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Abstract

This thesis introduces a three-dimensional (3D) finite element (FE) formulation

to model the linear elastic deformation of fractured media under tensile and

compressive loadings. The FE model is based on unstructured meshes using

quadratic tetrahedral elements, and includes several novel components: (i) The

singular stress field near the crack front is modeled using quarter-point tetra-

hedral finite elements. (ii) The frictional contact between the crack faces is

modeled using isoparametric contact discretization and a gap-based augmented

Lagrangian method. (iii) Accurate stress intensity factors (SIFs) of 3D cracks

computed using the two novel approaches of displacement correlation and disk-

shaped domain integral. The main contributions in the FE modeling of 3D

cracks are: (i) It is mathematically proven that quarter-point tetrahedral finite

elements (QPTs) reproduce the square root strain singularity of crack problems.

(ii) A displacement correlation (DC) scheme is proposed in combination with

QPTs to compute SIFs from unstructured meshes. (iii) A novel domain integral

approach is introduced for the accurate computation of the pointwise J-integral

and the SIFs using tetrahedral elements. The main contributions in the contact

algorithm are: (i) A square root singular variation of the penalty parameter near

the crack front is proposed to accurately model the contact tractions near the

crack front. (ii) A gap-based augmented Lagrangian algorithm is introduced for

updating the contact forces obtained from the penalty method to more accu-

rate estimates. The results of contact and stress intensity factors are validated

for several numerical examples of cubes containing single and multiple cracks.

Finally, two applications of this numerical methodology are discussed: (i) Un-

derstanding the hysteretic behavior in rock deformation; and (ii) Simulating 3D

brittle crack growth. The results in this thesis provide significant evidence that

tetrahedral elements are efficient, reliable and robust instruments for accurate

linear elastic fracture mechanics calculations.
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Chapter 1

Introduction

Understanding the mechanical response of elastic fractured media subjected to different

mechanical loads is of vital importance and great interest to a variety of scientific and en-

gineering fields including material science [Kachanov, 1982a; Aleshin and Van Den Abeele,

2005], structural geology [Einstein and Dershowitz, 1990; Reeves et al., 2013], mining engi-

neering [Jing, 2003; Wang and Tonon, 2011], oil and gas reservoir engineering [Yeo et al.,

1998; Baghbanan and Jing, 2008], geothermal energy development [Jafari and Babadagli,

2011; De Dreuzy et al., 2012], mechanical engineering [Baietto et al., 2010; Pook et al.,

2014] and structural and earthquake engineering [Segall and Pollard, 1983; Einstein and

Dershowitz, 1990]. Both elastic and inelastic responses of fractured media to mechanical

loads are significantly influenced by the presence of cracks, which indicates the great impor-

tance of the accurate modeling of cracks in elastic media [Walsh, 1965; Kachanov, 1982b;

Aleshin and Van Den Abeele, 2007a]. When the material behavior is linear elastic, and the

inelastic deformation is small compared to the size of the crack, the context of Linear Elas-

tic Fracture Mechanics (LEFM) is used to investigate the mechanical response of fractured

media [Anderson, 2005].

The size of cracks in elastic media varies significantly, ranging from micrometers to

kilometers depending on the context. Examples of fractured media at the micro-scale are

micro-structured materials such as rock and concrete. This class of materials contains a

large number of embedded micro-cracks which significantly influence their deformation and

strength behavior. Two key features of the deformation of these materials, nonlinearity

and hysteresis, are generally attributed to the presence of micro-cracks and crack-like voids

[Walsh, 1965; Lawn and Marshall, 1998; David et al., 2012]. Their inelastic processes such

as yielding, failure, fracturing and fragmentation are also significantly controlled by these

defects [Kachanov, 1982b; Aleshin and Van Den Abeele, 2007a]. Once micro-cracks are

activated and propagated, larger cracks are generated via growth, coalescence and branching

1



Chapter 1: Introduction

mechanisms, conducing to fracturing and fragmentation of these materials [Shockey et al.,

1974; Einstein and Dershowitz, 1990; Khanal et al., 2008].

Geological formations are examples of fractured media at larger scales, where rock joints

have been shown to extend to lengths ranging from hundreds to thousands of meters [Bon-

net et al., 2001]. Pre-existing natural fractures in rock masses act as local mechanical

weaknesses and main flow pathways, and therefore determine not only the deformation and

strength of the rock mass, but also its flow and transport properties [Segall and Pollard,

1983; Gudmundsson, 1987; Pyrak-Nolte and Morris, 2000; Nick et al., 2011]. Experimental

and numerical investigations show that normal closure and shear dilation can significantly

change fracture transmissivity [Yeo et al., 1998; Olsson and Barton, 2001]. Fluid flow in

fractured rock masses is therefore strongly stress-dependent, both with regards to the mag-

nitude and orientation of the principal permeabilities [Min et al., 2004; Baghbanan and

Jing, 2008]. Accurate prediction of fluid pressure and solid deformation in fractured rocks,

therefore, requires hydro-mechanically coupled models with the ability to resolve normal

and shear components of contact tractions acting on the fractures [Barton et al., 1985].

An exact geometric representation of naturally fractured media in geological formations

is challenging, for two main reasons. The first is related to the matter of scales and fracture

size distribution. Observations suggest that fracture size is governed by power-law scaling

models, spanning orders of magnitudes of length scales [Bonnet et al., 2001]. The second is-

sue is fracture characterization, for which non-invasive methods to map fractures in situ are

yet to be developed for more accurate fracture representations. Stochastic models are there-

fore required to investigate deformation/flow characteristics of fractured media. Stochastic

models often use idealized fracture shapes [Dershowitz and Einstein, 1988; Huseby et al.,

1999], based on a statistical description of parameters such as distributions of size and

orientation [Huseby et al., 2000; Malinouskaya et al., 2014]. Models that opt for an ex-

plicit representation of fractures, as opposed to a continuum formulation, have been termed

Discrete Fracture Network (DFN) models [Andersson and Dverstorp, 1987; Painter and

Cvetkovic, 2005]. The concept of DFN was first introduced by Long et al. [1982] for homog-

enizing complex fracture networks, and has been extensively used for flow and transport

applications [Min et al., 2004; Baghbanan and Jing, 2007; Leung and Zimmerman, 2012;

De Dreuzy et al., 2012; Lang et al., 2014]. Nevertheless, despite great geometrical simplifi-

cations, this type of modeling approach is routinely applied to estimate effective values of

engineering parameters relevant to fluid flow, e.g. permeability, [Reeves et al., 2013] as well

as mechanical deformation of micro-structured materials, e.g. Young’s modulus [Walsh,

1965; Lawn and Marshall, 1998; Aleshin and Van Den Abeele, 2007a; David et al., 2012].
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Chapter 1: Introduction

Due to geometrical and physical complexities, numerical simulations are necessary in

analyzing deformation in fractured media. The majority of numerical simulations of fracture

networks have been conducted using discrete element method (DEM), while the use of the

finite element method (FEM) has been limited to a few studies. DEM has also been very

popular in simulating fracture growth and fragmentation of brittle solids, such as granular

materials and rock and concrete [Kuna and Herrmann, 1996; Khanal et al., 2004; Carmona

et al., 2008; Wang and Tonon, 2011]. DEM generally treats the fractured medium as an

assemblage of discrete blocks formed by connected fractures, solves the equation of motion

for the blocks, and updates the contact between the block as a consequence of the motion and

deformation of the blocks [Jing, 2003]. The distinct element method introduced by Cundall

[1988], as implemented in the commercial computer codes UDEC and 3DEC for two- and

three-dimensional problems [UDEC, 1992; 3DEC, 1994], and the discontinuous deformation

analysis (DDA) proposed by Shi [1988], have been the main approaches for analyzing the

deformation and permeability of fractured rock masses [Zhang and Sanderson, 1998; Jing

et al., 2001; Min et al., 2004; Baghbanan and Jing, 2007]. DDA uses standard FEM meshes

over blocks and employs the penalty method for enforcing the contact constraint between

blocks. A similar development to DDA is combined FEM/DEM introduced by Munjiza et al.

[1995] which considers not only the block deformation but also fracturing and fragmentation

of the blocks [Latham et al., 2013].

The application of DEM in modeling fracture growth and fragmentation entails the

following difficulties: (1) Time-consuming and error-prone calibration of micro- to macro-

properties must be performed for each material individually [Kuna and Herrmann, 1996].

Thus, elastic mechanical properties such as the Young’s modulus and Poisson’s ratio cannot

be directly used to model elastic deformation. Moreover, resulting calibrated properties are

scale and mesh size dependent [Lisjak and Grasselli, 2014]. (2) Fractures are not explicitly

defined; in fact, they are modeled as the lack of cohesion between the particles in the material

[Carmona et al., 2008; Wang and Tonon, 2011]. Therefore, the models do not capture

stress singularities around the fractures. (3) For fragmentation purposes, materials often

artificially behave as particulates or agglomerates [Khanal et al., 2004, 2008]. Therefore, 3D

fragmentation simulations and qualitative pattern evaluation are scarce in relation to the

maturity of DEM, possibly due to the lack of realism caused by the absence of a fracture

mechanics-based crack growth models. Regarding the application of DEM in deformation

and flow response of fractured networks, the following drawbacks are highlighted [Jing,

2003]: (1) Isolated fractures are ignored when using DEM in modeling the fracture networks,

and fractures are only modeled as the boundaries of isolated blocks; (2) The deformation

inside blocks and the contact forces between the block are roughly approximated, as explicit

3



Chapter 1: Introduction

methods are generally used to solve the balance equations. (3) The high stress gradients

near the cracks cannot be captured accurately, and the variation of contact tractions over

contact surfaces are estimated roughly. The deformation of fracture surfaces, which controls

the aperture change within fractures, is also only roughly estimated. Overall, DEM tends

to reproduce fracture patterns in a quantitative manner, but the qualitative prediction of

strength is tied to the accurate calibration of the material properties.

In contrast, the finite element method is able to capture the high gradient stress state

near the crack, and provides very accurate contact tractions based on implicit methods.

Advantages of FEM for modeling fracture networks include: (1) Meso-scale definition of

material properties such as elastic constants and material toughness are directly used in

the method; (2) Fractures are explicitly modeled as local discontinuities in the continuum

medium, where singular stress fields are modeled thorough adapting appropriate element

size and type in the crack front region in a FE model, or appropriate enrichment func-

tions in an XFEM formulation; (3) Fracture mechanics-based parameters such as the stress

intensity factor and J-integral can be used to study the onset of fracture growth and frag-

mentation in fractured media; (4) Crack interactions are captured accurately. Despite so

many advancements in the use of the finite element method in fracture mechanics, reliable

and efficient finite element methodologies are still in great demand for modeling complex

elastic fractured media.

Other numerical methods to solve crack problems and model crack propagation include

boundary element method (BEM) [Mi and Aliabadi, 1992; Portela et al., 1993; Aliabadi,

1997; Simpson and Trevelyan, 2011], scaled boundary finite element method (SBFEM)

[Yang, 2006; Ooi and Yang, 2011], peridynamics [Ha and Bobaru, 2010; Agwai et al., 2011]

and the phase-field approach [Borden et al., 2012; Klinsmann et al., 2015]. BEM and

SBFEM are advantageous in that they reduce the dimensionality of the problem, thereby

only requiring discretization of lines and surfaces for 2D and 3D problems, respectively [Ali-

abadi, 1997]. BEM can also be enriched to enhance the accuracy of the numerical solution;

this is also known as X-BEM [Peake et al., 2013]. The coupled BE-SBFEM combines the

geometric flexibility of the BEM to model sections of a domain that may not be simple in

nature, with the accuracy of the SBFEM to model the region around a crack tip [Chidgzey

et al., 2008; Bird et al., 2010]. Peridynamics is a nonlocal integral formulation that includes

damage as part of the material response. The main difference between the peridynamic the-

ory and the finite element method is that the former is formulated using integral equations

as opposed to derivatives of the displacement components [Agwai et al., 2011]. Peridynam-

ics is able to correctly model and simulate dynamic fracture, in particular crack branching

in brittle materials [Ha and Bobaru, 2010]. In phase-field models, discontinuities are not
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introduced into the solid, but instead, the fracture surface is approximated by a smooth

phase-field, which smears the domain and boundary of the crack over a small region [Borden

et al., 2012]. Nevertheless, for solving complex crack problems in geological applications,

the FE method is overall more efficient and appropriate due to its simplicity, accuracy,

and reliability, and due to its ability to interface with solutions to flow, temperature, and

chemical processes that may occur side-by-side with fracturing.

The use of the FE method to solve fracture mechanics problems attracted great attention

in the early 1970s. However, conventional elements were unable to reproduce an accurate

FE solution near the crack tip [Chan et al., 1970]. This was due to the fact that conventional

finite elements employ polynomials to interpolate field variables in the domain, and therefore

are not able to reproduce the singular crack tip fields. Significant development of the FE

analysis of crack problems was made by Barsoum [1976] and Henshell and Shaw [1975] who

showed that the singularity at the crack tip can be modeled by placing the mid-side node

near the crack tip at the quarter-point position. This shift simply results in a nonlinear

mapping between the natural and local coordinate systems in a way that a singular strain

at the crack tip occurs, and an inverse square root singularity is modeled throughout the

element. The following element types, collapsed quarter-point hexahedrals, quarter-point

pentahedrals, and quarter-point bricks, have been widely employed in the last three decades

for modeling 3D fractures [Kuna, 2013]. The use of these types of elements relies upon the

generation of a fully structured mesh around the 3D crack front, which is a difficult and

cumbersome task for complex crack configurations.

There have been three main finite element meshing schemes used for analyzing crack

bodies and simulating fracture growth. The first employs pure hexahedral elements to dis-

cretize the entire domain. This methodology has been widely accepted and used for simple

geometries [Abaqus, 2012]. Hexahedral elements are advantageous because: (i) collapsed

quarter-point hexahedrals have proven to accurately reproduce the singular fields near the

crack [Hussain et al., 1981; Walters et al., 2005], and (ii) straightforward algorithms such

as domain integral methods are available to extract the J-integral and stress intensity fac-

tors from the FE solutions by hexahedrals [DeLorenzi, 1982; Bremberg and Faleskog, 2015].

These algorithms neatly represent tubular domains used for energy-based SIF computation.

However, this approach requires a fully structured mesh, not only in the neighborhood of

the crack front, but also in regions remote from cracks. It is known that meshing an arbi-

trary crack geometry with hexahedrals is very difficult and cumbersome, and for complex

crack and body configurations it may not be feasible.

The second methodology employs a combination of hexahedral and tetrahedral ele-

ments. This hybrid methodology is developed to combine the good performance of col-
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lapsed quarter-point hexahedral finite elements as well as the efficiency of the tetrahedral

elements to mesh complicated geometries. One approach is to discretize the crack region

using hexahedra, while tetrahedra are employed to generate an unstructured mesh in the

remote regions [Bremberg and Dhondt, 2008, 2009; Bremberg and Faleskog, 2015]. The

major drawback is that tie constraints must be used to satisfy the compatibility and equi-

librium conditions at the surfaces where tetrahedrals connect to hexahedrals [Bremberg

and Dhondt, 2009]. In the other approach, one analysis is performed to model the global

structure by tetrahedrals, and then by mapping the FE-solution, a sub-model is generated

to solve for the near crack fields using hexahedrals [Schöllmann et al., 2003; Rabold et al.,

2013]. This approach is also computationally expensive, as it requires performing two FE

analyses in addition to complications which may arise in sub-modeling procedures.

The third methodology is to use pure tetrahedrals in an unstructured mesh to model

the entire domain. This methodology has been applied in modeling crack propagation and

fragmentation [Paluszny and Zimmerman, 2011; Paluszny et al., 2013]. Meshing procedures

using tetrahedra are much simpler, as these elements are best suited to mesh arbitrary

domains and complicated geometries automatically. Additionally, adaptive meshing pro-

cedures can be applied to discretize the domain efficiently. However, until recently the

applicability, efficiency, and accuracy of tetrahedral elements for modeling crack singular

fields had not been well investigated in the literature. In addition, existing methods to

extract J-integrals and the SIFs using tetrahedral elements are complex and suffer from

oscillations [Červenka and Saouma, 1997; Rajaram et al., 2000; Paluszny and Zimmerman,

2011], while others require very fine meshes near the crack front, rely on complicated nu-

merical procedures, and are applied on arbitrary domain shapes and sizes [Okada et al.,

2008; Daimon and Okada, 2014].

One of the main applications of numerical modeling of cracks is the simulation of crack

growth in solids. Three popular methodologies to simulate crack propagation in solids are

erosion element, cohesive elements, and X-FEM. The erosion element algorithm is one of

the simplest numerical methodologies to model crack propagation, and is simply based on

the deletion of elements. In this method, once a certain damage criterion is met within an

element, the stiffness of the element is reduced to model the damaged material [Fan and Fish,

2008; Rabczuk et al., 2010]. This method does not require modeling cracks explicitly, which

is a great advantage in terms of computational cost. However, the numerical results from

this method exhibit mesh-dependency unless an appropriate energy-based failure criterion

is employed [Beissel et al., 1998]. In addition, this method is not able to model the strain

singularity at the front of sharp cracks in elastic materials.

6



Chapter 1: Introduction

Cohesive elements are another attractive tool to model crack growth without modeling

the crack singularity [Needleman, 1987; Ortiz, 1988; Ortiz and Pandolfi, 1999]. In this

method, once a local failure criterion is met, the separation of finite element boundaries

is allowed, and a crack path is generated due to the detachment of elements. One of the

main weaknesses of this method is that a non-smooth crack growth path is obtained, since

the crack propagation path must conform to the mesh structure. Therefore, the results

are vulnerable to mesh-sensitivity, unless very fine meshes are employed [Camacho and

Ortiz, 1996]. In fact, the mesh size independent results can be obtained only when the

mesh adequately resolves the cohesive zone [Camacho and Ortiz, 1996]. Moreover, since the

crack singular fields are not modeled, crack interactions may not be obtained accurately.

The extended finite element method (X-FEM) proposed by Moës et al. [1999] and Suku-

mar et al. [2000] has recently been a popular tool for modeling crack growth. X-FEM allows

one to model the crack independent of mesh by using enrichment functions, which avoids

the need for remeshing during crack propagation. The level set method proposed by Osher

and Sethian [1988] is also used with X-FEM to simplify the selection of enriched nodes, and

the definition of enriched functions. Due to the simplicity of modeling crack propagation

by X-FEM, this method has become very popular. In order to maintain the convergence

rate of X-FEM with mesh size, a fixed number of elements or elements inside a fixed radius

must be supported by the enrichment functions. However, defining enrichment functions

for very close cracks may be problematic, and difficulties may arise when cracks interact or

intersect.

One of the main difficulties of FEM-based fracture models is the procedure to handle

contact between crack faces. Previous work has been mainly limited to the XFEM formu-

lation and two-dimensional cracks [Dolbow et al., 2001; Ribeaucourt et al., 2007; Elguedj

et al., 2007; Khoei and Nikbakht, 2007; Liu and Borja, 2008; Béchet et al., 2009; Liu and

Borja, 2010; Pierrès et al., 2010; Baietto et al., 2010; Trollé et al., 2012]. Both LATIN,

LArge Time INcrement, [Dolbow et al., 2001; Ribeaucourt et al., 2007; Pierrès et al., 2010;

Baietto et al., 2010; Trollé et al., 2012] and Newton-Raphson [Elguedj et al., 2007; Khoei and

Nikbakht, 2007; Liu and Borja, 2010] iterative strategies have been employed in dealing with

the nonlinearity of the contact problem. However, Liu and Borja [2008] demonstrated the

superior convergence performance of Newton-Raphson method as compared to the LATIN

strategy. These previous work mainly focus on XFEM modeling of two-dimensional cracks

and interfaces which are initially closed, yielding a low contact precision model. Moreover,

the accuracy of the contact tractions near the crack tip/front has not been investigated.

This accuracy directly influences the computation of stress intensity factors when using an
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energy-based method such as the interaction integral. The accuracy of the stress intensity

factors of cracks under compression has not also been well evaluated in previous work.

This thesis introduces a new finite element framework based on unstructured tetrahe-

dral meshes for simulating three-dimensional elastic fractured media subjected to tensile and

compressive mechanical loadings. To this end, three main steps are taken to demonstrate

efficiency, reliability and robustness of tetrahedral meshes in analyzing cracks: (i) The ap-

plicability and efficiency of quarter-point tetrahedrals in reproducing the strain singularity

along the crack front is proven. (ii) Reliable and efficient methods for the computation of

crack parameters such as the stress intensity factors and J-integral are introduced. (iii) A

robust and efficient contact algorithm for enforcing frictional contact constraints over the

crack surfaces is proposed. Numerous numerical examples of penny-shaped and elliptical

cracks under extension and compression demonstrate the accuracy and efficiency of the

methods developed in this thesis. Recommendations are made for the values of the parame-

ters involved in the proposed numerical procedures. Applications of the proposed numerical

methodology in modeling rock hysteresis and crack growth path are also presented.

The structure of this thesis is as follows: Chapter 2 investigates the behavior of quarter-

point tetrahedral elements. It is mathematically proven that these elements reproduce the

strain singularity along the crack front. The mapping procedures between natural and

global coordinates using these elements are also described. Chapter 3 introduces a displace-

ment correlation scheme for the fast and accurate estimation of stress intensity factors.

In addition, the efficiency of quarter-point tetrahedrals in reproducing the singularity is

demonstrated. Chapter 4 describes a new disk-shaped domain integral approach for com-

puting the J-integral and stress intensity factors from tetrahedral meshes. It also reviews

all previous domain integral methods, and compares the results of the disk-shaped domain

against classical volumetric domain integral methods. Chapter 5 introduces an effective

gap-based augmented Lagrangian method for enforcing the contact constraints between

fracture surfaces. Together with an isoparametric discretization of the contact surfaces, the

developed algorithm is able to apply contact constraints in high contact precision models

such as high density fracture networks. Chapter 6 reports several applications of the nu-

merical developments in this thesis, including the simulation results for crack growth and

hysteretic behavior of fractured media. Chapter 7 gives a summary of conclusions, a dis-

cussion of contributions, and potential areas for future work. This thesis also includes one

appendix in which the analytical formulas on the stress intensity factors of penny-shaped

and elliptical cracks in infinite medium are obtained.
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Modeling the stress singularity
using quarter-point tetrahedral
elements
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2.1 Abstract

This chapter discusses the reproduction of the square root singularity in quarter-point tetra-

hedral (QPT) finite elements. These elements are simply generated by moving the mid-side

nodes near the crack front to the quarter-point position. This creates a nonlinear mapping

by which an inverse square root singularity occurs along the crack front. The mappings

between natural and global coordinate systems of QPTs are also given in detail. The use

of QPTs makes it possible to accurately model the strain singularity in fully unstructured

tetrahedral meshes while effectively exploiting the simplicity, and efficiency of meshing

schemes by tetrahedra in discretizing complex three-dimensional crack configurations.
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2.2 Introduction

Inherent flaws and cracks exist in many materials and structures; as a result, analyzing

cracks in bodies has attracted much attention in a variety of fields, including material

science, structural engineering, and oil and gas reservoir engineering. In the context of

Linear Elastic Fracture Mechanics (LEFM), the accurate computation of stress intensity

factors (SIFs) is the first step in analyzing cracked bodies. The SIFs fully characterize the

stress state adjacent to the crack, and therefore are the key factors in the accurate estimation

of the onset of crack propagation. The SIFs can be calculated analytically or experimentally

only for a few simple crack configurations, and the use of numerical techniques such as the

finite element (FE) method is unavoidable for more complicated crack problems. The use

of the FE method to analyze crack problems, however, involves a major difficulty which lies

in capturing the high stress gradient near the crack and accurately reproducing the crack

tip singular stress field. This is the reason for conducting numerous investigations in the

last four decades on the development of accurate and reliable FE methods to model crack

problems.

The use of the FE method to solve crack problems gained great popularity in the early

1970s. Soon after the poor performance of conventional elements in capturing singular

stress field adjacent to the crack was identified. This is because the field variables in

conventional finite elements are interpolated by polynomials which are not able to reproduce

the crack tip singular stress field. Significant contributions were made by Barsoum [1976]

and Henshell and Shaw [1975] who independently showed that the singularity at the crack

tip can be properly modeled by placing the mid-side node near the crack tip or front at the

quarter-point position. Due to a nonlinear mapping, these so-called quarter-point/singular

elements reproduce square root stress singularity. The following three types of elements

have been studied and used for modeling 3D cracks: collapsed quarter-point hexahedra,

quarter-point pentahedrals, and quarter-point bricks. Among these, collapsed quarter-point

hexahedra have been very popular for modeling crack problems, for two main reasons: (i)

these elements reproduce the singular stress field near the crack accurately. (ii) straight-

forward algorithms like displacement correlation and domain integral methods have been

available for these elements to extract the SIFs from the FE solution. However, the use of

these elements requires the generation of a fully structured mesh around the crack front.

Generating such meshes in an arbitrary cracked geometry is very difficult and cumbersome,

and for complex crack and body configurations it may not be feasible.

These meshing restrictions encouraged researchers to make use of tetrahedra in dealing

with crack problems. One proposed methodology is based on the combination of hexahe-
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dral and tetrahedral elements. This takes advantage of the good performance of collapsed

quarter-point hexahedral elements at the crack front region, and the efficiency of tetrahedral

elements for meshing complicated geometries. One approach is to discretize the neighbor-

hood region of the crack by hexahedra, and remote region by tetrahedra [Bremberg and

Dhondt, 2008, 2009; Bremberg and Faleskog, 2015]. The major drawback is that either tie

constraints or transition pyramid elements are required at the interface region between hex-

ahedral and tetrahedral elements. This is because the node structures of these two types of

elements are incompatible at their interface. In another approach, one analysis is performed

to model the global structure by tetrahedra, and then by mapping the FE-solution, a sub-

model is generated to solve for the near-crack fields using hexahedra [Schöllmann et al.,

2003; Rabold et al., 2013; Rabold and Kuna, 2014]. This approach is computationally ex-

pensive, as it requires performing two FE model analyses, and complications may arise in

sub-modeling procedures. All these complications have recently encouraged the use of pure

tetrahedra in an unstructured and arbitrary mesh to model the entire cracked body domain.

Unlike other types of elements, tetrahedra can be used in a fully unstructured and arbi-

trary mesh, such as are required to mesh dense three-dimensional fracture patterns. This

methodology has been successfully applied in the context of crack propagation [Paluszny

and Zimmerman, 2011] as well as fragmentation [Paluszny et al., 2013]. However, the appli-

cability, efficiency, and accuracy of tetrahedral elements for modeling crack singular fields

have not been well investigated in the literature.

In order to prove the applicability and reliability of tetrahedral elements in crack prob-

lems, two major steps are required. (i) The efficiency of quarter-point tetrahedral elements

for reproducing square root stress singularity must be investigated. Unlike other types of

quarter-point elements, which have been extensively addressed in the literature (see Section

2.3), no research has evaluated the applicability and efficiency of the quarter-point tetra-

hedra in reproducing crack front singular stress field. (ii) Accurate, efficient and reliable

methods have to be introduced to extract the fracture parameters from the FE solution of

tetrahedra. This chapter discusses the behavior of quarter-point tetrahedra in reproducing

the square root stress singularity at the crack front. The accurate computation of SIFs from

the FE solution of tetrahedra will be addressed in detail in Chapters 3 and 4.

2.3 A review on quarter-point finite elements

Conventional finite elements employ polynomials to interpolate field variables in the FE

domain [Zienkiewicz and Taylor, 1989]. Hence, they are not able to reproduce the crack

tip square root singular stress field. Without any special formulation for the elements

attached to the crack tip, a very fine mesh is required in order to obtain accurate field
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variables adjacent to the crack. Poor results of the FE solutions of crack problems by

conventional elements were identified in the early 1970s, when many researchers suggested

using special element formulations around the crack tip. These investigations mainly focused

on the development of special crack tip elements (CTEs) in which the shape functions are

able to reproduce the singular fields near the crack tip. These elements were used to

discretize the immediate neighborhood of the crack tip, while the remainder of the domain

is discretized with the conventional elements. The early development and use of CTEs for

SIF computation can be found in [Byskov, 1970; Tracey, 1971, 1974; Benzley, 1974; Akin,

1976]. The following are the major drawbacks that prevented CTEs to be successful: (i)

the shape functions of the CTEs and conventional elements are not often compatible, and

transition elements must be used to connect CTEs at the crack tip region to the conventional

elements at the remote region; (ii) CTE shape functions do not often permit constant strain

and rigid body motion modes; (iii) implementation of CTEs in commercial FE codes involves

algorithmic peculiarities.

Significant development in the FE analysis of crack problems was made by Barsoum

[1976] and Henshell and Shaw [1975] who proposed the idea of quarter-point elements

(QPEs). They independently demonstrated that the singularity at the crack tip is properly

modeled when the mid-side node near the crack tip is placed at the quarter-point position.

This shift simply results in a nonlinear mapping between the natural and global coordinates

by which an inverse square root stress singularity is reproduced throughout the element.

With the use of QPEs, there was no need to incorporate CTEs into commercial FE codes

since the entire domain of the cracked body is modeled with the same element. QPEs are

simple in terms of the algorithmic implementation, the continuity of the shape functions

between elements is automatically satisfied, and the rigid body motion and constant strains

are included in the shape functions. These characteristics caused the QPEs to be extensively

studied and used over the past four decades. Generally, the following types of quarter-point

elements have been employed for analyzing 2D and 3D crack problems:

(i) Quarter-point eight-noded quadrilateral element (Fig. 2.1a): This element is gener-

ated from an isoparametric eight-noded quadrilateral by shifting the mid-side nodes near

the crack tip to the quarter-point position. Early investigators of the quarter-point quadri-

lateral elements showed some deficiencies, attributed to the incorrect assumptions that the

rectangular element models the square root singularity only on the element boundaries

[Barsoum, 1977], and that the strain energy of this element was incorrectly demonstrated

to be unbounded [Hibbitt, 1977]. However, Banks-Sills and Bortman [1984] demonstrated

that stresses are square root singular at all rays emanating from the crack tip in a small

region adjacent to the crack tip, expanding to the entire element along the element sides.
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Figure 2.1: (a) Quarter-point eight-noded quadrilateral element, (b) Collapsed quarter-point eight-
noded quadrilateral element, (c) Quarter-point six-noded triangular elements (d) Quarter-point
twenty-noded brick element (e) Collapsed quarter-point twenty-noded brick element, (f) Quarter-
point fifteen-noded pentahedral element.

It was also later proved that the strain energy and element stiffness is bounded in these

elements [Banks-Sills and Bortman, 1984]. For accurate results, the distortion of these el-

ements from a rectangle should be minimum [Banks-Sills, 1987]. Since these elements can

poorly reproduce the angular distribution of stress due to the large element angle at the

crack tip, they are used very rarely and they are discarded in favor of triangular elements

(categories ii and iii).

(ii) Collapsed quarter-point eight-noded quadrilateral element (Fig. 2.1b): This element

is degenerated by collapsing one side of a 8-noded isoparametric quadrilateral element to

a point which is located at the crack tip, and moving the mid-side nodes near the crack

tip to the quarter-point position. In LEFM application, the displacements of the nodes

on the collapsed side are also coupled, to prevent blunting at the crack tip. This element

models the required stress singularity at all rays emanating from the crack tip, and a group

of these elements can be crafted in a fan-shape arrangement around the crack tip in order

to accurately reproduce the angular variations of the crack tip fields. Any shape of this

element may be used as long as the edges are straight lines [Freese and Tracey, 1976;

Banks-Sills, 1987]. This element has been frequently used for crack simulations, and has
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been implemented in several commercial FE tools [Kuna, 2013].

(iii) Quarter-point six-noded triangular elements (Fig. 2.1c): This element is developed

by shifting the mid-side nodes near the crack tip of an isoparametric 6-noded triangular

element to the quarter-point position. This QPE also reproduces square root stress singu-

larity at all rays emanating from the crack tip. The shape makes it possible to lay many of

these elements around the crack tip to represent the angular distribution of stress around

the crack tip. Unlike collapsed quarter-point elements, the edge opposite to the crack tip

can be curved in these elements [Freese and Tracey, 1976]. Quarter-point triangular and

collapsed quarter-point quadrilateral elements have been shown to be quite similar both

analytically and numerically [Freese and Tracey, 1976; Wait, 1978; Lim et al., 1993].

(iv) Quarter-point twenty-noded brick elements (Fig. 2.1d): This element is generated

from an isoparametric twenty-noded hexahedral by shifting the mid-side nodes near the

crack front to the quarter-point position. Inverse square root singular fields are developed

at all rays emanating from of crack front that lie in any cross-sectional orthogonal plane to

the crack front. The region in which this singular behavior occurs is a small neighborhood

of the crack front for the rays far from the element sides, becoming larger and expanding

to the entire element along the element sides [Banks-Sills, 1991]. In the case of curved

crack fronts, the mid-side nodes on the surface opposing the crack front must be moved to

define a parabolic-cylindrical surface [Banks-Sills, 1991]. Like quarter-point quadrilaterals,

these elements are rarely used, because of the poor reproduction of angular distribution of

stress due the large element angle at the crack front, and they are discarded in favour of

the collapsed hexahedral and pentahedral elements (categories v and vi).

