2.7).

This bin size also resulted in the smallest number of bins whose statistical significance

strongly deviates from the statistical significance of their neighbouring bins (scattered

dots in Figure 2.7). Therefore we report the results obtained using the bin size of 0.01.

Bins with statistically significant p-values (< 0.01) are presented in Figure 2.7.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
-v
a
lu
e

Brokerage bins [width=0.01]

0

0.05

0.1

0.15

0.2

0.4 0.5 0.6 0.7 0.8 0.9

Zoom

p=0.01

Figure 2.7. Statistically significant brokerage values. X–axis: brokerage values in bins
of 0.01. Y–axis: p-value that corresponds to the probability of obtaining the same
or higher numbers of proteins (as counted in the disease PPI sub-network) in the
bin by chance. Inset in the bottom left: Red dots under the blue dotted line
correspond to the statistically significant bins (p-values ≤ 0.01). Shaded blue
line highlights the natural barrier reflecting the difference between statistical
significance of low brokerage values and statistical significance of high brokerage
values. Figure is taken from Sarajlić et al. [99].

2.2.2.2 Results

We hypothesize that identified broker genes, due to their importance for the intercon-

nectedness of their neighbourhoods in the disease PPI sub-network, can lead to disabling

signal transduction, or completion of chain reactions in the pathways.
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In the disease PPI sub-network we find 313 proteins with statistically significant

brokerage. Using the DAVID [161, 162] database we examine their functional enrich-

ment and find this set to be enriched in a number of GO biological processes in-

cluding phosphorylation (p-value= 5.3 × 10−31), as well as vascular development (p-

value= 5.1 × 10−10) and regulation of cell-matrix adhesion (p-value= 3.9 × 10−10).

Cell-matrix adhesion, i.e., binding of a cell to the extracellular matrix (ECM), plays im-

portant roles in regulation of many processes, such as cell adhesion, tissue homeostasis,

and wound healing [163]. Matrix metalloproteinases (MMPs), proteolytic enzymes, ex-

hibit increased activity in the human aneurysmal tissue [146]. MMP-2, which is among

the 313 genes, takes part in the breakdown of the matrix proteins, including elastin, and

therefore influences degradation of vessel wall in aneurysm. However, in diabetes, there

is a reduced degradation of the matrix that results in an increased matrix volume [164].

Concentrations of MMP-2 and MMP-9 are reduced in coronary arteries of diabetic pa-

tients and it has been postulated that the reduction of MMPs activity can slow down

the matrix loss, which is necessary for the pathogenesis of aneurysm [146]. This vali-

dates that presented methodology identifies genes enriched in biological processes that

have already been proposed as causes of diabetes–aneurysm dissociation.

Out of the 313 genes we identify 16 genes that, in addition to taking part in aneurysm

or atherosclerosis pathways, also take part in genetic interactions with genes from di-

abetes pathways. We postulate that among the 313 broker genes in the disease PPI

sub-network, these 16 genes are the most likely to be responsible for the observed rela-

tionships between the diseases. Namely, as previously discussed, genetic interactions can

point to pairs of genes such that mutation of one interacting partner can be indicative

of a functional change of other interacting partner. In that sense, if there is a genetic

interaction between a gene on a diabetes pathway and a broker gene on an aneurysm or

an atherosclerosis pathway, then a mutation of a gene involved in a diabetes pathway

can be related to a functional change of a broker gene on aneurysm or an atherosclerosis

pathway. The 16 genes, their brokerage values, and KEGG IDs of the related pathways

are presented in Table 2.8.
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Gene name Brok. Degree Pathways (KEGG ID)

MAPK7 1.0 7 hsa04010 (AN)

PPP3CA 1.0 4 hsa04010 (AN)

RPS6KA5 0.83 6 hsa04010 (AN)

MAPK8IP2 0.58 13 hsa04010 (AN)

GSK3A 0.83 4 hsa04062 (AT)

HSPA5 0.7 5 hsa05020 (AT)

PIK3CG 0.95 7 hsa05200 (AN,AT), hsa05210 (AN),

hsa04630 (AT), hsa04062 (AT),

hsa04620 (AT), hsa04510 (AT)

RAC1 0.84 29 hsa05200 (AN,AT), hsa04010 (AN),

hsa05416 (AN), hsa05210(AN),

hsa04510 (AT),hsa04620 (AT),

hsa04062 (AT)

CDK2 0.60 36 hsa05200 (AN,AT)

ACTG1 0.58 4 hsa05416 (AN), hsa04510 (AT),

hsa05410 (AT), hsa05412 (AT),

hsa05414 (AT)

HDAC1 0.48 49 hsa05200 (AN,AT)

CCND1 0.48 16 hsa05200 (AN,AT), hsa05416 (AN),

hsa05210 (AN), hsa04630 (AT),

hsa04510 (AT)

MAP2K7 0.48 19 hsa04010 (AN),hsa04620 (AT)

MAP2K4 0.46 22 hsa04010 (AN), hsa04620 (AT)

BRAF 0.46 16 hsa04270 (AN), hsa05200 (AN,AT),

hsa04010 (AN),hsa05210(AN),

hsa04062 (AT), hsa04510 (AT)

CREBBP 0.46 49 hsa05200 (AN,AT), hsa04630 (AT)

Table 2.8. The 16 broker genes participating in specific genetic interactions. First
column: the 16 genes that have statistically significant brokerage, that are on
aneurysm or atherosclerosis pathways and that participate in genetic interactions
such that one gene in the interaction is part of a diabetes pathway, while the other
is part of an aneurysm or an atherosclerosis pathway. Second column: brokerage
of the corresponding gene. Third column: the degree of the corresponding gene in
the disease PPI sub-network. Fourth column: KEGG IDs of pathways in which
the gene takes part. We additionally denote pathways with: (AN) for aneurysm-
related pathway, and (AT) for atherosclerosis-related pathway.

Recall that the number of pathways related to atherosclerosis is much higher than

the number of pathways related to aneurysm (as listed in Table 2.5 and Table 2.6).

This is a consequence of a higher number of genes that are known to be related to

the atherosclerosis in comparison to the number of genes that are known to be related

73



to the aneurysm, as detailed in Section 2.2.2.1. Therefore, the ratio of the number of

identified broker genes on aneurysm pathways and the number of identified broker genes

on atherosclerosis pathways might be influenced by this difference in size of available

input data for the two diseases. With this in mind, note that the 16 genes that we

further analyse are accurately identified. With additional data available in the future,

possibly including biologically validated networks of pathways responsible for the two

diseases, our methodology would be useful for identifying additional broker genes.

Using the DAVID database, we check functional enrichment of the 16 genes from Table

2.8. There are 8 kinases among the 16 genes: PIK3CG, MAP2K4, CDK2, GSK3A,

RPS6KA5, BRAF, MAPK7, and MAP2K7. We use the hyper-geometric cumulative

distribution to calculate the p-value that corresponds to the probability of finding 8 or

more kinases among the 16 genes purely by chance. Since there are 151 kinases among

958 genes in the disease PPI sub-network, 8 out of 16 genes being kinases is statistically

significant, p-value = 0.0013. To make sure that finding kinases is not just a consequence

of possibly high number of kinases among the 313 broker genes, we also calculate the

statistical significance of finding 8 or more kinases among the 16 genes when taking

only 313 broker genes as the background set. There are 66 kinases among the 313

genes, so finding 8 or more kinases among the 16 genes is again statistically significant,

p-value = 0.008. Out of the 16 genes, 9 are involved in phosphorylation: PIK3CG,

BRAF, MAP2K4, CDK2, RPS6KA5, CCND1, GSK3A, MAPK7, MAP2K7 (p-value

= 1 × 10−4). Clearly, all of the above listed 8 kinases are among them, as kinases are

proteins that can be turned on or off by phosphorylation (adding phosphate groups).

Phosphorylation usually results in a functional change of the target protein, cellular

location, or association with other proteins. That can lead to rewiring of pathways that

these kinases participate in, which in case of an aneurysm pathway could disrupt the

onset of aneurysm.

The question remains why broker genes from our set that are kinases on an atheroscle-

rosis pathway would not disrupt the onset of atherosclerosis. To answer this we check

if any of the 16 genes have pleiotropic traits. Pleiotropy occurs when a gene influences

multiple traits, for example, because the gene encodes a protein that is used for two or

more functions, or has different functions in different tissues [165]. We find that PIK3CG

phosphorylates phosphatidylinositol 4,5-bisphosphate to generate PIP3, which plays a

pleiotropic role in regulating membrane signaling11. Pleiotropic activities of GSK3 have

made it a therapeutical target for treatment of various human diseases, including type

2 diabetes [166]. It is also known that mutations that result from the pleiotropic ef-

11http://www.phosphosite.org/proteinAction.do?id=3655&showAllSites=true
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fects of BRAF can lead to different transcriptional changes [167]. Also, MAPK7 has

pleiotropic functions [168]. A mutation in a pleiotropic gene can have an effect on just

one of its traits, or on all of them [165]. Two of these genes, BRAF and PIK3CG,

are present both in aneurysm and atherosclerosis pathways (see Table 2.8), and since

they genetically interact with diabetes-related genes this may explain why a mutation

on such genes would influence the development of aneurysm and not atherosclerosis in

diabetic patients.

The identified 16 genes should further be explored in search for exact mechanisms

behind the protective role of diabetes on the development of aneurysm. The most

likely candidate genes are MAPK7 and PPP3CA, as their brokerage values equal 1

(see Table 2.8), suggesting the high destructive potential on the pathways that they

take part in. In fact, brokerage value 1 means that inactivity of MAPK7 or PPP3CA

would completely destroy connectivity in their neighbourhoods. Note that MAPK7

and PPP3CA are on MAPK signaling pathway, which is related to aneurysm, therefore

their functional change can disable signaling process that plays role in formation of this

disease. Although both genes have been already linked to aneurysm, [169,170] we here

uncover that they may also play important role in the diabetes–aneurysm relationship.

2.3 Conclusions

In this chapter we presented two studies which illustrate the variety of applications of

graph theory in current open problems in medicine or biology.

The first study, Sarajlić et al. [8], combines multiple methods in a novel way to extract

the key CVD genes that are enriched in drug targets and driver genes and that have a

large overlap with the Core Diseasome. We used our method to predict new CVD genes

and validated a substantial portion of our predictions in the literature. Hence, it is likely

that the remaining genes, for which we did not find validation in the literature, could

be new genes involved in CVDs. Moreover, we found that the function of known CVD

drug targets coincides with the function of many of our predicted CVD genes. This

indicates that our method produces predictions that may be therapeutically exploited.

The second study, Sarajlić et al. [99], addresses the important question of why patients

with diabetes do not develop aneurysm, but do develop atherosclerosis, when the two

diseases have similar risk factors. We applied the topological measure of Simmelian

brokerage to find genes that have a high potential for disrupting their neighbourhoods’

connectivity, meaning that functional changes on such genes would result in disabling

the pathways that they are part of. Using this approach, we identified a set of 313
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genes enriched in GO biological processes that facilitate the mechanisms behind these

particular diseases relationships. Since genetic interactions involve pairs of genes such

that a mutation on one gene is related to a functional change of the other [153], out

of the 313 genes we identified 16 on aneurysm and atherosclerosis pathways that take

part in genetic interactions with genes from diabetes pathways. We suggest these genes

hold the answer for the relationships between the three diseases. We find that 8 out

of the identified 16 genes are kinases (a statistically significant enrichment) that may

act as switches on the related pathways. Also, two of the kinases, that are found on

both aneurysm and atherosclerosis pathways, are pleiotropic, explaining why these genes

could disable onset, formation and progression of aneurysm, but enable atherosclerosis.

In both of the studies we used biological networks that are undirected, but the pool

of available data on the interaction between biomolecules is becoming richer with more

directed interactions available, such as transcriptional regulatory networks, metabolic

networks, etc. Thus, we are motivated to broaden the set of known local network prop-

erties of directed networks with the concept of directed graphlets and generalisation of

all existing graphlet-based measures to a directed case. In the remainder of this disser-

tation, we present these new measures, validate them using synthetic model networks

and apply them to directed metabolic networks.

2.4 Author’s Contributions

Section 2.1 Anida Sarajlić independently performed the literature survey of network-

based approaches in research of cardiovascular diseases, and wrote the paper in col-

laboration with Nataša Pržulj, resulting in a peer-reviewed scientific publication [98]:

Anida Sarajlić and Nataša Pržulj, “Survey of Network-based Approaches to Research

of Cardiovascular Diseases,” BioMed Research International, 2014.

Section 2.2 Anida Sarajlić collaborated with Vuk Janjić, Neda Stojković, Djordje

Radak and Nataša Pržulj on the work presented in this section. Anida Sarajlić collected

the data, implemented and performed computational experiments (clustering, calculat-

ing enrichments, identifying key CVD genes and predicted CVD genes) and analysed

all results (examining importance of key CVD genes and performing literature valida-

tion), except for identifying therapeutic properties of key and predicted CVD genes.

Anida Sarajlić also took part in designing all experiments and writing the paper. This

work resulted in a peer-reviewed scientific publication [8]: Anida Sarajlić, Vuk Janjić,

Neda Stojković, Djordje Radak and Nataša Pržulj, “Network Topology Reveals Key

Cardiovascular Disease Genes,” PLoS ONE, 2013.
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Section 2.2.2 Anida Sarajlić collaborated with Vladimir Gligorijević, Djordje Radak

and Nataša Pržulj on the work presented in this section. Anida Sarajlić took part in de-

signing the methodology, collected all data and constructed the disease PPI sub-network,

took part in implementation of the methodology and performed all computational ex-

periments (finding statistically significant brokerage values, modeling the disease PPI

sub-network, identifying significant sets of genes) and analysed all results (examining

importance of significant genes through statistical analysis, examining their role through

the literature survey, identifying kineases and pleiotropic kineases and their significance

for the study). Anida Sarajlic also wrote the paper in collaboration with Nataša Pržulj,

resulting in a peer-reviewed scientific publication [99]: Anida Sarajlić, Vladimir Gligori-

jević, Djordje Radak and Nataša Pržulj, “Network Wiring of Pleiotropic Kinases Yields

Insight into Protective Role of Diabetes on Aneurysm,” Integrative Biology, 2014.
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3 Directed Graphlet-based Methods

In this chapter, we introduce directed graphlets and graphlet-based measures for topo-

logical analysis and the comparison of directed networks. We define 40 up to four

node directed graphlets and 129 orbits and implement the directed graphlet and orbits

counting algorithm. Furthermore, we generalise the following undirected graphlet-based

heuristics to the directed case: relative graphlet frequency distance, graphlet degree dis-

tribution similarity, graphlet degree vector similarity, and graphlet correlation distance

(see Section 1.3.3 for details on these graphlet heuristics). We then compare our new

directed graphlet-based measures with common existing measures for network compar-

ison by evaluating their performance on model network clustering. For this, we use the

existing directed network models and propose generalisations to the directed case for

SF-GD, GEO and GEO-GD models. In addition, we evaluate the tolerance of our new

distance measures to noise.

3.1 Methods

3.1.1 Directed Graphlets and Graphlet Orbits

Recall that a directed network is denoted as a pair G = {V,E}, where V is a set of

vertices (nodes) and E, is a set of ordered pairs of vertices, often called arcs, directed

edges, or arrows. A directed edge or arc e = (x, y) is directed from x to y, where y is

called the head and x is called the tail of the arc, y is a direct successor of x, and x

is a direct predecessor of y. Multiple arcs (also called parallel arcs or a multi-arc) are

two or more arcs that begin and end at the same two vertices. An anti-parallel pair

of arcs is a pair of arcs such that one’s head/tail is the other’s tail/head. We consider

simple directed graphs, that is, graphs that do not contain multiple edges or self-loops

(self-loops are edges that start and end in the same node). We allow anti-parallel pairs

of arcs in the network, which will be discussed in more detail below.

Undirected graphlets are small connected non-isomorphic induced sub-graphs of an

undirected network (see Section 1.3.2). We generalise graphlets to directed ones and

identify all directed graphlet orbits.
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Figure 3.1. 40 Directed Graphlets and 129 orbits. For a given graphlet, nodes belong-
ing to the same orbit are of the same color.
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There are 40 up to four node directed graphlets, which are formally defined as small

connected directed non-isomorphic induced sub-graphs of a simple directed network

without anti-parallel pairs of arcs, with 129 orbits. This is shown in Figure 3.1. Here,

we discuss the reasons why we consider only up to four node directed graphlets induced

on simple directed networks that do not contain anti-parallel pairs of arcs. Recently,

Yaveroglu et.al [13] pointed out that the computation of 5-node graphlet statistics

increases the computational complexity and reduces the applicability of graphlet-based

techniques to very large networks. They evaluated the contribution and necessity of

5-node graphlet statistics for network comparison as follows. The statistics of larger

graphlets are bound by the statistics of smaller graphlets, resulting in redundancies

and dependencies in the graphlet degrees of nodes. Yaveroglu et.al [13] eliminated the

redundant statistics, and quantified the level of dependencies among the non-redundant

orbits using Spearman’s correlation coefficient to define a new network topology statistic,

called the Graphlet Correlation Matrix, which we described in Section 1.3.3. They

showed that Graphlet Correlation Distance measure, based on non-redundant up to

four node graphlet orbits (GCD-11) outperforms the GCD-56 based on non-redundant

up to five node orbits [13]. The up to 4-node graphlets introduce less noise in the

corresponding new network statistic because there are fewer dependencies between up

to 4-node graphlet orbits than between up to 5-node graphlet orbits. Yaveroglu et.al [13]

also demonstrated that 5-node graphlets do not carry any significant information which

is not already captured by the up to 4-node graphlets. Hence, we generalize up to 4-node

graphlets to a directed case. Defining directed graphlets as non-isomorphic induced sub-

graphs of a network with anti-parallel pairs of arcs would result in over 600 orbits in up

to 4-node graphlets containing anti-parallel pairs of arcs. Such high number of orbits

increases the computational complexity of the orbit counting process and computation

of graphlet-based statistics; hence, we decide to take into account up to 4-node directed

graphlets without anti-parallel pairs of arcs.

We account for anti-parallel pairs of arcs in a network as follows. Let an anti-parallel

pair of arcs exist between nodes A and B in the network, as shown in Figure 3.2. Recall

that an anti-parallel pair of arcs between nodes A and B corresponds to two arcs (two

directed edges): one from A to B and one from B to A. This type of connection then

contributes to two different graphlets on nodes A and B (each containing one directed

edge). So, an anti-parallel pair of arcs between nodes A and B contributes to graphlet

counts in a way that it accounts for two graphlets of type G0 and it contributes to both

orbits 0 and 1 for both node A and node B. A similar approach is used for 3- or 4-

node graphlets induced on the set of nodes that contain nodes A and B. Note that all
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the nodes in a graphlet are different. Hence, the path ABA, shown in Figure 3.2, does

not correspond to graphlet G1 and does not contribute to counts of orbits 2, 3 or 4 for

nodes A and B.

A B

C

Graphlets:

G0 : A   B, B   A, A   C

G1 : B   A   C

G2 : B   A   C

G3:        -

...          -

G39:       -

Orbits:      0               1             2             3              4             5              6             7,...,129  

Node A:    A  B, A  C  A  B        -              B  A  C     -              -               B  A  C    -                            

Node B:    B  A          B  A        B  A  C     -               -             B  A  C      -              -           

Node C:    -               C  A        -               -              C  A  B    C  A  B      -              -           

Figure 3.2. Inducing directed graphlets from the network with anti-parallel pairs
of arcs.

In Section 3.1.2 below, we generalise existing graphlet-based network properties to

the directed case.

3.1.2 Directed Graphlet-based Measures

Directed graphlet degree vector (DGDV), analogous to GDV [4] for undirected

networks, counts the number of all two to four node directed graphlets that a node

touches, taking into account different “symmetry groups” within each directed graphlet

(numbered from 0 to 128 on Figure 3.1). These symmetry groups are called automor-

phism orbits (detailed in [44]). For example, it is topologically relevant whether a node

touches graphlet G3 at the middle node, or at one of the end nodes. These counts are

coordinates in the 129-dimensional Directed Graphlet Degree Vector (DGDV) of a node.

The similarity between DGDVs of nodes u and v in graph G is computed in the same

way as in the case of undirected networks [4]. If ui is the ith coordinate in the DGDV of

node u, and vi is the ith coordinate in the DGDV of node v, then the distance between

these two coordinates is computed as:

Di(u, v) = wi ×
|log(ui + 1)− log(vi + 1)|
log(max(ui, vi) + 2)

, (3.1)

where wi denotes weight that corresponds to orbit i. Different weights are assigned
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to different orbits because of the dependency that exists between the number of orbits

in the network. For example, the number of orbits 0 that a node touches will also

influence the number of orbits 2 that this node touches. Similarly as in the undirected

case, to compute weights wi we assign a value oi to each orbit i. This value is obtained by

counting the number of orbits (among the same or lower number of nodes than the orbit

i) that affects orbit i. It is also considered that each orbit affects itself. For example,

whether the node touches orbit 9 is conditional upon whether that node touches orbits

0 and 1. Therefore, o9 = 3, denoting orbits 0, 1 and 9. Similarly, orbit 39 is influenced

by orbits 0, 1, 3, 2 and 4 resulting in o39 = 6. We find all dependencies between orbits

on directed graphlets and give a complete list in Table 3.1.

Orbit Dependant

orbits

Orbit Dependant

orbits

Orbit Dependant

orbits

0 0 43 43, 1, 4, 5, 8 86 86, 0, 1, 5, 7, 12

1 1 44 44, 1, 5, 8 87 87, 0, 6, 11

2 2, 0 45 45, 0, 6, 7 88 88, 0, 1, 8, 9

3 3, 0, 1 46 46, 0, 1, 3, 5, 7 89 89, 0, 1, 5, 7, 9

4 4, 1 47 47, 1, 4, 8 90 90, 0, 1, 6, 9

5 5, 1 48 48, 0, 2, 6 91 91, 1, 8, 10

6 6, 0 49 49, 0, 1, 5, 9 92 92, 0, 7, 11

7 7, 0 50 50, 0, 1, 2, 9 93 93, 0, 1, 8, 12

8 8, 1 51 51, 0, 1, 3, 6, 9 94 94, 0, 1, 6, 12

9 9, 0,1 52 52, 1, 4, 5 95 95, 1, 5, 10

10 10, 1 53 53, 0, 1, 4, 9 96 96, 0, 6, 11

11 11, 0 54 54, 0, 1, 7, 9 97 97, 0, 1, 3, 10, 12

12 12, 0, 1 55 55, 0, 1, 3, 8, 9 98 98, 0, 1, 2, 5, 12

13 13, 0, 2 56 56, 0, 2, 7 99 99, 1, 4, 5, 10

14 14, 0, 1, 2, 3 57 57, 0, 2, 11 100 100, 0, 6, 11

15 15, 0, 1, 3, 4 58 58, 0, 1, 2, 12 101 101, 0, 1, 3, 9, 11

16 16, 1, 4 59 59, 0, 1, 3, 10 102 102, 0, 1, 2, 5, 9

17 17, 0, 2 60 60, 1, 4 103 103, 1, 4, 5, 10

18 18, 0, 1, 3, 7 61 61, 0, 7, 11 104 104, 0, 1, 6, 9, 12

19 19, 1, 4, 8 62 62, 0, 1, 7, 12 105 105, 1, 8, 10

20 20, 0, 7 63 63, 1, 8, 10 106 106, 0, 1, 4, 7, 12

21 21, 0, 7 64 64, 0, 7 107 107, 0, 2, 7, 12

22 22, 1, 5, 8 65 65, 0, 1, 5, 12 108 108, 0, 1, 3, 11, 12
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23 23, 0, 6, 7 66 66, 1, 5, 10 109 109, 0, 1, 8, 9, 12

24 24, 1, 5 67 67, 0, 6, 11 110 110, 0, 1, 4, 7, 9

25 25, 1, 4 68 68, 1, 5 111 111, 0, 2, 7, 11

26 26, 0, 1, 3, 5 69 69, 0, 1, 4, 12 112 112, 0, 1, 3, 9, 10

27 27, 0, 2, 6 70 70, 1, 4, 10 113 113, 0, 2, 11

28 28, 1, 5 71 71, 0, 1, 3, 11 114 114, 0, 1, 3, 11, 12

29 29, 0, 7 72 72, 0, 2 115 115, 1, 4, 10

30 30, 1, 8 73 73, 0, 2, 11 116 116, 0, 1, 3, 10, 12

31 31, 1, 5 74 74, 1, 5, 10 117 117, 0, 1, 9, 11, 12

32 32, 0, 6 75 75, 0, 1, 3, 6, 12 118 118, 1, 10

33 33, 0, 2 76 76, 1, 4, 5 119 119, 0, 1, 9, 10, 12

34 34, 0, 1, 3,6 77 77, 0, 7, 11 120 120, 0, 11

35 35, 1, 4, 5 78 78, 1, 4, 10 121 121, 0, 1, 9, 11

36 36, 1, 4 79 79, 0, 1, 3, 8, 12 122 122, 0, 1, 9, 10

37 37, 0, 1, 3, 8 80 80, 0, 2, 7 123 123, 0, 1, 9, 10, 12

38 38, 0, 2, 7 81 81, 0, 1, 3, 9, 10 124 124, 0, 1, 9, 11, 12

39 39, 0, 1, 2, 3, 4 82 82, 0, 1, 2, 4, 12 125 125, 1, 10

40 40, 0, 1, 2, 3, 5 83 83, 0, 1, 2, 4, 9 126 126, 0, 1, 11, 12

41 41, 0, 1, 3, 4, 7 84 84, 0, 1, 3, 9, 11 127 127, 0, 1, 10, 12

42 42, 0, 2, 6, 7 85 85, 1, 8, 10 128 128, 0, 11

Table 3.1. The complete list of orbit dependencies for all directed 2 to 4 node
graphlets.

Hence, the values oi are:

• 1 for i ∈ {0,1},

• 2 for i ∈ {2, 4, 5, 6, 7, 8, 10, 11},

• 3 for i ∈ {3, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 30, 31, 32, 33, 36, 60, 64, 68,

72, 118, 120, 125, 128},

• 4 for i ∈ {19, 22, 23, 27, 35, 38, 44, 45, 47, 48, 52, 56, 57, 61, 63, 66, 67, 70, 73,

74, 76, 77, 78, 80, 85, 87, 91, 92, 95, 96, 100, 105, 113, 115},

• 5 for i ∈ {14, 15, 18, 26, 34, 37, 42, 43, 49, 50, 53, 54, 58, 59, 62, 65, 69, 71, 88,

90, 93, 94, 99, 103, 107, 111, 121, 122, 126, 127},
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• 6 for i ∈ {39, 40, 41, 46, 51, 55, 75, 79, 81, 82, 83, 84, 86, 89, 97, 98, 101, 102,

104, 106, 108, 109, 110, 112, 114, 116, 117, 119, 123, 124}.

The value of wi is calculated as:

wi = 1− log(oi)

log(129)
. (3.2)

The total distance between DGDVs of nodes u and v, normalized in [0, 1] range, is

calculated as:

D(u, v) =

∑128
i=0Di∑128
i=0wi

. (3.3)

Finally, DGDV similarity of the two nodes is computed as:

S(u, v) = 1−D(u, v). (3.4)

Directed graphlet degree distribution (DGDD) is defined as follows: for each of

the 129 automorphism orbits (Figure 3.1), the distribution of nodes touching a particular

graphlet at the node belonging to a particular orbit is calculated. In other words, for

a particular orbit we count the number of nodes touching a graphlet at that orbit.

This results in a spectrum of 129 directed graphlet degree distributions, where the

out-degree and in-degree distributions are the first two. Networks can be compared

based on a DGDD agreement measure, which we define similarly as in the case of GDD

(see section 1.3.3): Let djG be DGDD for the jth automorphism orbit in network G.

Normalised distribution for the network G is defined as

N j
G(k) =

SjG(k))

T jG
, (3.5)

where djG is scaled as SjG(k) =
djG(k))
k to decrease the contribution of larger degrees in

DGDD, and then the distribution is normalised with respect to its total area:

T jG =

∞∑
k=1

SjG(k). (3.6)

The distance between normalised jth distributions for the two networks G and H is:

Dj(G,H) =
1√
2
·

( ∞∑
k=1

[N j
G(k)−N j

H(k)]2

) 1
2

, (3.7)
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where the resulting value is between 0 and 1, 0 meaning that the jth DGDDs are

identical, 1 that they are dissimilar. The jth DGDD agreement (DGDDA) is obtained

as:
Aj(G,H) = 1−Dj(G,H). (3.8)

Finally, the DGDD agreement between two networks is defined either as the arith-

metic or geometric mean of all DGDD agreements over 129 automorphism orbits. Note

that in this dissertation we use the arithmetic mean.

Relative directed graphlet frequency (RDGF), following the same approach as

for the RGF (see Section 1.3.3), is defined as Ni(G)
T (G) , where Ni(G) is the number of

graphlets of type i, i ∈ {1, ..., 39} in the network G, and T (G) =
∑39

i=1Ni(G) is the

total number of graphlets in G [7]. The relative directed graphlet frequency distance

D(G,H) for the two graphs G and H is defined as:

D(G,H) =

39∑
i=1

|Fi(G)− Fi(H)| , (3.9)

where Fi(G) = − log(Ni(G))
log(T (G)) . To avoid dominance of the most frequent graphlets in the

networks, we use relative directed graphlet frequency in the log form.

