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A B S T R A C T

Continued research in electronic engineering technology has led to a minia-
turisation of integrated circuits. Further reduction in the dimensions of the
interconnects is impeded by the presence of small cracks or voids. Subject
to high current and elastic stress, voids tend to drift and change shape in
the interconnect, leading to a potential mechanical failure of the system.

This thesis investigates the temporal evolution of voids moving along
conductors, in the presence of surface diffusion, electric loading and elastic
stress. We simulate a bulk-interface coupled system, with a moving inter-
face governed by a fourth-order geometric evolution equation and a bulk
where the electric potential and the displacement field are computed.

We first give a general overview about geometric evolution equations,
which define the motion of a hypersurface by prescribing its normal ve-
locity in terms of geometric quantities. We briefly describe the three main
approaches that have been proposed in the literature to solve numerically
this class of equations, namely parametric approach, level set approach and
phase field approach.

We then present in detail two methods from the parametric approach cat-
egory for the void electro-stress migration problem. We first introduce an
unfitted method, where bulk and interface grids are totally independent,
i.e. no topological compatibility between the two grids has to be enforced
over time. We then discuss a fitted method, where the interface grid is at all
times part of the boundary of the bulk grid.

A detailed analysis, in terms of existence and uniqueness of the finite
element solutions, experimental order of convergence (when the exact so-
lution to the free boundary problem is known) and coupling operations
(e.g., smoothing/remeshing of the grids, intersection between elements of
the two grids), is carried out for both approaches. Several numerical simu-
lations, both two- and three-dimensional, are performed in order to test the
accuracy of the methods.
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1
I N T R O D U C T I O N

A geometric evolution equation defines the motion of a hypersurface by pre-
scribing its normal velocity in terms of geometric quantities. Geometric
evolution equations and, more generally, time-dependent interface evolu-
tion problems, where the normal velocity depends also on field quantities
evaluated on the analysed hypersurface, are ubiquitous in physics and en-
gineering. The overall goal of this chapter is to give the reader a brief
overview of these time-dependent interface problems, in terms of areas of
application, useful definitions from differential geometry, and possible so-
lution approaches.

The chapter is organised as follows: in Section 1.1 we draw a non-exhau-
stive list of areas of modern science where interface evolution problems
are investigated and applied. In addition, we briefly introduce the void
electro-stress migration problem that constitutes the object of investigation
of this thesis. In Section 1.2 we present some definitions and known results
from differential geometry, which will be employed at a later stage in the
discussion of the electro-stress migration problem of our interest. In Sec-
tion 1.3 we discuss the three main approaches presented in the literature
for the solution of the aforementioned interface problems. In Section 1.4
we introduce the coupling between interface equations and bulk equations,
where the latter are solved for field variables which are forcing terms in the
interface equations. Finally, in Section 1.5 we compare the solution strate-
gies introduced in § 1.3 for the coupled problems in § 1.4, highlighting their
advantages and disadvantages.

1.1 introductory remarks

Geometric evolution equations and, more generally, time-dependent inter-
face evolution problems are investigated and applied in many fields of mod-

1
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ern science. We draw here a non-exhaustive list of such areas. Materials
Science represents a traditional field of application. For instance, an ap-
propriate mathematical modelling of the morphology of microstructure is
necessary for a correct evaluation of the mechanical properties of materi-
als. Another application is given by void electro-stress migration, which
will be analysed in this thesis. More specifically, small voids or cracks con-
tained in metallic wires can change their shape and location, due to the
presence of surface diffusion and electro-stress loading. The analysis of
this phenomenon aims at understanding how the migration of the voids af-
fects the reliability of microelectronic circuits and their likelihood of failure.
Other interesting applications where the evolution of surfaces is analysed
have arisen in recent years. First, the motion of grain boundaries, which
separate differing orientations of the same crystalline phase, or solid-liquid
interfaces exhibiting dendritic structures in under-cooled solidification, can
be modelled as time-dependent interface evolution problems. Other fields
of research are given by image processing and multiphase flows. In im-
age processing, a photograph or a video frame is analysed; separation of
dark regions from a brighter background and identification of separating
contours are implemented to detect and correctly cluster the objects in the
image. A multiphase flow problem is defined as a fluid flow where more
than one phase occurs. The moving interface separates the phases.

In order to simulate numerically the temporal evolution of surfaces, dif-
ferent methods can be employed. Our literature review closely follows the
structure and the nomenclature adopted in [46], unless stated otherwise.

The overall goal is to find a family {Γ(t)}t∈[0,T ] of closed compact and
orientable hypersurfaces in Rd (d = 2 for curves, d = 3 for surfaces), whose
evolution is defined by prescribing the velocity V of Γ(t) in the normal
direction ~ν. Evolution problems for surfaces can be expressed without loss
of generality as

V = f(~x,~ν, κ) on Γ(t) , (1.1)

where κ is the sum of the d− 1 principal curvatures of Γ(t). We call κ the
mean curvature, even though it is not the arithmetic mean of the principal
curvatures. The function f depends on the problem considered. It might be
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necessary to evaluate on the surface Γ(t) field variables which satisfy their
own system of partial differential equations in Rd away from the surface.
Therefore, a dependence on ~x in the right-hand side of (1.1) is introduced.
We note that it suffices to define the normal velocity of the surface in order
to specify its temporal evolution.

Two prototype problems are introduced here. For a more detailed intro-
duction on the geometric quantities involved, see Section 1.2.

The first problem is motion by mean curvature, for which

V = κ on Γ(t) . (1.2)

It is well known that, starting from an initial surface Γ0, equation (1.2) is a
gradient flow for the area functional

E(Γ) =

∫
Γ
1dHd−1 , (1.3)

where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure. In prac-
tical applications the area functional is an interfacial energy with a constant
energy density 1. Equation (1.2) can be interpreted as an analogue for sur-
faces of the parabolic heat equation

ut −4u = 0 .

A second prototype equation that will be extensively investigated and used
throughout the thesis is motion by surface diffusion

V = −4sκ on Γ(t) , (1.4)

where 4s is the Laplace-Beltrami operator, or surface Laplacian, on Γ(t).
Eq. (1.4) can be interpreted as an analogue of the spatially fourth order
parabolic equation

ut +42u = 0 .

We note that we slightly changed the notation used in [46, § 1], regarding
the sign of the right-hand side term, for both (1.2) and (1.4), as we have a
different sign convention for the curvature. Further details will be given in
Section 1.2.2.



1.2 some geometric analysis 4

1.2 some geometric analysis

The aim of this section is to introduce some definitions and known results
from differential geometry, which will be used at a later stage in the pre-
sentation of the problem of our interest. Here we follow again the review
article [46]. The references [76, 74] contain a more detailed exposition of
this material.

1.2.1 Hypersurfaces

A subset Γ ⊂ Rd is called a C2-hypersurface if for each point ~x0 ∈ Γ there
exists an open set U ⊂ Rd containing ~x0 and a function u ∈ C2(U) such that

U∩ Γ = {~x ∈ U |u(~x) = 0} and ∇u(~x) 6= 0 ∀ ~x ∈ U∩ Γ .

The tangent space T~xΓ is then the (d− 1)-dimensional linear subspace of Rd

that is orthogonal to∇u(~x). It does not depend on the particular function u
which is chosen to describe Γ . A C2-hypersurface Γ ∈ Rd is called orientable
if there exists a vector-valued function ~ν ∈ C1(Γ,Rd), i.e. ~ν ∈ C1 in an open
neighbourhood of Γ , such that ~ν(~x) ⊥ T~xΓ and |~ν(~x)| = 1 for all ~x ∈ Γ . In
what follows, we shall assume that Γ ⊂ Rd is an orientable C2-hypersurface.

We define the tangential gradient of a function f, which is differentiable
in an open neighbourhood of Γ , by

∇s f(~x) = ∇ f(~x) −∇ f(~x) · ~ν(~x)~ν(~x) , ~x ∈ Γ . (1.5)

Here ∇ denotes the usual gradient in Rd. It can be noted that ∇s f(~x)
is the orthogonal projection of ∇ f(~x) onto T~xΓ . ∇s f(~x) depends only on
the values of f on Γ . The following notation is employed throughout this
chapter:

∇s f(~x) = (D1f(~x), . . . , Ddf(~x))

for the d components of the tangential gradient. It follows from the defini-
tion (1.5) that

∇s f(~x) · ~ν(~x) = 0 ~x ∈ Γ .
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If f is twice differentiable in an open neighbourhood of Γ , then we define
the Laplace-Beltrami operator of f as

4sf(~x) = ∇s · ∇s f(~x) =
d∑
i=1

DiDif(~x) , ~x ∈ Γ . (1.6)

1.2.2 Mean curvature

We assume ~ν ∈ C1 in a neighbourhood of Γ so that we may introduce the
matrix

Hjk(~x) = −Djνk(~x) j, k = 1, . . . , d ~x ∈ Γ . (1.7)

It can be shown that (Hjk(~x)) is symmetric. Note that we changed the sign
of the right-hand side of (1.7), compared to [46, § 2.3]. Furthermore,

d∑
k=1

Hjk(~x)νk(~x) =

d∑
k=1

−Djνk(~x)νk(~x) = −1
2Dj|~ν|

2(~x) = 0 ,

since |~ν| = 1 on Γ . Thus, (Hjk(~x)) has one eigenvalue which is equal to
zero with corresponding eigenvector ~ν(~x). The remaining d− 1 eigenvalues
κ1(~x), . . . , κd−1(~x) are called the principal curvatures of Γ at the point ~x. The
mean curvature of Γ at ~x can then be defined as the trace of the matrix
(Hjk(~x)), that is

κ(~x) =

d∑
j=1

Hjj(~x) =

d−1∑
j=1

κj(~x) . (1.8)

Note that (1.8) differs from the more common definition of mean curvature,
κ = 1

d−1

∑d−1
j=1 κj. From (1.7) we derive the following expression for mean

curvature:

κ(~x) = −∇s · ~ν(~x) ~x ∈ Γ , (1.9)

where ∇s · ~f =
∑d
j=1Djfj denotes the tangential divergence of a vector field

~f. In particular, if Γ = Sd−1 and the unit normal field is chosen to point
away from Γ , i.e. ~ν(~x) = ~x, we obtain that κ = −(d − 1), on considering
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the particular function f(~x) = xj, j ∈ {1, . . . , d} and observing that Dixj =
δij − νjνi.

Moreover, while the sign of κ depends on the choice of the normal ~ν, the
mean curvature vector κ~ν is an invariant. By choosing again the particular
function f(~x) = xj, j ∈ {1, . . . , d} in (1.6) and recalling the application of the
Laplace-Beltrami operator to each independent variable xj, we deduce that

4sxj = −

d∑
i=1

Di(νjνi) = −(∇s · ~ν)νj −∇s νj · ~ν = κνj ,

so that

4s~x = κ~ν on Γ . (1.10)

This identity of differential geometry will be useful at a later stage for the
presentation of finite element approximations for surface diffusion, see Sec-
tion 2.2.

1.3 possible approaches

An appropriate mathematical description of Γ(t) is required for solving a
geometric evolution equation analytically or numerically. Each choice leads
to a particular nonlinear partial differential equation defining the evolution.
According to the approach chosen to describe the surface, different solution
strategies are possible. To this end, following [46, § 1.1], we recall here the
three main approaches presented in the literature.

1.3.1 Parametric approach

The first approach we discuss is the parametric approach. We look for hyper-
surfaces Γ(t) given as

Γ(t) = ~X(·, t)(Υ) ,

where Υ is a suitable reference manifold and ~X : Υ × [0, T ] → Rd is a
parameterisation to be determined. It is worth noting that the particular
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Figure 1.1: The lemniscate {cos(t), sin(2t)} can be parameterised over the unit cir-

cle {cos(t), sin(t)}, t ∈ [0, 2π].

choice of the manifold Υ fixes the topological type of Γ(t). Here X(~p, t),
for ~p ∈ Υ, represents the position vector at time t of a point on Γ(t). If
closed curves in the plane are the object of investigation, then a suitable
choice of Υ can be the unit circle S1, whereas if Γ(t) is a two-dimensional
surface, then Υ could be the unit sphere S2. Since evolution laws such as
the prototypes (1.2) and (1.4) involve geometrical quantities, such quantities
have to be expressed in terms of the derivatives of the parameterisation ~X.
Nonlinear parabolic systems of PDEs for the vector-valued function ~X are
then obtained. With this approach, the surface is not the boundary of any
open set and does not possess an inside and an outside. Self-intersections
are natural for smooth parameterisations and are not necessarily associated
with singularities.

We recall two interesting examples. The first one is for d = 2 and refers to
a figure-eight curve smoothly mapped over the unit circle, see Figure 1.1. At
the crossing point the curve has two smooth normals and curvatures, which
depend on the parameterisation. A parameterised curve evolving by mean
curvature can evolve smoothly from this configuration. The second example
is for d = 3 and refers to a dumbbell-shaped surface, parameterised over
the unit sphere, see [46, Fig. 1.1].

Examples of usage of the parametric approach for the geometric evolu-
tion equations (1.2) and (1.4) can be found in [50, 51, 6, 10, 12].
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1.3.2 Level set approach

A second strategy for the manipulation of the interface is the level set ap-
proach. In this approach, the hypersurface Γ(t) is given by the zero level set
of an auxiliary function u : Rd × [0,∞)→ R, that is

Γ(t) = {~x ∈ Rd |u(~x, t) = 0} .

The laws (1.2), (1.4) now translate into nonlinear, degenerate and singular
PDEs for u. Contrary to the parametric approach described in § 1.3.1, the level
set approach clearly exhibits the notion of Γ(t) being a dividing surface be-
tween the two regions where the level set function is positive and negative,
respectively. The notions of inside and outside are in this case well defined.

We recall here an example, where a figure-eight curve is described by a
level set function, see [46, Fig. 1.3]. In this case, it is necessary to identify
where the level set function is positive or negative, see [46, Fig. 1.4].

Examples of the usage of the level set method for the geometric evolution
equations (1.2) and (1.4) can be found in [61, 62, 63, 64, 44, 45, 67, 65], while
more details on the level set method in general are given in [115, 74, 108].

1.3.3 Phase field approach

A third way of describing the evolution of the surface Γ(t) is the so-called
phase field approach. The sharp interface Γ(t) is approximated by a diffuse
interface

Γε(t) = {~x ∈ Rd | − 1+Cε 6 uε(~x, t) 6 1−Cε} ,

of width O(ε), across which the phase field function uε varies from approx-
imately the negative value −1 to approximately the positive value +1. The
zero level set of the phase field function uε is used to approximate the sur-
face Γ(t). As discussed for the level set approach, we can identify inside and
outside regions; interface self-intersection and topological changes are han-
dled automatically. The bulk values of the phase field function correspond
to the minima of a homogeneous energy function with two equal double



1.4 applications of geometric evolution equations 9

wells. Using the gradient of the phase field function uε we can assign inter-
facial energy to the diffuse interface Γε(t).

Examples of the usage of the phase field approach for the geometric evo-
lution equations (1.2) and (1.4) can be found in [60, 113, 43, 33, 66].

1.4 applications of geometric evolution equations

In (1.1) we gave an example of a general geometric evolution equation. Re-
call that the motion of the interface is defined by prescribing the velocity V
of Γ(t) in the normal direction ~ν. The ~x dependence on the right-hand side
of (1.1) might arise from evaluating on the surface Γ(t) field variables which
satisfy their own set of PDEs in a bulk domain, whose boundary (or part
thereof) is precisely Γ(t). In other words, it may become necessary to cou-
ple the interface equations on Γ(t) with bulk equations involving unknowns
which take values also away from the interface. Following and expanding
on the overview in [46], we list some industrial applications where geomet-
ric evolution equations are involved. In Section 1.4.1 we present examples
where the coupling between interface and bulk equations occurs. In Section
1.4.2 two additional applications, where no coupling to the bulk is involved,
are introduced and discussed.

1.4.1 Coupling interface equations to bulk equations

In the following we list several examples where interface equations are
coupled with bulk equations for field variables which appear on the right-
hand side of (1.1).

• Electro-stress migration: microelectronic circuits usually contain small
voids or cracks, and if those defects are large enough to sever the
line, they cause an open circuit. The interface surface represents the
voids, which can migrate in the conductor due to the presence of
both surface diffusion and electro-stress loading. In the literature this
problem has been treated numerically in the context of parametric



1.4 applications of geometric evolution equations 10

methods ([27, 94, 123, 104]), level set methods ([2, 95] and [115, § 18.5])
and phase field methods ([100, 101, 25, 20, 9, 11]).

• Stefan problem: when a container is filled with an undercooled liquid,
solidification of the liquid follows the nucleation of an initial solid
seed with characteristic diameter larger than the critical radius. The
seed will then grow into the liquid. An appropriate mathematical rep-
resentation of this situation is the Stefan problem with kinetic under-
cooling, in which the solid-liquid interface is described by a surface
Γ(t) that has to be determined together with the temperature field. In
the literature this problem has been treated numerically in the context
of parametric methods ([14, 17]), level set methods ([67]) and phase
field methods ([26, 35, 17, 19]).

• Image processing: this is a branch of imaging science, and deals with
signal processing techniques where an image, a photograph or a video
frame is received as input and analysed. Interface curves represent the
contours of objects, which need to be detected and correctly clustered.
In the literature this problem has been treated numerically in the con-
text of parametric methods ([24]), level set methods ([96, 118]) and
phase field methods ([111, 59]).

• Multiphase flow: this is defined as a fluid flow problem in which more
than one phase occurs. The phases are separated by an interface.
Such flows are ubiquitous in industrial applications, which range
from bubble column reactors to ink-jet printing to fuel injection in
engines and to biomedical engineering. In the literature this problem
has been treated numerically in the context of front-tracking meth-
ods ([121, 18]), level set methods ([106, 107]) and phase field methods
([84, 98]).

1.4.2 Additional applications

It is worthwhile to mention two additional applications which are techno-
logically important. In this case, no coupling to the bulk is involved.
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• Grain boundary motion: grain boundaries in crystalline metallic materi-
als are interfaces which separate two adjacent crystallites of the same
crystal structure and chemical composition, but of different orienta-
tion. Grain boundaries are the fundamental defect in polycrystalline
materials; associated with the grain boundary there is a surface energy
which gives rise to a thermodynamic restoring force. For a constant
surface energy density, this is the surface tension proportional to the
mean curvature, and the resulting evolution law is (1.2). The grain
boundary can move over time if an external loading is present. In the
literature this problem has been treated numerically in the context of
parametric methods ([56, 57]), level set methods ([56, 124]) and phase
field methods ([47, 56, 71, 11, 93]).

• Surface growth: this is a process taking place between two media sep-
arated by an interface, which is the growing surface. A technological
application is epitaxy, which refers to the deposition of a crystalline
overlayer of atoms and molecules onto a substrate. Numerous physi-
cal mechanisms are present, and their different time and length scales
affect the growth process. A mathematical description of the phe-
nomenon involves a driving force representing the deposition flux of
atoms onto the surface. In the literature this problem has been treated
numerically in the context of parametric methods ([4, 5]), level set
methods ([37]) and phase field methods ([86, 112]).

1.5 comparison between methods

As we have seen in Sections 1.3 and 1.4.1, the numerical solution of par-
tial differential equations for systems with moving boundaries can be ap-
proached in different ways. Once again, three possible strategies can be
employed in order to handle the interface: parametric approach, level set ap-
proach and phase field approach. In particular, in the parametric approach the
user can make use of two different techniques: a fitted approach and an unfit-
ted approach, depending on whether the topological compatibility between
the bulk mesh and the interface mesh is preserved. In what follows, we
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will group the three aforementioned methods into either implicit or explicit
methods, depending on how they represent the free boundary.

• Implicit surface methods do not track directly the coordinates of the
points on the surface, but rather utilise fixed data points located at
regular intervals throughout the computational domain to reconstruct
the surface when needed. This class of methods is sometimes called
“front-capturing”, since they do not store the points on the surface
explicitly, but rather carry the information needed to reconstruct the
surface. The level let approach (described in Section 1.3.2) and the phase
field approach (described in Section 1.3.3) belong to this category.

• Explicit surface methods, by contrast, discretise the surface using a
set of connected points. This is sometimes called “front-tracking”,
as points on the surface are directly followed as the surface evolves,
and these points define the surface itself; for example, the surface can
be represented by a simplex mesh, i.e. a collection of line segments
or triangles in two or three dimensions, respectively. The parametric
approach described in Section 1.3.1 belongs to this category.

As discussed in [104], implicit and explicit methods differ in the way
they handle topological changes, such as pinching-off and merging. The
fact that such topological changes occur naturally within the framework
of implicit methods is often seen as their main advantage over explicit
methods. However, with modern tools available to incorporate topological
changes into explicit methods, see e.g. [30], this advantage is reduced. In
fact, within explicit methods the user can apply heuristic criteria aiming to
detect if a topological change is imminent. In contrast to implicit methods,
where topological changes take place automatically, this feature gives the
user an active control over the topological changes, see also [85]. Heuristic
strategies can also be applied to delay or prevent topological changes from
happening. In addition, explicit methods have the advantage that the par-
tial differential equation that governs the evolution of the interface can be
solved with numerical methods in one dimension lower than is the case for
implicit methods, where the interface is captured as the zero level set of an
auxiliary function, as we have seen before in the case of level set methods and
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phase field methods. Finally, in applications where geometric quantities of the
interface are of interest, implicit methods face the difficulty of extracting an
explicit representation of the interface from the implicit definition. This is
in general is a nontrivial operation, especially in higher space dimensions.

In this thesis we consider the parametric approach applied to electro-stress
migration problems. Fitted and unfitted methods will be thoroughly analysed
and compared.



2
F R O N T- T R A C K I N G M E T H O D S F O R G E O M E T R I C
E V O L U T I O N E Q U AT I O N S

Recall that in Chapter 1 we introduced the notion of a geometric evolution
equation, which defines the motion of a hypersurface by prescribing its nor-
mal velocity in terms of geometric quantities. The overall goal of this chap-
ter is to investigate efficient numerical tools for simulating the evolution of
closed curves/surfaces in the setting of the parametric approach. As previ-
ously introduced in Section 1.3.1, the hypersurfaces Γ(t) are given as

Γ(t) = ~X(·, t)(Υ) ,

where Υ is a suitable reference manifold (fixing the topological type of Γ(t))
and ~X : Υ× [0, T ]→ Rd has to be determined. Here ~X(~p, t), for ~p ∈ Υ, is the
position vector at time t of a point on Γ(t). We will confine our attention
to two specific problems: mean curvature flow (eq. (1.2)) and surface diffusion
(eq. (1.4)).

The chapter is organised as follows: in Section 2.1 we present some fun-
damental properties of geometric flows, recalling theoretical results already
proven in the literature, for both mean curvature flow (§ 2.1.1) and surface dif-
fusion (§ 2.1.2). In Section 2.2 we discuss the fully practical finite element
approximation for the interface equations, which will be used throughout
this thesis. We recall from the literature the main results about existence,
uniqueness, stability, and some properties of the semidiscrete, continuous-
in-time counterpart of the aforementioned approximation. We also com-
pare it with other finite element approximations from the literature. In
§ 2.2.3 we analyse how the choice of two different quadrature rules (namely,
mass lumping and exact integration) affects the evolution of moving inter-
faces, in terms of the quality of the final mesh. In § 2.2.4 we investigate
the temporal evolution of surfaces when very small time steps are con-
sidered, and discuss a finite element scheme that aims at overcoming the
appearance of spurious elongated elements. In Section 2.3 we extend our

14
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analysis allowing moving surfaces to have multiple components. In partic-
ular, § 2.3.1 discusses the software implementation for such interfaces, for
which topological changes are predicted and performed, for both d = 2 and
d = 3. Section 2.4 investigates several methods for the solution of the linear
equations arising from the finite element approximation discussed in Sec-
tion 2.2. We compare them in terms of CPU time and number of iterations
(for iterative methods) for a number of sample problems. Finally, in 2.5 we
summarise the most relevant points discussed in the chapter.

2.1 fundamental properties of geometric flows

For the sake of presentation, let us recall some fundamental properties as-
sociated to geometric flows.

Consider a family {Γ(t)}t∈[0,T ] of hypersurfaces that evolve over time. Such
a family is called a C2,1-family of hypersurfaces if, for each point (~x0, t0) ∈
Rd × (0, T) with ~x0 ∈ Γ(t0), there exists an open set U ⊂ Rd, δ > 0 and a
function u ∈ C2,1(U× (t0 − δ, t0 + δ)) such that

U∩ Γ(t) = {~x ∈ U |u(~x, t) = 0} and ∇u(~x, t) 6= 0 ∀ ~x ∈ U∩ Γ(t) .

Consider now a family {Γ(t)}t∈[0,T ] of evolving hypersurfaces which satis-
fies the above assumptions and suppose in addition that each surface Γ(t)
is compact. We are interested in the time derivative of certain volume and
area integrals.

Lemma 2.1. Let g ∈ C1(Q), where Q is an open set containing⋃
0<t<T

Γ(t)× {t} .

Suppose in addition that each surface Γ(t) is the boundary of an open bounded
subset Ω(t) ⊂ Rd. Then

d
dt

∫
Ω(t)

gdLd =

∫
Ω(t)

∂g

∂t
dLd +

∫
Γ(t)

gV dHd−1 , (2.1)

d
dt

∫
Γ(t)

gdHd−1 =

∫
Γ(t)

∂g

∂t
dHd−1 −

∫
Γ(t)

gVκdHd−1

+

∫
Γ(t)

∂g

∂~ν
V dHd−1 . (2.2)
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Proof. For a proof, see [46, § 2.6, Lemma 2.1]. 3

We are now ready to present the main theoretical results concerning mean
curvature flow (§ 2.1.1) and surface diffusion (§ 2.1.2).

2.1.1 Properties of Mean Curvature Flow

In this section we investigate motion by mean curvature and describe some
of its main features. Our literature review follows [46, § 3].

Consider a C2,1-family of hypersurfaces {Γ(t)}t∈[0,T ] ⊂ Rd together with
a choice ~ν of a unit normal. Recall (1.2), which describes motion by mean
curvature:

V = κ on Γ(t) ,

where V denotes the velocity of Γ(t) and κ is the sum of the d− 1 principal
curvatures of Γ(t). The above equation gives rise to a parabolic equation
for the function describing the surface Γ(t), to which an initial condition

Γ(0) = Γ0 (2.3)

has to be provided.
In order to understand the time-dependent behaviour of a hypersurface

subject to this flow, we consider the case of a shrinking sphere, where the
solution to the geometric evolution equation is known in closed form. Let
Γ(t) = ∂Br(t)(~x0) ⊂ Rd, oriented by the outer normal ~ν(~x) = ~x−~x0

r(t) . It is
straightforward to derive that V = r′(t), κ = −d−1

r(t) on Γ(t), so that Γ(t)
moves by mean curvature provided that r′(t) = −d−1

r(t) . The solution of this

separable variable ODE is easily given by r(t) =
√
r20 − 2(d− 1)t, 0 6 t <

r20
2(d−1) , where Γ0 = ∂Br0(~x0). It is worth noting that the surface Γ(t) shrinks

to a point as t↗ r20
2(d−1) .

Motion by mean curvature exhibits an interesting area-decreasing property,
which is obtained from the following lemma.

Lemma 2.2. Let Γ(t) be a family of evolving hypersurfaces satisfying (1.2) and
assume that each Γ(t) is compact. Then∫

Γ(t)
V2 dHd−1 +

d
dt

Hd−1(Γ(t)) = 0 . (2.4)
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Proof. Choosing g ≡ 1 in (2.2) and the evolution law (1.2) yields the desired
result. 3

For the benefit of the reader, we now recall from [46] some theoretical
results about mean curvature flow. The law (1.2) gives rise to a second order
parabolic problem, therefore the existence of a smooth solution locally in
time for a smooth initial hypersurface Γ0 can be expected. Furthermore,
[53] showed that two smooth compact solutions which are initially disjoint
will stay disjoint. Using the shrinking sphere as a comparison solution,
it follows in particular that if Γ(t), 0 6 t < T is a smooth solution with

Γ0 ⊂ Br0(~x0), then Γ(t) ⊂ B√
r20−2(d−1)t

(~x0) for 0 6 t < min(T, r20
2(d−1)). Solu-

tions will in general develop singularities in finite time before disappearing.
However, it has been shown that certain initial configurations guarantee
that solutions stay smooth until they shrink to a point. This result is ex-
pressed in the following theorem.

Theorem 2.3. Let d > 3 and assume that Γ0 ⊂ Rd is a smooth, compact and
uniformly convex hypersurface. Then (1.2), equipped with the initial condition
(2.3), has a smooth solution on a finite time interval [0, T) and the Γ(t) converge
to a point as t ↗ T . If one rescales the surfaces in such a way that the enclosed
volume remains fixed, one has convergence against a sphere as t↗ T .

Proof. A complete proof can be found in [83]. 3

The case d = 2 is usually referred to as curve shortening flow.

Theorem 2.4. Assume that Γ0 ⊂ R2 is a smooth embedded closed curve, and so
in particular it has no self-intersections. Then (1.2)-(2.3) have a smooth embedded
solution on a finite time interval [0, T), which shrinks to a ’round’ point as t↗ T .

Proof. The authors in [68] proved this result for convex Γ0; subsequently in
[77] it was shown that a smooth embedded closed curve remains smooth
and embedded and becomes convex in finite time. 3

Cusp-like singularities may develop if the initial curve is not embedded
(see Figures 2.1 and 2.2). The analogue of Theorem 2.4 for surfaces does
not hold, as can be seen by choosing a suitable dumbbell-shaped initial sur-
face which develops a pinch-off singularity before it shrinks to a point (see
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Figure 2.1: Motion by mean curvature (according to the discrete scheme that will be

presented in (2.16a)-(2.16b)), applied to a curve with a self-intersection.

A singularity (cusp) appears. The effect is that the algorithm jumps

across the singularity. See Figure 2.2 for a magnified image.
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Figure 2.2: Close-up of Figure 2.1. The parametric theory breaks down.

[46, Fig. 4.5] and [78]). This pinch-off leads to a change of the topological
type of Γ(t), so that the parametric approach – in which the topological type
is fixed – will develop a singularity that is difficult to handle. It follows
that the question whether it is possible to introduce a notion of solution
that is capable of following the flow through a singularity is of extreme
importance. It is possible to apply some heuristic algorithms for the de-
tection of topological changes (pinch-off, coalescence, etc.), which can lead
to a modified interface mesh that can be handled again with the parametric
approach. More details will be given in § 2.3.1.