(v) Collapsed quarter-point twenty-noded brick elements (Fig. 2.1e): This element is

generated by collapsing one face of 20-noded isoparametric brick element, which gives a

wedge-shaped element, and moving the mid-side nodes near the crack to the quarter-point

position. The displacements of the conformed nodes on the crack front are also constrained

to model the crack sharpness in the LEFM applications [Barsoum, 1976; Koers, 1989]. It

reproduces the inverse square root stress singularity along all rays emanating from the

crack tip. An accurate angular distribution is reproduced when a group of these elements

are arranged around the crack front. In the case of curved crack fronts, the mid-side nodes

of the element face opposing the crack front must be moved in a way that a parabolic-

cylindrical surface is defined [Hussain et al., 1981; Manu, 1983].

(vi) Quarter-point fifteen-noded pentahedral element (Fig. 2.1f): This element is gen-

erated by placing the mid-side nodes near the crack front of an isoparametric fifteen-noded

pentahedral at the quarter-point position. This element also reproduces square root stress
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singularity at all rays emanating from the crack front and lying in any cross-sectional orthog-

onal plane to the crack front [Kuna, 2013]. An accurate angular distribution is reproduced

by arranging a group of these elements around the crack front in a fan-shaped arrangement.

In the case of curved crack fronts the mid-side nodes of the element face opposing the crack

must also be moved to define a parabolic-cylindrical surface [Peano and Pasini, 1982].

Transition elements with appropriately placed side-nodes have also been suggested to

be used along with the QPEs for more accurate computation of SIFs [Lynn and Ingraf-

fea, 1978]. These elements are placed between the QPEs and the remaining non-singular

elements, resulting in more accurate stresses around the crack tip. However, the level of

additional accuracy these elements offered was not high enough to make them popular.

Various parameters, including the order of integration, element aspect ratio, number of ele-

ments surrounding the crack tip, use of transition elements, and the singular element length,

may influence the accuracy of the FE results when using QPEs [Ingraffea and Manu, 1980;

Saouma and Schwemmer, 1984; Murti and Valliappan, 1986; Jayaswal and Grosse, 1993].

Ease of implementation, computational efficiency and excellent performance are the main

advantages of QPEs, which has resulted in their frequent use over the past four decades.

2.4 Finite element formulation of tetrahedral elements

The mapping of the geometry and displacement fields of a ten-noded isoparametric tetra-

hedral element from the global coordinate system xyz into the natural coordinate system

ξηζ (0 ≤ ξ, η, ζ ≤ 1) is given by:

x (ξ, η, ζ) =

10∑
i=1

Nixi , y (ξ, η, ζ) =

10∑
i=1

Niyi , z (ξ, η, ζ) =

10∑
i=1

Nizi

u (ξ, η, ζ) =

10∑
i=1

Niui , v (ξ, η, ζ) =

10∑
i=1

Nivi , w (ξ, η, ζ) =

10∑
i=1

Niwi

(2.1)

in which Ni is the shape function corresponding to the node i with coordinates (xi, yi, zi)

in the local space, and (ui, vi, wi) are the displacements of the node i in the x, y and z

directions, respectively (Fig. 2.2). The shape functions of a ten-noded tetrahedral finite

element are given by:

N1 = λ(2λ− 1) , N2 = ξ(2ξ − 1) , N3 = η(2η − 1) , N4 = ζ(2ζ − 1)

N5 = 4λξ , N6 = 4ξη , N7 = 4λη , N8 = 4λζ , N9 = 4ξζ , N10 = 4ηζ
(2.2)

where λ = 1 − ξ − η − ζ. Using the infinitesimal strain theory, the Cauchy strains are
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Figure 2.2: Tetrahedral finite element in (a) local and (b) natural coordinate systems.

obtained from the displacement fields as:

ε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εxy
εyz
εxz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
∂v

∂y
∂w

∂z
∂u

∂y
+

∂v

∂x
∂w

∂y
+

∂v

∂z
∂u

∂z
+

∂w

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂NT

∂x
u

∂NT

∂y
v

∂NT

∂z
w

∂NT

∂y
u +

∂NT

∂x
v

∂NT

∂z
v +

∂NT

∂y
w

∂NT

∂z
u +

∂NT

∂x
w

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

where NT= {N1, ..., N10} is the vector of shape functions, and the vectors uT= {u1, ..., u10},
vT= {v1, ..., v10} and wT= {w1, ..., w10} contain the nodal displacements in x, y, and z

directions, respectively. The partial derivatives of the shape functions with respect to x, y

and z are computed using the so-called Jacobian matrix inverse as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= J−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.4)

By combining Eqs. (2.3) and (2.4), the vector of strains is given by

ε = ĴC {u1 v1 w1 . . . u10 v10 w10}T (2.5)
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in which

Ĵ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J−1
11 0 0 J−1

12 0 0 J−1
13 0 0

0 J−1
21 0 0 J−1

22 0 0 J−1
23 0

0 0 J−1
31 0 0 J−1

32 0 0 J−1
33

J−1
21 J−1

11 0 J−1
22 J−1

12 0 J−1
23 J−1

13 0

0 J−1
31 J−1

21 0 J−1
32 J−1

22 0 J−1
33 J−1

23

J−1
31 0 J−1

11 J−1
32 0 J−1

12 J−1
33 0 J−1

13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1
∂ξ 0 0 · · · ∂N10

∂ξ 0 0

0 ∂N1
∂ξ 0 · · · 0 ∂N10

∂ξ 0

0 0 ∂N1
∂ξ · · · 0 0 ∂N10

∂ξ
∂N1
∂η 0 0 · · · ∂N10

∂η 0 0

0 ∂N1
∂η 0 · · · 0 ∂N10

∂η 0

0 0 ∂N1
∂η · · · 0 0 ∂N10

∂η
∂N1
∂ζ 0 0 · · · ∂N10

∂ζ 0 0

0 ∂N1
∂ζ 0 · · · 0 ∂N10

∂ζ 0

0 0 ∂N1
∂ζ · · · 0 0 ∂N10

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

In this equation, the so-called B matrix is written as the multiplication of an extended

version of the Jacobian matrix inverse, Ĵ, by C which contains the derivatives of shape

functions with respect to the natural coordinates (B = ĴC). According to Eq. (2.2),

the shape functions are in the form of polynomials, and therefore their derivatives with

respect to the local coordinates are non-singular. Therefore, as long as the Jacobian matrix

determinant is non-zero, the strains are non-singular. The singularity of strains, however,

occurs when the determinant of the Jacobian matrix becomes zero. Considering linear

elastic behavior, and in the absence of initial strain and initial residual stress, the stress

components are determined by σ = Dε, where D is the elasticity matrix containing the

material properties. Using the principle of minimum potential energy or the principle of

virtual work, the element stiffness matrix is developed by integration over the element

domain V as

Ke =

∫
V
BTDBdV =

∫
V
CTĴTDĴCdV (2.7)

As the strains near a linear elastic crack front are square root singular, enabling the

elements adjacent to the crack front to reproduce a square root strain singularity results

in a more accurate finite element solution. In a standard tetrahedral element with straight

edges, the components of the Jacobian matrix inverse depend only on the coordinates of

the corner nodes. Therefore, the strains and stresses can only vary linearly within these

elements. However, a square root singular behavior can be achieved by moving the mid-side

nodes near the crack front to the quarter-point position. This shift makes the integrand in
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Figure 2.3: Three types of tetrahedral elements generated along the crack front.

the stiffness matrix in Eq. (2.7) a singular function of order 1, as the strain singularity is

of order 1/2.

2.5 Quarter-point tetrahedral elements

A fully unstructured mesh of a 3D cracked body mainly generates two types of tetrahedral

elements surrounding the crack front: (i) tetrahedra which share a corner node with the

crack front; (ii) tetrahedra which share an edge with the crack front (see Fig. 2.3). Ac-

cordingly, shifting the mid-side nodes near the crack front to the quarter-point position also

generates two types of quarter-point elements: (i) corner-based quarter-point tetrahedra

(CQPT); and (ii) edge-based quarter-point tetrahedra (EQPT) as shown in Figs. 2.4a and

2.4b. It is noteworthy that in very coarse meshes and very curved crack fronts, some tetra-

hedra can share two edges with the crack front (see element iii in Fig. 2.3). Nevertheless,

these elements are rarely generated in mesh resolutions which are fine enough to be suitable

for the high stress gradients near the crack front. As these elements can barely capture

properly the fields variations at the crack front, they must be degenerated into two tetra-

hedra in case they occur. None of these elements was observed in meshes used in Sections

3.4 and 4.8.

2.5.1 Corner-based quarter-point tetrahedral (CQPT)

Consider the CQPT shown in Fig. 2.4a in which nodes 5, 7 and 8 are moved to the quarter-

point position from node 1. Considering a straight-sided tetrahedral, and assuming the

corner node i is located at the position (xi, yi, zi), the positions of mid-side and quarter-
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Figure 2.4: Different types of quarter-point tetrahedral finite elements: (a) Corner-based quarter-
point tetrahedral (CQPT), (b) Edge-based quarter-point tetrahedral (EQPT).

point nodes are given in terms of the corner nodes coordinates as:

x5 = (3x1 + x2)/4, y5 = (3y1 + y2)/4, z5 = (3z1 + z2)/4
x6 = (x2 + x3)/2, y6 = (y2 + y3)/2, z6 = (z2 + z3)/2
x7 = (3x1 + x3)/4, y7 = (3y1 + y3)/4, z7 = (3z1 + z3)/4
x8 = (3x1 + x4)/4, y8 = (3y1 + y4)/4, z8 = (3z1 + z4)/4
x9 = (x2 + x4)/2, y9 = (y2 + y4)/2, z9 = (z2 + z4/2
x10 = (x3 + x4)/2, y10 = (y3 + y4)/2, z10 = (z3 + z4)/2

(2.8)

Assume without loss of generality that the local Cartesian coordinate system xyz is

located at node 1 as shown in Fig. 2.4a (x1 = y1 = z1 = 0). The mapping between the

natural coordinate ξηζ and the local coordinate xyz, and the polar distance from the z axis,

r, are given as:

x = (ξ + η + ζ)(ξx2 + ηx3 + ζx4)
y = (ξ + η + ζ)(ξy2 + ηy3 + ζy4)
z = (ξ + η + ζ)(ξz2 + ηz3 + ζz4)

r = (ξ + η + ζ)
√

(ξx2 + ηx3 + ζx4)2 + (ξy2 + ηy3 + ζy4)2

(2.9)

A ray emanating from node 1 in the plane perpendicular to the crack front (z = 0,

y = ρx) is mapped into η = α1ξ and ζ = α2ξ in natural coordinate system, where α1 and

α2 are functions of nodal coordinates and ρ:

α1 =
(ρx4 − y4)z2 + (y2 − ρx2)z4
(y4 − ρx4)z3 + (ρx3 − y3)z4

α2 =
(y3 − ρx3)z2 + (ρx2 − y2)z3
(y4 − ρx4)z3 + (ρx3 − y3)z4

(2.10)
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By substituting these relations for η and ζ into Eq. (2.9), the distance from the z axis

is given by r = γ1ξ
2, and the Jacobian matrix inverse is developed as:

J−1 =

√
γ1

c1
√
r

⎡
⎢⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎥⎦ (2.11)

where

γ1 =
|z2[y4 − y3 − ρ(x4 − x3)] + z3[y2 − y4 − ρ(x2 − x4)] + z4[y3 − y2 − ρ(x3 − x2)]|

[(ρx4 − y4)z3 + (y3 − ρx3)z4]2

|x2(y3z4 − y4z3) + x3(y4z2 − y2z4) + x4(y2z3 − y3z2)|
√
1 + ρ2

c1 = 2(1 + α1 + α2)
2[x4(y3z2 − y2z3) + x3(y2z4 − y4z2) + x2(y4z3 − y3z4)]

p11 = y2(z3 − z4) + z2(y4 − y3) + (1 + 2α1 + 2α2)(y4z3 − y3z4)

p21 = x2(z4 − z3) + z2(x3 − x4) + (1 + 2α1 + 2α2)(x3z4 − x4z3)

p31 = x2(y3 − y4) + y2(x4 − x3) + (1 + 2α1 + 2α2)(x4y3 − x3y4)

p12 = α1y3(z4 − z2) + α1z3(y2 − y4) + (2 + α1 + 2α2)(y2z4 − y4z2)

p22 = α1x3(z2 − z4) + α1z3(x4 − x2) + (2 + α1 + 2α2)(x4z2 − x2z4)

p32 = α1x3(y4 − y2) + α1y3(x2 − x4) + (2 + α1 + 2α2)(x2y4 − x4y2)

p13 = α2y4(z2 − z3) + α2z4(y3 − y2) + (2 + 2α1 + α2)(y3z2 − y2z3)

p23 = α2x4(z3 − z2) + α2z4(x2 − x3) + (2 + 2α1 + α2)(x2z3 − x3z2)

p33 = α2x4(y2 − y3) + α2y4(x3 − x2) + (2 + 2α1 + α2)(x3y2 − x2y3)
(2.12)

As it is seen, all the components of the Jacobian matrix inverse are square root singular.

On the other hand, the components of C in Eq. (2.6) are linearly dependent on the natural

coordinates. Along a ray emanating from node 1, these components have the form of either

a square root function or a combination of constant and square root functions. As a result,

from Eq. (2.5) any component of strain tensor appears as a combination of a singular square

root term together with a constant term.

2.5.2 Edge-based quarter-point tetrahedral (EQPT)

This type of element has straight sides when used near straight crack fronts, However, the

edge lying on the crack front becomes curved when this type of element is employed along

a curved crack front.

EQPT along straight crack front

Consider a EQPT element shown in Fig. 2.4b where side 184 lies along the crack front and

nodes 5, 7, 9 and 10 are moved to the quarter-point position. Assuming the corner node i

is located at (xi, yi, zi), the mid-side and quarter-point nodes positions are given in terms
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of the corner nodes coordinates as:

x5 = (3x1 + x2)/4, y5 = (3y1 + y2)/4, z5 = (3z1 + z2)/4
x6 = (x2 + x3)/2, y6 = (y2 + y3)/2, z6 = (z2 + z3)/2
x7 = (3x1 + x3)/4, y7 = (3y1 + y3)/4, z7 = (3z1 + z3)/4
x8 = (x1 + x4)/2, y8 = (y1 + y4)/2, z8 = (z1 + z4)/2
x9 = (3x4 + x2)/4, y9 = (3y4 + y2)/4, z9 = (3z4 + z2)/4
x10 = (3x4 + x3)/4, y10 = (3y4 + y3)/4, z10 = (3z4 + z3)/4

(2.13)

Now consider the local Cartesian coordinate system xyz located at node 1 (x1 = y1 =

z1 = 0) in a way that the straight crack front lies along z axis (x4 = y4 = 0), as shown in

Fig. 2.4b. The mapping between the natural coordinate ξηζ and the local coordinate xyz,

and also the polar distance from the z axis, r, are given by:

x = (ξ + η)(ξx2 + ηx3)
y = (ξ + η)(ξy2 + ηy3)
z = (ξ + η)(ξz2 + ηz3) + ζ(1 + ξ + η)z4
r = (ξ + η)

√
(ξx2 + ηx3)2 + (ξy2 + ηy3)2

(2.14)

Consider a ray emanating from the point (x, y, z) = (0, 0, d) lying on the plane z = d

stretching in the direction of y = ρx. This ray is mapped into η = β1ξ and ζ = (d +

β2ξ
2)/(z2 + β3ξ), in which β1 = −(y2 − ρx2)/(y3 − ρx3), β2 = −(β1 + 1)z2 − β1(β1 + 1)z3

and β3 = (β1 + 1)z4, in the natural coordinate system. By substituting these relations into

Eq. (2.14), the polar distance from the z axis is given by r = γ2ξ
2, and the inverse of the

Jacobian matrix is developed as:

J−1 =

√
γ2

c2
√
r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q11 q12
f1 + f2

√
r + f3r

h1 + h2
√
r + h3r

q21 q22
g1 + g2

√
r + g3r

h1 + h2
√
r + h3r

0 0
c2
√
r

z4[γ2 + (1 + β1)
√
r]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.15)

21



Chapter 2: Quarter-point tetrahedra

where γ2, c2, qij , fi, gi, and hi are functions of the nodal coordinates and ρ:

γ2 =
|(ρx2 − y2 − ρx3 + y3)(x3y2 − x2y3)|

(ρx3 − y3)2

√
1 + ρ2

c2 = 2(x3y2 − x2y3)(1 + β1)
2

q11 = −y2 − y3(1 + 2β1)

q21 = x2 + x3(1 + 2β1)

q12 = y3β1 + y2(2 + β1)

q22 = −x3β1 − x2(2 + β1)

f1 = dγ2z4(y3 − y2)(1 + β1)

f2 = 2
√
γ2z4(y3z2 − y2z3)(1 + β1)

2

f3 = z4(1 + β1)β2(y3 − y2) + 2(y3z2 − y2z3)(1 + β1)
2β3

g1 = dγ2z4(x2 − x3)(1 + β1)

g2 = −2
√
γ2z4(x3z2 − x2z3)(1 + β1)

2

g3 = z4β2(1 + β1)(x2 − x3)− 2(x3z2 − x2z3)(1 + β1)
2β3

h1 = γ2z
2
4

h2 =
√
γ2z4(z4(1 + β1) + β3)

h3 = z4(1 + β1)β3

(2.16)

At the region close to the edge 184 (r → 0) the components of the first two rows of

Jacobian matrix inverse are square root singular. In addition, the components of C in

Eq. (2.6) are linearly dependent of the natural coordinates. Along a ray emanating from

the point (x, y, z) = (0, 0, d) and normal to the edge 184, it was shown that η = β1ξ and

ζ = (d + β2ξ
2)/(z2 + β3ξ). Considering a two term Taylor series for ζ about ξ = 0 at the

region close to the edge 184, the components of C take the form of either a square root

function or a combination of constant and square root functions. As a result, from Eq.

(2.5) any component of strain tensor except εzz appears as a combination of the dominant

terms of a singular square root and a constant. The normal strain along the crack front εzz,

however, appears as a combination of a square root term together with a constant term. It

is noteworthy that generally a plane strain condition prevails near the front of an embedded

crack, and therefore the strain component εzz is non-singular.

EQPT along curved crack front

Most 3D embedded cracks have curved crack fronts, and therefore analyzing the performance

of quarter-point tetrahedra along curved crack fronts is essential. For simplicity, consider a

trirectangular tetrahedral element of the leg length of L, as shown in Fig. 2.5. When this

element is used as an EQPT along the curved crack front, edge 184 becomes curved and

nodes 5, 7, 9 and 10 are placed at the quarter-point position. The curvature of the crack

front is controlled by the position of node 8 with respect to nodes 1 and 4. Let us assume

that node 8 is located at (x8, y8, z8) = (δ1, δ2, L/2). The mapping between the natural
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Figure 2.5: Trirectangular EQPT attached to a curved crack front in (a) local and (b) natural
coordinate systems.

coordinates ξηζ and the local coordinates xyz is given by Eq. (2.17), which results in the

formation of Jacobian matrix determinant, or simply called Jacobian, as in Eq. (2.18).

x = Lξ(ξ + η)− 4ζδ1(ξ + η + ζ − 1)
y = Lη(ξ + η)− 4ζδ2(ξ + η + ζ − 1)
z = Lζ(1 + ξ + η)

(2.17)

|J| = 2L2(ξ + η)[L(ξ + η)(1 + ξ + η) + 4ζ(ζ − 1)(δ1 + δ2)] (2.18)

As it is seen in Eq. (2.18), the Jacobian vanishes both along the crack front (ξ+ η = 0)

and on the parabolic cylinder of ξ+η = −1/2+
√

1/4− 4ζ(ζ − 1)(δ1 + δ2)/L. The Jacobian

also becomes negative in the region enclosed by the crack front and this parabolic cylinder

(see Fig. 2.5). If the Jacobian is found to be negative, the mapping for the element is

not bijective, indicating that the region of the parent element enclosed by the edge and

the parabolic cylinder has been mapped outside the boundary of the real element. The

volume of the overlapped region, and therefore the integration error in the element stiffness

matrix, depends on the curvature of the element edge, the element size, and the element

aspect ratio. As δ1 and δ2 approach zero, the parabolic cylinder becomes narrower, and

the numerical error decreases. This parabolic-cylindrical region with negative Jacobian

also occurs in the quarter-point twenty-noded brick element [Banks-Sills, 1991], collapsed

quarter-point twenty-noded brick element [Manu, 1983], and quarter-point fifteen-noded

pentahedral element [Peano and Pasini, 1982], if the surface opposing the crack front remains

planar. However, moving the mid-side nodes of that face opposing the crack front defines

a parabolic-cylindrical surface, which makes the overlapped region near the crack front
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vanish. In the case of QPTs, however, there is no element face opposing the crack front

elements, and therefore the overlapped region cannot be removed using such a technique.

Here it is suggested that the mid-side nodes on the crack front are moved in order to make

the EQPTs straight-sided.

2.5.3 Numerical integration in QPTs

Despite the singularity of strains at one node in CQPT and along an edge in EQPT, these

elements still satisfy the necessary conditions for finite element convergence [Zienkiewicz

and Taylor, 1989]. These conditions include: (1) Inter-element compatibility and continuity

are satisfied as the elements are isoparametric. (2) Shape functions accommodate the rigid

body motion of the element. (3) Element deformation accommodates a constant strain

form. (4) Strain energy in these elements is finite. This implies that although strains are

singular at a node or an edge, the components of stiffness matrix in Eq. (2.7) have finite

values. However, in order for the FE convergence to occur, the required order of numerical

integration in each element has to be met. In the case of standard quadratic tetrahedral,

the lower bound for the number of Gauss points is four [Zienkiewicz and Taylor, 1989].

The lower bound for the number of Gauss points must integrate the volume of quarter-

point tetrahedra exactly. This is because as the mesh is indefinitely refined, a constant strain

and strain energy is approached throughout each element. In quarter-point tetrahedra, the

Jacobian determinant is developed as |J| = 12V (ξ+η+ζ)3 and |J| = 12V (ξ+η)2(1+ξ+η)

for CQPT and EQPT, respectively, where V is the element volume. It can be shown that a

four-point Gauss rule computes the volume of CQPT with 0.43% error, while it determines

the exact volume of EQPT. As the CQPTs exist only in a small region near the crack

front, this very small error can be neglected. Moreover, although higher-order integrations

compute a more accurate stiffness matrix, they add significantly to the computation cost,

while the improvement in the accuracy of the finite element solution might be trivial. In

fact, the error in the reduced integration scheme may compensate for the overestimation

of the structural stiffness, and some of the more compicated displacement modes show less

resistance to deformation. Therefore, a reduced integration by a four-point Gauss rule

seems to be suitable for the quarter-point tetrahedra. It is noteworthy that a higher order

integration may be required for quarter-point tetrahedra when interface/contact elements

are used on the crack surface.

Discretizing the boundary of the domain yields a set of surface elements on external

boundaries and crack surfaces. These elements make no stiffness contribution, and are only

used to evaluate surface integrals by external or contact tractions. Employing quarter-

point tetrahedra introduces quarter-point triangle elements over the crack surfaces (see Fig.
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2.7). To compute the vector of nodal forces produced by surface traction, a numerical

integration is required, for which the minimum order of integration has to be determined.

The lower bound of the order of numerical integration must compute the area of quarter-

point triangle elements exactly. Considering the Jacobian determinant for straight-sided

quarter-point triangles, it can be shown that a three-point quadrature rule computes the

area exactly. A higher order numerical integration improves the accuracy of the values

of nodal forces produced by surface tractions. In fact, the numerical integration of order

four, which requires six integration points, computes the exact values of nodal forces for

a uniform surface traction. However, in this case the improvement in the accuracy of the

crack tip fields and SIFs when increasing the order is trivial. Hence, a standard three-point

Gauss rule, which is already recommended for standard quadratic triangular elements, is

also suggested for quarter-point triangles. It is noteworthy that when a non-uniform surface

traction is applied on the crack surfaces, or the quarter-point triangles perform as contact

elements, a higher order integration may be necessary.

Although a strain singularity occurs at quarter-point tetrahedra, these elements seem

to be less accurate than other types of quarter-point elements shown in Fig. 2.1. Element

types collapsed quarter-point hexahedrals and quarter-point pentahedrals are crafted in

a fan-shape arrangement around the crack front. Therefore, in addition to reproducing

the required strain singularity in their entire domains, they accurately model the angular

distributions of crack tip fields. This is not the case for the quarter-point tetrahedra, which

are placed randomly around the crack front in arbitrary meshes, and their size and shape

are not often controlled. This random arrangement leads to a considerable variation of the

size of the QPTs along the crack front. Elements with large angles are also generated that

poorly reproduce the angular distribution of the crack tip fields. Therefore, as is shown later

in this chapter, although QPTs perform significantly better than the standard tetrahedra,

there might still be inaccuracies very close to the crack front. Some strategies, which are

presented later in this chapter, can be used to avoid these inaccuracies influencing the SIF

results.

2.6 Mapping between natural and global coordinates

The computation of the SIFs from the displacement correlation and disk-shaped domain

integral methods in Chapters 3, 4, and 5 requires the computation of the FE field values

at a given point inside tetrahedra or triangles. In order to obtain the field values at the

given point p, first the tetrahedral or triangular element containing it must be identified

through a search algorithm. Then, the natural coordinates of that point inside the element

must be determined. This requires explicit relations for the mapping between the natural
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Figure 2.6: Mapping of the point p inside (a) standard quadratic tetrahedral, (b) corner-based
quarter-point tetrahedra (CQPT), and (c) edge-based quarter-point tetrahedra (EQPT) from global
coordinate system xyz to point p′ inside (d) parent tetrahedral element in natural system ξηζ.

and global coordinates in standard and quarter-point tetrahedra and triangles. Once the

natural coordinates are computed from the mapping relations, the fields can then be readily

obtained through the shape functions. This section describes in detail the mapping between

natural and global coordinates in standard and quarter-point tetrahedra and triangles, and

explains the procedure to obtain the field values at a given point in these elements.

2.6.1 Tetrahedral element

Consider a tetrahedral element of any type with straight edges as shown in Fig. 2.6a-

c. The corner node i of these elements has the coordinates (xi, yi, zi), and the point p is

located at (xp, yp, zp) in the coordinate system xyz. The volume of the tetrahedral element

V is computed by the determinant given in Eq. (2.19). The volumes of smaller internal

tetrahedra which are generated with one face of the main tetrahedral and the point p are

also computed from the determinants in Eq. (2.20). The point p is inside the tetrahedral

element if all the determinants, or volumes, in Eq. (2.20) are non-negative (Vi ≥ 0).

V =
1

6

∣∣∣∣∣∣∣∣
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ (2.19)

V1 =
1

6

∣∣∣∣∣∣∣∣
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1
xp yp zp 1

∣∣∣∣∣∣∣∣ , V2 =
1

6

∣∣∣∣∣∣∣∣
xp yp zp 1
x3 y3 z3 1
x4 y4 z4 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ ,

V3 =
1

6

∣∣∣∣∣∣∣∣
x2 y2 z2 1
xp yp zp 1
x4 y4 z4 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ , V4 =
1

6

∣∣∣∣∣∣∣∣
x2 y2 z2 1
x3 y3 z3 1
xp yp zp 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣

(2.20)
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The point p inside any type of tetrahedral element in Fig. 2.6a-c is mapped to the

point p′ inside the parent tetrahedral element shown in Fig. 2.6d. In the case of standard

tetrahedral element in Fig. 2.6a, the global coordinates are mapped linearly into the natural

ones through Eq. (2.21). Solving these equations for the natural coordinates gives the

coordinates of p′ as volume fractions in Eq. (2.22):

x = x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ
y = y1 + (y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ
z = z1 + (z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ

(2.21)

ξp′ =
V2

V
, ηp′ =

V3

V
, ζp′ =

V4

V
(2.22)

In the case of quarter-point tetrahedra, however, careful attention is required, as the

mapping is not linear, and the volume fractions in Eq. (2.22) are no longer valid for the

computation of the natural coordinates. In addition, these types of elements have specific

orientations, which need to be taken into account. Assume the orientations shown in Fig.

2.6b,c, which renders the midside nodes 5, 7, and 8 for the CQPT moved to the quarter-

point position from node 1, and the nodes and 5, 7, 9, and 10 for the EQPT moved to

the quarter-point position from nodes 1 and 4. The mapping functions are developed as

Eqs. (2.23) and (2.24) for the CQPT and EQPT, respectively. Solving these equations for

non-negative natural coordinates, and simplifying the resulting algebraic equations give the

natural coordinates of p′ for CQPT and EQPT through Eqs. (2.25) and (2.26), respectively.

x = x1 + (ξ + η + ζ)
[
(x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ

]
y = y1 + (ξ + η + ζ)

[
(y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ

]
z = z1 + (ξ + η + ζ)

[
(z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ

] (2.23)

x = x1 + (ξ + η)
[
(x2 − x1)ξ + (x3 − x1)η

]
+ (x4 − x1)(1 + ξ + η)ζ

y = y1 + (ξ + η)
[
(y2 − y1)ξ + (y3 − y1)η

]
+ (y4 − y1)(1 + ξ + η)ζ

z = z1 + (ξ + η)
[
(z2 − z1)ξ + (z3 − z1)η

]
+ (z4 − z1)(1 + ξ + η)ζ

(2.24)

ξp′ =
V2√

V (V − V1)
, ηp′ =

V3√
V (V − V1)

, ζp′ =
V4√

V (V − V1)
(2.25)

ξp′ =
V2√

V (V2 + V3)
, ηp′ =

V3√
V (V2 + V3)

, ζp′ =
V4

V +
√
V (V2 + V3)

(2.26)

Once the natural coordinates are known, the displacements of the point p are obtained

by interpolating the values of nodal displacements. The displacement gradients and strains

are also determined by substituting the natural coordinates in the so-called B matrix. The

stress tensor is then computed from the strains using σ = Dε, where D is the elasticity

matrix containing the material properties.
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Figure 2.7: Mapping of point p inside (a) standard quadratic triangle, (b) corner-based quarter-point
triangle (CQPTr), and (c) edge-based quarter-point triangle (EQPTr) from the global coordinate
system xyz to a point p′ inside the (d) parent triangle element in the natural coordinate system ξη
(n̄ = n/|n|).

2.6.2 Triangular element

Due to moving of the mid-side nodes to the quarter-point position at the crack front region,

two types of quarter-points triangles are also developed at the crack surfaces: corner-based

quarter-point triangles (CQPTr) which share one node with the crack front, and edge-

based quarter-point triangles (EQPTr) which share one edge with the crack front. Consider

a planar triangular element of any type with straight edges on the crack surfaces as shown

in Fig. 2.7a-c. The corner node i of these elements has the coordinates (xi, yi, zi), and the

point p lies on the crack surface, locating at (xp, yp, zp) in the global coordinate system xyz.

The normal vector to these elements (n = (nx, ny, nz)) is computed from Eq. (2.27), and

the area of the triangular element A is given by the determinant in Eq. (2.28). The area of

smaller internal triangles which are generated with one edge of the main triangle and the

point p are also computed from the determinants in Eq. (2.29). The point p is inside the

triangle element if all determinants in Eq. (2.29) are non-negative (Ai ≥ 0).

nx =

∣∣∣∣∣∣∣∣
1 0 0 0
x2 y2 z2 1
x3 y3 z3 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ , ny =

∣∣∣∣∣∣∣∣
0 1 0 0
x2 y2 z2 1
x3 y3 z3 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ , nz =

∣∣∣∣∣∣∣∣
0 0 1 0
x2 y2 z2 1
x3 y3 z3 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ (2.27)

A =
1

2|n|

∣∣∣∣∣∣∣∣
nx ny nz 0
x2 y2 z2 1
x3 y3 z3 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ (2.28)

A1 =
1

2|n|

∣∣∣∣∣∣∣∣
nx ny nz 0
x2 y2 z2 1
x3 y3 z3 1
xp yp zp 1

∣∣∣∣∣∣∣∣ , A2 =
1

2|n|

∣∣∣∣∣∣∣∣
nx ny nz 0
xp yp zp 1
x3 y3 z3 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣ , A3 =
1

2|n|

∣∣∣∣∣∣∣∣
nx ny nz 0
x2 y2 z2 1
xp yp zp 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣
(2.29)
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Using the shape functions of a quadratic triangular element in Eq. (2.30), the point p

inside any type of triangular elements in Fig. 2.7a-c is mapped to the point p′ inside the

parent triangle element shown in Fig. 2.7d (λ = 1 − ξ − η). Consider two arbitrary unit

vectors t1 and t2 which lie on the plane passing through element face in a way that three

vector t1, t2, and n build a right-handed Cartesian coordinate system x′y′z′ (n = t1 × t2).