We denote this measure as RDGF-3 distance, as we are considering the 3 and 4

node directed graphlets, omitting two node graphlets, similarly as it was suggested for

undirected graphlets [7].

We also consider the RDGF-2 distance, where we take into account all directed

graphlets on 2, 3 and 4 nodes, i.e. all graphlets labelled G0 to G39.

Directed graphlet correlation matrix. Analogous to the case of undirected

graphlets, the statistics of different orbits on directed graphlets are not independent of

each other. The reason behind this is that smaller graphlets are induced sub-graphs of

larger graphlets. We have already pointed out such dependencies in Table 3.1. This

motivates us to explore whether these correlation patterns can be used to measure

topological similarity between networks. Hence, we generalise the concept of GCM to the

directed case as follows. For each node in the networks, its DGDV is constructed. Then,

we construct a matrix containing DGDVs as the rows, the number of rows corresponding

to the number of nodes in the network. We calculate a Spearman’s correlation between

each two pairs of columns in the resulting matrix, i.e. correlation between the orbits

in the network. We present these correlations as a 129 × 129 dimensional directed

graphlet correlation matrix (DGCM-129), which is symmetric and contains Spearman’s

correlation values in [-1,1] range. Note that some graphlets, and hence orbits, may not
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appear in the network, which would result in an entire column of zeros. Spearman’s

correlation coefficient is not defined when all values in one of the input vectors are the

same (zero is the only possibility in our case), so, as proposed by Yaverǒglu et al. [13],

we address this issue by introducing a dummy node in the network with a DGDV vector

with all values set to 1. This way the correlation between non-existing orbits will be 1,

and the correlation between a non existing orbit and any other orbit, whose column has

non-zero values, will be close to 0. Directed graphlet correlation distance (DGCD-129)

between two networks is defined as the Euclidian distance of the upper triangle values

of their DGCMs. We also look at the performance of a DGCM matrix for up to three

node directed graphlets, which takes into account only the first 6 graphlets (G0-G5)

and 13 automorphism orbits (0-12). We denote this 13 × 13 dimensional matrix with

DGCM-13. DGCM-13 and DGCD-13 are defined in the same way as DGCM-129 and

DGCD-129, by taking into account orbits from orbit 0 to orbit 12.

3.1.3 Redundancies between Directed Graphlet Orbits

An orbit is redundant if its degree can be derived from the degrees of other orbits.

Recall that in the case of up to five node undirected graphlets there are 17 independent

equations that define redundancies between orbits [13]. Thus, 17 redundant orbits can

be removed from graphlet degree vectors (GDVs), resulting in 56 dimensional GDVs

containing the counts of non-redundant orbits only. In the case of up to four node

undirected graphlets there are 11 non-redundant orbits in a GDV, resulting in 11× 11

dimensional GCM. Here, we explore the possibility of finding redundant orbits for the

case of up to four node directed graphlets.

In the case of networks without anti-parallel pairs of arcs, directed graphlets are

induced sub-graphs and we can perform the following reasoning. The left panel of

Figure 3.3 represents the case when the two orbits 0 that node A touches (orbit AB

and orbit AC) are combined. Possible outcomes are: (1) node A also touches orbit 6 in

case nodes B and C are not connected, (2) node A touches orbit 11 in case nodes B and

C are connected (regardless of the direction of the edge). If we denote the number of

orbits 0 that node A touches with C0, then the number of pairs of two orbits 0, which

equals
(
C0

2

)
, equals the sum of the counts of orbits 6 and 11. We derive redundancy

equations by performing a similar analysis on all other possible combinations of orbits.
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Figure 3.3. Illustration of the redundancies between directed graphlet orbits 0, 6
and 11. (a) Possible orbits that node A can touch, in the case when A touches
two orbits 0 in a network without anti-parallel pairs of arcs. (b) Possible orbits
that node A can touch, in case when A touches two orbits 0 in a network with
anti-parallel pairs of arcs.

Below, we list the 23 independent equations which describe relationships between

orbits on up to four node directed graphlets in directed network without anti-parallel

pairs of arcs:

1.
(
C0

2

)
= C6 + C11

2.
(
C0

1

)
·
(
C1

1

)
= C3 + C9 + C12

3.
(
C1

2

)
= C8 + C10

4.
(
C2

1

)
·
(
C0−1

1

)
= C27 + C57 + C73 + 2 · C113 + C107 + C111 + 2 · C48 + C42

5.
(
C1

1

)
·
(
C2

1

)
= C58 + C50 + C40 + C39 + C82 + C98 + C102 + C14 + C83

6.
(
C0

1

)
·
(
C5

1

)
= C26 + C65 + C49 + C40 + C46 + C102 + C86 + C89 + C98

7.
(
C5

1

)
·
(
C1−1

1

)
= C22 + C74 + C66 + 2 · C44 + C43 + 2 · C95 + C99 + C103

8.
(
C7

1

)
·
(
C0−1

1

)
= C23 + C61 + C77 + C42 + 2 · C45 + C107 + 2 · C92 + C111
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9.
(
C7

1

)
·
(
C1

1

)
= C18 + C62 + C54 + C46 + C41 + C86 + C110 + C106 + C89

10.
(
C4

1

)
·
(
C0

1

)
= C15 + C53 + C69 + C39 + C41 + C83 + C106 + C110 + C82

11.
(
C4

1

)
·
(
C1−1

1

)
= C19 + C78 + C70 + C43 + 2 · C47 + C99 + 2 · C115 + C103

12.
(
C3

1

)
·
(
C1−1

1

)
= 2 · C37 + 2 · C59 + C79 + C55 + C97 + C112 + C116 + C81

13.
(
C3

1

)
·
(
C0−1

1

)
= 2 · C34 + C51 + C75 + 2 · C71 + C101 + C108 + C84 + C114

14.
(
C6

1

)
·
(
C0−2

1

)
= 3 · C32 + 2 · C67 + C96 + C87 + C100

15.
(
C6

1

)
·
(
C1

1

)
= C34 + C75 + C51 + C94 + C90 + C104

16.
(
C8

1

)
·
(
C0

1

)
= C37 + C55 + C79 + C88 + C93 + C109

17.
(
C8

1

)
·
(
C1−2

1

)
= 3 · C30 + 2 · C63 + C85 + C91 + C105

18.
(
C9

1

)
·
(
C0−1

1

)
= C51 + C104 + 2 · C90 + C84 + C101 + 2 · C121 + C117 + C124

19.
(
C9

1

)
·
(
C1−1

1

)
= C55 + C81 + C112 + C109 + 2 · C88 + C119 + 2 · C122 + C123

20.
(
C10

1

)
·
(
C1−2

1

)
= C63 + 2 · C105 + 2 · C85 + 2 · C91 + 3 · C125 + 3 · C118

21.
(
C10

1

)
·
(
C0

1

)
= C59 + C97 + C81 + C116 + C112 + C127 + C122 + C119 + C123

22.
(
C11

1

)
·
(
C0−2

1

)
= C67 + 2 · C87 + 2 · C100 + 2 · C96 + 3 · C128 + 3 · C120

23.
(
C11

1

)
·
(
C1

1

)
= C71 + C84 + C108 + C114 + C101 + C121 + C126 + C124 + C117

Note that it is possible to form additional equations using the approach from the

left panel of Figure 3.3, however all other possible equations can be derived from the

above-listed 23 main equations. Here, we give a few examples. By observing orbits that

can be formed by combining orbits 0 and 12 we can see that the following equation

holds:(
C12

1

)
·
(
C0 − 1

1

)
= C75 + 2 ·C94 +C104 +C108 +C114 + 2 ·C126 +C117 +C124 (3.10)

This equation can be derived using equations 1, 2, 13, 15, 18 and 23. Similarly, the

equation:(
C12

1

)
·
(
C1 − 1

1

)
= C79 +C97 +C116 +C109 + 2 ·C93 +C119 + 2 ·C127 +C123 (3.11)
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can easily be derived from equations 2, 3, 12, 16, 19 and 21. The 23 redundancy

equations allow 23 of the 129 orbits to be removed when formulating directed graphlet-

based measures. However, this only holds for the networks without anti-parallel pairs of

arcs. Let us examine the case of networks with anti-parallel pairs of arcs, as presented

in Figure 3.3-b. Again, let the number of orbits 0 that the node A touches be C0.

We can choose
(
C0

2

)
pairs of orbits 0 that node A touches. As shown in Figure 3.3-b,

each pair can result in (1) node A touching an orbit 6 in case nodes B and C are not

connected, (2) node A touching orbit 11 in case nodes B and C are connected with

an edge regardless of its direction, or (3) the nodes B and C are connected with a

bidirectional edge which does not correspond to any of the 129 orbits, but, as explained

in Section 3.1.1, contributes to two orbits 11. The orbit counts that are the consequence

of scenarios (1), (2) and (3) cannot be simply added because scenarios (2) and (3) are

not mutually independent, thus the correct equation cannot be derived.

Since the majority of real world directed networks contain anti-parallel pairs of arcs,

we perform all performance evaluation experiments for directed graphlet-based measures

based on all 129 orbits on up to four node graphlets. The performance of modified

measures, which would take into account only the non–redundant orbits, in the networks

without anti-parallel pairs of arcs, is a matter of future research.

3.1.4 Implementation of Directed Graphlets and Orbits Counting

Algorithm

We implemented a counting algorithm that counts all up to four node graphlets in

a directed network, as defined in Section 3.1.1, and all the orbits that each node in

the network touches. As discussed in Section 3.1.1 we count graphlets and orbits in

directed networks which can contain anti-parallel pairs of arcs but no multiple edges

or self-loops. So, when the network is loaded into a data structure in memory, we pre-

process the data to remove all selfloops (and any nodes that were solely involved in that

type of interactions) and remove all, if any, multiple edges in the network.

There are different approaches for implementing an algorithm to count the sub-graphs

of a network. Some of the approaches which focus on speed performance include sam-

pling [171,172], are based on pattern similarities [173], or rely on reconfigurable hardware

accelerators based on Field-Programmable Gate Array (FPGA) chips, where hardware

design was implemented using Verilog hardware description language [174]. The first

counting algorithm for undirected graphlets was based on direct enumeration, with

corrections for the over-counting graphlets and orbits [175]. One of the more recent
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undirected graphlet counter implementations is a combinatorial method [176] that uses

a system of equations to link counts of orbits from up to five nodes graphlets, which

allows it to compute all orbit counts by enumerating just a single one. However, for the

40 directed graphlet orbits from Figure 3.1, a similar set of equations can be constructed

only if we were to implement a counter for networks without anti-parallel arcs where

graphlets are induced sub-graphs. Our implementation counts graphlets and orbits in

the networks with anti-parallel pairs of arcs, where graphlets are not strictly induced

(recall Figure 3.2) and we cannot establish the system of equations, as discussed before.

Thus, our method of choice is the direct enumeration approach.

For each node in the network we construct the list of node’s successors and prede-

cessors. We visit each node in the network and update counts of all up to four node

orbits as follows. Graphlet G0 contains orbits 0 and 1 (Figure 3.1). When the counting

algorithm visits a node in the network, it counts the node’s successors to determine the

count of orbits 0 for the visited node. In the same iteration, the counter increments the

count of orbits 1 for the node’s successors and updates the count of graphlets G0 in the

network. Similarly, for each set of orbits that belong to the same graphlet, we update

counts of these orbits and the count of the corresponding graphlet in the same iteration,

when visiting a node in the network. For counting three-node orbits of the visited node,

the algorithm iterates through the lists of the node’s successors and/or predecessors and

checks their relationships, or through the lists of the node’s successors or predecessors

and then their successors or predecessors (depending on the orbit counted). Similarly,

in order to update counts for all four node orbits of a visited node, the algorithm needs

to examine up to three-level-deep neighbourhood of a node. To improve the time ef-

ficiency we aim to group the graphlets that are subgraphs of one another, and update

their counts and orbits in the same iteration. For example, we update counts of orbits

5 and 6 (graphlet G2) and orbits 25, 26, 27 and 28 (graphlet G9) in the same iteration

because graphlet G2 is induced on graphlet G9 (see Figure 3.1).

Following the approach described above, the graphlets containing automorphism or-

bits are over-counted during the counting process. An example of this is shown in

Algorithm 1 (based on the original counter implementation, source code is available

in Appendices in Section B.1). On graphlet G2 there are two non-interacting nodes

touching orbit 5 and one middle node touching orbit 6 (see graphlet G2 in Figure 3.1).

Algorithm 1 updates orbits 5 and 6 and the counts of graphlet G2 by visiting each node

in the network and, among the node’s successors, it looks for pairs of successors that

do not interact. When found, the count of orbit 6 is updated for the visited node i,

and the count of orbit 5 is updated for both nodes in the identified non-interacting pair
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Algorithm 1 Updating counts of orbits 5,6,25,26,27,28 and graphlets 2 and 9.

1: input: G, directed graph as an edge list
2: V = list of nodes from G
3: pred = container with vector of predecessors pred(n) for each node n∈V
4: succ = container with vector of successors succ(n) for each node n∈V
5: //Note: Multiple edges and selfloops are discarded when creating pred and succ.//

6: output: graphlets, vector of graphlet counts graphlets(i) for each graphlet i∈[0, 39]
7: output: orbits, matrix of orbits counts orbit(n)(j) for each node n∈V and orbit
j∈[0, 128]

8: output: dictionary, list of nodes in the order that corresponds to node indexes
from the orbits matrix.

9: for n∈V do
10: Updating counts of orbits 5,6,25,26,27,28 and graphlets 2 and 9:
11: for s1∈succ(n) do
12: for s2∈succ(n) do
13: if s16=s2 and s16∈succ(s2) and s16∈pred(s2) then
14: orbit(s1)(5)++
15: orbit(s2)(5)++
16: orbit(n)(6)++
17: graphlets(2)++
18: for s3 in succ(s1) do
19: if s3 6=s2 and s3 6=n and s3 6∈succ(s2) and s3 6∈pred(s2) and

s3 6∈succ(n) and s36∈pred(n) then
20: orbit(s1)(26)++
21: orbit(s2)(28)++
22: orbit(n)(27)++
23: orbit(s3)(25)++
24: graphlets(9)++
25: end if
26: //Note: In the complete counter we use the last for loop to explore relationships

between nodes n, s1, s2 and s3, and update their counts of orbits (49,50,51,52), (65,66,67,68),

(46,47,48), (85,86,87) and (88,89,90) and counts of graphlets 18,22,17,27,28 respectively.//

27: end for
28: end if
29: end for
30: end for
31: end for
32: Correcting for overcounted graphlets and orbits:
33: //Note: Here, we correct overcounts only for orbits 5,6,25,26,27,28 and corresponding graphlets 2

and 9.//

34: for n∈V do:
35: orbit(n)(5) = orbit(n)(5)

2 ;

36: orbit(n)(6) = orbit(n)(6)
2 ;

37: end for
38: graphlets(2) = graphlets(2)

2 ;

91



of successors. However, we need to distinguish the nodes in the non-interacting pair

of successors of i, because, as described above, in the same iteration we are updating

counts of orbits 25, 26, 27 and 28 and the corresponding graphlet G9. This means that

if the neighbourhood of the node i also corresponds to orbit 27 on G9, then the count

of orbit 26 is updated for one of the nodes in the non-interacting pair of successors

of i, while orbit 28 is updated for the other node in the pair. As a result, each non-

interacting pair of successors (j, k) of the node i needs to be examined twice: once to

check if the node j corresponds to orbit 26 (consequently the nodes i and k correspond

to orbits 27 and 28 respectively) and a second time to check if the node k corresponds

to orbit 26 (consequently the nodes i and j correspond to orbits 27 and 28 respectively).

If both scenarios are true, the count of orbit 27 for the node i will be updated twice,

which corresponds to two different graphlets G9 in the network (on each of them the

nodes j and k touch different orbits). However, examining the nodes i, j and k twice

results in updating the count of orbit 6 for the node i twice, updating the count of orbit

5 twice for each of the nodes j and k, and counting graphlet G2 twice, although the

nodes i, j and k account for only one graphlet G2. Hence, when the counting process is

completed for all nodes in a network, we divide the following counts by two: the counts

of orbit 5 for all nodes, the counts of orbit 6 for all nodes and the count of graphlets

G2 in the network. Similarly, the other graphlets containing automorphism orbits are

over-counted, depending on how the algorithm iterates over the nodes. We solve this

by correcting for all such orbit and graphlet over-counts after the counting process is

finalised.

The complexity of our algorithm is O(N × d3), where N is the number of nodes in

the network and d is the maximum degree over all nodes in the network. However, since

the counting algorithm is implemented so that each node in the network is visited sepa-

rately, the code can easily be parallelised by dividing nodes in the network into sets and

assigning each set of nodes to a separate job. Each job should separately maintain the

temporary DGDVs for all nodes in the network, so when the job is counting orbits that

a particular node touches, it can still update the orbits for other nodes, even if they are

not within its set. This approach gives jobs the flexibility to be either separate thread-

s/processes on a single CPU or distributed over a cluster resource, adding scalability to

our approach. After all the jobs are completed, values from all temporary DGDVs for

each node are added together. All the corrections for the over-counts discussed above,

should be performed after the merging of the temporary vectors.
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3.2 Evaluation of Directed Graphlet-based Methods for

Network Comparison using Synthetic Data

To evaluate directed graphlet-based network comparison measures, we assess their abil-

ity to classify directed network models. Since real world networks are noisy and in-

complete, we also validate the robustness of the measures to noise by evaluating the

performance of clustering model networks to which we introduced three types of noise:

(1) random addition of edges, (2) random removal of edges, and (3) random rewiring

of edges. We contrast the performance of graphlet-based measures with other common

directed network comparison measures (degree distribution and spectral distance).

3.2.1 Standard Methods for Evaluation of Clustering Performance

To formally assess and compare the clustering quality, we quantify the performance

of different measures by using the standard Receiver Operator Characteristic (ROC)

curve [177]. We use the following approach. For small increments of the value ε, in the

range between minimum and maximum value of the distance between any two networks

from the set that we perform the clustering on, we count:

• True Positives (TP) – number of pairs that are of the same model and have a

pairwise distance smaller than ε,

• False Positives (FP) – number of pairs that are not of the same model but have

a pairwise distance smaller than ε,

• True Negatives (TN) – number of pairs that are not of the same model and have

a pairwise distance greater than ε,

• False Negatives (FN) – number of pairs that are of the same model but have a

pairwise distance greater than ε,

We then compute the True Positive Rate (TPR) and False Positive Rate (FPR) as

follows:

TPR =
TP

TP + FN
; (3.12)

FPR =
FP

FP + TN
; (3.13)

ROC curve is a plot of TPR against FPR for all increments of ε. The Area Under

the ROC Curve (AUC) measures the quality of the grouping obtained using a given

distance measure. For any two random pairs of items being grouped, such that one is
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a pair of true items and the other is a pair of false items, AUC value corresponds to

probability that the distance between the items from the true pair is smaller than the

distance between the items from the false pair. In our case, the true pair corresponds

to two networks of the same model, while the false pair corresponds to two networks of

different models.

We also measure the area under the “truncated” ROC curve (AUCn) [178], which

evaluates early identification performance and measures TPR against FPR up to a given

false positive threshold n, which means that n false positives are allowed. The average

number of incorrectly clustered networks per query network is called Errors Per Query

(EPQ), so we have n=EPQ x N, where N is number of networks in comparison. We use

EPQ=10. We are interested in truncated ROC curve analysis because it captures the

performance on early retrieval, i.e. how well the most similar pairs are clustered, which

is often the focus of clustering algorithms.

Finally, we observe the Precision-Recall curve which plots precision (the fraction of

retrieved items that are relevant) against recall (also known as sensitivity – the fraction

of relevant items that are retrieved):

Precission =
TP

TP + FP
; (3.14)

Recall =
TP

TP + FN
; (3.15)

The Area Under Precision and Recall curve (AUPR), also called average precision, mea-

sures the quality of the grouping obtained using a given distance measure. It is more

robust to negatives than ROC curve analysis [179], and model fitting experiments deal

with significant portions of negatives, as those are pairs of networks from different mod-

els that are grouped together. The Precision-Recall curve evaluates the classifications

of positives, whether they are true or false, and shows how many true positives can be

retrieved before making an error (false positive).

3.2.2 Clustering Directed Model Networks

We use existing directed network models for SF directed graphs and ER directed graphs

and propose SF gene-duplication (SF-GD), GEO, and GEO-GD directed network mod-

els to generate the random networks as follows:

• Scale free directed graph. Scale free networks can be created using the Albert-

Barabasi model [52], based on the preferential attachment described in Section

94



1.4. Starting with a small number of vertices (m0), we build directed scale free

networks also using preferential attachment model [180] where a new node v is

added to the network with probability α and a directed edge (v, w) is added to

the existing node w - which is chosen based on the existing nodes’ in-degrees.

Similarly, a new node w is added to the network with probability γ and a directed

edge (v, w) is added to the existing node v - which is chosen based on the existing

nodes’ out-degrees. Also, there is a probability β of adding an edge between two

existing nodes in the network (v, w), where v is chosen based on the nodes’ out-

degrees and w is chosen based on the nodes’ in-degrees. The sum of α, β and

γ equals 1. To achieve the desired network densities we allow the node being

added to the network to be connected to m ≤ m0 existing nodes, analogous to

Albert-Barabasi model [52]. We do not allow duplicated edges.

• The scale free gene-duplication (SF-GD) model is a biologically motivated model

that imitates gene duplication and mutation processes [181]. We implement the

directed model as follows. In the duplication step a node in the network is selected

at random and a new node is created together with the connections to/from nodes

that the “parent” node had. The edge between the new node and his parent node is

added with probability p, and edge direction is decided randomly with probabilities

of 0.5 for both directions. The mutation step is imitated so that each edge that

the new node “inherits” from a parent node is deleted with the probability q.

This procedure is repeated until the desired number of nodes is obtained. In our

implementation we start with probabilities p = q = 0.5. When the desired number

of nodes is reached, we check the density of the obtained network. If the density

is lower or greater than desired value, we decrease or increase the value q by value

qstep respectively, starting with the value qstep = 0.1. We then repeat the process

of generating the network. In case we “skipped” the desired network density by

decreasing or increasing the value q by qstep in the previous iteration, we adjust the

value of qstep to qstep/2, and repeat the process until the desired network density

is obtained.

• ER directed graph is generated so that edges, with the direction decided at ran-

dom, are randomly placed between nodes with the same probability, so the desired

network density is obtained.

• GEO directed graph with random edge direction. We propose this model for

directed networks, based on the GEO model for the undirected networks [7]. We
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use the algorithm for generating the GEO random graph described in Section 1.4,

while choosing the edge direction randomly with the probability of 0.5 for each

direction.

• GEO-GD directed graph with random edge direction. We propose this model

for directed networks, based on the GEO-GD model for the undirected networks

described in Section 1.4. We use the same algorithm, while choosing the edge

direction randomly with the probability of 0.5 for each direction.

We generate 30 random networks for each of the 5 network models and each of the

following sizes and densities:

• 500 nodes, densities 1% and 0.5%

• 1000 nodes, densities 1% and 0.5%

• 2000 nodes, densities 1% and 0.5%

We choose these network sizes and densities as they cover the range of sizes and densities

of directed metabolic networks which are the focus of our case study, see Chapter 4.

All together, we consider 5 × 3 × 2 × 30 = 900 networks, where 5 is the number of

models, 3 is the number of network sizes, 2 is the number of network densities and 30

is the number of random networks generated per each network model, size and density.

We assess the ability to cluster networks of the same model. We consider two different

cases when performing the clustering:

• Comparing all-to-all networks. This means we are using distances between all

pairs of the 900 model networks; this gives us
(
900
2

)
= 404, 550 pairs of networks

to examine.

• Comparing only the networks of same density and size; This gives us 3 ·2 ·
(
5·30
2

)
=

67, 050 pairs of networks to examine.

The first case assesses the ability to cluster the same model networks, regardless of

their sizes and densities. The second case considers the easier case of clustering the

same model networks among the networks of same size and densities.

We evaluate the clustering using the following network distance measures: RDGF-2

distance, RGDF-3 distance, DGDDA (note that we use the value of DGDD distance,

obtained as DGDDdist = 1 − DGDDA), DGCD-13, DGCD-129, in-degree distribu-

tion distance, out-degree distribution distance, sum of in and out degrees distribution

distance, and spectral distance.
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We first compare the performances of these network measures on the clustering when

all networks are compared. Figure 3.4 shows ROC curves, truncated ROC curves

and precision-recall curves respectively. Table 3.2 shows scores for AUPR, AUC and

AUCEPQ=10.

Similarity measure AUPR AUC AUCEPQ=10

DGCD-129 0.8392 0.9345 0.01288

DGCD-13 0.9004 0.9714 0.0159

DGDDA 0.6874 0.8105 0.01127

RDGF-3 0.7222 0.8808 0.0066

RDGF-2 0.7232 0.8804 0.0067

In deg. dis. distance 0.4817 0.7174 0.0045

Out deg. dis. distance 0.4822 0.7175 0.0046

In/Out deg. dis. distance 0.4978 0.7104 0.0053

Spectral distance 0.2957 0.5579 0.0022

Table 3.2. AUC, AUPR and AUCEPQ=10 scores for clustering model networks
when comparing all-to-all networks. First column: Similarity measure.
Second column: AUPR score. Third column: AUC score. Fourth column:
AUCEPQ=10 score.

For the clustering evaluation where all networks are being compared, the ROC and

Precision-Recall curves in Figure 3.4 show that directed graphlet-based measures out-

perform other tested distance measures. DCGD measures perform the best in model

clustering. Table 3.2 indicates that DGCD-13 (up to three node graphlets) slightly

outperforms DGCD-129 where all up to four node graphlets are taken into account,

however the truncated ROC curve in Figure 3.4 shows that DGCD-129 does slightly

better when it comes to the number of correctly clustered pairs that are at a shorter

distance: these are retrieved earlier by the distance measure.

We then contrast the performances of these network measures on the clustering when

the same size networks are compared. Figure 3.5 shows the resulting ROC curves,

truncated ROC curves and precision-recall curves respectively. Table 3.3 shows scores

for AUPR, AUC and AUCEPQ=10, as defined in Section 3.2.
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Figure 3.4. Model clustering performance when comparing all-to-all networks. (a)
ROC curves. (b) Truncated ROC curves for for EPQ=10. (c) Precision-recall
curves.
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Figure 3.5. Model clustering performance when comparing networks of the same
size and density. (a) ROC curves. (b)Truncated ROC curves for for EPQ=10.
(c) Precision-recall curves.
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Similarity measure AUPR AUC AUCEPQ=10

DGCD-129 0.9981 0.9995 0.1662

DGCD-13 0.9988 0.9995 0.1663

DGDDA 0.8906 0.9436 0.1374

RDGF-3 0.9701 0.9915 0.1582

RDGF-2 0.9722 0.9920 0.1587

In deg. dis. distance 0.8119 0.9652 0.1327

Out deg. dis. distance 0.8270 0.9678 0.1351

In/Out deg. dis. distance 0.8684 0.9679 0.1354

Spectral distance 0.6066 0.8443 0.0818

Table 3.3. AUC, AUPR and AUCEPQ=10 scores for clustering model networks
when comparing the networks of same size and density. First column:
Similarity measure. Second column: AUPR score. Third column: AUC score.
Fourth column: AUCEPQ=10.

The ROC and Precision-Recall curves in Figure 3.5 show that directed graphlet-based

measures outperform other distance measures for directed networks comparison, with

directed graphlet correlation distance measures showing the best performance. Again,

DCGD measures perform the best in model clustering. The AUC and AUPR scores

in Table 3.3 indicate that DGCD-13 (up to three node graphlets) slightly outperforms

DGCD-129 (up to four node graphlets).
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Figure 3.6. Model clustering performance for random values of similarity scores.
(a) ROC curve. (b)Precision-recall curve.
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In addition, Figure 3.6 shows ROC and Precision-Recall curves for random network

model clustering - when similarity scores between the networks are obtained at random

(we take uniformly distributed random values in the range between 0 and 1). The

ROC and Precision-Recall curves in Figures 3.4, 3.5 and 3.6 show that using any of

the examined similarity measures yields better clustering performance than expected at

random.

3.2.3 Noise Tolerance

Real world network data are noisy. This is especially true for biological networks which

are still incomplete and contain false edges. Hence, we evaluate the robustness to

noise for all directed graphlet-based measures and contrast them to spectral distance

measure and total degree distribution distance (sum of in- and out-degree). We evaluate

clustering performance for the following types of noise in the networks:

• Networks with missing edges, which correspond to real world scenarios of incom-

plete networks. We repeat the model clustering evaluation for different percentages

of missing edges in the networks described in Section 3.2.2 as follows. For each

of the 5 network models, 3 different network sizes (500, 1000, and 2000 nodes)

and 2 network densities (1% and 0.5%) we generate 10 networks, resulting in

5 × 3 × 2 × 10 = 300 networks to cluster. We remove a random 10% of edges

from each network and evaluate the clustering performance by measuring AUC.