2.1.2 Properties of Surface Diffusion

In this section we investigate motion by surface diffusion and describe some
of its fundamental features. This particular geometric flow was introduced
in (1.4), which we restate here for the sake of readability:

V = −4s κ on Γ(t) ,

where 4s is the Laplace-Beltrami operator, or surface Laplacian, on Γ(t).
Our discussion follows the introductory remarks given in [6]. Let us

recall two fundamental properties of motion by surface diffusion. The first
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one is conservation of volume for closed hypersurfaces, while the second one
is area decrease:

d
dt

Ld(Ω(t)) = −

∫
Γ(t)

V dHd−1 =

∫
Γ(t)
4s κdHd−1

= −

∫
Γ(t)
∇s κ · ∇s 1dHd−1 = 0 , (2.5)

d
dt

Hd−1(Γ(t)) = −

∫
Γ(t)

VκdHd−1 = −

∫
Γ(t)

|∇s κ|2 dHd−1 6 0 , (2.6)

where Ld(Ω(t)) is the Lebesgue measure of Ω(t) and | · | is the usual norm
in Rd. In fact, motion by surface diffusion is formally the H−1 gradient flow
for the area functional, see [34]. A number of issues may arise, from ex-
istence, well posedness and regularity to the design of robust algorithms
for the numerical simulation of (1.4). In [58] the authors showed local ex-
istence, regularity, and uniqueness of solutions when the initial surface is
sufficiently smooth. They also proved that if the initial surface is embedded
and close to a sphere, the solution exists globally and converges exponen-
tially fast to a sphere. We refer to [54] for related results for curves in R2.
In addition, it is worth mentioning two other features, which can occur for
surface diffusion in finite time: a surface which starts as a graph may cease
to be so (see [55] and [6, Fig. 1]), and a closed embedded hypersurface may
self-intersect (see [75] and [6, Fig. 2]).

In designing efficient and robust algorithms for the numerical simulation
of (1.4), it would be desirable to enforce (2.5) and (2.6) also in the discreti-
sation schemes. This is not always theoretically possible, even if in some
cases experimental expertise guarantees that conservation properties are
observed in practice up to a very small tolerance.

2.2 finite element approximation of geometric flows

In this section we analyse different parametric finite element approxima-
tions for the evolution of closed hypersurfaces Γ ⊂ Rd, d = 2, 3, moving
under given geometric flows such as motion by mean curvature and motion
by surface diffusion, which have been introduced in previous sections. Par-
ticular attention will be paid to some crucial aspects, such as conservation
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properties, solvability, mesh smoothing, time-space adaptivity and topolog-
ical changes.

In his seminal work [50] for the design of a finite element method for
mean curvature flow (see also [51]), Dziuk employed the fundamental iden-
tity of differential geometry:

κ~ν = 4s ~X = 4s ~id (2.7)

to obtain a variational discretisation of κ involving only first derivatives
of the identity function ~id on Γ , or equivalently, of the parameterisation
~X : Υ× [0, T ]→ Rd of Γ , where Υ is a suitable compact reference manifold
without boundary in Rd. Observe that in (2.7) we use a slight abuse of
notation, so that the equation can be interpreted to hold either on Γ or on
the reference manifold Υ. For the aforementioned parameterisation ~X, (1.2)
can be rewritten as

V := ~Xt ·~v = κ , κ~ν = 4s ~X , (2.8)

while (1.4) can be rewritten as

V := ~Xt ·~v = −4s κ , κ~ν = 4s ~X . (2.9)

We now discuss the fully practical finite element approximation for the
variational formulation of (2.8) and (2.9) that will be used throughout the
thesis. The schemes described below have been introduced in [10] for the
case d = 2, and then extended to the case d = 3 in [12]. We closely fol-
low the latter reference in the presentation of all the necessary quantities.
Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into
possibly variable time steps τm := tm+1 − tm, m = 0 → M − 1. We set
τ := maxm=0→M−1 τm. Let Γm ⊂ Rd be a (d − 1)-dimensional polyhedral
surface, i.e. a union of non-degenerate (d − 1)-simplices with no hanging
vertices, which approximates the closed surface Γ(tm), m = 0 → M. In
particular, let Γm =

⋃JmΓ
j=1 σ

m
j , where {σmj }

JmΓ
j=1 is a family of mutually disjoint

open (d− 1)-simplices with vertices {~qmk }
KmΓ
k=1. In order to approximate the

position vector ~X and the curvature κ in (2.8) and (2.9), we need to intro-
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duce the following parametric finite element spaces: For m = 0 → M− 1,
define

V(Γm) := {~χ ∈ C(Γm,Rd) : ~χ |σmj is linear ∀ j = 1→ JmΓ }

=: [W(Γm)]d ⊂ H1(Γm,Rd) , (2.10)

where W(Γm) ⊂ H1(Γm,R) is then the space of scalar continuous piecewise
linear functions on Γm. The standard Lagrangian basis ofW(Γm) is denoted
by {φmk }

KmΓ
k=1. For later purposes, we also introduce πm : C(Γm,R)→W(Γm),

the standard interpolation operator at the nodes {~qmk }
KmΓ
k=1. This operator

will be used when the finite element approximation of the coupled bulk-
interface problem of our interest is presented. We will use πm in order
to evaluate on Γm bulk quantities that satisfy their own set of equations
away from the interface. Throughout this thesis, the new closed surface
Γm+1 will be parameterised over Γm, with the help of a parameterisation
~Xm+1 ∈ V(Γm), i.e. Γm+1 = ~Xm+1(Γm). Moreover, for m > 0, ~Xm will be
identified with ~id ∈ V(Γm), i.e. the identity function on Γm.

For scalar and vector functions v,w ∈ L2(Γm,R(d)) we introduce the L2

inner product 〈·, ·〉Γm over the current polyhedral surface Γm as follows

〈v,w〉Γm :=

∫
Γm
v · w dHd−1 . (2.11)

If v,w are piecewise continuous, we define the mass lumped inner product
〈·, ·〉hΓm as

〈v,w〉hΓm :=
1

d

JmΓ∑
j=1

Hd−1(σmj )

d∑
k=1

(v · w)((~qmjk)
−) , (2.12)

where {~qmjk}
d
k=1 are the vertices of σmj , in combination with the definition

v((~qmjk)
−) := lim

σmj 3~p→~qmjk

v(~p). Here Hd−1(σmj ) = 1
(d−1)! |(~q

m
j2
− ~qmj1) ∧ · · · ∧

(~qmjd −~qmj1)| is the measure of σmj , and ∧ indicates the standard cross product

on Rd. We will also denote | · |(h)Γm as

|v|
(h)
Γm := (〈v, v〉(h)Γm)

1
2 .

Here and throughout this thesis, ·(∗) denotes an expression with or with-
out the superscript ∗, and similarly for subscripts. We note that the inner
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product (2.12) corresponds to the trapezium rule for numerical integration,
which can integrate exactly polynomials of degree 1. An exact quadrature
formula will be discussed at a later stage, in § 2.2.3. In addition, the unit
normal ~νm to Γm is defined by

~νmj := ~νm |σmj :=
(~qmj2 − ~qmj1)∧ · · ·∧ (~qmjd − ~qmj1)

|(~qmj2 − ~qmj1)∧ · · ·∧ (~qmjd − ~qmj1)|
, (2.13)

where we have assumed that the vertices {~qmjk}
d
k=1 of σmj are ordered such

that ~νm : Γm → Rd induces an orientation on Γm.
Before we describe fully practical finite element approximations to (2.8)

and (2.9), it is necessary to introduce the notion of a vertex normal on Γm.
We will combine this definition with a natural assumption that is needed
in order to show existence and uniqueness for the discrete schemes.

(A) We assume for m = 0 →M− 1 that Hd−1(σmj ) > 0 for all j = 1 → JmΓ .
For k = 1→ KmΓ , let Tmk := {σmj : ~qmk ∈ σmj } and set

Λmk :=
⋃

σmj ∈T
m
k

σmj ,

~ωmk :=
1

Hd−1(Λmk )

∑
σmj ∈T

m
k

Hd−1(σmj ) ~ν
m
j . (2.14)

Then we further assume that ~ωmk 6= ~0, k = 1→ KmΓ , and that dim span
{~ωmk }

KmΓ
k=1 = d, m = 0→M− 1.

Given the above definitions, the piecewise linear vertex normal function
can be defined as

~ωm :=

KmΓ∑
k=1

χmk ~ωmk ∈ V(Γm) .

Moreover, combining (2.14) with the definition of the mass lumped inner
product (2.12), we note that

〈~z,w~νm〉hΓm = 〈~z,w ~ωm〉hΓm ∀ ~z ∈ V(Γm), w ∈W(Γm) . (2.15)

Remark 2.5. The aforementioned assumption (A) requires the interface mesh to
include non-degenerate (d− 1)-simplices only. Moreover, the set Tmk , defined for
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every vertex of the grid, represents the set of elements which have ~qmk as one of
their vertices. For instance, when d = 2, Γm is a curve, so Tmk is composed of those
two segments sharing the corner ~qmk . For the case d = 3, the cardinality of Tmk
varies with the vertex k, depending on the connectivity of the initial triangulation.
By the help of these remarks, one can interpret ~ωmk as a weighted normal defined at
the node ~qmk of the surface Γm, where in general |~ωmk | < 1. In addition, the authors
in [10, 12] noted that (A) is only violated in very rare occasions. We report here
their analysis for the benefit of the reader.
(A) always holds for surfaces without self-intersections. For d = 2, since ~ωmk

points in the direction
[
~qmk+1 − ~qmk−1

]⊥, (A) can be equivalently reformulated to
exclude the following situation: All points {~qmk : k is even} lie on one straight line
and simultaneously all points {~qmk : k is odd} lie on another parallel line. For a
closed curve, we obtain that in the case that KmΓ is odd, then (A) immediately holds
provided all points do not lie on one straight line. If KmΓ is even, then (A) is only
violated on very rare occasions, see e.g. Figure 2.3.

Γm

~qm1

~qm2

~qm3

~qm4

~qm5

~qm6

Figure 2.3: The assumption (A) is violated in this case, for d = 2 (adapted

from [10, Fig. 3]). Since ~ωmk points in the direction
[
~qmk+1 − ~qmk−1

]⊥,

by analysing all the pairs {~qmk+1,~q
m
k−1} we immediately deduce that

dim span {~ωmk }
KmΓ
k=1 = 1 6= 2, which violates the assumption (A).
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We are now ready to recall the following approximation to (2.8): Given
Γ0 and the identity function ~X0 ∈ V(Γ0) on Γ0, then for m = 0→M− 1 find
{~Xm+1, κm+1} ∈ V(Γm)×W(Γm) such that ∀ χ ∈W(Γm), ∀ ~η ∈ V(Γm)〈 ~Xm+1 − ~Xm

τm
, χ~νm

〉h
Γm

− 〈κm+1, χ〉hΓm = 0 , (2.16a)

〈κm+1 ~νm,~η〉hΓm + 〈∇s ~Xm+1,∇s ~η〉Γm = 0 , (2.16b)

where, as noted above, the inner products 〈·, ·〉(h)Γm as well as ∇s depend on
m.

Moreover, (2.9) will be approximated with the help of the following
scheme: Given Γ0 and the identity function ~X0 ∈ V(Γ0) on Γ0, then for
m = 0→M− 1 find {~Xm+1, κm+1} ∈ V(Γm)×W(Γm) such that ∀ χ ∈W(Γm),
∀ ~η ∈ V(Γm)〈 ~Xm+1 − ~Xm

τm
, χ~νm

〉h
Γm

− 〈∇s κm+1,∇s χ〉Γm = 0 , (2.17a)

〈κm+1 ~νm,~η〉hΓm + 〈∇s ~Xm+1,∇s ~η〉Γm = 0 . (2.17b)

We now investigate existence and uniqueness of solutions to the schemes
(2.16a)-(2.16b) and (2.17a)-(2.17b).

Theorem 2.6. Let the assumption (A) hold. Then there exist unique solutions
{~Xm+1, κm+1} ∈ V(Γm) ×W(Γm) to the systems (2.16a)-(2.16b) and (2.17a)-
(2.17b).

Proof. The complete proof can be found in [12, Thm. 2.1]. 3

Furthermore, the schemes (2.16a)-(2.16b) and (2.17a)-(2.17b) are uncondi-
tionally stable. This feature is proven in the following theorem.

Theorem 2.7. Let the assumption (A) hold, and {~Xm, κm}Mm=1 be the unique solu-
tion to the system (2.16a)-(2.16b). Then for k = 1→M we have that

|Γk|+

k−1∑
m=0

τm (|κm+1|hΓm)
2 6 |Γ0| . (2.18)

Moreover, for the unique solution {~Xm, κm}Mm=1 to the system (2.17a)-(2.17b), for
k = 1→M we have that

|Γk|+

k−1∑
m=0

τm |∇s κm+1|2Γm 6 |Γ0| . (2.19)
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Proof. We refer to [10, Thm. 2.3] for the case d = 2 and to [12, Thm. 2.2] for
d = 3. 3

2.2.1 Semidiscrete continuous-in-time approximation

As shown in [10, Rem. 2.3] and [12, § 4], it is worthwhile to consider
continuous-in-time semidiscrete versions of the aforementioned finite ele-
ment schemes. For example, (2.17a)-(2.17b) can be replaced by: For a.e. t ∈
(0, T) find {~Xh, κh} ∈ V(Γh(t))×W(Γh(t)) such that ∀ χ ∈ W(Γh(t)), ∀ ~η ∈
V(Γh(t))

〈~Xht , χ~νh〉hΓh(t) − 〈∇s κ
h,∇s χ〉Γh(t) = 0 , (2.20a)

〈κh ~νh,~η〉h
Γh(t) + 〈∇s ~X

h,∇s ~η〉Γh(t) = 0 , (2.20b)

where we always integrate over the current surface Γh(t) (with normal
~νh(t)) described by the identity function ~Xh(t) ∈ V(Γh(t)). In addition,
〈·, ·〉(h)

Γh(t)
is the continuous-in-time counterpart of 〈·, ·〉(h)Γm . where Γm and

~Xm are replaced by Γh(t) and ~Xh(t), respectively. It is straightforward to
show that (2.20a)-(2.20b) conserves the enclosed volume exactly: by choos-
ing χ ≡ 1 in (2.20a) and recalling the mass lumped inner product (2.12), we
can show that

0 = 〈~Xht ,~νh〉hΓh(t) =
∫
Γh(t)

~Xht · ~νh dHd−1 =
d

dt
Ld(Ωh(t)) , (2.21)

where Ωh(t) ⊂ Rd is open bounded set whose boundary is given by Γh(t).
It does not appear possible to prove the analogue of (2.21) for the fully dis-
crete scheme (2.17a)-(2.17b). However, from all the numerical simulations
performed in this thesis, we experimentally observe that the enclosed vol-
ume is approximately preserved, and that the volume loss tends to zero as
τ→ 0.

We now investigate an equidistribution property for the scheme (2.17a)-
(2.17b).

Theorem 2.8. Let d = 2 and let {~qhk}
KhΓ
k=1 denote the sequentially ordered vertices

on Γh(t). Let {~Xh, κh} be a solution to the system (2.20a)-(2.20b), and set ~hk(t) :=
~qhk(t) − ~qhk−1(t). Then it holds that

|~hk(t)| = |~hk−1(t)| if ~hk(t) ∦ ~hk−1(t) k = 1, . . . , KhΓ . (2.22)
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Proof. We need to prove that the scheme (2.20a)-(2.20b) will always equidis-
tribute the vertices along Γh(t) for t > 0, provided that they are not locally
parallel. A proof of (2.22) can be found in [10, Rem. 2.4]. We repeat here the
modified approach followed in [104, Thm. 3.2] for the benefit of the reader.

Choosing ~η = (~hk+1 + ~hk)φk ∈ V(Γh(t)) in (2.20b), where {φl}
KhΓ
l=1 denote

the basis functions of W(Γh(t)), and recalling (2.12) and the equality (2.15),
we obtain that for k = 1→ KhΓ

0 = 〈∇s ~Xh,∇s [(~hk+1 + ~hk)φk]〉Γh(t) . (2.23)

The integral in (2.23) can now be easily computed by hand, since the sup-
port of φk is given by [~qk−1, ~qk]∪ [~qk, ~qk+1]. On noting that ∇sφk = 1

|~hk|
on

[~qk−1, ~qk] and ∇sφk = − 1

|~hk+1|
on [~qk, ~qk+1], we then deduce that

[ ~hk+1
|~hk+1|

−
~hk

|~hk|

]
· (~hk+1 + ~hk) = 0 . (2.24)

It immediately follows from (2.24) that

(|~hk+1|− |~hk|)(|~hk+1| |~hk|− ~hk+1 · ~hk) = 0 , (2.25)

which means that the desired result (2.22) follows directly from the Cauchy-
Schwarz inequality. 3

Remark 2.9. Of course, the analysis in (2.25) immediately carries over to a fully
discrete scheme that is fully implicit; that is, ~νm and 〈·, ·〉(h)Γm in (2.17a)-(2.17b) are
replaced by ~νm+1 and 〈·, ·〉(h)

Γm+1 . These approximations have been discussed in [16],
where the authors proved that they are unconditionally stable and equidistribute a
given parameterisation after one time step. However, the highly nonlinear nature
of these schemes makes them less practical than the scheme (2.17a)-(2.17b). It does
not appear possible to prove an analogue of (2.25) for (2.17a)-(2.17b). Neverthe-
less, in practice we see that over a number of time steps, the vertices are moved
tangentially so that they will eventually be equidistributed.

Remark 2.10. The case d = 3 has been thoroughly investigated in [12, § 4]. We
recall here the main results for the benefit of the reader. Surfaces satisfying (2.20b)
are called conformal polyhedral surfaces. The authors showed that infinitesimally
small “tangential” changes to a conformal polyhedral surface Γh(t) do not decrease
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its surface area and maintain its volume. Moreover, if only one vertex is moved, the
enclosed volume is conserved if and only if this movement is “tangential”. Hence
no individual vertex in Γh(t) can be moved so as to maintain the volume, and
decrease the surface area to leading order. In addition, the authors showed that it
is possible to characterise conformal polyhedral surfaces with a stronger condition.
The local criticality condition to “tangential” variations can be strengthened to a
global minimisation condition, if the surface area is replaced by a Dirichlet integral.
Precisely, it is clear from (2.20b) that

〈∇s ~Xh,∇s ~η〉Γh(t) = 0 (2.26)

for all ~η ∈ V~τ(Γ
h(t)) := {~ξ ∈ Vh(Γh(t)) : ~ξ(~qhk(t)) · ~ωh(~qhk(t), t) = 0, k =

1, . . . , KhΓ }., where ~ωh(·, t) denotes the continuous-in-time counterpart of the ver-
tex normal function ~ωm. The space V~τ(Γ

h(t)) contains therefore all the polynomial,
piecewise linear parameterisations of Γh(t) that are orthogonal to ~ωh(·, t) at every
vertex of the interface Γh(t). It can be shown that (2.26) leads to

Hd−1(Γh(t)) =
1

2

∫
Γh(t)

|∇s ~Xh|2 dHd−1

= min
~η∈V~τ(Γ

h(t))

1

2

∫
Γh(t)

|∇s (~Xh +~η)|2 dHd−1 , (2.27)

which guarantees good mesh properties, since the parameterisation ~Xh(t) for all
t ∈ (0, T ] cannot move any vertex as to preserve the volume and at the same time
decrease the Dirichlet integral in (2.27).

2.2.2 Comparison with other discretisation schemes

It is worthwhile to mention two alternative finite element approximations
that have been introduced in the literature.

The first scheme approximates mean curvature flow (eq. (1.2)). It was pro-
posed in [50] and can be formulated as follows: Find ~Xm+1 ∈ V(Γm) such
that 〈 ~Xm+1 − ~Xm

τm
,~η
〉h
Γm

+ 〈∇s ~Xm+1,∇s ~η〉Γm = 0 ∀ ~η ∈ V(Γm) . (2.28)

The system (2.28) is a discretisation of the variational formulation of

~Xt = ∆s ~X ,
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as opposed to (2.8). It can be shown that the scheme (2.16a)-(2.16b) can be
rewritten as: Find ~Xm+1 ∈ V(Γm) such that, for all ~η ∈ V(Γm)〈 ~Xm+1 − ~Xm

τm
· ~ωm,~η · ~ωm

〉h
Γm

+ 〈∇s ~Xm+1,∇s ~η〉Γm = 0 , (2.29)

which clearly highlights the key difference between the two schemes.
The second scheme approximates surface diffusion (eq. (1.4)). It was in-

troduced in [6] and can be stated as follows. Let ~Xm+1 := ~Xm + τm ~Vm+1,
where ~Vm+1 ∈ V(Γm) is part of the solution of: Find {~Vm+1, κm+1, ~κm+1,

Vm+1} ∈ V(Γm)×W(Γm) × V(Γm)×W(Γm) such that, for all χ ∈ W(Γm)

and for all ~η ∈ V(Γm)

〈~κm+1,~η〉Γm + τm 〈∇s ~Vm+1,∇s ~η〉Γm = −〈∇s ~Xm,∇s ~η〉Γm , (2.30a)

〈κm+1, χ〉Γm − 〈~κm+1, χ~νm〉Γm = 0 , (2.30b)

〈Vm+1, χ〉Γm − 〈∇s κm+1,∇s χ〉Γm = 0 , (2.30c)

〈~Vm+1,~η〉Γm − 〈Vm+1 ~νm,~η〉Γm = 0 . (2.30d)

The system (2.30a)-(2.30d) is a discretisation of the variational formulation
of

~κ = ∆s ~X , κ = ~κ · ~ν , v = −∆s κ , ~Xt = ~v = v~ν ,

as opposed to (2.9). We note that both schemes (2.28) and (2.30a)-(2.30d)
only change the approximation of ~X in the normal direction, whereas the
schemes used throughout this thesis also induce tangential changes. This
is a crucial difference, which we address here for the benefit of the reader
by recalling some simulations presented in the literature. Before comparing
(2.28) with (2.16a)-(2.16b) and (2.30a)-(2.30d) with (2.17a)-(2.17b), let us in-
troduce two indicators of mesh quality. Similarly to [12, § 5], and recalling
(2.14), we set

hΓm = max
k=1→KmΓ

{
max

~pl∈∂Λmk
|~qmk − ~pl|

}
, (2.31)

lΓm = min
k=1→KmΓ

{
min

~pl∈∂Λmk
|~qmk − ~pl|

}
, (2.32)

where hΓm and lΓm represent the maximum and minimum segment of the
hypersurface Γm, respectively.
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The first example we recall is from [10, Fig. 4]. The experiment is for
a mild ellipse. The parameters are chosen as follows: JmΓ = KmΓ = 64,
τ = 10−6, T = 10−3 and the initial curve is a 3 : 1 ellipse with semiminor axis
R = 0.075. The scheme (2.30a)-(2.30d) breaks down at t = 3.2× 10−4, due to
a coalescence of grid points. On the other hand, the scheme (2.17a)-(2.17b)
intrinsically moves the vertices such that the problem can be computed
until time t = T , when the solution has reached the shape of a circle. The
second example we recall is from [10, Fig. 5]. Starting with an initial curve
that consists of a semi-circle and a single additional node on the periphery
of the circle, we investigate the ratio

rh := hΓm/lΓm (2.33)

over time. The parameters are JmΓ = KmΓ = 128, τ = 10−7, T = 5× 10−4 and
R = 0.075 as the radius of the circle. The scheme (2.30a)-(2.30d) could com-
pute only up to time t = 8.4× 10−5. From [10, Fig. 5] one can clearly see
that although the true solution (a circle) is reached very quickly (at around
time t = 2× 10−5), in the remaining time the vertices are continually moved
tangentially, which results in a further decrease in the ratio rh, which ap-
proaches the optimal value 1; see [10, Fig. 6]. The coalescence of vertices for
the scheme (2.30a)-(2.30d) can be prevented by heuristically redistributing
all the mesh points tangentially after each time step, as described in [6].
However, such mesh operations can have a dramatic effect on the size of
the final circular solution.

The final example we recall is from [12, Figs. 2 and 3]. The geometry is a
2× 1× 1 cuboid, with the initial triangulation given by KmΓ = 1282 vertices
and JmΓ = 2560 triangles. The remaining parameters are chosen as τ = 10−3

and T = 0.14; see [12, Fig. 2]. In order to highlight one difference between
the two schemes, for each of them the ratios rh and

ra := max
j=1→JmΓ

Hd−1(σmj ) / min
j=1→JmΓ

Hd−1(σmj ) (2.34)

can be plotted over time, see [12, Fig. 3]. One can clearly see that the ratios
increase substantially for the scheme (2.28), while the tangential movement
of vertices induced by (2.16a)-(2.16b), as discussed in Section 2.2.1, results
in only a moderate increase in the ratios rh and ra. In all our simulations
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for the case d = 3, rh and ra qualitatively behave very similarly. Therefore,
in this particular case, from now on we will only present plots of ra, in
order to visualise the behaviour of the mesh quality over time.

2.2.3 Comparison between mass lumping and true integration

It is worthwhile to investigate a variant of the schemes (2.16a)-(2.16b) and
(2.17a)-(2.17b), where the mass lumped quadrature rule (2.12), which in-
tegrates exactly polynomials of degree 1, is replaced by exact integration
(2.11). The choice of an appropriate set of Gaussian quadrature nodes al-
lows then the exact calculation of the integrals where the integrand func-
tions are polynomials of degree 2. For mean curvature flow, we now solve
the following system: Find {~Xm+1, κm+1} ∈ V(Γm)×W(Γm) such that for all
χ ∈W(Γm), ~η ∈ V(Γm)〈 ~Xm+1 − ~Xm

τm
, χ~νm

〉
Γm

− 〈κm+1, χ〉Γm = 0 , (2.35a)

〈κm+1 ~νm, ~η〉Γm + 〈∇s ~Xm+1,∇s ~η〉Γm = 0 , (2.35b)

while for surface diffusion we analyse the system: Find {~Xm+1, κm+1} ∈ V(Γm)
×W(Γm) such that for all χ ∈W(Γm), ~η ∈ V(Γm)〈 ~Xm+1 − ~Xm

τm
, χ~νm

〉
Γm

− 〈∇s κm+1,∇s χ〉Γm = 0 , (2.36a)

〈κm+1 ~νm, ~η〉Γm + 〈∇s ~Xm+1,∇s ~η〉Γm = 0 . (2.36b)

We establish existence and uniqueness for the schemes (2.35a)-(2.35b) and
(2.36a)-(2.36b) with the help of the following theorem.

Theorem 2.11. Let the assumption (A) hold. Then there exist unique solutions
{~Xm+1, κm+1} ∈ V(Γm) ×W(Γm) to the systems (2.35a)-(2.35b) and (2.36a)-
(2.36b).

Proof. We discuss (2.36a)-(2.36b), since existence and uniqueness for (2.35a)-
(2.35b) can be shown in a similar way. The proof is a straightforward adap-
tion of the proof of [12, Thm. 2.1]. Existence and uniqueness of {~Xm+1, κm+1}

can be shown by proving that the linear system associated at each time level
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to (2.36a)-(2.36b) is invertible. To this end, we investigate the homogeneous
system: Find {~Ξ, κ} ∈ V(Γm)×W(Γm) such that

〈~Ξ, χ~νm〉Γm − τm 〈∇s κ,∇s χ〉Γm = 0 ∀ χ ∈W(Γm) , (2.37a)

〈κ~νm,~η〉Γm + 〈∇s ~Ξ,∇s ~η〉Γm = 0 ∀ ~η ∈ V(Γm) , (2.37b)

and prove that the trivial solution is the unique solution to the system.
Choosing χ ≡ κ ∈W(Γm) in (2.37a) and ~η ≡ ~Ξ ∈ V(Γm) in (2.37b) we obtain
that

|∇s ~Ξ|2Γm + τm |∇s κ|2Γm = 0 . (2.38)

It follows from (2.38) that κ ≡ κc ∈ R and ~Ξ ≡ ~Ξc ∈ Rd, which yields

〈~Ξc, χ~νm〉Γm = 0 ∀ χ ∈W(Γm), κc 〈~νm,~η〉Γm = 0 ∀ ~η ∈ V(Γm) . (2.39)

Since for every element σmj the vectors ~Xc and ~νm are constant functions
and χ is linear, the integrand functions in (2.39) are polynomials of degree
1. Therefore it follows that, for all χ ∈W(Γm),~η ∈ V(Γm)

〈~Ξc, χ~νm〉hΓm = 〈~Ξc, χ~νm〉Γm = 0 , κc 〈~νm,~η〉hΓm = κc 〈~νm,~η〉Γm = 0 . (2.40)

We now conclude the proof with the same argument used in [12, Thm. 2.1].
By choosing ~η ≡ ~zφmk ∈ V(Γm) in the left-hand side of (2.40) and recall-
ing the definitions of the mass lumped inner product (2.12) and the vertex
normal (2.14), we derive, on assuming κc 6= 0, that for k = 1→ KmΓ

~ωmk · ~z = 0 ∀ ~z ∈ Rd ⇐⇒ ~ωmk = ~0 . (2.41)

However, this contradicts assumption (A) and hence κc = 0. Similarly, by
choosing χ ≡ φmk in (2.40) we derive that ~Ξc · ~ωmk = 0 for k = 1 → KmΓ .
It follows from assumption (A) that ~Ξc ≡ ~0. Hence we have shown that
there exists a unique solution {~Xm+1, κm+1} ∈ V(Γm)×W(Γm) to the linear
system (2.36a)-(2.36b). 3

Furthermore, the schemes (2.35a)-(2.35b) and (2.36a)-(2.36b) are uncondi-
tionally stable. This feature is proven in the following theorem.
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Theorem 2.12. Let the assumption (A) hold, and {~Xm, κm}Mm=1 be the unique
solution to the system (2.35a)-(2.35b). Then for k = 1→M we have that

|Γk|+

k−1∑
m=0

τm |κm+1|2Γm 6 |Γ0| . (2.42)

Moreover, for the unique solution {~Xm, κm}Mm=1 to the system (2.36a)-(2.36b), for
k = 1→M we have that

|Γk|+

k−1∑
m=0

τm |∇s κm+1|2Γm 6 |Γ0| . (2.43)

Proof. We prove here only the stability result (2.43), since the result for (2.42)
can be shown in a similar way. The proof is a straightforward adaption of
the proofs of [10, Thm. 2.3] and [12, Thm. 2.2]. Choosing χ ≡ κm+1 ∈W(Γm)

in (2.36a) and ~η ≡ ~Xm+1−~Xm

τm
∈ V(Γm) in (2.36b) yields that

〈∇s ~Xm+1,∇s (~Xm+1 − ~Xm)〉Γm + τm |∇s κm+1|2Γm = 0 . (2.44)

For the case d = 2, with the help of [10, Thm. 2.3] and [52], and for the case
d = 3, with the help of [12, Thm. 2.2], we can show that

〈∇s ~Xm+1,∇s (~Xm+1 − ~Xm)〉Γm > |Γm+1|− |Γm| . (2.45)

Combining (2.44) and (2.45) yields that

|Γm+1|− |Γm|+ τm |∇s κm+1|2Γm 6 0 . (2.46)

Summing (2.46) for m = 0→ k− 1 yields the desired result (2.43). 3

Remark 2.13. The choice of the exact quadrature formula (2.11) instead of the
mass lumped inner product (2.12) means that the analogue of the equidistribution
property investigated in Theorem 2.8 and Remarks 2.9 and 2.10 cannot be estab-
lished. We will therefore conduct a set of numerical experiments, for both d = 2

and d = 3, in order to investigate the behaviour of mesh quality indicators over
time, when (2.11) is employed.