Also consider the vectors rp = (xp, yp, zp), and ri = (xi, yi, zi), i = 1, 2, 3. The mapping

function of a standard triangular element in Fig. 2.7a from x′y′z′ space to ξη space is

therefore obtained as Eq. (2.31). Solving these equations for the natural coordinates and

simplifying the resulting equations using t1 × t2 = n/|n| give the coordinates of p′ as the

area fractions in Eq. (2.32):

N1 = λ(2λ− 1) , N2 = ξ(2ξ − 1) , N3 = η(2η − 1)
N4 = 4λξ , N5 = 4ξη , N6 = 4λη

(2.30)

x′ = t1.rp = t1.r1 + t1.(r2 − r1)ξ + t1.(r3 − r1)η
y′ = t2.rp = t2.r1 + t2.(r2 − r1)ξ + t2.(r3 − r1)η
z′ = n.rp = n.r1

(2.31)

ξp =
A2

A
, ηp =

A3

A
(2.32)

In the case of quarter-point triangles, special attention is required as the mapping is no

longer linear and these elements have specific orientations. Assume the orientations shown

in Fig. 2.7b and c, which renders the midside nodes 4 and 6 in the CQPTr are moved to

the quarter-point position towards node 1, and nodes 4 and 5 for the EQPTr are moved to

the quarter-point positions towards nodes 1 and 3, respectively. Using the shape functions

in Eq. (2.30), the mapping functions are developed as Eqs. (2.33) and (2.34) for the

CQPTr and EQPTr elements, respectively. Solving these equations for non-negative natural

coordinates and simplifying the resulting algebraic equations give the natural coordinates

of p′ for CQPTr and EQPTr through Eqs. (2.35) and (2.36), respectively.

x′ = t1.rp = t1.r1 +
[
t1.(r2 − r1)ξ + t1.(r3 − r1)η

]
(ξ + η)

y′ = t2.rp = t2.r1 +
[
t2.(r2 − r1)ξ + t2.(r3 − r1)η

]
(ξ + η)

z′ = n.rp = n.r1

(2.33)

x′ = t1.rp = t1.r1 + t1.(r2 − r1)ξ
2 + t1.(r3 − r1)(ξ + 1)η

y′ = t2.rp = t2.r1 + t2.(r2 − r1)ξ
2 + t2.(r3 − r1)(ξ + 1)η

z′ = n.rp = n.r1

(2.34)

ξp′ =
A2√

A(A2 +A3)
, ηp′ =

A3√
A(A2 +A3)

(2.35)

ξp′ =

√
A2

A
, ηp′ =

A3

A+
√
AA2

(2.36)
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Once natural coordinates are known, the displacements of point p are obtained by

interpolating the values of nodal displacements using triangle shape functions in Eq. (2.30)

and u =
∑6

i=1Niui, v =
∑6

i=1Nivi, w =
∑6

i=1Niwi. Surface tractions are also computed

in the same way using the values of tractions at the nodes. The nodal tractions may be

known through predefined boundary conditions, or the FE results of a contact treatment

on the crack surfaces.

2.7 Conclusions

It is demonstrated that both types of quarter-point tetrahedral elements generated at the

crack font can reproduce a square root stress singularity near the crack front. It is also

shown that the Jacobian becomes negative in a small region near the curved side of the

quarter-point tetrahedra attached to the curved crack fronts. It is therefore suggested to

make curve sides straight when using the quarter-point tetrahedra along the curved crack

fronts.
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A displacement correlation scheme
for the computation of SIFs
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3.1 Abstract

A displacement correlation (DC) scheme is proposed in combination with QPTs to compute

stress intensity factors (SIFs) from unstructured meshes. This straightforward method is

of computational low cost and easy to implement. The accuracy of the SIFs computed

for through-the-thickness, penny, and elliptical crack configurations has been validated by

using the available analytical formulations. The average error of the computed SIFs using

relatively fine unstructured meshes varies from 1% for the through crack to about 4% for

the elliptical crack configurations. The results of an extensive parametric study also suggest
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the existence of an optimum mesh-dependent distance from the crack front at which the

DC method computes the most accurate SIFs. Overall, numerical results in this chapter

confirm that the stress singularity is modeled with good accuracy by using quarter-point

tetrahedral finite elements in a fully unstructured tetrahedral mesh.

3.2 Introduction

Chapter 2 discusses how unstructured tetrahedral meshes are effective in analyzing complex

three-dimensional cracked bodies due to the simplicity, efficiency and robustness of meshing

schemes by tetrahedra. It also describes how quarter-point tetrahedra accurately reproduce

the crack front strain singularity. This chapter addresses the second difficulty in using

unstructured meshes in fracture mechanics: the accurate computation of SIFs from the FE

solution of tetrahedral elements. It is well known that the SIFs fully characterize the stress

state adjacent to the crack in the context of Linear Elastic Fracture Mechanics (LEFM),

and therefore they are the key factors in the accurate estimation of the onset of brittle

crack propagation. Existing methods to extract the SIFs using tetrahedral elements are

complex, and often suffer from oscillations [Červenka and Saouma, 1997; Rajaram et al.,

2000; Paluszny and Zimmerman, 2011], while others require very fine meshes near the crack

front, rely on complicated numerical procedures, and are applied on arbitrary domain shapes

and sizes [Okada et al., 2008; Daimon and Okada, 2014]. Therefore, accurate, efficient and

reliable methods have yet to be introduced.

Techniques for the SIF computation from FE results generally fall into two categories:

energy methods and direct approaches. Energy methods are based on the computation of

energy released rate G, and the use of the relationships between G and the SIFs to compute

the SIFs indirectly [Irwin, 1956]. Three main methods have been proposed to compute

G under LEFM assumption: (i) J-integral, which is equivalent to G for elastic materials,

was originally developed as a contour integral around the crack tip [Rice, 1968], and was

later transformed into an equivalent domain integral [DeLorenzi, 1982; Li et al., 1985]. (ii)

Virtual crack extension (VCE) which was proposed by Parks [1974] and computes the rate

of the change in total potential energy for a system for a small virtual extension of the

crack. (iii) Virtual crack closure technique, which was originally proposed by Rybicki and

Kanninen [1977] and uses Irwin’s crack closure integral. Direct approaches, on the other

hand, are based on the comparison of FE stress or displacement distribution adjacent to the

crack with the stress or displacement field expressions. Stress/displacement extrapolation

and correlation are the main approaches in this category.

The direct methods based on displacements have been of more interest due to the fact

that the FE displacement fields are the most accurate fields obtained from a FE solution.
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This methodology was first developed for a general FE solution of a crack problem without

using any crack tip or quarter-point elements around the crack [Chan et al., 1970]. As

the FE results for stresses at crack tip are bounded in these solutions, the FE results

for displacements are not very accurate close to the crack tip. To avoid these numerical

inaccuracies very close the crack tip, Chan et al. [1970] proposed a linear extrapolation

scheme. In this approach, the SIFs obtained from displacements at nodes along a ray

emanating from the crack tip are extrapolated to the crack tip. The most accurate results

were obtained when the extrapolation procedure was based on the displacements on the

crack faces. A major drawback of the extrapolation method is that it is based on a relatively

arbitrary extrapolation process which can be a source of error in the SIF computation.

By the introduction of QPEs, Barsoum [1976] suggested a correlation scheme in which

displacements of the quarter-point nodes are fitted to the crack tip displacement expressions.

This method, which shall be referred to as displacement correlation (DC), does not require

arbitrary extrapolation and computes the SIFs using the displacements of the two quarter-

point nodes only, one on the top crack face and the other on the bottom one. Shih et al.

[1976] then modified this correlation scheme by correlating the displacement distribution

over the entire quarter-point element. This scheme uses the displacements of four nodes of

quarter-point elements lying on the crack faces. Ingraffea and Manu [1980] generalized this

approach to compute the SIFs for 3D crack configurations using collapsed quarter-point

twenty-noded brick elements. The DC method is computationally very cheap and is able

to yield very good approximations of the SIFs [Kuna, 2013].

The concept of employing the displacement fields to extract the SIFs has also been widely

used in experimental fracture mechanics. Experimental methods such as moiré and digital

image correlation (DIC) provide the experimental displacement fields around the crack tip

[Dally and Riley, 1991; McNeill et al., 1987]. In order to estimate crack parameters from

these fields, correlation methods are generally used to fit the local displacement data points

to the established crack tip expressions. Some techniques such as the over-deterministic

approach, which was originally developed for the experimental estimation of the SIFs [Dally

and Riley, 1991], have recently been applied to estimate the 2D crack and sharp notch

parameters from the FE displacement solutions [Ayatollahi and Nejati, 2011a,b]. This

methodology is called the finite element over-deterministic (FEOD) approach, and is based

on a least-squares scheme to fit the displacements of a large number of points near the crack

tip to the crack tip field expressions. This simple and straightforward method is able to

compute very accurate results, not only for the SIFs, but also the higher-order parameters

of the crack tip asymptotic fields. This literature provides evidence of the applicability and

efficiency of the near-tip displacement fields for the accurate computation of the SIFs.
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The DC approach is conceptually simple and straight-forward, its results can be in-

terpreted easily, and unlike displacement extrapolation, it does not require any arbitrary

extrapolation procedure. Unlike energy methods which usually require further integration,

which can be a further source of error, the DC method directly use the FE nodal values to

obtain the SIFs. Therefore, the level of the accuracy of the SIFs values obtained by this

method directly indicates the level of the accuracy of the FE solution around the crack tip.

However, the applicability and efficiency of the DC method on unstructured meshes has

not previously been investigated. This chapter describes the application of this method on

quarter-point tetrahedral elements in an unstructured mesh around the crack front. This is

done in order to (i) develop a simple and straightforward method to provide computation-

ally cheap approximations of the SIFs from the unstructured meshes, and (ii) evaluate the

accuracy of the quarter-point tetrahedra in reproducing the square root stress singularity

near the crack front. As the DC method directly uses the FE fields to estimate the SIFs, the

accuracy of fields obtained by the quarter-point tetrahedra can be assessed by investigating

the accuracy of SIFs obtained from the DC method. The results presented in this chapter

provide evidence on the reliability, efficiency and accuracy of the unstructured meshes by

tetrahedral elements for analyzing cracked bodies.

3.3 Displacement correlation method to extract SIFs

Generally, there is no analytical solution for the fields near the crack front of an arbitrary

3D crack configuration. However, it has been shown that asymptotically, as r → 0, a plane

strain condition prevails locally, so that the three-dimensional deformation fields approach

the two-dimensional plane strain fields [Nakamura and Parks, 1988, 1989]. Therefore, the

2D plane strain fields can be employed to express the stress/displacement fields near any

point along the crack front. The so-called Williams series expansions describe the linear

elastic stress fields for a 2D cracked plate subjected to an arbitrary load [Williams, 1957].

In the region close to the crack tip, the first terms, which are singular terms, in these

expansions are dominant, giving singular stress fields near the crack tip. The stress field

near any point on the crack front of 3D embedded cracks is therefore considered to be in
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the form of this singular field in the plane strain condition [Anderson, 2005]:
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where ν is Poisson’s ratio, and r and θ are the polar coordinates in the local Cartesian

coordinate system xyz which is perpendicular to the crack front, as shown in Fig. 3.1a. At

the meeting point of the crack front and free surfaces, where a plane strain condition is no

longer valid, the definition of the stress intensity factor loses its meaning, as the order of

singularity at these corners is different from the order of singularity at cracks [Nakamura and

Parks, 1988, 1989]. Therefore, the assumption of plane strain conditions is true anywhere on

the crack front at which the definition of the SIFs exists. Using Eq. (3.1), the displacement

fields adjacent to the crack tip are given as [Anderson, 2005]:
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(3.2)

where μ = E/2(1+ν) is the shear modulus, E and ν are the Young’s modulus and Poisson’s

ratio, and κ is the Kolosov parameter which is equal to κ = 3− 4ν in the plane strain con-

dition. Eq. (3.2) characterizes the distribution of the displacements in an orthogonal plane

to the crack front (z = 0) as shown in Fig. 3.1a. Once the FE analysis is performed, the

displacement field over the domain is available, and the displacements near crack front can

be employed to compute the SIFs by fitting the local FE displacements to the expressions

in Eq. (3.2). The original DC method involves the correlation of the relative FE nodal

displacements on the crack faces/surfaces with the crack tip displacement field expressions

[Barsoum, 1976; Shih et al., 1976; Ingraffea and Manu, 1980]. The displacements are rec-

ommended to be taken from the crack faces, because there: (i) The displacement fields
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Figure 3.1: (a) Local Cartesian coordinate system at a point along a curved crack front and crack
tip stresses, (b) The relative displacements of two matched points lie on top m+(rm, π) and bottom
m−(rm,−π) surfaces.

corresponding to different crack modes are uncoupled; (ii) The displacement corresponding

to each mode has a significant value on the crack surfaces compared to other rays emanating

from the crack tip, and therefore the relative numerical error in the displacement value is

less on the crack surfaces; (iii) Since the relative displacements of the matched nodes lying

on the top and bottom crack surfaces are used, the rigid body translation and rotation

of the crack cancels out [Ayatollahi and Nejati, 2011a]. Using Eq. (3.2), the distribution

of relative displacements of the top surface (θ = π) with respect to the bottom surface

(θ = −π) e.g. Δu = uθ=π − uθ=−π, are given by

Δu = KII

(
κ+ 1

μ

)√
r

2π
, Δv = KI

(
κ+ 1

μ

)√
r

2π
, Δw = KIII

(
4

μ

)√
r

2π
(3.3)

Once the FE solution of the crack problem is performed, the relative displacement of

the points over the crack surfaces can be employed in Eq. (3.3) to compute the SIFs.

The available displacement correlation schemes, which are based on the use of one of the

three types of quarter-point elements described in Section 2.3, correlate the displacement

distribution over the entire quarter-point elements in order to estimate the SIFs [Ingraffea

and Manu, 1980; Kuna, 2013]. Section 3.3.1 extends this methodology to unstructured

tetrahedral meshes, by developing relations to compute the SIFs from the displacement

distribution over the entire CQPTs. However, the results from this approach, which are

presented and discussed in Section 3.5.2, clearly reveal that the SIF accuracy is influenced

significantly by the local mesh size and quality. This seems to be due to displacement

inaccuracies resulted from the significant variation of the radial size of the quarter-point

elements along the fracture front. Section 3.3.2 proposes a correlation scheme based on the
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displacements of matched points at a fixed distance from the crack front (see Fig. 3.1b),

which circumvents these numerical inaccuracies influencing the SIF computation. Finally,

Section 3.5.2 shows that the SIF results from this correlation scheme are not dependent on

the quality of the mesh near the crack front.

3.3.1 Displacement correlation over entire quarter-point tetrahedra

Quarter-point tetrahedral elements generate two types of triangular elements over the crack

surfaces: (i) when a CQPT shares a face with the crack surface, a corner-based quarter-

point triangular (CQPTr) element is generated which shares only one node with the crack

front; (ii) when a EQPT shares a face with the crack surface, an edge-based quarter-

point triangle (EQPTr) is developed, which shares three nodes with the crack front. Since

the square root singularity occurs in the entire domain of the CQPTs, the displacement

representation of these elements is employed here for the SIF computation. However, the

same approach can be applied to approximate the SIFs from the displacement field in the

EQPTs. Assume that the element face ζ = 0 of a CQPT is one of the corner-based quarter-

point triangles shown in Fig. 3.2. By using Eq. (2.1), the distribution of displacement

component u, which is along the x axis in the local coordinate system xyz, is given by

u = N1u1 +N2u2 +N3u3 +N5u5 +N6u6 +N7u7. Assume that the ray normal to the crack

front, OP in Fig. 3.2, is defined by the natural coordinate 0 ≤ ψ ≤ 1 in such a way that

ψ = 0 and ψ = 1 represents points O and P , respectively. Along this line, the natural

coordinates ξ and η are ξ = ξpψ and η = ηpψ where (ξp, ηp,0) represents the coordinate of

the point P in the natural coordinate system ξηζ. Using Eq. (2.2), the relative displacement

along the ray OP with respect to crack tip displacement is written as:

u =
(
ξp(4u5−u2)+ηp(4u7−u3)

)
ψ+2

(
ξp(u2−2u5)+ηp(u3−2u7)+2ξpηp(u6−u5−u7)

)
ψ2

(3.4)

Employing Eqs. (2.1) and (2.2), the distance of any point lying on OP from the crack tip

is obtained from r = Lpψ
2, where Lp =

√
(ξpx2 + ηpx3)2 + (ξpy2 + ηpy3)2 + (ξpz2 + ηpz3)2

is the length of the line OP . The displacement along the ray OP is therefore given by:

u =
(
ξp(4u5−u2)+ηp(4u7−u3)

)√ r

Lp
+2

(
ξp(u2−2u5)+ηp(u3−2u7)+2ξpηp(u6−u5−u7)

) r

Lp

(3.5)

In the special case when ξp = 1 or ηp = 1, one of the sides of triangle is normal to the

crack front. The displacement is then given by u = (4u5 − u2)
√

r/L2 + (2u2 − 4u5)r/L2

and u = (4u7 − u3)
√

r/L3 + (2u3 − 4u7)r/L3 for ξp = 1 and ηp = 1, respectively. Here

L2 =
√

x22 + y22 + z22 and L3 =
√

x23 + y23 + z23 are the lengths of the element sides on ξ

and η axes, respectively. The equation for this special case is similar to the ones reported
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Figure 3.2: Matched triangular elements used to extract the SIFs from CQPTs.

in Shih et al. [1976]; Ingraffea and Manu [1980]. The first term in Eq. (3.5) reproduces

the displacement field due to the singular stress field, while the second term represents the

displacement due to the constant stress. To compute the coefficients of the singular stress

terms, only the first term needs to be considered. One can now write these expressions in

terms of the relative displacement of the top surface element with respect to the bottom

surface element, and extend these equations to include the displacement variation in y and

z directions (v and w) as Eq. (3.6). Equating Eqs. (3.6) and (3.3) gives the SIFs as Eq.

(3.7):

Δu =

[
ξp

(
4(u5 − u5∗)− (u2 − u2∗)

)
+ ηp

(
4(u7 − u7∗)− (u3 − u3∗)

)]√ r

Lp

Δv =

[
ξp

(
4(v5 − v5∗)− (v2 − v2∗)

)
+ ηp

(
4(v7 − v7∗)− (v3 − v3∗)

)]√ r

Lp

Δw =

[
ξp

(
4(w5 − w5∗)− (w2 − w2∗)

)
+ ηp

(
4(w7 − w7∗)− (w3 − w3∗)

)]√ r

Lp

(3.6)
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)
+ ηp
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(
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4(w5 − w5∗)− (w2 − w2∗)
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)]
(3.7)

With the presence of symmetry in the geometry and symmetry/antisymmetry in the

loading conditions, only one of the crack faces needs to be modeled. In this case uθ=−π =

−uθ=π, vθ=−π = −vθ=π and wθ=−π = −wθ=π, and therefore the SIFs are computed using

the displacements of the nodes on the top crack surface as:
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It will be demonstrated in Section 3.5.2 that the results from the relations provided in

this section exhibit dependency on the quality of the mesh near the crack front. The reason

for such behavior can be attributed to the significant variation of quarter-point tetrahedra

along the crack front in a fully unstructured mesh. When a 3D cracked body is discretized

using a structured mesh, one of the three types of quarter-point elements described in Sec-

tion 2.3 is often used at the crack front. Due to the special arrangement of these elements,

the radial and angular sizes of the elements are fully controlled. Two lateral sides of the

quarter-point elements are also constrained to be perpendicular to the crack front [Ingraffea

and Manu, 1980; Kuna, 2013]. In unstructured meshes, however, no constraint is imposed

on the radial and angular sizes of quarter-point tetrahedra. Therefore, despite the repro-

duction of the singularity over the quarter-point tetrahedra, the displacement fields over

these elements may not be as accurate as the fields obtained by the other three types of

quarter-point elements. This is because the radial size of the quarter-point elements may

vary significantly along the fracture front, and the angular dependence of the displacement

fields can only be reproduced poorly due to their arbitrary, and often large, angles. The

radial and angular distribution of crack tip fields may not therefore be captured very ac-

curately, even though the stress singularity has been reproduced. This inaccuracy may not

influence the SIF computation when energy methods such as the J-integral are employed.

This is because these methods rely on an integration over a domain, which reduces the

influence of local numerical inaccuracies on the SIF computation (see Chapter 4). However,

the SIF values may be considerably influenced by local numerical inaccuracies when local

displacements are used in a displacement correlation scheme. Therefore, it is expected that

a correlation method based on the displacement distribution over the quarter-point tetra-

hedral elements would be dependent not only on the local mesh size, but also on the quality

of mesh near the crack front.

3.3.2 Displacement correlation at a fixed distance

In this section we propose a correlation scheme where the crack tip displacement expressions

are correlated with the relative displacements of two matched points located at a fixed

distance from the crack front. Assume that two matched points m+ and m− located on
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the top and bottom surfaces of the crack, and the line connecting these matched points

to the point s on the crack front is orthogonal to the crack front. These points have the

coordinates (rm, π) and (rm,−π) in the local coordinate system xyz located at the point s

(see Fig. 3.1b). Since these points are located at a fixed distance rm from the point s, they

do not necessarily belong to the quarter-point tetrahedral elements. A search algorithm

can find the tetrahedral and triangular elements that contain these points (see Section

2.6). The natural coordinates of these points in their corresponding elements can also be

determined by using the relations given in Section 2.6. Once the natural coordinates are

obtained, the displacements are readily computed using the shape functions. The relative

displacement in the local coordinate system xyz are then given by Δu = um+ − um− ,

Δv = vm+−vm− , and Δw = wm+−wm− . Due to the presence of symmetry in the geometry

and symmetry/antisymmetry in the loading conditions, only one of the crack faces needs

to be modeled. In these cases the crack is deformed under only one of the deformation

modes, and the following relations hold: vm+ = −vm− for pure mode I, um+ = −um− for

pure mode II, and wm+ = −wm− for pure mode III. Therefore, the relative displacement

for half-crack models can be obtained by Δu = 2um+ = −2um− , Δv = 2vm+ = −2vm− , and

Δw = 2wm+ = −2wm− . By correlating the numerical values of the relative displacements

with the expressions in Eq. (3.3), the pointwise SIFs at the point s are then computed

from:

KI =

√
2π

rm

(
μ

κ+ 1

)
Δv , KII =

√
2π

rm

(
μ

κ+ 1

)
Δu , KIII =

√
2π

rm

(
μ

4

)
Δw (3.9)

Unlike the correlation scheme presented in Section 3.3.1, the correlation based on matched

points at a fixed distance computes accurate values for the SIFs. This accuracy is not in-

fluenced by the mesh structure and quality at the crack front, as long as the point of

correlation is far enough from the crack front. The next Section provides numerical results

obtained from this correlation scheme, and Section 3.5 discusses the efficiency and accuracy

of the method and evaluate the influence of various parameters including the distance of

correlation point on the SIF computation accuracy.

3.4 Numerical examples

In order to demonstrate the efficiency and the accuracy of the proposed displacement cor-

relation approach, the SIFs were computed for the following three crack configurations: (i)

through-the-thickness crack in a large thin plate with lateral constraint (plane strain condi-

tion); (ii) penny-shaped crack embedded in a large cube; and (iii) elliptical crack embedded

in a large cube (see Fig. 3.3).
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Figure 3.3: Schematics of (a) Through-the-thickness crack in a large thin plate under uniaxial
tension; (b) Penny-shaped/elliptical crack embedded in a large cube under uniaxial tension.

3.4.1 Experimental setup

All the cracked bodies are subjected to a uniform uniaxial tension in the X2 direction over

the top and bottom surfaces. The cracks lie in the plane X2 = X1 cotβ which makes an

angle β with the direction of the applied load. A horizontal crack configuration (β = 90◦)

produces pure mode I crack deformation, while the inclined one (0◦ < β < 90◦) creates

a mixed-mode condition. In these configurations a denotes half of the crack length for

the through crack, crack radius for the penny-shaped crack, and semi-major axis for the

elliptical crack. The semi-minor axis b of the elliptical crack is perpendicular to the X1X2

plane. A crack length to body width ratio of a/w = 0.1 was considered for all the cracked

bodies. Crack length to plate thickness ratio of a/t = 1 was also considered for the through-

the-thickness crack configuration. As the fracture parameters of these crack configurations

are independent of the value of Young’s modulus, the arbitrary value of E = 1GPa was

used in all models. This is not the case for Poisson’s ratio since the modes II and III SIFs

of embedded cracks depend strongly on the value of this parameter (see analytical solutions

in Appendix). A Poisson’s ratio of ν = 0.3 was used for all the crack simulations except the

ones in Section 3.5.4. Note that the Young’s modulus of E = 0 is considered for triangles

in the model since they do not contribute to the stiffness matrix.
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Boundary conditions

Due to the symmetry in geometry and loading conditions, only one-eighth (X1 > 0, X2 >

0, X3 < 0) and one-half (X3 < 0) of the cracked bodies were modeled for pure mode I

(β = 90◦) and mixed-mode (β = 45◦) conditions, respectively. The following boundary

conditions were applied for mode I models: U1 = 0 over the plane X1 = 0, U2 = 0 over

the plane X2 = 0 except over the crack surface, U3 = 0 over the plane X3 = 0, and

σ = 1MPa over the plane X2 = W . The applied boundary conditions for the mixed-mode

models are also as follows: U1 = 0 at the point X1 = X2 = −W,X3 = 0, U2 = 0 over

the plane X2 = −W , U3 = 0 over the plane X3 = 0, and σ = 1MPa over the plane

X2 = W . For the through-the-thickness crack, the following additional boundary condition

was also applied, to ensure zero lateral displacement: U3 = 0 over the plane X3 = −t.

This boundary condition imposes a plane strain condition over the cracked plate, where

the pointwise SIFs at any point on the crack front follows the solution of the equivalent

2D problem of an inclined central crack in a large plane. This solution gives the SIFs as

follows: KI = σ
√
πa sin2 β, KII = σ

√
πa sinβ cosβ, and KIII = 0. These formulas, along

with the analytical solutions for the SIFs of embedded inclined penny-shaped and elliptical

cracks in infinite solids given in Appendix, will be used to validate the numerical results.

Mesh

An octree-based mesh generation software was employed to generate arbitrary meshes for all

specimens by using 10-noded isoparametric tetrahedral elements. For the elements attached

to the crack front, the nodes near the front are moved from the mid-side point to the quarter-

point position to produce quarter-point tetrahedral elements. The curved edges on the

curved crack fronts were straightened by moving the mid-side nodes of the curved segments.

This avoids the Jacobian becoming negative near the crack front (see Section 2.5.2). The

refinement of the mesh near the crack front was controlled by assigning the number of

segments along the crack front. Consider the crack front of length Lf is discretized by

Nf segments. A parameter called the nominal length (size) of the elements in the crack

front region can be defined as Ln = Lf/Nf . The nominal element length Ln represents

the approximate length of the elements sides near the crack front, and therefore gives an

approximation for the average size of the quarter-point elements in the crack front region.

In all models, the degree of mesh refinement in the crack front region was controlled by

keeping the nominal crack front element size about 0.03 of the crack length (Ln ≈ a/33).

Fig. 3.4 shows the finite element mesh of the mixed-mode penny-shaped crack problem

together with the local mesh refinements near the crack front in different mixed-mode crack
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Figure 3.4: (a) Finite element mesh discretizing one-half of an embedded penny-shaped crack (Total
number of nodes: 43141, Total number of elements: 32892). Details of mesh in crack-front region
for (b) through-the thickness (Ln/a ≈ 0.032), (c) penny-shaped (Ln/a ≈ 0.030), (d) elliptical
(b/a = 0.7, Ln/a ≈ 0.029), (e) elliptical (b/a = 0.4, Ln/a ≈ 0.026) cracks.

configurations. Four- and three-point Gaussian quadrature rules were employed for the

numerical integration over tetrahedral and triangular elements, respectively.

3.4.2 Numerical results

The pointwise SIF values were computed at the location of existing crack front nodes using

Eq. (3.9) when considering rm = 2Ln. The reason for this choice is discussed in Section

3.5.3. The average numerical error of SIF computation for individual modes ei (i = I, II, III)

and average total error et were then evaluated by using Eq. (3.10). In these expressions

KA
i and KN

i are the pointwise analytical and numerical mode i SIFs, respectively, and Lf is

the crack front length. Wherever closed-form integration was not possible, the trapezoidal

rule has been employed to evaluate the integrals numerically.

ei =

∫
Lf

|KA
i −KN

i |dl∫
Lf

|KA
i |dl

i = I, II, III et =

∑III
i=I

∫
Lf

|KA
i −KN

i |dl
∑III

i=I

∫
Lf

|KA
i |dl

(3.10)

Fig. 3.5 shows the variation of the pointwise mode I stress intensity factor along the crack

front of different crack configurations when the cracks are subjected to pure mode I loading

condition (β = 90◦). Analytical solutions for a 2D plane strain central crack problem, and

for 3D penny-shaped and elliptical cracks embedded in infinite solids (Appendix), are also

plotted. The average error eI for these four sets varies from eI = 0.009 in through-the-

thickness crack to eI = 0.037 in the elliptical crack with b/a = 0.4. Fig. 3.6 also shows

the variation of pointwise mixed-mode SIFs along the crack front of four different crack
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Figure 3.5: The variation of normalized mode I (β = 90◦) analytical and numerical SIFs along the
fronts of (a) through-the-thickness (Ln/a ≈ 0.032), (b) penny-shaped (Ln/a ≈ 0.03), (c) elliptical
(b/a = 0.7, Ln/a ≈ 0.029), (d) elliptical (b/a = 0.4, Ln/a ≈ 0.024) cracks. For all cases rm = 2Ln.
The mode I average error is as follows: (a) eI = 0.009, (b) eI = 0.023, (c) eI = 0.024, (d) eI = 0.037.

configurations when β = 45◦. The average total error et varies from et = 0.014 in through-

the-thickness crack to et = 0.039 in the elliptical crack with b/a = 0.4. These results are

obtained from the meshes shown in Fig. 3.4, and the use of finer meshes will result in

the computation of more accurate SIFs. These results demonstrate the efficiency of the

displacement correlation method for computing very good approximations of the SIFs from

arbitrary meshes. Section 4.8 discusses the effects of different parameters involved in the

DC method on these results.

3.5 Discussion

It was mathematically proven in Section 2.5 that a square root strain singularity is re-

produced near the crack front in the quarter-point tetrahedral elements. A displacement

correlation scheme was also suggested in Section 3.3.2 for the fast approximation of the SIFs

from unstructured meshes. Several numerical tests were then performed using the quarter-

point tetrahedra, and the SIFs were computed using the DC approach. This section aims
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Figure 3.6: The variation of normalized mixed-mode (β = 45◦) analytical and numerical SIFs along
the fronts of (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks. The meshes are shown in Fig. 3.4. For all cases rm = 2Ln. The average total
SIF computation error is as follows: (a) et = 0.014, (b) et = 0.025, (c) et = 0.028, (d) et = 0.039.

to discuss these numerical results. To this end, first the performance of the quarter-point

tetrahedra in reproducing the square root singularity is addressed. Then, the reason for

correlating the displacements at points located at a fixed distance from the crack front is

explained. The influence of rm as the main input parameter in the proposed DC method on

the accuracy of the SIFs is discussed afterwards. Finally, the influence of Poisson’s ratio on

the accuracy of DC method and the applicability of the DC method to non-matched crack

surface meshes are addressed.

3.5.1 The performance of quarter-point tetrahedra

This section evaluates the performance of quarter-point tetrahedra in reproducing singu-

larity, and compares them with the standard tetrahedra. Consider the penny-shaped crack

configuration shown in Fig. 3.3b in a mixed-mode loading condition (β = 45◦), with a crack

surface mesh structure shown in Fig. 3.7a. Two points on the crack front are selected, and

the normal rays emanating from these points, which also lie on the crack surfaces, are shown

in Fig. 3.7a. The relative displacements of the top surface with respect to the bottom sur-
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Figure 3.7: (a) The mesh structure on the crack surfaces of a penny-shaped crack under mixed-mode
loading condition (β = 45◦, Ln/a ≈ 0.030). It also shows two normal rays to the crack front which
lie on the crack surface and emanate from two arbitrary points. (b,c,d) The variation of normalized
relative displacements of the crack surfaces along the two rays against the normalized distance from
the crack front. The results are reported for two cases: (QPT) when quarter-point tetrahedra
are used at the crack front; and (ST) when standard tetrahedra are employed at the crack front.
Δu∗ = KII(κ + 1)

√
3Ln/2π/μ, Δv∗ = KI(κ + 1)

√
3Ln/2π/μ, Δw∗ = 4KIII

√
3Ln/2π/μ where KI,

KII, and KIII are the analytical values of the SIFs at the corresponding points (see Appendix).

face, i.e. Δu,Δv,Δw shown in Fig. 3.1b, are computed for the points along these rays.

These values are then normalized using the analytical values of relative displacements at

the points r = 3Ln on each ray (Δu∗,Δv∗, and Δw∗). Figs. 3.7b-d compare the numerical

values of these normalized relative displacements along the two rays with the analytical

results obtained from Eq. (3.3). The numerical values are reported for two cases: (i) when

quarter-point tetrahedra are used at the crack front, where ray 1 and ray 2 pass through a

CQPT and an EQPT, respectively, and (ii) when standard tetrahedra are employed at the

crack front.

The main features of these plots are as follows: (1) The quarter-point tetrahedra sig-

nificantly improve the FE displacements near the crack front by reproducing the square

root singularity at the crack front. The standard tetrahedra, however, capture poorly the

high displacement gradients near the crack front, which results in considerable numerical
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error near the crack front. These plots clearly depict the difference between a polynomial

interpolation of displacement in standard tetrahedra and a square root one in quarter-point

tetrahedra. (2) For either of these element types, the displacement variation near the crack

front (r/Ln < 1.5) differs slightly from one ray to another. This suggests that the FE results

are sensitive to the quality of the elements near the crack front. This mesh sensitivity, how-

ever, decays at further points from the crack front, and the displacement variations along

all rays match very well. (3) For r/Ln > 1.5 an offset is observed between the relative dis-

placements from quarter-point and standard tetrahedra, with the result from quarter-point

tetrahedra being more accurate. This suggests that the use of the quarter-point tetrahedra

improves not only the near-front fields, but also the displacements far from the crack front.