To account for the variability of the results obtained from the randomisation, we

remove 10% of edges from the original networks and measure AUC 20 times to

calculate the mean, maximum and minimum value of AUC for clustering networks

with 10% missing edges. Following the same approach, we evaluate model clus-

tering in cases when 20%, 30%, 40%, 50%, 60% and 70% of edges are removed, by

calculating mean, maximum and minimum value of AUC. We consider removing

up to 70% of edges, as the quality of clustering significantly drops for percentage of

noise higher than 70%. Same as in Section 3.2.2, we evaluate the model clustering

performance of different measures for the two cases: (1) we compare networks of

the same density and size, and (2) we compare all networks. Note that we used

10 instead of 30 instances of each network model, size and density, as was the case

for the original settings, to reduce the time complexity required for computing

DGDV for a large number of networks caused by repeating the clustering 20 times

for each level of noise.
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• Rewired networks which correspond to noisy real world networks. Following the

approach presented above, we calculate the mean, maximum and minimum value

of AUC for different percentages of rewired edges: from 10% to 70% in increments

of 10%. Similarly as in Section 3.2.2, we evaluate model clustering performance of

different measures for the two cases: (1) we compare networks of the same density

and size, and (2) we compare all networks.

• Networks with added edges which correspond to networks with falsely identified

edges. Following the approach presented above, we calculate the mean, maximum

and minimum value of AUC for different percentages of added edges: from 10%

to 70% in increments of 10%. Similarly as in Section 3.2.2, we evaluate model

clustering performance of different measures for the two cases: (1) we compare

networks of the same density and size, and (2) we compare all networks.

Figure 3.7-a presents the minimum, mean and maximum AUC values for network

clustering, when comparing all-to-all networks, against growing percentages of missing

edges. Figure 3.7-b presents the minimum, mean and maximum AUC values for network

clustering, when comparing same size networks, against growing percentages of missing

edges.

Figure 3.8-a presents the minimum, mean and maximum AUC values for network

clustering, when comparing all-to-all networks, against growing percentages of rewired

edges. Figure 3.8-b presents the minimum, mean and maximum AUC values for network

clustering, when comparing same size networks, against growing percentages of rewired

edges.

Figure 3.9-a presents the minimum, mean and maximum AUC values for network

clustering, when comparing all-to-all networks, against growing percentages of added

edges. Figure 3.9-b presents the minimum, mean and maximum AUC values for network

clustering, when comparing same size networks, against growing percentages of added

edges.
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Figure 3.7. Effects of missing network edges on model clustering performance of
different network distance measures. The vertical axis represents the mean,
maximum and minimum value of AUC scores for the 20 randomised experiments
that are performed at each of the noise levels that are presented by the horizontal
axis independently. (a) AUC scores obtained by comparing all pairs of the 300
networks. (b) AUC scores obtained by comparing only the same size and density
networks.
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Figure 3.8. Effects of rewiring networks on model clustering performance of dif-
ferent network distance measures. The vertical axis represents the mean,
maximum and minimum value of AUC scores for the 20 randomised experiments
that are performed at each of the noise levels that are presented by the horizon-
tal axis independently.(a) AUC scores obtained by comparing all pairs of the 300
networks. (b) AUC scores obtained by comparing only the same size and density
networks.
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Figure 3.9. Effects of adding network edges on model clustering performance of
different network distance measures. The vertical axis represents the mean,
maximum and minimum value of AUC scores for the 20 randomised experiments
that are performed at each of the noise levels that are presented by the horizontal
axis independently. (a) AUC scores obtained by comparing all pairs of the 300
networks. (b) AUC scores obtained by comparing only the same size and density
networks.

The evaluation of clustering of noisy networks show that DCGD-13 measure outper-

forms all other measures, except in case of noise modelled by random addition of edges

in the network and clustering of networks when the same size and density network are
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compared (Figure 3.9-b) when it is outperformed by DCGD-129. Also, in all observed

cases, the two DCGD and the two RDGF measures outperform other network compari-

son measures (Figures 3.7, 3.8, 3.9). Degree distribution distance measure and DGDDA

compete for the fifth position: DGDDA performs better in clustering model networks

when all networks are compared regardless their size and density (Figures 3.7-a, 3.8-a,

3.9-a), while degree distribution distance better clusters the model networks when only

same size and density networks are compared (Figures 3.7-b, 3.8-b, 3.9-b).

Overall results emphasise the significance of graphlet-based measures for directed

networks comparison. The best results are obtained by using DCGD measures, followed

by RDGF distance. RDGF-2 distance, which also takes into account the two-node

orbits, slightly outperforms the RDGF-3 where these orbits are omitted.

3.3 Conclusions

In this chapter we introduced up to 4 node directed graphlets and orbits and defined and

implemented directed graphlet-based heuristics. We identified orbit dependencies and

accounted for them when defining directed graphlet degree vector similarity between two

nodes in a network. We also derived 23 equations that describe relationships between

directed graphlet orbits in networks without anti-parallel pairs of arcs. We implemented

directed graphlet and orbit counting algorithm and used it on synthetic model networks

when evaluating our new measures for network comparison: relative directed graphlet

frequency distance, directed graphlet degree distribution similarity and directed graphlet

correlation distance. We compared these measures to other common directed network

comparison measures, by evaluating their performance on model network clustering and

found that directed graphlet-based measures outperform others. The directed graphlet

correlation distance performed the best in model clustering and showed the highest

tolerance to noise, regardless of the type of noise in networks: random addition of

edges, random removal of edges or random edge rewiring.

3.4 Author’s Contributions

Section 3.1 Anida Sarajlić defined 40 directed graphlets and 129 orbits, implemented

the graphlet and orbits counting algorithm, generalised the existing graphlet measures to

directed case, identified the redundancies between directed graphlet orbits and derived

all orbit redundancy equations.

106



Section 3.2 Anida Sarajlić generated the directed random model networks, imple-

mented and performed experiments for evaluation of model clustering for all analysed

distance measures, generated noisy networks, implemented and performed experiments

for evaluation of model clustering in the presence of noise and analysed results.

Anida Sarajlić was supervised on the work presented in this chapter by Dr. Noël

Malod-Dognin and Dr. Nataša Pržulj who defined the research topic and assigned it to

Anida Sarajlić.

Anida Sarajlić wrote the first draft for the paper: Anida Sarajlić, Noël Malod-Dognin,

Ömer Nebil Yaverǒglu and Nataša Pržulj: “Directed Graphlets Uncover Topology–

Function Relationships in Directed Metabolic Networks of Eukaryotes” in August 2015.

This paper draft contained the work presented in Chapters 3 and 4. Currently (Decem-

ber 2015), the results presented in that paper draft are being merged with the results of

application of directed graphlets to directed world trade networks, aiming for a publica-

tion with wider range of applications (Note: Anida Sarajlić provided the directed orbit

and graphlet counts for the directed world trade networks, while further experiments

and analyses on world trade networks were performed by Noël Malod-Dognin and Ömer

Nebil Yaverǒglu).
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4 Application of Directed

Graphlet-based Methods to Metabolic

Networks

In Chapter 3 we used synthetic data to show that our new graphlet-based measures for

directed network comparison outperform non-graphlet-based measures. In this chap-

ter we apply our methodology to biological data, in particular to directed metabolic

networks.

First, we contrast our new directed graphlet-based measures with other similarity

measures, exploring if the topology-based clustering of directed metabolic networks of

eukaryotic species agrees with their taxonomic classification. We then use directed

graphlet degree vector (DGDV) similarity to show that similar local topology around

enzymes in metabolic networks is an indicator of their shared biological functions. To

further explore this, we use a canonical correlation analysis [182] to quantify the rela-

tionships between the local topology around the enzymes (described using DGDV) and

their biological functions. We then use these relationships to predict novel functional an-

notations based solely on the network topology. Finally, we look for conserved topology–

function relationships across metabolic networks of different eukaryotic species.

4.1 Topology-based Clustering of Metabolic Networks of

Eukaryotes Agrees with Taxonomic Classification

The principal goal of evolutionary biology is to understand the evolutionary relationships

between different species, which can be quantified by constructing phylogenetic trees

[183]. Traditionally, phylogenetic similarities among species have been studied based on

phenotypical similarities or sequence similarities [184, 185]. The phylogenetic trees can

be reconstructed from the sequence alignments using maximum likelihood methods [186,

187] or Bayesian methods [188,189]. More extensive review of phylogeny reconstruction

methods is beyond the scope of this dissertation and can be found in [190].
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Since the topology around molecules in biological networks is shown to be related to

similar biological functions, as discussed in Section 1.1, it is expected that phylogeneti-

cally similar species have similar biological network topologies. Hence, the topological

properties of networks have already contributed to constructing phylogenetic trees. Ex-

amples are the similarities between metabolic pathways, obtained by combining global

network properties (diameter, clustering coefficient) and similarities of neighbourhoods

around nodes [191,192]. Another approach relies on topological properties such as net-

work size and connectivities of common metabolites, to quantify the similarities between

undirected metabolic networks [193] and to use them for phylogenetic reconstruction.

Also, a graphlet-based alignment algorithm GRAAL [194] was applied to PPI networks

to demonstrate that species phylogeny can be extracted from purely topological align-

ments. This foregrounds network topology as a new source of phylogenetic information,

complementing the sequence information.

Here, we explore the correspondence between the topological similarity between di-

rected metabolic networks of eukaryotic species and their known phylogenetic classi-

fication. For network comparison we use our directed graphlet-based measures and

contrast their performance with other similarity measures to directed networks. We use

the taxonomic classification of species, which is based on the evolutionary relationships

between organisms and is directly related to phylogenetic trees.

4.1.1 Methods

4.1.1.1 Data Sets

Metabolic networks. We parsed the organism-specific pathway data of all eukary-

otes (299 species) which were available from the KEGG/PATHWAY database [67] in

December 2014 and reconstructed the metabolic networks as follows. The KEGG/-

PATHWAY database maintains the molecular interaction and reaction relations for

each organism specific pathway and provides information such as: (1) pathways with

the reactions (links) between enzyme-coding genes and metabolites (enzymes are given

in Entrez gene notation) and (2) hierarchical classification that groups enzymes into

families which catalyse similar reactions. Links can be directed or undirected, depend-

ing on the chemical reversibility of a specific reaction. We consider only the directed

links. A directed link between two enzymes in a metabolic network denotes that one

enzyme catalyses a reaction whose product is a substrate for a reaction catalysed by the

other enzyme. We construct the directed metabolic network where nodes correspond

to enzyme-coding genes. Note that we use the terms gene and enzyme interchangeably
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when we refer to nodes, as the nodes in the network correspond to genes coding for

enzymes. The sizes of our metabolic networks vary, with the number of nodes being

mainly between 500 to 2000, and edge densities in the 0.5%–1% range.

Taxonomic classification. We downloaded the taxonomic classification of eukary-

otes from the NCBI database in February 2015. This database provides a classification

of species according to: domain, kingdom, phylum, class, order, family and genus. We

evaluate the clustering of eukaryotic species from KEGG that were identified in NCBI

database files (297 out of 299 of them) according to six levels of taxonomic classifica-

tions: kingdom, phylum, class, order, family and genus, where kingdom corresponds

to the most general and genus corresponds to the most specific level of classification.

Note that not all 297 species have every taxonomy level specified. Specifically: (1) 297

species are related to a specific genus levels, but 181 of them are related to a genus that

has only one member (species) in its cluster, leaving only 116 species to cluster based

on genus, (2) 274 species are related to specific families, but 112 of them are the only

member of their cluster (these are family clusters with just one member), leaving 162

species to cluster based on family, (3) 273 species are related to specific order, 60 of

them are the only member of their cluster (order clusters with just one member), leaving

213 species to cluster based on order, (4) 237 species are related to a specific class, 20 of

them are the only member of their cluster (class clusters with just one member), leaving

217 species to cluster based on class, (5) 271 species are related to a specific phylum, 7

of them are the only member of their cluster (phylum clusters with just one member),

leaving 264 species to cluster based on phylum, (6) 251 species are related to specific

kingdom.

4.1.1.2 Clustering Evaluation

We assess the ability of directed network distance measures to cluster directed metabolic

networks according to the six levels of the NCBI taxonomic classification. We evalu-

ate the following measures for comparison of directed networks: RDGF-2, RDGF-3,

DGDDA, DGCD-13, DGCD-129, in-degree distribution distance, out-degree distribu-

tion distance, sum of in and out degrees distribution distance, and spectral distance (all

described in detail in Sections 1.3.1 and 3.1.2). We evaluate the quality of clustering

using ROC and Precision-Recall curves and compare AUPR and AUC scores (described

in section 3.2) for all analysed distance measures.

Notice that there is an observational bias in the data, because the interactions in

metabolic networks of less explored species are inferred from experimentally more ex-
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plored species, based on their phylogenetic similarity. Hence, it is expected that the

similarity of the topologies of metabolic networks will agree with the taxonomic classifi-

cation of the corresponding species. We are not aiming to confirm or refute this, but to

show that directed graphlet-based measures can be used to correctly group the species

according to their taxonomic classification and that they outperform other commonly

used measures for directed networks comparison.

4.1.2 Results

Figures 4.1 and 4.2 show ROC and Precision-Recall curves, respectively, for topology

-based clustering of eukaryotic species metabolic networks, for six levels of taxonomic

classification (kingdom, phylum, class, order, family and genus) and each of the eval-

uated network distance measures. Tables 4.1 and 4.2 present the corresponding AUC

and AUPR scores.
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Figure 4.1. ROC curves for clustering of metabolic networks. We evaluated clustering
according to: (a) kingdom, (b) phylum (continues on the next page).
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Figure 4.1. ROC curves for clustering of metabolic networks. We evaluated clustering
according to: (c) class, (d) order, (e) family and (f) genus.
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Sim. measure Kingdom Phylum Class Order Family Genus

DGCD-129 0.8670 0.9277 0.9213 0.9175 0.9292 0.8631

DGCD-13 0.8890 0.9150 0.9275 0.9150 0.9304 0.9112

DGDDA 0.7574 0.8317 0.8549 0.8307 0.8382 0.7722

RDGF-3 0.8778 0.9218 0.9189 0.9044 0.9152 0.9150

RDGF-2 0.8775 0.9219 0.9198 0.9054 0.9161 0.9168

In deg. 0.6457 0.7144 0.6947 0.6920 0.7152 0.7058

Out deg. 0.6667 0.7919 0.8081 0.7856 0.7963 0.7578

In/Out deg. 0.6407 0.7974 0.8302 0.8103 0.8263 0.7934

Spect.dist. 0.8479 0.8393 0.8129 0.8582 0.8522 0.8713

Table 4.1. AUC scores for clustering metabolic networks according to taxonomic
classification. First column: Similarity measure. Second to seventh column:
AUC scores for clustering based on the kingdom, phylum, class, order, family and
genus respectively. The best score for each level is printed in bold.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is
io
n

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is
io
n

(b)

DGCD-129

DGCD-13

DGDDA

RDGF-3

RDGF-2

IN degree

OUT degree

IN,OUT degree

Spect r. distance

Figure 4.2. Precision-recall curves for clustering of metabolic networks. We eval-
uated clustering according to: (a) kingdom, (b) phylum (continues on the next
page).
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Figure 4.2. Precision-recall curves for clustering of metabolic networks. We evalu-
ated clustering according to: (c) class, (d) order, (e) family and (f) genus.
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Sim. measure Kingdom Phylum Class Order Family Genus

DGCD-129 0.8521 0.8240 0.6388 0.2747 0.2891 0.349

DGCD-13 0.8787 0.7870 0.5596 0.2414 0.2531 0.3125

DGDDA 0.7345 0.6936 0.6291 0.2889 0.2810 0.3192

RDGF-3 0.8137 0.7739 0.6028 0.2553 0.2499 0.2841

RDGF-2 0.8135 0.7739 0.6040 0.2557 0.2511 0.2860

In deg. 0.5346 0.3631 0.2638 0.1054 0.0935 0.1173

Out deg. 0.5552 0.4623 0.2992 0.1723 0.1576 0.1566

In/Out deg. 0.5583 0.4830 0.3357 0.1879 0.2162 0.1974

Spect. dist. 0.8016 0.5167 0.2674 0.2589 0.2197 0.1834

Table 4.2. AUPR scores for clustering metabolic networks according to taxonomic
classification. First column: Similarity measure. Second to seventh column:
AUPR for clustering based on the kingdom, phylum, class, order, family and
genus respectively. The best scores are printed in bold.

These results indicate that the topology of directed metabolic networks can be used

for the taxonomic classification of species, with the best AUC scores being between 0.89

and 0.93 for all taxonomic classification levels. The scores in Tables 4.1 and 4.2 reveal

that graphlet-based measures outperform all other tested measures for directed network

comparison. Like in the case of synthetic networks (Section 3.2.2), the best results are

obtained for DGCD-129 and DGCD-13 measures.
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Figure 4.3. Precision-recall curves for clustering of directed metabolic networks
for random values of similarity scores. We evaluated clustering according
to all six levels of taxonomic classification.
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In addition, Figure 4.3 displays the Precision-Recall curves for the clustering of the

metabolic networks according to all six levels of taxonomic classification, when the

similarity scores between the networks are obtained at random (we take uniformly dis-

tributed random values in the range between 0 and 1). The Precision-Recall curves

in Figures 4.2 and 4.3 show that using any of the examined similarity measures yields

better clustering performance than expected at random. Also, regardless the similarity

measure, the average precision of clustering decreases for the more specific levels of clas-

sification (genus, family, order), suggesting that the metabolic networks of species that

have diverged more recently in time differ less than networks of species that diverged

earlier in evolutionary history. Figure 4.3 conveys that even for random similarity

scores between the networks, the clustering precision decreases as the levels of taxo-

nomic classification become more specific (i.e., the highest and the lowest precision is

obtained for kingdom-based and genus-based clustering, respectively). This is because

more specific levels of taxonomic classification have a larger number of clusters with

fewer elements, compared to the number and size of clusters at more general levels of

taxonomic classification. In particular, at genus level there are 116 species divided into

42 genus clusters, while at kingdom level there are 251 species divided into just 3 differ-

ent kingdoms. Hence, a higher number of false positive species pairs is expected when

evaluating clustering based on genus, resulting in lower precision values.

Figure 4.4 shows a phylogenetic tree for eukaryotes constructed using the distance ma-

trix containing the values of DGCD-13 between the metabolic networks. We use T-Rex

(Tree and Reticulogram Reconstruction) web server [195] to visualise the phylogenetic

tree. Since the obtained phylogenetic tree includes all 299 eukaryotic species, whose

names we cannot capture in the figure, Figure 4.4 focuses on parts of the tree around

H.sapiens (from the kingdom of Animalia) and two model organisms, S. cerevisiae

and A. thaliana from the kingdoms of Fungi and Plantae respectively. The clusters of

species grouped according to three different kingdoms from the NCBI database, Ani-

malia, Plantae, and Fungi, are captured well in Figure 4.4 (recall that out of the 299

species for which we obtained the tree, we have the information about the kingdoms for

251 of them). However, when exploring the tree at more specific levels of taxonomic

classification, we can find inconsistencies, such as human (H. sapiens) being closer to

domestic cow (B. taurus) than to chimpanzee (Pan troglodytes). Notice that this cor-

responds to low Precision-Recall scores obtained for the clustering based on the more

specific levels of taxonomic classification (order, family and genus), as shown in Table

4.2.
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Figure 4.4. Phylogenetic tree of eukaryotes. Tree is obtained using DGCD-13 measure.

4.1.3 Comparison with Undirected Metabolic Networks

To evaluate our directed graphlet-based measures against the undirected graphlet-

based ones, in this section, we explore if the topological similarities between undirected

metabolic networks of eukaryotic species agree with their known phylogenetic classifica-

tion. Here, we use undirected network comparison measures and evaluate the clustering

of eukaryotic species according to all six levels of taxonomic classification. We compare

the obtained scores with the above-presented ones. The goal is to examine whether the

direction of the edges in the metabolic networks contributes to the quality of topology-

based taxonomic classification. We perform the clustering evaluation in the same way

as for the directed metabolic networks, with the following differences:

• We consider all edges in the metabolic networks from Section 4.1.1.1 to be undi-

rected.
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• We use undirected graphlet-based measures for network similarity: GCD-73, GCD-

11, GDDA and RGFD, as defined in Section 1.3.3.

• As in the case of directed networks, we also include the following commonly used

measures for the similarity between undirected networks: degree distribution dis-

tance and spectral distance.

Figures 4.5 and 4.6 show ROC and Precision-Recall curves, respectively, for topology-

based clustering of eukaryotic species’ metabolic networks, for six levels of taxonomic

classification (kingdom, phylum, class, order, family and genus) and each of the eval-

uated network distance measures. The performance of undirected measures is shown

in dotted lines, against the performance of comparable directed measures. Tables 4.3

and 4.4 show the corresponding AUC and AUPR scores for directed and undirected

measures.
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Figure 4.5. Comparison of ROC curves for clustering of undirected and directed
metabolic networks. We evaluated clustering according to: (a) kingdom, (b)
phylum (continues on the next page).
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Figure 4.5. Comparison of ROC curves for clustering of undirected and directed
metabolic networks. We evaluated clustering according to: (c) class, (d) order,
(e) family and (f) genus.
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Sim. measure Kingdom Phylum Class Order Family Genus

GCD-73 0.8799 0.9447 0.9138 0.8925 0.9083 0.8347

GCD-11 0.8891 0.9256 0.9028 0.8785 0.8984 0.8502

GDDA 0.7334 0.8422 0.8465 0.8156 0.8236 0.7550

RGFD 0.8785 0.922 0.9168 0.9014 0.9179 0.9179

Deg. dist. 0.635 0.8174 0.8271 0.8061 0.8203 0.7747

Spect. dist. 0.8342 0.8361 0.8149 0.8628 0.8606 0.8924

DGCD-129 0.8670 0.9277 0.9213 0.9175 0.9292 0.8631

DGCD-13 0.8890 0.9150 0.9275 0.9150 0.9304 0.9112

DGDDA 0.7574 0.8317 0.8549 0.8307 0.8382 0.7722

RDGF-3 0.8778 0.9218 0.9189 0.9044 0.9152 0.9150

Deg. dist. (dir.) 0.6407 0.7974 0.8302 0.8103 0.8263 0.7934

Spect.dist. (dir.) 0.8479 0.8393 0.8129 0.8582 0.8522 0.8713

Table 4.3. Comparison of AUC scores for clustering undirected and directed
metabolic networks according to taxonomic classification. Top part of
the table: Undirected network measures. Bottom part of the table: Directed net-
work measures. First column: Similarity measure. Second to seventh column:
AUC scores for clustering based on the kingdom, phylum, class, order, family and
genus respectively. The best score for each level is printed in bold.
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Figure 4.6. Comparison of precision-recall curves for clustering of undirected and
directed metabolic networks. We evaluated clustering according to: (a) king-
dom, (b) phylum (continues on the next page).
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Figure 4.6. Comparison of precision-recall curves for clustering of undirected and
directed metabolic networks. We evaluated clustering according to: (c) class,
(d) order, (e) family and (f) genus.
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Sim. measure Kingdom Phylum Class Order Family Genus

GCD-73 0.8647 0.8717 0.6342 0.2301 0.2384 0.3005

GCD-11 0.8732 0.8104 0.5678 0.2023 0.2104 0.2741

GDDA 0.7256 0.6983 0.6013 0.3099 0.29180 0.2803

RGFD 0.8377 0.7904 0.5998 0.2455 0.2629 0.3280

Deg. dist. 0.5636 0.5216 0.3466 0.1837 0.1714 0.1876

Spect. dist. 0.7823 0.5078 0.262 0.2426 0.2278 0.2077

DGCD-129 0.8521 0.8240 0.6388 0.2747 0.2891 0.3490

DGCD-13 0.8787 0.7870 0.5596 0.2414 0.2531 0.3125

DGDDA 0.7345 0.6936 0.6291 0.2889 0.2810 0.3192

RDGF-3 0.8137 0.7739 0.6028 0.2553 0.2499 0.2841

Deg. dist. (dir.) 0.5583 0.4830 0.3357 0.1879 0.2162 0.1974

Spect. dist. (dir.) 0.8016 0.5167 0.2674 0.2589 0.2197 0.1834

Table 4.4. Comparison of AUPR scores for clustering undirected and directed
metabolic networks according to taxonomic classification. Top part of
the table: Undirected network measures. Bottom part of the table: Directed
network measures. First column: Similarity measure. Second to seventh column:
AUPR for clustering based on the kingdom, phylum, class, order, family and genus
respectively. The best scores are printed in bold.

These results indicate that the topology of undirected metabolic networks can be used

for taxonomic classification of species, with best AUC scores between 0.88 and 0.945

for all taxonomic classification levels. The scores in the top parts of the Tables 4.3 and

4.4 show that undirected graphlet-based measures outperform other tested measures for

undirected network comparison.

Tables 4.3 and 4.4 also show that by taking into account directionality of the edges and

applying our new directed graphlet-based methods, the clustering performance is better

only for several taxonomic classification levels: AUPR scores are higher for clustering

performed according to kingdom, class and genus; AUC scores are higher for clustering

performed according to class, order and family. For other cases, the scores are slightly

better when using undirected metabolic networks and the corresponding undirected

measures. This is also visible from the comparison of ROC and Precision-Recall curves

shown in Figures 4.5 and 4.6. These results indicate that, at the global level, the

topology of metabolic networks is not mainly characterised by the directionality of the

edges. This can be explained by the high correlations between in-degree and out-degree

based graphlet orbits in the DGCMs of the metabolic networks. This means that, for

example, the nodes with high in-degrees in the directed metabolic networks will also

have high out-degrees and these nodes correspond to high-degree nodes in the undirected

metabolic networks.
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In the next section, we use the metabolic network of H.sapiens to study the topology–

function relationships of enzymes.

4.2 Similar Wirings around Enzymes in Metabolic

Network of H. Sapiens Correspond to Similar

Biological Functions

As previously discussed in Section 1.1, undirected biological networks, such as PPI

networks were used to show that similarly wired proteins carry out similar functions.

This was exploited to transfer functional annotations and roles between proteins [3,4,56];

graphlets have been particularly useful for this purpose in the domain of disease research,

as discussed in Sections 2.1.1 and 2.2.1.

Having defined directed graphlets, we now turn to directed biological networks: in this

section, we explore whether similar wirings around enzymes in directed metabolic net-

works correspond to similar biological functions. In particular, in H. Sapiens metabolic

network, we analyse the GO enrichment of enzyme clusters that were obtained based on

the DGDV similarity between the enzymes. If similar wirings around enzymes do corre-

spond to similar biological functions in the H. Sapiens metabolic network, we are then

motivated to further look for conserved topology–function relationships across different

species (presented in Section 4.3).

4.2.1 Methods

4.2.1.1 Data Sets

Metabolic networks. We utilise the metabolic network of H. sapiens, constructed

as described in section 4.1.1.1. The metabolic network of H. sapiens contains 1,455

enzymes as nodes and 19,194 interactions between them.

GO term annotations. To functionally annotate enzyme-coding genes, we use Gene

Ontology (GO). A GO term represents the biological process (BP), molecular function

(MF) or cellular component (CC) that is characteristic for a gene. A single gene can

be annotated with more than one GO term, while GO term dependencies are described

as a GO hierarchy. We downloaded the information on gene-to-GO-term mapping from

NCBI1 in March 2015. We only used experimentally confirmed GO annotations, i.e.,

1ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
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those with experimental GO evidence codes. We downloaded the GO hierarchy2 in

March 2015 and cut GO tree at level 5 to standardise GO annotation [196–198]. 781

enzyme-coding genes from the H. sapiens metabolic network have at least one GO

annotation.

4.2.1.2 Clustering method and cluster enrichment

We cluster the nodes/enzymes of the H. sapiens metabolic network using Chavl [199], a

publicly available tool for clustering which proposes a hierarchical ascendant classifica-

tion of nodes, given the similarity scores (we use DGDV similarity described in Section

3.1.2). We use Chavl to cluster the nodes, because, unlike other common clustering

methods, it proposes optimal cuts of the classification tree based on likelihood linkage

analysis [199].

For the proposed cuts we analyse the GO term enrichment of the resulting clusters

to check if the enzymes with similar wiring patterns in the network are annotated with

similar GO terms. We use a standard model of sampling without replacement, as used

in Kuchaiev et al. [194], to calculate the p-value for the enrichment of each cluster with

each GO term. The p-value corresponds to the probability of obtaining the same or

higher enrichment purely by chance. To calculate the p-value of the enrichment for a

particular GO term and cluster, we use the cumulative hypergeometric function:

p = 1−
X−1∑
i=0

(
K
i

)(
M−K
N−i

)(
M
N

) , (4.1)

where: (1) N , corresponds to cluster size (only annotated genes from the cluster are

taken into account) (2) X, corresponds to the number of genes in the cluster annotated

with a specific GO term in question, (3) t M , corresponds to the number of all genes

in the network that are annotated with any GO term (at the level 5 of the GO tree),

(4) K, corresponds to the number of genes in the network that are annotated with the

GO term in question. We take into account all GO terms with p-value p ≤ 0.01.

4.2.2 Results

Here, we analyse the GO term enrichment of the obtained enzyme clusters in the H.

sapiens metabolic network. The optimal cuts of the classification tree, as proposed

by the Chavl algorithm, are at the levels resulting in the formation of either 4 or 19

2http://www.geneontology.org/ontology/obo format 1 2/
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clusters. Tables 4.5 and 4.6 list the number of GO terms that each cluster is enriched

in, for the experiments that resulted in 4 and 19 clusters, respectively.

Cluster ID 1 2 3 4

Cluster size 190 225 220 146

Number of GO terms 5 14 23 13

Table 4.5. Number of enriched GO terms in clusters in H. sapiens metabolic net-
work; number of clusters: 4. First row: Number of genes annotated with GO
terms in each of the four clusters. Second row: Number of GO terms that each of
the four clusters is enriched in.