Our first experiment for d = 2 is inspired by [10, Fig. 4]. The initial
geometry is given by the same 3 : 1 ellipse, with JmΓ = KmΓ = 100. The
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Figure 2.4: Plots of the ratio rh for both mass lumping (blue) and exact integration

(red), with initial domain given by a 3 : 1 ellipse. The two curves are

indistinguishable.
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simulation parameters are chosen as τ = 10−5 and T = 0.5. In Figure 2.4
we plot the behaviour of the ratio rh over time. We note that both mass
lumping (blue) and exact integration (read) lead to an equidistribution of
mesh vertices. The plots for the two choices are almost indistinguishable.

The next experiment corresponds to [10, Fig. 5], with τ = 10−4 and T = 5.
In Figure 2.5 we plot the behaviour of the ratio rh over time. We note that
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Figure 2.5: Plots of the ratio rh for both mass lumping (blue) and exact integration

(red), with initial domain given by a semi-circle and a single additional

node on the periphery of the circle. The two curves are indistinguish-

able.

also in this case the equidistribution of mesh points is reached in practice,
and the temporal behaviours of rh for the two inner products are almost
indistinguishable.

Our last example for d = 2 analyses the unit circle, with JmΓ = KmΓ =

128. At t = 0 the points on either semi-circle are placed such that the arcs
connecting pairs of consecutive vertices constitute a geometric progression
with ratio 1.25. The initial geometry is shown in Figure 2.6. From Figure
2.7 we note that the mesh points eventually equidistribute for both mass
lumping and exact integration.
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Figure 2.6: Plot at time t = 0 of the unit circle with 128 points, placed such that

on either semi-circle the arcs connecting pairs of consecutive vertices

constitute a geometric progression with ratio 1.25.
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Figure 2.7: Plots of the ratio rh for both mass lumping (blue) and exact integra-

tion (red), with initial domain given by a circle with 128 points, placed

such that the arcs connecting pairs of consecutive vertices constitute a

geometric series with ratio 1.25. The two curves are indistinguishable.
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Our first experiment for d = 3 corresponds to the one recalled from [12,
Fig. 2]. We note that the initial 2× 1× 1 cuboid is triangulated with right-
angled, isosceles triangles, with KmΓ = 1282 and JmΓ = 2560. We plot its
temporal evolution under mean curvature flow with mass lumping ((2.16a)-
(2.16b)) in Figure 2.8. In Figure 2.9 we plot the ratio ra, defined in (2.34), for
mass lumping ((2.16a)-(2.16b), blue) and exact integration ((2.35a)-(2.35b),
red). We observe that mass lumping contributes to keeping a more regu-

Figure 2.8: Evolution of a 2× 1× 1 cuboid under mean curvature flow with mass

lumping ((2.16a)-(2.16b)), at times t = 0, 0.05, 0.1, T = 0.14. At t = T the

enclosed volume is reduced by 99.74%.

lar mesh. Moreover, the ratio ra is higher when exact integration is used.
We also analyse the case of a different triangulation of the same cuboidal
domain. To this end, we employ the mesh generator GMSH (see [73] for
details), which produces high-quality Delaunay triangulations. We obtain
an initial mesh with size comparable to the previous case, precisely with
KmΓ = 1284 and JmΓ = 2564. We plot this Delaunay mesh in Figure 2.10. The
plots for the ratio ra for both mass lumping and true integration are shown
in Figure 2.11. We again observe that the choice of the inner product (2.12)
contributes to keeping a more regular mesh. In addition, the ratio ra tends
to be higher for the geometry produced by the package GMSH than in the
case of right-angled, isosceles triangles.
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Figure 2.9: Plots of the ratio ra (eq. (2.34)) for both mass lumping (blue) and ex-

act integration (red), with initial domain given by a 2× 1× 1 cuboid

triangulated with right-angled, isosceles triangles.

Figure 2.10: Plot at time t = 0 of the 2× 1× 1 cuboid triangulated by the package

GMSH.
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Figure 2.11: Plots of the ratio ra (eq. (2.34)) for both mass lumping (blue) and

exact integration (red), with initial domain given by a 2× 1× 1 cuboid

triangulated by the package GMSH.
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Figure 2.12: Plot at time t = 10 of the 2 × 1 × 1 cuboid, evolving under surface
diffusion with mass lumping ((2.17a)-(2.17b)) and triangulation given

by the package GMSH. The cuboid has asymptotically converged to a

sphere.

Our next experiment is for surface diffusion and involves the same 2×1×1
cuboid analysed in the first experiment. We choose the parameters τ = 10−3

and T = 10. We note that the cuboid converges asymptotically to a sphere,
see Figure 2.12 for the case where the initial mesh is triangulated by the
package GMSH and mass lumping ((2.17a)-(2.17b)) is used. We do not
report the plot for the case of an initial mesh with right-angled, isosceles
triangles since it looks very similar. We plot the ratio ra for the mesh with
right-angled, isosceles triangles in Figure 2.13 and for the mesh produced
by GMSH in Figure 2.14, respectively. The mesh quality indicators for the
two cases are almost indistinguishable.

Our last set of experiments is inspired by the test in [12, Fig. 15]. We in-
vestigate the evolution of a “cage” under surface diffusion. The dimensions
of the initial surface are 4× 4× 4, with the region enclosed by Γ0 given as
the union of 12 cuboids of dimension 4× 1× 1. Here a topological change
is encountered when the six holes of the surface are about to close to form
a hollow ball. We choose τ = 10−4 and T = 0.48. We compare two differ-
ent cases. In the first one, an initial mesh with right-angled and isosceles
triangles is considered. The discretisation parameters are KmΓ = 1912 and
JmΓ = 3840. In the second case, we consider the same initial domain tri-
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Figure 2.13: Plots of the ratio ra (eq. (2.34)) for both mass lumping (blue) and

exact integration (red), with initial domain given by a 2× 1× 1 cuboid

triangulated with right-angled, isosceles triangles.
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Figure 2.14: Plots of the ratio ra (eq. (2.34)) for both mass lumping (blue) and

exact integration (red), with initial domain given by a 2× 1× 1 cuboid

triangulated by the package GMSH.
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angulated with GMSH. The discretisation parameters are KmΓ = 1900 and
JmΓ = 3816. The temporal evolution for the latter set of parameters is shown
in Figure 2.15. We do not report the evolution for the former case, since it
looks very similar. The plot for the ratio ra for the first case is shown in

Figure 2.15: Evolution of a 4× 4× 4 “cage” under surface diffusion with mass lump-

ing ((2.17a)-(2.17b)), at times t = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, T =

0.48. The initial mesh is produced by the package GMSH.

Figure 2.16, both for mass lumping (blue) and exact integration (red). The
results for the second case are shown in Figure 2.17. We notice that for the
“cage” surface exact integration keeps the evolving mesh smoother. Only
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Figure 2.16: Plots of the ratio ra (eq. (2.34)) for both mass lumping (blue) and

exact integration (red), with initial domain given by a 4× 4× 4 “cage”

triangulated with right-angled, isosceles triangles.



2.2 finite element approximation of geometric flows 46

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3
x 10

4

time

r
a

ti
o

 r
a

 

 

mass lumping
exact integration

Figure 2.17: Plots of the ratio ra (eq. (2.34)) for both mass lumping (blue) and

exact integration (red), with initial domain given by a 4× 4× 4 “cage”

triangulated by the package GMSH.
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Figure 2.18: Evolution of the unit cube under surface diffusion with mass lumping

((2.17a)-(2.17b)), at times t = 0, 10−4, 5× 10−4, 10−3. The initial mesh

is composed of right-angled, isosceles triangles, and the time step is

τ = 10−7.

very close to t = T , when the surface is about to undergo a topological
change, does the ratio ra increase for exact integration as well.

2.2.4 Evolution under very small time steps: the α-scheme

We now go back to the scheme (2.17a)-(2.17b) and investigate the temporal
evolution of surfaces when very small time steps are considered. We take
as initial geometry the unit cube, where the interface mesh is composed
of right-angled, isosceles triangles. The discretisation parameters are the
following: τ = 10−7, T = 10−3, KmΓ = 1538 and JmΓ = 3072. The evolution is
plotted in Figure 2.18. We can see that distorted elements appear already
for t = 5× 10−4, and the mesh keeps deteriorating with time. To further
investigate the quality of the mesh, we plot the temporal evolution of the
quality indicator ra in Figure 2.19. We note that the increase for ra is caused
by the “rings” of elongated elements that we already noticed for the “cage”
in Figure 2.15.
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Figure 2.19: Plots of the ratio ra (eq. (2.34)) for mass lumping, with initial domain

given by the unit cube triangulated with right-angled, isosceles trian-

gles, and time step τ = 10−7.
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In order to eliminate the spurious “rings” appearing on the interface
mesh, we now apply a different strategy, which aims at reducing the tan-
gential movement for the discrete parameterisation. Precisely, we solve for
an alternative of (2.17b), where the idea is to represent also the tangential
components of the discrete surface Laplacian of ~Xm+1. The scheme was first
introduced in [13], and we recall it here for the benefit of the reader. First,
we define the function ~zm ∈ V(Γm) such that

~zm(~qmk ) :=
~ωmk
|~ωmk |

, k = 1→ KmΓ , (2.47)

where we recall the definition of ~ωmk given in (2.14). The vector-valued
function ~zm is, vertex-wise, a unit normal vector.

Given the above definition, we now introduce the vector-valued functions
~τmi :=

∑KmΓ
k=1 ~τ

m
i,kφ

m
k ∈ V(Γm), where {~zm(~qmk ), ~τ

m
1,k, . . . , ~τ

m
d−1,k} for each vertex

k = 1, . . . , KmΓ form an orthonormal basis of Rd. We now illustrate a variant
of (2.17b) that reduces tangential motion. Let the coefficient α ∈ R>0 be
given. In addition to the position vector ~Xm+1 and to the curvature κm+1,
find βm+1

i ∈W(Γm), i = 1→ d− 1, such that ∀ χ ∈W(Γm), ∀ ~η ∈ V(Γm)

α
〈 ~Xm+1 − ~Xm

τm
, χ ~τmi

〉h
Γm

= α 〈βm+1
i , χ〉hΓm , i = 1→ d− 1 , (2.48a)

〈
κm+1 ~ωm +α

d−1∑
i=1

βm+1
i ~τmi ,~η

〉h
Γm

+ 〈∇s ~Xm+1,∇s ~η〉Γm = 0 , (2.48b)

and (2.17a) hold. It is straightforward to note that, choosing α ≡ 0, the
scheme (2.17a), (2.48a)-(2.48b) collapses to the scheme (2.17a)-(2.17b), on
recalling (2.15). We now establish existence and uniqueness for the scheme
(2.17a), (2.48a)-(2.48b) with the help of the following theorem.

Theorem 2.14. Let the assumption (A) hold. Then there exist unique solutions
{~Xm+1, κm+1} ∈ V(Γm)×W(Γm) and βm+1

i ∈ W(Γm), i = 1 → d− 1, to the
system (2.17a), (2.48a)-(2.48b).

Proof. The proof is a straightforward adaption of the one given in [13,
Thm. 3.1]. Since (2.17a), (2.48a)-(2.48b) is a linear system of equations,
it suffices to analyse it for the unknowns {~Ξ, κ} ∈ V(Γm) ×W(Γm), βi ∈
W(Γm), i = 1→ d− 1, with homogeneous right-hand side and deduce that
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the trivial solution is the only solution of such a system. With the particular
choice of test functions χ ≡ κ ∈ W(Γm) in the analogue of (2.17a), ~η ≡ ~Ξ ∈
V(Γm) in the analogue of (2.48a) and χ ≡ βi ∈W(Γm), i = 1→ d− 1, in the
analogue of (2.48b), we obtain

|∇s ~Ξ|2Γm + τm |∇s κ|2Γm +α

d−1∑
i=1

〈βi, βi〉hΓm = 0 . (2.49)

It immediately follows from (2.49) that βi = 0, i = 1 → d− 1. We can now
continue the proof similarly to the proof of Theorem 2.11 to obtain ~Ξ = ~0

and κ = 0. Hence there exist unique solutions {~Xm+1, κm+1} ∈ V(Γm) ×
W(Γm) and βm+1

i ∈ W(Γm), i = 1 → d− 1, to the system (2.17a), (2.48a)-
(2.48b). 3

We now perform several numerical simulations in order to test whether
the appearance of elongated elements can be eliminated. We keep the same
parameters as before, i.e. τ = 10−7 and the initial mesh composed of right-
angled, isosceles triangles, with KmΓ = 1538 and JmΓ = 3072. Results for the
mesh quality indicator ra are plotted in Figures 2.20 and 2.21 for different
values of α.

We can observe that the quality of the mesh strongly depends on the
choice of the parameter α. With α = 0.1, tangential movement is reduced
too much, which causes the ratio ra to increase higher than in the case
shown in Figure 2.19. Decreasing the value of α improves the quality of
the mesh, which reaches a steady state. In particular, it appears that the
choice of α = 10−4 best overcomes the “ringing” effect shown in Figure
2.18. The complete evolution of the cube according to the scheme (2.17a),
(2.48a)-(2.48b) with α = 10−4 is reported in Figure 2.22. Finally, we note
that, taking α→ 0, the quality of the mesh deteriorates again, and the ratio
ra exhibits a behaviour similar to the one in Figure 2.19.

2.3 multi-component interfaces

For ease of presentation, so far we have restricted ourselves to the case of
Γm being a single closed surface. It is straightforward to extend the approx-
imations (2.16a)-(2.16b) and (2.17a)-(2.17b) to the case where Γm is given by
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Figure 2.20: Plots of the ratio ra (eq. (2.34)) for the unit cube under the scheme

(2.17a), (2.48a)-(2.48b), with τ = 10−7 and α = 10−1 (red), 10−2 (green),

10−3 (blue), 10−4 (black).
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Figure 2.21: Plots of the ratio ra (eq. (2.34)) for the unit cube under the scheme

(2.17a), (2.48a)-(2.48b), with τ = 10−7 and α = 10−5 (red), 10−6 (green),

10−8 (blue), 10−10 (black), 10−13 (yellow).



2.3 multi-component interfaces 53

Figure 2.22: Evolution of the unit cube under the schemes (2.17a), (2.48a)-(2.48b),

with α = 10−4 and τ = 10−7. The evolving surface is shown at times

t = 0, 10−4, 5× 10−4, 10−3, 2× 10−3.
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a family of closed surfaces, say Γm =
⋃L
l=1 Γ

m
l , with Γml =

⋃Jml
j=1 σ

m, l
j , where

{σm, lj }
Jml
j=1 is a family of mutually disjoint open (d− 1)-simplices with ver-

tices {~qm, lk }
Kml
k=1, l = 1, . . . , L. We also define the necessary parametric finite

element spaces as follows. For m = 0→M− 1, let

V l(Γm) := {~χ ∈ C(Γml ,Rd) : ~χ |σm,lj
is linear ∀ j = 1→ Jml } =:

[
Wl(Γm)

]d
.

(2.50)

The natural extensions of (2.16a)-(2.16b) to the multi-component case can
be presented as follows: Given Γ0l and the identity function ~X0l ∈ V

l(Γ0)

on Γ0l , then for m = 0 →M− 1 find {~Xm+1
l , κm+1

l } ∈ V l(Γml )×Wl(Γml ) such
that, for l = 1→ L〈 ~Xm+1

l − ~Xml
τm

, χ~νml

〉h
Γml

− 〈κm+1
l , χ〉hΓml = 0 ∀ χ ∈Wl(Γml ) , (2.51a)

〈κm+1
l ~νml , ~η〉hΓml + 〈∇s ~Xm+1

l ,∇s ~η〉Γml = 0 ∀ ~η ∈ V l(Γml ) . (2.51b)

Moreover, the natural extensions of (2.17a)-(2.17b) to the multi-component
case can be presented as follows: Given Γ0l and the identity function ~X0l ∈
V l(Γ0) on Γ0l for l = 1, . . . , L, then for m = 0 → M− 1 find {~Xm+1

l , κm+1
l } ∈

V l(Γml )×Wl(Γml ) such that, for l = 1→ L〈 ~Xm+1
l − ~Xml
τm

, χ~νml

〉h
Γml

− 〈∇s κm+1
l ,∇s χ〉Γml = 0 ∀ χ ∈Wl(Γml ) ,

(2.52a)

〈κm+1
l ~νml , ~η〉hΓml + 〈∇s ~Xm+1

l ,∇s ~η〉Γml = 0 ∀ ~η ∈ V l(Γml ) .

(2.52b)

Let (Al) be the analogue of assumption (A) for the closed surface Γml , l =
1, . . . , L. The we can generalise Theorems 2.6 and 2.7 as follows.

Theorem 2.15. Let the assumptions (Al), l = 1, . . . , L hold. Then there exist
unique solutions {~Xm+1

l , κm+1
l } ∈ V l(Γm)×Wl(Γm), l = 1 → L, to the systems

(2.51a)-(2.51b) and (2.52a)-(2.52b). Moreover, for mean curvature flow it holds
that

|Γk|+

k−1∑
m=0

τm

L∑
l=1

(|κm+1
l |hΓml

)2 6 |Γ0| , (2.53)
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while for surface diffusion

|Γk|+

k−1∑
m=0

τm

L∑
l=1

|∇s κm+1
l |2Γml

6 |Γ0| . (2.54)

Proof. As the systems for {~Xm+1
l , κm+1

l } decouple for each l = 1, . . . , L, we
immediately obtain the desired existence and uniqueness results from The-
orem 2.6. Moreover, in order to prove the stability result (2.54), we note
that

|Γm+1
l |+ τm |∇s κm+1

l |2Γml
6 |Γml | ,

for l = 1, . . . , L, which on summing from m = 0→ k− 1 and for l = 1→ L

yields the desired result (2.54). (2.53) can be proven with a straightforward
adaption. 3

Remark 2.16. For a semi-discrete variant of (2.52a)-(2.52b), as for (2.20a)-(2.20b),
we can show that (2.21) holds for each Γl, l = 1, . . . , L. Moreover, for the case
d = 2, the equidistribution property now holds for each curve Γhl (t) separately. In
fact, on letting ~hlk(t) := ~qh, lk − ~qh, lk−1 for k = 1, . . . , Kh

Γhl
and l = 1, . . . , L, where

{~qh, lk }
KhΓl
k=1 are the vertices along Γhl (t), we obtain

|~hlk(t)| = |~hlk−1(t)| if ~hlk(t) ∦ ~hlk−1(t) . (2.55)

2.3.1 Topological changes

By extending the schemes (2.16a)-(2.16b) and (2.17a)-(2.17b) to the multi-
component cases (2.51a)-(2.51b) and (2.52a)-(2.52b), we have obtained the
possibility of simulating the temporal evolution of a family of hypersur-
faces. This feature also allows us to perform topological changes, such
as the merging of two curves into one, or the pinching-off of one surface
from another. In practice we monitor the need for topological changes,
and then implement the changes, with the help of the package El-Topo,
see [30]. In that paper, the authors require every operation to leave the
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mesh in a consistent, nonintersecting state − as opposed to attempting to
recover such a state after an intersection has occurred. To this end, the au-
thors present a combination of different routines, which can be classified
into three main types of geometric interference detection: intersection detec-
tion, proximity detection, and collision detection. The first operation aims
at checking whether a mesh intersects itself at any given time. The second
operation detects when mesh elements are closer than a specified tolerance
(in particular, when a vertex is close to a triangle or when two edges are
close to each other). The third operation tests whether a collision between
a moving vertex and a moving triangle or between two moving edges will
occur in a specified time span, and resolves such a collision guaranteeing
intersection-free meshes. The same library has successfully been applied in
several contexts: coupling of an explicit surface tracker to a Voronoi simu-
lation mesh ([29]), linear-time smoke animations with vortex sheet meshes
([31]), evolution of multi-material interfaces ([39]), and ocean-based anima-
tions using boundary integral equations ([89]).

Our usage of this library can be summarised as follows. Let Tm be the
mesh configuration at time t = tm, consisting of (i) the current positions
of the vertices of Γm and (ii) the connectivity of the grid in terms of pairs
(for d = 2) or triplets (d = 3) of vertex indices. As input parameters El-
Topo expects the current mesh configuration Tm as well as a user-defined
velocity function, which we naturally choose to be 1

τm
δ~Xm+1, and the time

step size τm. This allows El-Topo to define a predicted mesh configuration
T̂m+1, where each vertex is transported with its own velocity, and where no
topological changes are performed. If T̂m+1 satisfies certain criteria, then
topological changes are performed to produce a final mesh configuration
Tm+1. For example, if a component of T̂m+1 features self-intersections, then
T̂m+1 is split up such that the self-intersection is removed, and Tm+1 still
remains as close as possible to T̂m+1. Moreover, the user can specify toler-
ances that indicate that different components of T̂m+1 have come too close
to each other, which then results in them being merged. Finally, one can
also specify a minimum grid size, which leads to elements below a cer-
tain tolerance being removed altogether. Due to the heuristic nature of the
employed criteria, it is always necessary to experimentally change the var-
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ious tolerances according to the analysed hypersurface, depending on the
number of its points and elements, time step, and preservation of the en-
closed volume. For more details on how El-Topo proceeds to determine the
necessary topological changes, we refer to the description in [30, § 3.3].

We now show some examples of the application of the El-Topo package
for surfaces evolving under surface diffusion, for both d = 2 and d = 3. The
first example is for d = 2, with the initial geometry given by two ellipses
with horizontal semiaxis a = 2.4 and vertical semiaxis b = 0.3, centred at
(0,±0.33) and with 316 elements on each ellipse. The simulation is divided
into three parts. The first one has time step τ = 10−6 and T1 = 8× 10−3,
where no topological changes are applied. At t = T1, the two ellipses,
which now present a dumbbell-shaped profile, coalesce. The two points of
coalescence exhibit a very high value for the curvature. In order to capture
the evolution correctly and avoid volume loss, we continue the simulation
with a very small time step, namely τ = 10−10, until T2 = 8.0031× 10−3.
At time t = T2, the shape of the geometry has been smoothed, so we can
reuse the time step τ = 10−6 until T3 = 6. The complete evolution is shown
in Figure 2.23, where we note that the initial elliptical profiles evolve first
into a dumbbell-shaped one, and then undergo a topological change which
results in a final configuration of two circles.

Our second example is for d = 3, and investigates the evolution of the
“cage” already presented in Figure 2.15. The simulation is again divided
into three parts. For the first part we set τ = 10−4 and T1 = 0.48. At this
point, El-Topo first applies a mesh smoothing routine that removes the “rings”
of distorted elements, and then performs a topological change leading to a
hollow sphere, as plotted in Figure 2.24. We experimentally note that the
smoothing routine is necessary in order to obtain the correct topological
change. To capture the evolution correctly, in the second part of the simula-
tion we reduce the time step to τ = 10−7 until T2 = 0.4802, from which we
reuse τ = 1× 10−4 until T3 = 0.8.

Our next example is inspired by the tests in [12, Figs. 21 and 22]. The
initial configuration is a “cigar like” rounded cylinder of dimension 8× 1×
1, which is reported in Figure 2.25. The simulation is again divided into
three parts. For the first part we set τ = 10−4 and T1 = 0.237. At this point,



2.3 multi-component interfaces 58

Figure 2.23: Evolution of two 8 : 1 ellipses under surface diffusion, at times t = 0,

8× 10−3, 8.0031× 10−3, 6.

Figure 2.24: Temporal evolution of a 4 × 4 × 4 “cage” under surface diffusion, at

times t = 0.48, 0.4802, 0.8. On the left the interface, on the centre half-

cuts for x2 = 0, on the right the cross section for x3 = 0.
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Figure 2.25: Temporal evolution for a 8× 1× 1 “cigar like” rounded cylinder under

surface diffusion, at times t = 0, 0.237, 0.2372, 0.5. The plots are scaled

for the sake of visualisation. The loss of volume at the end of the

simulations is 0.2%.

El-Topo performs a topological change leading to a pinch-off, as plotted in
Figure 2.25. In the second part of the simulation we reduce the time step
to τ = 10−7 until T2 = 0.2372, from which we reuse τ = 10−4 until T3 = 0.5.
We can observe that after the topological change the two newly-formed
surfaces evolve to a sphere-shaped stationary state.

Our last example is inspired by the test in [12, Fig. 14]. The initial ge-
ometry is given by a torus with radii R = 1 and r = 0.25. We divide the
simulation into three parts. In the first part, we set τ = 10−4 and T1 = 0.0232.
At this point, El-Topo performs a topological change that modifies the torus
into a genus-0 surface, as plotted in Figure 2.26. In order to capture the evo-
lution correctly, we reduce the time step to τ = 10−7 until T2 = 0.0234, from
which we reuse τ = 10−4 until T3 = 0.052. The complete evolution is plotted
in Figure 2.26. We can see that after undergoing the topological change, the
newly-formed genus-0 surface asymptotically tends to a sphere.

Additional examples of the usage of the El-Topo library will be presented
at a later stage, in the framework of bulk-interface coupling.
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Figure 2.26: Temporal evolution of a torus with radii R = 1 and r = 0.25 under

surface diffusion, at times t = 0, 0.0232, 0.0234, 0.052. On the left the

interface, on the centre half-cuts for x2 = 0, on the right the cross

section for x3 = 0.
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2.4 solution methods

In this section, we aim at investigating various methods for the solution
of the linear systems of equations arising from the finite element approx-
imations discussed in Section 2.1. For ease of presentation, we define
δ~Xm+1 = ~Xm+1 − ~Xm.

In the case of mean curvature flow, equations (2.16a)-(2.16b) give rise to the
following linear system: Find δ~Xm+1 ∈ V(Γm) and κm+1 ∈W(Γm) such that

Mm − 1
τm

~NTm

~Nm ~Am


 κm+1

δ~Xm+1

 =

 0

− ~Am ~Xm

 . (2.56)

In the case of surface diffusion, equations (2.17a)-(2.17b) give rise to the
following linear system: Find δ~Xm+1 ∈ V(Γm) and κm+1 ∈W(Γm) such that

Am − 1
τm

~NTm

~Nm ~Am


 κm+1

δ~Xm+1

 =

 0

− ~Am ~Xm

 . (2.57)

In the above, we have introduced the matrices ~Nm ∈ (Rd)K
m
Γ ×K

m
Γ , Mm ∈

RKmΓ ×K
m
Γ , Am ∈ RKmΓ ×K

m
Γ and ~Am ∈ (Rd×d)K

m
Γ ×K

m
Γ , with entries[

~Nm

]
kl

:= 〈φmk , φml ~νm〉hΓm , [Mm]kl := 〈φ
m
k , φ

m
l 〉Γm ,

[Am]kl := 〈∇sφ
m
k ,∇sφml 〉Γm ,

where we recall that {φmj }
KmΓ
j=1 are the basis functions of W(Γm). In addition,

[~Am]kl := [Am]kl ~Id, where ~Id ∈ Rd×d is the identity matrix.
In order to discuss efficient solution methods for linear systems as in

(2.56) and (2.57), let us rewrite them in a more compact way, where su-
perscripts and subscripts are dropped for ease of presentation. We are
interested in solving a block linear system of the form− τB ~NT

~N ~A

κ
~X

 =

0
~b

 , (2.58)
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where B can be either a stiffness matrix or a mass matrix. Before we proceed
to discuss possible solution methods of (2.58), we note that an equivalent
formulation, which is nonsymmetric but positive definite, is given by:τB − ~NT

~N ~A


κ
~X

 =

0
~b

 . (2.59)

In addition to the system (2.59), the following two equivalent reformula-
tions can also be considered in practice:−B 1

τ
~NT

~N ~A


κ
~X

 =

0
~b

 (2.60)

and B − 1
τ
~NT

~N ~A


κ
~X

 =

0
~b

 . (2.61)

We are now ready to investigate in detail different methods of solution.
In § 2.4.1 we discuss the Schur complement approach, where the two un-
knowns are obtained at separate stages, when possible. In Sections 2.4.2
and 2.4.3, instead, we compute both unknowns at once. In the former case,
we apply iterative solvers, such as a BiCGSTAB algorithm. In the latter case,
we make use of sparse solvers which allow permutations in the numberings
of the unknowns. These solvers minimise the fill-in and guarantee the well
posedness of the factorisation algorithm. In practice, we consider the pack-
ages LDL (see [41] for details), together with the sparse matrix ordering
package AMD ([1]), and UMFPACK ([40]).

2.4.1 Schur complement approach

The linear system (2.58) can be solved with the help of a Schur comple-
ment approach. For a general introduction to this approach, see [69] and
the references therein. If B is nonsingular, the system can be equivalently
formulated as

~D ~X := (~A+ 1
τ
~NB−1~NT )~X = ~b , κ = 1

τB
−1~NT ~X . (2.62)
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As the matrix ~D is positive definite, the system (2.62) can be solved with a
Conjugate Gradient solver. This is the case for the motion by mean curvature,
where B is the mass matrix, therefore invertible.