(4) It is seen that the FE results, when using either of the quarter-point element types,

start deviating from the analytical values at r/Ln = 2. The reason is that the analytical

formula in Eq. (3.3) ignores the higher-order terms of the crack tip field expressions, and

only considers the displacements generated by the singular stress terms. The FE results,

however, capture the effects of higher order terms. Therefore, the points far from the crack

front should not be used in a correlation scheme for the SIF computation. The displacement

variation along any other ray follows the same behavior. Overall, quarter-point tetrahedra

provide much more accurate results compared with standard tetrahedra, and thus, should

generally be favoured.

3.5.2 The method of correlation

A similar correlation scheme to the one proposed for collapsed quarter-point hexahedra

[Ingraffea and Manu, 1980] was developed for the quarter-point tetrahedra in Section 3.3.1.

This scheme uses the displacement distribution over the entire corner-based quarter-point

elements. From Eqs. (3.7) and (3.8), it is clear that the correlation is carried out using the

displacements at two points: point p located at the intersection of the normal to the crack

front and the element edge opposing the crack front, and point q located at the quarter-

point position of point p. It is also seen that the displacement of the mid-side node on the

edge opposing to the crack front, node 6, cancels out in this formulation. The penny-shaped

crack under pure mode I condition (β = 90◦) is now used to compare the SIF results from

the two-point correlation scheme with the values obtained from the proposed method based

on the correlation at a fixed distance. Fig. 3.8a shows the mesh over the crack surface,

where the normals to the crack front at two nodes are drawn, and the points p, q and m

on the normal line are marked. The points m are located at fixed distances from the crack

front, with rm = Ln or rm = 2Ln. Fig. 3.8b compares the normalized mode I analytical SIF

with the numerical ones obtained from different correlation schemes. Two-point correlation
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Figure 3.8: (a) Mesh structure on the crack surfaces of the penny-shaped crack (Ln/a ≈ 0.03),
and the points used in the correlation method, (b) The variation of normalized mode I (β = 90◦)
analytical and numerical SIFs along the crack front when different correlation schemes are used.

scheme uses Eq. (3.8) in which the displacements at both points p and q are used in the

correlation process. Correlations at p and q employ the displacements at those points, and

correlation at m uses the displacements at fixed distances from the crack front.

The following features in this plot are highlighted: (i) The two-point correlation com-

putes the least accurate and the most mesh-sensitive SIFs. Although this scheme gives

accurate values at some points on the crack front, considerable fluctuations in the SIFs

are seen, especially at the places where the radial size of the quarter-point elements varies

significantly (see Fig. 3.8a). The main reason for these fluctuations seems to be the sig-

nificant variation of the size of quarter-point elements, which influences the accuracy of

the displacement fields over these elements. Moreover, the absence of the displacement at

node 6 in the formulation of two-point correlation may also influence the accuracy of the

results (see Fig. 3.2 and Eq. (3.8)). (ii) The results for the correlation at only one point p

or q are more accurate than the two-point correlation scheme, with the results for point p

being considerably more accurate than the ones for the point q. This is mainly because the

relative numerical error is usually higher for the point closer to the crack front. However,

slight fluctuations are still visible in the variation of the SIFs even when using correlation

at the point p. (iii) The fluctuations decay considerably when correlating the displacement

at point m (rm = Ln), giving more accurate results for the SIFs throughout the entire crack

front. When further points from the crack front are used (rm = 2Ln), the fluctuations dis-

appear completely, and the SIFs are no longer sensitive to mesh quality at the crack front

elements. The same behavior is seen in other crack configurations and loading conditions.

Overall, these results suggest that the two-point correlation scheme based the displacement

distribution over the entire quarter-point tetrahedral element exhibits sensitivity to the
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quality of mesh near crack front, whereas a simple one-point correlation at a fixed distance

from the crack front is able to provide accurate SIFs, exhibiting no sensitivity to the quality

of quarter-point tetrahedra as long as the correlation points are far enough from the crack

front.

3.5.3 The distance of the point of correlation from the crack front (rm)

The main parameter in the proposed DC method is the distance of the correlation point

from the crack front (rm). On the one hand, rm must be small enough compared to the crack

size so that the point of correlation remains in the singular dominant region, where a plane

strain condition prevails. Moreover, higher-order terms influence the crack tip displacement

fields significantly at the region far from the crack front, which is another reason why one

should avoid using points at that region. On the other hand, rm must be large enough to

avoid high numerical errors and displacement inaccuracies in the region very close to the

crack front due to the complex singular stress state there. The relative numerical error is

also much higher as the displacements assign smaller magnitudes there. Therefore, the use

of the points very close to the crack tip is also problematic. The accuracy of the near front

FE fields depends considerably on the mesh refinement in that region. Therefore, for each

mesh resolution, there must be an optimum value for the rm at which the computed fracture

parameters are most accurate. As the degree of the accuracy of the fields near the crack

depends on the type and refinement of the elements in that region, it is expected that the

optimum rm depends mainly on the type and size of the elements in the crack front region.

In an arbitrary mesh around the crack front, the size of the elements may vary significantly,

and therefore an approximate (nominal) value shall be used to represent the average size of

the elements. The nominal crack front element size can be defined as Ln = Lf/Nf where

Lf and Nf are the length of the crack front and number of segments used to discretize it,

respectively.

In order to evaluate the idea of the presence of an optimum rm, an extensive parametric

study was carried out to relate the SIF computation error to rm in different mesh refine-

ments. The SIFs of the different crack configurations were computed while the points of

correlation moved further away from crack front in different mesh densities. Fig. 3.8 shows

the variation of the total SIF computation error et, computed from Eq. (3.10), versus the

normalized distance of the correlation point from the crack front, rm/Ln, for different mesh

refinements expanding from coarse meshes a/Ln ≈ 10 to fine meshes a/Ln ≈ 45. The

main feature of the results in these plots is that for all crack configurations except very

coarse meshes, et slightly drops by increasing rm, reaching its minimum between rm = Ln

and rm = 2Ln, and then increases gradually for points further from the crack front. The
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Figure 3.9: Average SIF computation error of the DC method with quarter-point tetrahedral ele-
ments. The variation of the total numerical error et against the normalized distance from the crack
front rm/Ln for (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks in different mesh refinements (β = 45◦).

decreasing trend in the beginning is explained by the fact that high numerical errors and

displacement inaccuracies exist near the crack front, generating large relative numerical

error due to the small magnitude of the displacements there. By correlating at points fur-

ther away, this relative numerical error drops, and more accurate SIFs are computed. The

growth trend is because the displacements at point far from the crack front is more likely

to include the influence of higher order terms, and also due to the fact that the plane strain

condition no longer prevails at those points. The plots clearly show that there exists an

optimum value of rm in the range of Ln ≤ rm ≤ 2Ln where the SIF computation error hits

its minimum. The optimum distance approaches rm = Ln and rm = 2Ln for coarse and

fine meshes, respectively. A distance of rm = 1.5Ln can be chosen as the best choice that

works for both fine and coarse meshes.

A domain integral approach is introduced in Chapter 4 that computes SIFs with an

average error of about 1%. A comparison of the SIF values from DC and domain integral

methods indicates that their dependency on the size of quarter-point elements is similar.
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Similar to the concept of optimum sampling distance for the DC method, there is an opti-

mum mesh size-dependent domain size for the domain integral method. The only difference

is that results from the domain integral method for the through-the-thickness crack show

that the error drops slightly from Rd = 0.5Ln to Rd = 1.5Ln, at which point it stabilizes

(see Fig. 4.14). In contrast, when using the DC method, as seen in Fig. 3.9, the error starts

increasing at rm = Ln. The reason for this behavior lies in the main difference between these

methods. In the through-the-thickness crack the whole plate is under plane strain, and the

3D solution fields approach the fields obtained from a 2D plane strain crack problem. It is

well known that the J-integral exhibits path-independence for a 2D crack problem [Rice,

1968]. Therefore, higher-order terms cannot influence the SIFs obtained from the domain

integral method, even when very large domains are employed. This is not the case for the

DC method, where the effect of higher-order terms are assumed to be negligible in Eq. (3.2),

while the higher-order terms may have a significant influence on the FE displacements far

from the crack front. Therefore, there is an increasing trend of the SIF error with rm due

to the higher order terms which influence FE displacements far from the crack front. It

is noteworthy that, as compared to the DC method, the SIFs obtained using the domain

integral approach require less dense meshes.

Fig. 3.10 demonstrates the variation of the total SIF computation error et versus the

normalized distance of the correlation point from the crack front rm/Ln, when standard

tetrahedral elements are employed at the crack front region, instead of quarter-point ele-

ments. The following are the main features in these plots: (i) The SIF computation error

is significantly higher in these plots compared to the ones in Fig. 3.9, especially at small

values of rm. The errors in these plots are approximately two to three times larger than

the errors in Fig. 3.9. This highlights the efficiency of the quarter-point elements in im-

proving the numerical solution of the crack tip fields. It is noteworthy that the results of

the domain integral approach in Chapter 4 also demonstrate the significant improvement of

the accuracy of the SIFs by quarter-point tetrahedra, reducing the error two to three times

as opposed to standard tetrahedra. (ii) Similar trends are observed in these plots as those

shown in Fig. 3.9. One important difference is that the errors for points close to crack

front are significantly higher than those in Fig. 3.9. This indicates that when standard

tetrahedral elements are used, a larger rm should be preferred to compute accurate SIF

values.

3.5.4 Poisson’s ratio value

The SIFs obtained from the DC method proposed by Ingraffea and Manu [1980] exhibited

dependency on the value of Poisson’s ratio. This dependency is justifiable when analyzing
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Figure 3.10: Average SIF computation error of the DC method in the absence of quarter-point
tetrahedral elements. The variation of the total numerical error et against the normalized distance
from the crack front rm/Ln for (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7),
(d) elliptical (b/a = 0.4) cracks in different mesh refinements.

the SIFs near a corner point, i.e., the meeting point of a crack front and a free surface.

This is because at these points a corner singularity occurs, where the order of singularity,

which depends on Poisson’s ratio as well as loading conditions, is different from the crack

singularity [Benthem, 1977; Bažant and Estenssoro, 1979]. Therefore, the SIFs near the

corner points differs from one value of the Poisson’s ratio to another one. However, the

analytical mode I stress intensity factor of an embedded penny-shaped crack does not depend

on the value of Poisson’s ratio, whereas the numerical results of Ingraffea and Manu [1980]

show significant dependency of the SIFs on this material property. The reason for this

dependency is not explained in that paper.

All the previous SIF results in this chapter are obtained by considering ν = 0.3. In

order to evaluate the influence of Poisson’s ratio, two other values, ν = 0.15 and ν = 0.45,

were considered to compute the SIFs of the penny-shaped crack under mixed-mode loading.

Fig. 3.11 shows the variation of the total SIF computation error et versus the normalized

distance of the correlation point from the crack front rm/Ln for different mesh refinements
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Figure 3.11: The effect of Poisson’s ratio value on the variation of the total numerical error et against
the normalized distance from the crack front rm/Ln for penny-shaped under mixed-mode loading
(β = 45◦): (a) ν = 0.15, (b) ν = 0.45.

and Poisson’s ratios. A comparison of these two plots and Fig. 3.9b, in which the results

for ν = 0.3 are reported, demonstrates that the error of the SIF values obtained by the

proposed DC method in this chapter are barely influenced by Poisson’s ratio value. For

example, at the distance rm = 2Ln, et = 0.024, et = 0.025, and et = 0.033, are the errors

corresponding to Poisson’s ratio values of ν = 0.15, ν = 0.3, ν = 0.45, respectively. It is

also seen in these plots that the optimum distance from the crack front is not influenced by

the value of Poisson’s ratio. In fact, unlike the results of Ingraffea and Manu [1980], which

suggest an optimum Poisson’s ratio dependent element size, the results from the proposed

DC method here suggest that the optimum distance from the crack front is independent of

Poisson’s ratio, and only depends on the mesh refinement near the crack front.

3.5.5 The method for non-matched meshes

All the previous proposed DC schemes rely on the generation of matched elements over the

crack surfaces, as they use the displacements of matched nodes to compute the relative dis-

placements between the two surfaces. The proposed DC approach in this chapter, however,

does not require the crack surface elements to be matched. This is of great importance,

as a considerable constraint is removed from meshing procedures by allowing non-matched

meshes over the crack surfaces. The penny-shaped crack in a mixed-mode loading condition

(β = 45◦), as shown in Fig. 3.3b, was considered in order to evaluate the results of the DC

method for non-matched meshes. The crack surface mesh structure is shown in Fig. 3.12a.

Fig. 3.12b presents the variation of pointwise mixed-mode SIFs along the crack front. The

average total error et is about 0.02. These results demonstrate the efficiency of the proposed

DC approach for computing accurate SIFs from arbitrary meshes with non-matched crack

surface elements.
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Figure 3.12: (a) Non-matched mesh over the crack surfaces, (b) The variation of normalized mixed-
mode (β = 45◦) analytical and numerical SIFs along the fronts of penny-shaped crack with non-
matched elements over the crack surfaces. a/Ln = 30.2, rm = 2Ln, eI = 0.02, eII = 0.021, eIII =
0.0177, et = 0.02.

3.6 Conclusions

An efficient displacement correlation (DC) method is proposed for computing accurate

approximations of the SIFs. This DC method is computationally very cheap, can be readily

implemented in any FE code, and can be applied on unstructured meshes even when the

elements on the crack surfaces are non-matched. The results of this method have been

validated for a number of crack configurations in mode I and mixed-mode loadings, where

the average SIF computation error varies from 1% for through-the thickness crack, to about

4% for elongated elliptical ones. A comparison of the results from the DC method for

standard and quarter-point elements also reveals that the average SIF computation error

more than doubles when using standard tetrahedra instead of quarter-point ones at the crack

front region. The numerical results on the relative displacements over the crack surfaces also

clearly demonstrate very good performance of the quarter-point tetrahedra in reproducing

a square root displacement variation near the crack front. The results from an extensive

parametric study suggest that there is an optimum mesh-dependent distance from the crack

front at which the average SIF computation error by the DC method hits its minimum. This

distance is about once to twice the average (nominal) size of the elements at the crack front

region. The results of this chapter provide further evidence to the applicability, efficiency

and accuracy of unstructured meshes to analyze cracked bodies.
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4.1 Abstract

A novel domain integral approach is introduced for the accurate computation of pointwise

J-integral and stress intensity factors (SIFs) of 3D cracks using tetrahedral elements. This

method is efficient and easy to implement, and does not require a structured mesh around

the crack front. The method relies on the construction of virtual disk-shaped integral

domains at points along the crack front, and the computation of domain integrals using a

series of virtual triangular elements. The accuracy of the numerical results computed for

through-the-thickness, penny-shaped, and elliptical crack configurations has been validated

by using the available analytical formulations. The average error of computed SIFs remains

below 1% for fine meshes, and between 2− 3% for coarse ones. The results of an extensive

parametric study suggest that there exists an optimum mesh-dependent domain radius at

which the computed SIFs are the most accurate. Furthermore, results provide evidence

that tetrahedral elements are efficient, reliable and robust instruments for accurate linear

elastic fracture mechanics calculations.

4.2 Introduction

Chapter 2 discussed the efficiency and effectiveness of quarter-point tetrahedra in reproduc-

ing the strain singularity along the crack front of three-dimensional cracks. A simple and

straightforward displacement correlation method was also introduced in Chapter 3, and the

efficiency of the quarter-point tetrahedra in reproducing singularity was evaluated in detail.

This chapter introduces a new domain integral approach to compute the stress intensity

factors and J-integral from unstructured meshes. Existing methods to extract J-integrals

and SIFs using tetrahedral elements are complex and suffer from oscillations [Červenka and

Saouma, 1997; Rajaram et al., 2000; Paluszny and Zimmerman, 2011], while others require

very fine meshes near the crack front, rely on complicated numerical procedures, and are

applied on arbitrary domain shapes and sizes [Okada et al., 2008; Daimon and Okada,

2014]. These methods mainly rely on volumetric actual [Rajaram et al., 2000; Daimon and

Okada, 2014] and virtual [Červenka and Saouma, 1997; Paluszny and Zimmerman, 2011]

domains to compute the SIFs from the evaluated J- and interaction integrals. Therefore,

accurate, efficient and reliable methods based on crack conservative integrals have yet to be

introduced.

As was mentioned earlier, techniques for SIF computation from FE results fall into two

categories. (i) Direct approaches, such as stress/displacement extrapolation and correlation,

which are based on the correlation between the FE stress/displacement distribution around

the crack and the analytical field expressions. Displacement extrapolation method proposed
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by Chan et al. [1970], displacement correlation approach suggested by Barsoum [1976] and

further developed by Shih et al. [1976]; Ingraffea and Manu [1980], as well as recently de-

veloped least-square based finite element over-deterministic method (FEOD) by Ayatollahi

and Nejati [2011a,b] fall into this category. (ii) Energy approaches are based on the compu-

tation of energy released rate G [Irwin, 1956]. The SIFs are computed indirectly by using

the relationships between G and the SIFs. In the context of LEFM, three main methods

have been proposed to compute G: 1) the J-integral: J , which is equivalent to G for elastic

materials, is defined as a contour integral around the crack tip [Cherepanov, 1967; Rice,

1968; Budiansky and Rice, 1973]. DeLorenzi [1982] and Li et al. [1985] then transformed this

contour integral into an equivalent domain integral. 2) Virtual crack extension: VCE was

suggested by Parks [1974], and computes the rate of the change of the total potential energy

of the system, for a small virtual extension of the crack. This technique is mathematically

equivalent to the domain version of J-integral, and can be interpreted as a virtual crack

extension technique [DeLorenzi, 1982; Shih et al., 1986; Banks-Sills and Sherman, 1992;

Banks-Sills, 2010]. 3) Virtual crack closure technique: The VCCT was originally proposed

by Rybicki and Kanninen [1977] for two-dimensional problem, and Shivakumar et al. [1988]

extended it for three-dimensional cracks. The VCCT uses Irwin’s crack closure integral and

computes the energy required to close the crack for one finite element length by multiplying

the nodal reaction forces and the opening displacements [Okada et al., 2008]. This chapter

introduces an efficient, accurate and straightforward disk-shaped domain integral method

to extract J-integral and SIFs from unstructured meshes. This method does not require a

very fine mesh near the crack front, and no oscillation is seen in the computed pointwise

fracture parameters.

4.3 Volumetric domain integral method

The J-integral has been the most used crack tip parameter in fracture mechanics, and plays

an important role in linear and nonlinear fracture mechanics. Under pure modes I, II or

III, the extraction of SIFs from the J-integral is straightforward. However, a technique

is required to separate SIFs due to different deformation modes in a mixed-mode crack

deformation, as the J-integral gives the total energy release rate. There have been two

main strategies for separating the SIFs. The first strategy uses decomposed crack tip fields

to compute separate energy release rates for different deformation modes [Bui, 1983]. This

approach has been frequently used along with the domain representation of the J-integral

for the computation of SIFs [Raju and Shivakumar, 1990; Shivakumar and Raju, 1992;

Nikishkov and Atluri, 1987b; Huber et al., 1993]. However, decomposing the crack tip field

into symmetric and antisymmetric fields introduces error, and is mainly applicable to a
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mesh that is symmetric with respect to the crack face. The second method is called the

interaction integral method, which was initially developed for 2D cracks by Chen and Shield

[1977] and Yau et al. [1980], and then extended to 3D crack configurations by Nakamura and

Parks [1989]. In this method, the contribution of the interaction of two different stress fields,

a real field and an auxiliary field, to the J-integral defines a new integral which is able to

compute separate SIFs. Interaction integral methods have emerged as the most accurate and

readily implementable approach to extract SIFs in mixed-mode crack deformation [Walters

et al., 2005]. This section discusses the available domain integral approaches of computing

J-integral and interaction-integral from FE results. All of these approaches are based on

using volumetric domains for the computation of three-dimensional crack parameters.

4.3.1 J-integral

Let us consider a two-dimensional elastic body containing a crack which lies in the direction

of x1 as shown in Fig. 4.1. Restricting the crack to advance along the x1 axis, the energy

release rate per unit crack advance, G, is equivalent to the J-integral [Rice, 1968; Shih et al.,

1986]:

G = J = lim
Γ→0

∫
Γ

(
Wδ1i − σij

∂uj
∂x1

)
nidΓ = lim

Γ→0

∫
Γ
P1inidΓ (4.1)

where W =
∫ ε
0 σijεijdε is the strain energy density, σij , εij and ui are the Cartesian compo-

nents of the stress tensor, strain tensor and displacement vector in the local x1x2 coordinate

system, respectively, δij is the Kronecker delta, and ni is the unit vector normal to Γ which

is an arbitrary path beginning at the bottom crack face and ending on the top face. Γ → 0

indicates that the contour Γ is shrinking onto the crack tip. The bracketed quantity is

in fact the x1 component of Eshelby’s energy-momentum tensor P1i = Wδ1i − σij∂uj/∂x1

[Eshelby, 1970]. In the absence of body force and thermal strains, the energy density W

does not depend explicitly on the system coordinates, and the divergence of P1i vanishes

(P1i,i = 0). Assuming that the vector m is normal to a closed contour Γc = Γ0+Γ++Γ−−Γ

such that m = −n on Γ, m = n on Γ0, m2 = −1 on Γ+ , and m2 = 1 on Γ−, then according

to the divergence theorem the integral in Eq. (4.1) vanishes for Γc,
∫
Γc

P1imidΓ = 0, and

the J-integral can be expressed as

J =

∫
Γ0

(
Wδ1i − σij

∂uj
∂x1

)
nidΓ−

∫
Γ++Γ−

σ2j
∂uj
∂x1

m2dΓ (4.2)

Eq. (4.2) indicates that in the absence of body force and thermal strains, the J-integral

is path-independent as long as the contribution of crack face tractions is considered. In

fact, the J-integral does not depend on a limiting process in which the crack tip contour Γ

is shrunk onto the crack tip, and can be accurately extracted from contours remote from
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Figure 4.1: Contour and domain integrals for the evaluation of J-integral in 2D cracks.

the crack tip. This formulation allows one to use contours remote from the crack tip, which

results in the computation of more accurate values for J-integral. However, the evaluation of

contour integrals in Eq. (4.2) is cumbersome in the FE scheme as the contour is preferably

selected to pass through Gauss points where stresses are expected to be the most accurate.

To circumvent this difficulty, the line-integral form of J can be recast as a domain integral

[DeLorenzi, 1982; Li et al., 1985]. Let us assume q is a sufficiently smooth scalar function

in the region enclosed by Γc = Γ0 + Γ+ + Γ− − Γ, holding unity on Γ and vanishing on Γ0.

Eq. (4.1) can be rewritten as

J =

∫
A

(
σij

∂uj
∂x1

−Wδ1i

) ∂q

∂xi
dA−

∫
Γ++Γ−

σ2j
∂uj
∂x1

m2qdΓ (4.3)

where the closed contour integral is transformed to an equivalent domain integral by ap-

plying the divergence theorem and making use of the relation (P1i,i = 0). Due to the scalar

function q, the contour integrals in Eq. (4.2) is now transformed to an area integral over

A together with contour integral over the crack faces. The process of recasting the contour

integral into an area integral is advantageous for numerical purposes, as a domain integral is

compatible with the finite element formulations and can be readily implemented in FE codes.

Also as the integral is evaluated over a domain of elements surrounding the crack, errors

in local solution parameters have less effect on the evaluated quantity of J-integral. It has

been shown that the domain version of the J-integral has superior path independence than

does the line integral, yielding much more accurate results for the crack field parameters

[Nikishkov and Atluri, 1987a; Raju and Shivakumar, 1990]. The domain integral method

corresponds to a continuum formulation of the finite-element virtual crack extension tech-

nique [DeLorenzi, 1982]. One can refer to Moran and Shih [1987a,b] for a general discussion

on crack-tip contour integrals and their associated domain integral representation.

For a 3D crack configuration, the J-integral generalizes to a surface integral where two

definitions of the J-integral have been proposed: (i) the average value which gives the
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average of the energy release rate per unit crack advance at the whole crack front; and

(ii) the pointwise value which gives the energy release rate due the extension of the crack

front locally at a given point on the crack front [Budiansky and Rice, 1973; DeLorenzi,

1982; Li et al., 1985]. The pointwise J-integral reveals the variation of the strength of the

energy release rate along the crack front, and can be used to compute the SIFs at any

point on the crack front. Consider point s on the curved crack front of a 3D planar crack.

A local orthogonal coordinate system is defined at point s such that the local x2 axis is

perpendicular to the plane of the crack, and the x1, and x3 axes are normal and tangent to

the crack front, respectively (Fig. 4.2). The pointwise energy release rate due to the unit

local crack advancement at the point s is given by

J(s) = lim
Ω→0, Lc→0

1

Lc

∫
Ω
P1inidΩ = lim

Γ→0

∫
Γ
P1inidΓ (4.4)

where Γ is a contour that lies on a plane passing through point s and is perpendicular to the

crack front, Ω is the surface of a tube connecting the top and bottom crack faces, and ni is

the unit vector normal to Ω. Ω → 0 indicates that the surface Ω is shrinking onto the crack

front segment Lc. Although the shape of surface Ω may be arbitrary as it collapses onto

the crack front, an equivalent path independent integral such as Eq. (4.2) does not exist for

3D cracks. This is because the two-dimensional plane strain fields are only asymptotically

approached at the crack front, and a general 3D state of stress prevails far from the crack

front [Nakamura and Parks, 1989]. Therefore, for the J-integral to capture the effects of

plane strain conditions, the surface must be very close to the crack front. Furthermore, if

the surface Ω that is used for the J-integral is too large, then it is influenced by singular

fields from other points of the crack front and not just the position of interest [Shivakumar

and Raju, 1992; Rigby and Aliabadi, 1998]. The presence of two limits and integration

over surface make it very cumbersome and error-prone to evaluate the J-integral from its

original definition in Eq. (4.4). However, two steps can be taken to recast the integral into

a more compatible formulation within the FE context. In the first step it is assumed that

J(s) varies slowly over a small segment of the crack front Lc which has undergone a crack

advancement of δl(s), and reformulate Eq. (4.4) as

J(s) =
1∫

Lf

δl(s)ds

lim
Ω→0

∫
Ω
P1iδl(s)nidΩ (4.5)

where the crack advance δl(s) is continuously differentiable arbitrary function that equals

zero at the two ends of Lc (Fig. 4.2). The second step is to recast the surface integral into

a domain integral version. Consider a tubular domain V surrounding the crack segment

Lc, which is enclosed by the closed manifold Ωc = Ω+ Ω0 + ΩL + ΩR + Ω+ + Ω− with the
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Figure 4.2: The tubular domain V surrounding the crack segment Lc, which is enclosed by the closed
manifold Ωc = Ω+ Ω0 +ΩL +ΩR +Ω+ +Ω− where Ω shrinks onto the crack front.

outward-point normal vector m where m = −n on Ω, m = n on Ω0, m2 = −1 on Ω+ and

m2 = 1 on Ω− (see Fig. 4.2). These surfaces are formed by translating the contour Γ, Γ0,

Γ+ and Γ− in Fig. 4.1 along the curved crack front segment Lc. Now introduce an arbitrary

continuously differentiable, class C1, scalar function q in the neighborhood of V , which is

equal to δl(s) on the surface Ω, and zero on Ω0, ΩR and ΩL. Applying the divergence

theorem, and knowing that in the absence of thermal strains and body forces, and when the

equilibrium conditions are satisfied throughout the whole domain V (∂σij/∂xj = 0), P1i is

divergence free (∂P1i/∂xi = 0), Eq. (4.5) is reformulated to

J(s) =
1∫

Lc

q(s)ds

[∫
V

(
σij

∂uj
∂x1

−Wδ1i

) ∂q

∂xi
dV −

∫
Ω++Ω−

σ2j
∂uj
∂x1

m2qdΩ

]
(4.6)

By separately advancing various small segments of the crack front, the pointwise J-

integral can be computed along the crack front [Shih et al., 1986; Nikishkov and Atluri,

1987b; Shivakumar and Raju, 1992]. Volume integration is performed over a volumetric

domain around the crack front; a special concentric mesh is required to define a structured

domain around the crack front.

4.3.2 Interaction integral to extract SIFs

The three SIFs KI, KII, and KIII cannot be calculated separately from the J-integral. The

interaction integral, however, is able to extract the separated SIFs from the FE results.

Chen and Shield [1977] and Yau et al. [1980] introduced this method for 2D cracks, and

Nakamura and Parks [1989] extended it to 3D crack configurations. Interaction integral

methods are perhaps the most accurate, reliable and readily implementable methods to

extract SIFs in mixed-mode 2D and 3D crack problems [Walters et al., 2005; Banks-Sills,
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2010; Bremberg and Faleskog, 2015]. Consider two states of equilibrium for the cracked

body deformation: (i) an actual state obtained by the FE solution of the actual boundary

value problem (ui, εij , σij); and (ii) an auxiliary state given by the known asymptotic fields

which are functions of the SIFs (uauxi , εauxij , σaux
ij ). Except at points that are very close

to the intersection point of a crack front with free surfaces, the two-dimensional plane

strain fields are asymptotically approached at the crack front [Nakamura and Parks, 1988,

1989]. Therefore, the first terms of the Williams series expansions for stresses, strains and

displacements in 2D cracks are usually chosen as the auxiliary fields in the vicinity of the

crack front. The so-called Williams series expansions describe the linear elastic stress fields

for a 2D cracked plate subjected to an arbitrary load [Williams, 1957]. In the region close

to the crack tip, the first terms in these expansions are dominant. The auxiliary fields for

3D embedded cracks are therefore considered to be in the form of these singular fields in

the plane strain condition (σaux
33 = ν(σaux

11 + σaux
22 )). Eqs. (4.7) and (4.8) give these stress

fields when in-plane and anti-plane loads are applied, respectively [Anderson, 2005]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σaux
11

σaux
22

σaux
12

σaux
33

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=
Kaux

I√
2πr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
cos

θ

2
sin

θ

2
cos

3θ

2

2ν cos
θ

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
Kaux

II√
2πr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
θ

2

(
− 2− cos

θ

2
cos

3θ

2

)
sin

θ

2
cos

θ

2
cos

3θ

2

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
−2ν sin

θ

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.7)⎧⎨

⎩
σaux
13

σaux
23

⎫⎬
⎭ =

Kaux
III√
2πr

⎧⎪⎪⎨
⎪⎪⎩
− sin

θ

2

cos
θ

2

⎫⎪⎪⎬
⎪⎪⎭ (4.8)

Here r and θ are the polar coordinates in a local Cartesian coordinate system x1x2x3

which is perpendicular to the crack front, as shown in Fig. 4.3. The displacement fields

adjacent to the crack tip due to the in-plane and anti-plane loadings conditions, respectively,

are given by [Anderson, 2005]

{
uaux1

uaux2

}
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(4.9)
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Figure 4.3: Local Cartesian coordinate system at a point along crack front and crack tip auxiliary
fields.

uaux3 =
2Kaux

III

μ

√
r

2π
sin

θ

2
(4.10)

where κ is a function of Poisson’s ratio, and under plane strain conditions, κ = 3 − 4ν.