Cluster ID 1 2 3 4 5 6 7 8 9

Cluster size 25 19 18 35 38 30 50 78 24

No. of GO terms 11 16 11 9 34 23 16 28 5

Cluster ID 10 11 12 13 14 15 16 17 18 19

Cluster size 57 54 57 57 23 52 22 27 49 66

No. of GO terms 15 18 9 27 13 9 5 11 7 20

Table 4.6. Number of enriched GO terms in clusters in H. sapiens metabolic net-
work; number of clusters: 19. First row: Number of genes annotated with
GO terms in each of the 19 clusters. Second row: Number of GO terms that each
of the 19 clusters is enriched in.

Tables 4.5 and 4.6 convey that each cluster of enzymes, constructed based on the

topological similarity between the nodes in the metabolic network, is significantly en-

riched in GO terms. In Appendices, Section C.1, we provide the list of all the GO terms

that the clusters are enriched in.

By examining the GO terms, we observe that each cluster is enriched in GO terms

which correspond to similar functions. Here we give more details on clusters from

Table 4.5. Cluster 1 is enriched in several cellular lipid catabolic processes (long-

chain fatty acid-CoA ligase activity, prostanoid metabolic process, membrane lipid

catabolic process), cluster 2 is enriched in processes supporting methylation (protein

methyltransferase activity, N-methyltransferase activity, peptidyl-lysine methylation,

S-adenosylmethionine-dependent methyltransferase activity), cluster 3 is enriched in

several acid binding processes (retinoic acid binding, monocarboxylic acid binding)

and regulation of defense response (positive regulation of defense response, regulation

of innate immune response), and cluster 4 is enriched in several processes related to

carbohydrate metabolic processes (poly-N-acetyllactosamine metabolic process, hexose
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metabolic process, protein O-linked glycosylation via serine, polysaccharide biosynthetic

process).

The enrichment of each cluster with GO terms that are related to similar biologi-

cal processes indicates that specific wiring around genes in H. sapiens metabolic net-

work corresponds to similar biological functions and motivates us to explore topology–

function relationships across the metabolic networks of different species (see Section

4.3).

4.3 Topology–Function Relationships in Metabolic

Networks are Conserved across Different Species

Recently, several methods have focused on finding evolutionary conserved topologies

across different species and on relating them to functional annotations. For example,

alignment algorithms applied to the PPI networks of various species have been used to

find evolutionary conserved parts of the networks [200] and aligned parts of the net-

works were then used to transfer functional annotations across species. Then, a novel

framework [201] based on Canonical Correlation Analysis (CCA) [202], that uses GDVs

to describe local topology around proteins in PPI networks, successfully characterised

statistically significant topology–function relationships in human (H. sapiens) and yeast

(S. cerevisiae). This method uncovered the functions termed topologically orthologous

functions which have conserved topology in PPI networks across the two species [201].

In particular, 15 biological processes and 9 cellular components are found to be topo-

logically orthologous between H. sapiens and S. cerevisiae. To increase the coverage,

Davis et al. used the full GO hierarchy for obtaining these results. Recall that there are

redundancies among GO terms in the full GO hierarchy: GO terms have parent-child

relationships, meaning that a more specific GO term is a part (a child) of a more generic

GO term. After taking this into consideration, Davis et al. identified 7 non-redundant

topologically orthologous biological processes and 2 non-redundant topologically orthol-

ogous cellular components [201].

In section 4.2, we used our new DGDV similarity measure and showed that genes

with similar wiring patterns in a directed metabolic network share similar GO term an-

notations. Hence, we are motivated to explore whether topology–function relationships

are conserved in directed metabolic networks of H. sapiens (human) and four well-

annotated model organism networks: M. musculus (mouse), D. melanogaster (fruitfly),

S. cerevisiae (yeast) and A. thaliana (a flowering plant). First, we use DGDV and CCA

to identify which local topologies are significantly correlated to particular GO terms.

We use the results to predict new GO term annotations for each of the analysed species.
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We then follow the framework of Davis et al. [201] to identify topologically orthologous

functions across the metabolic networks of the five species.

4.3.1 Methods

4.3.1.1 Data Sets

Metabolic networks. We use directed metabolic networks of the following five well-

annotated species: H. sapiens, M. musculus, D. melanogaster, S. cerevisiae and A.

thaliana obtained as described in Section 4.1.1.1.

Gene Ontology Annotations. We downloaded GO annotation data from NCBI3 in

March 2015. We use only experimental GO evidence codes and the full GO hierarchy4.

Table 4.7 lists the five species, the sizes of their metabolic networks and the number of

annotated genes per species.

Species Common Abbr. Number Number of Number

name of genes annot. genes of edges

H. sapiens Human hsa 1,455 1,143 19,194

M. musculus Mouse mmu 1,513 1,069 23,801

D. melanogaster Fruitfly dme 993 503 9,012

S. cerevisiae Yeast sce 758 745 3,226

A. thaliana Flowering

plant

ath 2,119 1,626 28,261

Table 4.7. Metabolic networks of H. sapiens and four model species. First column:
The name of the species. Second column: The species abbreviation. Third column:
The number of genes in directed metabolic network. Fourth column: The number
of genes from the network that are annotated with GO terms. Fifth column: The
number of edges in directed metabolic network.

4.3.1.2 Finding topology–function relationships using CCA

We quantify relationships between topological patterns around enzymes and their GO

annotations using a multivariate analysis of variance, i.e. Canonical Correlation Anal-

ysis (CCA) [202], following the approach of Davis et al. [201]. CCA uncovers linear

relationships between two sets of variables, in our case topological descriptors and func-

tional annotations, as follows.

3ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
4http://www.geneontology.org/ontology/obo format 1 2/
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For each species, we construct the variable set Rt which captures the topology through

the directed graphlet degree vectors (DGDV) of the enzymes (genes) in the metabolic

network. We only consider GO annotated genes. The second variable set Rf represents

the functional information about genes, i.e. for each gene in the network, we encode its

GO annotations as binary variables: 1 if the gene is annotated with the GO term, and 0

otherwise. We only include the GO terms that have at least 5 annotated genes because

reliable patterns are unlikely to be found with fewer than 5 example cases and we also

eliminate the GO terms that annotate more than 5% of the genes in the metabolic

network in question [201]. Given n pairs of variable vectors from Rt × Rf for n genes

as an input, the CCA outputs weight vectors so that the Pearson’s correlation between

the weighted sums of Rt and Rf (i.e. between canonical variates) is maximised.

After finding the first set of weights, CCA iterates min {t, f} times to find more weight

vectors, such that the resulting canonical variates are not correlated with any of the

previous canonical variates. The weight matrices W1 and W2, for Rt and Rf respectively,

are constructed by combining all of the identified weight vectors. The association matrix

which represents pairwise relations between topology and function is then constructed

as W1 × S ×W 2
+, where S is a diagonal matrix of canonical correlations (i.e., Pearson’s

Correlations among canonical variates) that weights the variates according to their

correlation strength (W 2
+ is the Moore-Penrose pseudoinverse [203] of W2, as detailed

in [201]).

4.3.1.3 Predicting GO term annotations

We use the above-described CCA relationships between topological patterns around

enzyme-coding genes and their GO annotations to propose new GO annotations. For

each of the analysed species (H. sapiens and four model organisms) we compute the

association matrix, which combines all topology–function relationships as described in

Section 4.3.1.2. We then use this matrix to transform graphlet degree vectors to vectors

of real-value topology-based annotations by multiplying the matrix of DGDVs and the

association matrix. This results in a matrix of predicted GO term annotations.

The values in the predicted GO term matrix represent the association scores between

genes and GO terms (higher scores indicate higher probability that the gene is anno-

tated with corresponding GO term in the matrix). We create the predicted GO term

matrix for each of the five species and use the values in the matrices to predict new

GO annotations as follows. We use the original GO term annotation matrix (1 and 0

denoting whether the gene is annotated to a GO term or not, respectively) as the gold
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standard to calculate precision, recall and F1 score for the association scores. The F1

score is a measure of a test’s accuracy and is calculated as:

F1 = 2 · precision · recall
precision+ recall

. (4.2)

The score reaches its best value at 1 and worst at 0. We then use the value of the

association score that corresponds to maximum F1 value as a predictive threshold value,

i.e., if the association score between a gene and GO term in the predicted GO term

matrix is equal to or higher than the threshold, we predict this gene to be annotated

with the given GO term.

Recall that only the experimentally confirmed GO annotations were used as the func-

tional information about genes and were input for the CCA. Hence, we validate our pre-

dictions by comparing them to GO annotation data from NCBI5 with non-experimental

evidence codes (independent of the data used for obtaining the predictions). The non-

experimental GO annotations have the following evidence codes in NCBI (i.e are inferred

from):

• Sequence or structural Similarity (ISS),

• Sequence Orthology (ISO),

• Sequence Alignment (ISA),

• Sequence Model (ISM),

• Genomic Context (IGC),

• Biological Aspect of Ancestor (IBA),

• Biological Aspect of Descendant (IBD),

• Key Residues (IKR),

• Rapid Divergence(IRD),

• Reviewed Computational Analysis (RCA).

5ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
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4.3.1.4 Identifying conserved topology–function relationships

Following the approach of Davis et.al. [201], we look for topologically orthologous func-

tions between all pairs of species listed in Table 4.7. For each pair of species, we perform

the CCA analysis as described in section 4.3.1.2. In the input data, for a given species

pair, we only include the GO terms common to both (the number of common GO terms

per species pair is given in Table 4.8). Note that, unlike in the original framework [201],

we did not filter the nodes according to their degrees. This was for two reasons. First,

there exist two types of degrees in our networks: in-degree and out-degree. Considering

the relatively small sizes of metabolic networks and both types of degree, excluding

the nodes with degrees lower than 4, would significantly reduce the number of nodes

to analyse. Another reason to keep all the nodes, even if the node degree is small, is

because they can contribute to a wide range of graphlets.

BP ATH HSA SCE DME MMU

ATH 331 264 232 340

HSA 288 289 615

SCE 155 281

DME 359

MF ATH HSA SCE DME MMU

ATH 125 84 54 109

HSA 80 56 134

SCE 39 86

DME 64

CC ATH HSA SCE DME MMU

ATH 42 29 18 37

HSA 39 21 55

SCE 7 26

DME 18

Table 4.8. Number of Common GO terms per analysed species pair. We separately
report biological processes (BP), molecular functions (MF) and cellular compo-
nents (CC).

The methodology of Davis et al. [201] introduces the following measures:

• The structure association strength, which identifies the GO terms that are strongly

linked with a specific topological pattern by quantifying the linear dependence

between the topology-based GO annotations and the original GO annotations

using the Pearson’s correlation.

• Orbit contribution strength, which identifies the most important orbits for the

topological pattern of a GO term by quantifying the linear dependencies between
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graphlet degrees of each orbit and topology-based GO annotations using Pearson’s

correlations.

Species GO Type Number of GO Number of GO

terms in species 1 terms in species 2

ATH-DME BP 142 103

ATH-MMU BP 184 194

ATH-SCE BP 127 167

DME-MMU BP 100 172

HSA-ATH BP 193 186

HSA-DME BP 156 99

HSA-MMU BP 270 277

HSA-SCE BP 151 166

SCE-DME BP 75 65

SCE-MMU BP 159 150

ATH-DME MF 49 32

ATH-MMU MF 81 71

ATH-SCE MF 65 64

DME-MMU MF 36 52

HSA-ATH MF 89 91

HSA-DME MF 52 34

HSA-MMU MF 101 87

HSA-SCE MF 59 57

SCE-DME MF 31 23

SCE-MMU MF 65 64

ATH-DME CC 16 6

ATH-MMU CC 24 8

ATH-SCE CC 16 11

DME-MMU CC 10 10

HSA-ATH CC 27 29

HSA-DME CC 15 10

HSA-MMU CC 19 8

HSA-SCE CC 18 10

SCE-DME CC 4 3

SCE-MMU CC 7 3

Table 4.9. Number of GO terms with statistically significant topology–function
relationships (statistically significant structure association strengths).
First column: Species pair. Second column: GO term type. Third column: The
number of GO terms that have significant topology–function relationship for the
first species from the experiment, i.e. for a given GO term there is a significant
p–value (≤ 0.05) of structure association strength. Fourth column: The number
of GO terms that have significant topology–function relationship for the second
species from the experiment, i.e. for a given GO term there is a significant p–value
(≤ 0.05) of structure association strength.

131



In order to identify orthologous topological patterns in a pair of species, firstly the

structure association strengths and orbit contribution strengths are computed separately

for each of the two species. The GO terms with statistically significant topology–

function relationships per species are all GO terms with statistically significant structure

association strengths (p-value≤ 0.05 after the Benjamini Hochberg correction). The

number of such GO terms is given in Table 4.9. We evaluate the statistical significance

of a structure association strength value as follows. We shuffle the DGDVs between the

genes and repeat the experiment to calculate a randomly obtained structure association

strength. We repeat the experiment 10,000 times, each time shuffling the DGDVs

between the genes, in order to calculate the p-value that corresponds to the probability

of obtaining the same or higher value of structure association strength by chance.

Then, for a species pair, two values are calculated:

• The multi-species structure association strength is computed by taking the min-

imum of the two structure association strengths from both species. This value

shows that there is a strong topology function relationship for a given GO term

in both species.

• The orbit contribution similarity for a GO term in two species is quantified using

the Spearman’s Correlation of the per-species orbit contribution strengths of the

species. This value shows that, for a given GO term, the topological profiles

described for the two organisms correlate and, therefore, the same set of orbits

is statistically significantly associated with the topology (i.e. the topology is

conserved between the species).

GO term is topologically orthologous for a species pair if both multi-species structure

association strength and orbit contribution similarity are statistically significant (p-

value≤ 0.05 after the Benjamini Hochberg correction).

4.3.2 Results

4.3.2.1 GO term predictions

Here we present the predicted GO annotations obtained based on the topology of

metabolic networks. Using CCA, as described in Section 4.3.1.3, we calculated the

matrix of predicted GO annotations, and using the maximum F1 score, we identified

the threshold value for predicting GO annotations. Figure 4.7 shows the ROC curves for

our GO annotations predictions, taking the original GO term annotation matrix (from

Section 4.3.1.3) as a golden standard. For all five species the AUC scores are higher

than 0.87, suggesting that this method can be used for predicting GO annotations.
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Species Analysed Genes with predicted Genes possible Supported

genes GO annotations to validate predictions

H. sapiens 1,143 817 295 73

D. melanog. 503 299 246 33

S. cerevisiae 745 368 130 2

M. musculus 1,069 751 678 182

A. thaliana 1,626 1,154 1,017 148

Table 4.10. Number of genes with predicted GO terms. First column: Species in the
experiment. Second column: The number of analysed genes (annotated genes
in the metabolic network, based on experimental methods). Third column: The
number of genes with new predicted GO annotations (BP), i.e. genes for which
our method provided GO annotations that are new to the experimentally con-
firmed GO annotations. Fourth column: The portion of genes from the fourth
column that also have GO annotations from the sources other than experimen-
tal. Fifth column: The number of genes for which some of our predicted GO
annotations are supported by other prediction methods.

Molecular function and cellular component are the properties of a biomolecule, while,

in order to perform a biological process, molecules interact, giving a specific topology

to biological networks. Hence, it is more interesting to explore biological processes in

the context of the wiring patterns of biological networks; therefore, we only consider

the predicted biological processes (BP) GO annotations. Table 4.10, column 3, shows

the number of genes for which our method proposes novel annotations with BP, i.e.,

the annotations which are not in the set of the experimentally validated. Our method

predicts new annotations for more than half of the genes that are already experimentally

annotated.

To assess the relevance of our predicted annotations we compare them to the GO

annotations that are supported by non-experimental methods (annotation data from

NCBI with evidence codes different from experimental). In column 5 of Table 4.10, we

report the number of genes with predictions for which we find support. We take into

account that there is only a portion of genes for which non-experimentally obtained GO

annotations are available in the NCBI (column 4 of Table 4.10). For example, in H.

sapiens, of 817 genes with new predictions, only 295 have additional non-experimental

annotations. Out of those 295 genes, we find 73 genes for which our predicted GO

annotations are supported with annotations obtained from non-experimental methods,

which corresponds to 24.7%. Similarly, for D. melanogaster we have supported the

predictions for 13.4% of genes, for S. cereviseae 1.5% of genes, for M. musculus 26.8%

of genes, and for A. thaliana we have supported the predictions for 14.6% of genes.
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0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

(b) D. melanogaster, AUC=0.88
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(c) S. cerevisiae, AUC=0.90
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(d) M. musculus, AUC=0.90
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(e) A. thaliana, AUC=0.87

Figure 4.7. ROC curves for predicting GO annotations.

134



0

(a) H.sapiens

0

(b) D. melanogaster

0

(c) S. cerevisiae

0

(d) M. musculus

0

(e) A. thaliana

Figure 4.8. Number of GO terms per structure association strength value. X-axis:
structure association strength values in bins of 0.1. Y-axis: number of GO terms
with structure association strengths corresponding to the bins.
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Note that these results reflect the predictive power of the network topology for an-

notating genes (enzymes) with all experimentally validated GO terms. Successful pre-

dictions can be expected only in the case of GO terms with high values of structure

association strengths (defined in Section 4.3.1.4); the reason being that such GO terms

are strongly linked with a specific topological pattern. Figure 4.8 shows that, in the

case of all five species, most of the GO terms have structure association strength values

lower than 0.5.

4.3.2.2 Topologically orthologous GO terms

Here, we present the conserved topology–function relationships across the networks of

five eukaryotic species, obtained using the methodology described in Section 4.3.1.4.

Table 4.11 lists how many GO terms are topologically orthologous for each species

pair among H. sapiens, M. musculus, D. melanogaster, S. cerevisiae and A. thaliana.

We compare the number of topologically orthologous GO terms with the number of GO

terms that were analysed per each species pair (Table 4.8), and observe that the method

identifies a larger set of topological orthologs in the case of species pairs with a larger

set of common GO terms.

BP ATH HSA SCE DME MMU

ATH 1 16 0 13

HSA 2 29 92

SCE 6 12

DME 32

MF ATH HSA SCE DME MMU

ATH 4 19 1 13

HSA 9 24 57

SCE 0 32

DME 11

CC ATH HSA SCE DME MMU

ATH 9 5 3 7

HSA 11 6 10

SCE 3 3

DME 1

Table 4.11. The number of topologically orthologous GO terms per species pair.
Number of GO terms for the pairs of species that have statistically significant
Multi-species structure association strength and Orbit contribution similarities.
Results are reported separately for biological processes, molecular functions and
cellular components.
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Topologically orthologous GO term Species pairs

DNA metabolic process ath-mmu, ath-sce, dme-mmu, hsa-ath, hsa-

mmu, hsa-sce, sce-dme, sce-mmu

Phosphatidylinositol metabolic process dme-mmu, hsa-dme, hsa-mmu

Protein alkylation dme-mmu, hsa-dme, hsa-mmu

Hydrogen transport ath-mmu, ath-sce, sce-mmu

Histone lysine methylation dme-mmu, hsa-dme, hsa-mmu

Cyclic nucleotide metabolic process dme-mmu, hsa-dme, hsa-mmu

Ribose phosphate biosynthetic process dme-mmu, hsa-dme, hsa-mmu

Macromolecule methylation dme-mmu, hsa-dme, hsa-mmu

Inorganic ion transmembrane transport ath-mmu, ath-sce, sce-mmu

Alpha-amino acid metabolic process dme-mmu, hsa-dme, hsa-mmu

Proton transport ath-mmu, ath-sce, sce-mmu

Methylation dme-mmu, hsa-dme, hsa-mmu

Purine nucleotide biosynthetic process dme-mmu, hsa-dme, hsa-mmu

Ribose phosphate metabolic process dme-mmu, hsa-dme, hsa-mmu

Protein methylation dme-mmu, hsa-dme, hsa-mmu

Histone methylation dme-mmu, hsa-dme, hsa-mmu

Purine ribonucleotide biosynthetic process dme-mmu, hsa-dme, hsa-mmu

Hydrogen ion transmembrane transport ath-mmu, ath-sce, sce-mmu

Purine ribonucleotide metabolic process dme-mmu, hsa-dme, hsa-mmu

Monovalent inorganic cation transport ath-mmu, ath-sce, sce-mmu

Peptidyl-lysine methylation dme-mmu, hsa-dme, hsa-mmu

Ribonucleotide metabolic process dme-mmu, hsa-dme, hsa-mmu

Purine nucleotide metabolic process dme-mmu, hsa-dme, hsa-mmu

Lipid phosphorylation dme-mmu, hsa-mmu, sce-dme

Ribonucleotide biosynthetic process dme-mmu, hsa-dme, hsa-mmu

cGMP metabolic process dme-mmu, hsa-dme, hsa-mmu

Inorganic cation transmembrane transport ath-mmu, ath-sce, sce-mmu

Cation transmembrane transport ath-mmu, ath-sce, sce-mmu

Phospholipid metabolic process ath-mmu, hsa-mmu

Covalent chromatin modification hsa-dme, hsa-mmu

Chromatin organization hsa-dme, hsa-mmu

Chromatin modification hsa-dme, hsa-mmu

Generator of precursor metabolites and energy hsa-dme, hsa-mmu

Terpenoid metabolic process ath-sce, hsa-mmu

Cellular modified amino acid metabolic process hsa-mmu, hsa-sce

Ion transmembrane transport ath-sce, sce-mmu

Peptidyl-lysine modification hsa-dme, hsa-mmu

Transmembrane transport ath-sce, sce-mmu

Pyridine nucleotide metabolic process dme-mmu, hsa-dme

Nicotinamide nucleotide metabolic process dme-mmu, hsa-dme

Histone modification hsa-dme, hsa-mmu

Lipid modification hsa-mmu, sce-dme

Table 4.12. Topologically orthologous biological processes across species pairs.
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Again, we explore the BP GO annotations in further detail, because the topology of

a biological network comes as a result of biomolecules interacting to perform biological

functions. For all topologically orthologous biological processes, we check how many

species pairs they appear in. We hypothesise that if a given GO term is topologically

orthologous for several species pairs, then its underlying topology is more constrained

through the evolution process. We list such biological processes and the correspond-

ing species pairs in Table 4.12. Some of the biological processes that are topologically

orthologous across several pairs of species are essential biological processes. Examples

are DNA metabolic process (identified as a topological ortholog in 8 pairs of species:

ath-mmu, ath-sce, dme-mmu, hsa-ath, hsa-mmu, hsa-sce, sce-dme, sce-mmu) and ri-

bonucleotide and ribose phosphate metabolic processes (topological orthologs in 3 pairs

of species dme-mmu, hsa-dme, hsa-mmu).

In regards to the topologically orthologous biological processes, we explore which

particular orbits contribute the most to their topological profiles, i.e for a species pair

we examine the orbit contribution strength profiles represented using heat-maps. An

example is Figure 4.9 (corresponding to orthologous biological processes between H.

sapiens and D. melanogaster). The orbit contribution strength profile of a GO term

in a species pair is obtained by averaging the orbit contribution strength vectors of the

two species. We examine such heat-maps for all species pairs and, for a particular GO

term and all 129 orbits, we look for orbits that are linked to the GO term (see Figure

4.9). Using this approach, we identify the following topological patterns of interest:

• 4-node star graphlets and the two-degree orbits on graphlets G26−G35 characterise

the DNA metabolic process, a topologically orthologous process across 8 species

pairs listed in Table 4.12. The DNA metabolic process is one of the essential

processes for all living organisms and with this finding we have confirmed that a

specific local wiring in the metabolic network plays important role in the DNA

metabolic process and as such is conserved across different species.

• Four-node cliques (orbits 117-129) characterise the following biological processes:

(1) the phospholipid metabolic process—a topologically orthologous GO term be-

tween H. sapiens and M. musculus and between A. thaliana and M. musculus,

(2) lipid modification – a topologically orthologous GO term between H. sapiens

and M. musculus, and (3) lipid phosphorylation—a topologically orthologous GO

term between D. melanogaster and M. musculus and between H. sapiens and M.

musculus.
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• Red nodes in Figure 4.10 show topological patterns that characterise 10 biological

processes that are topologically orthologous between D. melanogaster and M.

musculus, H. sapiens and D. melanogaster and H. sapiens and M. musculus. The

10 biological processes are:

– Ribonucleotide metabolic process

– Cyclic nucleotide metabolic process

– Ribose phosphate metabolic process

– Purine nucleotide metabolic process

– Purine ribonucleotide metabolic process

– Ribonucleotide biosynthetic process

– Purine ribonucleotide biosynthetic process

– Ribose phosphate biosynthetic process

– Purine nucleotide biosynthetic process

– cGMP metabolic process

Figure 4.10. Illustration of topological patterns linked to some of the topologically
orthologous GO terms. Red nodes correspond to topological patterns that
characterise 10 biological processes that are topologically orthologous between
D. melanogaster and M. musculus, H. sapiens and D. melanogaster and H.
sapiens and M. musculus. Edges coloured in grey can have any direction.
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The red nodes in Figure 4.10 correspond to orbits with outgoing edges. In the next

section, we investigate the biological mechanisms behind these topological patterns.

Specifically, our goal is to find biological confirmation that such patterns, involving

outgoing edges, characterise the 10 topologically orthologous biological processes listed

above. We find that these 10 biological processes can be grouped according to their

relationships in the GO hierarchy. In particular, as shown in Figure 4.11, some of the

topologically orthologous BP that we identify are part of the remaining, more generic,

topologically orthologous BPs. Hence, we decide to analyse the parent processes: purine

nucleotide metabolic process, ribose phosphate metabolic process and cyclic nucleotide

metabolic process as they capture the functions of the more specific (children) biological

processes.

4.3.2.3 Biological confirmation of the topologically orthologous biological

processes

We explore why the purine nucleotide metabolic process, ribose phosphate metabolic

process and cyclic nucleotide metabolic process are correlated with topological patterns

involving outgoing directed edges (shown in Figure 4.10) in the metabolic networks of

human, mouse and fruit fly.

Purine nucleotide 
biosynthetic process

Purine ribonucleotide 
metabolic process

Cyclic nucleotide 
metabolic process

cGMP metabolic 
process

Purine ribonucleotide 
biosynthetic process

Purine nucleotide 
metabolic process

Ribose phosphate 
metabolic process

Ribonucleotide 
metabolic process

Ribose phosphate 
biosynthetic process

Ribonucleotide 
biosynthetic process

Nucleotide 
metabolic process

Figure 4.11. Parent-child relationships between topologically orthologous biolog-
ical processes. An arrow denotes that one biological process is a child of
another. For example, a ribonucleotide biosynthetic process is also a ribonu-
cleotide metabolic process. We group the biological processes according to com-
mon parents: blue colour denotes cyclic nucleotide metabolic processes, red
colour denotes purine nucleotide metabolic processes and green colour denotes
ribose phosphate metabolic process. Cyclic nucleotide metabolic process and
purine nucleotide metabolic process are part of nucleotide metabolic processes.
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We conduct a detailed analysis on the metabolic network of H. sapiens because it is

the most annotated one among the three. We also provide explanation for the specific

wirings in the M. musculus and D. melanogaster networks.

We perform the analysis as follows. For a topologically orthologous biological process

of interest and its characterising orbit OC , we list the enzymes annotated with that

particular biological process that appear in the metabolic network. For each of these

enzymes, we look into the metabolic network to find all graphlets G that the enzyme

touches at orbit OC . Then, on each of the identified graphlets G and for each of the

remaining orbits OR on graphlet G (orbits that are not orbit OC), we find a set of

enzymes in the metabolic network that touch the graphlet G at orbit OR. Finally, for

this enzyme set, we calculate the GO term enrichment using the same approach as in

Section 4.2.1.2. This way we can observe which biological processes are characteristic

for orbits OR on all graphlets G in the metabolic network, such that the topologically

orthologous biological process of interest (i.e. enzyme annotated with it) touches the

graphlet G at the characteristic orbit OC .

In the presented case studies, we explore orbit 6 (graphlet G2) and orbit 11 (graphlet

G5) in more detail, because these graphlets can be induced on most of the topological

patterns shown in Figure 4.10. In addition, orbit 6 and orbit 11 capture the outgoing

edges that the topological patterns shown in Figure 4.10 are characterised with.

Case study: Purine nucleotide metabolic process. Enzymes that are annotated

with this GO term participate in the metabolism (synthetisation or degradation) of

purine nucleotides, which are one of the constituting blocks of DNA and RNA.

For the enzymes annotated with purine nucleotide metabolic process and that touch

graphlets G2 at orbit 6 in H. sapiens metabolic network, we find that the set of enzymes

touching these graphlets at orbit 5 is statistically significantly enriched, among others,

in GO terms shown in Figure 4.12. Note that we list GO terms for which we found the

biological meaning behind the topological pattern. A full list of GO terms is given in

Appendices in Section C.2, Table C.3. Recall that a directed edge from enzyme A to

enzyme B in a metabolic network, denotes that the enzyme A catalyses process α which

results in a product that is used in process β catalysed by enzyme B. This also means

that in order for the process β to take place, the process α needs to first take place.
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Enzymes annotated with

purine nucleotide metabolic process

Enzymes annotated with:

purine nucleoside metabolic process,

ribonucleoside metabolic process,

ribonucleotide catabolic process,

nucleotide catabolic process,

DNA-templated transcription, 

adenyl ribonucleotide binding,

RNA biosynthetic process, 

nucleotide-excision repair, 

DNA gap filling,

RNA polymerase activity.