Unfortunately, in the case of surface diffusion, the matrix B is singular.
Here we closely follow the discussion in [10, § 2]. Introducing the inverse
S of B restricted on the set (kerB)⊥ ≡ (span {1})⊥ and noting that the first
equation in (2.58) implies 1T ~NT ~X, one can transform (2.58) to

κ = 1
τS

~NT ~X+ µ1 , (2.63)

(~A+ 1
τ
~NS~NT )~X = ~b− µ~N1 , (~X)T ~N1 = 0 , (2.64)

where µ = 1Tκ
1T 1
∈ R is unknown. We introduce also the orthogonal pro-

jection ~Π onto R⊥ := {~X ∈ (Rd)K : ~XT ~N1 = 0} by ~Π := ~idK − ~w~wT

~wT ~w
where

~w := ~N1. Then (2.64), on noting that ~Π~X = ~X, is replaced by

~Π(~A+ 1
τ
~NS~NT )~Π~X = ~Π~b . (2.65)

The system (2.65) is positive semidefinite, so it can be solved with a Con-
jugate Gradient solver. The inverse S could be computed with the help
of an iterative solution method, such as a CG iteration. However in prac-
tice it is better to solve for the pseudoinverse S directly. This can be done
as follows, recalling that for motion by surface diffusion we have the case
kerB = span {1}. We first obtain the factorisation B = LDLT employing the
package LDL. Assuming without loss of generality that DKK = 0, then the
solution to the linear system Bx = f, for f ∈ RK with fT 1 = 0, is given by:

x = z−
zT 1

1T 1
1 , z = L−T D̂−1L−1f , (2.66)

where D̂ is the same as D, apart from D̂KK := 1. It is worth noting that,
solving for (2.65), each (outer) iteration of the CG method requires the solu-
tion of the system (2.66), where the factorisation B = LDLT does not change.
The matrices L and D can therefore be factorised only once and employed
without additional computational cost at each iteration of the outer CG. In
addition, at every iteration of the outer CG, the right-hand side f for the
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sub-system (2.66) is given by ~NT ~Π~X∗, where ~X∗ is the current iterate. Given
the definition of the projection ~Π, f is therefore automatically guaranteed to
satisfy the condition fT 1 = 0.

The presence of the projection operator ~Π makes it difficult to find effi-
cient preconditioners for the outer CG iteration for the system (2.65). Usu-
ally, only simple diagonal preconditioners are applied. In particular, in the
case that diag(B) is nonsingular (which always holds for both mean curva-
ture flow and surface diffusion), a possible choice of diagonal preconditioner
is given by

~Π~P−1~Π , ~P := diag(~A) + 1
τ diag(~N [diag(B)]−1 ~NT ) . (2.67)

Alternatively, one could use the following preconditioner:

~Π~P−1~Π , ~P := ~A+ 1
τ
~N [diag(B)]−1 ~NT . (2.68)

Of course, this preconditioner will only be practical if it is solved for exactly
with a direct (sparse) solver rather than an iterative solution method. As
the operator ~P is clearly symmetric positive definite, we can employ the
package LDL.

The factorisation of (2.68) could be computationally expensive in practice,
outweighing the achieved reduction in number of iterations. Hence, as an
alternative, one could consider

~Π~P−1~Π , ~P := diag(~A) + 1
τ
~N [diag(B)]−1 ~NT . (2.69)

We will compare the three preconditioning techniques (2.67), (2.68) and
(2.69) in terms of CPU time and number of iterations. As initial data for
(2.62) and (2.65) we always choose ~X = ~0.

2.4.2 Preconditioned BiCGSTAB

Alternatively, one can solve (2.58) with a BiCGSTAB solver. As the system
is in general not very well conditioned, one needs to employ a good pre-
conditioner in practice. In [38] several preconditioners are suggested for
the system (2.58), see also [116]. We consider here the choice [38, eq. (4)]



2.4 solution methods 65

and present the details for the nonsymmetric system (2.61). The precondi-
tioner immediately carries over to the remaining equivalent formulations
discussed before. The authors in [38, (4)] proposed the operator:

Pc :=

B − 1
τ
~NT

~N diag(~A)


−1

. (2.70)

In order to apply the preconditioner Pc, we need to solve a system of the
form B − 1

τ
~NT

~N diag(~A)


κ
~X

 =

c
~g

 . (2.71)

Now (2.71) can be solved with a Schur complement approach, leading to

(B+ 1
τ
~NT
[
diag(~A)

]−1
~N)κ = c+ 1

τ
~NT
[
diag(~A)

]−1
~g (2.72)

and

~X =
[
diag(~A)

]−1
(~g− ~Nκ) . (2.73)

We note that (2.72) is a symmetric positive definite system, which can be
solved with a direct solver, like the package LDL. We note that also in this
case the factorisation of (2.72) needs to be computed only once, since the
preconditioner (2.70) is fixed for the whole iteration. As initial data for the
BiCGSTAB solver we always choose ~X = ~0 and κ = 0.

2.4.3 Direct factorisation

As the system (2.58) is symmetric and nonsingular, it is also possible to
solve it with a sparse factorisation solver. In practice, we employ the pack-
ages LDL and UMFPACK.

2.4.4 Comparison between solution methods

In this section we compare the three solution strategies presented in § 2.4.1,
§ 2.4.2 and § 2.4.3 for several geometries, in d = 2 and d = 3.
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For the case d = 2, we first consider the same ellipse analysed in [10,
Fig. 4]. We refine its mesh width, since JmΓ = KmΓ = 64 would give rise
to negligible CPU times. We consider two cases: a coarser one with JmΓ =

KmΓ = 1004 and a finer one with JmΓ = KmΓ = 10024. Our third example for
d = 2 corresponds to the test in [10, Fig. 5], with a refined geometry given
by JmΓ = KmΓ = 10001.

For the case d = 3, we first consider a “cage” domain of the same shape
as in Figure 2.15, with different mesh sizes: a coarser one with KmΓ = 3816

and a finer one with KmΓ = 124732. Our next examples are inspired by the
tests in [12, Figs. 21 and 22], which we will reconsider at a later stage in
the case of topological changes. The initial configuration is a “cigar like”
rounded cylinder of dimension 8 × 1 × 1, with two different mesh sizes:
KmΓ = 1322 and KmΓ = 139550, respectively. The last examples are inspired
by the test in [12, Fig. 4]. The initial surface consists of a cube, where the
parameterisation is such that it is very coarse for the lower part, and more
refined for the upper part. Two different mesh sizes have been considered:
KmΓ = 1658 and KmΓ = 6394, respectively.

A comparison between different solution strategies is reported in Tables
2.1 (for the formulation (2.58)), 2.2 (for the formulation (2.59)), and 2.3 (for
the formulation (2.61)). In Table 2.4 we compare the three different pre-
conditioning choices (2.67), (2.68) and (2.69) for the Schur complement ap-
proach applied to (2.59). In all the cases we solve one single time step for
surface diffusion, with τ = 10−6. The stopping criterion for all iterative algo-
rithms has been a reduction by a factor of 10−10 with respect to the initial
residuum.

For all the formulations (2.58), (2.59) and (2.61), direct factorisation strate-
gies perform best, both in terms of CPU time and residuum. We do not
report the latter, in order to keep Tables 2.1, 2.2 and 2.3 more readable. For
the symmetric formulation (2.58), LDL outperforms UMFPACK in the case
d = 2, while UMFPACK proves to be the fastest solver with d = 3. In
addition, it is worthwhile to mention that the preconditioned BiCGSTAB
algorithm outperforms the Schur complement in all the cases where con-
vergence is reached. We also note that both direct solvers and BiCGSTAB
return the value of the unknowns ~Xm+1 and κm+1 at once, while in the
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KmΓ Schur [s] BiCGSTAB [s] UMFPACK [s] LDL [s]

ellipse1004 0.0934972 (474) 0.316954 (421) 0.0066117 0.00171481

ellipse10024 8.69014 (4745) – 0.0658188 0.019992

usp10001 27.7106 (11346) – 0.0534503 0.01277

cage3816 2.0741 (1508) 0.1724 (47) 0.0880664 0.148899

cage124732 480.413 (5608) 63.2434 (243) 20.1991 57.436

cigar1322 0.814498 (1970) 0.0821715 (65) 0.0344753 0.0155069

cigar139559 467.818 (5021) 193.955 (687) 15.9091 41.6407

usp1658 0.249725 (327) 0.378896 (64) 0.0803338 0.070555

usp6394 4.51197 (484) 1.93529 (126) 0.483679 0.768679

Table 2.1: Comparison of performance between the three solution strategies,

namely Schur complement approach, preconditioned BiCGSTAB and di-

rect factorisation, for the formulation (2.58). In brackets is the number

of iterations needed for convergence. The symbol ’–’ indicates that no

convergence was reached after 50000 iterations.

case of surface diffusion the Schur complement approach only computes the
positon vector ~Xm+1. Finally, we can see from Table 2.4 that the best pre-
conditioning choice for the Schur complement approach is given by (2.69),
in terms of both CPU times and number of iterations. The more sophisti-
cated strategy (2.68) generally reduces the number of iterations necessary
to reach convergence, but this feature is achieved at the cost of a dramatic
increase in CPU time, which makes the strategy unfeasible in practice.

All the simulations have been performed with the help of the C++-based
toolbox DUNE (see [22, 21]) and the discretisation module dune-fem (see
[48]). We recently contributed to the current trunk version of dune-fem,
providing a set of inverse operators based on the sparse factorisation pack-
ages UMFPACK, LDL and SPQR ([42]); see A.3 for more details.

Remark 2.17. Our analysis about different solution methods immediately carries
over to the multi-component extensions (2.51a)-(2.51b) and (2.52a)-(2.52b). We
note that, in order to apply the Schur complement approach presented in § 2.4.1 to
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KmΓ Schur [s] BiCGSTAB [s] UMFPACK [s]

ellipse1004 0.15465 (474) 0.326215 (421) 0.00661912

ellipse10024 11.0413 (4745) – 0.0618152

usp10001 29.329 (11346) – 0.0659916

cage3816 2.26495 (1506) 0.206006 (47) 0.179766

cage124732 559.517 (5608) 50.1937 (243) 20.5345

cigar1322 1.17244 (1970) 0.09944 (65) 0.0339386

cigar139559 528.717 (5021) 155.904 (687) 17.4718

usp1658 0.59104 (327) 0.208178 (64) 0.077629

usp6394 3.14164 (484) 2.18038 (126) 0.519092

Table 2.2: Comparison of performance between the three solution strategies,

namely Schur complement approach, preconditioned BiCGSTAB and di-

rect factorisation, for the formulation (2.59). In brackets is the number

of iterations needed for convergence. The symbol ’–’ indicates that no

convergence was reached after 50000 iterations.

the multiple-component case, the user would need to know explicitly the ordering
of the degrees of freedom associated to the different surfaces. In fact, when sur-
face diffusion is considered, the projection operator (2.65) would have to be applied
component-wise. This feature makes the application of the Schur complement strat-
egy not feasible in practice. Therefore, also for the solution of the linear systems
arising from (2.51a)-(2.51b) and (2.52a)-(2.52b), the best strategy is to use the
sparse factorisation solvers UMFPACK and LDL.
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KmΓ Schur [s] BiCGSTAB [s] UMFPACK [s]

ellipse1004 0.132566 (474) 0.407295 (423) 0.00745771

ellipse10024 11.7392 (4745) – 0.0751189

usp10001 26.9042 (11346) – 0.0686211

cage3816 2.98698 (1508) 0.323536 (47) 0.152187

cage124732 482.017 (5608) 59.7989 (255) 21.536

cigar1322 0.814333 (1970) 0.148154 (65) 0.026165

cigar139559 461.317 (5021) 198.527 (611) 17.3792

usp1658 0.456745 (327) 0.32329 (64) 0.0732525

usp6394 4.71077 (484) 2.5761 (126) 0.459524

Table 2.3: Comparison of performance between the three solution strategies,

namely Schur complement approach, preconditioned BiCGSTAB and di-

rect factorisation, for the formulation (2.61). In brackets is the number

of iterations needed for convergence. The symbol ’–’ indicates that no

convergence was reached after 50000 iterations.

2.4.5 Solution methods for the α-scheme with very small time steps

We now go back to the α-scheme (2.17a), (2.48a)-(2.48b) presented in § 2.2.4.
We need to solve the following linear system: Find δ~Xm+1 ∈ V(Γm), κm+1 ∈
W(Γm) and βm+1

i ∈W(Γm), i = 1→ d− 1, such that

Am − 1
τm

~NTm

~Nm ~Am α ~Z1,m · · · α ~Zd−1,m

− α
τm

~ZT1,m αMm

... . . .

− α
τm

~ZTd−1,m αMm





κm+1

δ~Xm+1

βm+1
1
...

βm+1
d−1


=



0

− ~Am ~Xm

0
...

0


.

(2.74)

In the above, we have introduced the matrices ~Zi,m ∈ (Rd)K
m
Γ ×K

m
Γ , i =

1 → d− 1, with entries
[
~Zi,m

]
kl

:= 〈φmk , φml ~τmi 〉hΓm . We always solve the
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Schur complement (2.65) with outer CG

KmΓ (2.67) (2.68) (2.69)

ellipse1004 0.15465 (474) – 0.130424 (474)

ellipse10024 11.0413 (4745) – 12.6034 (4745)

usp10001 29.329 (11346) 1.20865 (3) 29.3774 (11131)

cage3816 2.26495 (1506) 32.6047 (118) 0.648456 (482)

cage124732 559.517 (5608) 7947.05 (552) 523.16 (5597)

cigar1322 1.17244 (1970) 7.85051 (96) 0.157636 (442)

cigar139559 467.818 (5021) – 334.419 (4745)

usp1658 0.59104 (327) 13.2231 (99) 0.269663 (273)

usp6394 3.14164 (484) 350.96 (241) 2.40654 (412)

Table 2.4: Comparison of performance between the three preconditioning strate-

gies (2.67), (2.68) and (2.69) for the Schur complement approach applied

to the formulation (2.59). The symbol ’–’ indicates that no convergence

was reached after 50000 iterations.

linear system (2.74) with the help of the sparse factorisation package UMF-
PACK.

2.5 conclusions

In this chapter we have analysed the fully practical finite element approxi-
mation for the interface equations which will be used throughout the thesis.
In particular, we have discussed the choice of two different quadrature rules
(namely, mass lumping and exact integration), the introduction of an addi-
tional term to overcome the appearance of spurious elongated elements,
and several solution strategies for the algebraic counterparts of the afore-
mentioned finite element approximation. We summarise here the main
results of our investigation for the benefit of the reader.

In § 2.2.3 we have analysed two different integration rules: the mass
lumping scheme (2.12), which corresponds to the trapezium rule for nu-
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merical integration, and the exact integration scheme (2.11). In order to
test how the choice of the quadrature rule affects the temporal evolution
of the quality of the mesh, we have performed several numerical experi-
ments. For d = 2, in all our tests we observe that both schemes lead to the
equidistribution of mesh points, and the plots for mesh quality indicators
are almost indistinguishable. For d = 3, mass lumping contributes to keep-
ing smoother meshes; in only one experiment, namely the “cage” under
surface diffusion, does exact integration perform better than mass lumping.
However, when the “cage” is about to undergo a topological change, the
quality of the mesh deteriorates more quickly when exact integration is
employed. In light of these results, for all the numerical simulations con-
ducted in Chapters 4 and 5, the mass lumping scheme (2.12) has been used
in practice.

In § 2.2.4 we have investigated the temporal evolution of surfaces when
very small time steps are considered. In particular, we observe the appear-
ance of spurious elongated elements. In order to eliminate such elements,
we apply a different strategy, where also the tangential components of the
discrete surface Laplacian of ~Xm+1 are represented. We observe that the
quality of the evolving mesh strongly depends on the choice of the param-
eter α, which multiplies the additional term in the finite element approxi-
mation. Moreover, by taking the limit α → 0, we notice that the temporal
behaviour of the quality mesh indicator is very similar to the one exhibited
by the main scheme (2.17a)-(2.17b).

Finally, in Section 2.4 we have investigated several methods for the solu-
tion of the linear equations arising from the finite element approximation
discussed in Section 2.2, namely Schur complement approach, precondi-
tioned BiCGSTAB and direct solvers. From a comparison for a number of
sample problems, in terms of CPU time and number of iterations (for iter-
ative methods), we observe that direct factorisation strategies perform best.
In addition, they can be easily applied with no additional knowledge on the
numbering of the degrees of freedom when multi-component interfaces are
considered.



3
M O D E L S O F E L E C T R O - S T R E S S M I G R AT I O N

This chapter is dedicated to the presentation of the electro-stress migration
problem which will be investigated from here on in the thesis. In Section
3.1 we give an overview of the phenomenon, highlighting the challenges
faced by interconnect designers. Section 3.2 introduces the mathematical
formulation of the electro-stress migration problem, defining all the neces-
sary bulk and interface quantities, which will be computed with the help
of the finite element approximations described in Chapters 4 and 5.

3.1 the physics of electro-stress void migration

The term electro-stress migration refers to a mass transport process that op-
erates in solid state metals stressed under high electrical current; see [123,
28, 25]. When the current density is high enough to cause the drift of metal
ions, the dimension and the shape of the conductor may vary, thereby caus-
ing the creation of voids, hillocks or whiskers in the affected regions. These
defects are responsible for open circuits or short circuits.

The aggressive miniaturisation of interconnect dimensions and the in-
creasing current densities at operation have aggravated the problem. There-
fore, electro-stress migration represents a strong challenge to the develop-
ment of advanced interconnects for integrated circuits. Manual current-
density considerations within complex circuits are not sufficient any longer.
The application of mathematical modelling and efficient numerical tech-
niques can guarantee a better understanding of the phenomenon and help
electronic engineers improve the physical design of integrated circuits, see
[119]. In particular, special attention is to be paid to predict the lifetime
of chips, which depends on many factors, like the nature of the conductor,
crystal size, interface and grain-boundary chemistry, and the magnitude of
the forces involved. We refer to [32, § 1.1] for a historical overview of mean
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time to failure (MTF) models, and to [72] for the analysis of the dependency
of failure mechanisms on the direction of the ion flux and the geometry
(i.e. width and length) of metallic wires. [97] discusses various methodolo-
gies to address the electro-stress migration problem directly during phys-
ical design and verification, for both analogue and digital circuits. More
details on process-related advances in electro-migration reliability and life-
time extrapolation can be found in [80].

3.2 the mathematical modelling of electro-stress void mi-
gration

This section is dedicated to the discussion of the mathematical model that
will be used from here on in this thesis. We follow [123] and report here
the main assumptions behind the model.

An idealised interconnect is represented in [123, Fig. 1]. It is assumed to
be a linear elastic solid, which conducts electric current according to Ohm’s
law. The solid is subject to two different external loadings: an electric field,
which is induced in the line by prescribing the voltage on its boundaries,
and an elastic stress, which is imposed as a specific traction or displacement.
The displacements are considered infinitesimal. One or more voids can be
present in the line, and their initial shape and location are known.

We have three driving contributions to the growth and the movement of
the voids: the surface free energy of the material, the electric field in the
line, and the elastic strain energy. The overall goal of the numerical approx-
imation of our coupled bulk-interface problem is therefore to compute the
elastic stress and the intensity of the electric field in the metallic wires, in
order to monitor the change in shape of the voids.

For the formulation of the governing equations we closely follow the
presentation in [104], see also [123, 9]. Let Ω = ×di=1[−Li, Li], where Li > 0
for all i = 1, . . . , d, be the domain that contains the conductor. We denote
the boundary of Ω with ∂Ω. At any time t ∈ [0, T ], let Γ(t) ⊂ Ω be the
boundary of the void Ω−(t) inside the conductor Ω. Then Γ(t) = ∂Ω−(t)

and Ω+(t) := Ω \Ω−(t) denotes the conducting region (see Figure 3.1 for
an example with d = 2). At this stage, we assume that Γ(t) is a closed
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hypersurface without boundary and does not intersect ∂Ω. At a later stage
we will generalise our discussion to the case of a hypersurface Γ(t) with
boundary, where appropriate conditions have to be prescribed. Now the

x1

x2

−L1 L1

−L2

L2

Ω+(t)

Ω−(t)

Γ(t)

∂−2Ω

∂1Ω

∂1Ω

∂+2Ω

~ν

~ν∂Ω

Figure 3.1: The domain Ω and the void with its boundary Γ(t), for the case d = 2

(from [105, Fig. 1]).

evolution of the interface Γ(t), which represents the void boundary, is given
by

V = −α14s κ+α24sφ+α34s (E(~u)) , (3.1)

where V represents the velocity of Γ(t) in the direction ~ν (the unit normal to
Γ(t) pointing into Ω−(t)), 4s is the Laplace-Beltrami operator on Γ(t), and
κ is the curvature of Γ(t) (positive when Ω−(t) is convex). In particular, it
holds that

4s ~X = κ~ν , (3.2)

where ~X is a suitable parameterisation of Γ(t), recall (2.7).
The second contribution on the right-hand side of (3.1) is given by the

electric potential φ(t), which satisfies a Laplace equation in Ω+(t):

4φ = 0 in Ω+(t) ,
∂φ

∂~ν
= 0 on Γ(t) , (3.3a)

∂φ

∂~ν∂Ω
= 0 on ∂1Ω, φ = g± on ∂±2Ω, (3.3b)
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where ~ν∂Ω is the outer normal to ∂Ω. In (3.3b), g± := ±L1 denotes the
Dirichlet boundary condition on parts of ∂Ω, where ∂Ω = ∂1Ω∪ ∂2Ω, with
∂1Ω∩ ∂2Ω = ∅ and

∂2Ω = ∂−2Ω∪ ∂
+
2Ω with ∂±2Ω := {±L1}×

(
×di=2[−Li, Li]

)
.

The Dirichlet boundary conditions in (3.3b) model a uniform parallel elec-
tric field, φ ≈ x1 as L1 →∞.

The third contribution on the right-hand side of (3.1) is given by the
elastic energy density E(~u), where ~u is the displacement field. Precisely,
E(~u) := 1

2 CE(~u) : E(~u), where E(~u) := 1
2 (∇ ~u+ (∇ ~u)T ) is the symmetric

strain tensor and C is the possibly anisotropic elasticity tensor, which we
assume to be symmetric and positive definite. In particular, we recall that
E(~u) is a d×d matrix, while C is a tensor that maps d×d matrices to d×d
matrices. For the sake of notation, recall that the inner product A : B of
two matrices A,B ∈ Rd×d is defined as

∑d
i, j=1AijBij. In addition, for a

matrix A, we denote its trace by Tr(A) :=
∑d
i=1Aii, while its divergence is

a vector-valued function defined component-wise as (∇ ·A)i =
∑d
j=1

∂Aij
∂xj

.
We will assume throughout that for all i, j, k, l ∈ {1, . . . , d} the following
symmetry conditions hold:

Cijkl = Cijlk = Cjikl = Clkij . (3.4)

C then maps symmetric matrices to symmetric matrices. Moreover, it holds
that CA : B = A : CB . We also assume throughout that C is positive
definite; that is, there exist positive constants mC, MC such that

0 < mC (A : A) 6 CA : A 6MC (A : A) ∀ A ∈ Rd×d \ {0} . (3.5)

For an isotropic material we obtain that

CE(~u) = 2µE(~u) + λTr(E(~u)) I , (3.6)

where I is the identity matrix, and µ ∈ R>0 and λ ∈ R>0 are the Lamé
moduli. The unknown ~u is the displacement field which is the solution to
the following problem:

∇ · (CE(~u)) = ~0 in Ω+(t) , (3.7a)

CE(~u)~ν = ~0 on Γ(t) , (3.7b)

CE(~u)~ν∂Ω = ~g on ∂Ω . (3.7c)
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For simplicity, we will consider

~g = S~ν∂Ω = CS∗ ~ν∂Ω , (3.8)

where S ∈ Rd×d is a symmetric matrix and S∗ := C−1 S. Alternatively, one
could prescribe displacement boundary conditions, ~u = ~f on ∂Ω or on parts
thereof.

We should note that the solution ~u to (3.7a)-(3.7c) is not unique. This is
simply because

E(~v) = ~0 ∀ ~v ∈ RM , (3.9)

where RM is the space of rigid motions and characterised by

RM := {~h ∈ H1(Ω) : there exist ~b ∈ Rn and A = −AT ∈ Rn×n

s.t. ~h(~x) = ~b+A~x } . (3.10)

Hence one can impose uniqueness for (3.7a)-(3.7c) by seeking ~u such that,
for all ~h ∈ RM,

∫
Ω+(t) ~u · ~hdLd = 0. However, ~u enters the right-hand side

of the evolution equation (3.1) only via E(~u). Therefore, the non-uniqueness
of ~u up to a rigid motion, which is characterised by (3.9), does not play any
role in the temporal evolution of the void boundary Γ(t).

Finally, α1 ∈ R>0 and α2, α3 ∈ R>0 are given parameters depending on
the conductor, on the strength of the electric field and on the magnitude
of the elastic stress; for a more detailed explanation of the dependency
of α1, α2, and α3 on various physical constants, see [123, § 2] and [95,
§ 2]. The first term on the right-hand side of (3.1) is surface diffusion due
to interfacial tension, which models atoms moving around the boundary
of the void to positions of large curvature, whereas the second and third
term are surface diffusion due to the electric field and the elastic energy,
respectively. The void electro-stress migration model is then the coupled
system of equations (3.1), (3.3a)-(3.3b), and (3.7a)-(3.7c). In the case α2 =

α3 = 0, the evolution (3.1) reduces to pure surface diffusion. For α2, α3 > 0,
the motion (3.1) preserves the volume enclosed by the closed hypersurface
Γ(t) since

d

dt
Ld(Ω−(t)) = −

∫
Γ(t)

V dHd−1 = 0 , (3.11)
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recall (2.5). In addition, for α2 = 0 the system has a Lyapunov structure. In
fact, it can be shown that

d

dt

[
α1H

d−1(Γ(t)) +α3

(∫
Ω+(t)

E(~u) dLd −
∫
∂Ω

~g · ~u dHd−1

)]
= −α1

∫
Γ(t)

V κ dHd−1 +α3

∫
Ω+(t)

CE(~u) : E(~ut) dLd

+α3

∫
Γ(t)

V E(~u) dHd−1 −α3

∫
∂Ω

~g · ~ut dHd−1

= −

∫
Γ(t)

V (α1 κ−α3 E(~u)) dHd−1

= −

∫
Γ(t)

|α1∇s κ−α3∇s (E(~u))|2 dHd−1 6 0 . (3.12)

As a special case, we recover for α2 = α3 = 0 the well-known result that
surface diffusion decreases the length of the interface, since

d

dt
Hd−1(Γ(t)) = −

∫
Γ(t)

V κdHd−1 = −α1

∫
Γ(t)

|∇s κ|2 dHd−1 6 0 , (3.13)

recall (2.6).

3.2.1 Weak formulation of the coupled problem

We can now derive a weak formulation of the electro-stress migration prob-
lem of our interest, which consists of the sets of equations (3.3a)-(3.3b),
(3.7a)-(3.7c) and (3.1)-(3.2). It will be used in Chapters 4 and 5 for the
introduction of appropriate finite element approximations of the coupled
problem. Given Γ0, the initial boundary of the void, find for a.e. t ∈ [0, T ]

Γ(t), ~X ∈ [H1(Γ(t))]d, κ ∈ H1(Γ(t)), φ(·, t) ∈ H1(Ω+(t)), and ~u(·, t) ∈ Ĥ1,
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such that, for all ψ ∈ H10, ∂2(Ω+(t)), ~ζ ∈ [H1(Ω+(t))]
d, χ ∈ H1(Γ(t)) and

~η ∈ [H1(Γ(t))]d, it holds that∫
Ω+(t)

∇φ · ∇ψ dLd = 0 , (3.14a)∫
Ω+(t)

CE(~u) : E(~ζ) dLd =

∫
∂Ω

~g · ~ζ dHd−1 , (3.14b)∫
Γ(t)

~Xt · χ~ν dHd−1−

∫
Γ(t)

α1∇s κ · ∇s χ dHd−1 =

−

∫
Γ(t)
∇s (α2φ+α3 E(~u)) · ∇s χ dHd−1 ,

(3.14c)∫
Γ(t)

κ~ν ·~η dHd−1+

∫
Γ(t)
∇s ~X · ∇s ~η dHd−1 = 0 , (3.14d)

where φ(·, t) ∈ H1(Ω+(t)) is such that φ = g± on ∂±2Ω. In the above we
have defined H10, ∂2(Ω+(t)) := {ψ ∈ H1(Ω+(t)) : ψ |∂2Ω= 0} and Ĥ1 := {~h ∈
[H1(Ω+(t))]

d :
∫
Ω+(t)

~h ·~z dLd = 0 ∀ ~z ∈ RM}. The weak formulation of
the void electro-stress migration problem of our interest is therefore given
by (3.14a), (3.14b) and (3.14c)-(3.14d).

3.2.2 Test case with exact solution

For later use we recall from [20] an example for d = 2, with α3 = 0, where
the exact solution is known. The solution describes a circular void, moving
at constant speed through an infinite conductor. That is, for any α1, α2 ∈
R>0, α3 = 0, R ∈ R>0, and ~z = (z1, z2) ∈ R2,

Γ(t) := {~x ∈ R2 : (x1 − z1(t))
2 + (x2 − z2)

2 = R2} ,

z1(t) := z1 +
2α2
R t , (3.15)

where the corresponding electric potential

φ(~x, t) = [x1 − z1(t)]
(
1+ R2

(x1−z1(t))2+(x2−z2)2

)
(3.16)

solves (3.1) and (3.3a)-(3.3b) withΩ+(t) in (3.3a) replaced by R2 \Ω−(t) and
(3.3b) replaced by the Dirichlet-type condition ∇φ → (1, 0)T as |~x| → ∞ .
Observe that (3.1) reduces to V = −2α2

R2
[x1 − z1(t)] on Γ(t). The explicit

solution (3.15)-(3.16) was first noted in [82].



4
T H E PA R A M E T R I C A P P R O A C H : T H E U N F I T T E D
M E T H O D

Let us recall what we described in Section 1.5. The numerical solution
of partial differential equations for systems with moving boundaries can
be approached in different ways. Three possible strategies for handling
the interface have been introduced in the literature, namely the parametric
approach (§ 1.3.1), the level set approach (§ 1.3.2) and the phase field approach
(§ 1.3.3).

In this thesis we consider the parametric approach. The user can employ
two different techniques: an unfitted approach and a fitted approach, depend-
ing on whether the topological compatibility between bulk and interface
meshes is preserved. In this chapter we present the unfitted approach in de-
tail. Our discussion expands on the exposition given in [104], where we
analysed the unfitted approach with d = 2 and electro-migration only.

The chapter is organised as follows: in Section 4.1 we give a definition of
the unfitted approach, highlighting its most important features. In Section 4.2
we introduce an unfitted finite element approximation for the electro-stress
migration problem described in Chapter 3. We investigate existence and
uniqueness of our finite element approximation, and discuss some proper-
ties of its semidiscrete, continuous-in-time counterpart. Section 4.3 presents
the solution methods applied to the linear systems arising from our fully
discrete schemes. In Section 4.4 we describe in detail all the mesh opera-
tions needed in our coupled bulk-interface framework. Special attention is
paid to the routines for the adaptation of the bulk mesh and the identifica-
tion of the intersections between bulk and interface grid elements. Finally,
in Section 4.5 we present several numerical simulations, for both d = 2 and
d = 3, including a convergence experiment for a test case where the exact
solution is known.