Under plane strain conditions, the out-of-plane displacement uaux3 vanishes when applying

in-plane loads, and in-plane displacements (uaux1 and uaux2 ) are zero when anti-plane loads are

applied. The derivatives of the displacement fields with respect to x1 are readily obtained

from Eqs. (4.9) and (4.10) as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂uaux1

∂x1
∂uaux2

∂x1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =

Kaux
I

4μ
√
2πr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos
θ

2

(
κ− 1− cos θ + cos 2θ

)

sin
θ

2

(
− κ− 1 + cos θ + cos 2θ

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
Kaux

II

4μ
√
2πr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− sin
θ

2

(
κ+ 1 + cos θ + cos 2θ

)

cos
θ

2

(
− κ+ 1− cos θ + cos 2θ

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)

∂uaux3

∂x1
= − Kaux

III

μ
√
2πr

sin
θ

2
(4.12)

A linear combination of actual fields (or finite element fields) with auxiliary fields (field

expressions as functions of SIFs) constitutes a third, superimposed, equilibrium state. From

Eq. (4.4), the J-integral for this superimposed equilibrium state is given by

J sup(s) = lim
Γ→0

∫
Γ

[1
2
(σij + σaux

ij )(εij + εauxij )δ1i − (σij + σaux
ij )(

∂uj
∂x1

+
∂uauxj

∂x1
)
]
nidΓ (4.13)
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Consider J sup(s) = Jact(s) + Jaux(s) + I(s), where Jact(s) and Jaux(s) are the energy

release rates due to the actual and auxiliary fields, and I(s) is the interaction integral for the

two states of equilibrium. By comparing the energy release rate for the superimposed state

with the energy release rates for the separate actual and auxiliary fields, the interaction

integral is formulated as

I(s) = lim
Γ→0

∫
Γ

[
WIδ1i −

(
σij

∂uauxj

∂x1
+ σaux

ij

∂uj
∂x1

)]
nidΓ (4.14)

where WI = 1/2(εauxij σij + εijσ
aux
ij ) is the mutual strain density, and as the actual and

auxiliary fields provide two solutions for the same elastic solid with the same constitutive

tensor, according to the reciprocal theoremWI = εauxij σij = εijσ
aux
ij . In the context of LEFM,

the two very important fracture parameters, namely the energy release rate G, which gives

the change in the potential energy that accompanies an increment of crack extension, and

the stress intensity factors KI, KII and KIII, which characterize the stresses, strains, and

displacement near the crack front for different modes, are uniquely related by [Anderson,

2005]

G = J =
K2

I +K2
II

E′ +
K2

III

2μ
(4.15)

where E′ = E and E′ = E/(1−ν2) for plane stress and plane strain conditions, respectively,

and E, ν and μ = E/2(1+ν) are the Young’s modulus, Poisson’s ratio, and shear modulus of

the material. As plane strain condition prevails very close to the crack front at any point on

the crack front except points very close to the intersection of the crack front and free surfaces

[Nakamura and Parks, 1988, 1989], a plane strain condition must be assumed in order to

relate G(s) to the SIFs. Using Eq. (4.15) the energy release rate for the superimposed state

in terms of SIFs will be

J sup(s) = Jact(s) + Jaux(s) + I(s)

=

(
KI(s) +Kaux

I (s)
)2

+
(
KII(s) +Kaux

II (s)
)2

E′ +

(
KIII(s) +Kaux

III (s)
)2

2μ

(4.16)

where KI(s), KII(s) and KIII(s) are the SIFs due to the actual state, and Kaux
I (s), Kaux

II (s)

and Kaux
III are the SIFs due to the auxiliary states. The interaction energy integral is then

developed in terms of SIFs as

I(s) =
2

E′
(
KI(s)K

aux
I (s) +KII(s)K

aux
II (s)

)
+

1

μ
KIII(s)K

aux
III (s) (4.17)

By using following three equilibrium auxiliary states of pure mode I (Kaux
I ,Kaux

II ,Kaux
III ) =

(1, 0, 0), pure mode II (Kaux
I ,Kaux

II ,Kaux
III ) = (0, 1, 0), and pure mode III (Kaux

I ,Kaux
II ,Kaux

III ) =

(0, 0, 1), three corresponding interaction integral values II(s), III(s) and IIII(s) are obtained

from Eq. (4.14), and the SIFs are extracted from the following expressions:

KI(s) =
E′

2
II(s), KII(s) =

E′

2
III(s), KIII(s) = μIIII(s) (4.18)
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Equation (4.14) is not in a form well suited for finite element calculations. The same

approach that was used in Section 4.3.1 can be used to recast this integral into a domain

integral, which is more compatible with the context of finite elements. Again consider

the tubular domain V surrounding the crack segment Lc, which is enclosed by the closed

manifold Ωc, with the outward-point normal vector m, and also consider the scalar function

q as explained in Section 4.3.1 (Fig. 4.2). Applying the divergence theorem, Eq. (4.14) is

reformulated to

I(s) =
1∫

Lc
q(s)ds

[∫
V

(
σij

∂uauxj

∂x1
+ σaux

ij

∂uj
∂x1

−WIδ1i

)
∂q

∂xi
dV

+

∫
V

(
σij

∂

∂x1

(
∂uauxj

∂xi
− εauxij

)
+

∂σaux
ij

∂xi

∂uj
∂x1

)
qdV

−
∫
Ω++Ω−

σ2j
∂uauxj

∂x1
m2qdΩ

]
(4.19)

Equation (4.19) is derived for isothermal loading without body forces, assuming that

in the actual state the equilibrium and compatibility conditions are satisfied throughout

the entire domain V (∂σij/∂xj = 0, ∂uj/∂xi − εij = 0). For a straight crack front, the

2D plane strain auxiliary fields also satisfy compatibility and equilibrium equations, and

therefore, the second integral in Eq. (4.19) vanishes. In the case of curved crack fronts,

however, special care must be taken, as Williams 2D plane strain auxiliary fields do not

satisfy compatibility (∂uauxj /∂xi− εauxij �= 0) and equilibrium (∂σaux
ij /∂xi �= 0) in curvilinear

coordinates and the second integral remains non-zero [Nahta and Moran, 1993; Gosz et al.,

1998; Gosz and Moran, 2002]. The main difficulty in calculating the interaction energy

integral from the domain form in Eq. (4.19) lies in the evaluation of the gradients and

higher order gradients of the auxiliary fields that appear in the second integrand in Eq.

(4.19). Nahta and Moran [1993]; Gosz et al. [1998] presented a method to evaluate this

integral by introducing curvilinear coordinates in the definition of deformation gradients.

Kim et al. [2001] proposed a method to calculate the two-state integral in Eq. (4.19)

through imposing displacement of the two dimensional asymptotic solution on the nodes

in the finite element model. Both methods involve the computation of highly accurate

values of the coordinates of the integration points with respect to the curved crack front,

which usually require a Newton scheme and an analytical definition for the local crack front

geometry. Walters et al. [2005] proposed another strategy in which elements with straight

edges are used along the crack front. This approach eliminates this additional integral

appearing in the interaction integral formulation for curvilinear coordinates. It has been

demonstrated that it is crucial to maintain this integrand, especially when the local crack
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front curvature is high [Gosz et al., 1998; Kim et al., 2001]. The third terms in Eq. (4.19)

also involves the evaluation of surface integrals, which include singular terms. An accurate

evaluation of this integral ensures that it does not contribute numerical error to the SIF

results.

The existing volumetric domain integral approaches use Eqs. (4.6) and (4.19) to evaluate

the J-integral and interaction integrals, respectively. As they evaluate integrals over tubular

domains built by a set of volumetric elements, a structured mesh is required around the

crack front. The main advantage of these versions of domain integrals is that they can be

readily implemented in the FE codes when a structured mesh is used near the crack front.

The main disadvantages of these forms are: (i) Implementation of these methods on an

unstructured mesh is very cumbersome; (ii) The method requires the crack tip fields to be

obtained in a curvilinear coordinate system by the computation of accurate values of the

coordinates of the integration points with respect to the curved crack front, which usually

requires a Newton scheme and an analytical definition for the local crack front geometry;

(iii) The computation of the second integral in Eq. (4.19) requires computation of the

higher-order gradients of crack tip fields, which is not trivial. The question arises as to

whether this is the best domain form choice to be used in the case of an unstructured mesh

around the crack front.

4.4 Disk-shaped domain integral approach

Consider a cracked body under mechanical loading only, in the absence of body forces and

thermal strains. The arbitrarily-shaped planar crack is assumed to lie in a plane described by

Xp(X1, X2, X3) = 0 whose crack front is of length Lf , as shown in Fig. 4.4. The crack front

is a smooth plane curve that is described by the position vector Xf (s), where 0 ≤ s ≤ Lf

parameterizes the points along the crack front. The unit normal vector to the crack surface

is constant (Np = ∇Xp/‖∇Xp‖), but the unit tangent vector to the crack front will be

a function of s (T (s) = X ′
f (s)/‖X ′

f (s)‖). The unit normal to the crack front which lies

in the crack plane and is in the direction of crack extension is also a function of s and is

defined by Nf (s) = Np × T (s). A right-handed orthogonal curvilinear coordinate system

x1x2x3 is constructed in a way that the x3 axis coincide with the curved crack front. In this

coordinate system, x3 = s indicates a plane normal to the crack front, and the local unit

base vectors at the point s along the crack front are b1 = Nf (s), b2 = Np, and b3 = T (s).

4.4.1 J-integral

Assume a virtual crack advance of δl(s) = δ(x3 − s)b1 in the curvilinear coordinate system

x1x2x3. Here δ(x3−s) is the Dirac delta function, which is zero along the crack front except
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Figure 4.4: Disk-shaped domain for the evaluation of J- and interaction integrals in 3D crack
configurations.

at the point s, and gives a pointwise crack extension at the point s on the crack front. Due

to this virtual crack extension, the negative of the change of the potential energy of the

body (Π) is equivalent to the pointwise energy release rate:

−δΠ =

∫ Lf

0
G(x3)δ(x3 − s)dx3 = G(s) (4.20)

Equation (4.20) implies that the Dirac delta function is a proper choice for the virtual

crack extension in order to evaluate the pointwise energy release rate as the unit crack

extension occurs at the point s only, remaining elsewhere at its original length. Now consider

an arbitrary path Γ beginning at the bottom crack face and ending on the top face, with

ni being its unit normal vector (Fig. 4.4). Both contour path Γ and its normal ni lie in

the plane x3 = s, which is normal to the crack front at the point s. The tubular surface Ω

is now formed by translating the contour Γ along the curved crack front segment Lc (Fig.

4.4). From Eq. (4.4), the pointwise energy release rate G is equivalent to the well-known

J-integral:

G(s) = J(s) = lim
Γ→0

∫
Γ
P1inidΓ = lim

Ω→0

∫
Ω
P1iniδ(x3 − s)dΩ (4.21)

where Γ → 0 and Ω → 0 indicate that the contour Γ and the surface Ω are shrinking down

to the point x3 = s, and crack segment Lc, respectively.

Let us consider a tubular domain V surrounding the crack segment Lc, which is enclosed

by the closed manifold Ωc = Ω+Ω0 +ΩL +ΩR +Ω+ +Ω− with the outward-point normal

vector m where m = −n on Ω, m = n on Ω0, m2 = −1 on Ω+ and m2 = 1 on Ω− (see Fig.

4.4). These surfaces are formed by translating the enclosed contour Γc = Γ0 +Γ+ +Γ− −Γ

at the plane x3 = s along the curved crack front segment Lc. Let us also introduce an
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arbitrary continuously differentiable scalar function q(x1, x2), which is equal to unity on Ω,

and zero on Ω0. q(x1, x2)δ(x3 − s) is therefore a continuously differentiable scalar function

which is equal to δl(x3) = δ(x3 − s) on Ω, and zero on Ω0. In the absence of thermal

strains and body forces, and when the equilibrium conditions are satisfied throughout the

whole domain A (∂σij/∂xj = 0), P1i is divergence-free on A (∂P1i/∂xi = 0). Applying the

divergence theorem, the surface integral in Eq. (4.21) is reformulated to a domain integral

as

J(s) =

∫
A

(
σij

∂uj
∂x1

−Wδ1i

) ∂q

∂xi
dA− ∂

∂x3

∫
A
σ3j

∂uj
∂x1

qdA−
∫
Γ++Γ−

σ2j
∂uj
∂x1

m2qdΓ (4.22)

where A is a disk-shaped area in the plane orthogonal to the crack front at point s, and Γ+

and Γ− are the contours on the crack faces with m2 = −1 and m2 = 1, respectively. Here

the fundamental equation that defines derivatives of the delta function (
∫
f(x)δ′(x)dx =

− ∫
f ′(x)δ(x)dx) has been used. The limiting process is approximated by the q function,

which is equal to unity on Γ, and zero on Γ0. As 2D plane strain conditions are approached

asymptotically near crack tip field, the integration area A must be very close to the crack

front. It is noteworthy that ∂q/∂x3 = 0 as q is a function of only x1 and x2.

Now consider the following two states of equilibrium superimposed on top of each

other over the disk A: (a) an equilibrium state generated due to in-plane loads (ua =

{u1, u2, 0}T , εa = {ε11, ε22, ε33, ε12, 0, 0}T , σa = {σ11, σ22, σ33, σ12, 0, 0}T ); (b) an equilib-

rium state generated due to anti-plane loads (ub = {0, 0, u3}T , εb = {0, 0, 0, 0, ε13, ε23}T , σb =

{0, 0, 0, 0, σ13, σ23}T ). The actual fields within the area A are obtained by superimposing

the states a and b (see Fig. 4.5). The state a produces a mixed-mode I/II crack defor-

mation only, while the state b can produce mode III deformation only. In fact, neither

can state a produce mode III deformation (KIII = 0 for state a), nor is state b able to

generate in-plane crack deformation (KI = KII = 0 for state b). As a result, the two states

are fully decoupled and cannot interact with each other, and therefore the J-integral of the

superimposed state is equivalent to the sum of the J-integrals obtained from the fields in

states a and b separately (J = Ja + Jb). As the second integral in Eq. (4.22) vanishes for

each of equilibrium states a and b, the J-integral is simplified to

J(s) =

∫
A

(
σij

∂uj
∂x1

−Wδ1i

) ∂q

∂xi
dA−

∫
Γ++Γ−

σ2j
∂uj
∂x1

m2qdΓ (4.23)

4.4.2 Interaction integral to extract SIFs

Again assume a virtual crack advance of δl(s) = δ(x3 − s)b1 in the curvilinear coordinate

system x1x2x3, and the arbitrary path Γ with unit normal ni which lies in the plane x3 = s.

The tubular surface Ω is formed by translating the contour Γ along the curved crack front
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Figure 4.5: Decomposition of crack tip fields into state a: fields from in-plane loads, and state b:
fields from anti-plane loads.

segment Lc (Fig. 4.4). From Eq. (4.14), and by defining P ′
1i = WIδ1i − (σij∂u

aux
j /∂x1 +

σaux
ij ∂uj/∂x1), the pointwise interaction integral is given by

I(s) = lim
Γ→0

∫
Γ
P ′
1inidΓ = lim

Ω→0

∫
Ω
P ′
1iniδ(x3 − s)dΩ (4.24)

Again consider a tubular domain V as shown in Fig. 4.4, and the arbitrary continuously

differentiable scalar function q(x1, x2) which is equal to unity on Ω, and is zero on Ω0.

q(x1, x2)δ(x3− s) is therefore a continuously differentiable scalar function which is equal to

δl(x3) = δ(x3 − s) on Ω, and is zero on Ω0. It can be easily shown that (∂P ′
1i/∂xi = 0) in

the whole domain A, since for both actual and auxiliary fields the equilibrium conditions

(∂σij/∂xj = 0, ∂σaux
ij /∂xj = 0) and compatibility conditions (∂uj/∂xi−εij = 0, ∂uauxj /∂xi−

εauxij = 0) are satisfied. Applying the divergence theorem, the surface integral in Eq. (4.24)

is reformulated to a domain integral as

I(s) =

∫
A

(
σij

∂uauxj

∂x1
+ σaux

ij

∂uj
∂x1

−WIδ1i

)
∂q

∂xi
dA

− ∂

∂x3

∫
A

(
σ3j

∂uauxj

∂x1
+ σaux

3j

∂uj
∂x1

)
qdA−

∫
Γ++Γ−

σ2j
∂uauxj

∂x1
m2qdΓ

(4.25)

where A is the disk-shaped domain in the plane orthogonal to the crack front at point

s, and Γ+ and Γ− are the contours on the crack faces with m2 = −1 and m2 = 1, re-

spectively. Again consider two following states of equilibrium superimposed on top of

each other over the very small area A: (a) an equilibrium state generated due to in-

plane loads (ua = {u1, u2, 0}T , εa = {ε11, ε22, ε33, ε12, 0, 0}T , σa = {σ11, σ22, σ33, σ12, 0, 0}T
); (b) an equilibrium state generated due to anti-plane loads (ub = {0, 0, u3}T , εb =

{0, 0, 0, 0, ε13, ε23}T , σb = {0, 0, 0, 0, σ13, σ23}T ). The actual fields within the area A are
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obtained by superposing the states a and b (see Fig. 4.5). The state a produces a mixed-

mode I/II crack deformation only, while the state b can produce mode III deformation

only. Consider now the auxiliary fields for mode I as (uaux = {uaux1 , uaux2 , 0}T , εaux =

{εaux11 , εaux22 , εaux33 , εaux12 , 0, 0}T , σaux = {σaux
11 , σaux

22 , σaux
33 , σaux

12 , 0, 0}T ).

KI can now be computed by substituting superimposed states and the mode I auxiliary

fields in Eq. (4.25). From the equilibrium states a and b, only state a contributes to the

crack deformation in mode I, and the equilibrium state b shall be ignored. Considering the

auxiliary fields, and equilibrium state a only, the second integral in Eq. (4.25) vanishes. The

same logic can be applied for formulating the interaction integral associated with modes II

and III to eliminate the second integral in Eq. (4.25). The interaction integral formulation

in Eq. (4.25) therefore simplifies to

I(s) =

∫
A

(
σij

∂uauxj

∂x1
+ σaux

ij

∂uj
∂x1

−WIδ1i

)
∂q

∂xi
dA−

∫
Γ++Γ−

σ2j
∂uauxj

∂x1
m2qdΓ (4.26)

By using the following auxiliary states of mode I (Kaux
I ,Kaux

II ,Kaux
III ) = (1, 0, 0), mode

II (Kaux
I ,Kaux

II ,Kaux
III ) = (0, 1, 0), and mode III (Kaux

I ,Kaux
II ,Kaux

III ) = (0, 0, 1), three corre-

sponding interaction integral values II(s), III(s) and IIII(s) are obtained from Eq. (4.26),

and the SIFs are extracted from Eq. (4.18).

4.5 Volumetric vs. disk-shaped domain integrals

New versions of domain integrals for computing J- and interaction integrals in 3D cracks

were developed in Eqs. (4.23) and (4.26). These versions are similar to the domain inte-

gral formulations developed for 2D cracks. The main advantage of the volumetric domain

integrals is that the domain can be built by a set of elements around the crack front. As a

result, the numerical integration is readily implemented using the integration points of the

elements. This is a major advantage of the volumetric domain approach, if a structured

mesh provides a well-defined tubular region around the crack front. However, for the case

of an unstructured mesh where the domain integral is most likely to be independent of the

mesh structure, the volumetric domain integral may not be the best option.

The advantages of the disk-shaped domain integrals over the volumetric ones are as

follows: (1) They can be readily implemented for unstructured meshes. (2) They directly

use the original definition of the pointwise J integral and interaction integrals in Eqs. (4.4)

and (4.14) without using any approximation. This is not the case in the volumetric domain

integrals, where an error may arise from the assumption of the small variation of fracture

parameters along the local crack segment Lc. (3) The new versions perform the integra-

tion over a disk perpendicular to the crack front, and therefore determining the position
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of the integration points with respect to the curved crack front is very simple. In fact, in

these domains, expressing the stress, strain and displacement fields in a curvilinear coordi-

nate system is no longer required. This is not the case for the volumetric domains, where

expressing the fields in a curvilinear coordinate system requires determining the position

of integration points with respect to a curved crack front, which is usually performed by

minimizing the distance of the integration point from the crack front through a Newton

procedure. (4) As the 2D plane strain auxiliary fields do not satisfy the compatibility and

equilibrium equations in the curvilinear coordinates, a new term containing the higher or-

der gradients of the auxiliary fields emerges in the volumetric domain integral formulation

(the second term in Eq. (4.19)). In the disk-shaped domain integral formulation, however,

such a term does not exist as the 2D plane strain auxiliary fields satisfy the compatibility

and equilibrium equations throughout a disk-shaped domain. (5) The new formulation re-

quires less computational cost, as it performs integration over a disk rather than a tube.

Moreover, unlike the volumetric approach, the disk-shaped domain integrals do not require

performing iterative procedures to obtain the fields in curvilinear coordinates, which signif-

icantly reduces computational effort. (6) In the disk-shaped domain integral, the in-plane

and anti-plane fields are separated, and cannot influence each other in the computation of

fracture parameters. In fact, the in-plane numerical results cannot affect the computation

of out-of-plane mode III stress intensity factor, and anti-plane numerical fields cannot also

influence the computation of in-plane mode I and II stress intensity factors.

4.6 Finite element implementation details

New formulations for the evaluation of pointwise J- and interaction integrals using disk-

shaped domains were presented in Section 4.4. As this type of domain cannot be represented

by a set of volumetric elements, the existing elements cannot be directly used in the in-

tegration process. A novel, efficient and accurate approach for the evaluation of domain

integrals, based on using a set of virtual triangular and line elements, is now presented.

In this approach, the disk-shaped domain A is filled with virtual quadratic triangular ele-

ments, while the contours on the crack surfaces, Γ− and Γ+, are discretized by line elements

(see Fig. 4.7). These elements are referred to as virtual since they are not used while per-

forming the finite element solution of the boundary value problem. In fact, these elements

are constructed in the post-processing stage, and discarded after the domain integrals are

evaluated at the point s along the crack front. The presented domain integration can be

readily implemented in any FE code. Moreover, these virtual elements make the process of

integrating over the domain completely independent of the mesh structure and resolution

around the crack front. This is a great advantage, as accurate domain integrals can be
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Figure 4.6: Configuration of nodes and integration points in (a) quarter-point line element and (b)
quarter-point triangular element.

evaluated by using fine virtual elements, although a coarse mesh discretization may have

been used for the finite element solution.

Consider point s along the crack front with the local coordinate system x1x2x3. Due to

the domain symmetry, only one-quarter of the disk of radius Rd is discretized with virtual

triangular elements, and the contour Γ+ is discretized by line elements. The integration

over the other three quarters is readily evaluated by the reflection of integrating points of

the generated virtual elements (see Fig. 4.7). Quarter-point tetrahedra reproduce square

root singular (1/
√
r) fields in the vicinity of the crack front; therefore, the evaluation of

line and area integrals in Eqs. (4.23) and (4.26) requires numerical integration of singular

integrands of types 1/
√
r, and 1/r, respectively. Standard Gauss-quadrature integration

scheme performs well only when the integrand varies gradually; in fact, the use of standard

quadrature rules to compute the integration of singular functions results in significant errors

unless the domain is subdivided into many subdivisions. Here it is proposed that the mid-

side nodes of the virtual triangular/line elements attached to the crack front be moved to

the quarter-point position (see Fig. 4.7). These quarter-point virtual elements significantly

improve the accuracy of the numerical integration as explained below.

Consider x1 = 0, x2 = L, and x3 = L/4 being the positions of nodes 1, 2 and 3 of

the isoparametric quarter-point line element shown in Fig. 4.6a. Considering the element

shape functions N1 = ξ(ξ − 1)/2, N2 = ξ(ξ + 1)/2, N3 = (1− ξ)(1 + ξ), the mapping of the

geometry from the local coordinate system x into the natural element coordinate system

ξ, where −1 ≤ ξ ≤ +1, is given by x(ξ) =
∑3

i=1Nixi = (ξ + 1)2L/4. This mapping has

a Jacobian of ∂x/∂ξ = (ξ + 1)L/2, which cancels out the square-root singular term in the

integrand (
∫ L
0 dx/

√
x =

∫ +1
−1

√
Ldξ). The standard quadrature rule is now able to compute

the exact value of the integral.
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Consider now that the corner nodes 1, 2 and 3 of the quarter-point triangular element

shown in Fig. 4.6b are located at (0, 0), (x2, y2), and (x3, y3), respectively. The positions

of the mid-side node 5 and the quarter-point nodes 4 and 6 are ((x2 + x3)/2, (y2 + y3)/2),

(x2/4, y2/4), and (x3/4, y3/4), respectively. Considering the natural coordinates 0 ≤ ξ ≤ 1,

0 ≤ η ≤ 1 and γ = 1−ξ−η, the element shape functions are N1 = γ(2γ−1), N2 = ξ(2ξ−1),

N3 = η(2η − 1), N4 = 4γξ, N5 = 4ξη, N6 = 4γη, and the mapping of the geometry from

the local coordinate system xy into the natural coordinate system ξη is given by

x(ξ, η) =
∑6

i=1Nixi = (ξ + η)(ξx2 + ηx3)

y(ξ, η) =
∑6

i=1Nixi = (ξ + η)(ξy2 + ηy3)

r(ξ, η) = (ξ + η)2

√[
ξx2 + ηx3

ξ + η

]2
+

[
ξy2 + ηy3
ξ + η

]2 (4.27)

where r denotes the radial distance from the node 1 (crack tip). This mapping gives the

determinant of the Jacobian matrix J = ∂(x, y)/∂(ξ, η) as |J| = 2(ξ + η)2(x2y3 − x3y2)

which cancels out the singular term in the integrand:∫
A

dA

r
=

∫ 1

0

∫ 1

0

2(x2y3 − x3y2)√[
ξx2 + ηx3

ξ + η

]2
+

[
ξy2 + ηy3
ξ + η

]2dξdη (4.28)

in which A is the area of the triangular element. This transformation significantly improves

the accuracy of the numerical integration using a standard quadrature-rule procedure. In

fact, the integration points are placed closer to the singular point in quarter-point elements,

which helps them to efficiently capture the high gradients of singular integrands near the

singular point. It is noteworthy that these virtual quarter-point triangular elements have to

be used only when quarter-point tetrahedral elements have been employed in the FE solu-

tion; virtual standard triangular elements would suffice when standard tetrahedral elements

are used in the vicinity of the crack front.

Using the virtual elements, evaluation of the domain integrals in Eqs. (4.23) and (4.26)

follows the same standard Gauss-quadrature integration scheme available in any FE code:

J(s) =
elems∑
A

gpts∑
p

{[(
σij

∂uj
∂x1

−Wδ1i

)
∂q

∂xi

]
|J|
}

p

wp

−
elems∑

Γ−+Γ+

gpts∑
p

[(
σ2j

∂uj
∂x1

m2q

)
|J|
]
p

wp

(4.29)

I(s) =

elems∑
A

gpts∑
p

{[(
σij

∂uauxj

∂x1
+ σaux

ij

∂uj
∂x1

−WIδ1i

)
∂q

∂xi

]
|J|
}

p

wp

−
elems∑

Γ−+Γ+

gpts∑
p

[(
σ2j

∂uauxj

∂x1
m2q

)
|J|
]
p

wp

(4.30)
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Figure 4.7: (a) Virtual second-order triangular and line elements constitute the integration domain,
(b) details of the virtual mesh.

where the summations over area A and contour Γ− + Γ+ include all the virtual triangular

and line elements, respectively. The sum over p includes element integration points, ‘gpts’,

of the virtual elements, ‘elems’, where the bracketed quantities {}p and []p are evaluated

and multiplied by the corresponding weight wp. Repeated indices imply summation, and

|J| denotes the determinant of the coordinate Jacobian matrix of the virtual triangular and

line elements.

The computation of area integrals in Eqs. (4.29) and (4.30) requires the computation of

the stress, strain and displacement gradient tensors at the integration points of the virtual

elements. These values have to be extracted from the FE solution over the tetrahedral ele-

ment that contains the integration point of the virtual element. This requires the following

steps: (i) The tetrahedral element containing the virtual integration point p is identified by

using a search algorithm explained in Section 2.6. (ii) The local coordinates of the point

p inside the tetrahedral element are computed using the expressions in Section 2.6. (iii)

The stress, strain and displacement gradient tensors of these integration points are directly

obtained from the FE displacement solution over the tetrahedral element. All these quan-

tities must be expressed in the local coordinate system x1x2x3 located at point s on the

crack front (see Fig. 4.5). The evaluation of line integrals also requires the computation

of surface traction σ2j and displacement gradient ∂uj/∂x1 at the virtual integration point

p on the crack surface. Computing these values also requires the following steps: (i) The

triangular element that contains p is identified; (ii) The local coordinates of the point p in

the triangular element are computed; (iii) σ2j and ∂uj/∂x1 at p are computed by interpo-

lating the nodal tractions and displacement derivatives using the element shape functions

(see Section 2.6). It is also straightforward to compute the values for q-function and its
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derivative, and the auxiliary fields σaux
ij , and ∂uauxj /∂x1 at the virtual integration point p.

This only requires substituting the position of p in the local coordinate system located at s

into the q-function and analytical auxiliary fields expressions given in Eqs. (4.7-4.12). As

q is a function of x1 and x2 only, the derivative with respect to x3 vanishes (∂q/∂x3 = 0).

The procedure of computing J-integral and the SIFs is demonstrated in Algorithm (1).

Algorithm 1 Evaluation of the pointwise J-integral and SIFs using the disk-shaped domain
integral method

Generate a local coordinate system x1x2x3 at the point s using the unit vectors b1, b2
and b3.
Create a virtual disk-shaped integration domain using quadratic triangular and line
elements.
for e := 1 → Ntr do

for p := 1 → NP do
Find the tetrahedral element which contains the point p.
Compute the local coordinates (ξ, η, ζ) of p in the tetrahedral element.
Compute σij , εij , ∇× u at p in the local coordinate system.
Compute the auxiliary fields σaux

ij , and ∂uauxj /∂x1 at p .
Compute ∂q/∂xi at p.
Compute |J| at p using virtual triangular element coordinate matrix.

Accumulate: J(s) ← J(s) +

[(
σij

∂uj
∂x1

−Wδ1i

)
∂q

∂xi

]
|J|wp

Accumulate: Iz(s) ← Iz(s) +

[(
σij

∂uauxj

∂x1
+ σaux

ij

∂uj
∂x1

−WIδ1i

)
∂q

∂xi

]
|J|wp

end for
end for
for e := 1 → Nli do

for p := 1 → NP do
Find the triangular surface element which contains the point p.
Compute the local coordinates (ξ, η) of p in the triangular element.
Compute the traction σij , and ∇× u at p in the local coordinate system.
Compute the auxiliary field ∂uauxj /∂x1 at p.
Compute q at p.
Compute |J| at p using virtual line element coordinate matrix.

Accumulate: J(s) ← J(s)−
(
σ2j

∂uj
∂x1

m2q

)
|J|wp

Accumulate: Iz(s) ← Iz(s)−
(
σ2j

∂uauxj

∂x1
m2q

)
|J|wp

end for
end for
Compute SIFs from Eq. (4.18)

� Ntr, Nli, and NP are the numbers of virtual triangular elements, virtual line elements,
and the element’s integration points, respectively. � Iz(s) is computed using the auxiliary
fields of crack deformation mode z (z = I, II, III).

All procedures employed in this work were implemented into the IC Geomechanics
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toolkit, a geomechanical module [Paluszny and Matthäi, 2009; Paluszny and Zimmerman,

2011] of the Complex System Modeling Platform (CSMP++), an object-oriented finite ele-

ment based API developed for the simulation of complex geological processes [Matthäi et al.,

2001]. The system of equations resulting from the finite element method accumulation is

solved using the Fraunhofer SAMG Solver [Stüben, 2001].

4.7 Numerical examples

In order to demonstrate the efficiency and accuracy of the proposed approach, the J-integral

and stress intensity factors were computed for the following three crack configurations:

(i) through-the-thickness crack in a large thin plate with lateral constraint (plane strain

condition); (ii) penny-shaped crack embedded in an infinite solid; and (iii) elliptical crack

embedded in an infinite solid, as shown in Fig. 4.8.

4.7.1 Experimental setup

All the crack bodies are subjected to a uniform uniaxial tension in the X2 direction over

the top and bottom surfaces. The cracks lie in the plane X2 = X1 cotβ which generates the

angle of β with the direction of applied load. A horizontal crack configuration (β = 90◦)

produces pure mode I crack deformation, while the inclined one (0◦ < β < 90◦) provokes a

mixed-mode condition. In these configurations, a denotes half of the crack length for the

through crack, crack radius for the penny-shaped crack, and semi-major axis for the elliptical

crack. The semi-minor axis b of the elliptical crack is perpendicular to the X1X2 plane.

The crack length to body width ratio of a/w = 0.1 was used for all the cracked bodies. The

crack length to the plate thickness of a/t = 1 was considered for the through-the-thickness

crack. As the fracture parameters of these crack configurations are independent of the value

of Young’s modulus, an arbitrary value of E = 1MPa was used in all models. The choice

of Poisson’s ratio is not arbitrary, as the mode II and III SIFs of embedded cracks depend

strongly on the value of this material property (see analytical solutions in Appendix). In

this work, a Poisson’s ratio of ν = 0.3 was used for all simulations.

Boundary conditions

Due to the symmetry in geometry and loading conditions, only one-eighth (X1 > 0, X2 >

0, X3 < 0) and one-half (X3 < 0) of the cracked bodies were modeled for pure mode I

(β = 90◦) and mixed-mode (β = 45◦) conditions, respectively. The following boundary

conditions were applied for mode I models: u1 = 0 over the plane X1 = 0, u2 = 0 over the

plane X2 = 0 except over the crack surface, u3 = 0 over the plane X3 = 0, and σ = 1 over

the plane X2 = w. The applied boundary conditions for the mixed-mode models are also as
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Figure 4.8: Schematics of (a) Through-the-thickness crack in a large thin plate under uniaxial
tension; (b) Penny-shaped/elliptical crack embedded in an infinite solid under uniaxial tension.

follows: u1 = 0 at the pointX1 = X2 = −w,X3 = 0, u2 = 0 over the planeX2 = −w, u3 = 0

over the plane X3 = 0, and σ = 1 over the plane X2 = w. For the through-the-thickness

crack, the following additional boundary condition was also applied, to ensure zero lateral

displacement: u3 = 0 over the plane X3 = −t. This boundary condition imposes a plane

strain condition over the cracked plate, where the pointwise SIFs at any point on the crack

front follows the solution of the equivalent 2D problem of an inclined central crack in a large

plane. This solution gives the SIFs as follows: KI = σ
√
πa sin2 β, KII = σ

√
πa sinβ cosβ,

and KIII = 0. These formulas along with the analytical solutions for the SIFs of embedded

inclined penny-shaped and elliptical cracks in infinite solids given in Appendix will be used

to validate the numerical results.

Mesh

An octree-based mesh generation software was employed to generate arbitrary meshes for all

specimens, using 10-noded isoparametric tetrahedral elements. For the elements attached to

the crack front, the nodes near the front are moved from the mid-side point to the quarter-

point position to produce inverse square root singular fields near the front. The curved

crack fronts impose one curved edge for the tetrahedral elements sharing an edge with the

crack front. When using quarter-point elements, the Jacobian determinant over a small
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(a) (c)(b)

(d) (e)

Figure 4.9: (a) Finite element mesh discretizing one-half of an embedded penny-shaped crack;
Details of mesh in crack-front region for (b) through-the thickness, (c) penny-shaped, (d) elliptical
(b/a = 0.7), (e) elliptical (b/a = 0.4) cracks. For all cases Ln ≈ a/20.

volume near the curved edges becomes negative. To avoid this, as suggested in Chapter 2,

the curve edges were straightened by moving the mid-side nodes of the curved segments.