Enzymes annotated with:

purine nucleoside metabolic process,

ribonucleoside metabolic process,

ribonucleotide catabolic process,

nucleotide catabolic process,

DNA-templated transcription, 

adenyl ribonucleotide binding,

RNA biosynthetic process, 

nucleotide-excision repair, 

DNA gap filling,

RNA polymerase activity.

Orbit  6

Orbit  5 Orbit  5

Figure 4.12. GO enrichment around enzymes touching orbit 6, that are annotated
with purine nucleotide metabolic process.

Figure 4.12 shows the directed links from enzymes at orbit 6, annotated with the

purine nucleotide metabolic process, towards enzymes at orbit 5 that are annotated with

the ribonucleoside metabolic process, purine nucleoside metabolic processes and ribonu-

cleotide catabolic process. These directed links are all relevant and correspond to the

process of degrading purine nucleotides into purine nucleosides, e.g. when nucleases and

nucleotidases degrade nucleic acid chains down to free nucleotides (nucleotide metabolic

process) and then to nucleosides (through purine nucleoside metabolic process, ribo/nu-

cleotide catabolic process or ribonucleoside metabolic processes). Similarly, the directed

links towards enzymes at orbit 5 that are annotated with DNA-templated transcription,

adenyl ribonucleotide binding, RNA biosynthetic process, nucleotide-excision repair,

DNA gap filling and RNA polymerase activity are also relevant. Nucleic acids (DNAs

and RNAs) are built from nucleotides, and the processes involving DNA or RNA all

require purine nucleotides to be synthesised first (through purine nucleotide metabolic

process). Finally, the absence of links between the two nodes at orbits 5 is also relevant:

there is no direct reaction degrading DNAs/RNAs directly into purine nucleosides or

synthesising/transforming DNAs/RNAs by directly using nucleosides.
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Enzymes annotated with

purine nucleotide metabolic process

Enzymes annotated with:

nucleotide catabolic process,

nucleotide biosynthetic process,

nucleoside biosynthetic process,

nucleoside triphosphate metabolic process,

nucleoside triphosphate biosynthetic process,

ribonucleotide catabolic process

DNA-templated  transcription,  

RNA biosynthetic process,  

adenyl nucleotide binding,

nucleotide metabolic process,

ribonucleoside metabolic process, 

nucleotide-excision repair, 

DNA gap filling, 

RNA polymerase activity,

ribonucleotide metabolic process, 

purine nucleoside metabolic process, 

purine-containing compound catabolic process.

Enzymes annotated with:

nucleotide catabolic process,

nucleotide biosynthetic process,

nucleoside biosynthetic process,

nucleoside triphosphate metabolic process,

nucleoside triphosphate biosynthetic process,

ribonucleotide catabolic process

DNA-templated  transcription,  

RNA biosynthetic process,  

adenyl nucleotide binding,

nucleotide metabolic process,

ribonucleoside metabolic process, 

nucleotide-excision repair, 

DNA gap filling, 

RNA polymerase activity,

ribonucleotide metabolic process, 

purine nucleoside metabolic process, 

purine-containing compound catabolic process.

OR

Orbit  11

Orbits  10,12 Orbits  10,12

Figure 4.13. GO enrichment around enzymes touching orbit 11, that are annotated
with purine nucleotide metabolic process.

For the enzymes annotated with the purine nucleotide metabolic process and that

touch graphlets G5 at orbit 11 in the H. sapiens metabolic network, we find that the set

of enzymes touching graphlets G5 at the remaining orbits (weather it is orbit 10 or 12

is irrelevant as indicated in Figure 4.10), are among other GO terms, also statistically

significantly enriched in GO terms shown in Figure 4.13 (a full list is available in Appen-

dices in Section C.2, Table C.4). First, we observe that most of the BPs that are found

to be enriched at orbits 10 and 12 are the same that we previously found to be enriched

at orbit 5. Since we have already described the biological mechanisms behind the di-

rected edges from the ribonucleotide metabolic process toward these processes, we look

for a biological confirmation of the existing edges between these processes themselves,

as shown in Figure 4.13.

A nucleotide is composed of a nucleoside and one or more phosphate groups. Nucleo-

sides can be phosphorylated by specific kinases in the cell to produce nucleotides. Hence,

a directed edge from nucleoside biosynthetic process to nucleotide biosynthetic process

is relevant: a nucleoside biosynthetic process produces nucleosides which are then used,

in a nucleotide biosynthetic process, to produce nucleotides. Also, directed edges from

nucleotide catabolic process to nucleoside biosynthetic process, nucleoside triphosphate
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metabolic process and nucleoside triphosphate biosynthetic process are all relevant as

they correspond to the production of nucleosides through the break down of nucleotides:

i.e. a nucleotide catabolic process (a breakdown of nucleotides) results in nucleosides,

which are then broken down into nucleobases and ribose or deoxyribose through any

of the listed processes. Directed edges between enzymes annotated with the nucleotide

biosynthetic process and enzymes annotated with DNA-templated transcription, RNA

biosynthetic process, nucleotide-excision repair, DNA gap filling and RNA polymerase

activity can be explained as follows. Nucleic acids are built from nucleotides. In order

that processes involving DNA or RNA take place, a nucleotide biosynthetic process that

produces nucleotides-nucleic acid building blocks, needs to be completed first.

For the enzymes annotated with the purine nucleotide metabolic process in the M.

musculus metabolic network, that touch graphlets G2 at orbit 6, we find that the set

of enzymes touching these graphlets at orbit 5 is statistically significantly enriched,

among others, in the following GO terms (full list is available in Appendices in Section

C.2, Table C.5): nucleotide catabolic process, nucleotide biosynthetic process, nucleo-

side biosynthetic process, nucleoside triphosphate metabolic process, nucleoside triphos-

phate catabolic process, deoxyribonucleotide biosynthetic process, deoxyribonucleotide

catabolic process, DNA-directed RNA polymerase I complex, nucleoside diphosphate

metabolic process, ribonucleoside metabolic process, ribonucleotide metabolic process,

nucleoside monophosphate biosynthetic process, nucleoside monophosphate catabolic

process, purine-containing compound biosynthetic process, deoxyribonucleotide metabolic

process. We have described the biological mechanisms behind the directed edges be-

tween the enzymes annotated with the purine nucleotide metabolic process and enzymes

annotated with several of the listed processes for the case of H. sapiens. Another ex-

ample is the process of synthesis of deoxyribonucleotides from ribonucleotides: a purine

nucleotide metabolic process is required to produce ribonucleotides and is followed by

a deoxyribonucleotide metabolic process which synthesises the deoxyribonucleotides.

For the enzymes annotated with the purine nucleotide metabolic process in the M.

musculus metabolic network, that touch graphlets G5 at orbit 11, we find that the set

of enzymes touching these graphlets at the remaining orbits (10 or 12) is statistically

significantly enriched in the same processes as listed above for the case of graphlets G2

(a full list is available in Appendices in Section C.2, Table C.6). The links between the

enzymes annotated with these processes, as described in the case of H. sapiens, can

correspond to the breakdown of the nucleotides, synthesis of the nucleotides, processes

involving DNA or RNA etc. In the case of D. melanogaster we find enrichments in the

ribonucleotide metabolic process, purine nucleotide metabolic process, DNA-directed
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RNA polymerase II, core complex, nucleotide metabolic process, hence the similar rea-

soning as in the case of the species above can be applied (a full list of GO terms is

available in Appendices in Section C.2, Tables C.7 and C.8).

Case study: Ribose phosphate metabolic process. In the case of the ribose phos-

phate metabolic process, the analyses of topological patterns in metabolic networks of

human, mouse and fruit fly result in similar lists of GO terms that were identified around

the purine nucleotide metabolic process (Figures 4.12 and 4.13). This is due to the fact

that several purine nucleotide metabolic processes (purine ribonucleotide metabolic pro-

cess and purine ribonucleotide biosynthetic process) are child GO terms of the ribose

phosphate metabolic process, as shown in Figure 4.11. The ribose phosphate metabolic

process denotes chemical reactions and pathways resulting in the formation of ribose

phosphate, any phosphorylated ribose sugar. A ribonucleotide or ribotide is a nucleotide

containing ribose as its pentose component, hence, in order to be synthesised, a ribose

phosphate metabolic process needs to first take place. This is facilitated through ex-

isting directed links in metabolic networks between enzymes annotated with the ribose

phosphate metabolic process and enzymes annotated with the RNA biosynthetic pro-

cess. Directed links between enzymes annotated with the nucleotide catabolic process

and enzymes annotated with the nucleoside production processes, as well as directed

links between enzymes annotated with the nucleotide biosynthetic process and enzymes

annotated with DNA-templated transcription, RNA biosynthetic process or RNA poly-

merase activity are already discussed above within the analysis of topological patterns

around the purine nucleotide metabolic process.

A full list of GO terms is given in Appendices in Section C.2, Tables C.9, C.10, C.11,

C.12, C.13, C.14.

Case study: Cyclic nucleotide metabolic process. In eukaryotic cells, cyclic

nucleotides, such as cAMP and cGMP, are secondary messengers. They relay the signals

of many first messengers, such as hormones and neurotransmitters, to their physiological

destinations, in both hormone and ion-channel signalling. cGMP, which is a cyclic

nucleotide, is involved in the regulation of some protein-dependent kinases. cGMP

binds to sites on the regulatory units of protein kinases G and activates the catalytic

units, enabling them to phosphorylate their substrates.

Again, we present the more detailed analysis for the case of the human metabolic

network and give a brief discussion for the case of the mouse and fruit fly. For the

enzymes annotated with the cyclic nucleotide metabolic process and that touch graphlets

146



G2 at orbit 6 in H. sapiens metabolic network, we find that the set of enzymes touching

these graphlets at orbit 5 is statistically significantly enriched, among others, in GO

terms shown in Figure 4.14. Again, note that we list GO terms for which we found the

biological meaning behind the topological pattern. A full list of GO terms is given in

Appendices in Section C.2, Table C.15.

Enzymes annotated with

cyclic nucleotide metabolic process

Enzymes annotated with:

adenylate kinase activity,

cellular response to cGMP,

RNA biosynthetic process,

transcription, DNA-templated,

DNA-directed RNA polymerase II, core complex,

DNA-directed RNA polymerase III complex,

leukocyte differentiation.

Enzymes annotated with:

adenylate kinase activity,

cellular response to cGMP,

RNA biosynthetic process,

transcription, DNA-templated,

DNA-directed RNA polymerase II, core complex,

DNA-directed RNA polymerase III complex,

leukocyte differentiation.

Orbit  5

Orbit  6 Orbit  6

Figure 4.14. GO enrichment around enzymes touching orbit 6, that are annotated
with cyclic nucleotide metabolic process.

The directed edge between the enzymes annotated with the cyclic nucleotide metabolic

process at orbit 6 and enzymes annotated with adenylate kinase activity at orbit 5, is

relevant as it supports the regulation of protein-dependent kinases: a cyclic nucleotide

metabolic process that synthetizes cGMP is required so that cGMP can enable the

adenylate kinase activity. Also, the directed edges between enzymes annotated with the

cyclic nucleotide metabolic process at orbit 5 and enzymes annotated with GO terms

related to RNA or DNA synthesis at orbit 6 (see Figure 4.14) are supported by findings

that cyclic nucleotides regulate RNA by modulating the nucleotide precursors pool [204]

and that cyclic AMPs stimulate RNA and DNA synthesis [205]. Directed edges between

the enzymes annotated with the cyclic nucleotide metabolic process at orbit 6 and en-

zymes annotated with leukocyte differentiation at orbit 5 are supported by the fact that

cyclic AMP plays a role in regulation, at a transcriptional level, of the expression of

the CD7 leukocyte differentiation antigen [206]. Also, the directed edges between the

enzymes annotated with a cyclic nucleotide metabolic process that synthetizes cGMP

and enzymes annotated with cellular response to cGMP reflect the order of occurrence

of these processes in the cell. Finally, the absence of links between the two nodes at

orbit 5 is also relevant: for example, there are no direct connections between leukocyte
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differentiation and RNA/DNA biosynthetic or transcriptional processes.

In the case of the M. musculus metabolic network we also find biological confirmation

for the discussed topological pattern around cyclic nucleotide metabolic process. In

particular, for the enzymes annotated with cyclic nucleotide metabolic process that

touch graphlets G2 at orbit 6, we find that the set of enzymes touching these graphlets

at orbit 5 is statistically significantly enriched, among others, in the following GO terms:

pyruvate kinase activity, DNA-directed RNA polymerase I complex and regulation of

ERBB signaling pathway. A full list of GO terms is given in Appendices in Section

C.2, Table C.17. Directed edges between enzymes annotated with the cyclic nucleotide

metabolic process at orbit 6 and the enzymes annotated with processes related to kinase

activity or DNA and RNA complex at orbit 5, are already supported in the discussion

for the case of human metabolic network above. Directed edges between the enzymes

annotated with the cyclic nucleotide metabolic process and enzymes annotated with the

regulation of ERBB signaling pathway correspond to regulation of ERBB expression by

the cAMP-dependent protein kinase [207]. In the case of the D. melanogaster metabolic

network we find directed edges between enzymes annotated with the cyclic nucleotide

metabolic process and processes related to DNA and RNA complexes (a full list of

GO terms is given in Appendices in Section C.2, Table C.19.), which has already been

discussed in the case of the human network.

For the enzymes annotated with the cyclic nucleotide metabolic process and that

touch graphlets G5 at orbit 11 in H. sapiens metabolic network, we find that the set

of enzymes touching these graphlets at the remaining orbits (10 or 12) is statistically

significantly enriched in similar processes as listed in Figure 4.15. An example of the bi-

ological functions that correspond to a local topology that is characteristic for graphlets

G5 where enzymes enriched in the cyclic nucleotide metabolic process touch orbit 11,

is shown in Figure 4.15. In the case of M. musculus and D. melanogaster, we also find

similar enrichments as for graphlets G2. A full list of GO terms for graphlets G5 and

all three species is given in Appendices in Section C.2, Tables C.16, C.18 and C.20.

As discussed above, cyclic AMPs stimulate RNA and DNA synthesis, hence a cyclic

nucleotide metabolic process which synthetises cyclic AMPs is required in order for

the RNA biosynthetic process or DNA-templated transcription process to take place,

thus explaining the directed edges from enzymes annotated with the cyclic nucleotide

metabolic process (see Figure 4.15). The transcription process in which a particular

segment of DNA is copied into RNA (mRNA) corresponds to edges between enzymes

annotated with the DNA-templated transcription process and enzymes annotated with

the RNA biosynthetic process.
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Enzymes annotated with

cyclic nucleotide metabolic process

Enzymes annotated with:

RNA biosynthetic process,

transcription, DNA-templated.

OR
Enzymes annotated with:

RNA biosynthetic process,

transcription, DNA-templated.

Orbits  10,12 Orbits  10,12

Orbit  11

Figure 4.15. GO enrichment around enzymes touching orbit 11, that are annotated
with cyclic nucleotide metabolic process.

4.4 Conclusions

In this chapter we applied directed graphlet-based heuristics to directed metabolic net-

works of eukaryotic species. We first confirmed that graphlet-based measures for di-

rected network comparison outperform other commonly used measures, by evaluating

their performance on clustering metabolic networks of different species, according to

their taxonomic classification. We also showed that the quality of clustering decreases

as the clustering is performed according to more specific levels of taxonomic classifica-

tion. This indicates that topologies of metabolic networks of species with more recent

divergence times differ less than those of the species that diverged further back in evo-

lutionary history.

Then, motivated by the fact that the topology of PPI networks can be successfully

used for the functional annotation of genes (proteins), and having defined directed

graphlet-based heuristics, we explored whether similar local topology around enzymes

in directed metabolic networks corresponds to the same GO term annotations. We dis-

covered that each cluster of enzymes in the human metabolic network, constructed based

on the similarity of local topology around enzymes measured using DGDV similarity,

is statistically significantly enriched with similar GO terms. Based on this finding, we

used known enzyme functional annotations and their local wiring patterns to show that

the topology of metabolic networks can be a predictor of function: we utilised CCA to

predict novel GO annotations in five eukaryotic species (H. sapiens, M. musculus, D.

melanogaster, S. cerevisiae and A. thaliana).

We then searched for conserved topology–function relationships across different species

following the framework of Davis et. al [201] and performed 10 pairwise experiments on

metabolic networks of the five eukaryotic species. We found that the DNA metabolic
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process, an essential process for all living organisms, is topologically orthologous across

8 out of 10 species pairs, revealing how evolution has conserved a specific local wiring

in the metabolic network required for the DNA metabolic process. We also found 27

biological processes that are topologically orthologous across 3 species pairs, as well as

14 biological processes that are topologically orthologous across 2 species pairs. Ad-

ditionally, we identified distinctive wirings in metabolic networks which correspond to

various biological functions. For example, lipid-related biological processes are charac-

terised with the four-node cliques; the purine nucleotide metabolic process, the ribose

phosphate metabolic process and the cyclic nucleotide metabolic process are correlated

to the number of orbits with outgoing edges. Finally, we offered a biological explanation

as to how the specific wirings with outgoing edges facilitate topologically orthologous

biological functions.

4.5 Author’s Contributions

Section 4.1 Anida Sarajlić collected and preprocessed the directed metabolic net-

works of eukaryotes and the taxonomic classification of species, designed, implemented

and performed experiments for evaluation of clustering of eukaryotes and analysed the

results.
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sented in this section. Anida Sarajlić designed, implemented and performed experiments

for calculating the cluster enrichments in GO terms and analysed the results.

Section 4.3 Anida Sarajlić collaborated with Noël Malod-Dognin, Ömer Nebil

Yaveroǧlu and Nataša Pržulj on the work presented in this section. Anida Sarajlić

preprocessed all input data (DGDVs of genes for directed metabolic network of the 5

analysed species, GO annotations for the genes of the 5 analysed species) for the existing

framework for identification of topologically orthologous GO terms (experiments con-

ducted by Ömer Nebil Yaveroǧlu). Anida Sarajlić implemented and performed precision-

recall analysis for the GO term predictions, analysed results for the GO term predictions

and analysed results for the topologically orthologous GO terms (identifying biological

topologically orthologous processes across different species pairs from the output data

provided by Ö.N.Y, identifying specific wiring patterns characteristic for topologically

orthologous processes and performing the biological analysis).
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Ömer Nebil Yaverǒglu and Nataša Pržulj: “Directed Graphlets Uncover Topology–

Function Relationships in Directed Metabolic Networks of Eukaryotes” in August 2015.
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Nebil Yaverǒglu).
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5 Conclusions and Future Directions

In this chapter we summarise the contributions made by this dissertation. We also

discuss future applications of our new methodology for directed network analysis.

5.1 Conclusions

The topology of undirected biological networks has already been linked to biological

functions [1–6, 13, 145]. We confirmed this in Chapter 2 where we first reviewed the

existing approaches that utilise the topological properties of biological networks in the

research of complex diseases, in particular cardiovascular disease (CVD) [98], and then

contributed with our CVD case studies [8,99]. We identified the key CVD genes that are

statistically significantly enriched in drug targets and driver genes, using the topology

of the human PPI network and we predicted novel CVD genes (70% validated) which

are functionally similar to currently known CVD drug targets, confirming the potential

for improving the therapy of CVDs [8]. We also tackled the reasons behind the pro-

tective role of diabetes in cases of aneurysm patients and, using the topologies of the

human PPI and genetic networks, identified pleiotropic kinases potentially responsible

for this relationship between the diseases [99]. These findings confirm the value of the

information that is encoded in the topology of biological networks and its usability for

a broad spectrum of open questions in biology and medicine.

Graphlet based properties of undirected networks have particularly contributed to

new findings in computational biology [4–6,8,9,13,45]. Some of the biological networks

are undirected by definition, while many, such as metabolic networks or transcriptional

regulatory networks, are complete only if the directionality of interactions is taken into

account, given that directionality adds an additional level of information to the network

data.

Hence, in Chapter 3, as the main contribution of this dissertation, we defined di-

rected graphlets and orbits and implemented an algorithm for counting all graphlets

in a directed network as well as all graphlet orbits for each of the network nodes. We

then generalised existing graphlet-based measures: we defined directed graphlet-based
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measures for topological similarity between nodes in a network (directed graphlet degree

vector distance) and network comparison (relative directed graphlet frequency distance,

directed graphlet degree distribution similarity and directed graphlet correlation dis-

tance). We compared the new measures against degree distribution based and spectral

distance measures, by evaluating their performance on model network clustering. We

used existing directed random network models for SF directed graphs and ER directed

graphs and proposed SF-GD, GEO, and GEO-GD directed random network models to

generate sets of model networks. We separately evaluated clustering for two distinctive

cases: when only the same size and density networks are compared and when all-to-all

networks are compared. We also tested the noise robustness for all the measures, by

repeating the model clustering evaluation when up to 70% of noise is introduced to

the model networks (in increments of 10%). We took into account three types of noise

separately: random addition of edges to the network, random removal of edges from the

network and random rewiring of the edges in the network. The results showed that our

proposed graphlet-based measures for network comparison outperform those based on

degree distribution and network spectrum. Among graphlet-based measures, directed

graphlet correlation distance performed the best in network model identification and

was the most resilient to the noise in the networks.

In Chapter 4, we applied directed graphlets to metabolic networks. We first used our

directed graphlet-based measures for network comparison to show that the topology

of metabolic networks can be used to reconstruct phylogenetic relationships between

eukaryotic species. In particular, we explored whether the grouping of all eukaryotic

species based on the similarity of the topologies of their metabolic networks corresponds

to the taxonomic classification of the species. We evaluated this by assessing the quality

of the clustering of 299 eukaryotes based on topological similarity of their metabolic

networks, according to six levels of taxonomic classification, yielding AUC scores as high

as 0.93. The best results were obtained for the directed graphlet correlation distance

measure. We also found that the quality of the clustering decreases for more specific

levels of taxonomic classification, suggesting that the metabolic networks of species

that have diverged more recently in time do not differ as much as for those species that

diverged earlier in evolutionary history.

We then used DGDV similarity, a measure that quantifies the topological similar-

ity between the nodes in a network, to cluster the nodes in the metabolic network of

H. sapiens and found that each of the obtained clusters is statistically significantly en-

riched in the GO terms that correspond to related functions. This indicates that similar

wirings in directed metabolic networks correspond to similar biological functions. For
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example, we found clusters enriched in catabolic processes, processes supporting methy-

lation, acid binding processes, organism defence response and processes related to sugar

metabolism. Motivated by the findings, we used the metabolic networks to success-

fully predict new GO annotations based solely on the DGDVs of the genes (enzymes)

in the networks. Finally, we explored if there exist topology–function relationships in

metabolic networks that are conserved across different species. For this, we followed

the existing framework of Davis et.al [201], where several topologically orthologous GO

terms were uncovered using undirected PPI networks of human and yeast. We extended

this approach to directed metabolic networks and explored the metabolic networks of

human, yeast, mouse, fruit fly and arabidopsis. We performed 10 pairwise analyses

across these 5 species and found that evolution has conserved a specific local wiring in

the metabolic network that is required for the DNA metabolic process. In addition, we

found 27 biological processes that are topologically orthologous for 3 pairs of species and

14 biological processes topologically orthologous for 2 pairs of species. We also identified

distinctive wirings in the metabolic networks that correspond to particular biological

functions: e.g. lipid-related biological processes correspond to enzymes with the local

topology characterised with four-node cliques, while purine nucleotide metabolic pro-

cesses, ribose phosphate metabolic processes and cyclic nucleotide metabolic processes

correspond to enzymes with the local topology characterised with the outgoing edges.

We also offer a biological explanation as to why these particular processes are related

to the outgoing edges in the metabolic networks.

5.2 Future directions

Parallelising the graphlet counting algorithm As discussed in Section 3.1.4, the

directed graphlet and orbit counting algorithm was implemented in C++ and has a time

complexity of O(N×d3). We have used the software on the networks with the maximum

size of 2000 nodes and edge density of 1%. However, for future applications on denser

graphs (when d→ N) computations of DGDVs are bound to be time consuming. Hence,

we are planning to parallelise the code to improve its time efficiency. This is a straight

forward process as the counting algorithm was implemented in the way that each node

in the network is visited separately, and the number of orbits that the node touches

(counted by examining it’s three node deep neighbourhood) is added to the node’s

directed graphlet degree vector (DGDV). We will parallelise the counter by dividing

network nodes to sets and assigning each set of nodes to a separate job. Each job will

then separately maintain the temporary DGDV for all nodes in the network, so when
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the job is counting orbits that a particular node touches, it can still update the orbits

for the neighbouring nodes, even if they are not within its designated set. After all the

jobs are completed, values from all temporary DGDVs for each node should be added

together. All the corrections for the over-counts discussed in Section 3.1.4, should be

performed after the merging the temporary vectors.

Evaluation of graphlet based properties when the set of redundant orbits is

removed. As discussed in Section 3.1.3, in the case of networks without anti-parallel

pairs of arcs, 23 out of the 129 orbits are redundant and can be derived using the counts

of the remaining 106 orbits. The redundant orbits can be omitted when calculating

the directed graphlet based measures: graphlet degree distribution similarity, graphlet

degree vector similarity and graphlet correlation matrix distance [13]. We plan to define

these measures without including redundant orbits and evaluate their performance.

Graphlets for the analysis of directed weighted networks. Many networks,

both undirected and directed, can have weights assigned to their edges, providing addi-

tional information about the data. For example, in the world trade networks, the nodes

correspond to countries, edges correspond to the trade between the countries, and the

amounts of the trade can be accounted for as the weights of the edges. In biological

networks, for example, it is possible to assign weight to the edges based on confidence

levels (for example the statistical significance of the interactions between nodes). The

additional step in graphlet generalisation is to take into account the edge weights. The

concept of weighted graphlets and how to apply graphlet based measures to a weighted

network is an open research problem that would be addressed in the future research.

Integrating directed graphlet counter and directed model network genera-

tors with Graph Crunch software. GraphCrunch [208] is a software tool created

for network analysis. The software enables the comparison of networks against random

graph models. It generates random networks for user-specified random graph models

and evaluates the fit of a variety of network models to real-world networks with respect

to a series of global and local network properties. The software was further upgraded to

version GraphCrunch 2 [209] which also provides the best fitting model for the network

data. Graph Crunch 2 supports the following network models: Erdös-Rényi random

graphs (ER), Erdös-Rényi random graphs with the same degree distribution as the

data (ER-DD), scale-free Barabási-Albert preferential attachment models (SF), geo-

metric random graphs (GEO), stickiness-index based models (STICKY), scale-free gene
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duplication models (SF-GD), and geometric gene duplication models (GEO-GD) and

provides pairwise network comparison using graphlet-based heuristics, the alignment of

two networks using the GRAAL algorithm [194], and clustering network nodes based

on the similarity of their neighbourhood topology. Graph Crunch 2 is user friendly

and has an intuitive drag and drop interface. The upgraded version of software, Graph

Crunch 3, is in preparation and is currently implemented in Python as a web server.

We plan to include in the Graph Crunch 3 the directed graphlet and orbit counter,

directed graphlet-based heuristics (relative graphlet frequency distance graphlet degree

distribution similarity, graphlet degree vector similarity, and graphlet correlation matrix

distance) and directed network models.

Model fitting of directed real world networks. Finding a well-fitting network

model for a real world network can help explain the evolution of the network and

uncover additional information from the network data such as missing links in the

network. For example, biological data are incomplete and noisy due to sampling, biases

in data collection and interpretation, and limitations in technology [46, 47]. If it is

possible to find an adequate theoretical network model that fits a network - that precisely

reproduces the networks structure and laws - then that model can be used to predict

missing interactions or to filter out the false ones. Also, a well-fitting model can provide

easier computational manipulation of the network data and aid understanding of the

mechanisms of biological processes within the cell [48].

The fitting of a network model to a given network is performed as follows: (1) for an

input network G, number of networks from the evaluated network model are generated,

with the same size and density of the input network (30 networks per model have

been suggested as a standard [59, 60, 210]), (2) the topologies of the generated model

networks are compared to the topology of the input network G using global or local

network properties.

Przulj et al. showed that a random geometric model fits the PPI data using RGF

distance [7]. Yaveroǧlu et al. [13] used GCD-11 network distance measure to find the best

fitting network models for autonomous system networks, Facebook networks, metabolic

networks, protein structure networks, and world trade networks. It was shown that for

autonomous networks ER-DD is the best fitting model, while Facebook, metabolic, and

protein structure networks are best modelled by GEO, GEO-GD and SF-GD models.

All these networks were analysed as undirected.

Since there is available information on the directionality of the edges in metabolic,

Facebook and world-trade networks, we suggest finding directed model networks that
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are the best fit for these directed real world networks by using the directed graphlet

correlation distance measure that performed best in model identification (Section 3.2.2).

In addition, we plan to perform model fitting on directed transcriptional regulatory

networks and effective connectivity brain networks.

Alignment of directed networks based on directed graphlets. Exact compar-

isons of large networks are computationally infeasible due to NP-completeness of the

underlying subgraph isomorphism problem [211]. Subgraph isomorphism problem asks

whether a graph G exists as an exact subgraph of another graph H. Network alignment

is a more general problem which asks what the best way to fit network G into the net-

work H is. There exist local and global network alignments. In local network alignment

(LNA) methods regions of network are mapped independently, and as a result one node

in the network can be mapped to several nodes in another network. Global network

alignments (GNA) align each node in a smaller network to exactly one node in a larger

network, maximising the overall match between the two networks.