79
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4.1 features of the unfitted method

Recall that the approach proposed in this thesis belongs to the parametric
category. The main difference to existing methods, see [27, 123, 25], is
that our approach is based on the weak formulation (3.14a)-(3.14d), that in-
cludes the treatment of the curvature presented in Section 2.2, eqns. (2.17a)-
(2.17b). We will use in this chapter an unfitted finite element grid for the
approximation of (3.1); see Figure 4.1 for an example with d = 2. Existing

Figure 4.1: Example of an unfitted interface mesh, with d = 2 (from [104, Fig. 1]).

front-tracking methods for the approximation of void electro-stress migra-
tion require a new grid for the approximation ofΩ+(t) to be created at each
time step. We avoid the drawback of this re-meshing, and the associated
numerical effort, by maintaining a triangulation of the whole domain Ω
throughout. Altogether, the main features of the unfitted approach can be
briefly summarised as follows:

• the method is unfitted: the bulk grid and the interface grid are totally
independent. It means that there is no need to re-mesh or deform the
bulk mesh in order to preserve the correspondence with the interface.
Standard strategies for refinement and coarsening can be employed
for the bulk mesh. Furthermore, from the software implementation
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point of view, it follows that the two grids can be stored and manipu-
lated as independent objects from two different classes;

• the method shows good properties for the interface mesh, whose tem-
poral evolution is based on the scheme (2.17a)-(2.17b). In particular,
for the case d = 2, the parametric approximation of the interface mo-
tion leads to an asymptotic equidistribution of the vertices, with no
necessity of any refinement or re-meshing procedures;

• the volume enclosed by the surface is preserved by the fully dis-
crete scheme up to a very small tolerance, while for a semidiscrete,
continuous-in-time variant it is preserved exactly;

• the method can handle multi-component interfaces, presented in § 2.3,
as well as topological changes that occur during the evolution. In
combination with the package El-Topo, recall § 2.3.1, our method can
deal with more complex domains, which are often found in electrical
engineering applications.

4.2 finite element approximation

As already pointed out earlier, our approach is based on a coupled bulk-
interface algorithm. For ease of presentation, we first consider the case
where the interface is given by a single closed surface.

We begin with the finite element spaces needed for the approximation of
the moving boundary Γ(t). To this end, let us recall the notation already in-
troduced in Section 2.2. Let Γm be a (d− 1)-dimensional polyhedral surface,
defined as Γm =

⋃JmΓ
j=1 σ

m
j , where {σmj }

JmΓ
j=1 is a family of mutually disjoint

open (d − 1)-simplices with vertices {~qmk }
KmΓ
k=1. Moreover, let Ωm− and Ωm+

be the interior and the exterior of Γm, respectively. The parametric finite
element spaces for the approximation of the position vector ~x and the cur-
vature κ in (3.1)-(3.2) have been defined in (2.10). Moreover, recall (2.12)
and (2.13) for the definition of the mass lumped inner product 〈·, ·〉hΓm and
the unit normal ~νm to Γm, respectively. We assume that the local ordering
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of the vertices used in (2.13) is such that ~νm is the normal to Γm pointing
into Ωm− .

We introduce now the finite element approximation for quantities de-
fined over the bulk mesh. Let Tm be a partitioning of Ω into disjoint open
d-dimensional simplices o with ho := diam (o) and h := maxo∈Tm ho so
that Ω =

⋃
o∈Tm o. We can then define

Tm+ := {o ∈ Tm : o ∩ Ωm+ 6= ∅} and Ωm,h+ :=
⋃
o∈Tm+

o . (4.1)

Ωm,h+ is hence given by the union of those bulk elements having a non-
empty intersection with the exterior of Γm. It represents a suitable approx-
imation of Ωm+ , on which the electric potential and the elastic stress are
going to be computed. Associated with Tm+ we can define the standard
finite element space of piecewise linear functions

Sm,h := {χ ∈ C(Ωm,h+ ) : χ |o is linear ∀ o ∈ Tm+ } ,

as well as

Sm,hg := {χ ∈ Sm,h : χ |∂±2 Ω
= g±} and Sm,h0 := {χ ∈ Sm,h : χ |∂±2 Ω

= 0} .

In addition, we can define the standard finite element space of vector-
valued, piecewise linear functions:

Qm,h := [Sm,h]d ,

as well as

Q̂m,h := {~q ∈ Qm,h :

∫
Ωm,h+

~q ·~z dLd = 0 ∀ ~z ∈ RM} .

We then propose the following finite element approximation of (3.14a),
(3.14b) and (3.14c)-(3.14d): Given Γ0, a polyhedral approximation of Γ0,
for m = 0, . . . ,M − 1 find functions {Φm+1, ~Um+1, Em+1, ~Xm+1, κm+1} ∈
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Sm,hg × Q̂m,h × Sm,h×V(Γm)×W(Γm) such that for all ψ ∈ Sm,h0 , ~ζ ∈ Qm,h,
ξ ∈ Sm,h, ~η ∈ V(Γm), χ ∈W(Γm)∫

Ωm,h+

∇Φm+1 · ∇ψ dLd = 0 , (4.2a)∫
Ωm,h+

CE(~Um+1) : E(~ζ) dLd =

∫
∂Ω

~g · ~ζ dHd−1 , (4.2b)∫
Ωm,h+

Em+1 ξ dLd =

∫
Ωm,h+

E(~Um+1) ξ dLd , (4.2c)

〈 ~Xm+1 − ~Xm

τm
, χ~νm

〉h
Γm

− α1 〈∇s κm+1,∇s χ〉Γm

= − 〈∇s (πm [α2Φ
m+1 +α3 E

m+1]),∇s χ〉Γm ,
(4.2d)

〈κm+1 ~νm,~η〉hΓm + 〈∇s ~Xm+1,∇s ~η〉Γm = 0 , (4.2e)

where πm : C(Γm,R) → W(Γm) is the standard interpolation operator at
the nodes {~qmk }

KmΓ
k=1. We see from (4.2c) that Em+1 is defined as the L2(Ωm,h+ )-

projection of E(~Um+1), which is a discontinuous function, onto the space
of piecewise linear functions Sm,h. In addition, the vector-valued function
~g in the right-hand side of (4.2b) denotes a traction boundary condition.
For simplicity we consider ~g = S~ν∂Ω = CS∗ ~ν∂Ω , recall (3.8). We note that
(4.2a) (resp., (4.2b)) is a standard finite element approximation of (3.14a)
(resp., (3.14b)), while (4.2d)-(4.2e) for the case α2 = α3 = 0 collapse to the
scheme (2.17a)-(2.17b) for the geometric evolution law of surface diffusion.
Here we note that the approach used in (4.2a) has also been considered
in [7], where an unfitted finite element approximation for dendritic crystal
growth with thermal convection was studied.

An alternative approximation of (3.14a) would replace Ωm,h+ in (4.2a) by
Ωm+ , the exterior of Γm. However, the implementation of this variant would
need the computation of Ld(Ωm+ ∩ o) for all o ∈ Tm+ , which means that
(4.2a) is far more practical. Finally, we observe that a more sophisticated
unfitted approach has been studied in [8] for solving elliptic partial differ-
ential equations with Neumann data on a curved boundary. In that paper,
Neumann boundary conditions are prescribed on a fixed curved boundary,
which is assumed to be sufficiently smooth, and by considering integrals
over partial bulk elements the authors are able to prove optimal conver-
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gence rates. Once again, our approach in (4.2a) is more practical, and by
using local mesh refinement close to Γm we are able to observe good con-
vergence properties in practice; see § 4.5 for details.

Let us recall the assumption (A) from § 2.2. In particular, we note that Γm,
which approximates the closed surface Γ(tm), m = 0, . . . ,M, easily verifies
(A), since it is a surface without self-intersections. We are now ready to
prove existence and uniqueness of the discrete solution to the system (4.2a)-
(4.2e).

Theorem 4.1. Let the assumption (A) from § 2.2 hold. Then there exists a unique
solution {Φm+1, ~Um+1, Em+1, ~Xm+1, κm+1} ∈ Sm,hg × Q̂m,h × Sm,h×V(Γm)×
W(Γm) to the system (4.2a)-(4.2e).

Proof. We first notice that the equations for Φm+1, ~Um+1, Em+1 and {~Xm+1,

κm+1} decouple. The existence of a unique solution for (4.2a) is trivial. As
(4.2b) is a linear finite dimensional system, existence of ~Um+1 follows from
uniqueness. It follows from (3.5) and a Korn’s inequality, see e.g. [102,
p. 79], that∫

Ωm,h+

CE(~U) : E(~U) dLd > mC

∫
Ωm,h+

E(~U) : E(~U) dLd

> C ‖~U‖2
H1(Ωm,h+ )

∀ ~U ∈ Q̂m,h .

Hence we have existence and uniqueness of ~Um+1 ∈ Q̂m,h solving (4.2b).
The existence of a unique solution for (4.2c) is trivial, since Em+1 is the
L2(Ωm,h+ )-projection of E(~Um+1) onto Sm,h. Given Φm+1 and Em+1, the exis-
tence of a solution {~Xm+1, κm+1} for (4.2d)-(4.2e) is guaranteed by Theorem
2.6, since (4.2d)-(4.2e) is an invertible linear system completely analogous
to (2.17a)-(2.17b), with an additional right-hand side term depending only
on Φm+1 and Em+1. 3

4.2.1 Extension to the case of a surface with boundary intersections

So far we have considered the case of Γm being a (d− 1)-dimensional poly-
hedral surface without boundary. It is straightforward to generalise the
scheme (4.2a)-(4.2e) to the case of a surface with boundary intersections,
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where we need to apply appropriate boundary conditions. In our simu-
lations we will always prescribe free-slip conditions for the displacement
δ~Xm+1. On introducing the space

V∂(Γ
m) := {~χ ∈ V(Γm) : ~χ · ~ν∂Ω = 0 on ∂Γm} , (4.3)

the generalisation of the system (4.2a)-(4.2e) to the case of a surface with
boundary intersections can be stated as follows: Given Γ0, a polyhedral ap-
proximation of Γ0, for m = 0, . . . ,M− 1 find functions {Φm+1, ~Um+1, Em+1,

δ~Xm+1, κm+1} ∈ Sm,hg × Q̂m,h × Sm,h × V∂(Γm)×W(Γm), where ~Xm+1 :=

~Xm + δ~Xm+1, such that for all ψ ∈ Sm,h0 , ~ζ ∈ Qm,h, ξ ∈ Sm,h equations
(4.2a)-(4.2c) hold and for all ~η ∈ V∂(Γm), χ ∈W(Γm)〈δ~Xm+1

τm
, χ~νm

〉h
Γm

− α1 〈∇s κm+1,∇s χ〉Γm

= − 〈∇s (πm [α2Φ
m+1 +α3 E

m+1]),∇s χ〉Γm , (4.4a)

〈κm+1 ~νm,~η〉hΓm+ 〈∇s ~Xm+1,∇s ~η〉Γm = 0 . (4.4b)

It is worth mentioning that in (4.4a)-(4.4b) a boundary condition for ∂Γm is
formulated weakly. Precisely, on recalling the integration by parts

−

∫
Γm
4s~x ·~η dHd−1 =

∫
Γm
∇s~x · ∇s ~η dHd−1−

∫
∂Γm

~µm ·~η dHd−2 , (4.5)

we note that (4.4b) weakly enforces ~µm to be orthogonal to any test function
~η on ∂Γm. Given the definition of the space V∂(Γm) in (4.3), which includes
all the test functions which are orthogonal to ~ν∂Ω on ∂Γm, we then conclude
that (4.5) enforces the conormal ~µm to be in the direction of ~ν∂Ω. Therefore,
a 90◦-angle condition is weakly enforced for Γm at the outer boundary ∂Ω.

The scheme (4.4a)-(4.4b), for α2 = α3 = 0, was first introduced in [15],
where the authors presented a variational formulation for the evolution
of surface clusters in R3 by mean curvature flow, surface diffusion and their
anisotropic variants. The proof of existence, uniqueness and stability, in the
case of α2 = α3 = 0, for a solution to (4.4a)-(4.4b), is almost identical to the
one for Theorems 2.11 and 2.12, see [15, Thms. 4.3 and 4.4] for more details.
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4.2.2 Semidiscrete continuous-in-time approximation

It is worthwhile to consider a continuous-in-time semidiscrete version of
our fully discrete scheme (4.2a)-(4.2e). To this end, we introduce the follow-
ing definitions, where we assume that Γh(t) is a polyhedral approximation
of Γ(t). Let Ωh−(t) and Ωh+(t) be the interior and the exterior of Γh(t), re-
spectively. We can then define Th+(t) := {o ∈ Th : o ∩Ωh+(t) 6= ∅}, and
Ωh, h+ (t) :=

⋃
o∈Th+(t) o. In addition, we define

Sh, hg (t) := {χ ∈ C(Ωh, h+ (t)) : χ |o is linear ∀ o ∈ Th+(t), χ |∂±2 Ω
= g±} ,

Sh, h0 (t) := {χ ∈ C(Ωh, h+ (t)) : χ |o is linear ∀ o ∈ Th+(t), χ |∂±2 Ω
= 0} ,

Qh, h(t) := {~q ∈ C(Ωh, h+ (t)), Rd) : ~q |o is linear ∀ o ∈ Tm+ } ,

Q̂h, h(t) := {~q ∈ Qh, h(t) :
∫
Ωh,h+

~q ·~z dLd = 0 ∀ ~z ∈ RM} .

as well as the inner products 〈·, ·〉Γh(t) and 〈·, ·〉h
Γh(t)

on Γh(t), analogously to
(2.11) and (2.12).

The semidiscrete variant of (4.2a)-(4.2e) can then be formulated as follows.
Let Γh(0) be given; then for t ∈ (0, T) find Γh(t), described by the identity
function ~Xh(t) ∈ V(Γh(t)), Φh(t) ∈ Sh, hg (t), ~Uh(t) ∈ Q̂h, h(t), Eh(t) ∈ Sh, h(t)
and κh(t) ∈ W(Γh(t)), such that for almost all times t ∈ (0, T) it holds that
for all ψ ∈ Sh, h0 (t), ~ζ ∈ Qh, h, ξ ∈ Sh, h(t), χ ∈W(Γh(t)), ~η ∈ V(Γh(t))∫

Ωh,h+ (t)
∇Φh · ∇ψ dLd = 0 , (4.6a)∫

Ωh,h+ (t)
CE(~Uh) : E(~ζ) dLd =

∫
∂Ω

~g · ~ζ dHd−1 , (4.6b)∫
Ωh,h+

Eh ξ dLd =

∫
Ωh,h+

E(~Uh) ξ dLd , (4.6c)

〈~Xht , χ~νh〉hΓh(t) − α1〈∇s κh,∇s χ〉Γh(t) =

− 〈∇s πh[α2Φh +α3 Eh]),∇s χ〉Γh(t) , (4.6d)

〈κh ~νh,~η〉h
Γh(t) + 〈∇s ~X

h,∇s ~η〉Γh(t) = 0 , (4.6e)

where ~νh(t) is the unit normal to Γh(t) and πh : C(Γh,R) → W(Γh) is the

standard interpolation operator at the nodes {~qhk}
KhΓ
k=1. Note that Eh is the

continuous-in-time semidiscrete counterpart of Em+1, recall (4.2c).
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Let us define ~hk(t) as in Theorem 2.8. We are now in a position to
prove an exact volume conservation property for (4.6a)-(4.6e), as well as
an equidistribution property.

Theorem 4.2. Let {Φh, ~Uh, Eh, ~Xh, κh}(t) ∈ Sh, hg (t) × Q̂h, h × Sh, h(t) ×
V(Γh)×W(Γh) be a solution of (4.6a)-(4.6e). Then it holds that

d

dt
L(Ωh−(t)) = 0 . (4.7)

Moreover, for the case d = 2 it holds that

|~hk(t)| = |~hk−1(t)| if ~hk(t) ∦ ~hk−1(t) k = 1, . . . , KhΓ . (4.8)

Proof. Similarly to what we discussed in § 2.2.1, the exact conservation of
the enclosed volume can be shown by choosing χ ≡ 1 in (4.6d) and taking
into account (2.12). Then it holds that

0 = 〈~Xht ,~νh〉hΓh(t) =
∫
Γh(t)

~Xht · ~νh dHd−1 =
d

dt
Ld(Ωh−(t)) , (4.9)

which is the desired result (4.7). (4.8) can be proven by applying Theorem
2.8 to the moving interface Γh(t). 3

Remark 4.3. For the case d = 3, we can apply Remark 2.10 to the polyhedral
surface Γh(t), which therefore exhibits good mesh properties. We note that it is
not possible to extend the conservation property (4.9) to the fully discrete scheme
(4.2a)-(4.2e). However, in all our numerical experiments the volume of Ωm− is
preserved up to a very small tolerance. In fact, when the maximal time step size
τ converges to zero, we observe that the relative volume loss for simulations with
(4.2a)-(4.2e) tends to zero.

4.2.3 Multi-component interfaces

For ease of presentation, so far we have restricted ourselves to the case of
Γm being a single (d− 1)-dimensional polyhedral surface. As we discussed
in § 2.3, we can extend our approximation (4.2a)-(4.2e) to the case where
Γm is given by a family of closed surfaces, say Γm =

⋃L
l=1 Γ

m
l , with Γml =⋃Jml

j=1 σ
m, l
j , where {σm, lj }

Jml
j=1 is a family of mutually disjoint open (d − 1)-

simplices with vertices {~qm, lk }
Kml
k=1, l = 1, . . . , L. The necessary finite element
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spaces for the approximation of the position vector ~Xm+1 and curvature
κm+1 have been introduced in (2.50). The natural extension of the system
(4.2a)-(4.2e) to the multiple-component case is then given by: Find {Φm+1,

~Um+1 Em+1} ∈ Sm,hg × Q̂m,h × Sm,h such that (4.2a)-(4.2c) hold and then,
for l = 1, . . . , L, find {~Xm+1

l , κm+1
l } ∈ V l(Γml ) ×Wl(Γml ) such that for all

~η ∈ V l(Γml ), χ ∈Wl(Γml )〈 ~Xm+1
l − ~Xml
τm

, χ~νml

〉h
Γml

− α1 〈∇s κm+1
l ,∇s χ〉Γml

= − 〈∇s (πml [α2Φ
m+1 +α3 E

m+1]),∇s χ〉Γml ,
(4.10a)

〈κm+1
l ~νml , ~η〉hΓml + 〈∇s ~Xm+1

l ,∇s ~η〉Γml = 0 , (4.10b)

where recall that πml : C(Γml ,R) → Wl(Γm) is the standard interpolation
operator at the nodes {~qm, lk }

Kml
k=1.

Let (Al) be the analogue of assumption (A) for the closed surface Γml ,
l = 1, . . . , L. The we can generalise Theorem 4.1 as follows.

Theorem 4.4. Let the assumptions (Al), l = 1, . . . , L hold. Then there exist
unique solutions Φm+1 ∈ Sm,hg to (4.2a), ~Um+1 ∈ Q̂m,h to (4.2b), Em+1 ∈ Sm,h

to (4.2c), and {~Xm+1
l , κm+1

l } ∈ V l(Γm)×Wl(Γm) to (4.10a)-(4.10b).

Proof. As the systems for {~Xm+1
l , κm+1

l } decouple for each l = 1, . . . , L, we
immediately obtain the desired existence and uniqueness from Theorems
4.1 and 2.15. 3

Remark 4.5. For a semidiscrete variant of (4.2a), (4.2b) and (4.10a)-(4.10b), sim-
ilarly to (4.6a)-(4.6e) we can show that (4.7) holds. Moreover, for the case d = 2,
the equidistribution property holds for each Γhl (t) separately, recall Remark 2.16.

4.3 solution methods

Due to the special structure of the system (4.2a)-(4.2e), the equations for
Φm+1, ~Um+1 and {~Xm+1 , κm+1} decouple. In practice, we can find the
unique solution to (4.2a)-(4.2e) as follows. First we find Φm+1 ∈ Sm,hg such
that

ΘmΦ
m+1 = 0 , (4.11)
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where Θm ∈ RZ×Z is the standard stiffness matrix for the Laplacian on
Ωm,h+ , i.e.

[Θm]kl :=

∫
Ωm,h+

∇ψmk · ∇ψml dLd ,

where {ψmk }
Z
k=1 are the basis functions of the unconstrained finite element

space Sm,h. In the above we have ignored the effect of the Dirichlet bound-
ary conditions. Hence, in practice, Θm and the corresponding right-hand
side in (4.11) need to be adjusted appropriately in order to include the
Dirichlet boundary conditions. For the solution of (4.11) we use the sparse
factorisation package UMFPACK.

We proceed with finding ~Um+1 such that

Ξm ~Um+1 = Gm , (4.12)

where Ξm ∈ RL×L is the matrix of the elasticity operator on Ωm,h+ , i.e.

[Ξm]kl :=

∫
Ωm,h+

CE(~ξmk ) : E(~ξml ) dLd ,

and Gm is the right-hand side involving the boundary forcing term, i.e.

[Gm]k :=

∫
∂Ω

~g · ~ξmk dHd−1 .

Here {~ξmk }
L
k=1 are the basis functions of the finite element spaceQm,h. There-

fore, in practice we assemble and solve (4.12) over Qm,h and not over Q̂m,h.
Recalling (3.9), such a square system is not invertible, with the kernel of
Ξm corresponding to the finite element functions in RM. Therefore we
make use of the sparse factorisation package SuiteSparseQR, which per-
forms a QR factorisation of the noninvertible system (4.12) and returns a
least-square solution; see [42] for details. The solution vector ~Um+1 is not
guaranteed, in general, to belong to Q̂m,h. However, recalling that in the
right-hand side of (4.2d) we require only the elastic energy density E(~Um+1)

and not the displacement field ~Um+1 itself, there is no need to project ~Um+1

onto Q̂m,h.
Having obtained Φm+1 from (4.11) and ~Um+1 from (4.12), we proceed

with solving the equations (4.2d)-(4.2e), which give rise to the following
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linear system of equations, where we employ the same notation introduced
in Section 2.4. Find δ~Xm+1 ∈ V(Γm) and κm+1 ∈W(Γm) such thatα1Am − 1

τm
~NTm

~Nm ~Am


 κm+1

δ~Xm+1

 =

 fm+1

− ~Am ~Xm

 . (4.13)

In the above, we have introduced the vector fm+1 with entries

[fm+1]k := 〈∇s (πh [α2Φm+1 +α3 E
m+1]),∇sφmk 〉Γm . (4.14)

We refer to Section 2.4 for the discussion about solution strategies for (4.13)
and choice of software packages.

Remark 4.6. Our analysis immediately carries over to the case where the interface
Γm is a polyhedral surface with boundary intersections, recall § 4.2.1. Specifically,
the user needs to adjust the matrix in (4.13) and the right-hand side term (4.14) in
order to include the free-slip boundary conditions, recall (4.3).

4.4 mesh operations

We implemented our finite element approximation (4.2a)-(4.2e) within the
framework of the C++-based software DUNE, see [22, 21], and the discreti-
sation module dune-fem, see [48]. The computations presented in this chap-
ter have been performed with the help of the ALBERTA grid manager, see
[114]. In what follows, we first recall some useful definitions about affine
combinations in Rd, paying special attention to certain operations required
to identify potential intersections between elements of bulk and interface
grids. We then describe the mesh refinement strategies used for both bulk
(§ 4.4.4) and interface (§ 4.4.5) meshes. Finally, in § 4.4.6 we discuss how to
identify an appropriate partition of the bulk triangulation Tm over which
the electric potential and the elastic displacement are to be computed.

4.4.1 Remarks on affine combinations

Let as recall some simple, yet useful definitions about affine combinations
that will be employed at a later stage for the detection of potential in-



4.4 mesh operations 91

tersections between d-dimensional simplices of the bulk grid and (d− 1)-
dimensional simplices of the interface grid.

Given n points {~pi}ni=1 ∈ Rd, we define an affine combination of these points
a point ~p s.t.

~p = α1 ~p1 + . . . +αn ~pn ,

where α1, . . . , αn are scalar coefficients such that
∑n
i=1 αi = 1. For example,

assuming that the n points are linearly independent, in the case n = 2, ~p
can be any point on the line passing through ~p1 and ~p2. When n = 3, ~p
can be any point on the plane passing through ~p1, ~p2 and ~p3. If each αi
is such that 0 6 αi 6 1, then the point ~p is a convex combination of the
points ~p1, . . . ,~pn. We can now easily test if a given point ~p belongs to a d-
dimensional simplex S in Rd represented by its d+ 1 extreme points {~pi}di=0.
We first write the linear system

α0 (~p0 − ~pd) + . . .+αd−1 (~pd−1 − ~pd) = ~p− ~pd , (4.15)

which is always solvable, provided S is nondegenerate. Defining αd :=

1−
∑d−1
i=0 αi, we call the coefficients {αi}

d
i=0 the barycentric coordinates of the

point ~p with respect to the d+ 1 points identifying the d-dimensional sim-
plex S. The point ~p lies within S if and only if 0 6 αi 6 1 for all i = 0, . . . , d.

For later use, we now discuss how barycentric coordinates can be employed
in order to detect whether a (d− 1)-dimensional simplex of the interface
grid Γm and a d-dimensional simplex from the bulk triangulation Tm inter-
sect or not. We investigate the case d = 2 in § 4.4.2 and the case d = 3 in
§ 4.4.3.

4.4.2 Intersections between triangles and segments

We now analyse whether a triangle ~P0~P1~P2 is intersected by a segment
−→
AB,

see Figure 4.2.
We first check if either of the vertices of the segment lies within the trian-

gle. To this end, we solve the linear system (4.15) with ~pi = ~Pi, i = 0, . . . , 2,
and ~p = ~A (resp., ~B) and test if {αi}2i=0 form a convex combination. If nei-
ther of the vertices of the segment lies within the triangle, we need to
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perform further operations. We make use of the barycentric coordinates
~λ = (α0, . . . , α2)

T of the points ~A, ~B that we just computed at the first step
of the algorithm. We now enumerate the three edges of the triangle ~P0~P1~P2

and check if at least one of them has non-empty intersection with the seg-
ment

−→
AB. Without loss of generality, let us consider the edge

−−→
P0P1. We

investigate if there is a point of the segment
−→
AB that lies on the line passing

through ~P0 and ~P1. To this end, we solve the following equation:

0 = [~λ~B]2 +α ([~λ~A]2 − [~λ~B]2) , (4.16)

which guarantees that the barycentric coordinate of the unknown point on
the line passing through ~A and ~B with respect to the point ~P2 vanishes. We
now solve (4.16) for the scalar unknown α. If the difference ([~λ~A]2 − [~λ~B]2)

is not 0 (i.e. ~A and ~B neither are collinear with ~P0 and ~P1 nor lie on a line
parallel to

−−→
P0P1), there exists only one α. Now check if 0 6 α 6 1: in such

a case, the candidate intersection is a point in the segment
−→
AB, precisely

the point ~Q := α ~A + (1 − α) ~B. We now have to test whether this point
is inside the triangle. To this end, we compute the barycentric coordinates
~λ~Q = α~λ~A+(1−α)~λ~B and check if they form a convex combination, i.e. 0 6
[~λ~Q]i 6 1 for i = 0, . . . , 2. If [~λ~A]2 = [~λ~B]2, two special cases could occur:

• [~λ~B]2 6= 0, so there is no α satisfying (4.16). This happens when ~A and
~B lie on a line parallel to

−−→
P0P1, but the four points are not collinear.

• ~A and ~B are collinear with ~P0 and ~P1. Then [~λ~A]2 = [~λ~B]2 ≡ 0, so (4.16)
is satisfied for any real α. This does not pose a problem, since we can
identify the intersection (if any) analysing the intersection between
the segment

−→
AB and one of the other edges of the triangle.

If we find no intersection between
−→
AB and

−−→
P0P1, we consider another edge

of the triangle, say
−−→
P0P2, and repeat the algorithm. The complete set of

routines is summarised in Algorithm 1.

4.4.3 Intersections between tetrahedra and triangles

We now analyse how to detect whether a tetrahedron ~P0~P1~P2~P3 is inter-
sected by a triangle ~A~B~C, see [14, Fig. 4].
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~P0 ~P1

~P2

~A

~B

~P0 ~P1

~P2

~A

~B

~P0 ~P1

~P2

~A

~B

Figure 4.2: Possible cases of intersection between a triangle and a segment.

Algorithm 1: Detecting if a segment
−−−→
Q1Q2 intersects a triangle ~P0~P1~P2.

Data: Bulk triangle o = ~P0~P1~P2 and interface segment σ =
−−−→
Q1Q2

Result: Identification of a possible intersection between o and σ
begin

for i = 1, 2 do
if Qi ∈ o then

return TRUE;
end

end
for i = 1, 2, 3 do
ei ←− edge i of triangle o;
if σ intersects ei then

return TRUE;
end

end
return FALSE;

end
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We first check if any of the vertices of the triangle lie within the tetrahe-
dron. To this end, we solve the linear system (4.15) with ~pi = ~Pi, i = 0, . . . , 3,
and ~p = ~A (resp., ~B, ~C) and test if {αi}

3
i=0 form a convex combination. If

none of the vertices of the triangle lies within the tetrahedron, we need to
perform further operations.

We first analyse the case of an intersection between an edge of the tri-
angle and a face of the tetrahedron. In the following, we make use of the
barycentric coordinates ~λ = (α0, . . . , α3)

T of the points ~A, ~B, ~C that we pre-
viously computed at the first step of the algorithm. Let us now investigate,
without loss of generality, the case of the segment

−→
AB and the face ~P0~P1~P2.

We want to see if the segment intersects the triangular face (the intersection
could be empty, a point or infinitely many points). We first need to check
if there is a point of the segment

−→
AB that lies on the plane of the triangle

~P0~P1~P2. To this end, we solve the following equation:

0 = [~λ~B]3 +α ([~λ~A]3 − [~λ~B]3) , (4.17)

which guarantees that the barycentric coordinate of the unknown point on
the line passing through ~A and ~B with respect to the point ~P3 vanishes. We
now solve (4.17) for the scalar unknown α. If the difference ([~λ~A]3 − [~λ~B]3)

is not 0 (i.e. ~A and ~B lie neither in a plane parallel to ~P0~P1~P2 nor in the
plane of ~P0~P1~P2 itself), there exists only one α. Now check if 0 6 α 6 1:
in such a case, the intersection of the line and the plane is a point in the
segment

−→
AB, precisely the point ~Q := α ~A + (1 − α) ~B. We now have to

test whether this point is inside the triangle. To this end, we compute the
barycentric coordinates ~λ~Q = α~λ~A + (1 − α)~λ~B and check if they form a
convex combination, i.e. 0 6 [~λ~Q]i 6 1 for i = 0, . . . , d, see Figure 4.3 (left).
If [~λ~A]3 = [~λ~B]3, two special cases could occur:

• [~λ~B]3 6= 0, so there is no α satisfying (4.17). This happens when ~A and
~B lie on a plane parallel to the triangle ~P0~P1~P2, but not containing the
triangle itself, see Figure 4.3 (centre).