The refinement of the mesh near the crack front was controlled by assigning the number

of segments along the crack front. Assume that the crack front of length Lf is discretized

by Nf segments. A parameter called the nominal length (size) of the elements in the crack

front region can be defined as Ln = Lf/Nf . The nominal element length Ln represents

the approximate length of the elements’ sides near the crack front, and therefore gives an

approximate for the average size of the tetrahedral elements in the crack front region. In all

models, the degree of mesh refinement in the crack front region was controlled by keeping

the nominal crack front element size about one twentieth of the crack length (Ln ≈ a/20).

As estimations suggest that the size of the singular dominant zone depends mainly on the

crack length, ranging between a/10 and a/50 [Kuna, 2013], keeping Ln ≈ a/20 ensures

that the quarter-point elements at the crack front predominantly remain in the singular

dominant zone where the fields have the inverse square root singularity. Four-point, three-

point, and two-point Gaussian quadrature rules were employed for the numerical integration

over tetrahedral, triangular, and line elements, respectively. Figure (4.9) shows the finite

element mesh of the penny-shaped crack problem together with the local mesh refinements

near the crack front in different crack configurations.

Domain size and virtual mesh

For all crack configurations, the mesh-dependent domain radius of Rd = Ln has been used

to generate the virtual domains and compute the fracture parameters. Domains were built

at the locations of both corner and mid-side nodes of the segments along the crack front.
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The refinement of the virtual mesh is controlled by the number of domain elements in

the radial direction k as shown in Fig. 4.7. A similar virtual mesh structure as the one

shown in Fig. 4.7, with four elements in radial direction (k = 4), was used to compute the

fracture parameters. This choice yields 112 quadratic triangular elements, containing 112×3

integration points, together with 8 quadratic line elements, containing 8 × 2 integration

points. The reasons for these choices are explained in Sections 4.8.1 and 4.8.2.

The scalar function q

In order to compute the fracture parameters, a smooth function q must be defined over

the domain (disk) area. All the numerical results in this chapter are determined by using

q = 1 − r/Rd, where r =
√

x21 + x22 is the distance from disk center and Rd is the domain

radius (see Fig. 4.7). The derivatives of this function (∂q/∂x1 = −x1/rRd and ∂q/∂x2 =

−x2/rRd) are directly evaluated at the integration points of the virtual triangular elements.

Section 4.8.3 explains how the numerical results are influenced by changing this function.

After the computation of the pointwise SIFs along the crack fronts, the average numerical

error of SIF computation for individual modes ei (i = I, II, III) and average total error et were

evaluated by using Eq. (4.31). In these expressions, KA
i andKN

i are the pointwise analytical

and numerical mode i SIFs, respectively, and Lf is the crack front length. Wherever closed

form integration was not available, a trapezoidal rule has been employed to evaluate the

integrals numerically.

ei =

∫
Lf

|KA
i −KN

i |dl∫
Lf

|KA
i |dl

i = I, II, III et =

∑III
i=I

∫
Lf

|KA
i −KN

i |dl
∑III

i=I

∫
Lf

|KA
i |dl

(4.31)

4.7.2 Pure mode I SIFs

Fig. 4.10 shows the variation of the pointwise mode I stress intensity factor along the

crack front of different crack configurations when β = 90◦. Analytical solutions for a 2D

plane strain central crack problem, and 3D penny-shaped and elliptical cracks embedded in

infinite solids (Appendix) are also plotted. Here, φ and ω are the polar angle of the circle,

and the parametric angle of the ellipse, respectively. The numerical KI values have been

computed by the evaluation of J- and interaction integrals in Eqs. (4.29) and (4.30), and

their substitution into Eqs. (4.15) and (4.18) for the following loading conditions: (i) the

specimens are subjected to original far field load σ as shown in Fig. 4.8; (ii) instead of

applying the load at the far field, σ was applied over the fracture surface. These loading

conditions are equivalent according to the superposition principle, generating identical SIFs.
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Figure 4.10: The variation of normalized mode I (β = 90◦) analytical and numerical SIFs along
the fronts of (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks using J- and interaction integrals. The mode I average error is as follows: (a)
eI = 0.011, (b) eI = 0.008, (c) eI = 0.008, (d) eI = 0.008.

The average error eI for any of these four sets of results is about 1%. Highly accurate values

in the case of surface tractions demonstrate the efficiency of line elements for accurate

numerical computation of surface traction integrals.

4.7.3 Mixed-mode SIFs

Fig. 4.11 shows the variation of pointwise mixed-mode SIFs along the crack front of four

different crack configurations, when β = 45◦. The average total error et for all the cases

is about 1%. These results are obtained from a relatively coarse mesh (see Fig. 4.9),

and a finer mesh will result in the computation of even more accurate SIFs. These results

demonstrate the efficiency of the disk-shaped domains to accurately compute the interaction

integral from arbitrary meshes. Section 4.8 discusses the effects of actual and virtual mesh

refinements as well as domain radius on these results.
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Figure 4.11: The variation of normalized mixed-mode (β = 45◦) analytical and numerical SIFs along
the fronts of (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks. The average total SIF computation error is as follows: (a) et = 0.005, (b)
et = 0.011, (c) et = 0.012, (d) et = 0.013.

4.7.4 SIFs near corner points

Consider the through-the-thickness crack problem, when no lateral constraint is applied to

the plate, leaving the lateral surfaces traction free. The main characteristics of the behavior

in this cracked body are: (i) At the intersection of the crack front and free surface a corner

singularity occurs, where the order of the singularity, which depends on Poisson’s ratio as

well as on the loading conditions, is different from the crack singularity [Benthem, 1977;

Bažant and Estenssoro, 1979]. As a result, at the exact corner point, the definition of

crack stress intensity factor loses its meaning, since an inverse square root singular field

no longer exists [Nakamura and Parks, 1988, 1989]. (ii) Modes II and III become coupled,

meaning that applying primary shear or anti-plane loading on the plate also generates a

coupled mode III, or mode II crack deformation, respectively [Bažant and Estenssoro, 1979;

Nakamura and Parks, 1988, 1989; Kotousov et al., 2013]. This coupling occurs due to the

Poisson’s ratio effect or the redistribution of stresses near the free surfaces [Kotousov et al.,

2010, 2013; Pook et al., 2014]. For example, when a primary mode II crack deformation
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(KII > 0) is applied to the cracked plate, a coupled mode III deformation also occurs due to

the Poisson’s effect, as the plate above the crack plane is expanded along thickness direction,

while the region below the crack plane is contracted. It has been shown that the intensities

of the coupled modes can be as strong as those of primary modes [Kotousov et al., 2013].

Because of these two characteristics, the strong 3D effects influences the stress fields near

the crack front, and a classical two-dimensional (plane) elasticity solution is no longer able

to reproduce the stress intensities along the crack front.

Now assume that a primary mixed-mode I/II load is applied on a through-the-thickness

crack with traction-free surfaces. A few characteristics of the SIF variation along the crack

front must be noted: (i) As explained earlier, although the cracked plate is primarily sub-

jected to a mixed-mode I/II loading condition, a couple mode III crack deformation is also

created due to the Poisson effects. (ii) Under symmetric loading, the corner singularity is

weaker than the crack singularity, and therefore the local KI must approach zero at the free

surface [Nakamura and Parks, 1988; Benthem, 1977; Bažant and Estenssoro, 1979; Benthem,

1980; He et al., 2015]. This does not mean that the stress is finite at the corner point, but it

demonstrates that KI cannot be used to characterize the fields at the corner point. (iii) On

the other hand, for the antisymmetric loading condition, the corner singularity is stronger

than a crack singularity, and therefore the local KII approaches infinity at the free surfaces

[Nakamura and Parks, 1989; Benthem, 1977; Bažant and Estenssoro, 1979; Benthem, 1980;

He et al., 2015]. (iv) The coupled mode III deformation behaves differently compared to

KI and KII, since KIII must be zero at mid-plane and free surfaces, due to the symmetry

and traction free boundary conditions, respectively. In fact, KIII is zero at the mid-plane,

reaches its maximum value near the free surface, and drops back to zero at the corner point

[Harding et al., 2010; Kotousov et al., 2010, 2013]. This behavior is not observed in the

results of Nakamura and Parks [1989] as the coupled mode III SIF, which is computed using

the volumetric domain integral approach, appears to approach infinity at the free surface.

Such behavior is inconsistent with the free boundary conditions and zero anti-plane shear

stress at the free surfaces. This inconsistency has been noticed by Harding et al. [2010]; Ko-

tousov et al. [2010], as the KIII values they computed using the stress extrapolation method

deviates from the ones obtained by Nakamura and Parks [1989] for the points very close to

the corner point. The reason for this inconsistency has not been previously investigated.

The proposed method is now used to compute the SIFs of a plate with traction-free

lateral surfaces containing an inclined through-the-thickness crack with β = 45◦. A very

fine mesh (Ln = a/400) was generated, and the SIFs at nodes along the crack front were

computed using the disk-shaped domains of radius Rd = 2Ln. Fig. 4.12a shows the variation

of SIFs against the normalized distance from the mid-plane, x/t. The specimen was also
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Figure 4.12: The variation of normalized numerical SIFs along the through-the-thickness crack
front when the lateral surfaces are traction-free (β = 45◦). For both plots the cylinder results are
computed from cylindrical domains using Abaqus contour integral module. Eqs. (4.26) and (4.25)
are used respectively to compute disk results for (a) and (b).

modeled and analyzed with SIMULIA Abaqus FEA, where a structured mesh by collapsed

quarter-point hexahedral elements with an equivalent crack front region mesh density was

used. The SIFs were computed using an equivalent cylinder radius of Rd = 2Ln in the

contour integral module of this commercial FE package. The module uses the volumetric

cylindrical domains explained in Section 4.3 to compute the SIFs [Abaqus, 2012]. These

results are plotted against the normalized distance from the mid-plane in Fig. 4.12a. A

comparison of the two methods shows that the results are in very close agreement, except

very near the corner point, x/t = 1. The results from both methods demonstrate that KI

and KII approach zero and infinity, respectively. However, the coupled KIII results from the

cylindrical domains tend to infinity, similar to the trend reported in Nakamura and Parks

[1989], while those from disk-shaped domains seem to approach zero, which is consistent

with the trend reported by Harding et al. [2010]; Kotousov et al. [2010, 2013]. Let us now

use Eq. (4.25) instead of Eq. (4.26) to evaluate the integrals for the disk-shaped domains.

Eq. (4.25) contains one more term, the second term, where in-plane and anti-plane crack tip

fields are coupled in the process of SIF computation. This term vanishes in Eq. (4.26) by

employing the superposition principle, as discussed in Section 3. The following steps were

taken to compute this term: (i) the integral associated with this term was computed at the

points along the crack fronts; (ii) at each point a polynomial equation was fitted locally to

the integral values using the least square scheme; (3) the derivative of the polynomial was

computed at the point. Fig. 4.12b shows the variation of SIFs computed by Eq. (4.25)

against the normalized distance from the mid-plane. As seen, the results of the disk-shaped

domains are now consistent with cylindrical domains, providing questionable trend for KIII

near the corner point.
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Consider the integral term developed by substituting i = 3 into Eq. (4.6). This integral

term is evaluated over the tubular domain shown in Fig. 4.2. Also consider the function

q over the volume V as q = q′(x1, x2)q′′(x3), where q′(x1, x2) describes the variation of q

over a disk-shaped area A, and q′′(x3) describes the variation of q along the small crack

front segment Lc (see Fig. 4.4). If the crack fields vary slightly along Lc, the integral∫
A σ3j∂uj/∂x1q

′(x1, x2) can be assumed to behave linearly along Lc. Using integration by

parts, therefore, the term i = 3 in Eq. (4.6) can be expressed in the form of an area integral

as ∫
V
σ3j

∂uj
∂x1

∂q

∂x3
dV∫

Lc

q(x3)dx3

= − ∂

∂x3

∫
A
σ3j

∂uj
∂x1

q′(x1, x2)dA (4.32)

where A is the disk-shaped area developed when an orthogonal plane to the crack front

intersects the tubular region V at the mid-point of Lc (see Fig. 4.4). A similar equivalent

area integral can be found for the term developed when i = 3 is substituted in the first term

of Eq. (4.19). These relations indicate that the volumetric versions of domain integrals in

Eq. (4.6) and (4.19) approximately evaluate the second terms of the disk-shaped domain

integral formulas in Eqs. (4.22) and (4.25). As discussed in Sections 4.4.1 and 4.4.2 these

terms couple the fields from in-plane and anti-plane loads. It was then shown that, by

applying the superposition principle, these terms can be eliminated, and Eqs. (4.23) and

(4.26) were suggested for the disk-shaped domain integral formulations. The inaccurate

trend ofKIII near the corner point when using volumetric domain integrals can be attributed

to the presence of these terms in their formulation. Strong variation of modes I/II fields

occurs near the corner point, and the gradients of these fields with respect to x3 are high

enough to influence KIII significantly via the coupling term developed by substituting i = 3

in Eq. (4.19), or the second term in Eq. (4.25). Such an influence is not allowed in the

disk-shaped domain formulation proposed in this chapter, i.e. Eq. (4.26); therefore this

formulation can reproduce a more accurate variation of SIFs near the corner point. It must

be noted that the values of SIFs in Fig. 4.12a may vary slightly by using a finer mesh, but

the trend remains the same. It is generally advised that a more refined mesh is used to

compute more accurate values of the SIFs near the corner point.

4.8 Discussion

Three parameters mainly influence the computation of the fracture parameters using the

proposed method: mesh refinement at the crack front region, virtual mesh refinement of

the disk, and domain (disk) size. The domains must remain in the singular-dominant

region, where a plane strain condition prevails. Thus, one should avoid using large domains
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compared to the crack sizes. However, a very small domain may also capture only the FE

fields which are not accurate enough due to the high local numerical errors to represent

crack tip fields. Therefore, for every mesh resolution, there will be an optimum domain

size at which the computed fracture parameters are the most accurate. As the degree

of the accuracy of the fields near the crack depends on the type and refinement of the

elements in that region, it is expected that the optimum domain size depends mainly on

the type and size of the elements in the crack front region. To clarify the dependency of

the proposed domain integral approach on these three parameters, an extensive parametric

study is carried out in this Section. The SIFs of the crack configurations described in the

previous section were computed while changing these three parameters, and the formulas

in Eq. (4.31) were used to evaluate the average of total SIF computation error.

4.8.1 Refinement of virtual mesh

Consider the virtual mesh structure shown in Fig. 4.7 with k and 4× k grids in the radial

and circumferential directions, respectively. In this mesh structure, k controls the virtual

mesh refinement by generating (4×k)[(2×k)−1] virtual triangular elements and 2×k line

elements. The crack front of length Lf is discretized by Nf segments. The nominal size

of the elements in the crack front region is defined as Ln = Lf/Nf , which quantifies the

refinement of the actual mesh in the crack front region. Figure (4.13) shows the variation

of average total SIF error et for different actual mesh refinements, a/Ln, versus the number

of virtual elements in radial direction, k, used to compute the SIFs of the penny-shaped

crack for two domain radiuses Rd = a/10 and Rd = a/20. In both the virtual and actual

meshes, quarter-point elements have been used at the immediate crack front region. These

graphs demonstrate the following: (i) The virtual elements are very efficient in capturing the

crack fields, as accurate values can be computed for the SIFs even when very coarse virtual

elements are employed (k = 1), and using a more refined mesh does not significantly change

the SIFs. This is mainly because the quarter-point virtual elements are very accurate and

efficient in numerical integration of singular fields. (ii) The SIF computation error drops

slightly by increasing k to 4, remaining steady for greater values of k. A similar behavior

was also observed in other crack configurations and other choices of the domain radius. This

suggests that the choice of k = 4 generates a sufficiently refined virtual mesh that is able

to capture all the crack tip field variations that a very refined actual mesh can reproduce.

This finding allows the virtual mesh density to be chosen independent of the actual mesh

refinement, and of the domain size. It is recommended that k = 3, 4 be used for the fast

and efficient computation of SIFs, and k = 5, 6 for a more robust SIFs computation.
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Figure 4.13: The variation of the total SIF computation error et of the penny-shaped crack under
mixed-mode loading condition (β = 45◦) versus the number of the virtual elements in the radial
direction k in different mesh refinements: (a) Rd = a/20, (b) Rd = a/10.

4.8.2 Disk (domain) radius

An optimum size is expected to exist, which depends on the local actual mesh refinement in

the front region. A very large domain compared to the crack size leads to the violation of the

basic assumption of having a plane strain condition within the domain. The domain radius,

therefore, must be chosen to be as small as possible. The size of the singular-dominant

zone can be considered as an upper bound for the domain radius. This requires the domain

radius to be smaller than the size of the singular dominant zone which mainly depends

on the characteristic crack length, ranging between a/10 and a/50 [Kuna, 2013]. However,

very small domains might also introduce high errors, since the closer to the crack front, the

higher the error of FE fields [Paluszny and Zimmerman, 2011]. In addition, crack tip fields

are obtained from the FE solution, where the equilibrium equations are satisfied on average

within the element. Therefore, domains significantly smaller than crack front elements may

not capture the crack tip fields properly. Given these facts, the appropriate domain size is

found to be a balance between the satisfaction of prior assumption of plain strain fields and

the accuracy of FE fields in the domain. In an arbitrary mesh around the crack front, the

size of the elements may vary significantly, and an approximate (nominal) value should be

used to represent the average size of the elements. The nominal element size Ln = Lf/Nf is

defined, where Lf and Nf are the length of the crack front and number of segments used to

discretize it, respectively. To investigate the idea of an optimum domain size, an extensive

parametric study was carried out to relate the SIF computation error to the domain radius

in different mesh refinements. The SIFs of the different crack configurations were computed

for different domain radii for different actual mesh densities, while the virtual mesh density

was kept constant by k = 6. This fine virtual mesh ensures that all the field variation in
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Figure 4.14: The variation of the total numerical error et against normalized domain radius Rd/Ln

for (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical (b/a = 0.4)
cracks in different mesh refinements when using quarter-point tetrahedral elements.

different actual mesh refinements and domain radiuses are captured. Quarter-point elements

were employed in the crack front region in both actual and virtual meshes.

Figure (4.14) shows the variation of the average total SIF computation error versus

the normalized domain radius Rd/Ln for different actual mesh refinements expanding from

very coarse meshes a/Ln ≈ 5 to very fine meshes a/Ln ≈ 35. The main features of the

results in these graphs are as follows: (i) For the through crack, the error et drops slightly

from Rd = 0.5Ln to Rd = 1.5Ln, at which point it stabilizes. As the whole plate is under

plane strain conditions, 2D plane strain crack tip fields are developed ahead of the crack

front, and therefore the fracture parameters can be computed very accurately, even when

using very large domains. This is not the case for the other crack configurations, where the

plane strain condition prevails only close to the crack front. (ii) For the embedded penny-

shaped and elliptical cracks, except very coarse meshes, et slightly drops by increasing the

domain radius, reaching its minimum between Rd = Ln and Rd = 1.5Ln, and then increases

gradually for larger domain sizes. The decreasing trend in the beginning is explained by

the fact that increasing the domain size allows the capture of more representative crack tip
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Figure 4.15: The variation of the total numerical error et against the normalized domain radius
Rd/Ln for (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks in different mesh refinements and in the absence of quarter-point tetrahedral
elements.

fields, and also, the overall influence of local numerical errors decreases as integration is

performed over a larger domain. The growth trend is because a larger domain is more likely

to include the areas at which the plane strain condition no longer prevails. The plots clearly

show that there exists an optimum domain radius at which the error is minimized. This

behavior is not observed for the very coarse mesh, as the domains are already very large

compared to the crack size, and the minimum error is more likely to occur at Rd ≈ 0.5Ln.

According to these results, it can be concluded that there exists a mesh-dependent optimum

domain radius in the range of 0.5Ln ≤ Rd ≤ 1.5Ln, where the SIF computation error is

minimum. The optimum radius approaches Rd = 0.5Ln and Rd = 1.5Ln for coarse and fine

meshes, respectively, and a domain radius of Rd = Ln is the best choice that works for both

fine and coarse meshes.

Figure (4.15) presents the variation of the total SIF computation error versus the nor-

malized domain radius Rd/Ln, when standard tetrahedral elements are employed at the

crack front region instead of quarter-point ones. Equivalently, instead of quarter-point tri-
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angular elements, standard quadratic triangular elements are used at the first row in the

virtual mesh. The main features of the results in these plots are as follows: (i) The SIF

computation error is significantly higher in these plots as compared to the ones in Fig. 4.14,

especially for small domain sizes. The errors in these plots are approximately two to three

times larger than the errors in Fig. 4.14. This highlights the efficiency of the quarter-point

elements in improving the numerical solution of the crack tip fields. (ii) Similar trends

are observed in these plots to those shown in Fig. 4.14. One important difference is that

the errors for the small domains are significantly higher than those shown in Fig. 4.14.

This indicates that when standard tetrahedral elements are used, larger domains should be

preferred to compute accurate SIF values. (iii) The plots clearly demonstrate the existence

of an optimum mesh-dependent domain radius at which the SIF computation error hits its

minimum. This optimum domain radius is generally in the range of Ln ≤ Rd ≤ 3Ln ap-

proaching Rd = Ln and Rd = 3Ln for very coarse and fine meshes, respectively. A domain

radius of Rd = 1.5Ln is suggested as the best choice, that works for both fine and coarse

meshes.

4.8.3 The choice of the q-function

As was explained in Sections 4.3 and 4.4, an arbitrary continuously differentiable, the class

C1, scalar function q has to be defined over the domain. In order to assess the influence

of different q functions, the SIFs of the penny-shaped crack were computed using the q

function q = 1 − (r/Rd)
n with the following four different powers: n = 0.5, 1, 1.5, 2. The

model specifications such as actual mesh refinement, virtual mesh refinement and domain

radius are the same as the ones given in Section 5.6.1. The average total SIF error et is

as follows: et = 5% for n = 0.5; et = 1.1% for n = 1, 1.5; and et = 1.2% for n = 2.

The reason for the high numerical error in the case n = 0.5 seems to be due to the fact

that the derivatives of q function become singular at the disk center. This results in a less

accurate numerical integration over the domain. Additionally, due to the singularity at

the disk center, the sampling points near the disk center contributes to the entire integral

much more than do the points near the disk boundaries. As the numerical error near

the crack front is larger, it is expected that such a weighing process will lead to a larger

numerical error in the computation of the SIFs. The accuracy of the results for the other

three cases n = 1, 1.5, 2 seems to be about the same. However, an increase in n results in a

higher average error, et. In particular, the individual mode III error eIII grows significantly

for n > 2. The reason for such behavior is that increasing n makes the contribution of

the sampling point near the boundaries more significant than that of the points near the

crack front. This induces another source of error, due to the fact that only near the crack
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front a plane strain state prevails, and far from the crack front a 3D stress state is more

likely to exist. To summarize, it is concluded that q function should be chosen in a way

that all sampling points contribute evenly to the entire integral. Therefore, the function

q = 1 − (r/Rd) is a suitable choice since (i) the linear variation of its derivatives can be

captured well in the numerical integration, and (ii) the sampling points all over the domain

contribute evenly to the entire integral.

4.8.4 The choice of crack front points

In this chapter the pointwise SIFs are reported at the position of both corner and mid-side

nodes of the crack front segments. However, disk-shaped domains can be constructed at

any point along the crack front, and not necessarily at the position of crack front nodes. To

assess the influence of the choice of points on the numerical results, the pointwise SIFs of the

penny-shaped crack, whose specifications are explained in Section 5.6.1, were computed for

the following sets of points separately: (i) positions of corner nodes of crack front segments;

(ii) positions of mid-side nodes of crack front nodes; (iii) positions of midpoints between

corner and mid-side nodes of the crack front segments. The average SIF error remains about

1% for all cases. This indicates the choice of the points on the crack front does not influence

the accuracy of the SIFs, and therefore the pointwise SIFs can be computed accurately at

any point along the crack front.

4.9 Conclusions

A novel, efficient and accurate domain integral approach is proposed for computing point-

wise J-integral and stress intensity factors of 3D crack configurations from unstructured

meshes. This method is based on the evaluation of domain integrals over disk-shaped do-

mains, and has the following advantages over volumetric domain approaches that are based

on tubular domains:

1. It can be directly applied to arbitrary tetrahedral meshes.

2. It requires less computational cost, as it performs integration over a disk rather than

a tube. For example, a simple integration scheme over a virtual cylinder requires

integrating over three disks, and therefore requires three times more integration points,

as compared to using the proposed disk-shaped domain.

3. It directly applies the original definition of the pointwise J- and interaction integrals.
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4. Integration is performed over a disk perpendicular to the crack front, which is easy

to generate and low in cost, and expressing the field in curvilinear coordinates is no

longer required for curved cracks.

5. As 2D plane strain auxiliary fields satisfy compatibility and equilibrium equations over

a disk, the term containing the higher order gradients of the auxiliary fields vanishes

in this new formulation.

6. The in-plane and anti-plane fields are separated, and cannot influence each other in

the computation of fracture parameters.

This method utilizes disk-shaped domains discretized with virtual triangular elements,

which can be readily implemented in any FE code. The results of this method have been

validated for a number of crack configurations in mode I and mixed-mode loading condi-

tions, where the SIF computation error remains within 1% for fine meshes and 2-3% for

coarse ones. The results of an extensive parametric study also suggests that an optimum

mesh-dependent domain radius exists at which the SIF computation error hits its minimum.

This optimum radius is roughly equal to the nominal size of the elements at the crack front

region. It was also shown that employing quarter-point tetrahedral elements can improve

the FE solution of the crack tip fields significantly. These results provide further evidence of

the applicability, efficiency and accuracy of unstructured meshes to analyze cracked bodies.
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A gap-based augmented
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5.1 Abstract

This chapter introduces a three-dimensional finite element (FE) formulation to accurately

model the linear elastic deformation of fractured media under compressive loading. The

FE model is based on unstructured meshes using quadratic tetrahedral elements, and in-

cludes three novel components: (i) The singular stress field near the crack front is modeled

using quarter-point tetrahedra. (ii) The frictional contact between the crack faces in high

contact precisions is modeled using isoparametric contact discretization, and a gap-based

augmented Lagrangian method. (iii) Stress intensity factors of three-dimensional cracks

under compression are computed using displacement correlation and disk-shaped domain

integral methods. The main contributions in the contact treatment algorithm are: (i) A

square root singular variation of the penalty parameter near the crack front is proposed to

accurately model the contact tractions near the crack front. (ii) A gap-based augmented La-

grangian algorithm is introduced for updating the contact forces obtained from the penalty

method to more accurate estimates. The results of contact and stress intensity factors are

validated for several numerical examples of cubes containing single and multiple cracks.

5.2 Introduction

Understanding the mechanical behavior of fractured media under different mechanical loads

is of vital importance and great interest to a variety of engineering fields. Examples at the

micro-scale are materials such as rock and concrete which contains a large number of micro-

cracks. Not only elastic deformation features of this class of materials such as nonlinearity

and hysteresis, but also inelastic processes such as yielding, failure, fracturing, and frag-

mentation are attributed to the presence of micro-cracks and crack-like voids [Walsh, 1965;

Shockey et al., 1974; Kachanov, 1982b; Einstein and Dershowitz, 1990; Lawn and Mar-

shall, 1998; Aleshin and Van Den Abeele, 2007a; Khanal et al., 2008; David et al., 2012].

Geological formations are examples of fractured media at larger scales, where rock joints

extend to lengths ranging from hundreds to thousands of meters [Bonnet et al., 2001]. Pre-

existing natural fractures in geological media act as local mechanical weaknesses and main

flow pathways, and therefore determine not only their deformation and strength behavior

but also their flow and transport properties [Segall and Pollard, 1983; Gudmundsson, 1987;

Pyrak-Nolte and Morris, 2000; Bonnet et al., 2001; Nick et al., 2011]. Many of these frac-

tured media are often subjected to compression, and applications including rock fracturing

and fragmentation and fault growth, require analyzing crack under compressive loads. The

crack surfaces are most likely to go into contact under compressive loading states, and re-
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liable and accurate numerical methods are required to model the contact process between

crack surfaces.

The use of the finite element method to model contact between crack surfaces has been

mainly limited to XFEM formulations. XFEM allows modeling of the entire crack geometry

independently of the finite element mesh [Dolbow et al., 2001]. Both LATIN, LArge Time

INcrement, [Dolbow et al., 2001; Ribeaucourt et al., 2007; Pierrès et al., 2010; Baietto et al.,

2010; Trollé et al., 2012] and Newton-Raphson [Elguedj et al., 2007; Khoei and Nikbakht,

2007; Liu and Borja, 2010] iterative strategies have been employed in dealing with the non-

linearity of the contact problem. However, Liu and Borja [2008] demonstrated the superior

convergence performance of the Newton-Raphson method as compared to the LATIN strat-

egy. This previous work is mainly focused on XFEM modeling of two-dimensional cracks

and interfaces which are initially closed, yielding a low contact precision model. Moreover,

the accuracy of the contact tractions near the crack tip/front has not been investigated.

This accuracy directly influences the computation of stress intensity factors when using

an energy-based method such as the interaction integral. No validation of the accuracy of

the stress intensity factors has been reported in previous work. The proposed finite ele-

ment formulation here is based on unstructured tetrahedral elements, where the contact

constraints are enforced on 3D initially open cracks in high density fractured media. Also,

special attention is devoted to the accurate resolution of contact tractions near the crack

front and accurate computation of stress intensity factors.

An exact geometric representation of naturally fractured media is challenging, and

stochastic models are often required to investigate deformation/flow characteristics of frac-

tured media [Bonnet et al., 2001]. These models often use idealized fracture shapes based

on a statistic description of key parameters such as distributions of size and orientation

[Dershowitz and Einstein, 1988; Huseby et al., 1999, 2000; Malinouskaya et al., 2014]. De-

spite great geometrical simplifications, such approximated statistical representations are

sufficient for estimating effective values of engineering parameters. This is the original idea

behind Discrete Fracture Network (DFN) models, in which a natural fractured medium is

represented by a set of discrete individual fractures in a continuum environment. The con-

cept of DFN was first introduced by Long et al. [1982] for homogenizing complex fracture

networks and has been extensively used for flow/transport applications [Min et al., 2004;

Baghbanan and Jing, 2007; Leung and Zimmerman, 2012; De Dreuzy et al., 2012; Lang

et al., 2014]. A similar concept to DFN has also been extensively applied in solid mechanics

to estimate the mechanical deformation of micro-structured materials [Walsh, 1965; Lawn

and Marshall, 1998; Aleshin and Van Den Abeele, 2007a; David et al., 2012]. A discrete

fracture network is often defined stochastically by a set of fractures with random shape,
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size, orientation, locations, and initial apertures embedded in a continuum medium. Due

to the explicit representation of fractures, these networks have complex geometrical con-

figurations, and hence specific meshing schemes and numerical algorithms are required for

analyzing their mechanical deformation.

Due to the geometrical complexity of fractured media, unstructured meshes using tetra-

hedral elements are preferred. Meshing procedures for tetrahedra are much simpler, and

these elements are best suited to mesh complicated geometries automatically [Paluszny and

Zimmerman, 2011]. Unstructured meshes have been successfully used in the context of FE

simulation of crack propagation [Paluszny and Matthäi, 2009; Paluszny and Zimmerman,

2011, 2013] as well as fragmentation [Paluszny et al., 2013]. This chapter presents a finite

element formulation based on unstructured quadratic tetrahedral meshes to model inter-

nal contact in fractured media. A sophisticated algorithm is developed for the treatment of

frictional contact between the fracture surfaces, based on isoparametric discretization of the

contact contribution. The contact constraints are enforced by using a gap-based augmented

Lagrange method. The frictional contact algorithm proposed here is novel because (i) a sin-

gular variation of the penalty parameter is suggested near the crack front to circumvent the

difficulty of zero gaps on the crack front nodes; (ii) a gap-based augmented Lagrangian algo-

rithm is introduced to update contact tractions obtained from the penalty solution to new,

better estimates. As opposed to the conventional traction-based augmented Lagrangian

method, in which Lagrange multipliers are augmented, in this proposed methodology gaps

are augmented, which allows one to circumvent the difficulty of defining and augmenting

Lagrange multipliers at crack front nodes. In order to model the strain singularity along

the crack front of fractures, quarter-point tetrahedral elements are used at the crack front

region. Displacement correlation and domain integral methods are also explained and used

for computing the point-wise stress intensity factors. The proposed FE formulation is able

to compute fracture contact tractions and high stress gradients near the crack front very

accurately. Therefore, the deformation response of the fractured media can be obtained

more accurately using this FE framework.

5.3 Problem description

Consider a body containing randomly distributed cracks, some of which are isolated and

some of which are intersecting with others or the boundaries as shown in Fig. (5.1). The

continuum medium, referred to as the matrix, is assumed to behave elastically, and the

deformation is assumed to be in the range of infinitesimal strain theory. Cracks are modeled

as discontinuities of the material over discrete areas, generating two smooth surfaces for each

crack. They can be initially closed or open, with a certain aperture distribution over the
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ĝ
T

(u -u  )s      m

c

crack surface ( )�c

(a) (b)

Figure 5.1: (a) Schematics of an elastic medium containing random distributed discrete fractures,
(b) Kinematics of master and slave points over the crack surfaces.

crack surfaces. The crack surfaces are assumed traction-free and cohesion-free while the

crack is open. Once the crack surfaces go into contact, a frictional contact constitutive

law based on the Coulomb frictional law governs the boundary conditions over the crack

surfaces. The two surfaces of each crack intersect at a curve called the crack front, at which

a strain singularity occurs. The body is subjected to Dirichlet and Neumann conditions

applied on the outer boundaries of the solid. Quasi-static loading condition is assumed,

where the loading is applied sufficiently slowly so that inertial effects can be neglected.