Because the network alignment is NP complete problem, heuristic approaches have

been used to address it. In the case of global network aligners for the alignment of the

biological networks, the mappings of the nodes in the alignment are guided by similarity

scores, which take into account the topological similarity between nodes (e.g GRAAL

family of aligners, discussed below), the biological information (e.g. sequence similarity

in PISwap [212]), or both ((e.g IsoRank [213], Natalie [214], GHOST [215]).

As mentioned above, the GRAAL family of network aligners can align networks by

using only the topological information around the nodes in the network (e.g. GDV simi-

larity), so it can be applied for the alignment of networks other than biological. However,

GRAAL aligners still allow the inclusion of other information, such as biological, to the

cost function of matching the nodes. GRAAL family includes: (1) GRAAL [194] - uses

the greedy “seed and extend” approach to align network nodes where the cost is de-

creased as the degrees of the nodes involved increase, making sure that the densest parts

of the networks are aligned first, (2) H-GRAAL [216] - uses the Hungarian algorithm

to produce optimal global alignment between two networks using any cost function,

(3) MI-GRAAL [217] - designed so it can integrate any number or type of similarity

measures between nodes; it follows the seed and extend approach and builds the matrix

of confidence scores, simultaneously constructing a priority queue of node pairs in de-

creasing order with respect to their confidence scores, (4) C-GRAAL [218] - finds a seed

alignment in the networks and expends around it, by finding the alignment between

the neighbours of already aligned proteins and (5) L-GRAAL [219] - which is based on

157



integer programming and Lagrangian relaxation [220] and uses GDV similarity as the

topological information for the cost function.

We plan to extend the GRAAL family with a network aligner for directed networks.

Since L-GRAAL, the most recent aligner in the GRAAL family, outperforms the others

- it uncovers the largest common sub-graphs between the networks [219] - we will focus

on generalising L-GRAAL to a directed network aligner. The main algorithm would

remain similar, but we plan to use the DGDV similarity instead of GDV similarity

between the nodes.

158



Bibliography

[1] B. Schwikowski and P. Uetz. A network of protein-protein interactions in yeast.

Nature Biotechnology, 18:1257–1261, 2000.

[2] H. N. Chua, W.-K. Sung, and L. Wong. Exploiting indirect neighbours and topo-

logical weight to predict protein function from protein-protein interactions. Bioin-

formatics, 22(13):1623–1630, 2006.

[3] M. P. Samanta and S. Liang. Predicting protein functions from redundancies in

large-scale protein interaction networks. Proceedings of the National Academy of

Sciences USA, 100:12579–12583, 2003.
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[77] N. Pržulj. Protein-protein interactions: making sense of networks via graph-

theoretic modeling. BioEssays : News and Reviews in Molecular, Cellular and

Developmental Biology, 33(2):115–123, 2011.

[78] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez,

T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, and C. von Mering. The

string database in 2011: functional interaction networks of proteins, globally in-

tegrated and scored. Nucleic Acids Research, 39(Database-Issue):561–568, 2011.

[79] M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S. Sevier,

H. Ding, J. L. Y. Koh, K. Toufighi, S. Mostafavi, J. Prinz, R. P. St. Onge, B. Van-

derSluis, T. Makhnevych, F. J. Vizeacoumar, S. Alizadeh, S. Bahr, R.e L. Brost,

Y. Chen, M. Cokol, R. Deshpande, Z. Li, Z.-Y. Lin, W. Liang, M. Marback,

J. Paw, B.-J. San Luis, E. Shuteriqi, A. H. Y. Tong, N. van Dyk, I. M. Wallace,

J. A. Whitney, M. T. Weirauch, G. Zhong, H. Zhu, W. A. Houry, M. Brudno,

S. Ragibizadeh, B. Papp, C. Pal, F. P. Roth, G. Giaever, C. Nislow, O. G. Troy-

anskaya, H. Bussey, G.y D. Bader, A.-C.e Gingras, Q. D. Morris, P.p M. Kim,

C. A. Kaiser, C. L. Myers, B. J. Andrews, and C. Boone. The Genetic Landscape

of a Cell. Science, 327, 2010.

[80] R. Kelley and T. Ideker. Systematic interpretation of genetic interactions using

protein networks. Nature Biotechnology, 23(5):561, 2005.

[81] S.L. Ooi, D.D. Shoemaker, and Boeke J.D. Dna helicase gene interaction net-

work defined using synthetic lethality analyzed by microarray. Nature Genetics,

35(3):277–86, 2003.

166



[82] R. Mani, R. P. St. Onge, J. L. Hartman, G. Giaever, and F. P. Roth. Defin-

ing genetic interaction. Proceedings of the National Academy of Sciences USA,

105:3461–3466, 2008.

[83] P. Beltrao, G. Cagney, and N. J. Krogan. Quantitative genetic interactions reveal

biological modularity. Cell, 141:739–745, 2010.

[84] A. Hin Yan Tong, M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader, N. Pagé,
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sequence structure in homologous proteins. Journal of Integrative Bioinformatics,

7(3):135, 2010.

172



[145] R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein func-

tion. Molecular Systems Biology, 3(1):88, 2007.

[146] S. Shantikumar, R. Ajjan, K.E. Porter, and D.J.A. Scott. Diabetes and the

abdominal aortic aneurysm. European Journal of Vascular and Endovascular

Surgery, 39(2):200 – 207, 2010.

[147] S. K. Prakash, C. Pedroza, Y. A. Khalil, and D. M. Milewicz. Diabetes and

reduced risk for thoracic aortic aneurysms and dissections: A nationwide case-

control study. Journal of the American Heart Association, 1(2), 2012.

[148] P. De Rango, P. Cao, E. Cieri, G. Parlani, M. Lenti, G. Simonte, and F. Verzini.

Effects of diabetes on small aortic aneurysms under surveillance according to

a subgroup analysis from a randomized trial. Journal of Vascular Surgery,

56(6):1555 – 1563, 2012.

[149] S. R. Preis, S.-J. Hwang, S. Coady, M. J. Pencina, R. B. D’Agostino, P. J. Savage,

D. Levy, and Ca. S. Fox. Trends in all-cause and cardiovascular disease mortality

among women and men with and without diabetes mellitus in the framingham

heart study, 1950 to 2005. Circulation, 119(13):1728–1735, 2009.
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[206] M. Rincón, A. Tugores, and M. López-Botet. Cyclic amp and calcium regulate at

a transcriptional level the expression of the cd7 leukocyte differentiation antigen.

The Journal of Cell Biology, 267(25):18026–31, 1992.

[207] J.W. Yang, M.R. Kim, H.G. Kim, S.K. Kim, H.G. Jeong, and K.W. Kang.

Differential regulation of erbb2 expression by camp-dependent protein kinase

in tamoxifen-resistant breast cancer cells. Archives of Pharmacal Research,

31(3):350–6, 2008.
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A Appendix to Chapter 2

A.1 Literature Validations of Predicted CVD Genes

CREBBP gene is mentioned in connection with pathophysiological changes in cerebral

vessels predisposing to stroke [221]. Gerzanich et al. [221] study three models of human

conditions associated with stroke: chronic angiotensin II-hypertension, chronic nicotine

administration and oxidative endothelial injury. All three models show significant up-

regulation of expression of proliferative cell nuclear antigen (PCNA) in arterioles in

situ, which is associated with increased activation of the nuclear transcription factor,

phospho-cAMP response element binding protein (phospho-CREB).

It is shown that dilated cardiomyopathy tissues contain elevated levels of p53 and its

regulators MDM2 and HAUSP (p-value≤ 0.01) compared to non-failing hearts [222].

Also, regulation of MDM2 is critical in cardiac endocardial cushion morphogenesis dur-

ing heart development [223]. Chen et al. [224] show that down-regulation of HDAC1

gene and the modifications on histone 3 lysine 4 (H3K4) and H3K9 significantly af-

fect microRNA-29b expression in the context of signaling regulation of microRNA-29b,

which is connected to novel mechanisms for cardiovascular diseases.

Aneurysms-osteoarthritis syndrome (AOS) is a newly discovered autosomal dominant

syndromic form of thoracic aortic aneurysms and dissections, that is characterised by

the presence of arterial aneurysms and tortuosity, mild craniofacial, skeletal and cu-

taneous anomalies, and early-onset osteoarthritis. AOS is caused by mutations in the

SMAD3 gene [225]. It is known that aggressive cardiovascular phenotype of aneurysms-

osteoarthritis syndrome is caused by pathogenic SMAD3 variants [226]. Also, SMAD2

dysregulation is associated with thoracic aortic aneurysms [227]. Inhibition of SMAD2

phosphorylation preserves cardiac function during pressure overload [228].

JUN gene is linked to different types of mitral valvular disease (MVD), including

mitral regurgitation (MR) and mitral stenosis (MS) [229]. It is shown that c-Jun mRNA

are significantly upregulated in patients with MS compared with those with MR (with

p-value ≤ 0.05) and that phosphorylated c-Jun N-terminal kinase in the MR group of

patients is significantly greater than that in the MS group (with p-value ≤ 0.001).
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It is demonstrated that proper expression of MYC in cardiac fibroblasts and my-

ocytes is essential to cardiac angiogenesis, therefore MYC is required for proper coro-

nary vascular formation [230]. It is shown that SRC protein regulates focal adhesion

protein function, which influences contractility of vascular smooth muscle [231]. This

also points to novel therapeutic approaches to CVDs, in terms of targeting SRC pro-

tein [231]. BRCA1 is an essential regulator of heart fuction [232]. BRCA1 and MYC

are also driver genes [94](see Figure 2.4).

Inhibition of EP300 can neutralize deficiency of KLF15 which is shown to be a molec-

ular link between heart failure and aortic aneurysm formation [233].

It is known that TP53 is involved in cardiovascular functioning [234]. TP53 is also

mentioned as one of the candidate genes associated with proatherogenic and inflamma-

tory processes in chronic kidney disease (CKD) [235]. Zawada et al. aimed to point to

new therapeutic strategies in CKD-associated atherosclerotic disease [235].

It is shown that GRB2 plays a role in the signaling pathway for cardiac hypertrophy

and fibrosis [236]
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B Appendix to Chapter 3

B.1 The Source Code for the Directed Graphlets and

Orbits Counter

The source code for directed graphlet and orbit counter is listed below (implemented in

C++ by Anida Sarajlić in June 2014). Input is a text file input file name representing

a network edgelist (entry “A B” in a row represents a directed edge from node A to

node B). Output files are:

• input file name.signatures.txt - each line represents a DGDV of a node (for the

node names refer to the second column of input file name.dictionary.txt). Number

of lines corresponds to number of nodes in the network minus the nodes that were

only involved in selfloops.

• input file name.dictionary.txt - the first column corresponds to the line number

from the input file name.signatures.txt (numbered from 0) and the second column

is the name of the node.

• input file name.graphletcounts.txt - the first column denotes the graphlet (num-

bered from 0 to 39 for the 40 directed graphlets) and the second column represents

the number of such graphlets in the network.

#inc lude <fstream>

#inc lude <iostream>

#inc lude <s t r i ng>

#inc lude <sstream>

#inc lude <map>

#inc lude <vector>

#inc lude <set>

#inc lude <algor ithm>
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us ing namespace std ;

typede f long long in t64 ;

in t64 p o s i t i o n i n v e c t o r ( s t r i n g a , vector<s t r i ng> vektor )

{
i n t64 p o z i c i j a (0 ) ;

f o r ( vector<s t r i ng > : : i t e r a t o r i t = vektor . begin ( ) ; i t !=

↪→ vektor . end ( ) ; ++i t ) { i f ( (∗ i t )==a ) { p o z i c i j a =

↪→ d i s t anc e ( vektor . begin ( ) , i t ) ;}}
re turn p o z i c i j a ;

}

template <typename T>

i n t64 i s i t i n v e c t o r (T a , vector<T> vektor )

{
i n t64 response (0 ) ;

i f ( f i n d ( vektor . begin ( ) , vektor . end ( ) , a ) != vektor . end ( ) ) {
re sponse = 1 ;

}
re turn response ;

}

//Main program

i n t main ( i n t argc , char ∗argv [ ] ) {

vector<pair<int64 , int64> > e d g e l i s t a ;

vector<s t r i ng> d i c t i o n a r y ;

s t r i n g x1 , x2 , l i n e ;

vector<vector<int64> > pred , succ , s i g n a t u r e s ;

vector<int64> g r a p h l e t s ;

// Bui ld ing the e d g e l i s t ( i gno r i ng s e l f −l oops ) . Nodes are

↪→ encoded with numbers from 0 to ( number o f nodes )−1.

↪→ Bui ld ing a vec to r o f nodenames .
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i f ( argc != 2)

cout<<”Usage : ”<< argv [ 0 ] <<” <i n f i l ename> ”<<endl ;

e l s e {
i f s t r e a m d a t a f i l e ( argv [ 1 ] ) ;

i f ( ! d a t a f i l e . i s o p e n ( ) )

cout<<”Could not open f i l e \n”<<endl ;

e l s e {
whi le ( g e t l i n e ( d a t a f i l e , l i n e ) ) {

s t r i ng s t r eam s t r i n g l i n i j e ( l i n e ) ;

s t r i n g l i n i j e >> x1 >> x2 ;

i f ( x1 != x2 ) {
i f ( i s i t i n v e c t o r ( s t r i n g ( x1 ) ,

↪→ d i c t i o n a r y )==0) { d i c t i o n a r y .

↪→ push back ( x1 ) ;}
i f ( i s i t i n v e c t o r ( s t r i n g ( x2 ) ,

↪→ d i c t i o n a r y )==0) { d i c t i o n a r y .

↪→ push back ( x2 ) ;}
e d g e l i s t a . push back ( make pair (

↪→ p o s i t i o n i n v e c t o r ( x1 , d i c t i o n a r y )

↪→ , p o s i t i o n i n v e c t o r ( x2 , d i c t i o n a r y

↪→ ) ) ) ;

}
}

}
d a t a f i l e . c l o s e ( ) ;

}

// Bui ld ing a conta ine r ( vec to r o f v e c t o r s ) o f nodes ’

↪→ p r e d e c e s s o r s and a conta ine r o f nodes ’ s u c c e s o r s − pred

↪→ and succ . Mult ip l e edges are ignored .

// Bui ld ing a conta ine r o f s i g n a t u r e v e c to r s − s i g n a t u r e s .

↪→ Bui ld ing a vec to r o f g raph l e t counts − g r a p h l e t s .

pred . r e s i z e ( d i c t i o n a r y . s i z e ( ) ) ;

succ . r e s i z e ( d i c t i o n a r y . s i z e ( ) ) ;
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s i g n a t u r e s . r e s i z e ( d i c t i o n a r y . s i z e ( ) ) ;

g r a p h l e t s . r e s i z e (40) ;

f o r ( vector<vector<int64> > : : i t e r a t o r i t = s i g n a t u r e s . begin

↪→ ( ) ; i t != s i g n a t u r e s . end ( ) ; ++i t ) {
(∗ i t ) . r e s i z e (129) ;

}
f o r ( vector<pair<int64 , int64> > : : i t e r a t o r i t = e d g e l i s t a .

↪→ begin ( ) ; i t != e d g e l i s t a . end ( ) ; ++i t ) {
i f ( i s i t i n v e c t o r ( (∗ i t ) . second , succ [ ( ∗ i t ) . f i r s t ] ) ==

↪→ 0) { succ [ ( ∗ i t ) . f i r s t ] . push back ( (∗ i t ) . second ) ;}
i f ( i s i t i n v e c t o r ( (∗ i t ) . f i r s t , pred [ ( ∗ i t ) . second ] ) ==

↪→ 0) {pred [ ( ∗ i t ) . second ] . push back ( (∗ i t ) . f i r s t ) ;}
}

cout<<”pred and succ matr ixes over”<<endl ;

//UPDATING NUMBER OF ORBITS AND GRAPHLETS

f o r ( in t64 i (0 ) ; i<d i c t i o n a r y . s i z e ( ) ; ++i ) {

// orb 0 ,1

s i g n a t u r e s [ i ] [ 0 ] = succ [ i ] . s i z e ( ) ;

f o r ( vector<int64> : : i t e r a t o r i t = succ [ i ] . begin ( ) ; i t != succ [ i

↪→ ] . end ( ) ; ++i t ) {
++s i g n a t u r e s [∗ i t ] [ 1 ] ;

++g r a p h l e t s [ 0 ] ;

}

// orb 2 ,3 ,4

f o r ( vector<int64> : : i t e r a t o r i t 1 = pred [ i ] . begin ( ) ; i t 1 != pred

↪→ [ i ] . end ( ) ; ++i t 1 ) {
f o r ( vector<int64> : : i t e r a t o r i t 2 = succ [ i ] . begin ( ) ;

↪→ i t 2 != succ [ i ] . end ( ) ; ++i t 2 ) {
i f ( (∗ i t 1 ) !=(∗ i t 2 ) and ( i s i t i n v e c t o r (∗ i t 1 ,

↪→ succ [∗ i t 2 ] ) == 0) and ( i s i t i n v e c t o r (∗
↪→ i t 1 , pred [∗ i t 2 ] ) == 0) ) {
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++s i g n a t u r e s [∗ i t 1 ] [ 2 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 4 ] ;

++s i g n a t u r e s [ i ] [ 3 ] ;

++g r a p h l e t s [ 1 ] ;

// orb 13 ,14 ,15 ,16 and orb 53 ,54 ,55 ,56

↪→ and orb 39 and orb 81 ,82 ,83 ,84

↪→ adn orb 40 ,41 ,42 ,43 and orb

↪→ 105 ,106 ,107 ,108 and orb

↪→ 109 ,110 ,111 ,112

f o r ( vector<int64> : : i t e r a t o r i t 3 =

↪→ succ [∗ i t 2 ] . begin ( ) ; i t 3 != succ [∗
↪→ i t 2 ] . end ( ) ; ++i t 3 ) {

i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 1 3 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 1 5 ] ;

++s i g n a t u r e s [ i ] [ 1 4 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 1 6 ] ;

++g r a p h l e t s [ 6 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred
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↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 5 6 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 5 3 ] ;

++s i g n a t u r e s [ i ] [ 5 5 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 5 4 ] ;

++g r a p h l e t s [ 1 9 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 3 9 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 3 9 ] ;

++s i g n a t u r e s [ i ] [ 3 9 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 3 9 ] ;

++g r a p h l e t s [ 1 4 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 8 2 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 8 3 ] ;

++s i g n a t u r e s [ i ] [ 8 1 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 8 4 ] ;

++g r a p h l e t s [ 2 6 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ
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↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 4 2 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 4 1 ] ;

++s i g n a t u r e s [ i ] [ 4 0 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 4 3 ] ;

++g r a p h l e t s [ 1 5 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 0 7 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 0 6 ] ;

++s i g n a t u r e s [ i ] [ 1 0 8 ] ;

++s i g n a t u r e s [∗ i t 3

↪→ ] [ 1 0 5 ] ;

++g r a p h l e t s [ 3 3 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 1 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 1 1 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 1 0 ] ;
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++s i g n a t u r e s [ i ] [ 1 1 2 ] ;

++s i g n a t u r e s [∗ i t 3

↪→ ] [ 1 0 9 ] ;

++g r a p h l e t s [ 3 4 ] ;

}
}

// orb 17 ,18 ,19 ,20 and orb 77 ,78 ,79 ,80

↪→ and orb 69 ,70 ,71 ,72 and

↪→ 113 ,114 ,115 ,116

f o r ( vector<int64> : : i t e r a t o r i t 4 =

↪→ pred [∗ i t 2 ] . begin ( ) ; i t 4 != pred [∗
↪→ i t 2 ] . end ( ) ; ++i t 4 ) {

i f ( (∗ i t 4 ) !=(∗ i t 1 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 1 7 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 1 9 ] ;

++s i g n a t u r e s [ i ] [ 1 8 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 2 0 ] ;

++g r a p h l e t s [ 7 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 1 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred
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↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 8 0 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 7 8 ] ;

++s i g n a t u r e s [ i ] [ 7 9 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 7 7 ] ;

++g r a p h l e t s [ 2 5 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 1 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 7 2 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 7 0 ] ;

++s i g n a t u r e s [ i ] [ 7 1 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 6 9 ] ;

++g r a p h l e t s [ 2 3 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 1 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 1 3 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 1 5 ] ;

++s i g n a t u r e s [ i ] [ 1 1 4 ] ;

++s i g n a t u r e s [∗ i t 4

↪→ ] [ 1 1 6 ] ;

++g r a p h l e t s [ 3 5 ] ;

}
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}
}

}
}

// orb 5 ,6

f o r ( vector<int64> : : i t e r a t o r i t 1 = succ [ i ] . begin ( ) ; i t 1 != succ

↪→ [ i ] . end ( ) ; ++i t 1 ) {
f o r ( vector<int64> : : i t e r a t o r i t 2 = succ [ i ] . begin ( ) ;

↪→ i t 2 != succ [ i ] . end ( ) ; ++i t 2 ) {
i f ( (∗ i t 1 ) !=(∗ i t 2 ) and ( i s i t i n v e c t o r (∗ i t 1 ,

↪→ succ [∗ i t 2 ] ) == 0) and ( i s i t i n v e c t o r (∗
↪→ i t 1 , pred [∗ i t 2 ] ) == 0) ) {

++s i g n a t u r e s [∗ i t 1 ] [ 5 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 5 ] ;

++s i g n a t u r e s [ i ] [ 6 ] ;

++g r a p h l e t s [ 2 ] ;

// orb 21 ,22 ,23 ,24 and orb 73 ,74 ,75 ,76

↪→ and orb 97 ,98 ,99 ,100 and orb

↪→ 101 ,102 ,103 ,104 and orb 44 ,45 and

↪→ orb 94 ,95 ,96

f o r ( vector<int64> : : i t e r a t o r i t 3 =

↪→ pred [∗ i t 1 ] . begin ( ) ; i t 3 != pred [∗
↪→ i t 1 ] . end ( ) ; ++i t 3 ) {

i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 2 2 ] ;
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++s i g n a t u r e s [∗ i t 2 ] [ 2 4 ] ;

++s i g n a t u r e s [ i ] [ 2 3 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 2 1 ] ;

++g r a p h l e t s [ 8 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 7 4 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 7 6 ] ;

++s i g n a t u r e s [ i ] [ 7 5 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 7 3 ] ;

++g r a p h l e t s [ 2 4 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 9 9 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 9 8 ] ;

++s i g n a t u r e s [ i ] [ 1 0 0 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 9 7 ] ;

++g r a p h l e t s [ 3 1 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred
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↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 0 3 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 0 2 ] ;

++s i g n a t u r e s [ i ] [ 1 0 4 ] ;

++s i g n a t u r e s [∗ i t 3

↪→ ] [ 1 0 1 ] ;

++g r a p h l e t s [ 3 2 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 4 4 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 4 4 ] ;

++s i g n a t u r e s [ i ] [ 4 5 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 4 5 ] ;

++g r a p h l e t s [ 1 6 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 9 5 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 9 5 ] ;

++s i g n a t u r e s [ i ] [ 9 6 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 9 4 ] ;

++g r a p h l e t s [ 3 0 ] ;

}
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}

// orb 25 ,26 ,27 ,28 and orb 49 ,50 ,51 ,52

↪→ and orb 65 ,66 ,67 ,68 and orb

↪→ 46 ,47 ,48 and orb 85 ,86 ,87 and orb

↪→ 88 ,89 ,90

f o r ( vector<int64> : : i t e r a t o r i t 4 =

↪→ succ [∗ i t 1 ] . begin ( ) ; i t 4 != succ [∗
↪→ i t 1 ] . end ( ) ; ++i t 4 ) {

i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 2 6 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 2 8 ] ;

++s i g n a t u r e s [ i ] [ 2 7 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 2 5 ] ;

++g r a p h l e t s [ 9 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 4 9 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 5 2 ] ;

++s i g n a t u r e s [ i ] [ 5 1 ] ;
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++s i g n a t u r e s [∗ i t 4 ] [ 5 0 ] ;

++g r a p h l e t s [ 1 8 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 6 5 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 6 8 ] ;

++s i g n a t u r e s [ i ] [ 6 7 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 6 6 ] ;

++g r a p h l e t s [ 2 2 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [ i ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [ i ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 4 6 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 4 6 ] ;

++s i g n a t u r e s [ i ] [ 4 8 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 4 7 ] ;

++g r a p h l e t s [ 1 7 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ
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↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 8 6 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 8 6 ] ;

++s i g n a t u r e s [ i ] [ 8 7 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 8 5 ] ;

++g r a p h l e t s [ 2 7 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=( i ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [ i ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 8 9 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 8 9 ] ;

++s i g n a t u r e s [ i ] [ 9 0 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 8 8 ] ;

++g r a p h l e t s [ 2 8 ] ;

}
}

// orb 31 ,32

f o r ( vector<int64> : : i t e r a t o r i t 5 =

↪→ succ [ i ] . begin ( ) ; i t 5 != succ [ i ] .

↪→ end ( ) ; ++i t 5 ) {
i f ( (∗ i t 5 ) !=(∗ i t 2 ) and (∗ i t 5 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 5 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 5 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 5 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 5 , pred

↪→ [∗ i t 1 ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 3 1 ] ;
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++s i g n a t u r e s [∗ i t 2 ] [ 3 1 ] ;

++s i g n a t u r e s [ i ] [ 3 2 ] ;

++s i g n a t u r e s [∗ i t 5 ] [ 3 1 ] ;

++g r a p h l e t s [ 1 1 ] ;

}
}

// orb 33 ,34 ,35

f o r ( vector<int64> : : i t e r a t o r i t 6 =

↪→ pred [ i ] . begin ( ) ; i t 6 !=pred [ i ] .

↪→ end ( ) ; ++i t 6 ) {
i f ( (∗ i t 6 ) !=(∗ i t 2 ) and (∗ i t 6 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 6 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 6 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 6 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 6 , pred

↪→ [∗ i t 1 ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 3 5 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 3 5 ] ;

++s i g n a t u r e s [ i ] [ 3 4 ] ;

++s i g n a t u r e s [∗ i t 6 ] [ 3 3 ] ;

++g r a p h l e t s [ 1 2 ] ;

}
}

}
}

}

// orb 7 ,8

f o r ( vector<int64> : : i t e r a t o r i t 1 = pred [ i ] . begin ( ) ; i t 1 != pred

↪→ [ i ] . end ( ) ; ++i t 1 ) {
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f o r ( vector<int64> : : i t e r a t o r i t 2 = pred [ i ] . begin ( ) ;

↪→ i t 2 != pred [ i ] . end ( ) ; ++i t 2 ) {
i f ( (∗ i t 1 ) !=(∗ i t 2 ) and ( i s i t i n v e c t o r (∗ i t 1 ,

↪→ succ [∗ i t 2 ] ) == 0) and ( i s i t i n v e c t o r (∗
↪→ i t 1 , pred [∗ i t 2 ] ) == 0) ) {

++s i g n a t u r e s [∗ i t 1 ] [ 7 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 7 ] ;

++s i g n a t u r e s [ i ] [ 8 ] ;

++g r a p h l e t s [ 3 ] ;

// orb 29 ,30 and orb 61 ,62 ,63 ,64

f o r ( vector<int64> : : i t e r a t o r i t 3 =

↪→ pred [ i ] . begin ( ) ; i t 3 !=pred [ i ] .

↪→ end ( ) ; ++i t 3 ) {
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 2 9 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 2 9 ] ;

++s i g n a t u r e s [ i ] [ 3 0 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 2 9 ] ;

++g r a p h l e t s [ 1 0 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred
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↪→ [∗ i t 1 ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 6 4 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 6 2 ] ;

++s i g n a t u r e s [ i ] [ 6 3 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 6 1 ] ;

++g r a p h l e t s [ 2 1 ] ;

}
}

// orb 36 ,37 ,38 and orb 91 ,92 ,93

f o r ( vector<int64> : : i t e r a t o r i t 4 =

↪→ succ [ i ] . begin ( ) ; i t 4 != succ [ i ] .

↪→ end ( ) ; ++i t 4 ) {
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 1 ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 3 8 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 3 8 ] ;

++s i g n a t u r e s [ i ] [ 3 7 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 3 6 ] ;

++g r a p h l e t s [ 1 3 ] ;

}
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 1 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 9 2 ] ;
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++s i g n a t u r e s [∗ i t 2 ] [ 9 2 ] ;

++s i g n a t u r e s [ i ] [ 9 3 ] ;

++s i g n a t u r e s [∗ i t 4 ] [ 9 1 ] ;

++g r a p h l e t s [ 2 9 ] ;

}
}

}
}

}

// orb9

f o r ( vector<int64> : : i t e r a t o r i t 1 = pred [ i ] . begin ( ) ; i t 1 != pred

↪→ [ i ] . end ( ) ; ++i t 1 ) {
f o r ( vector<int64> : : i t e r a t o r i t 2 = succ [ i ] . begin ( ) ;

↪→ i t 2 != succ [ i ] . end ( ) ; ++i t 2 ) {
i f ( (∗ i t 1 ) !=(∗ i t 2 ) and ( i s i t i n v e c t o r (∗ i t 1 ,

↪→ succ [∗ i t 2 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 9 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 9 ] ;

++s i g n a t u r e s [ i ] [ 9 ] ;

++g r a p h l e t s [ 4 ] ;

}
}

}

// orb10 ,11 ,12

f o r ( vector<int64> : : i t e r a t o r i t 1 = pred [ i ] . begin ( ) ; i t 1 != pred

↪→ [ i ] . end ( ) ; ++i t 1 ) {
f o r ( vector<int64> : : i t e r a t o r i t 2 = pred [ i ] . begin ( ) ;

↪→ i t 2 != pred [ i ] . end ( ) ; ++i t 2 ) {
i f ( (∗ i t 1 ) !=(∗ i t 2 ) and ( i s i t i n v e c t o r (∗ i t 1 ,

↪→ pred [∗ i t 2 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 1 1 ] ;
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++s i g n a t u r e s [∗ i t 2 ] [ 1 2 ] ;

++s i g n a t u r e s [ i ] [ 1 0 ] ;

++g r a p h l e t s [ 5 ] ;

// o r b i t s 57 ,58 ,59 ,60 and orb

↪→ 121 ,122 ,123 ,124 and orb 119 ,120

↪→ and orb 125 ,126 ,127 ,128

f o r ( vector<int64> : : i t e r a t o r i t 3 =

↪→ succ [ i ] . begin ( ) ; i t 3 != succ [ i ] .