• ~A and ~B lie on the plane containing the triangle ~P0~P1~P2. Then [~λ~A]3 =

[~λ~B]3 ≡ 0, so (4.17) is satisfied for any real α, see Figure 4.3 (right).
This does not pose a problem, since we can identify the intersection
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(if any) analysing the intersection between the segment
−→
AB and one

of the other triangular faces of the tetrahedron.

~P0
~P1

~P2
~P3

~A

~B

~P0 ~P1

~P2
~P3

~A

~B

~P0 ~P1

~P2~P3

~A

~B

Figure 4.3: Possible cases of intersection between an edge of a triangle and a trian-

gular face of a tetrahedron.

We now investigate the case of an intersection between an edge of the
tetrahedron and the triangle. Without loss of generality, we analyse the
case of the segment

−−→
P0P1 and the triangle ~A~B~C. Recall that we have al-

ready computed ~λ~A,
~λ~B and ~λ~C ∈ R4. If

−−→
P0P1 intersects ~A~B~C, the point of

intersection will be a convex combination of ~P0 and ~P1, so the barycentric
coordinates w.r.t. ~P2 and ~P3 will be exactly 0. This yields

α [~λ~A]2 +β [~λ~B]2 + (1−α−β) [~λ~C]2 = 0 , (4.18)

α [~λ~A]3 +β [~λ~B]3 + (1−α−β) [~λ~C]3 = 0 . (4.19)

The system (4.18)-(4.19) is a 2 × 2 linear system, whose solution (if any)
represents a point on the line on which the segment

−−→
P0P1 lies. If the system

is invertible, we can compute the unique α,β. If it holds that 0 6 α,β, 1−

α− β 6 1, then the candidate intersection point is inside the triangle, but
not necessarily on the segment

−−→
P0P1. Then, on denoting~λQ := α~λA+β~λB+

(1− α− β)~λC, we further check if 0 6 [~λ~Q]0,1 6 1. If all these conditions
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are satisfied, the segment and the triangle intersect, see Figure 4.4. If the
system (4.18)-(4.19) is singular, the intersection (if any) can be identified by
analysing another face of the tetrahedron, keeping the same triangle from
the interface grid. The complete algorithm is described in Algorithm 2.

~A ~B

~C

~P0

~P1

~Q

~A ~B

~C

~P0

~P1

~Q

Figure 4.4: Possible cases of intersection between an edge of a tetrahedron and a

triangle.

4.4.4 Bulk mesh adaptation

Our unfitted finite element approximation (4.2a)-(4.2e) is based on triangu-
lations Tm of the whole domain Ω, which vary in time. Here the aim is
to use an adaptive mesh for Ω, where we resolve the regions close to Γm

much finer than far away from the interface. The exact procedure for the
refinement of the bulk grid is detailed below, where we follow [104, § 4.1].
It is worth mentioning that the DUNE software stores any mesh as a hierar-
chical grid (see A.2 for details), which makes traversing through successive
levels of refinement easy. This feature will be used in § 4.4.6, where we
investigate the selection of the elements that belong to Tm+ , recall (4.1).

Given a polyhedral approximation Γm,m > 0, of the interface, we employ
the following mesh adaptation strategy for the bulk mesh triangulation
Tm. Note that the same strategy has been used in [14] for an unfitted finite
element approximation of anisotropic solidification problems. It returns a
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Algorithm 2: Detecting if a triangle ~Q0~Q1~Q2 intersects a tetrahedron
~P0~P1~P2~P3.

Data: Bulk tetrahedron o = ~P0~P1~P2~P3 and interface triangle
σ = ~Q0~Q1~Q2

Result: Identification of a possible intersection between o and σ
begin

for i = 1, 2, 3 do
if Qi ∈ o then

return TRUE;
end

end
for i = 1, 2, 3 do
ei ←− edge i of the triangle σ;
for j = 1, . . . , 4 do
fj ←− face j of the tetrahedron o;
if ei intersects fj then

return TRUE;
end

end

end
for i = 1, . . . , 6 do
ei ←− edge i of the tetrahedron o;
if ei intersects σ then

return TRUE;
end

end
return FALSE;

end
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fine mesh around Γm and a coarse mesh further away from it. In particular,
given two integer parameters Nf > Nc, we set:

hf =
2 Ld
Nf

and hc =
2 Ld
Nc

, (4.20a)

volf =
hdf
d!

and volc =
hdc
d!
, (4.20b)

that is, for d = 3, volf denotes the volume of a tetrahedron with three right-
angled and isosceles faces with side length hf, while for d = 2 it denotes
the area of a right-angled and isosceles triangle with side length hf, and
similarly for volc.

Now starting with the triangulation Tm−1 from the previous time step,
our aim is to obtain Tm. Here for convenience we define T−1 to be the
initial, uniform partitioning of Ω into elements of mesh size hc. In the fol-
lowing and throughout the thesis, T−1 will also be denoted as the initial
macro-triangulation. We are now ready to present the iterative algorithm for
obtaining Tm. First any element om−1 ∈ Tm−1 satisfying Ld(om−1) > 2 volf
and om−1 ∩ Γm 6= ∅ is marked for refinement. In addition, any element
satisfying Ld(om−1) > 2 volf, for which a direct neighbour intersects Γm, is
also marked for refinement. Similarly, an element that is not marked for
refinement is marked for coarsening if it satisfies Ld(om−1) 6 1

2 volc and
om−1 ∩ Γm = ∅. Note that starting with an initial triangulation of uniform
width hc is crucial in order to have elements far from the interface with the
desired mesh size. If those elements were too coarse in Tm−1, they would
not be marked for refinement. In fact, the strategy outlined above considers
for refinement only an element cut by Γm or a neighbour of a cut element.
Now all the elements marked for refinement are halved into two smaller
elements with the help of a simple bisectioning procedure, see [114]. In
order to avoid hanging nodes, this will in general lead to the refinement
of elements that were not originally marked for refinement. Similarly, an
element that is marked for coarsening is coarsened only if all of its neigh-
bouring elements are marked for coarsening as well. For more details on
the refining and coarsening itself, we refer to [114]. We designed the macro-
triangulation T−1 in such a way that, after every refinement step performed
by the ALBERTA grid manager, the bulk mesh will still be composed of
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right-angled, isosceles triangles or of tetrahedra with such triangular faces;
see Figure 4.5 for d = 2.

This marking and refinement process is repeated until no more elements
are required to be refined or coarsened. In practice, we observed that only
at the first time step, m = 0, are more than one of the described refinement
cycles needed.

4.4.5 Interface mesh adaptation

In theory it is possible to use local mesh refinement also for the discrete
interface Γm, which is totally independent from Tm. However, the good
mesh properties shown in Theorem 4.2 and Remark 4.3 guarantee that in
practice no refinement of Γm is necessary. In fact, the vertices of Γm are in
general very well distributed, so that the user does not have to perform any
mesh smoothing operation.

Figure 4.5: Portion of the computational domain showing the bulk mesh close to

the discrete interface (from [104, Fig. 3]). The macro-triangulation T−1

is designed in such a way that, after every refinement step performed

by the ALBERTA grid manager, the bulk mesh is still composed of

right-angled, isosceles triangles.
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4.4.6 Definition of the bulk region

A crucial aspect of the unfitted approach is the identification of a suitable
region Ωm,h+ where the approximations Φm+1 and ~Um+1 to the electric po-
tential and the elastic stress are to be computed. As described in § 4.2, our
method is based on an adapted triangulation Tm of the whole domain Ω.
In order to define the submesh Tm+ , which defines the computational do-
main Ωm,h+ , we need to perform two steps. First we need to find all the
elements that are cut by the discrete interface Γm, and then we can select
all the elements of Tm+ , recall (4.1). For the first step we need to be able to
detect whether a (d− 1)-dimensional simplex of the interface grid Γm and
a d-dimensional simplex from the bulk triangulation Tm intersect or not.
Such intersections can be detected with the help of Algorithm 1 for the case
d = 2 and Algorithm 2 for the case d = 3.

The general procedure, valid for both d = 2, 3, for identifying all the
bulk elements of Tm intersected by interface elements of Γm is described
in Algorithm 3. It is worth noting that we make use of the hierarchical
structure of the bulk grid, which allows an efficient traversal of the grid.
We refer to A.2 for all the relevant definitions, including the notions of
grid level, leaf element, and father relation, used in Algorithm 4. In practice,
thanks to the features of a hierarchical grid, we do not need to analyse
those bulk elements obtained from refinement of elements of the initial
macro-triangulation T−1 which are not cut by any σm ∈ Γm.

Once all the cut elements have been correctly identified, we are able to
select the elements of the collection Tm+ , with the help of Algorithm 5. Here
we are inspired by the strategy applied in [7], where an unfitted finite ele-
ment approximation for dendritic crystal growth with thermal convection
was studied.

Algorithm 5 produces a partition of the original bulk triangulation Tm,
where the outside elements are the elements in Tm+ . A visual representation
of the procedure is shown in Figure 4.6, where we see that the currentFront
composed of outside elements moves from the outer boundary of the bulk
towards the void, until all the elements in Tm+ are correctly labelled. We
note that all the elements intersected by Γm are contained in Tm+ . This is
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Algorithm 3: Identifying all the intersections between bulk and interface
elements.
Data: Bulk triangulation Tm and interface mesh Γm

Result: Identification of all the elements of Tm cut by the interface Γm

begin
for σm ∈ Γm do

for o0 ∈ T−1 do
if o0 ∩ σm 6= ∅ then

Algorithm 4 (o0, σm);
end

end

end

end

Algorithm 4: Hierarchic search applied to the identification of intersec-
tions between bulk and interface elements.
Data: Bulk element o and interface element σm

Result: Identification of all leaf elements in the hierarchical grid
starting from o which are cut by σm

begin
if o is a leaf element then

Mark o as cut;
return;

end
for ci child of o do

if ci ∩ σm 6= ∅ then
Algorithm 4 (ci, σm);

end

end

end
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Algorithm 5: Finding the subset Tm+ of Tm.
Data: Bulk triangulation Tm and interface mesh Γm. The latter does not

intersect the boundary ∂Ω.
Result: Selection of all the elements belonging to Tm+

begin
Mark all the elements of Tm as clear;
Mark all the elements of Tm cut by the interface as outside;
Mark all the boundary elements of Tm as outside and put them in
currentFront;
while currentFront is not empty do

for o ∈ currentFront do
for on neighbour of o do

if on is clear then
put on in newFront;
mark on as outside;

end

end

end
currentFront = newFront;
Clear newFront;

end

end
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Figure 4.6: Visual representation of the labelling routine in Algorithm 5, for d = 2.

Outside elements are coloured in blue, clear elements in grey, and cut
elements in red. At the final step (bottom picture), all the elements in

Tm+ are correctly labelled, including those intersected by Γm.



4.5 numerical simulations 104

motivated by the fact that we need to evaluate ∇sΦm+1 and ∇s Em+1 on Γm

in (4.2d), and this is only guaranteed to be well-defined if Φm+1 and Em+1

are defined on all such intersected elements.

4.5 numerical simulations

In this section we present several numerical simulations to test the accuracy
of the unfitted method. Unless stated otherwise, we use uniform time steps
τm = τ, m = 0, . . . ,M− 1, for all the experiments in this section. As we will
compare our numerical results to the phase field computations in [20, 3],
we also fix α1 = 1

16 π
2 throughout this section. Moreover, when stress-

migration is considered, we assume that (3.6) holds. We first present the
simulations for d = 2 and then for d = 3.

Our first experiment with d = 2 refers to the test case (3.15), where the
true solution of a circular void, moving at constant speed through an infi-
nite conductor with d = 2, is known. It is worthwhile to note that in this par-
ticular case we prescribe Dirichlet boundary conditions on the entire outer
boundary of Ω, and not only on ∂2Ω. The case has been presented in [104,
Table 1], and we report it here with additional data for the benefit of the
reader. We choose the following parameters: L1 = 1.5, L2 = 0.5, α2 = 3π2,

α3 = 0. The initial geometry is a circle with radius R = 0.25 and centre
z = (−0.5, 0), while T = 2× 10−3. Following [12], we define the error

EΓ = ‖~X−~x‖L∞ := max
m=1→M

‖~Xm −~x (·, tm)‖L∞ , (4.21)

where

‖~Xm −~x (·, tm)‖L∞ := max
k=1→KmΓ

{ min
~y∈Γ(t)

|~Xm(~qmk ) −~x (~y, tm))|} , (4.22)

between ~X and the true solution on the interval [0, T ]. The L∞ norm in (4.22)
can be easily interpreted as follows. For every vertex ~qmk of the interface
mesh, we compute the Euclidean norm of the difference between the posi-
tion of the vertex and its projection onto the unit sphere; the L∞ norm is
then given by the maximum over all the vertices {~qmk }

KmΓ
k=1. In addition, we

define the error

Ebulk := ‖Φ−φ‖L∞(0,T ;H1(Ωm,h+ )) := max
m=1→M

‖Φm −φ(·, tm)‖H1(Ωm−1,h
+ )
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between Φ and the exact electric potential φ on the interval [0, T ]. Since
the exact solution is known, it is worth calculating an experimental order
of convergence. To this end, we employ (4.20a) with

N
(i)
f = 16N

(i)
c = 27+i , i = 0→ 3 .

In addition, we set JmΓ
(i) = KmΓ

(i) = N
(i)
f . Therefore, the initial interface grid

has a resolution proportional to hf. The experimental orders of convergence
are computed as 1

log (2) log (E
(i−1)

E(i)
), for both EΓ and Ebulk. The correspond-

ing errors are listed in Table 4.1, where it appears that we observe a conver-
gence of at least O(hf) in the measured error for the interface, and at least
O(h

1/2
f ) for the H1-error for the approximation of the electric potential in

the bulk. We also report on the CPU times and the average number of bulk
degrees freedom. These quantities will aid a direct comparison with the
four fitted approach runs presented in § 5.4, Table 5.1. Recall from [8] that
an optimal O(h) convergence rate in the H1-norm could be obtained for a
more sophisticated unfitted finite element approximation for a related Neu-
mann boundary value problem. However, we are satisfied that our more
practical method performs well for the electro-stress migration problem of
our interest.

i τ · 106 hf · 103 hc · 102 Ebulk · 102 EOCbulk EΓ · 103 EOCΓ Time [s]

0 8 7.81 12.5 9.037 – 16.459 – 18

1 2 3.91 6.25 5.919 0.61 7.556 1.12 174

2 0.5 1.95 3.13 3.650 0.69 3.474 1.12 2098

3 0.125 0.977 1.56 2.143 0.77 1.524 1.19 37861

Table 4.1: Results of the convergence test for the unfitted case, reproduced from

[104, Table 1]. Note that the average number of bulk degrees of freedom

for the four runs are 990, 2296, 5987 and 17677, respectively.

Our next experiment corresponds to [104, Figs. 4 and 5], see also [20,
Fig. 2] and [27, Fig. 4]. Only electro-migration is involved. We choose
the radius of the initially circular void to be relatively large compared
to the width of the conductor, 2L2. We use the following parameters:
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Figure 4.7: (α2 = 256
9 π2, α3 = 0) Plots of the interface curve at times t = 0, 8×

10−5, T = 3.6× 10−4, and bulk mesh at time t = T .

L1 = 1, L2 = 0.5, α2 = 256
9 π

2, α3 = 0, τ = 4.5× 10−7, T = 3.6× 10−4 and
JmΓ = KmΓ = 1024. As initial data we choose a circle with radius 0.375
and centre (−0.5, 0); the bulk refinement parameters are Nf = 1024 and
Nc = 64, respectively. We note that the experiment corresponds to [104,
Fig. 4], where Dirichlet boundary conditions were applied, as in (3.3b). In
Figure 4.7 we plot the results of the simulation at times t = 0, 8× 10−5, and
T = 3.6× 10−4. The total CPU time was 1557s, while the average number
of bulk degrees of freedom was 17893. Recall that in (2.33) we defined
rh := hΓm/lΓm where hΓm and lΓm represent the maximum and minimum
segment of Γm, respectively. In Figure 4.8 we plot the temporal evolution
of the interface mesh quality indicator rh. We note that the vertices of the
interface mesh remain well distributed.

As already noted in [104, § 5], Dirichlet boundary conditions make the
drifting of the void slower, compared to the plots in [20, Fig. 2]. Therefore,
in order to perform a direct comparison, we prescribe the new boundary
conditions:

∂φ

∂~ν∂Ω
= 0 on ∂1Ω, 2

∂φ

∂~ν∂Ω
+φ = gR := x1 ± 2 on ∂±2Ω, (4.23)
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Figure 4.8: (α2 = 256
9 π2, α3 = 0) Plot of the quality mesh indicator rh for the

interface mesh plotted in Figure 4.7.

which means that (4.2a) needs to be replaced by∫
Ωm,h+

∇Φm+1 · ∇ψ dLd +
1

2

∫
∂2Ω

Φm+1ψdHd−1 =
1

2

∫
∂2Ω

gRψdHd−1

for all test functions ψ ∈ Sm,h. In Figure 4.9 we plot the results of the
simulation at times t = 0, 8 × 10−5, and T = 3.6 × 10−4, where the new
boundary conditions (4.23) have been applied. The total CPU time was
1927s, while the average number of bulk degrees of freedom was 19674.
We now note the good agreement with the results in [20, Fig. 2] and [27,
Fig. 4]. In Figure 4.10 we plot the temporal evolution of the interface mesh
quality indicator rh. We note that the vertices on the interface mesh remain
well distributed. The presence of a stronger electric field, induced by Robin
boundary conditions, contributes to increasing the value of rh, compared
to the case with Dirichlet boundary conditions in Figure 4.8.

The next experiments involve again electro-migration only, but in this
case the interface undergoes topological changes, due to the magnitude of
the electric field. We first prescribe Dirichlet boundary conditions (3.3b).
We choose the following parameters: L1 = 1.5, L2 = 0.5, α2 = 16 π2,

α3 = 0, T = 10−3. The initial interface is composed of an ellipse and a
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Figure 4.9: (α2 = 256
9 π2, α3 = 0, with Robin boundary conditions (4.23)) Plots of

the interface curve at times t = 0, 8× 10−5, T = 3.6× 10−4, and bulk

mesh at time t = T .
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Figure 4.10: (α2 = 256
9 π2, α3 = 0, with Robin boundary conditions (4.23)) Plot of

the quality mesh indicator rh for the interface mesh plotted in Figure

4.9.
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circle, the former with horizontal semiaxis 0.2, vertical semiaxis 0.3 and
centre (−1.1, 0), the latter with radius 0.2 and centre (−0.5, 0). The refine-
ment parameters are Nf = 512 and Nc = 32. The experiment corresponds
to [20, Fig. 8], where the authors considered a phase field approximation
with Robin boundary conditions. The voids undergo a topological change,
which we handle with the help of the library El-Topo, as explained in Sec-
tion 2.3.1. The simulation is split into different parts with variable time
steps, since the newly-created voids exhibit corners with a very high cur-
vature immediately after the topological change has taken place. The first
part of the simulation is run with time step τ = 10−7 from t = 0 to T1 =

6.238× 10−4, at which time the ellipse pinches off into two new voids, while
the original circle has elongated and drifted in the conductor. In order to
capture the evolution correctly and avoid area loss, we now reduce the time
step to τ = 10−10 until T2 = 6.338× 10−4. The last part is from t = T2 to
T = 10−3, again with τ = 10−7. At this time the simulation cannot con-
tinue any longer, because the original circular void has reached the right
boundary of the conductor. The final interface configuration is composed
of three voids. The complete evolution of the system can be seen in Figure
4.11, where we note that El-Topo preserves the symmetry of the geometry.

It is worth mentioning that also in this case the choice of Dirichlet bound-
ary conditions makes the drifting of the voids slower, compared to the
results shown in [20, Fig. 8]. In order to perform a direct comparison, we
now prescribe Robin boundary conditions (4.23) and take T = 7.91× 10−4.
Similarly to the previous experiment, the simulation is split into different
parts with variable time steps. The first part of the simulation is run with
time step τ = 10−7 from t = 0 to T1 = 4.702× 10−4, at which time the ellipse
pinches off into two new voids, while the original circle has elongated and
drifted in the conductor. We now reduce the time step to τ = 10−10 until
T2 = 4.802× 10−4. The third part is from t = T2 to T3 = 6.457× 10−4, again
with τ = 10−7. At this point, the two smaller voids originated from the
initial ellipse pinch off again. We now use τ = 10−10 until T4 = 6.487× 10−4,
and finally set τ = 10−7 until T = 7.91× 10−4. The final interface configu-
ration is therefore composed of five voids. The complete evolution of the
system can be seen in Figure 4.12. We note that also in this case El-Topo
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Figure 4.11: (α2 = 16 π2, α3 = 0) Plots of the interface curve at times t = 0, 2×
10−4, . . . , T = 10−3 and bulk mesh at t = T . The interface at t = T is

composed of three voids.
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preserves the symmetry and returns results which are in good agreement
with the phase field computations presented in [20, Fig. 8].

Our next experiment corresponds to [105, Fig. 3] and involves both electro-
migration and stress-migration. We choose the following parameters: L1 =
2.5, L2 = 0.5, α2 = 10 π2, α3 =

1
8 π, µ = λ = 1, S =

(
1 0
0 0

)
, τ = 5× 10−7, JmΓ =

KmΓ = Nf = 1024, Nc = 16. The initial geometry is a circle with radius
R = 0.25 and centre z = (−1.5, 0), while T = 3.75×10−3. The total CPU time
was 11141s, while the average number of bulk degrees of freedom (count-
ing both Φm+1 and ~Um+1) was 23325. In Figure 4.13 we plot the results of
the simulation at times t = 0, 1.25× 10−3, 2.5× 10−3 and T = 3.75× 10−3. It
can be seen that the void moves through the conductor due to the presence
of the electric field, while the elastic stress contributes to flattening the ver-
tical front of the void. The plots show a good agreement with the results in
[105, Fig. 3], see also Figure 5.12 below.

In order to evaluate the contribution to the drifting of the void produced
by the two external loadings, we now repeat the experiment by considering
electro-migration and stress-migration separately. In Figure 4.14 we plot
the results of the simulations with α2 = 0, α3 = 1

8 π. We note that the void
does not drift, but slightly elongates in the vertical direction. In Figure 4.15,
instead, we plot the results of the simulations with α2 = 10 π2, α3 = 0. We
note that the void drifts along the conductor, keeping its original circular
profile.

In the next experiment only stress-migration is considered. We choose the
following parameters: L1 = L2 = 0.5, α2 = 0, α3 =

1
8 π, µ = 0.5, λ = 0, S =(

1 0
0 1

)
, τ = 10−7, JmΓ = KmΓ = 2048, Nf = 1024, Nc = 64. The initial geometry

is composed of two circles with radius R = 0.18 and centres z± = (±0.25, 0),
while T = 5 × 10−5. The total CPU time was 1254s, while the average
number of bulk degrees of freedom was 23893. In Figure 4.16 we plot the
results of the simulation at times t = 0 and t = T . For this experiment
we observe that for larger times T a singularity develops. In particular, the
two voids exhibit sharp corners and the elastic energy becomes unbounded.
This can be seen in Figure 4.17. where the developing singularity leads to
a breakdown in the numerical approximation. We now investigate whether
this breakdown is related to numerical errors. To this end, we compute
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Figure 4.12: (α2 = 16 π2, α3 = 0, with Robin boundary conditions (4.23)) Plots of

the interface curve at times t = 0, 1.13× 10−4, . . . , T = 7.91× 10−4 and

bulk mesh at t = T . The interface at t = T is composed of five voids.
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Discrete energy

2.00  4.00  0.000 8.3576.00  

Figure 4.13: (α2 = 10 π2, µ = λ = 1, S =
(
1 0
0 0

)
) Plots of the interface curve at

times t = 0, 1.25× 10−3, 2.5× 10−3 and T = 3.75× 10−3; bulk mesh at

t = 0, T and elastic energy density at t = T .
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9.141

Discrete energy

2.00  6.00  0.000 4.00  8.00  

Figure 4.14: (α2 = 0, µ = λ = 1, S =
(
1 0
0 0

)
) Plots of the interface curve at times t =

0, 1.25× 10−3, 2.5× 10−3 and T = 3.75× 10−3; bulk mesh at t = 0, T

and elastic energy density at t = T .
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Figure 4.15: (α2 = 10 π2, α3 = 0) Plots of the interface curve at times t = 0, 1.25×
10−3, 2.5× 10−3 and T = 3.75× 10−3, and bulk mesh at t = 0, T .
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Discrete energy

1.00  15.8  0.398 2.51  6.31  

Figure 4.16: (α2 = 0, µ = 0.5, λ = 0, S =
(
1 0
0 1

)
) Plots of the interface curve at times

t = 0 and T = 5× 10−5; bulk mesh and elastic energy density at t = T .

The energy density is colour coded with a logarithmic scale for the

sake of visualisation.
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the total discrete energy α1H
d−1(Γm) + α3 (

∫
Ωm,h+

E(~Um+1) dLd −
∫
∂Ω ~g ·

~Um+1 dHd−1) and plot it in Figure 4.17 (bottom). We note that the discrete
energy is overall decreasing in time, even though not monotonically, recall
(3.12). This is most likely due to the fact that Ωm,h+ is given by a union
of bulk mesh elements, and therefore its boundary ∂Ωm,h+ is very rough,
with right-angled corners. In addition, the evaluation of the elastic energy
density in (4.2d) is vertex-based. However, the observed singularity and
the behaviour of the elastic energy density appear to be consistent with the
sharp interface model (3.1), (3.7a)-(3.7c) itself.

In the last experiment for d = 2 only stress-migration is considered.
The test corresponds to [105, Fig. 5]. We choose the following param-
eters: L1 = L2 = 0.5, α2 = 0, α3 = 1

8 π, µ = 0.5, λ = 0, S =
(
1 0
0 0

)
,

τ = 10−6, JmΓ = KmΓ = 2048, Nf = 1024, Nc = 16. The initial geometry is
composed of two circles with radius R = 0.15 and centres z± = (±0.22, 0),
while T = 1.5 × 10−3. The total CPU time was 2117s, while the average
number of bulk degrees of freedom was 15909. In Figure 4.18 we plot the
results of the simulation at times t = 0, 5× 10−4, 10−3 and T = 1.5× 10−3.
Similarly to the previous experiment, we observe that also in this case a
singularity develops for larger times T . In particular, the two voids exhibit
sharp corners and the elastic energy becomes unbounded. This can be seen
in Figure 4.19, where the developing singularity leads to a breakdown in
the numerical approximation. We compute the total discrete energy, which
appears to be overall decreasing in time, even though not monotonically.
Hence also for this experiment the observed singularity is consistent with
the sharp interface model (3.1), (3.7a)-(3.7c) itself. We note the good agree-
ment with the results in [105, Figs. 5 and 6], see also Figures 5.17 and 5.18

below.
Our first simulation with d = 3 corresponds to [3, Fig. 7], and involves

electro-migration only. The initial profile models a cylindrical void with
radius R = 0.375, penetrating the conductor. Every x3 cross section cor-
responds to the two-dimensional geometry presented in [20, Fig. 2]. We
choose the following parameters: α2 = 57

2 π
2, α3 = 0, L1 = 1, L2 = L3 = 0.5,

τ = 10−7, T = 3.6× 10−4. The mesh refinement parameters are Nf = 128

and Nc = 16. We consider Robin boundary conditions (4.23) for a direct
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Figure 4.17: (α2 = 0, µ = 0.5, λ = 0, S =
(
1 0
0 1

)
) Plots of the interface curve

and the elastic energy density at t = 9.9 × 10−5. The energy den-

sity is colour coded with a logarithmic scale for the sake of visu-

alisation. Below a plot of the total discrete energy α1Hd−1(Γm) +

α3 (
∫
Ωm,h+

E(~Um+1) dLd −
∫
∂Ω ~g · ~Um+1 dHd−1) over time.
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118.279

Discrete energy
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Figure 4.18: (α2 = 0, µ = 0.5, λ = 0, S =
(
1 0
0 0

)
) Plots of the interface curve at times

t = 0, 5× 10−4, 10−3, and T = 1.5× 10−3, bulk mesh and the elastic

energy density at time t = T . The energy density is colour coded with

a logarithmic scale for the sake of visualisation.
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Figure 4.19: (α2 = 0, µ = 0.5, λ = 0, S =
(
1 0
0 0

)
) Plots of the interface curve and

the elastic energy density at t = 1.794 × 10−3. The energy den-

sity is colour coded with a logarithmic scale for the sake of visu-

alisation. Below a plot of the total discrete energy α1Hd−1(Γm) +

α3 (
∫
Ωm,h+

E(~Um+1) dLd −
∫
∂Ω ~g · ~Um+1 dHd−1) over time.
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comparison. It is straightforward to notice that in this case the cylindrical
interface has boundary intersections, where appropriate boundary condi-
tions need to be prescribed. We naturally impose a free-slip condition for
the displacement δ~Xm+1, recall § 4.2.1. The matrix and the right-hand side
of the system (4.13) need to be adjusted appropriately, recall Remark 4.6.
Moreover, the set-up routines of Algorithm 5 are to be modified as well.
Precisely, instead of considering all the boundary elements of Tm as outside,
only the boundary elements belonging to ∂2Ω have to be considered as out-
side and put into the currentFront. The total CPU time was 908266s, while
the average number of bulk degrees of freedom was 109439. We note the
good agreement between our results in Figure 4.20, the plots in [3, Fig. 7]
and the corresponding two-dimensional results presented in [20, Fig. 2]. We
now investigate the quality of the interface mesh. The temporal behaviour
of the indicator ra, recall (2.34), is plotted in Figure 4.21. We note that the
interface mesh exhibits good properties, even in the presence of a strong
electric field that induces a great change in the shape of the cylindrical
void.

Our next simulation corresponds to [3, Fig. 8], and again only electro-
migration is considered. The experiment shows a fully three-dimensional
situation, where the initial profile of the void is a sphere with radius R =

0.375. We keep all the simulation parameters as in the previous case. The
total CPU time was 576840s, while the average number of bulk degrees of
freedom was 99192. We note the good agreement between our results in
Figure 4.22 and the plots in [3, Fig. 8]. We further investigate the drifting
of the void, when a stronger electric loading is applied. To this end, we
keep all the parameters unchanged bar α2, which we now set to 75 π2, and
T , which we now set to 1.25× 10−4. The total CPU time was 197695s, while
the average number of bulk degrees of freedom was 99435. The evolution
of the void is plotted in Figure 4.23. Compared to [3, Fig. 9], the evolution
shown in our plots seems slightly slower, since at time t = T the interface
is not yet undergoing the topological change observed in [3, Fig. 9].