5.3.1 Strong form

The main governing equations of the deformation are firstly developed in a strong form,

building the partial differential equations which satisfy the equilibrium condition throughout

the solid based on the equations of balance, kinematic relations, and constitutive equations.

Consider a body containing randomly distributed cracks as schematically shown in Fig.

(5.1). The domain of the body Ω ⊂ R
3 has external boundary Γ which is divided into

two non-overlapping sets: a Dirichlet boundary Γu with pre-defined displacements, and a

Neumann boundary Γσ with predefined tractions. Additionally, the domain Ω has internal

boundaries produced by the surfaces of embedded cracks, Γc, which are subjected to po-

tential contact boundary conditions. Although the body is subjected to quasi-static loads,

a time discretization over [0, T ] is necessary due to contact-induced nonlinearity and path-

dependency of frictional forces. The body undergoes small deformation described by the

mapping X �→ x = ϕ(X, t), where t ∈ [0, T ] and ϕ : Ω × [0, T ] → R
3. This maps material

points X ∈ Ω of the reference configuration to x ∈ Ωt of the current configuration. The

displacement field is therefore defined as u(X, t) = ϕ(X, t)−X. The quasi-static boundary
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value problem is therefore given by [Ibrahimbegovic, 2009]

∇ · σ + b = 0 in Ω × [0, T ]
u = ū on Γu × [0, T ]
σn = t̄ on Γσ × [0, T ]

(5.1)

Here σ = Dε is the Cauchy stress tensor, where D is the elasticity matrix constituted by

the material properties Young’s modulus E and Poisson’s ratio ν, and ε = 1/2[∇u+(∇u)T ]

is the infinitesimal strain tensor. The differential equation describes the balance of linear

momentum, where ∇ · σ denotes the internal forces, and b is the vector of body forces per

unit volume. ū and t̄ are the pre-defined displacements and surface tractions on the external

boundaries with unit normal n. The local balance of angular momentum yields σ = σT ,

which indicates the symmetry of the Cauchy stress tensor.

The contact conditions are enforced on Γc through applying contact constraints between

the two surfaces of each crack; one is referred to as the so-called master surface, Γm, while

the other is denoted as the slave surface, Γs (Γc = Γm ∪Γs). The curves at which slave and

master surfaces meet belong to the crack front, (Γf = Γm ∩Γs). Consider Xm, the position

vector of the points on the crack master surface in the reference configuration. The crack

slave surface can then be defined as Xs = Xm − ĝN(X
m)n(Xm), where ĝN ≤ 0 is a scalar

function defining the initial normal gaps over the crack surface, and n(Xm
c ) is the unit

normal to the master surface in the reference configuration. Assuming small deformations,

the unit normal is time-independent, and the normal gap function between the crack master

and slave surfaces is given by

gN = (xs − xm) · n = (us − um) · n− ĝN (5.2)

where xm, xs, um, and us are the position vectors and displacement vectors of master

and slave surfaces in the current configuration. This gap function is employed to detect

the contact and enforce displacement constraints in the normal direction. The kinematics

of the contact surfaces in the tangential direction also involves the calculation of initial

tangential gap between the crack surfaces. Consider the time that a point on the slave

surface first touches the master surface. The relative displacement at this time is referred

to as (us − um)c, where (us − um)c · n = ĝN . The inital tangential gap vector ĝT is defined

as the relative tangental displacement of the two mapped points on the slave and master

surfaces when they come into contact, and is computed by ĝT = (I − n ⊗ n)(us − um)c.

Assuming small deformations, the tangential gap function, which describes the relative

tangential displacement of slave point with respect to master point during contact, is given

by

gT = (I− n⊗ n) (xs − xm)− ĝT = (I− n⊗ n) (us − um)− ĝT (5.3)
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which will be used in conjunction with an interfacial constitutive law to enforce the contact

constraints in the tangential direction. The contact traction acting on the master surface

tm is split into its normal and tangential components p = tm · n, and τ = (I − n ⊗ n) tm,

respectively. The traction acting on the slave surface obeys Cauchy’s first law, (ts = −tm).

The most frequently used frictional constitutive equation is the classical law of Coulomb,

describing the tangential frictional traction as

gT = 0 ⇔ ġT = 0 if τ ≤ μ|p|+ τc

τ = (μ|p|+ τc)
ġT

|ġT |
if τ > μ|p|+ τc

(5.4)

where μ and τc are the friction coefficient and cohesive stress, respectively, and ġT = (I−n⊗
n) (u̇s − u̇m) is the rate of change of the tangential gap with time. Coulomb’s law suggests

two states of contact: stick condition, where no tangential displacement is allowed, and the

contact traction is defined by enforcing kinematic constraints; and slip condition, where

no kinematic constraint is applied, but the value and the direction of frictional traction is

defined by the constitutive law. In fact, a constraint has to be applied to ensure tangential

traction is in the opposite direction of the rate of change in the tangential gap. Assuming

the slip of the slave points take place with the rate γ̇, the frictional traction applied on the

master points has to lie in the direction of slip according to the slip rule (ġT = γ̇τ/|τ |).
Consider the function fs(τ, p) = |τ | − (μ|p|+ τc) which bounds the contact frictional stress,

the normal and tangential contact conditions can be described in Kuhn-Tucker form as

[Wriggers, 2006]

gN ≥ 0, p ≤ 0, pgN = 0 on Γc × [0, T ]
γ̇ ≥ 0, fs(τ, p) ≤ 0, γ̇fs(τ, p) = 0 on Γc × [0, T ]

(5.5)

The strong form of equilibrium equation in Eq. (5.1) constitutes a set of differential

equations to be solved simultaneously with respect to inequality boundary conditions in

Eq. (5.5) for the deformation field u. The strong form of the governing equations requires

strong continuity of the displacement field, and is not suitable for numerical approximations.

Remark 1: The boundary of the cracked body is divided into three sets of Dirichlet,

Neumann and contact boundaries, Γ = Γu∪Γσ∪Γc, as shown in Fig. (5.1). The boundaries

Γσ and Γc can generally have overlap regions at the intersection of cracks with external

boundaries. However, special care has to be taken when Γu and Γc overlap as the kinematic

constraints of one region can prevent enforcing the constraints by the other. In fact, the

Dirichlet boundary conditions on contact surfaces can prevent p and τ from satisfying the

inequality conditions in Eq. (5.5). Therefore, in addition to Γu ∩ Γσ = ∅, the restriction

Γu ∩ Γc = ∅ must be applied.
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Remark 2: The crack front, Γf , where master and slave surfaces meet, can only provide

the boundaries of the contact region for each embedded crack, and is excluded from the

contact area, Γf /∈ Γc. Therefore, no contact traction is defined or applied on the crack

front. However, the limit of the contact traction as the crack front is approached, r → 0

where r is the normal distance from the crack front, can be nonzero:

limr→0 ||tm(r)|| ≥ 0 (5.6)

Remark 3: The state of strain is singular along the crack front. This indicates that

considerable stresses occur adjacent to the crack front even when very small penetration

occurs between the fracture surfaces. Therefore, penetration has to be strictly penalized in

a penalty treatment so that accurate contact tractions can be obtained.

5.3.2 Weak form

Consider a solid in its equilibrium configuration to be deformed by an arbitrary virtual

infinitesimal displacement field δu which satisfies the displacement boundary condition δu =

ū. This virtual displacement has also to be admissible with regard to the displacement

constraints of the contact condition. By applying the principle of virtual work to the

material points of Ω, the weak form of the equilibrium equation in Eq. (5.1) is formed as

an integral equation:

δΠ =

∫
Ω

(
σ : δε− b · δu

)
dΩ︸ ︷︷ ︸

δΠΩ

−
∫
Γσ

t̄ · δu dΓ︸ ︷︷ ︸
δΠσ

+

∫
Γm

(
pδgN + τ · δgT

)
dΓ︸ ︷︷ ︸

δΠc

= 0 (5.7)

subjected to the inequality conditions in Eq. (5.5) being satisfied for the normal and

tangential tractions, p and τ , on the contact master surfaces Γm. Here, δε = 1/2[∇δu +

(∇δu)T ] is the strain tensor of the virtual displacement field δu. The virtual normal and

tangential gaps are also developed based on the virtual displacement field as δgN = (δus −
δum) · n and δgT = (I − n ⊗ n) (δus − δum). The term δΠΩ indicates the contribution

of internal stresses and body forces to the total virtual work δΠ, and the terms δΠσ and

δΠc include the virtual work of pre-defined tractions and contact forces, respectively. In

contrast to strong form in Eq. (5.1), which is a set of differential equations with respected

boundary conditions, the weak form is in the form of an integral equation which requires a

weaker continuity on the displacement. The weak form also holds the pre-defined boundary

conditions of the boundary value problem, and is best suited to be the basis of numerical

approximations. The weak form integral statements of the form of Eq. (5.7) constrained

with inequality conditions in Eq. (5.5) will be the foundation of the subsequent finite

element formulation.
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5.4 Treatment of contact constraints

Two main numerical methodologies for incorporating contact constraints into the contact

contribution δΠc are the Lagrange multiplier and penalty methods. Both methods are

borrowed from optimization theory, and are often applied with active set strategies to deal

with the inequality conditions. The classical method of Lagrange multipliers adds the

active constraints to the weak formulation by introducing normal and tangential Lagrange

multipliers λN and λT as unknown contact tractions. The important advantage of this

method is that exact kinematic contact constraints are enforced. However, this is achieved

at the cost of an additional effort required to compute the additional unknowns. Zeros

are also introduced in the diagonal of the system of equations, which leads to difficulties

in the direct solution of the system. Recent applications of Lagrange multipliers can be

found in Fischer and Wriggers [2005]; Hartmann and Ramm [2008] and Tur et al. [2009].

On the other hand, the penalty method avoids the exact solution and additional unknowns

by introducing an approximation of the constraint conditions. In fact, the penalty method

exploits the advantage of removing the constraints explicitly from the formulation. The

violation of the constraint condition is then penalized by using a large positive penalty

parameter ε. Small penalty parameters results in considerable violation of constraints,

and as the penalty parameter tends to infinity, the contact constraint is enforced exactly.

However, the system of equations may become ill-conditioned as the penalty parameter

increases, and therefore, an appropriate penalty parameter is found to be a balance between

accuracy and stability. Due to ill-conditioning, the penalty method performs poorly for

high precision contact problems. Recent applications of the penalty method can be found

in [Fischer and Wriggers, 2006; Yang et al., 2005; Zavarise and De Lorenzis, 2009].

The application of any of these methods for the contact treatment in heavily fractured

media is problematic, as it is likely that the system becomes ill-conditioned due to high

contact precisions. The augmented Lagrangian method, however, is able to enforce the

contact constraint accurately in high contact precisions. This method, which was originally

proposed and applied in the context of mathematical programming problems subjected

to equality constraints, provides advantages over the more traditional Lagrange multiplier

and penalty methods. It combines Lagrange multiplier and penalty methods to exploit

the merits of both approaches [Wriggers and Zavarise, 1993; Puso and Laursen, 2004].

The advantages of the augmented Lagrangian over the penalty method include decreased

ill-conditioning of the system, and essentially exact satisfaction of constraints with finite

penalties. The advantage over Lagrange multipliers is that it avoids introducing unknowns

to the problem by using current fixed estimates of the Lagrange multipliers. Applying
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the augmented Lagrange method often yields a double loop algorithm in which constant

Lagrange multipliers are used with penalty terms during the inner loop to enforce the contact

constraints. Then, within an outer loop, the Lagrange multipliers are updated to new values

based on the computed tractions in the inner loop. This procedure increases the number

of iterations, but allows enforcing contact constraints accurately by using small penalty

parameters (see Simo and Laursen [1992]; Laursen and Simo [1993]; Zavarise et al. [1995]).

This type of algorithm has been referred to as nested augmented Lagrangian algorithm

[Simo and Laursen, 1992], or Uzawa-type algorithm [Wriggers, 2006].

5.4.1 Traction-based (standard) augmented Lagrangian method

In order to describe the formulation of the augmented Lagrangian method, the weak form

of the equilibrium equation in Eq. (5.7) is rewritten as δΠΩ − δΠσ + δΠc = 0. The solution

to this equation must provide values for the normal and tangential contact tractions p

and τ under the contact constraints in Eq. (5.5). Based on the augmented Lagrangian

treatment, contact tractions include contributions due to both the penalization by penalty

terms and Lagrange multipliers. The normal traction is defined as p = 〈λN+εgN〉, where the
introduction of the Macauley bracket, defined as 〈x〉 = (x− |x|)/2, ensures the satisfaction

of the constraint p ≤ 0 in Eq. (5.5). The penalty parameter ε is chosen as large as possible

without making the system ill-conditioned. The terms εgN penalizes the violation of the

constraint gN ≥ 0, denoting that this constraint is satisfied approximately. However, this

approximation of contact traction approaches the exact solution through an augmentation

procedure where the fixed estimates of Lagrange multiplier λN are employed and updated

in an outer loop. The same concept is used for enforcing the contact constraints in the

tangential direction. According to the constraints in Eq. (5.5), the vector of slip rate has to

equal the tangential velocity in the slip condition (ġT = γ̇τ/|τ | when fs(τ, p) = 0), while the

tangential velocity remains zero in the case of stick (ġT = 0 when fs(τ, p) < 0). In both case,

the tangential contact traction can be decomposed into Lagrange multiplier and penalty

parts. Assume λT is the Lagrange multiplier part of τ . Since λT is an estimate of contact

traction, the tangential displacement constraints are satisfied approximately, resulting in

a slight difference between the vectors of slip rate and tangential velocity. However, this

approximate solution approaches the exact values by updating the Lagrange multipliers

through an augmentation process. The augmented Lagrangian treatment reformulates the
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contact constraint in Eq. (5.5) as [Simo and Laursen, 1992]

p = 〈λN + εgN〉
fs(τ, p) = |τ | − (μ|p|+ τc) ≤ 0

ġT − γ̇nT =
1

ε
(τ̇ − λ̇T)

γ̇ ≥ 0
γ̇fs(τ, p) = 0

(5.8)

where nT = ∂fs(τ, p)/∂τ = τ/|τ |. If λN and λT are correct multipliers, then the dis-

placement constraints associated with the contact conditions are satisfied exactly (gN = 0

and ġT = γ̇nT), and an exact penalization occurs. The main idea of the augmented La-

grangian method is that fixed current estimates are considered for Lagrange multipliers.

Then the problem is solved to penalize any violation from contact constraint using the

penalty method, and the estimates of the Lagrange multipliers are updated based on the

result of penalty solution.

The quasi-static problem is solved in an incremental manner over the time interval

[0, T ] =
⋃N−1

n=0 [tn, tn+1] by which the loads are applied over N increments. In each time

increment [tn, tn+1], the solution un at the beginning of the increment tn is known from

Eq. (5.7) being satisfied. The aim is to find the deformation through the increment Δu

which yields the solution un+1 = un+Δun at the time tn+1. The algorithmic update of the

frictional contact traction is often performed by a return mapping strategy based on the

integration of Eq. (5.8) between tn and tn+1 using a backward Euler integration scheme

[Giannakopoulos, 1989; Simo and Laursen, 1992; Yastrebov, 2013]. Consider {un, pn, τn} to

be given through the satisfaction of Eq. (5.7) at tn:

δΠΩ+σ(un, δu) +

∫
Γm

(
pnδgN + τn · δgT

)
dΓ = 0 (5.9)

where δΠΩ+σ = δΠΩ − δΠσ. The solution at tn+1, i.e. {un+1, pn+1, τn+1}, is then obtained

by enforcing the satisfaction of Eq. (5.7) subject to the laws of evolution in Eq. (5.8) as

δΠΩ+σ(un+1, δu) +

∫
Γm

(
pn+1δgN + τn+1 · δgT

)
dΓ = 0 (5.10)

where

pn+1 = 〈λk
Nn+1

+ εgNn+1
〉

τ trn+1 = λk
Tn+1

+ εgTn+1

ntr
Tn+1

= τ trn+1/|τ trn+1|
f tr
s = |τ trn+1| − (μ|pn+1|+ τc)

τn+1 = τ trn+1 − εΔγ ntr
Tn+1

, where Δγ =

⎧⎨
⎩0, iff tr

s ≤ 0 (stick).

f tr
s /ε, otherwise (slip).

(5.11)

102



Chapter 5: Contact treatment

Here, the application of the return mapping algorithm regularizes the frictional traction

and the law of evolution in Eq. (5.8) in order to fulfil the inequality restriction for the slip

surface (fs(τ, p) ≤ 0). The backward Euler integration scheme is used to approximate the

relative tangential slip in the time increment. λk
Nn+1

and λk
Tn+1

are the kth fixed estimate

of Lagrange multipliers at tn+1, where k = 0, 1, 2, ... are iterations in the outer loop of the

augmented Lagrangian method to search for the correct multipliers. gNn+1
and gTn+1

are

also the normal and tangential gap functions in Eqs. (5.2) and (5.3) based on the solution

un+1 .

Algorithm (2) demonstrates the application of return mapping strategy and augmenta-

tion procedure for updating the contact tractions in a time increment. The contact tractions

are known at tn, and are stored at the corresponding Lagrange multipliers: pn = λNn
and

τ = λTn
. These values are the first estimates of the Lagrange multipliers at tn+1. A trial

solution is obtained by assuming stick condition over the active contact zones. The fric-

tional forces are then updated through the return mapping strategy, and Eq. (5.7) is solved

using Newton’s method in an inner loop, before the Lagrange multipliers are updated to

new estimates in the augmentation stage. The augmentation process is performed only

after the solution in the inner loop has converged. This procedure ensures the quadratic

convergence of Newton-Raphson solution scheme at the inner loop. In the first iteration

(k = 0) all the change in contact tractions during the step is stored in the penalty terms.

By continuing augmentation, however, the penalty contributions to contact tractions are

transferred into multipliers, yielding better estimates for the Lagrange multipliers. The

augmentation process continues until the normal gap and relative tangential displacement

in stick condition become less than certain thresholds TolN and TolT. At this stage, the

multipliers are the contact tractions, while the penalty terms are essentially zero. The main

advantage of augmented Lagrangian treatment is that the satisfaction of contact constraints

is improved by the augmentation procedure, outer loop, and not by the application of very

large penalty parameters. In practice, the penalty parameter should be as large as possible

without inducing ill-conditioning. The augmented Lagrangian method reduces to penalty

regularization if no augmentation is performed in the time steps.

Employing Algorithm (2), however, is problematic when dealing with contact between

crack surfaces. The reason is that no contact traction is available for the points on the crack

front, since the crack front is excluded from the contact domain. Lagrange multipliers are

often defined at finite element nodes and interpolated over the contact elements using the

shape functions. Therefore, values of traction on the crack front nodes are required in order

to distribute the traction over the contact elements attached to the crack front.
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Algorithm 2 Traction-based (standard) augmented Lagrangian approach for the evolution
of frictional contact in the time step [tn, tn+1]

1. Initialization:

k = 0

λk
N
n+1

= λNn

λk
T
n+1

= λ
Tn

2. Return Mapping and Solution:

pn+1 = 〈λk
N
n+1

+ εg
N
n+1

〉
τ trn+1 = λk

T
n+1

+ εgT
n+1

ntr
T
n+1

= τ trn+1/|τ trn+1|
f tr
s = |τ trn+1| − (μ|pn+1|+ τc)

Δγ = −〈−f tr
s /ε〉

τn+1 = τ trn+1 − εΔγ ntr
T
n+1

δΠΩ+σ(un+1, δu) +
∫
Γm

(
pn+1δgN + τn+1 · δgT

)
dΓ = 0

3. Augmentation:

λk+1
N
n+1

= 〈λk
N
n+1

+ εgk
N
n+1

〉
nk+1

T
n+1

= ntr
T
n+1

λk+1
T
n+1

=

⎧⎪⎨
⎪⎩
λk

T
n+1

+ εgk
T
n+1

if f tr
s ≤ 0 (stick).(

μ|λk+1
N
n+1

|+ τc
)
nk+1

T
n+1

otherwise (slip).

4. Convergence check:

IF
( |gN

n+1
| ≥ TolN or |g

T
n+1

| ≥ TolT over Γm
st

)
k ← k + 1

GOTO 2

ELSE

ĝT
n+1

← ĝ
Tn

+ g
T
n+1

Converge (EXIT).

5.4.2 Gap-based augmented Lagrangian method

In the context of LEFM, FE crack analyses consider single nodes over the crack front as

cracks are assumed to remain sharp. The gaps, therefore, remain zero on the crack front

nodes, and increase according to a square root variation with the normal distance from the

crack front (see Fig. (5.2)). On the other hand, the penalty solution is formulated based on

the gap distribution over the contact elements. As discussed earlier, the contact traction

can have a non-zero limit when the crack front is approached. This behavior cannot be

modeled with a standard penalty formulation with constant penalty parameter, since the

variation of contact traction near the crack front is dictated by the variation of the gap

there. This is a major issue, since the penalty formulation enforces the traction to decay
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near the crack front while the crack front is approached. A penalty solution based on a

constant penalty parameter, therefore, fails to determine a correct variation of traction near

the crack front unless special treatment is considered in that region.

The numerical solutions suggest that near the crack front of an arbitrary 3D crack

configuration, a plane strain condition prevails locally, so that the three-dimensional defor-

mation fields approach the two-dimensional plane strain fields [Nakamura and Parks, 1988,

1989]. According to these fields, the displacement adjacent to the crack front and over a

perpendicular plane to the crack front are given as square root functions of distance from

the crack front [Anderson, 2005]. Therefore, the distribution of relative displacement of the

top crack surface with respect to the bottom surface also follows a square root variation,

giving the total gap function of a point located at normal distance r from the crack front

as

g(r) =

(
κ+ 1

μ

)√
r0
2π

[
KIe2 +KIIe1 +KIII

(
4

κ+ 1

)
e3

]√
r/r0 = ḡ

√
r/r0 (5.12)

where Ki, i = I, II, III is the mode i point-wise stress intensity factor, μ = E/2(1+ ν) is the

shear modulus, E and ν are the Young’s modulus and Poisson’s ratio, and Kolosov constant

κ is equal to 3− 4ν for plane strain condition, ei is the unit vector along the xi axis of the

local coordinate system located on the crack front, and ḡ is the gap at the distance r0 from

the crack front. Numerical results from quarter-point tetrahedral elements also capture this

type of gap variation near the crack front, as shown in Chapters 2 and 3. This gap variation

significantly influences the contact tractions obtained from a penalty formulation near the

crack front. To avoid gap values influencing the contact reactions, it is suggested that a

singular square root variation of penalty parameter with r is used. Let ε0 be a constant

nominal penalty parameter at the distance r0 from the crack front. The distribution of

penalty parameter near the crack front can then be defined as ε = ε0/
√

r/r0, generating

a square root singularity of penalty parameter near the crack front. This regularization of

the penalty parameter cancels out the influence of gap variation on the contact traction

variation, ensuring a finite value of stick traction very close to the crack front, as shown in

Fig. (5.2):

tm = lim
r→0

ε(r)g(r) = ε0 ḡ (5.13)

It can also be shown for the slip condition that finite values of traction are obtained very

close to the crack front using this treatment. Although this proposed regularization of

the penalty parameter improves the contact tractions near the crack front, the difficulty

of defining Lagrange multipliers distribution over the element attached to the crack front

remains. This is because contact tractions cannot be defined and updated over the crack

front, and contact tractions over the master elements attached to the crack front cannot
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Figure 5.2: (a) Local coordinate system at a point along the crack front, and schematics of stresses,
(b) Variations of normal gap, penalty parameter, normal contact traction, and the normal stress
component σ22 at an orthogonal plane to the crack front.

be directly obtained from the tractions at nodal values. This difficulty, however, can be

circumvented by introducing a gap-based augmented Lagrangian method which relies on

the augmentation of gaps rather than contact tractions. In this type of treatment, the

normal and tangential Lagrange multipliers are defined as

λN = εg∗
N

, λT = εg∗
T

(5.14)

where g∗
N

and g∗
T

are augmented normal and tangential gaps. The augmented gaps are

constant during the penalty solution, inner loop, and are updated in the augmentation

process, outer loop, based on the penalty solution. In this strategy, thanks to the singular-

ity of penalty parameter, the augmented gaps are able to determine very accurate contact

tractions near the crack front. Algorithm (3) demonstrates the application of the proposed

gap-based augmentation Lagrangian treatment in the combination of return mapping strat-

egy for updating the contact tractions in a time increment.

An active strategy is often used to update the regions in contact in every iteration in the

inner loop. This strategy identifies the regions in contact by using the value of the normal

traction pn+1 = ε(g∗k
Nn+1

+ gNn+1
), where pn+1 ≤ 0 denotes active contact zone. The slip

or stick condition is also determined based on the value of f tr
s in Algorithm (3). Consider

Γm
st and Γm

sl being respectively stick and slip zones of the contact master surface. Γm
st ∪ Γm

sl

therefore constitutes the active contact zone. According to the augmented Lagrangian

treatment in Algorithm (3), the normal, tangential stick and tangential slip tractions are

defined by p = ε(g∗
N
+g

N
), τst = ε(g∗

T
+g

T
), and τsl = (με|g∗

N
+gN |+τc)nT , respectively. Here,

the superscript k and subscript n + 1 are removed for simplicity. Using these expressions,
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Algorithm 3 Gap-based augmented Lagrangian approach for the evolution of frictional
contact in the time step [tn, tn+1]

1. Initialization:

k = 0

g∗k
N
n+1

= g∗
Nn

g∗k
T
n+1

= g∗
Tn

2. Return Mapping and Solution:

pn+1 = ε〈g∗k
N
n+1

+ g
N
n+1

〉
τ trn+1 = ε(g∗k

T
n+1

+ g
T
n+1

)

ntr
T
n+1

= τ trn+1/|τ trn+1|
f tr
s = |τ trn+1| − (μ|pn+1|+ τc)

Δγ = −〈−f tr
s /ε〉

τn+1 = τ trn+1 − εΔγ ntr
T
n+1

δΠΩ+σ(un+1, δu) +
∫
Γm

(
pn+1δgN + τn+1 · δgT

)
dΓ = 0

3. Augmentation:

g∗k+1
N
n+1

= 〈g∗k
N
n+1

+ gk
N
n+1

〉
nk+1

T
n+1

= ntr
T
n+1

g∗k+1
T
n+1

=

⎧⎪⎨
⎪⎩
g∗k
T
n+1

+ gk
T
n+1

if f tr
s ≤ 0 (stick).(

μ|g∗k+1
N
n+1

|+ τc/ε
)
nk+1

T
n+1

otherwise (slip).

4. Convergence check:

IF
( |gN

n+1
| ≥ TolN or |g

T
n+1

| ≥ TolT over Γm
st

)
k ← k + 1

GOTO 2

ELSE

ĝT
n+1

← ĝ
Tn

+ g
T
n+1

Converge (EXIT).

Eq. (5.7) is rewritten as

δΠΩ+σ(u, δu) +

∫
Γm
st+Γm

sl

ε
(
g∗
N
+ g

N

)
δgN dΓ︸ ︷︷ ︸

δΠNormal

+

∫
Γm
st

ε
(
g∗
T
+ g

T

) · δgT dΓ︸ ︷︷ ︸
δΠStick

+

∫
Γm
sl

(
με|g∗

N
+ g

N
|+ τc

)
nT · δgT dΓ︸ ︷︷ ︸

δΠSlip

= 0
(5.15)

Eq. (5.15) has to be solved in an iterative manner using Newton’s method, which

constitutes an inner loop in Algorithm (3). Since the augmented gaps are fixed within the

inner loop, the linearization of Eq. (5.15) depends only on the normal and tangential gaps
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gN and gT , and the direction of tangential traction nT . The finite element discretization,

and the linearization procedure, will be described in Section 5.5.

The augmentation process makes it possible to strictly penalize any violation of contact

constraints by using a small penalty parameter. It is noteworthy that due to the singularity,

even a slight violation of contact constraints can cause considerable stresses near the cracks.

Therefore, the contact constraints have to be applied as accurately as possible. This requires

the augmentation to continue until the normal gap gN and the tangential stick gap gT become

smaller than reasonable values of thresholds TolN and TolT, which are dependent on the

crack size.

5.5 Finite element formulation

Due to the complex geometrical constraints of the explicitly represented fractures, a fully

unstructured mesh based on tetrahedral elements is the best choice to discretize an arbitrary

fractured media. It is well known that meshing procedures by tetrahedra are much simpler,

and these elements are best suited to mesh arbitrary domains and complicated geometries

automatically. Additionally, adaptive meshing procedures can be applied to discretize the

domain efficiently. Quadratic elements are preferred over linear ones in such complex defor-

mation states, since high stress gradients occur in the domain, particularly near the crack

fronts. Consider the problem domain Ω to be discretized using quadratic tetrahedral fi-

nite elements. Accordingly the domain boundaries and fracture surfaces are discretized by

quadratic triangular elements. Most meshing schemes are able generate matched meshes

over the fracture surfaces. Therefore, an isoparametric discretization of the contact area

based on quadratic triangular elements is applicable. Such discretizations are preferred in

geometrically linear problems where the change in the geometry is trivial due to small defor-

mations. In general, procedures based on non-matched meshes such as node-to-surface and

surface-to-surface mortar-based methods are computationally more expensive [Wriggers,

2006].

5.5.1 Domain discretization

The entire domain of the problem is discretized with quadratic ten-noded tetrahedral ele-

ments as shown in Fig. (5.3). The geometry and displacement of a ten-noded isoparametric

tetrahedral element is mapped from the global coordinate system xyz into the natural

coordinate system ξηζ (0 ≤ ξ, η, ζ ≤ 1) by

X (ξ, η, ζ) =

10∑
i=1

NiXi , u (ξ, η, ζ) =

10∑
i=1

Niui (5.16)
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where Ni is the shape function corresponding to the node i with the position vector Xi =

(xi, yi, zi) in the global space, and ui is the displacement vector of the node i in the global

space. The shape functions of a ten-noded tetrahedral finite element are given by

N1 = λ(2λ− 1) , N2 = ξ(2ξ − 1) , N3 = η(2η − 1) , N4 = ζ(2ζ − 1)

N5 = 4λξ , N6 = 4ξη , N7 = 4λη , N8 = 4λζ , N9 = 4ξζ , N10 = 4ηζ
(5.17)

where λ = 1−ξ−η−ζ. The boundaries of the problem, including the external boundaries and

internal crack surfaces, are discretized with isoparametric quadratic six-noded triangular

elements as shown in Fig. (5.3). In these elements, the mapping from the global coordinate

system xyz into the natural coordinate system ξη (0 ≤ ξ, η ≤ 1) is

X (ξ, η) =

6∑
i=1

NiXi , u (ξ, η) =

6∑
i=1

Niui (5.18)

where the shape functions are

N1 = λ(2λ− 1) , N2 = ξ(2ξ − 1) , N3 = η(2η − 1) , N4 = 4λξ , N5 = 4ξη , N6 = 4λη

(5.19)

where λ = 1− ξ − η. According to the linear elastic solution, the state of strain is singular

over the crack front of 3D fractures [Anderson, 2005]. Conventional finite elements includ-

ing standard tetrahedra employ polynomials to interpolate field variables in the domain.

Therefore, these elements are not able to reproduce the crack tip square root singular strain

field near the crack front, which leads to their poor performance in FE analyses of crack

problems. The efficiency and applicability of quarter-point tetrahedral finite elements in

reproducing the strain singularity near the crack front were demonstrated in Chapters 2

and 3. The numerical results in Chapter 3 suggest that employing quarter-point tetrahe-

dral element in an unstructured mesh layout improves the FE solution near the crack front

considerably.

Quarter-point tetrahedral elements are employed at the immediate neighborhood of

crack fronts, while the remainder of the domain is discretized with the standard tetrahe-

dral elements as shown in Fig. (5.3). The introduction of quarter-point elements to the

fractured media is straightforward. Tetrahedral elements attached to the crack front are

identified, and mid-side nodes are shifted to the quarter-point position near the crack front.

The internal node numbering of the elements is then adapted to become consistent with

the numbering in Section 2.6. This allows one to use simple relations for obtaining the

local coordinates of a given point inside a quarter-point element. The use of quarter-point

tetrahedra also introduces quarter-point triangular elements over the crack surfaces near

the crack front as is shown in Fig. (5.3). The internal node numbering of these elements
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Figure 5.3: (a, b) Schematics of matched contact master and slave standard and quarter-point
triangular elements which are mapped from xyz into the natural space ξη in (c). (d) Schematics of
standard and quarter-point tetrahedral elements which are mapped from xyz into ξηζ space in (e).

are also changed in order to make the orientations of quarter-point triangular elements con-

sistent (see Section 2.6). As is seen in Fig. (5.3), the remainder of surfaces is discretized

with standard quadratic triangular elements.