↪→ end ( ) ; ++i t 3 ) {
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 0) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 0) ) {
++s i g n a t u r e s [∗ i t 1 ] [ 5 7 ] ;

++s i g n a t u r e s [∗ i t 2 ] [ 5 8 ] ;

++s i g n a t u r e s [ i ] [ 5 9 ] ;

++s i g n a t u r e s [∗ i t 3 ] [ 6 0 ] ;

++g r a p h l e t s [ 2 0 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 1 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 2 4 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 2 3 ] ;
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++s i g n a t u r e s [ i ] [ 1 2 2 ] ;

++s i g n a t u r e s [∗ i t 3

↪→ ] [ 1 2 1 ] ;

++g r a p h l e t s [ 3 8 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , pred

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 2 0 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 1 9 ] ;

++s i g n a t u r e s [ i ] [ 1 1 9 ] ;

++s i g n a t u r e s [∗ i t 3

↪→ ] [ 1 1 9 ] ;

++g r a p h l e t s [ 3 7 ] ;

}
i f ( (∗ i t 3 ) !=(∗ i t 2 ) and (∗ i t 3 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 2 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 3 , succ

↪→ [∗ i t 1 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 2 8 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 2 6 ] ;

++s i g n a t u r e s [ i ] [ 1 2 7 ] ;

++s i g n a t u r e s [∗ i t 3

↪→ ] [ 1 2 5 ] ;

++g r a p h l e t s [ 3 9 ] ;

}
}
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// orb 117 ,118

f o r ( vector<int64> : : i t e r a t o r i t 4 =

↪→ pred [ i ] . begin ( ) ; i t 4 !=pred [ i ] .

↪→ end ( ) ; ++i t 4 ) {
i f ( (∗ i t 4 ) !=(∗ i t 2 ) and (∗ i t 4 )

↪→ !=(∗ i t 1 ) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , pred

↪→ [∗ i t 1 ] ) == 1) and (

↪→ i s i t i n v e c t o r (∗ i t 4 , succ

↪→ [∗ i t 2 ] ) == 1) ) {
++s i g n a t u r e s [∗ i t 1

↪→ ] [ 1 1 7 ] ;

++s i g n a t u r e s [∗ i t 2

↪→ ] [ 1 1 7 ] ;

++s i g n a t u r e s [ i ] [ 1 1 8 ] ;

++s i g n a t u r e s [∗ i t 4

↪→ ] [ 1 1 7 ] ;

++g r a p h l e t s [ 3 6 ] ;

}
}

}
}

}
cout<<”node ”<<i<<” over”<<endl ;

}

//CORRECTING FOR OVERCOUNTS

f o r ( in t64 i (0 ) ; i<d i c t i o n a r y . s i z e ( ) ; ++i ) {
s i g n a t u r e s [ i ] [ 5 ] = s i g n a t u r e s [ i ] [ 5 ] / 2 ;

s i g n a t u r e s [ i ] [ 6 ] = s i g n a t u r e s [ i ] [ 6 ] / 2 ;

s i g n a t u r e s [ i ] [ 7 ] = s i g n a t u r e s [ i ] [ 7 ] / 2 ;

s i g n a t u r e s [ i ] [ 8 ] = s i g n a t u r e s [ i ] [ 8 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 ] = s i g n a t u r e s [ i ] [ 9 ] / 3 ;

s i g n a t u r e s [ i ] [ 2 9 ] = s i g n a t u r e s [ i ] [ 2 9 ] / 6 ;

s i g n a t u r e s [ i ] [ 3 0 ] = s i g n a t u r e s [ i ] [ 3 0 ] / 6 ;
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s i g n a t u r e s [ i ] [ 3 1 ] = s i g n a t u r e s [ i ] [ 3 1 ] / 6 ;

s i g n a t u r e s [ i ] [ 3 2 ] = s i g n a t u r e s [ i ] [ 3 2 ] / 6 ;

s i g n a t u r e s [ i ] [ 3 3 ] = s i g n a t u r e s [ i ] [ 3 3 ] / 2 ;

s i g n a t u r e s [ i ] [ 3 4 ] = s i g n a t u r e s [ i ] [ 3 4 ] / 2 ;

s i g n a t u r e s [ i ] [ 3 5 ] = s i g n a t u r e s [ i ] [ 3 5 ] / 2 ;

s i g n a t u r e s [ i ] [ 3 6 ] = s i g n a t u r e s [ i ] [ 3 6 ] / 2 ;

s i g n a t u r e s [ i ] [ 3 7 ] = s i g n a t u r e s [ i ] [ 3 7 ] / 2 ;

s i g n a t u r e s [ i ] [ 3 8 ] = s i g n a t u r e s [ i ] [ 3 8 ] / 2 ;

s i g n a t u r e s [ i ] [ 3 9 ] = s i g n a t u r e s [ i ] [ 3 9 ] / 4 ;

s i g n a t u r e s [ i ] [ 4 4 ] = s i g n a t u r e s [ i ] [ 4 4 ] / 4 ;

s i g n a t u r e s [ i ] [ 4 5 ] = s i g n a t u r e s [ i ] [ 4 5 ] / 4 ;

s i g n a t u r e s [ i ] [ 4 6 ] = s i g n a t u r e s [ i ] [ 4 6 ] / 2 ;

s i g n a t u r e s [ i ] [ 4 7 ] = s i g n a t u r e s [ i ] [ 4 7 ] / 2 ;

s i g n a t u r e s [ i ] [ 4 8 ] = s i g n a t u r e s [ i ] [ 4 8 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 4 ] = s i g n a t u r e s [ i ] [ 9 4 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 5 ] = s i g n a t u r e s [ i ] [ 9 5 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 6 ] = s i g n a t u r e s [ i ] [ 9 6 ] / 2 ;

s i g n a t u r e s [ i ] [ 8 5 ] = s i g n a t u r e s [ i ] [ 8 5 ] / 2 ;

s i g n a t u r e s [ i ] [ 8 6 ] = s i g n a t u r e s [ i ] [ 8 6 ] / 2 ;

s i g n a t u r e s [ i ] [ 8 7 ] = s i g n a t u r e s [ i ] [ 8 7 ] / 2 ;

s i g n a t u r e s [ i ] [ 8 8 ] = s i g n a t u r e s [ i ] [ 8 8 ] / 2 ;

s i g n a t u r e s [ i ] [ 8 9 ] = s i g n a t u r e s [ i ] [ 8 9 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 0 ] = s i g n a t u r e s [ i ] [ 9 0 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 1 ] = s i g n a t u r e s [ i ] [ 9 1 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 2 ] = s i g n a t u r e s [ i ] [ 9 2 ] / 2 ;

s i g n a t u r e s [ i ] [ 9 3 ] = s i g n a t u r e s [ i ] [ 9 3 ] / 2 ;

s i g n a t u r e s [ i ] [ 1 19 ]= s i g n a t u r e s [ i ] [ 1 1 9 ] / 3 ;

s i g n a t u r e s [ i ] [ 1 20 ]= s i g n a t u r e s [ i ] [ 1 2 0 ] / 3 ;

s i g n a t u r e s [ i ] [ 1 17 ]= s i g n a t u r e s [ i ] [ 1 1 7 ] / 3 ;

s i g n a t u r e s [ i ] [ 1 18 ]= s i g n a t u r e s [ i ] [ 1 1 8 ] / 3 ;

}
g r a p h l e t s [2 ]= g r a p h l e t s [ 2 ] / 2 ;

g r a p h l e t s [3 ]= g r a p h l e t s [ 3 ] / 2 ;

g r a p h l e t s [4 ]= g r a p h l e t s [ 4 ] / 3 ;

g r a p h l e t s [10 ]= g r a p h l e t s [ 1 0 ] / 6 ;
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g r a p h l e t s [11 ]= g r a p h l e t s [ 1 1 ] / 6 ;

g r a p h l e t s [12 ]= g r a p h l e t s [ 1 2 ] / 2 ;

g r a p h l e t s [13 ]= g r a p h l e t s [ 1 3 ] / 2 ;

g r a p h l e t s [14 ]= g r a p h l e t s [ 1 4 ] / 4 ;

g r a p h l e t s [16 ]= g r a p h l e t s [ 1 6 ] / 4 ;

g r a p h l e t s [17 ]= g r a p h l e t s [ 1 7 ] / 2 ;

g r a p h l e t s [30 ]= g r a p h l e t s [ 3 0 ] / 2 ;

g r a p h l e t s [27 ]= g r a p h l e t s [ 2 7 ] / 2 ;

g r a p h l e t s [28 ]= g r a p h l e t s [ 2 8 ] / 2 ;

g r a p h l e t s [29 ]= g r a p h l e t s [ 2 9 ] / 2 ;

g r a p h l e t s [37 ]= g r a p h l e t s [ 3 7 ] / 3 ;

g r a p h l e t s [36 ]= g r a p h l e t s [ 3 6 ] / 3 ;

// Outputs

//Output s i g n a t u r e s

o fstream o u t f i l e 1 ;

o u t f i l e 1 . open ( s t r i n g ( s t r i n g ( argv [ 1 ] ) +”. s i g n a t u r e s . txt ”) .

↪→ c s t r ( ) ) ;

f o r ( vector<vector<int64> > : : i t e r a t o r i t = s i g n a t u r e s . begin

↪→ ( ) ; i t != s i g n a t u r e s . end ( ) ; ++i t ) {
f o r ( in t64 i (0 ) ; i <129; ++i ) {

o u t f i l e 1 <<(∗ i t ) [ i ]<<” ” ;

}
o u t f i l e 1 <<endl ;

}

//Output d i c t i o n a r y

ofstream o u t f i l e 2 ;

o u t f i l e 2 . open ( s t r i n g ( s t r i n g ( argv [ 1 ] ) +”. d i c t i o n a r y . txt ”) .

↪→ c s t r ( ) ) ;

f o r ( in t64 i (0 ) ; i<d i c t i o n a r y . s i z e ( ) ; ++i )

o u t f i l e 2 <<i<<” ”<<d i c t i o n a r y [ i ]<<endl ;
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//Output g raph l e t counts

o fstream o u t f i l e 3 ;

o u t f i l e 3 . open ( s t r i n g ( s t r i n g ( argv [ 1 ] ) +”. g raph l e t count s . txt

↪→ ”) . c s t r ( ) ) ;

f o r ( in t64 i (0 ) ; i<g r a p h l e t s . s i z e ( ) ;++ i )

o u t f i l e 3 <<i<<” ”<<g r a p h l e t s [ i ]<<endl ;

o u t f i l e 1 . c l o s e ( ) ;

o u t f i l e 2 . c l o s e ( ) ;

o u t f i l e 3 . c l o s e ( ) ;

}
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C Appendix to Chapter 4

C.1 GO Enrichment of Enzyme Clusters in the Metabolic

Network of H. sapiens

The 4 enzyme clusters in the metabolic network of H. sapiens from Table 4.5, Section

4.2.2 are statistically significantly enriched in GO terms listed in Table C.1.

GO term p-value

Cluster 1

long-chain fatty acid-CoA ligase activity 4.63308452459×10−5

prostanoid metabolic process 0.00831050325419

oligosaccharide catabolic process 0.00341941781287

coenzyme A metabolic process 0.00393556983194

membrane lipid catabolic process 0.00831050325419

Cluster 2

pyrophosphatase activity 0.00901649693998

aminoglycan catabolic process 0.00289070431908

monovalent inorganic cation transport 0.000544951554996

very long-chain fatty acid metabolic process 0.000374493455158

N-methyltransferase activity 6.37802077991×10−5

covalent chromatin modification 0.00869777477011

peptidyl-lysine methylation 0.0025556364929

ncRNA metabolic process 0.00880839878982

osteoblast differentiation 0.00880839878982

protein methyltransferase activity 6.37802077991×10−5

palmitoyltransferase activity 0.00675811663364

histone lysine methylation 0.00202845881394

S-adenosylmethionine-dependent methyltransferase activity 0.000843521737388

tRNA aminoacylation 0.00192219276182
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Cluster 3

alcohol dehydrogenase (NAD) activity 0.00777004841489

phospholipase activity 0.00576798981364

nuclear body 0.00617334192272

retinoic acid binding 1.45975079802×10−8

monocarboxylic acid binding 1.71229944224×10−7

steroid catabolic process 0.00791946172056

arachidonic acid metabolic process 0.00588356084718

uronic acid metabolic process 0.00160940371616

positive regulation of defense response 0.00791946172056

regulation of innate immune response 0.00171614138423

diacylglycerol kinase activity 0.00617334192272

caffeine oxidase activity 0.00617334192272

nucleoside diphosphate kinase activity 2.0022774061×10−7

nucleoside triphosphate biosynthetic process 0.00728068929927

RNA biosynthetic process 4.17762963012×10−6

terpenoid metabolic process 0.00808893002574

regulation of type I interferon production 0.000475477315632

glucuronosyltransferase activity 0.000100350407124

DNA-directed RNA polymerase III complex 2.70833243265×10−6

DNA-directed RNA polymerase II, core complex 2.0022774061×10−7

transcription, DNA-templated 3.19686654415×10−6

exogenous drug catabolic process 0.000131293091226

glycerophospholipid metabolic process 0.00501167864473

Cluster 4

ceramide metabolic process 0.00245509594718

poly-N-acetyllactosamine biosynthetic process 0.0050405873955

protein O-linked glycosylation via threonine 0.00118074658032

fructose-bisphosphate aldolase activity 0.00642392195327

polysaccharide biosynthetic process 0.00740025407149

protein O-linked glycosylation via serine 0.00642392195327

acetylglucosaminyltransferase activity 0.000784576091033

acetylgalactosaminyltransferase activity 8.81983077949×10−6

regulation of peptide hormone secretion 0.0050405873955

sphingolipid biosynthetic process 0.000775055279451
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hexose metabolic process 0.00239493428124

poly-N-acetyllactosamine metabolic process 0.0050405873955

alpha-amino acid catabolic process 0.00131819398653

Table C.1. GO term enrichment of 4 enzyme clusters in H. sapiens metabolic
network. First column: GO term. Second column: p-value of the enrichment.

The 19 enzyme clusters in the metabolic network of H. sapiens from Table 4.6, Section

4.2.2 are statistically significantly enriched in GO terms listed in Table C.2.

GO term p-value

Cluster 1

regulation of peptide transport 0.000545392244054

acetylglucosaminyltransferase activity 0.00146310828643

regulation of peptide hormone secretion 0.000278599665101

glutamine family amino acid metabolic process 0.00229566962877

poly-N-acetyllactosamine metabolic process 0.00927994934645

regulation of secretion by cell 0.00300397923731

poly-N-acetyllactosamine biosynthetic process 0.00927994934645

positive regulation of hormone secretion 0.000984930562568

glutamate dehydrogenase (NAD+) activity 0.000984930562568

glutamate dehydrogenase [NAD(P)+] activity 0.00289663147545

carbohydrate homeostasis 0.000545392244054

Cluster 2

N,N-dimethylaniline monooxygenase activity 0.00056141042073

ceramidase activity 0.00537283265039

6-phosphofructokinase complex 0.00056141042073

negative regulation of signal transduction 0.00730648426577

adenyl nucleotide binding 0.00308649892024

negative regulation of cell communication 0.00730648426577

zymogen activation 0.00165972811201

ATP binding 0.0056058757954

sphingolipid biosynthetic process 0.00925860695639

regulation of peptidase activity 4.8250421169×10−5

phosphofructokinase activity 0.00537283265039

adenyl ribonucleotide binding 0.00308649892024

sphingoid metabolic process 0.000937495623343

213



dihydroceramidase activity 0.00056141042073

sphingosine biosynthetic process 4.8250421169×10−5

purine ribonucleoside binding 0.00354482336319

Cluster 3

arginase activity 0.000502314586797

acetylgalactosaminyltransferase activity 7.90145726626×10−13

nitric-oxide synthase activity 0.000502314586797

protein O-linked glycosylation via threonine 1.98917102789×10−7

protein O-linked glycosylation via serine 1.03171173853×10−5

chondroitin sulfate biosynthetic process 0.000502314586797

glycosaminoglycan metabolic process 0.00319938099115

O-glycan processing 0.000502314586797

cellular protein modification process 0.00495061943503

macromolecule glycosylation 2.09150420165×10−5

glycosaminoglycan biosynthetic process 0.00053717366259

Cluster 4

acetylglucosaminyltransferase activity 0.00396351381255

ceramide metabolic process 1.95846324655×10−5

nucleoside triphosphate catabolic process 0.00195344561366

sphingomyelin biosynthetic process 0.00195344561366

sphingolipid biosynthetic process 6.71993518642×10−6

adenylyltransferase activity 0.000777278323579

ceramide cholinephosphotransferase activity 0.00195344561366

inorganic anion transport 0.00195344561366

malate dehydrogenase (decarboxylating) (NADP+) activity 0.00195344561366

Cluster 5

fat-soluble vitamin metabolic process 7.81206238682×10−5

regulation of secretion 0.0071964719671

positive regulation of secretion 0.00178692760946

arachidonate 15-lipoxygenase activity 0.00230802061752

renal water homeostasis 0.00230802061752

epithelial cell differentiation 0.00570145764537

phenanthrene 9,10-monooxygenase activity 0.00671074030738

linoleate 13S-lipoxygenase activity 0.00230802061752

carbonyl reductase (NADPH) activity 0.00671074030738

alkane 1-monooxygenase activity 0.00230802061752
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unsaturated fatty acid metabolic process 0.000165656207175

androsterone dehydrogenase activity 0.00671074030738

renal system process involved in regulation of systemic arterial

blood pressure

0.00671074030738

leukotriene-B4 20-monooxygenase activity 0.00230802061752

estradiol 17-beta-dehydrogenase activity 0.00230802061752

diacylglycerol kinase activity 4.79836380407×10−6

3-oxo-5-alpha-steroid 4-dehydrogenase activity 0.00230802061752

icosanoid catabolic process 0.00230802061752

isoprenoid catabolic process 6.70255389583×10−5

long-chain fatty acid metabolic process 0.00587366284063

positive regulation of organic acid transport 0.00671074030738

retinoic acid catabolic process 0.000106660773032

trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activity 0.00230802061752

exogenous drug catabolic process 0.000150923161808

leukotriene metabolic process 0.00081389867487

arachidonate 12-lipoxygenase activity 0.000106660773032

terpenoid metabolic process 0.00222599527077

cellular response to jasmonic acid stimulus 0.000412248000885

monocarboxylic acid binding 0.00299436362643

ketosteroid monooxygenase activity 0.00671074030738

lipoxygenase pathway 0.000412248000885

leukotriene B4 catabolic process 0.00230802061752

water homeostasis 0.00230802061752

arachidonic acid metabolic process 6.64504225378×10−6

Cluster 6

Ada2/Gcn5/Ada3 transcription activator complex 0.00142814931413

DNA replication 0.000199986431668

base-excision repair, gap-filling 0.00142814931413

acetyltransferase complex 0.00142814931413

protein phosphatase binding 0.00816357862462

nucleotide-excision repair, DNA gap filling 5.13327096738×10−5

DNA polymerase activity 0.000486962726909

phosphatidylinositol 3-kinase activity 0.00142814931413

intracellular signal transduction 0.00459787562859

positive regulation of transferase activity 0.00816357862462
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phosphatidylinositol phosphate kinase activity 0.00142814931413

cortisol biosynthetic process 0.00816357862462

phosphatidylinositol 3-kinase complex 0.00142814931413

phosphatidylinositol kinase activity 5.13327096738×10−5

lipid phosphorylation 0.000948614883387

aldosterone biosynthetic process 0.00816357862462

glycerophospholipid biosynthetic process 0.002210818121

DNA biosynthetic process 0.000948614883387

glycerophospholipid metabolic process 1.79969129337×10−5

response to potassium ion 0.00142814931413

steroid 11-beta-monooxygenase activity 0.00418178252708

histone H3 acetylation 0.00142814931413

glucocorticoid metabolic process 0.00816357862462

Cluster 7

alcohol dehydrogenase (NAD) activity 1.30243276319×10−6

lysophospholipid acyltransferase activity 0.00225888789787

phospholipase A2 activity 0.000304285308076

aldehyde dehydrogenase [NAD(P)+] activity 0.000247813081953

negative regulation of carbohydrate metabolic process 9.16123259115×10−5

primary alcohol metabolic process 0.00113701020372

retinoic acid binding 8.841039012×10−12

regulation of carbohydrate metabolic process 0.00162342459554

regulation of cellular ketone metabolic process 0.00924744149146

negative regulation of lipid metabolic process 0.00431397226454

regulation of cellular carbohydrate metabolic process 0.00162342459554

monocarboxylic acid binding 1.95553573334×10−11

glycerophospholipid metabolic process 0.000269209645729

glucuronosyltransferase activity 1.25566224085×10−13

uronic acid metabolic process 4.02189392901×10−12

phosphatidylcholine acyl-chain remodeling 0.00402179979617

Cluster 8

L-ascorbic acid metabolic process 0.00985915492932

cellular response to cGMP 0.00985915492932

nucleoside diphosphate kinase activity 1.2714274078×10−12

negative regulation of ion transmembrane transporter activity 0.00985915492932

nucleoside triphosphate metabolic process 3.47652203339×10−5
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nucleoside triphosphate biosynthetic process 6.20325591449×10−7

leukocyte differentiation 0.00985915492932

RNA biosynthetic process 6.50991482942×10−11

nucleoside diphosphate metabolic process 2.49162731703×10−6

cellular response to organic cyclic compound 0.00128683773729

positive regulation of immune response 0.00148133135366

regulation of type I interferon production 8.30747724612×10−7

positive regulation of cytokine production 0.00770714258585

transcription, DNA-templated 4.05653288738×10−12

adenylate kinase activity 0.00118724138837

positive regulation of defense response 4.88320530324×10−5

regulation of defense response 0.000387243057092

negative regulation of transmembrane transport 0.00985915492932

response to macrophage colony-stimulating factor 0.00985915492932

DNA-directed RNA polymerase II, core complex 1.2714274078×10−12

DNA-directed RNA polymerase III complex 5.63592505998×10−11

regulation of innate immune response 8.83096626758×10−6

phosphoric diester hydrolase activity 0.00647155226004

guanyl nucleotide binding 0.0078770144057

guanyl ribonucleotide binding 0.0078770144057

caffeine oxidase activity 0.00356929967823

nucleobase-containing compound kinase activity 4.32982258136×10−6

peptide disulfide oxidoreductase activity 0.00985915492932

Cluster 9

acylglycerol metabolic process 0.0059673109137

aldehyde dehydrogenase (NAD) activity 0.000128024871741

neutral lipid catabolic process 0.00855984137165

high-density lipoprotein particle remodeling 0.00266722736524

triglyceride lipase activity 0.00523416499316

Cluster 10

porphyrin-containing compound biosynthetic process 0.000759655470805

heme a biosynthetic process 0.00523983059161

glycosaminoglycan metabolic process 0.00209358399186

response to vitamin D 0.000369949528004

tetrapyrrole biosynthetic process 0.000759655470805

mannosyltransferase activity 0.000759655470805
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aminoglycan catabolic process 0.000759655470805

cellular response to light stimulus 0.00140276492157

heparanase activity 0.00523983059161

response to UV 0.00630537318887

response to sterol 0.00523983059161

pantetheine hydrolase activity 0.00523983059161

osteoblast differentiation 0.00630537318887

response to interleukin-1 0.00332483835499

hyaluronoglucuronidase activity 0.00523983059161

Cluster 11

fatty acid biosynthetic process 0.000637582106715

regulation of intracellular transport 0.00914880405747

positive regulation of transmembrane transport 0.00283566756057

regulation of phosphatase activity 0.000313609983214

regulation of calcium ion transport into cytosol 0.000614149022136

positive regulation of ion transmembrane transporter activity 0.00283566756057

fatty acid synthase activity 0.00283566756057

very long-chain fatty acid metabolic process 5.60751889367×10−10

3-hydroxyacyl-CoA dehydratase activity 0.00469811878164

positive regulation of ion transport 0.00668035176894

butyrate-CoA ligase activity 0.00469811878164

carboxylic acid biosynthetic process 0.00561008145297

beta-galactoside alpha-2,6-sialyltransferase activity 0.00469811878164

protein kinase activity 0.00914880405747

regulation of cytokinesis 0.00283566756057

regulation of cyclic-nucleotide phosphodiesterase activity 0.000313609983214

regulation of muscle system process 0.0011927659888

protein kinase binding 0.00163000613914

Cluster 12

chitinase activity 0.00523983059161

regulation of interferon-gamma production 0.00523983059161

natriuretic peptide receptor activity 0.00523983059161

macromolecule deacylation 0.00523983059161

chitin metabolic process 0.00523983059161

palmitoyltransferase activity 2.56777313428×10−5

C-acyltransferase activity 0.00332483835499
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regulation of interleukin-2 production 0.00523983059161

biliverdin reductase activity 0.00523983059161

Cluster 13

regulation of Wnt signaling pathway 0.00523983059161

protein methyltransferase activity 2.35367281221×10−13

N-methyltransferase activity 2.35367281221×10−13

Set1C/COMPASS complex 0.00523983059161

covalent chromatin modification 3.89142096324×10−9

positive regulation of biosynthetic process 0.00334715726731

ncRNA metabolic process 0.00630537318887

peptidyl-lysine methylation 1.26323285166×10−10

S-adenosylmethionine-dependent methyltransferase activity 7.79376563287×10−14

cellular response to decreased oxygen levels 0.00630537318887

pyrophosphatase activity 1.64589927076×10−6

regulation of macromolecule biosynthetic process 0.000980134018061

regulatory region DNA binding 0.000121382632547

sequence-specific DNA binding 0.000369949528004

RNA polymerase II core promoter proximal region sequence-

specific DNA binding transcription factor activity involved in

positive regulation of transcription

0.00523983059161

histone lysine methylation 1.05771591485×10−9

monovalent inorganic cation transport 0.00034430351978

MHC class I protein binding 0.00523983059161

regulation of RNA metabolic process 0.000563233893036

regulation of cellular biosynthetic process 0.00326765055607

regulation of gene expression 0.00284923374714

regulation of nucleobase-containing compound metabolic pro-

cess

0.000472831162781

cellular protein modification process 0.00133042799092

positive regulation of nitrogen compound metabolic process 0.00504165744289

glutaminyl-tRNA synthase (glutamine-hydrolyzing) activity 0.000369949528004

tRNA aminoacylation 0.00332483835499

translation 0.000369949528004

Cluster 14

glucosyltransferase activity 0.00786699212521

UDP-glucosyltransferase activity 0.00480634205464
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glucan metabolic process 0.00786699212521

prostanoid metabolic process 0.00167368710541

coenzyme A metabolic process 0.000422434124588

glucan biosynthetic process 0.000830624772471

phosphoglycerate mutase activity 8.78398627689×10−5

cellular glucan metabolic process 0.00786699212521

isocitrate dehydrogenase activity 0.00244709095957

purine nucleoside bisphosphate metabolic process 0.0007250193856

nucleoside bisphosphate biosynthetic process 0.00480634205464

nucleoside bisphosphate metabolic process 0.0007250193856

glycogen biosynthetic process 0.000830624772471

Cluster 15

histone-threonine phosphorylation 0.00435339308504

L-serine ammonia-lyase activity 0.00435339308504

regulation of cellular protein localization 0.00799174572515

regulation of blood vessel size 0.00435339308504

positive regulation of protein localization to nucleus 0.00253676367504

isopentenyl-diphosphate delta-isomerase activity 0.00435339308504

oxidoreduction coenzyme metabolic process 0.00476094968996

protein kinase activity 0.00777375319713

protein farnesylation 0.00435339308504

Cluster 16

hydrogen sulfide biosynthetic process 0.000758396531881

pyrimidine-containing compound biosynthetic process 0.00720163341439

tetrahydrofolate metabolic process 0.00720163341439

cysteine metabolic process 0.00439603751703

dihydrofolate reductase activity 0.000758396531881

Cluster 17

acylglycerol metabolic process 3.58860130253×10−5

acylglycerol biosynthetic process 0.000689514424748

choline kinase activity 0.00115236875817

primary amine oxidase activity 0.00115236875817

retinol dehydrogenase activity 3.71592960405×10−5

branched-chain amino acid catabolic process 0.00662177660088

phosphatidylcholine biosynthetic process 0.000689514424748

S-adenosylmethionine biosynthetic process 0.00115236875817
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terpenoid metabolic process 0.00264006430028

ethanolamine kinase activity 0.00338314165604

ion channel activity 0.00338314165604

Cluster 18

acetate-CoA ligase activity 0.00386092780403

acyl-CoA biosynthetic process 0.000890458017772

tryptophan 2,3-dioxygenase activity 0.00386092780403

fructose-bisphosphate aldolase activity 0.000232944296515

indoleamine 2,3-dioxygenase activity 0.00386092780403

acetyl-CoA metabolic process 0.00406736214002

glycine hydroxymethyltransferase activity 0.00386092780403

Cluster 19

alpha-sialidase activity 0.000219299381388

organic anion transport 0.00510534828812

positive regulation of organelle organization 0.00510534828812

very-low-density lipoprotein particle assembly 0.00217371894418

negative regulation of chromatin modification 0.0070422535209

long-chain fatty acid transport 0.0070422535209

DNA-methyltransferase activity 0.00217371894418

N-acyltransferase activity 0.00959472054332

long-chain fatty acid-CoA ligase activity 2.27515072337×10−8

3-hydroxybutyrate dehydrogenase activity 0.0070422535209

branched-chain-amino-acid transaminase activity 0.0070422535209

cholesterol binding 0.0005785676842

glycosphingolipid metabolic process 0.00425002964653

protein-lipid complex assembly 0.00217371894418

positive regulation of chromatin modification 0.0070422535209

oligosaccharide catabolic process 4.68505965401×10−5

membrane lipid catabolic process 0.00425002964653

very long-chain fatty acid-CoA ligase activity 0.0005785676842

glycolipid catabolic process 0.00134586107042

methylcrotonoyl-CoA carboxylase activity 0.0070422535209

Table C.2. GO term enrichment of 19 enzyme clusters in H. sapiens
metabolic network. First column: GO term. Second column: p-value
of the enrichment.
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C.2 GO Enrichment of Enzyme Sets Corresponding to

Characteristic Topological Patterns

For the enzymes that are annotated with purine nucleotide metabolic process and that

touch graphlets G2 at orbit 6 in H. sapiens metabolic network, we find that the set of

enzymes touching these graphlets at orbit 5 is statistically significantly enriched in GO

terms listed in Table C.3.