Our last experiment is presented in Figure 4.24, and only stress-migration
is involved. We choose the following parameters: L1 = L2 = L3 = 0.5,
α2 = 0, α3 = 1

8 π, µ = λ = 4
5π , S =

(
0 0 0
0 1 0
0 0 0

)
, τ = 10−6, Nf = 128,Nc = 16.
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Figure 4.20: (α2 = 57
2 π

2, α3 = 0, with Robin boundary conditions (4.23)) Plots

of the interface mesh and cross section for x3 = 0 of the bulk mesh

at times t = 0, 8 × 10−5, 1.2 × 10−4, 2 × 10−4, 2.4 × 10−4 and T =

3.6 × 10−4. The electric potential is colour coded according to the

legend shown at T = 3.6× 10−4.
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Figure 4.21: Plot of the ratio ra (eq. (2.34)) for the interface mesh in Figure 4.20.

The initial geometry is a sphere with radius R = 0.25 and centre z = (0, 0, 0),
while T = 0.02. The average number of bulk degrees of freedom was 184586.
The evolution of the system is plotted in Figure 4.24. The bulk mesh hardly
changes after the 1000th time step; it took 3.15× 105s to reach the stationary
state.



4.5 numerical simulations 124

Potential

-1

-0.5

0

0.5

1

-1.217

1.242

Figure 4.22: (α2 = 57
2 π

2, α3 = 0, with Robin boundary conditions (4.23)) Plots

of the interface mesh and cross section for x3 = 0 of the bulk mesh

at times t = 0, 8 × 10−5, 1.2 × 10−4, 2 × 10−4, 2.4 × 10−4 and T =

3.6 × 10−4. The electric potential is colour coded according to the

legend shown at T = 3.6× 10−4.
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Figure 4.23: (α2 = 75 π2, α3 = 0, with Robin boundary conditions (4.23)) Plots of

the interface mesh and cross section for x3 = 0 of the bulk mesh at

times t = 0, 2.5× 10−5, 7.5× 10−5, 1.15× 10−4, 1.2× 10−4 and T =

1.25 × 10−4. The electric potential is colour coded according to the

legend shown at T = 1.25× 10−4.
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Figure 4.24:
(
α2 = 0, µ = λ = 4
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))
Plots of the interface curve and the

elastic energy density at times t = 0, 2.5× 10−4 and T = 0.02. The

energy density is colour coded with a logarithmic scale for the sake of

visualisation.
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T H E PA R A M E T R I C A P P R O A C H : T H E F I T T E D M E T H O D

Let us recall what we described in Section 1.5. The numerical solution of
partial differential equations for systems with moving boundaries can be
approached in different ways. Three possible strategies for handling the
interface have been introduced in the literature, namely parametric approach
(§ 1.3.1), level set approach (§ 1.3.2) and phase field approach (§ 1.3.3).

In this thesis we consider the parametric approach. The user can employ
two different techniques: an unfitted approach and a fitted approach, depend-
ing on whether the topological compatibility between bulk and interface
meshes is preserved. In this chapter we present the fitted approach in de-
tail. Our discussion expands on the exposition given in [105], where we
analysed the fitted approach with d = 2 only.

The chapter is organised as follows: in Section 5.1 we give a definition
of the fitted approach, highlighting its most important features. In Section
5.2 we introduce a fitted finite element approximation for the electro-stress
migration problem described in Chapter 3. We investigate existence and
uniqueness of our finite element approximation, and discuss some prop-
erties of its semidiscrete, continuous-in-time counterpart. In Section 5.3
we describe in detail all the mesh operations needed in our coupled bulk-
interface framework. Special attention is paid to the routines for the smooth-
ing of the bulk mesh, whose quality deteriorates over time due to the drift-
ing of the voids present in the conductor. In particular, three different
techniques, namely Laplacian smoothing, harmonic smoothing and linear elastic
smoothing, are analysed and compared. Finally, in Section 5.4 we present
several numerical simulations, for both d = 2 and d = 3, including a con-
vergence experiment for a test case where the exact solution is known.

127
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5.1 features of the fitted method

In Chapter 4 we introduced an unfitted finite element method for the electro-
stress migration problem of our interest. In this chapter we consider a fitted
approach, which means that the interface mesh is always part of the bound-
ary of the bulk grid; see Figure 5.1 for an example with d = 2. Recall that

Figure 5.1: Example of a fitted interface mesh, with d = 2.

in the unfitted approach the bulk mesh and the parametric interface mesh
are totally independent. As a consequence, no smoothing of the bulk mesh
needs to be performed. In addition, standard strategies for refinement and
coarsening can be employed for the bulk mesh. However, the implemen-
tation of the unfitted approach requires a delicate communication between
the two grids, and a simple approximation of (3.3a) and (3.7a) leads to ad-
ditional approximation errors. Below we list the main features of the fitted
approach considered in this chapter:

• only the exterior of the interface is triangulated, and so there is no
necessity of filtering the bulk grid to identify a subset of elements
on which the electric potential and the elastic displacement are to be
computed;
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• the vertices of the interface grid can be easily identified within the
bulk mesh by a mapping, which needs to be computed only once at
the beginning;

• the interpolation of bulk finite element functions over the the interface
can be easily done with the previous mapping.

However, since the interface mesh drifts under the effects of surface tension,
electric field and elastic energy, and the preservation of the consistency
between the two grids implies that the topology of the bulk grid remains
unmodified, at certain time steps a mesh smoothing may need to be applied,
to avoid overlap between bulk elements. Once the quality of the mesh is
compromised and cannot be smoothed any longer, a complete, costly re-
meshing of the bulk region is required.

5.2 finite element approximation

We begin with the finite element approximation for quantities defined over
the bulk mesh. Let Tm be a partitioning of Ωm+ , a polyhedral approxima-
tion of Ω+(tm), into disjoint open d-dimensional simplices o with ho :=

diam (o) and h := maxo∈Tm ho so that Ωm+ =
⋃
o∈Tm o. Let Γm be the inner

boundary ofΩm+ , so that ∂Ωm+ = Γm ∪ ∂Ω. We can now define the standard
finite element space of piecewise linear functions:

Sm := {χ ∈ C(Ωm+ ) : χ |o is linear ∀ o ∈ Tm} ,

as well as

Smg := {χ ∈ Sm : χ |∂±2 Ω
= g±} and Sm0 := {χ ∈ Sm : χ |∂±2 Ω

= 0} .

In addition, we can define the standard finite element space of vector-
valued, piecewise linear functions:

Qm := [Sm]d ,

as well as

Q̂m := {~q ∈ Qm :

∫
Ωm+

~q ·~v dx = 0 ∀ ~v ∈ RM} .
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We introduce now the finite element spaces needed for the approximation
of quantities on the moving boundary Γ(t). Recall that Γm is by definition
the inner boundary of Ωm+ : it is therefore a polyhedral surface, approximat-
ing the closed surface Γ(tm), m = 0, . . . ,M. Let us recall the notation
already introduced in Section 2.2. Let Γm be a (d− 1)-dimensional polyhe-
dral surface, defined as Γm =

⋃JmΓ
j=1 σ

m
j , where {σmj }

JmΓ
j=1 is a family of mutu-

ally disjoint open (d− 1)-simplices with vertices {~qmk }
KmΓ
k=1. The parametric

finite element spaces for the approximation of the position vector ~x and the
curvature κ in (3.1)-(3.2) have been defined in (2.10). Moreover, recall (2.12)
and (2.13) for the definition of the mass lumped inner product 〈·, ·〉hΓm and
the unit normal ~νm to Γm, respectively. We assume that the local ordering
of the vertices used in (2.13) is such that ~νm is the normal to Γm pointing
into Ωm− .

We propose the following finite element approximation of (3.14a), (3.14b)
and (3.14c)-(3.14d): Given Γ0, a polyhedral approximation of Γ0, for m =

0, . . . ,M − 1 find functions {Φm+1, ~Um+1, Em+1, ~Xm+1, κm+1} ∈ Smg × Q̂m

× Sm × V(Γm)×W(Γm) such that for all ψ ∈ Sm0 , ~ζ ∈ Qm, χ ∈ W(Γm) and
~η ∈ V(Γm) ∫

Ωm+

∇Φm+1 · ∇ψ dLd = 0 , (5.1a)∫
Ωm+

CE(~Um+1) : E(~ζ) dLd =

∫
∂Ω

~g · ~ζ dHd−1 , (5.1b)

〈Em+1, χ〉Γm = 〈E(~Um+1), χ〉Γm , (5.1c)〈 ~Xm+1 − ~Xm

τm
, χ~νm

〉h
Γm

− α1 〈∇s κm+1,∇s χ〉Γm

= − 〈∇s (α2Φm+1 +α3 E
m+1),∇s χ〉Γm , (5.1d)

〈κm+1 ~νm,~η〉hΓm + 〈∇s ~Xm+1,∇s ~η〉Γm = 0 . (5.1e)

We note that Em+1 is the L2(Γm)-projection of E(~Um+1), which is a dis-
continuous function, onto the space of piecewise linear functions W(Γm).
Moreover, we note that the vector-valued function ~g in the right-hand side
of (4.2b) denotes a traction boundary condition. For simplicity we con-
sider ~g = S~ν∂Ω = CS∗ ~ν∂Ω , recall (3.8). Then set Γm+1 = ~Xm+1(Γm) and
find a suitable triangulation Tm+1 of the domain Ωm+1

+ with boundary
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∂Ωm+1
+ = Γm+1 ∪ ∂Ω. The latter aspect is described in more detail in § 5.3,

below. In addition, it is worth noting that (5.1a) is a standard finite element
approximation of (3.14a), (5.1b) is a standard finite element approximation
of (3.14b), while (5.1d)-(5.1e) for the case α2 = α3 = 0 collapse to the scheme
(2.17a)-(2.17b) for (3.1) with α2 = α3 = 0, i.e. for the geometric evolution
law of surface diffusion.

Before we can proceed to prove existence and uniqueness of a solution to
the system (5.1a)-(5.1e), let us recall the assumption (A) from § 2.2. In par-
ticular, we note that Γm, which approximates the closed surface Γ(tm), m =

0, . . . ,M, easily verifies (A), since it is a surface without self-intersections.
We are now ready to prove existence and uniqueness of our discrete solu-
tion.

Theorem 5.1. Let the assumption (A) from § 2.2 hold. Then there exists a unique
solution {Φm+1, ~Um+1, Em+1, ~Xm+1, κm+1} ∈ Smg × Q̂m × Sm×V(Γm)×W(Γm)

to the system (5.1a)-(5.1e).

Proof. We first notice that the equations for Φm+1, ~Um+1, Em+1 and {~Xm+1,

κm+1} decouple. Then we can straightforwardly adapt the same arguments
used in the proof of Theorem 4.1, on noting that the only difference lies in
solving the bulk equations over Ωm+ and not over Ωm,h+ . 3

Remark 5.2. As discussed in § 4.2.2, it is worthwhile to consider a continuous-
in-time semidiscrete variant of the fully discrete scheme (5.1a)-(5.1e). Completely
analogous to the unfitted approach, also in the fitted approach it is possible to
show that the semidiscrete scheme satisfies the natural discrete analogue to the
continuous volume preservation property (3.11). Moreover, it can be shown that in
the case d = 2 the vertices of the discrete interface equidistribute, recall Theorem
2.8. While it does not seem possible to prove the equidistribution property for the
fully discrete scheme (5.1a)-(5.1e), in practice we observe that the vertices on Γ
asymptotically equidistribute. For the case d = 3, we can naturally extend to the
fitted approach the considerations in Remark 4.3.

Remark 5.3. Our analysis in § 4.3, concerning the solution methods for the bulk
and interface linear systems within the unfitted approach, immediately carries over
to the fitted approach with two minor modifications. First, the matrices arising from
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the bulk equations are assembled over Ωm+ and not over Ωm,h+ . Second, the vertex-
based interpolation of the bulk quantities in (4.14) is replaced by an edge-based
interpolation (for the potential Φm+1) and L2-projection (for the elastic energy
density Em+1), since the true exterior of the discrete interface Γm is immediately
available.

5.3 mesh operations

Our fitted finite element approximation (5.1a)-(5.1e) is based on triangula-
tions Tm of the discrete conducting regions Ωm+ , which vary in time. In
addition, recall that Γm is by definition the inner boundary of Ωm+ . In our
implementation this relationship between the interface mesh Γm and the
bulk triangulation Tm is realised with the help of an index map that stores
a list of bulk mesh vertices and their connectivities, that make up the inter-
face Γm. This map needs to be computed only once, at time t0.

We use an adaptive mesh for Ω0+, where we resolve the regions close to
Γ0 much finer than far away from the interface. In particular, we choose
two integer parameters Nf > Nc to be the number of subdivisions on ∂±Ω
and Γ0, respectively. This choice will aid a direct comparison, in terms of
degrees of freedom and CPU times, with our unfitted approach calculations,
where we used adaptive meshes, as described in § 4.4.4. We then pass these
two parameters to the mesh generator GMSH, which generates a Delaunay
triangulation with the desired mesh width on ∂±Ω and Γ0; see Figure 5.2
for an example with d = 2, Nf = 1024 and Nc = 4.

Once the electro-stress migration problem 5.1 is solved, we can use the
value of ~Xm+1 at all the vertices of the interface grid in order to update
the position of the corresponding vertices of the bulk grid. In theory, the
remaining bulk vertices could be left as they are. However, in time the
movement of the void will lead to bulk elements being deformed or even
overlapping. Therefore, the application of some smoothing technique is re-
quired, in order to prevent the bulk grid from deteriorating too quickly.

This section is organised as follows. In 5.3.1 we describe what mesh
smoothing is, recalling from the literature some mesh operations, aiming
at reducing element distortion or early breakdowns in numerical simula-
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Figure 5.2: Example of a fitted interface mesh (left), with a zoomed portion of the

domain (right), for the case d = 2, with Nf = 1024 and Nc = 4. We

note that the package GMSH generates a Delaunay triangulation with

the desired mesh width on ∂±Ω and Γ0.

tions. We then discuss three smoothing techniques, namely Laplacian smooth-
ing (§ 5.3.2), harmonic smoothing (§ 5.3.3), and linear elastic smoothing (§ 5.3.4).
§ 5.3.5 compares the three aforementioned strategies for a test case with
d = 2.

5.3.1 Remarks on mesh smoothing

We present here some considerations about mesh quality and mesh smoothing,
mainly following the overview given in [90].

In industrial applications where finite element and finite volume dis-
cretisations are employed, numerical computations start with a geometric
model, from which an unstructured simplicial mesh is usually generated.
Before assembling all the relevant finite element quantities, the user needs
to apply heuristic mesh improvement strategies (also known as mesh clean-
up). The purpose of these initial controls is to reduce the likelihood of early
breakdowns in numerical algorithms due to the poor quality of the under-
lying mesh. The overall quality of a given mesh is usually obtained via the
calculation of a specific quality measure for all the elements of the mesh.
Poor-quality meshes can have bad effects on interpolation error, discretisa-
tion error, and stiffness matrix conditioning.

Improvement strategies already presented in the literature can be clas-
sified into two main categories: smoothing and topological transformations.
Smoothing consists of relocating one or more mesh vertices, in order to im-
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prove the quality of the elements adjoining them. Smoothing, however, does
not change the connectivity of the mesh. Topological transformations, instead,
are operations that modify the number of elements by removal or insertion
of vertices, edges or faces. The topological structure of the mesh is therefore
changed in the process. The two techniques can be performed in concert to
obtain a better mesh.

In order to evaluate the quality of a given mesh, several mesh quality met-
rics have been proposed in the literature, and nearly all of them consist
of scalar functions of the shape of mesh elements. The most popular met-
rics make use only of geometrical information about elements and vertices,
without any dependence on the solution of the physical problem of inter-
est. Moreover, as noted in [91], engineers tend to develop expertise as to
what constitutes a good mesh for the problem at hand. This experimental
knowledge is often a ’rule of thumb’ that is translated into requirements on
mesh quality. In addition, the convenience of such metrics lies in the fact
that they can be easily evaluated by looping over the elements of the mesh,
with no need to perform any visual inspection. Mesh quality metrics used
for all the simulations presented in this thesis fall into this category. We
refer to [110] for the case d = 2, where several triangle quality measures are
investigated. The authors showed that some of these measures are equiva-
lent, i.e. they display the same extremal and asymptotic behaviour. For the
case d = 3, see [109, 99]. For a unified study of simplex shape measures
and their generalisation to Riemannian spaces for anisotropic meshes, see
[49].

We now discuss three common strategies for mesh smoothing and test
them for a void electro-migration case with d = 2. More sophisticated mesh
smoothing strategies, used in combination with optimisation techniques, can
be found in [23, 117, 49, 36].
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5.3.2 Laplacian smoothing

The most famous smoothing technique is the so-called Laplacian smoothing,
see [81]. Every vertex of the grid is moved to the centroid of the vertices to
which it is connected. Namely, for every vertex ~x we set

~x∗ =

N(~x)∑
k=1

~xk , (5.2)

where N(~x) represents the number of vertices to which ~x is connected and
~x∗ represents the new location of ~x. Special attention is to be paid to the
vertices on the interface, which should not be relocated but remain in the
position given by the vector ~Xm+1, which we obtain solving the system of
equations (5.1a)-(5.1e). Moreover, we need to impose a free-slip boundary
condition for those vertices lying on the outer boundary, so that they do
not move away from it.

The smoothing routine (5.2) is typically applied to each mesh vertex in
sequence, and several iterations are performed, where each iteration moves
every vertex only once. The stopping criterion is usually given in terms
of relative variation between the new and the old location of each vertex.
When the maximum variation is below a certain threshold, say εsmooth, the
iterative algorithm (5.2) stops and the new mesh, represented by the up-
dated position of all the vertices, is returned.

Laplacian smoothing is a very simple technique, which requires neither the
solution of a linear system nor the application of a sophisticated optimi-
sation algorithm, hence its popularity. However, this naive method faces
several limitations, see [79]. We recall here the main points for the benefit
of the reader. First, it exhibits the drawback of shrinking the geometries to
which it is applied. If the configuration to be smoothed is a mesh where no
constraints are imposed on boundary points, the routine (5.2) reduces the
initial mesh to a single point. Therefore, the choice of the stopping criterion
and the boundary constraints are crucial issues. Second, Laplacian smoothing
lacks motivation, because it is not directly connected to any specific mesh
quality criterion. However, it can be reformulated as an optimisation-based
problem, where the iteration matrix is given by a Markovian matrix with di-
agonal elements mii = 0 and, for the i-th vertex of the grid ~xi, off-diagonal
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elements mij =
1

N(~xi)
for pairs {i, j} of neighbouring vertices, and mij = 0

otherwise. From well-established results on the eigenvalues of Markovian
matrices, it follows that the convergence of this iterative algorithm is guar-
anteed. However, since the eigenvalues may be positive or negative, the
convergence is not monotonic and oscillations could appear.

In order to overcome the drawbacks of the basic Laplacian smoothing, a
number of variants have been proposed in the literature: see [120, 122, 79]
and the references therein.

5.3.3 Harmonic smoothing

The second smoothing technique that we take into consideration is the so-
called harmonic smoothing; see [70, § 5.2]. Precisely, for a given m, 0 6 m 6

M− 1, we want to find the vector field ~Zm+1, which is the solution to the
following problem:

−4~Zm+1 = ~0 in Ω0+ , (5.3a)
~Zm+1 = ~Xm+1 on Γ0 , (5.3b)
~Zm+1 = ~id on ∂Ω , (5.3c)

i.e. a Laplace problem for the vector field ~Zm+1, which represents the new
location for every vertex of the grid. Similarly to the constraints imposed
in the Laplacian smoothing case, the Dirichlet boundary condition (5.3b) pre-
scribes a specific position for the vertices on the interface, which we natu-
rally choose to be the position ~Xm+1 obtained from (5.1a)-(5.1e). The bound-
ary condition (5.3c) prevents vertices on the outer boundary from moving
away from it. In order to introduce a finite element approximation of (5.3),
we need to define the following:

S0~Xm+1 := {~χ ∈ Q0 : ~χ |Γ0 =
~Xm+1} and S0~0 := {~χ ∈ Q0 : ~χ |Γ0 =

~0} . (5.4)

The finite element approximation of (5.3) is then the following: Find ~Zm+1 ∈
S0~Xm+1 such that∫

Ω0+

∇~Zm+1 : ∇~ζ dLd = 0 ∀ ~ζ ∈ S0~0 , (5.5)
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where, with a slight abuse of notation, we have used ~Zm+1 to denote the
solutions to both the strong formulation (5.3) and its finite element approx-
imation (5.5). We note that it is crucial to choose a nice initial bulk trian-
gulation T0 in order that harmonic smoothing may recover nice meshes. In
fact, on choosing T0 with ill-shaped elements and ~X = ~id for the Dirich-
let boundary conditions (5.3b), the only solution to (5.5) would clearly be
~Z = ~id, i.e. no smoothing would be performed.

Equation (5.5) gives rise to a symmetric linear system, which is solved
over Ω0+ for all m = 0, . . . ,M− 1. This implies that the associated stiffness
matrix needs to be assembled only once. The right-hand side of (5.5), in-
stead, is to be modified for each m, in order to include the Dirichlet bound-
ary conditions (5.3b). The system (5.5) is symmetric and positive definite,
and we can solve it with the sparse factorisation package UMFPACK. Since
the system is always solved over Ω0+, the associated stiffness matrix needs
to be factorised only once. This features makes this smoothing technique
cheap in practice. The value of ~Zm+1 at every vertex represents the new
position of the vertex in the smoothed grid.

5.3.4 Linear elastic smoothing

The third smoothing technique that we take into consideration is the so-
called linear elastic smoothing; see [103, 88, 87], where this technique was
applied to aerodynamic design optimisation and viscous layer insertion for
fluid dynamics problems, respectively. Specifically, linear elastic smoothing
was successfully applied to aerodynamic profiles where large surface de-
formations were observed and unstructured meshes with highly distorted
cells were employed. Linear elasticity relationships, borrowed from struc-
tural mechanics, provide the governing partial differential equations for
smoothly relocating the position of the vertices of the existing mesh. Pre-
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cisely, for a given m, 0 6 m 6 M− 1, we want to find the displacement
field ~Ψm+1, which is the solution to the following problem:

∇ · (2E(~Ψm+1) + Tr(E(~Ψm+1))) = ~0 in Ωm+ , (5.6a)
~Ψm+1 = δ~Xm+1 on Γm , (5.6b)
~Ψm+1 · ~ν∂Ω = 0 on ∂Ω , (5.6c)

i.e. a linear elasticity problem with Lamé moduli µ = λ = 1. The Dirichlet
boundary condition (5.6b) prescribes a specific displacement on the inter-
face, which we naturally choose to be the variation δ~Xm+1 := ~Xm+1 − ~id

m

from (2.57). Note that (5.6b) slightly differs from (5.3b), since here we are
solving for a displacement, i.e. a variation in the position of the vertices,
and not for the actual position itself. The free-slip boundary condition (5.6c)
prevents vertices on the outer boundary from moving away from it. In or-
der to introduce a finite element approximation of (5.6), we need to define
the following:

Sm
δ~X

:= {~χ ∈ Qm : ~χ |Γm = δ~Xm+1} and Sm~0 := {~χ ∈ Qm : ~χ |Γm = ~0} . (5.7)

The finite element approximation of (5.6) is then the following: Find ~Ψm+1 ∈
Sm
δ~X

such that∫
Ωm+

(2E(~Ψm+1) : E(~ζ) +∇ · (~Ψm+1)∇ · (~ζ)) dLd = 0 ∀ ~ζ ∈ Sm~0 , (5.8)

where, with a slight abuse of notation, we have used ~Ψm+1 to denote the
solutions to both the strong formulation (5.6) and its finite element approx-
imation (5.8). Equation (5.8) gives rise to a symmetric linear system. Both
matrix and right-hand side need to be adjusted appropriately in order to
include both Dirichlet and free-slip boundary conditions. Such a system is
symmetric and positive definite, and we can solve it with the sparse factori-
sation package UMFPACK. The value of ~Ψm+1 at every vertex represents the
variation that has to be applied to the old position of the vertex to obtain
its new one in the smoothed grid.
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Figure 5.3: (α1 = 1
16 π

2, α2 = 256
9 π2, α3 = 0) Plots of the interface curve at times

t = 0, 9× 10−5, T = 3.6× 10−4, and adaptive bulk mesh at time t = T ,

with linear elastic smoothing.

5.3.5 Comparison between different smoothing techniques

We now compare the three smoothing techniques introduced above in a sim-
ple test case for d = 2, where only electro-migration is present. The geom-
etry for this experiment corresponds to [104, Fig. 4]. We choose the radius
of the initially circular void to be relatively large compared to the width
of the conductor, 2L2. We use the following parameters: L1 = 1, L2 = 0.5,
α1 = 1

16 π
2, α2 = 256

9 π
2, α3 = 0, τ = 4.5× 10−7, T = 3.6× 10−4. As initial

data we choose a circle with radius 0.375 and centre (−0.5, 0); the bulk re-
finement parameters are Nf = 56 and Nc = 12, respectively. We choose a
coarse interface, given by KmΓ = JmΓ = 56. We note that the smoothing rou-
tine is applied at each time step. In Figure 5.3 we plot the results of the
simulation at times t = 0, 8× 10−5, and t = T , when linear elastic smoothing
is applied. In addition, we investigate the quality of the interface mesh.
Recall that in (2.33) we defined rh := hΓm/lΓm where hΓm and lΓm represent
the maximum and minimum segment of Γm, respectively. The temporal
evolution of the indicator rh is shown in Figure 5.4, where we note that the
vertices on the interface mesh remain well distributed.
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Figure 5.4: Plot of the ratio rh (eq. (2.33)) for the interface mesh in Figure 5.3,

with linear elastic smoothing applied to the bulk mesh. We note that the

vertices on the interface mesh remain well distributed.

In order to compare the three different smoothing algorithms, in Figure 5.5
we plot the temporal evolution of the ratio

rA := max
o∈Tm

Ld(o) / min
o∈Tm

Ld(o) (5.9)

for Laplacian smoothing (red), harmonic smoothing (green) and linear elastic
smoothing (blue). For Laplacian smoothing, we take εsmooth = 10−6 as a stop-
ping criterion for the iterative procedure (5.2).

Smoothing alone, however, does not prevent the bulk grid from deteri-
orating in the long run. This is due to the physical motion of the void
through the conductor. In order to assess the bulk mesh quality, we make
of use of the minimum and maximum angle as quality metric; namely, we
check all the angles of all the triangles of the smoothed mesh, and if we
find any angle θ 6 20◦ or θ > 130◦, we then re-mesh the conducting re-
gion Ωm+ altogether. The re-meshing is performed with the mesh generator
GMSH, to which we pass a geometric model where the position of the ver-
tices on both the inner and outer boundary of Ωm+ is preserved.

Considering again Figure 5.5, we notice that linear elastic smoothing per-
forms best, since it requires fewer complete re-meshings than the other two



5.3 mesh operations 141

0 1 2 3 4

x 10
−4

2

4

6

8

10

12

14

16

18

20

22

time

r
a

ti
o

 r
A

 

 

Laplacian smoothing

Harmonic smoothing

Elastic smoothing

Figure 5.5: Plots of the ratio rA (eq. (5.9)) for Laplacian smoothing (red), harmonic
smoothing (green) and elastic smoothing (blue), for an initially circular

void under electro-migration (coarser mesh). The discontinuities in

the value of rA correspond to the re-meshings of the bulk, performed

with the help of the package GMSH. Linear elastic smoothing requires

six re-meshings, harmonic smoothing and Laplacian smoothing seven re-

meshings.

approaches. The discontinuities in the value of rA correspond to the re-
meshing of the bulk, performed with the help of the package GMSH. In
particular, at time t = 8.1 × 10−5, harmonic smoothing cannot recover any
longer a bulk mesh where the minimum-maximum angle check is not vio-
lated. Therefore, a complete re-meshing is necessary. For a visual compari-
son between the meshes obtained by the three different smoothing strategies
at time t = 8.1× 10−5, see Figure 5.6.

We repeat the experiment with a much finer grid. We now choose Nf =
KmΓ = JmΓ = 1024 and Nc = 16, keeping all the other parameters as in the
previous case. In Figure 5.7 we plot the ratio rA for the three approaches,
and again we see that linear elastic smoothing performs best. For this reason,
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Figure 5.6: (α1 = 1
16 π

2, α2 = 256
9 π2, α3 = 0) Plots of the interface curve at time

t = 8.1× 10−5 for harmonic smoothing (top), Laplacian smoothing (centre)

and elastic smoothing (bottom). At this time step, harmonic smoothing
cannot smooth the bulk mesh any longer, so a complete re-meshing is

necessary.
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Figure 5.7: Plots of the ratio rA (eq. (5.9)) for Laplacian smoothing (red), harmonic
smoothing (green) and elastic smoothing (blue) for an initially circular

void under electro-migration (finer mesh). The discontinuities in the

value of rA correspond to the re-meshings of the bulk, performed with

the help of the package GMSH. Linear elastic smoothing requires six re-

meshings, harmonic smoothing seven re-meshings, Laplacian smoothing
eight re-meshings.

we employ linear elastic smoothing at each time step in all the numerical
simulations presented from now on.

For the case d = 3, we apply linear elastic smoothing to the bulk, tetrahedral
mesh as well. In order to assess whether the mesh quality is compromised,
we make use of the quality control routines already available in the mesh
generator GMSH. In particular, for every tetrahedron o ∈ Tm, we calculate
the dimensionless index qtetra defined as

qtetra = 6×
√
6× L3(o)

(
∑4
i=1H

2(fi)) ·max6i=1H
1(ei)

, (5.10)

where fi and ei denote the i-th face and edge of tetrahedron, respectively.
Note that multiplicative coefficient 6×

√
6 simply scales qtetra such that it

attains the value 1 for a regular tetrahedron. For the sake of comparison, it
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is worth mentioning that the quality index qtetra is constant for all the three-
dimensional meshes used in Chapter 4. In fact, for all the tetrahedra in
such unfitted bulk grids, three out of four triangular faces are right-angled,
isosceles triangles. Specifically, the quality index qtetra attains the value

2×
√
6√

2×(3+
√
3)
≈ 0.732. If we find any tetrahedron with quality index qtetra <

10%, we then re-mesh the conducting regionΩm+ altogether. Similarly to the
case for d = 2, the re-meshing of the bulk is performed with the package
GMSH. The user has to pass to GMSH the vertices located on both the
inner and the outer boundary of Ωm+ , which are used to generate a new
bulk mesh.