For the enzymes annotated with purine nucleotide metabolic process and that touch

graphlets G5 at orbit 11 in H. sapiens metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.4.

For the enzymes that are annotated with purine nucleotide metabolic process and

that touch graphlets G2 at orbit 6 in M. musculus metabolic network, we find that the

set of enzymes touching these graphlets at orbit 5 is statistically significantly enriched

in GO terms listed in Table C.5.

For the enzymes annotated with purine nucleotide metabolic process and that touch

graphlets G5 at orbit 11 in M. musculus metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.6.

For the enzymes that are annotated with purine nucleotide metabolic process and that

touch graphlets G2 at orbit 6 in D. melanogaster metabolic network, we find that the

set of enzymes touching these graphlets at orbit 5 is statistically significantly enriched

in GO terms listed in Table C.7.

For the enzymes annotated with purine nucleotide metabolic process and that touch

graphlets G5 at orbit 11 in D. melanogaster metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.8.

For the enzymes that are annotated with ribose phosphate metabolic process and

that touch graphlets G2 at orbit 6 in H. sapiens metabolic network, we find that the

set of enzymes touching these graphlets at orbit 5 is statistically significantly enriched

in GO terms listed in Table C.9.

For the enzymes annotated with ribose phosphate metabolic process and that touch

graphlets G5 at orbit 11 in H. sapiens metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.10.

For the enzymes that are annotated with ribose phosphate metabolic process and
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GO term p-value

nucleotide catabolic process 0.000139137872827
nucleotide biosynthetic process 2.09179133526×10−6

nucleoside biosynthetic process 0.00183488292176
nucleoside diphosphate kinase activity 1.79161463443×10−10

nucleoside triphosphate metabolic process 8.37254164876×10−5

nucleoside triphosphate biosynthetic process 5.66784749559×10−5

ribonucleotide catabolic process 0.00017083973161
adenyl ribonucleotide binding 6.82423649498×10−5

transcription, DNA-templated 2.05737837877×10−9

RNA biosynthetic process 1.6815517867×10−9

purine nucleoside metabolic process 0.000288531256083
nucleoside diphosphate metabolic process 2.83476893258×10−5

adenyl nucleotide binding 6.82423649498×10−5

positive regulation of immune response 1.19719222883×10−5

regulation of type I interferon production 1.51711257443×10−5

positive regulation of cytokine production 0.00552320503685
ribose phosphate biosynthetic process 0.000348117418135
regulation of innate immune response 9.81066176295×10−5

nucleotide metabolic process 2.86996816645×10−7

ribonucleoside metabolic process 0.000423276719616
adenylate kinase activity 0.00724700883331
positive regulation of defense response 0.00051278407008
regulation of defense response 0.00363712307552
purine nucleotide metabolic process 5.42007299598×10−7

DNA-directed RNA polymerase II, core complex 1.79161463443×10−10

DNA-directed RNA polymerase III complex 8.07663069757×10−9

nucleotide-excision repair, DNA gap filling 0.00401747992595
RNA polymerase activity 0.00401747992595
phosphoric diester hydrolase activity 0.00803251987665
nucleoside monophosphate biosynthetic process 0.000903691572726
phosphorylation 0.00541458825394
nucleoside monophosphate metabolic process 8.37254164876×10−5

ribonucleotide metabolic process 4.39674207042×10−8

myeloid cell differentiation 0.00401747992595
nucleobase-containing compound kinase activity 3.03581474603×10−6

purine-containing compound catabolic process 0.000697255183771
ubiquitin protein ligase binding 0.00724700883331

Table C.3. GO term enrichment of enzymes touching orbit 5 in H. sapiens
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with purine nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide catabolic process 5.30681652056×10−5

nucleotide biosynthetic process 3.86453591128×10−7

nucleoside biosynthetic process 0.000912669748425
nucleoside diphosphate kinase activity 5.71358516055×10−11

nucleoside triphosphate metabolic process 3.14592083027×10−5

nucleoside triphosphate biosynthetic process 2.41254319037×10−5

ribonucleotide catabolic process 6.987208625×10−5

adenyl ribonucleotide binding 0.000136493119549
transcription, DNA-templated 6.00953842245×10−10

positive regulation of cytokine production 0.00302314673943
RNA biosynthetic process 4.49683845716×10−10

purine nucleoside metabolic process 0.000441586595457
nucleoside diphosphate metabolic process 1.10888880278×10−5

adenyl nucleotide binding 0.000136493119549
positive regulation of immune response 5.76643246153×10−6

regulation of type I interferon production 8.62577299121×10−6

regulation of innate immune response 6.14091768376×10−5

nucleotide metabolic process 1.6392758484×10−8

ribonucleoside metabolic process 0.00056245187314
adenylate kinase activity 0.00511901885652
positive regulation of defense response 0.000325326189435
regulation of defense response 0.00236973468809
purine nucleotide metabolic process 7.77104436356×10−8

DNA-directed RNA polymerase II, core complex 5.71358516055×10−11

DNA-directed RNA polymerase III complex 3.09919767627×10−9

nucleotide-excision repair, DNA gap filling 0.00304031248855
RNA polymerase activity 0.00304031248855
phosphoric diester hydrolase activity 0.00422834573084
ribose phosphate biosynthetic process 0.000154842644698
nucleoside monophosphate metabolic process 3.14592083027×10−5

ribonucleotide metabolic process 5.35720856565×10−9

nucleoside monophosphate biosynthetic process 0.000500439429898
nucleobase-containing compound kinase activity 6.94098122089×10−7

purine-containing compound biosynthetic process 0.00683599594482
purine-containing compound catabolic process 0.00029807956557

Table C.4. GO term enrichment of enzymes touching orbits 10 or 12 in H. sapiens
metabolic network when the enzymes touching orbit 11 of the same
graphlet are annotated with purine nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide catabolic process 0.000410375245616
nucleotide biosynthetic process 1.06858744076×10−10

nucleoside biosynthetic process 0.000641527638692
cilium movement 0.00153598545297
nucleoside triphosphate metabolic process 8.16637146794×10−9

nucleoside triphosphate catabolic process 0.000105768986782
deoxyribonucleotide biosynthetic process 0.000790400765506
deoxyribonucleotide catabolic process 0.000790400765506
DNA-directed RNA polymerase I complex 1.94190319335×10−5

deoxyribose phosphate catabolic process 0.00562309567845
nucleoside diphosphate metabolic process 0.00836819230451
ribose phosphate biosynthetic process 2.0590699866×10−5

nucleotide metabolic process 1.50512935448×10−12

ribonucleoside metabolic process 0.000865009490838
purine nucleotide metabolic process 6.50716147632×10−11

nucleoside monophosphate metabolic process 1.54795326908×10−5

ribonucleotide metabolic process 2.88948844729×10−6

nucleoside monophosphate biosynthetic process 0.000813941504429
nucleoside monophosphate catabolic process 0.00562309567845
nucleobase-containing compound kinase activity 0.00215966432502
purine-containing compound biosynthetic process 1.67162811926×10−7

2’-deoxyribonucleotide metabolic process 4.9414917433×10−5

Table C.5. GO term enrichment of enzymes touching orbit 5 in M. musculus
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with purine nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide catabolic process 0.000347705479615
nucleotide biosynthetic process 7.37931937778×10−12

nucleoside biosynthetic process 7.64818267278×10−5

cilium movement 0.00143246292186
nucleoside triphosphate metabolic process 6.29348562153×10−9

nucleoside triphosphate catabolic process 9.42562613476×10−5

deoxyribonucleotide biosynthetic process 0.000721469223498
deoxyribonucleotide catabolic process 0.000721469223498
DNA-directed RNA polymerase I complex 1.72630529772×10−5

deoxyribose phosphate catabolic process 0.00525553883157
purine nucleoside metabolic process 0.00252705625906
nucleoside diphosphate metabolic process 0.00769128555423
adenylyltransferase activity 0.000300256779766
nucleotide metabolic process 1.14586118372×10−12

ribonucleoside metabolic process 0.000151138328517
purine nucleotide metabolic process 5.58242341242×10−12

ribonucleotide metabolic process 3.24050657752×10−7

ribose phosphate biosynthetic process 1.97342211239×10−6

nucleoside monophosphate metabolic process 1.26925178126×10−5

nucleoside monophosphate biosynthetic process 0.000728873723372
nucleoside monophosphate catabolic process 0.00525553883157
nucleobase-containing compound kinase activity 0.00197589514898
purine-containing compound biosynthetic process 1.54616328629×10−8

2’-deoxyribonucleotide metabolic process 4.30866121032×10−5

Table C.6. GO term enrichment of enzymes touching orbits 10 or 12 in M. mus-
culus metabolic network when the enzymes touching orbit 11 of the
same graphlet are annotated with purine nucleotide metabolic process.
First column: GO term. Second column: p-value of the enrichment.

GO term p-value

ribonucleotide metabolic process 0.00457072512321
purine nucleotide metabolic process 0.00457072512321
DNA-directed RNA polymerase II, core complex 0.00064549982473
nucleotide metabolic process 0.000767128336139

Table C.7. GO term enrichment of enzymes touching orbit 5 in D. melanogaster
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with purine nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.

226



GO term p-value

nucleotide biosynthetic process 0.00149791055107
ribonucleotide metabolic process 0.000670604413007
purine nucleotide metabolic process 0.000670604413007
DNA-directed RNA polymerase II, core complex 0.000712275668912
nucleotide metabolic process 0.000122799296242

Table C.8. GO term enrichment of enzymes touching orbits 10 or 12 in D.
melanogaster metabolic network when the enzymes touching orbit 11
of the same graphlet are annotated with purine nucleotide metabolic
process. First column: GO term. Second column: p-value of the enrichment.

that touch graphlets G2 at orbit 6 in M. musculus metabolic network, we find that the

set of enzymes touching these graphlets at orbit 5 is statistically significantly enriched

in GO terms listed in Table C.11.

For the enzymes annotated with ribose phosphate metabolic process and that touch

graphlets G5 at orbit 11 in M. musculus metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.12.

For the enzymes that are annotated with ribose phosphate metabolic process and that

touch graphlets G2 at orbit 6 in D. melanogaster metabolic network, we find that the

set of enzymes touching these graphlets at orbit 5 is statistically significantly enriched

in GO terms listed in Table C.13.

For the enzymes annotated with ribose phosphate metabolic process and that touch

graphlets G5 at orbit 11 in D. melanogaster metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.14.

For the enzymes that are annotated with cyclic nucleotide metabolic process and that

touch graphlets G2 at orbit 6 in H. sapiens metabolic network, we find that the set of

enzymes touching these graphlets at orbit 5 is statistically significantly enriched in GO

terms listed in Table C.15.

For the enzymes annotated with cyclic nucleotide metabolic process and that touch

graphlets G5 at orbit 11 in H. sapiens metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.16.

For the enzymes that are annotated with cyclic nucleotide metabolic process and that

touch graphlets G2 at orbit 6 in M. musculus metabolic network, we find that the set

of enzymes touching these graphlets at orbit 5 is statistically significantly enriched in

GO terms listed in Table C.17.
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GO term p-value

nucleotide catabolic process 0.000151048912701
nucleotide biosynthetic process 2.41337586149×10−6

nucleoside biosynthetic process 0.000373047937047
nucleoside diphosphate kinase activity 1.97584948403×10−10

nucleoside triphosphate metabolic process 9.10172697846×10−5

nucleoside triphosphate biosynthetic process 6.09824402275×10−5

ribonucleotide catabolic process 0.000184385388112
adenyl ribonucleotide binding 7.46242449733×10−5

transcription, DNA-templated 2.28743024522×10−9

RNA biosynthetic process 1.88354098984×10−9

nucleoside diphosphate metabolic process 0.00021598566696
adenyl nucleotide binding 7.46242449733×10−5

positive regulation of immune response 1.27496842386×10−5

regulation of type I interferon production 1.59296817441×10−5

positive regulation of cytokine production 0.00581366612092
regulation of innate immune response 0.000102160609657
nucleotide metabolic process 3.64105515738×10−7

ribonucleoside metabolic process 0.000118203526353
adenylate kinase activity 0.00746712993431
positive regulation of defense response 0.000533315242821
regulation of defense response 0.003773549597
purine nucleotide metabolic process 6.38709502288×10−7

DNA-directed RNA polymerase II, core complex 1.97584948403×10−10

DNA-directed RNA polymerase III complex 8.7725930964×10−9

nucleotide-excision repair, DNA gap filling 0.00411546724079
RNA polymerase activity 0.00411546724079
nucleoside monophosphate metabolic process 9.10172697846×10−5

phosphoric diester hydrolase activity 0.00848082409569
ribonucleotide metabolic process 9.28383592225×10−9

ribose phosphate biosynthetic process 5.89233961904×10−5

purine nucleoside metabolic process 0.00122950274736
phosphorylation 0.00588663490718
nucleoside monophosphate biosynthetic process 0.000950682855103
pyrimidine nucleotide metabolic process 0.00162483187895
myeloid cell differentiation 0.00411546724079
nucleobase-containing compound kinase activity 6.01778139098×10−7

purine-containing compound catabolic process 0.000749501000677
ubiquitin protein ligase binding 0.00746712993431

Table C.9. GO term enrichment of enzymes touching orbit 5 in H. sapiens
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with ribose phosphate metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide catabolic process 5.82108330626×10−5

nucleotide biosynthetic process 4.54814658157×10−7

nucleoside biosynthetic process 0.000167340542799
nucleoside diphosphate kinase activity 6.36134478427×10−11

nucleoside triphosphate metabolic process 3.45545594969×10−5

nucleoside triphosphate biosynthetic process 2.61766391187×10−5

ribonucleotide catabolic process 7.61235419343×10−5

adenyl ribonucleotide binding 0.00014931637621
transcription, DNA-templated 6.75332678668×10−10

positive regulation of cytokine production 0.00320341363031
RNA biosynthetic process 5.0968240739×10−10

nucleoside diphosphate metabolic process 9.54776282008×10−5

adenyl nucleotide binding 0.00014931637621
positive regulation of immune response 6.18136753416×10−6

regulation of type I interferon production 9.1005857763×10−6

ribose phosphate biosynthetic process 2.3614712782×10−5

regulation of innate immune response 6.42005030653×10−5

nucleotide metabolic process 2.16929898489×10−8

ribonucleoside metabolic process 0.000156609960835
adenylate kinase activity 0.00529124655973
positive regulation of defense response 0.000339700080058
regulation of defense response 0.00246848948203
purine nucleotide metabolic process 9.37471139606×10−8

DNA-directed RNA polymerase II, core complex 6.36134478427×10−11

DNA-directed RNA polymerase III complex 3.39381722725×10−9

nucleotide-excision repair, DNA gap filling 0.00312174942972
RNA polymerase activity 0.00312174942972
nucleoside monophosphate metabolic process 3.45545594969×10−5

phosphoric diester hydrolase activity 0.00449836362002
ribonucleotide metabolic process 1.01764596749×10−9

purine nucleoside metabolic process 0.0018640475526
nucleoside monophosphate biosynthetic process 0.000529484483356
pyrimidine nucleotide metabolic process 0.00104888931866
nucleobase-containing compound kinase activity 1.23830740106×10−7

purine-containing compound biosynthetic process 0.00729209044188
purine-containing compound catabolic process 0.000323450296654

Table C.10. GO term enrichment of enzymes touching orbits 10 or 12 in H. sapiens
metabolic network when the enzymes touching orbit 11 of the same
graphlet are annotated with ribose phosphate metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide catabolic process 0.000268745038165
nucleotide biosynthetic process 3.1135982681×10−11

nucleoside biosynthetic process 0.000422830941328
cilium movement 0.00128606728303
nucleoside triphosphate metabolic process 4.20379231425×10−9

nucleoside triphosphate catabolic process 7.88684960144×10−5

deoxyribonucleotide catabolic process 0.000626510099194
deoxyribonucleotide biosynthetic process 0.000626510099194
DNA-directed RNA polymerase I complex 1.43920623612×10−5

deoxyribose phosphate catabolic process 0.00473382212615
nucleoside diphosphate metabolic process 0.00674829929982
ribose phosphate biosynthetic process 1.13397687737×10−5

purine nucleoside metabolic process 0.00654776811725
nucleotide metabolic process 1.00042196749×10−12

ribonucleoside metabolic process 0.000509450579749
purine nucleotide metabolic process 1.64278590731×10−11

ribonucleotide metabolic process 1.23028537691×10−6

nucleoside monophosphate metabolic process 9.32792813169×10−6

nucleoside monophosphate biosynthetic process 0.000614324688629
nucleoside monophosphate catabolic process 0.00473382212615
nucleobase-containing compound kinase activity 0.00172179330687
purine-containing compound biosynthetic process 6.16755195804×10−8

2’-deoxyribonucleotide metabolic process 3.4852049724×10−5

Table C.11. GO term enrichment of enzymes touching orbit 5 in M. musculus
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with ribose phosphate metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide catabolic process 0.000224902995547
nucleotide biosynthetic process 2.10231831943×10−12

nucleoside biosynthetic process 4.63487893747×10−5

cilium movement 0.0011942323281
nucleoside triphosphate metabolic process 3.1825688751×10−9

nucleoside triphosphate catabolic process 6.97673673813×10−5

deoxyribonucleotide biosynthetic process 0.000568547733544
deoxyribonucleotide catabolic process 0.000568547733544
DNA-directed RNA polymerase I complex 1.27003708446×10−5

deoxyribose phosphate catabolic process 0.00440531978569
purine nucleoside metabolic process 0.00151141698945
nucleoside diphosphate metabolic process 0.00616618511956
ribose phosphate biosynthetic process 9.90601465856×10−7

adenylyltransferase activity 0.000223596825416
nucleotide metabolic process 3.08419956241×10−13

ribonucleoside metabolic process 8.12021820856×10−5

purine nucleotide metabolic process 1.59239288422×10−12

ribonucleotide metabolic process 1.23845618205×10−7

nucleoside monophosphate metabolic process 7.5416965043×10−6

nucleoside monophosphate biosynthetic process 0.000546062855761
nucleoside monophosphate catabolic process 0.00440531978569
nucleobase-containing compound kinase activity 0.00156610846777
purine-containing compound biosynthetic process 5.08498365637×10−9

purine-containing compound catabolic process 0.00963133376838
2’-deoxyribonucleotide metabolic process 3.01172053138×10−5

Table C.12. GO term enrichment of enzymes touching orbits 10 or 12 in M. mus-
culus metabolic network when the enzymes touching orbit 11 of the
same graphlet are annotated with ribose phosphate metabolic process.
First column: GO term. Second column: p-value of the enrichment.

GO term p-value

ribonucleotide metabolic process 0.00457072512321
purine nucleotide metabolic process 0.00457072512321
DNA-directed RNA polymerase II, core complex 0.00064549982473
nucleotide metabolic process 0.000767128336139

Table C.13. GO term enrichment of enzymes touching orbit 5 in D. melanogaster
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with ribose phosphate metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

nucleotide biosynthetic process 0.00149791055107
ribonucleotide metabolic process 0.000670604413007
purine nucleotide metabolic process 0.000670604413007
DNA-directed RNA polymerase II, core complex 0.000712275668912
nucleotide metabolic process 0.000122799296242

Table C.14. GO term enrichment of enzymes touching orbits 10 or 12 in D.
melanogaster metabolic network when the enzymes touching orbit 11
of the same graphlet are annotated with ribose phosphate metabolic
process. First column: GO term. Second column: p-value of the enrichment.

GO term p-value

adenylate kinase activity 0.000692977590416
nucleotide catabolic process 0.000714939731469
nucleotide biosynthetic process 9.00436690527×10−5

regulation of defense response 0.000197947467289
response to macrophage colony-stimulating factor 0.00747890606934
positive regulation of defense response 2.43930059655×10−5

cellular response to cGMP 0.00747890606934
purine nucleotide metabolic process 5.25831408771×10−6

DNA-directed RNA polymerase II, core complex 7.29749594086×10−13

DNA-directed RNA polymerase III complex 1.22880594589×10−11

nucleoside triphosphate metabolic process 0.00291343081481
nucleoside triphosphate biosynthetic process 0.000269648844699
nucleoside diphosphate kinase activity 7.59053930821×10−10

regulation of type I interferon production 3.54009670578×10−7

ribonucleotide catabolic process 0.00165540148065
leukocyte differentiation 0.00747890606934
ribose phosphate biosynthetic process 0.00509385926732
transcription, DNA-templated 7.93587418002×10−13

positive regulation of cytokine production 0.00382602665904
RNA biosynthetic process 9.7428731749×10−12

nucleoside monophosphate metabolic process 9.59766265107×10−6

ribonucleotide metabolic process 3.05550410928×10−6

nucleoside monophosphate biosynthetic process 0.000213699454149
purine nucleoside metabolic process 0.0063012644724
nucleoside diphosphate metabolic process 0.000605731832889
positive regulation of immune response 0.00077471919838
myeloid cell differentiation 0.000633642875923
nucleobase-containing compound kinase activity 7.15134178209×10−7

regulation of innate immune response 4.36051067398×10−6

nucleotide metabolic process 2.02063799237×10−6

ribonucleoside metabolic process 0.00428577005878

Table C.15. GO term enrichment of enzymes touching orbit 5 in H. sapiens
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with cyclic nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

adenylate kinase activity 0.000579914517673
nucleotide catabolic process 0.000519606088899
nucleotide biosynthetic process 5.40359271366×10−5

regulation of defense response 0.000158476250664
response to macrophage colony-stimulating factor 0.00682885189876
positive regulation of defense response 1.93953590195×10−5

cellular response to cGMP 0.00682885189876
purine nucleotide metabolic process 2.72021858994×10−6

DNA-directed RNA polymerase II, core complex 1.22757359833×10−12

DNA-directed RNA polymerase III complex 7.56383844447×10−12

nucleoside triphosphate metabolic process 0.00222392157498
nucleoside triphosphate biosynthetic process 0.00020076826701
nucleoside diphosphate kinase activity 4.71678807124×10−10

ribonucleotide catabolic process 0.00125471153481
leukocyte differentiation 0.00682885189876
ribose phosphate biosynthetic process 0.00403720368682
transcription, DNA-templated 1.00697228334×10−12

purine nucleoside metabolic process 0.00473063285663
RNA biosynthetic process 5.49427170426×10−12

nucleoside monophosphate metabolic process 6.2309284623×10−6

ribonucleotide metabolic process 1.56794999617×10−6

nucleoside monophosphate biosynthetic process 0.00016472712032
nucleoside diphosphate metabolic process 0.000454238515502
positive regulation of immune response 0.00062448193648
regulation of type I interferon production 2.67152766131×10−7

positive regulation of cytokine production 0.00302195801386
nucleobase-containing compound kinase activity 3.88908336979×10−7

purine-containing compound biosynthetic process 0.00871990785067
regulation of innate immune response 3.45518869505×10−6

nucleotide metabolic process 7.60718349313×10−7

ribonucleoside metabolic process 0.00310758973214

Table C.16. GO term enrichment of enzymes touching orbits 10 or 12 in H. sapiens
metabolic network when the enzymes touching orbit 11 of the same
graphlet are annotated with cyclic nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

long-term memory 0.00413160714693
nucleotide catabolic process 0.00422811604743
nucleotide biosynthetic process 0.000694616775687
cilium movement 0.00025788251794
negative regulation of embryonic development 0.00413160714693
purine nucleotide metabolic process 1.04705806236×10−6

nucleoside triphosphate metabolic process 0.00968562286096
regulation of ERBB signaling pathway 0.00413160714693
regulation of catecholamine metabolic process 0.00413160714693
ribose phosphate biosynthetic process 5.88657444562×10−5

nucleoside monophosphate metabolic process 2.31287462396×10−5

ribonucleotide metabolic process 2.78588064939×10−6

nucleoside monophosphate catabolic process 0.000984205886121
DNA-directed RNA polymerase I complex 9.45224824966×10−7

nucleoside diphosphate metabolic process 0.000907524707261
nucleoside salvage 0.00234787559214
pyruvate kinase activity 0.00413160714693
nucleobase-containing compound kinase activity 0.00448126108738
purine-containing compound biosynthetic process 4.91084484089×10−6

nucleotide metabolic process 2.17323301732×10−6

Table C.17. GO term enrichment of enzymes touching orbit 5 in M. musculus
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with cyclic nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.
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GO term p-value

long-term memory 0.00396297012122
nucleotide catabolic process 0.000500120828581
nucleotide biosynthetic process 0.000590499578823
cilium movement 0.000242093792955
purine nucleotide metabolic process 9.95288754746×10−8

nucleoside triphosphate metabolic process 0.00109439493541
regulation of ERBB signaling pathway 0.00396297012122
regulation of catecholamine metabolic process 0.00396297012122
ribonucleotide catabolic process 0.00489106978343
ribose phosphate biosynthetic process 5.02487646896×10−5

nucleoside monophosphate metabolic process 2.00447404655×10−5

ribonucleotide metabolic process 2.54199133409×10−7

nucleoside monophosphate catabolic process 0.000924914183122
DNA-directed RNA polymerase I complex 8.48773565432×10−7

nucleoside diphosphate metabolic process 0.000837159004529
nucleoside salvage 0.00220872562233
pyruvate kinase activity 0.00396297012122
nucleobase-containing compound kinase activity 0.00422003021046
purine-containing compound biosynthetic process 3.86233719252×10−6

nucleotide metabolic process 2.55472766386×10−7

Table C.18. GO term enrichment of enzymes touching orbits 10 or 12 in M. mus-
culus metabolic network when the enzymes touching orbit 11 of the
same graphlet are annotated with cyclic nucleotide metabolic process.
First column: GO term. Second column: p-value of the enrichment.

For the enzymes annotated with cyclic nucleotide metabolic process and that touch

graphlets G5 at orbit 11 in M. musculus metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.18.

For the enzymes that are annotated with cyclic nucleotide metabolic process and that

touch graphlets G2 at orbit 6 in D. melanogaster metabolic network, we find that the

set of enzymes touching these graphlets at orbit 5 is statistically significantly enriched

in GO terms listed in Table C.19.

For the enzymes annotated with cyclic nucleotide metabolic process and that touch

graphlets G5 at orbit 11 in D. melanogaster metabolic network, we find that the set of

enzymes touching graphlets G5 at the remaining orbits (orbit 10 or 12), is statistically

significantly enriched in GO terms listed in Table C.20.
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GO term p-value

DNA-directed RNA polymerase II, core complex 0.000524728889933
nucleotide biosynthetic process 0.00858347329687
ribonucleotide metabolic process 0.00334584034794
DNA integrity checkpoint 0.00881651174264
DNA damage checkpoint 0.00881651174264
nucleotide metabolic process 0.000488867328955
purine nucleotide metabolic process 0.00334584034794

Table C.19. GO term enrichment of enzymes touching orbit 5 in D. melanogaster
metabolic network when the enzymes touching orbit 6 of the same
graphlet are annotated with cyclic nucleotide metabolic process. First
column: GO term. Second column: p-value of the enrichment.

GO term p-value

DNA-directed RNA polymerase II, core complex 0.000524728889933

nucleotide biosynthetic process 0.00858347329687

ribonucleotide metabolic process 0.00334584034794

DNA integrity checkpoint 0.00881651174264

DNA damage checkpoint 0.00881651174264

nucleotide metabolic process 0.000488867328955

e- purine nucleotide metabolic process 0.00334584034794

Table C.20. GO term enrichment of enzymes touching orbits 10 or 12 in D.
melanogaster metabolic network when the enzymes touching orbit 11
of the same graphlet are annotated with cyclic nucleotide metabolic
process. First column: GO term. Second column: p-value of the enrichment.
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