5.4 numerical simulations

In this section we present several numerical tests for the fitted method. Un-
less stated otherwise, we use uniform time steps τm = τ, m = 0, . . . ,M− 1,
for all the experiments in this section. Similarly to § 4.5, we set α1 = 1

16 π
2.

We first present the simulations for d = 2 and then for d = 3.
We begin with a convergence experiment for the true solution (3.15) and

compare the results with the corresponding experiments shown in Table
4.1. Recall that (3.15) describes a circular void that moves at constant speed
through an infinite conductor. It is worthwhile to note that in this partic-
ular case we prescribe Dirichlet boundary conditions on the entire outer
boundary of Ω, and not only on ∂2Ω. Here only electro-migration is con-
sidered, therefore we set α3 = 0. The definition of the error EΓ is precisely
the same introduced in (4.21), while the norm of the error on the bulk is
now the following: Ebulk := maxm=1,...,M ‖Φm −φ(·, tm)‖H1(Ωm−1

+ ) between
Φ and the exact electric potential φ on the interval [0, T ]. All the parameters
are the same used for the simulations in Table 4.1. Errors and experimen-
tal orders of convergence are listed in Table 5.1, where we reproduce [105,
Table 1]. We observe a convergence of O(h2Γ ) in the measured error for the
interface, and O(hΓ ) for the H1-error for the approximation of the electric
potential in the bulk. Comparing Tables 4.1 and 5.1, it appears that the
fitted method converges with a faster rate. In addition, we note that in each
case the absolute errors for the fitted approach runs are smaller than the
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i τ · 106 hΓ · 103 hbnd · 102 Ebulk · 102 EOCbulk EΓ · 103 EOCΓ CPU time

Total Smoothing

0 8 7.81 12.5 4.369 – 2.378 – 15s 2s

1 2 3.91 6.25 2.201 0.99 0.625 1.93 201s 39s

2 0.5 1.95 3.13 1.123 0.97 0.155 2.01 3287s 764s

3 0.125 0.977 1.56 0.564 0.99 0.0399 1.96 72551s 22143s

Table 5.1: Results of the convergence test for the fitted case, reproduced from [105,

Table 1], with hΓ and hbnd being the width of the mesh on the inner and

the outer boundary of Ω, respectively. Note that the average number of

bulk degrees of freedom for the four runs are 886, 3125, 12033 and 48977,

respectively.

corresponding errors for the unfitted approach counterparts. However, this
result is achieved at the cost of higher CPU times.

Our next experiment corresponds to the unfitted approach test analysed
in Figures 4.7 and 4.9, see also [104, Fig. 5], [20, Fig. 2] and [27, Fig. 4].
Only electro-migration is involved. We keep the same simulation parame-
ters used for the unfitted runs. The total CPU time was 2300s, with mesh
smoothing and re-meshing accounting for 27% of that time. The re-meshing
routine was applied six times. The number of bulk degrees of freedom for
Φm+1 was between 26715 (minimum value) and 35023 (maximum value).
In Figure 5.9 we plot the temporal evolution of the interface mesh quality
indicator rh, recall (2.33). We note that the vertices of the interface mesh
remain well distributed. Moreover, rh attains values slightly lower than the
ones shown in Figure 4.8 for the unfitted experiment. In order to make a
direct comparison with Figure 4.9, we impose Robin boundary conditions
(4.23), which means that (5.1a) needs to be replaced by∫

Ωm+

∇Φm+1 · ∇ψ dLd +
1

2

∫
∂2Ω

Φm+1ψdHd−1 =
1

2

∫
∂2Ω

gRψdHd−1

for all test functions ψ ∈ Sm. The total CPU time was 3684s, with mesh
smoothing and re-meshing accounting for 26% of that time. The re-meshing
routine was applied ten times. The number of bulk degrees of freedom for
Φm+1 was between 26715 (minimum value) and 35551 (maximum value).
In Figure 5.10 we plot the results of the simulation at times t = 0, 8× 10−5,
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Figure 5.8: (α2 = 256
9 π2, α3 = 0) Plots of the interface curve at times t = 0, 8×

10−5, T = 3.6× 10−4, and bulk mesh at time t = T .
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Figure 5.9: (α2 = 256
9 π2, α3 = 0) Plots of the quality mesh indicator rh for the

interface mesh plotted in Figure 5.8.
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Figure 5.10: (α2 = 256
9 π2, α3 = 0, with Robin boundary conditions (4.23)) Plots of

the interface curve at times t = 0, 8× 10−5, T = 3.6× 10−4, and bulk

mesh at time t = T .

and T = 3.6× 10−4. The temporal evolution of the interface mesh quality
indicator rh is shown in Figure 5.11, where we see that the vertices of the
interface mesh remain well distributed. Also in this case rh attains values
slightly lower than the ones shown in Figure 4.10 for the unfitted experiment.
We note the good agreement between the plots with the unfitted approach
in Figure 4.9, the plots with the fitted approach in Figure 5.10 and the results
in [20, Fig. 2] and [27, Fig. 4].

Our next experiment has been proposed in [105, Fig. 3]. We report com-
pare the results of the simulations to Figure 4.13 for the unfitted case. The
test involves both electro-migration and stress-migration. The discretisation
parameters are identical to the ones used in the unfitted experiment. The
total CPU time was 14403s, with mesh smoothing and re-meshings account-
ing for 12% of that time. We applied the re-meshing routine nine times. The
total number of bulk degrees of freedom (for both Φm+1 and ~Um+1) was be-
tween 30378 (minimum value) and 33259 (maximum value). As discussed
for the unfitted results in Figure 4.13, we note that the void moves through
the conductor due to the presence of the electric field, with elastic stress
contributing to flattening the front of the void; see Figure 5.12 for the com-
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Figure 5.11: (α2 = 256
9 π2, α3 = 0, with Robin boundary conditions (4.23)) Plots of

the quality mesh indicator rh for the interface mesh plotted in Figure

5.10.

plete evolution of the system. In addition, from Figure 5.12 (bottom) we
note that the evolution with the fitted method (black curve) is slightly faster
than the one with the unfitted method (red curve). In order to evaluate
the contribution to the drifting of the void produced by the two external
loadings, we now repeat the experiment by considering electro-migration
and stress-migration separately. In Figure 5.13 we plot the results of the
simulations with α2 = 0, α3 = 1

8 π. We note that the void does not drift,
but slightly elongates in the vertical direction. We note the good agreement
with the plots in Figure 4.14. In Figure 5.14, instead, we plot the results of
the simulations with α2 = 10 π2, α3 = 0. We note that the void drifts along
the conductor, keeping its original circular profile. Also in this case we note
the good agreement with the plots in Figure 4.15.

Our next test corresponds to the experiment already analysed with the
unfitted approach in Figures 4.16 and 4.17. The discretisation parameters are
identical to the ones used in the unfitted experiment. The total CPU time
was 21587s, with mesh smoothing and re-meshings accounting for 16% of
that time. Here the re-meshing routine was applied only once. The number
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0.000 5.227

Discrete energy

1.80  4.50  0.900 2.70  3.60  

Figure 5.12: (α2 = 10 π2, µ = λ = 1, S =
(
1 0
0 0

)
) Plots of the interface curve at times

t = 0, 1.25× 10−3, 2.5× 10−3 and T = 3.75× 10−3; bulk mesh at time

t = 0, T and the elastic energy density at time t = T ; comparison

between fitted (black) and unfitted (red) approach at time t = T .
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Discrete energy

1.50  3.00  0.000 6.0774.50  

Figure 5.13: (α2 = 0, µ = λ = 1, S =
(
1 0
0 0

)
) Plots of the interface curve at times

t = 0, 1.25× 10−3, 2.5× 10−3 and T = 3.75× 10−3; bulk mesh at time

t = 0, T and the elastic energy density at time t = T .
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Figure 5.14: (α2 = 10 π2, α3 = 0) Plots of the interface curve at times t = 0, 1.25×
10−3, 2.5× 10−3 and T = 3.75× 10−3, and bulk mesh at time t = 0, T .
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of degrees of freedom for ~Um+1 was between 143500 (minimum value) and
158876 (maximum value). In Figure 5.15 we plot the results of the simula-
tion at times t = 0 and t = T . As in Figure 4.17, we observe that for larger
times T a singularity develops. In particular, the two voids exhibit sharp
corners and the elastic energy becomes unbounded. This can be seen in
Figure 5.16, where the developing singularity leads to a breakdown in the
numerical approximation. We now investigate whether this breakdown is
related to numerical errors. To this end, we calculate the total discrete en-
ergy α1Hd−1(Γm) + α3 (

∫
Ωm+

E(~Um+1) dLd −
∫
∂Ω ~g · ~Um+1 dHd−1) and plot

it in Figure 5.16 (bottom). We note that the discrete energy is monotonically
decreasing, recall (3.12). Hence the observed singularity appears to be con-
sistent with the sharp interface model (3.1), (3.7a)-(3.7c) itself. Moreover, we
note that the results agree with the temporal evolution in Figures 4.16 and
4.17, where we also observed a breakdown in the numerical simulations
and a similar decay of the total discrete energy.

Our last experiment for d = 2 has been presented in [105, Figs. 5 and 6].
Only stress-migration is considered. The discretisation parameters are iden-
tical to the ones used for the unfitted experiment in Figures 4.18 and 4.19.
The total CPU time was 18828s, with mesh smoothing and re-meshings ac-
counting for 14% of that time. Here the re-meshing routine was applied
only once. The number of degrees of freedom for ~Um+1 was between 62290
(minimum value) and 67361 (maximum value). In Figure 5.17 we plot the
results of the simulation at times t = 0, 5× 10−4, 10−3 and T = 1.5× 10−3.
We observe that also for this experiment a singularity develops for larger
times T . In particular, the interface shows corners and the elastic energy be-
comes unbounded. This can be seen in Figure 5.18. However, the presented
plot of the total discrete energy indicates that the singularity is not due to
numerical errors. In fact, the discrete energy is monotonically decreasing,
recall also (3.12). Again, the observed singularity appears to be consistent
with the sharp interface model (3.1), (3.7a)-(3.7c) itself and with the unfitted
plots in Figures 4.18 and 4.19.

Our first experiment with d = 3 corresponds to [3, Fig. 8] and Figure
4.22. It involves electro-migration only, i.e. α3 = 0, and illustrates a fully
three-dimensional situation. We keep the same parameters used for the
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28.089

Discrete energy

0.316 3.16  0.149 1.00  10.0  

Figure 5.15: (α2 = 0, µ = 0.5, λ = 0, S =
(
1 0
0 1

)
) Plots of the interface curve at times

t = 0 and T = 5× 10−5; bulk mesh and elastic energy density at t = T .

The energy density is colour coded with a logarithmic scale for the

sake of visualisation.
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Figure 5.16: (α2 = 0, µ = 0.5, λ = 0, S =
(
1 0
0 1

)
) Plots of the interface curve

and the elastic energy density at t = 7 × 10−5. The energy den-

sity is colour coded with a logarithmic scale for the sake of visu-

alisation. Below a plot of the total discrete energy α1Hd−1(Γm) +

α3 (
∫
Ωm,h+

E(~Um+1) dLd −
∫
∂Ω ~g · ~Um+1 dHd−1) over time.
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0.000

7.939

Discrete energy

0.00200

1.00  

0.000251

0.0158

0.126 

Figure 5.17: (µ = 0.5, λ = 0, S =
(
1 0
0 0

)
) Plots of the interface curve at times t =

0, 5×10−4, 10−3, and T = 1.5×10−3, bulk mesh and the elastic energy

density at time t = T . The energy density is colour coded with a

logarithmic scale for the sake of visualisation.
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Figure 5.18: (µ = 0.5, λ = 0, S =
(
1 0
0 0

)
) Plots of the interface curve and the

elastic energy density at time t = 1.886 × 10−3. The energy den-

sity is colour coded with a logarithmic scale for the sake of visu-

alisation. Below a plot of the total discrete energy α1Hd−1(Γm) +

α3 (
∫
Ωm+

E(~Um+1) dLd −
∫
∂Ω ~g · ~Um+1 dHd−1) over time.
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unfitted simulations. The total CPU time was 812738s, with mesh smoothing
and re-meshings accounting for 40% of that time. Here the re-meshing
routine was applied ten times. The number of bulk degrees of freedom
was between 221061 (minimum value) and 251737 (maximum value). Our
results are plotted in Figure 5.19, and we notice a good agreement with
both the unfitted approach results in Figure 4.22 and the plots in [3, Fig. 8].
We further investigate the drifting of the void, when a stronger electric
loading is applied. To this end, we keep all the parameters unchanged bar
α2, which we now set to 75 π2, and T , which we now set to 1.25 × 10−4.
The total CPU time was 293750s, with mesh smoothing and re-meshings
accounting for 42% of that time. Here the re-meshing routine was applied
twenty times. The number of bulk degrees of freedom was between 221061
(minimum value) and 250524 (maximum value). The evolution of the void
is plotted in Figure 5.20. Compared to [3, Fig. 9], the evolution shown in
our plots seems slightly slower, since at time t = T the interface is not yet
undergoing the topological change observed in [3, Fig. 9]. We note the good
agreement with the unfitted approach plots shown in Figure 4.23.
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Figure 5.19: (α2 = 57
2 π

2, α3 = 0, with Robin boundary conditions (4.23)) Plots

of the interface mesh and cross section for x3 = 0 of the bulk mesh

at times t = 0, 8 × 10−5, 1.2 × 10−4, 2 × 10−4, 2.4 × 10−4 and T =

3.6 × 10−4. The electric potential is colour coded according to the

legend shown at T = 3.6× 10−4.
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Figure 5.20: (α2 = 75 π2, α3 = 0, with Robin boundary conditions (4.23)) Plots of

the interface mesh and cross section for x3 = 0 of the bulk mesh at

times t = 0, 2.5× 10−5, 7.5× 10−5, 1.15× 10−4, 1.2× 10−4 and T =

1.25 × 10−4. The electric potential is colour coded according to the

legend shown at T = 1.25× 10−4.



6
C O M PA R I S O N B E T W E E N U N F I T T E D A N D F I T T E D
M E T H O D

In Chapters 4 and 5 we have presented and analysed two front-tracking,
parametric finite element methods, namely the unfitted and fitted approach,
for the numerical approximation of a void electro-stress migration problem.
In this chapter we compare the two strategies, highlighting their common
features, advantages and disadvantages.

The two approaches share some properties, which we briefly summarise
as follows:

• the interface mesh exhibits good properties, and no redistribution of
its vertices is necessary in practice. In particular, for the case d = 2,
for a semidiscrete, continuous-in-time counterpart of the fully discrete
finite element schemes, we are able to prove that the vertices of the dis-
crete interface equidistribute and the volume enclosed by the surface
is preserved exactly, recall Theorem 4.2 and Remark 5.2;

• although it does not appear possible to derive analogous results for
the fully discrete unfitted and fitted schemes, in practice we observe
that the vertices are always well distributed and the enclosed volume
is preserved up to a very small tolerance;

• in the absence of external forces, the schemes are unconditionally sta-
ble. We note that in all our computations the methods are also stable
in the presence of forces due to the applied electric field and to the
elastic stresses.

The main advantage of the unfitted method is that bulk and interface
meshes are totally independent, so there is no need to apply any routine in
order to preserve a topological compatibility between the two grids. From
the point of view of software implementation, this feature means that the

160
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two meshes can be stored and manipulated as instances of two indepen-
dent classes. Moreover, standard refinement and coarsening strategies can
be employed for the bulk mesh, and no mesh smoothings or re-meshings
are necessary. The communication between the bulk mesh and the indepen-
dent, lower-dimensional interface mesh needs to be implemented manually,
since it is not part of standard finite element packages. In practice, as de-
scribed in § 4.4.4, the user needs to perform cutting/labelling routines on
the bulk elements and draw a mapping between cut bulk elements and in-
terface vertices. These routines, which are rather laborious especially in the
case d = 3, can be speeded up by using the hierarchical structure of the
bulk grid, recall Algorithm 4 and Appendix A.2.

The main disadvantage of the unfitted method is that without significant
effort in the implementation of an approximate exterior, the weak approx-
imation of the natural boundary conditions in (3.3a) and (3.7b) introduces
additional numerical errors. In particular, bulk quantities such as the elec-
tric potential and the elastic energy density are interpolated vertex-wise
and not edge-wise. In our computational expertise, this turns out to be a
less reliable strategy. In fact, we observe that the plots for the discrete en-
ergy are overall decreasing, but not monotonically. This is most likely due
to the fact that the computational domain in the unfitted case, i.e. Ωm,h+ , is
given by a union of bulk mesh elements, and therefore its boundary ∂Ωm,h+

is very rough, with right-angled corners.
On the other hand, the main advantage of the fitted approach is precisely

that the true exterior of the discrete interface is immediately available. Mod-
ern finite element packages provide the implementation of trace finite ele-
ment spaces on lower-dimensional submeshes as standard, see e.g. [92]. In
this thesis we have implemented the necessary trace finite element spaces
ourselves, within the framework of the modular toolbox DUNE, see [22, 21]
and the discretisation module dune-fem, see [48]. Having the exact exterior
of the discrete interface and the exact traces of the bulk quantities on the
discrete interface available means that the fitted method is more accurate
in practice. In particular, we have shown that it exhibits an optimal exper-
imental order of convergence for a test case with d = 2, where the exact
solution is known, recall Table 5.1.
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The main disadvantage of the fitted approach is that the movement of the
interface implies that the bulk mesh cannot remain static. Rather, we need
to apply mesh smoothing after every time step, in order to avoid the creation
of very degenerate or even overlapping bulk elements. In our simulations,
the mesh smoothing can account for up to 42% of the total CPU time in the
case of electro-migration, while the higher computational demands for the
stress-migration problem mean that the mesh smoothing accounts for only
up to 16% of the total CPU times when both external forces are involved.

The aforementioned increased accuracy of the fitted approach is achieved
at the cost of a higher CPU time. This is motivated by two reasons. Firstly,
the mesh smoothing performed after each time step requires the resolu-
tion of the linear elasticity problem (5.6), which contributes to the total
CPU time. Secondly, the Delaunay meshes generated with the help of
the package GMSH and employed in Chapter 5 show a smoother transi-
tion in density of elements from regions with finer width to regions with
coarser width, compared to the right-angled, isosceles-triangle meshes used
in Chapter 4. As we can notice by corresponding experiments in § 4.5 and
§ 5.4, the usage of the package GMSH leads to a larger number of bulk
degrees of freedom, which in turn increases the CPU time needed to solve
the relevant systems of equations.

Regarding the generation and the manipulation of the bulk grid, we now
add some remarks about both methods. In the unfitted case, we make use
of the grid generator ALBERTA, which employs a very simple bisection-
ing routine for mesh refinement. In combination with an ad hoc choice of
the initial macro-triangulation T−1, we are able to obtain, after every cycle
of refinement, for both d = 2 and d = 3, regular meshes that are always
composed of right-angled, isosceles triangles or of tetrahedra with such tri-
angular faces. However, since ALBERTA can only halve a given element
marked for refinement, in (4.20a) we need to choose the refinement param-
eter Nf to be a multiple of Nc by a power of 2, in order to obtain bulk
elements close to the interface with the desired width hf.

In the fitted case, instead, it is possible to calibrate the choice of the so-
called characteristic length (see [73]), in order to mimic the adaptive strategy
described in § 4.4.4. Further investigation would help understand how to
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choose those refinement parameters also for the fitted case. Moreover, we
note that in the package GMSH more 3D mesh generation algorithms are
available, in addition to the Delaunay strategy that we have always used
in practice. A possible line of research would be to test these algorithms,
namely frontal, Delaunay-frontal and R-tree, and compare them in terms of
quality of the tetrahedral mesh and number of bulk degrees of freedom.

Finally, we note that we have used multi-component interfaces and imple-
mented the necessary routines to link DUNE with the package El-Topo only
for the unfitted approach. It is possible to generalise also the fitted approach
to the case where the interface is composed of a family of polyhedral sur-
faces, and not just one surface. It is worth noting that in this framework,
should the interface grid undergo a topological change, the bulk grid would
immediately require a complete re-meshing, regardless of the actual quality
of its elements, in order to preserve the topological compatibility with the
newly-created interface grid.



A
A P P E N D I X 1

Partial differential equations (PDEs) are ubiquitous in science and engi-
neering. In order to solve them, one can choose from a variety of nu-
merical methods, including for instance finite element, finite volume, fi-
nite difference, or mesh-free methods. Given the size of modern techno-
logical problems, where millions of unknowns are to be computed, the
choice of an efficient software implementation is crucial. Ideally the user
would like to reuse legacy programmes or codes, without affecting perfor-
mance and, if possible, being guaranteed generalisation to parallel compu-
tation. In this appendix we present an overview of the software DUNE
(Distributed and Unified Numerics Environment), which has been used for
all the numerical simulations presented in this thesis. For up-to-date in-
formation about new releases or modules, we refer to the official website
http://www.dune-project.org/.

a.1 design principles of dune

DUNE is a modular toolbox written in C++ for solving partial differen-
tial equations with grid-based strategies. Widely used methods like finite
elements, finite volumes and finite differences can be easily implemented
with the help of DUNE. We refer to [22] for a detailed presentation of the
abstract framework of the software, while [21] describes the C++ design
choices followed by its core developers. The main concept is given by the
notion of “grid”, which is always “hierarchical”. More precise definitions
and examples will be given in A.2. Let us recall from [22, § 2] the main
design principles of DUNE:

• Flexibility: users should be able to write their own codes, which can
be run on any grid satisfying the abstract DUNE grid interface.

164
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• Efficiency: a clean and slim interface allows the user to optimise perfor-
mance, with the possibility of parallelisation for both grid managers
and linear solvers.

• Legacy code DUNE incorporates previously developed libraries, which
can then be reused.

The main design idea for the DUNE grid interface is the separation of data
structures and algorithms by abstract interfaces. This separation offers flexibil-
ity for codes, ensures maintainability and extendibility of the framework,
and allows the reuse of existing finite element packages with a large body
of functionality. Furthermore, generic programming techniques allow opti-
mised implementations of methods or algorithms for a certain grid, while
still offering a compatible interface. For example, one of the core modules
of DUNE is dune-istl, dedicated to iterative algorithms for the solution of
linear systems.

We are now ready to present the main features of the DUNE grid in-
terface. In A.2 we first present the three key features of any DUNE grid,
paying particular attention to the hierarchical structure and the refinement
operations. These two features are crucial for the correct and efficient im-
plementation of some of the algorithms discussed in this thesis. We refer to
[22, § 2] for a more in-depth analysis of the usage of generic programming
in DUNE. Moreover, we refer to [22, § 4] and to the aforementioned web-
site for a non-exhaustive list of projects and applications developed with
the help of DUNE.

a.2 grid implementation

Any DUNE grid is a “hierarchical” grid, and consists of three key concepts:
an entity complex, a geometric realisation, and a father relation, see [22, Defs. 1-
13] for a rather technical definition. We recall here the main ideas for the
benefit of the reader.

An entity complex Ek is a collection of nested mesh objects with different
dimensions. For instance, in the case d = 3 the entity complex will contain
vertices (which are naturally objects of dimension 0), edges (dimension 1),
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faces (dimension 2) and elements (dimension 3). The definition of entity
complex requires every element of codimension c (0 < c 6 d, where the
codimension is the difference between d and the dimension of the object
in question) to be contained in at least one object of codimension c− 1. It
is straightforward to see that an entity complex contains all the necessary
topological information of a grid on a specific refinement level. In fact, an
entity complex expresses the connectivity of the mesh, without any infor-
mation about how its elements were constructed, e.g. by refining a coarser
grid or by coarsening a finer one.

A geometric realisation M, instead, provides an entity complex with a spe-
cific geometric shape, according to a reference element. DUNE employs the
well-known simplicial reference elements for d = 1, 2, 3.

Moreover, two entity complexes are in a father relation if one of them
is obtained through refinement of the other. In other words, given any
element er of the refined complex, it is always possible to identify one
element ec of the coarser complex which is called the father of er, because
er is created from ec through refinement.

A d-dimensional hierarchical grid is then a triple (E,M,F), consisting of a
finite set of d-dimensional complexes E = {E0, . . . ,Ek}, a set of geometrical
realisations M = {m0, . . . ,mk}, where each mi is a geometric realisation of
Ei into Rd, and a set of father relations F = {F0, . . . ,Fk−1}, such that Fi con-
nects Ei with Ei+1 for all 0 6 i 6 k− 1. The pair (Ei,mi) is called a “level
grid”. It is possible to identify certain mesh objects, of different codimen-
sion and belonging to different grid levels, which have no children, since no
additional refinement is performed on them. These objects are called “leaf”
entities. With appropriate set operations on the level entity complexes and
the level geometric realisations, see [22, Defs. 13-18] for details, it is possible
to define a leaf entity complex and a leaf geometric realisation, which in com-
bination form the so called “leaf grid”. An example of hierarchical DUNE
grid with d = 2 is given in [48, Fig. 1], where quadrangular elements are
considered. We can observe that the complex E0 contains all the informa-
tion about the initial macro-triangulation. In this particular example, the
macro-element with label 1 is refined into four children, and then two of
these new elements are refined into four smaller elements each. DUNE pro-
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vides the user with special iterators that allow an efficient traversal of the
grid. In fact, given any element at any grid level, it is easy to enumerate all
its children obtained via successive cycles of refinement.

a.2.1 Hierarchical structure and bulk/interface intersections

In this section we analyse in more detail the connection between the hierar-
chical structure of the bulk grid and the implementation of certain coupling
routines.

Recall from Section 4.4.6 that in the unfitted approach we need to identify
all the bulk leaf elements that are cut by the discrete interface Γm. Algo-
rithms 3 and 4 are coded making use of the hierarchical structure of the
grid. More precisely, we first analyse the elements on level 0 of the grid.
If a level-0 element is not cut, neither are all the leaf elements which are
its children by successive cycles of refinement, performed according to the
procedure described in § 4.4.4. The same argument can be applied recur-
sively in order to speed up the coupling routines. In practice, we do not
test for intersection with Γm any bulk element which has a father in the
hierarchical tree that is not cut by any interface element. By so doing, we
can reduce the overall computational cost of Algorithms 3 and 4 to be of
order O(JmΓ × log |Tm|).

a.2.2 Mesh refinement

Adaptive mesh refinement is a common operation performed within the
framework of finite element methods. It aims at increasing the accuracy of
discrete solutions and reducing the overall cost of numerical simulations.
The DUNE grid interface provides methods for refining and coarsening
the grid. Following [21, § 3.3], we briefly present how DUNE deals with
mesh refinement. We also address the implementation details for the prob-
lem of our interest. Every grid element possesses a label which is to be
set according to the desired operation. To this end, the user can employ
a specific method provided by the grid abstract interface. The method
mark (ref, e) is called to mark an entity e for refinement (ref = 1) or
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coarsening (ref = -1). Once all the entities of a grid have been marked
(note that a label 0 means that no operation is to be performed on that
entity), the adaptation is done in the following way:

1. Call the grid’s method preAdapt(). This method sets up the grid
for adaptation. It returns true if at least one entity was marked for
coarsening, otherwise no adaptation can be performed.

2. If preAdapt() returned true, any data associated with entities that
might be coarsened during the following adaptation cycle have to be
projected onto the father entities. This represents a crucial feature
especially for boundary elements, where the information on boundary
conditions needs to be propagated appropriately.

3. Call adapt(). The grid is modified according to the refinement marks.

4. If adapt() returned true, new entities were created.

5. Call postAdapt() to clean up refinement labels.

Recall that in Algorithm 5 we described the procedure for filtering the grid
Tm and identifying the collection Tm+ , that constitutes the union of elements
over which bulk quantities are to be computed. A sophisticated, C++-style
coding of the aforementioned algorithm would require the manipulation
of two std::sets containing the currentFront and the newFront. To this
end, the user should define an appropriate order relation between grid
elements, in order to save them in a std::set. However, this elegant imple-
mentation is not practical and causes a severe computational overhead. A
faster, C-style implementation is possible, and makes use of the aforemen-
tioned labels attached to any grid element. The user just needs to define
different dummy labels to distinguish between boundary, cut, currentFront
and newFront elements. To filter the grid in practice, we make use of the
class Dune::Fem::FilteredGridPart, which allows the selection of a sub-
set of the leaf elements according to a specified boolean index, which we
naturally choose to be the output returned by Algorithm 5 for every leaf
element. Despite being less elegant, the latter implementation is far more
practical and from our computational expertise proves to be, on average, 20
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times faster than the C++-style implementation. This speed-up is particu-
larly remarkable for three-dimensional simulations.

a.3 finite element implementation

We performed all the numerical simulations presented in this thesis with
the help of the module dune-fem. We refer to the website dune.mathematik.

uni-freiburg.de for up-to-date information about new releases or features.
Moreover, we refer to [48] for all the software choices adopted in the imple-
mentation of all the quantities involved in finite element approximations.
We report here some specific aspects for the benefit of the reader.

The dune-fem module is based on the dune-grid interface library, and
aims at extending it by a number of discretisation algorithms for the reso-
lution of linear and nonlinear systems of partial differential equations. The
main notion is that of a “spatial discrete operator” Lh, which models a
mapping between two finite element function spaces: Lh : Ah → Bh. Ex-
amples of such spaces could be V(Γm) and W(Γm), recall (2.10). In our
case, we have employed this notion of operator to code the Laplace prob-
lem, the linear elasticity problem, and the interface problem. For the last
one, according to which solution method is chosen (see Section 2.4), the
set of equations for the interface can be coded as a block system (using the
class Dune::Fem::TupleDiscreteFunctionSpace to define a combined space
of curvature and position) or with four different operators, corresponding
to the four submatrices in (2.58) and equivalent formulations. A discrete
operator can be inverted using one of the several inverse operators avail-
able, which include, at present, preconditioned Krylov space methods (CG,
BiCGSTAB, GMRes), Newton-type solvers, and sparse factorisation solvers.
Discrete operators are constructed by choosing a continuous function space,
a set of basis functions, and a view of the underlying grid, which deter-
mines that part of the grid on which the functions are defined. For instance,
we employ the class Dune::Fem::FilteredGridPart for the resolution of the
unfitted bulk equations. In addition, we make use of the implementations of
both continuous and discontinuous Lagrange finite element spaces already
available in dune-fem.

dune.mathematik.uni-freiburg.de
dune.mathematik.uni-freiburg.de
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In collaboration with Marco Agnese, fellow PhD student in Applied
Mathematics at Imperial College London, we have coded an inverse op-
erator class for the numerical resolution of linear systems with sparse fac-
torisation packages UMFPACK, LDL and SPQR. These solvers are available
from the stable version of dune-fem 2.4.0, which has been released to be
compatible with the stable version of DUNE 2.4, distributed in September
2015.
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