5.5.2 The contribution of internal/external forces

In order to describe the kinematics of tetrahedral and triangular elements, the vectors

of displacements, ui, virtual displacements, δui, and incremental displacements, Δui are

introduced for every node i. The virtual work due to internal stresses and body forces

throught the domain is given by

δΠΩ+σ(u, δu) =

∫
Ω

(
σ : δε− b · δu

)
dΩ−

∫
Γσ

t̄ · δu dΓ ≈
elems∑
Ω

10∑
i=1

δuTi G
Ω

i −
elems∑
Γσ

6∑
i=1

δuTi G
σ

i

G
Ω

i =

∫
Ωe

(
BT

i DBjuj −Nib
)
dΩ ≈

gpts∑
p=1

[(
BT

i DBjuj −Nib
)
|J|
]
p
wp

G
σ

i =

∫
Γe

Nit̄ dΓ ≈
gpts∑
p=1

[
Ni t̄ |J|

]
p
wp

(5.20)

The summations over domains Ω and Γσ include all tetrahedral elements, and triangular

elements which are subjected to pre-defined external tractions, respectively. Ωe and Γe

denote the domain of tetrahedral and triangular elements. The sum over p includes element

integration points where the bracketed quantities {}p and []p are evaluated and multiplied

by the corresponding weight wp. |J| also denotes the determinant of the coordinate Jacobian

matrix of the elements. Matrix Bi contains the derivative of the shape functions associated
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with node i in local coordinate, and D is the elasticity matrix containing the material

properties [Zienkiewicz and Taylor, 1989]. The contribution is linearly dependent on the

displacement, and the associated tangent matrix is the so-called stiffness matrix, given by

K
Ω

ij =
∂G

Ω

i

∂uj
=

∫
Ωe

BT
i DBj dΩ ≈

gpts∑
p=1

[
BT

i DBj |J|
]
p
wp (5.21)

5.5.3 Contact kinematics and contribution

Consider two conformed quadratic triangular elements on the crack surfaces. One is referred

to as master element, m, and the other is denoted as slave element, s, as shown in Fig.

(5.3). Considering the global coordinate system in Fig. (5.3), all the top and bottom crack

surfaces are assigned as slave and master surfaces, respectively. Each node i on the master

element is paired with the matched node i on the slave surface, constructing the nodal pair

i. Assuming small deformation, the geometry of the contact surface can be represented by

the reference configuration of master surface Xm. The expression of the unit normal to the

master surface is given by

n (ξ, η) =
∂Xm/∂ξ × ∂Xm/∂η

||∂Xm/∂ξ × ∂Xm/∂η|| (5.22)

where ∂Xm/∂α =
∑6

i=1X
m
i ∂Ni/∂α, α = ξ, η are the tangent vectors to the master surface.

Depending on the internal node numbering of the master element, two normals with opposite

directions are obtained from Eq. (5.22). A normal vector that makes an acute angle with

the z direction of global coordinate system shall be used (n · ez > 0 where ez = (0, 0, 1)

in Fig. (5.3)). The two elements are separated by a small initial aperture, leading to an

initial normal gap −ĝN . Since the initial distance between the contact elements is small

compared to the size of contact elements, it is not necessary to explicitly apply this gap

between the elements in the geometrical specification. In fact, the implicit presence of the

gap in the gap formulation would suffice, leaving the geometry of the domain unchanged

during the entire contact analysis. Considering a certain fracture aperture distribution, the

initial normal gap is distributed over the master nodes of the fracture surface. Considering

the slave node i with the initial normal gap ĝi
N
, the initial normal gap distribution over the

contact element is given by

ĝN (ξ, η) =

6∑
i=1

NiĝNi
(5.23)

On the other hand, the initial tangential gap has to be computed by taking into account

the displacement field at the time that the master and slave surfaces first come into contact.

Consider that the slave element penetrates the master surface during the current time
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increment tc = [tn, tn+1], when the relative displacement at the penetrating nodal pair i

in the first iteration is (usi − umi )c. The initial tangential gap distribution over the contact

element is then approximated by

ĝT (ξ, η) =
ĝN (ξ, η)

n ·
6∑

i=1

Ni(usi − umi )c

(I− n⊗ n)
6∑

i=1

Ni(u
s
i − umi )c

(5.24)

at the end of the first iteration and is used in the following iterations of this increment to

apply the contact constraints. This initial tangential gap then remains constant until the

time at which the nodes in the nodal pair lose their contact again. The distribution of total

initial gap over the master element will therefore be

ĝ (ξ, η) = ĝN · n+ ĝT (5.25)

In order to describe the kinematics of each nodal pair, the vectors of displacements, virtual

displacements and incremental displacements are introduced as

uci =

{
usi
umi

}
, δuci =

{
δusi
δumi

}
, Δuci =

{
Δusi
Δumi

}
(5.26)

In addition, the following vector and matrix are introduced based on the local normal at

the master element as

C (ξ, η) =

{
n
−n

}
, T (ξ, η) =

[
(I− n⊗ n)
−(I− n⊗ n)

]
(5.27)

Based on these definitions and employing Eq. (5.26), the discretized version of gap functions

in Eqs. (5.2) and (5.3) in normal and tangential directions are given by

gN(ξ, η) = CT
6∑

i=1

Niu
c
i − ĝN (ξ, η) , gT(ξ, η) = T T

6∑
i=1

Niu
c
i − ĝT (ξ, η) (5.28)

The variation of the gap functions due to virtual displacement, δg, and the variation of gap

function due to incremental displacement, Δg, in normal and tangential directions are also

given as

δgN(ξ, η) = CT
6∑

i=1

Niδu
c
i , δgT(ξ, η) = T T

6∑
i=1

Niδu
c
i

ΔgN(ξ, η) = CT
6∑

i=1

NiΔuci , ΔgT(ξ, η) = T T
6∑

i=1

NiΔuci

(5.29)

As was explained in Section 5.4, the accurate computation of contact traction near the

crack front requires a square-root singular variation of the penalty parameter near the crack

front. This type of variation can be applied simply over the entire fracture surface, in the
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case of well-defined crack shapes such as penny-shaped and elliptical cracks. For example,

for an elliptical crack defined by the equation x′2/a2 + y′2/b2 = 1, where a and b are the

minor and major axis of the ellipse in the local x′y′ coordinate system, the parameter

εr =
√
1− (x′2/a2 + y′2/b2)1/2 is defined, and corresponding values are applied on nodes

over the master surface. The distribution of the penalty parameters over any master element

is then obtained by

ε(ξ, η) =
ε0

6∑
i=1

Niεir

(5.30)

where εir holds the value of εr at the node i. In the cases of complex fracture geometries,

the singular square root variation of penalty parameter can be applied only adjacent to

the crack front, perhaps over the quarter-point triangular elements only. In this case, the

application of a constant penalty parameter ε = ε0 would suffice for the remainder of the

fracture surface.

Augmented gaps are also obtained based on the gap discretization in Eq. (5.28). The

(k + 1)th augmented gaps are given by

g∗k+1
N

(ξ, η) = g∗k
N
(ξ, η) + gk

N
(ξ, η)

g∗k+1
T

(ξ, η) =

⎧⎨
⎩g∗k

T
(ξ, η) + gk

T
(ξ, η), iff tr

s ≤ 0 (stick).(
μ|g∗k+1

N
(ξ, η)|+ τc/ε

)
nk+1

T
, otherwise (slip).

(5.31)

where

gk
N
(ξ, η) = CT

6∑
i=1

Niu
c
i
k − ĝN (ξ, η) , gk

T
(ξ, η) = T T

6∑
i=1

Niu
c
i
k − ĝT (ξ, η) (5.32)

where uci
k is the displacement associated with the nodal pair i at kth iteration. nk+1

T
is also

the direction of tangential traction at the (k + 1)th augmentation iteration. It is obtained

through the return mapping process by using the trial tangential gap of the kth augmenta-

tion iteration. Consider nk
T
and gk

T
to be respectively the direction of tangential slip traction

and the tangential gap at kth augmentation iteration. The direction of tangential traction

for the next iteration is then obtained as

nk+1
T

=
g∗k
T

+ gk
T

||g∗k
T

+ gk
T
|| (5.33)

where g∗k
T

=
(
μ|g∗k

N
|+ τc/ε

)
nk

T
. As gaps are evaluated at the integration points of the

contact elements, the direction of the trial tangential traction is also evaluated there, and

updated during the augmentation process. For a planar crack, however, as the normals to

all master elements are identical for each fracture, the directions of tangential traction can

be stored and updated at the nodal pairs and then interpolated to the integration points as

113



Chapter 5: Contact treatment

g∗k
T

+ gk
T
=

6∑
i=1

Ni

(
g∗k
Ti

+ gk
Ti

)
(5.34)

Here gaps and augmented gaps corresponding to the nodal pair i are defined as

gk
Ni

= CTuci
k − ĝNi

, g∗k
Ni

= g∗k−1
Ni

+ CTuci
k−1 − ĝNi

gk
Ti

= T Tuci
k − ĝTi

, g∗k
Ti

=

⎧⎨
⎩g∗k−1

Ti
+ T Tuci

k−1 − ĝTi
, (stick).(

μ|g∗k
Ni
|+ τc/ε

)
nk

Ti
, (slip).

(5.35)

In this case the augmented nodal gaps are stored for each nodal pair i in g∗k
Ni

and g∗k
Ti

and

updated in the augmentation process.

The contribution of the normal, stick and slip contact tractions are approximated by

integrating numerically over the master elements. Using Eqs. (5.26) and (5.29), the contact

contributions in Eq. (5.15) is given by

δΠNormal =

∫
Γm
st+Γm

sl

ε
(
g∗
N
+ g

N

)
δgN dΓ ≈

elems∑
Γm
st+Γm

sl

6∑
i=1

δuci
TG

N

i

δΠStick =

∫
Γm
st

ε
(
g∗
T
+ g

T

) · δgT dΓ ≈
elems∑
Γm
st

6∑
i=1

δuci
TG

St

i

δΠSlip =

∫
Γm
sl

(
με|g∗

N
+ g

N
|+ τc

)
nT · δgT dΓ ≈

elems∑
Γm
sl

6∑
i=1

δuci
TG

Sl

i

(5.36)

where the residual vectors are defined as

G
N

i =

∫
Γe

ε(g∗
N
+ g

N
)NiC dΓ ≈

gpts∑
p=1

[
ε(g∗

N
+ g

N
)NiC|J|

]
p
wp

G
St

i =

∫
Γe

Tε(g∗
T
+ g

T
)Ni dΓ ≈

gpts∑
p=1

[
Tε(g∗

T
+ g

T
)Ni|J|

]
p
wp

G
Sl

i =

∫
Γe

(
με|g∗

N
+ g

N
|+ τc

)
NiTnT dΓ ≈

gpts∑
p=1

[(
με|g∗

N
+ g

N
|+ τc

)
NiTnT |J|

]
p
wp

(5.37)

Summations over area Γm
st and Γm

sl include all the elements domains Γe in stick and slip

conditions, respectively. The sum over p includes element integration points, ‘gpts’, of

the master triangular elements, ‘elems’, where the bracketed quantities {}p and []p are

evaluated and multiplied by the corresponding weight wp. |J| denotes the determinant of

the coordinate Jacobian matrix of the triangular elements. Eqs. (5.27), (5.28), (5.30) and

(5.31) are used to evaluate the parameters in Eq. (5.37) at integration points. The direction

of slip at integration point is also evaluated using Eq. (5.33). Linearization of Eq. (5.37)
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gives the tangent matrices as

K
N

ij =
∂G

N

i

∂uj
=

∫
Γe

εNiNjCCT dΓ ≈
gpts∑
p=1

[
εNiNjCCT |J|

]
p
wp

K
St

ij =
∂G

St

i

∂uj
=

∫
Γe

εNiNjTT
T dΓ ≈

gpts∑
p=1

[
εNiNjTT

T |J|
]
p
wp

K
Sl

ij =
∂G

Sl

i

∂uj
=

∂G
Sl

i

∂nT

∂nT

∂uj
+

∂G
Sl

i

∂gN

∂gN

∂uj

=

∫
Γe

εNiNj

(μ|g∗
N
+ g

N
|+ τc/ε

||g∗
T
+ g

T
|| T (I− nT ⊗ nT)T

T − μTnTC
T
)
dΓ

≈
gpts∑
p=1

[
εNiNj

(μ|g∗
N
+ g

N
|+ τc/ε

||g∗
T
+ g

T
|| T (I− nT ⊗ nT)T

T − μTnTC
T
)
|J|
]
p
wp

(5.38)

Remark 4: Some of the tangent matrix components in Eq. (5.38) are associated with

the virtual or actual displacement variation of the gap at the crack front nodes, which are

essentially zero. Therefore, the rows and columns corresponding to the crack front nodes

must be eliminated from the tangent matrices of the contact elements attached to the crack

front.

5.5.4 Contact algorithm and implementation

The Newton-Raphson method is often used to solve the system of nonlinear equations as-

sociated with the nonlinear characteristic of contact problems. Once the element residual

vectors and tangent matrices are obtained, the residual vector and tangent matrix of the en-

tire system of elements is developed through an assembling process. Let u = {u1, u2, ..., uN}
be the solution vector containing the displacements of all the nodes of the system, N . Equiv-

alently, δuT = {δu1, δu2, ..., δuN} can be defined to include the virtual displacement of the

nodes in the system. By substituting Eqs. (5.20), (5.21), (5.37) and (5.38) into (5.15), the

virtual work of the entire system is developed as

δΠ(u, δu) = δuTG =

elems∑
Ω

10∑
i=1

δuci
TG

Ω

i −
elems∑
Γσ

6∑
i=1

δuci
TG

σ

i

+

elems∑
Γm
st+Γm

sl

6∑
i=1

δuci
TG

N

i +

elems∑
Γm
st

6∑
i=1

δuci
TG

St

i +

elems∑
Γm
sl

6∑
i=1

δuci
TG

Sl

i = 0

(5.39)

where

G =

elems∑
Ω

10∑
i=1

G
Ω

i −
elems∑
Γσ

6∑
i=1

G
σ

i︸ ︷︷ ︸
G

Ω+σ

+

elems∑
Γm
st

6∑
i=1

(
G

N

i +G
St

i

)
+

elems∑
Γm
sl

6∑
i=1

(
G

N

i +G
Sl

i

)
︸ ︷︷ ︸

G
C

(5.40)
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Here G is the residual vector of the entire system, where δuTG = 0 indicates that a zero

residual vector defines the solution vector u, constituting a set of 3×N nonlinear equations.

Here the application of Newton-Raphson method involves the convergence of a trial solution

vector iteratively as
KΔu = −G
u ← u+Δu

(5.41)

where Δu = {Δu1,Δu2, ...,ΔuN}T is vector of displacement corrections, and K is the

tangent matrix of the entire system:

K =

elems∑
Ω

10∑
i=1

10∑
j=1

K
Ω

ij

︸ ︷︷ ︸
K

Ω

+

elems∑
Γm
st

6∑
i=1

6∑
j=1

(
K

N

ij +K
St

ij

)
+

elems∑
Γm
sl

6∑
i=1

6∑
j=1

(
K

N

ij +K
Sl

ij

)
︸ ︷︷ ︸

K
C

(5.42)

K and G are updated in each iteration to include the contribution of all the regions in

contact. The Newton-Raphson iteration continues until the norm of Δu becomes less than

some tolerance value. Algorithm (4) demonstrates all necessary steps associated with the

contact algorithm. The initial opening of the fractures in this algorithm is modeled by

applying an initial fluid (normal) pressure p0 on the fracture surfaces, and solving for the

deformation. The induced initial normal gaps are then saved as nodal values over the

crack surfaces. Afterwards the fluid pressure is removed, the solid deformation due to fluid

pressure is discarded, and the simulation begins by applying external compressive stress

to the cube, where as a result the crack surfaces might go into contact. This process of

introducing initial gap agrees well with the opening process of the natural fractures in

geomechanical systems.

Remark 5: The elements of the tangent matrix in Eq. (5.38) require integration of

polynomials of a maximum order of four. The Jacobian determinants of the straight-sided

standard and quarter-point triangular elements are polynomials of order zero and two, re-

spectively. Therefore, full-integration of the elements of the tangent matrix requires the

integration of sixth-order polynomials, which can be achieved by a seven-point integration

rule [Zienkiewicz and Taylor, 1989]. It is noteworthy that a rule with integration points on

the sides cannot be employed, as the Jacobian determinant is zero along the crack front, due

to the nonlinear mapping in quarter-point tetrahedra. A four-point Gauss rule computes

exactly the elements of stiffness matrix of straight-sided standard tetrahedral elements.

However, quarter-point tetrahedra introduce a Jacobian determinant in the form of poly-

nomials of order three. Therefore, a four-point Gauss rule provides a reduced integration

scheme for these elements. It has been demonstrated that a five-point Gauss rule can inte-

grate the elements of the stiffness matrix with the level of accuracy that is compatible with

the full integration of the components of the tangent matrices of quarter-point triangles.
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In this work, five-point and seven-point Gauss rules are used for tetrahedral and triangular

elements, respectively.

Algorithm 4 A frictional contact algorithm for analyzing 3D fractured media using a
gap-based augmented Lagrangian method

Initialization:

u = 0, g∗ = 0

Initialize fractures: Define ε, μ, τc, p0
for each fracture

Identify master and slave elements and nodes pairs

Identify all node pairs and crack front nodes

Generate quarter-point tetrahedra

Update ĝ
N
based on the solution of the system under p

0
only

Save K
Ω

in the form of a sparse matrix

Loop over N load increments:

for n := 1 → N do

Identify all nonactive node pairs NNP

Update the boundary conditions ū and t̄ at tn

Trial solution based on updated boundary conditions

Update ĝ
T
for NNP based on the trial solution

Loop over A augmentations:

for k := 1 → A do

Loop over Newton-Raphson iterations:

while ||Δu|| > THRESHOLD do

Update G
Ω+σ

Update G
C

and K
C

Solve KΔu = −G

Update u : u ← u+Δu

end while

Update augmented gaps g∗

end for

Update ĝ
T
for slipping node pairs

Compute SIFs along all crack fronts

end for

5.5.5 The computation of fracture parameters

A major step in analyzing crack behavior is the accurate computation of fracture mechanics

parameters such as the J-integral and stress intensity factors (SIFs). In the context of linear

elastic fracture mechanics (LEFM), the SIFs characterize the stress state adjacent to the

crack, and therefore their accurate determination is of great importance for predicting the

onset and characteristics of brittle crack growth. Unlike the vast amount of research that has

been carried out on the computation of fracture parameters for open cracks, crack behavior
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under compression has not been well investigated. Many fractured media are subjected

to compression, and many applications, including rock fracturing and fragmentation and

fault growth, require analyzing cracks under compressive loads. Two efficient, accurate

and straightforward methods to compute fracture parameters from unstructured meshes

were presented in Chapters 3 and 4. One is a straightforward and computationally cheap

displacement correlation (DC) scheme, which is employed in combination with quarter-point

elements. This method is based on correlating the displacement of points over the crack faces

at a fixed distance rm from the crack front. The use of this method for compressive stresses

requires no adaptation for closed cracks. The second method is an energy-based domain

integral approach, which computes J- and interaction integrals over disk-shaped domains

along the crack front. Since this method involves integration of crack surface tractions,

a brief description of the method and the process of integration of contact tractions is

described here.

In the absence of body forces, the disk-shaped domain representation of point-wise J-

integral and interaction integral at any point along the crack front of a planar 3D crack is

given by (see Chapter 4)

J(s) =

∫
A

(
σkl

∂ul
∂x1

−Wδ1k

) ∂q

∂xk
dA−

∫
C−+C+

σ2l
∂ul
∂x1

m2qdC (5.43)

I(s) =

∫
A

(
σkl

∂uauxl

∂x1
+ σaux

kl

∂ul
∂x1

−WIδ1k

)
∂q

∂xk
dA−

∫
C−+C+

σ2l
∂uauxl

∂x1
m2qdC (5.44)

where A is a disk-shaped area in the plane orthogonal to the crack front at point s, and

C+ and C− are the contours on the top (slave) and bottom (master) crack surfaces with

the outward unit normal m = (0,−1, 0) and m = (0, 1, 0), respectively as shown in Fig.

(5.4). σkl, εkl and uk are the Cartesian components of the stress tensor, strain tensor and

displacement vector in the local x1x2x3 coordinate system, respectively. σaux
kl , , εauxkl , and

uauxk are the components of stress tensor, strain tensor and displacement vector due to an

auxiliary state which includes the dominant terms in the linear elastic solution of a crack

problem. The auxiliary fields are therefore the first terms of the Williams series expansion

of crack tip fields [Williams, 1957]. W =
∫ ε
0 σklεkldε and WI = 1/2(εauxkl σkl + εklσ

aux
kl )

are the actual and mutual strain energy densities, respectively. δkl is the Kronecker delta,

and q is a smooth scalar function defined within the area A, taking the value of unity on

the disk’s circumference, and vanishing on the crack front. After the interaction integrals

corresponding to different auxiliary modes are computed, the stress intensity factors are

computed from simple relations.

Once the boundary value problem subjected to the contact constraints is solved, and

the required augmentation steps are performed, Lagrange multipliers provide the contact
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Figure 5.4: Schematics of integration over disk-shape domains using virtual triangular and line
elements.

tractions, and the penalty terms are essentially zero. In this case, the normal and tangential

tractions are obtained by p = εg∗
N
and τ = εg∗

T
, respectively. The contact traction over the

master (bottom) surface is therefore given by tm = p · n + τ = εg∗, where g∗ = g∗
N
n + g∗

T
.

The traction over the slave (top) surface is also opposite the one applied on the master

surface (ts = −tm). The stress components σ2l applied on both master and slave surfaces is

therefore equal to σ2l = εg∗ ·el where el is the unit vector of local axis xl in local coordinate

system as shown in Fig. (5.4). The domain integrals in Eqs. (5.43) and (5.44) are rewritten

as

J(s) =

∫
A

(
σkl

∂ul
∂x1

−Wδ1k

) ∂q

∂xk
dA−

∫
C−+C+

εg∗ · el ∂ul
∂x1

m2qdC (5.45)

I(s) =

∫
A

(
σkl

∂uauxl

∂x1
+ σaux

kl

∂ul
∂x1

−WIδ1k

)
∂q

∂xk
dA−

∫
C−+C+

εg∗ · el ∂u
aux
l

∂x1
m2qdC (5.46)

The line integral involves the evaluation of singular integrands defined by the displace-

ment gradients multiplied by the contact tractions. This implies that any small inaccuracy

of contact tractions very close to the crack front could potentially influence the value of

line integral significantly via the singular terms. Since the contributions of line integrals

are significant to the entire J- and interaction integrals, these inaccuracies are most likely

to influence the accuracy of the total value of J- and interaction integrals. Therefore, the

accuracy of the results of the J-integral and stress intensity factors are heavily dependent on

the accuracy of the contact traction near the fracture front. Although the choice of singular

penalty parameter makes it possible to obtain accurate contact tractions even very close to

the crack front, local inaccuracies near the crack front may still be observed. This is be-

cause contact tractions in a penalty solution are directly affected by the local displacement

inaccuracies near the crack front which are mainly due to low quality of randomly placed
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elements at a region with high stress gradients. These small inaccuracies can then greatly

influence the results of J- and interaction integrals, due to the presence of singular displace-

ment gradients. This vulnerability of the domain integrals to potential inaccuracies of the

contact traction can however be circumvented by recasting the line integral. As explained

earlier, the crack boundary condition dictates a square root displacement variation of the

crack surfaces near the crack front. Employing a singular square root penalty parameter

ensures that the contact traction is held constant at the region very close to the crack front.

Since the domain integrals are evaluated over small region near the crack front, a constant

contact traction over C− + C+ is therefore expected. Define Δul = ul|θ=π − ul|θ=−π and

Δuauxl = uauxl |θ=π − uauxl |θ=−π as the relative actual and auxiliary displacement of slave

crack surface with respect to the master crack surface. Δu and q vanish at the beginning

and the end of C−, which helps to recast integrals in Eqs. (5.45) and (5.46) using integration

by parts as ∫
C−+C+

εg∗ · el ∂ul
∂x1

m2qdC =

∫
C−

εg∗ · el Δul
∂q

∂x1
dC∫

C−+C+

εg∗ · el ∂u
aux
l

∂x1
m2qdC =

∫
C−

εg∗ · el Δuauxl

∂q

∂x1
dC

(5.47)

Here, it is assumed that the contour C− is a straight line opposite to the x1 direction (dC− =

−dx1), and the contact traction is constant, in value and direction, over the small contour

C−. Recasting the contour integral in Eq. (5.47) is advantageous for numerical purposes, as

the local contact inaccuracies are no longer able to influence the J- and interaction integrals

through the singular displacement gradients. Using these new formulations of the contour

integrals, the domain integrals are rewritten as

J(s) =

∫
A

(
σkl

∂ul
∂x1

−Wδ1k

) ∂q

∂xk
dA−

∫
C−

εg∗ · el Δul
∂q

∂x1
dC (5.48)

I(s) =

∫
A

(
σkl

∂uauxl

∂x1
+ σaux

kl

∂ul
∂x1

−WIδ1k

)
∂q

∂xk
dA−

∫
C−

εg∗ · el Δuauxl

∂q

∂x1
dC (5.49)

The area and contour integrals in Eqs. (5.48) and (5.49) are evaluated using a set of

virtual quadratic triangular and line elements. These elements are referred to as virtual

since they are not used while performing the finite element solution of the boundary value

problem. Consider a point s along the crack front with the local coordinate system x1x2x3.

Due to the domain symmetry, only one-quarter of the disk of radius Rd is discretized

with virtual triangular elements, and the contour C− is discretized by line elements. The

integration over the other three quarters is readily evaluated by the reflection of integrating

points of the generated virtual elements as shown in Fig. (5.4). Using the virtual elements,

evaluation of the domain integrals in Eqs. (5.48) and (5.49) follows the same standard

120



Chapter 5: Contact treatment

Gauss-quadrature integration scheme available in any FE code:

J(s) =

elems∑
A

gpts∑
p

{[(
σkl

∂ul
∂x1

−Wδ1k

)
∂q

∂xk

]
|J|
}

p

wp

−
elems∑
C−

gpts∑
p

[(
εg∗ · el Δul

∂q

∂x1

)
|J|
]
p

wp

(5.50)

I(s) =

elems∑
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gpts∑
p
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σkl

∂uauxl

∂x1
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kl

∂ul
∂x1

−WIδ1k

)
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]
|J|
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p
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−
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gpts∑
p

[(
εg∗ · el Δuauxl

∂q
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)
|J|
]
p

wp

(5.51)

5.6 Numerical examples

In order to demonstrate the efficiency and accuracy of the proposed contact algorithm

and the SIF computation procedure, the deformation behavior of the following fractured

body configurations are analyzed under uniaxial uniform compression: (i) Single penny-

shaped and elliptical cracks embedded in large cubes; (ii) Two interacting/intersecting

penny-shaped cracks embedded in a cube; and (iii) Multiple randomly oriented, randomly

placed, penny-shaped cracks in a cube. All these cracked bodies are subjected to a uni-

axial compression. All procedures employed in this work are implemented into the Impe-

rial College Geomechanics Toolkit, a geomechanics module [Paluszny and Matthäi, 2009;

Paluszny and Zimmerman, 2011] of the Complex System Modeling Platform (CSMP++),

an object-oriented finite element based API developed for the simulation of complex geo-

logical processes [Matthäi et al., 2001]. The system of equations resulting from the finite

element accumulation is solved using the Fraunhofer SAMG Solver [Stüben, 2001].

For the cases for which analytical values are available, the numerical error in the com-

putation of the contact tractions, ec, and the SIFs, et, are respectively evaluated by

ec =

∫
Γm

||tmA − tmN ||dΓ∫
Γm

||tmA ||dΓ
, et =

∑III
i=I

∫
Lf

|KA
i −KN

i |dl
∑III

i=I

∫
Lf

|KA
i |dl

(5.52)

Here, tmA and tmN are respectively the analytical and numerical contact tractions on master

surfaces, KA
i and KN

i are the pointwise analytical and numerical mode i SIFs respectively,

and integrations are performed over the master surface Γm and the crack front Lf . Single

and double vertical bars indicate the absolute value of a scalar and the length of a vector,

respectively. Wherever closed form integration was not available, a trapezoidal rule has

been employed to evaluate the integrals numerically. The analytical solutions for the SIFs
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of embedded initially-open inclined penny-shaped and elliptical cracks in infinite solids

under uniaxial compression are obtained in Appendix.

5.6.1 Experimental setup

Consider a cube of length 2w containing single or multiple cracks as shown in Figs. (5.5a)

and (5.12a,c). The cube is subjected to a uniform uniaxial compression in the X2 direc-

tion over the top and bottom surfaces. The cracks lie in the plane X2 = X1 cotβ which

generates the angle of β with the direction of applied load. A horizontal single crack con-

figuration (β = 90◦) produces pure mode I crack deformation in the case of initially open

cracks, while the inclined one (0◦ < β < 90◦) provokes a mixed-mode condition. In these

configurations, a denotes the crack radius for the penny-shaped crack, and semi-major axis

for the elliptical crack. The semi-minor axis b of the elliptical crack is perpendicular to the

X1X2 plane. Young’s modulus and Poisson’s ratio values of E = 10GPa and ν = 0.3 are

used in all models. The penalty parameter ε0 over each fracture is determined individually

as the Young’s modulus divided by the average size of elements at the crack front region,

ε0 = E/Ln. The average length of the elements Ln is defined as the crack front length Lf

divided by the number of crack front segments Nf (Ln = Lf/Nf ). This choice of penalty

parameter generates a well-conditioned system of equations, where the values of the mem-

bers corresponding to the fracture nodes in the global stiffness matrix are comparable to

the value of the members corresponding to nearby nodes.

Mesh

An octree-based mesh generation software was employed to generate arbitrary meshes for all

geometries, using ten-noded isoparametric tetrahedral and six-noded triangular elements.

This mesh generator is able to split the walls of fractures and generate matched surface

elements over the two surfaces of the cracks. For the elements attached to the crack front,

the nodes near the front are moved from the mid-side point to the quarter-point position to

produce inverse square root singular fields near the front. The curved crack fronts impose

one curved edge for the tetrahedral elements sharing an edge with the crack front. When

using quarter-point elements, the Jacobian determinant over small volumes near the curved

edges becomes negative, as explained in Chapter 2. To avoid this, the curved edges are

straightened by moving the mid-side nodes to the center. The refinement of the mesh near

the crack front is controlled by assigning the number of segments along the crack front.

Assume that the crack front of length Lf is discretized by Nf segments. A parameter

called the nominal length (size) of the elements in the crack front region can be defined

as Ln = Lf/Nf . The nominal element length Ln represents the approximate length of
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Figure 5.5: (a) Schematic of single penny-shaped/elliptical crack embedded in a large cube under
uniaxial compression; (b) Finite element mesh discretizing an embedded penny-shaped crack in a
cube, and the details of the matched meshes over the crack surfaces of penny-shaped (a/w = 0.1)
and elliptical (a/w = 0.1, b/a = 0.4) cracks. For the two cases Ln ≈ a/20; (c,d) The distribution
of εr over the penny-shaped and elliptical cracks, which reproduces a singular square root penalty
parameter near the crack front (ε = ε

0
/εr).

the element sides near the crack front, and therefore gives an approximate for the average

size of the quarter-point tetrahedral elements in the crack front region. The degree of mesh

refinement in the crack front region is controlled by keeping the nominal crack front element

size about one twentieth of the crack length (Ln ≈ a/20). Since estimations suggest that

the size of the singular dominant zone depends mainly on the crack length, ranging between

a/10 and a/50 [Kuna, 2013], keeping Ln ≈ a/20 ensures that the quarter-point elements at

the crack front predominantly remain in the singular dominant zone, where the fields have

the inverse square root singularity. Five-, seven-, and two-point Gaussian quadrature rules

are employed for the numerical integration over tetrahedral, triangular, and line elements,

respectively.
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(a) (b)

(c) (d)

Figure 5.6: The distribution of normalized augmented gap (a,b) and contact traction (c,d) over the
slave surfaces of a slipping penny-shaped crack with the geometrical configuration of a/w = 0.1 and
β = 45◦; Contact details: ε

0
= E/Ln with three augmentations; (a,c) Initially closed crack with

p
0
/σ = 0, τc/σ = 0.1, μ = 0.2; (b,d) Initially open crack with p

0
/σ = 3/8, τc/σ = 0, μ = 0.5.

The average contact traction errors are ec = 0.00013, and ec = 0.00079 for initially closed (c) and
initially open (d) cracks, respectively.

Details of the SIF computation

For all crack configurations, the mesh-dependent domain radius of Rd = Ln has been used

to generate the virtual domains and compute the fracture parameters. Domains are built

at the locations of both corner and mid-side nodes of the segments along the crack front. A

similar virtual mesh structure as the one proposed in Chapter 4, with four elements in the

radial direction (k = 4), was used to compute the SIFs. This choice yields 112 quadratic

triangular elements, containing 112 × 3 integration points, together with 8 quadratic line

elements, containing 8 × 2 integration points. The reasons for these choices are explained

in Chapter 4. In order to compute the fracture parameters, a smooth function q must be

defined over the integration domain. All numerical results here are determined by using q =

1− r/Rd, where r = (x21+x22)
1/2 is the distance from the disk center, and Rd is the domain

radius. The derivatives of this function (∂q/∂x1 = −x1/rRd and ∂q/∂x2 = −x2/rRd) are

directly evaluated at the integration points of the virtual triangular elements. For the SIF

computation from the DC method, the diplacements are correlated at points located at the

fixed distance of rm = Ln from the crack front (see Section 3.5.3).
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Figure 5.7: The variation of normalized mixed mode analytical and numerical SIFs along the front
of a slipping penny-shaped crack using domain integral, (a) and (c), and displacement correlation,
(b) and (d), methods; (a,b) Initially closed crack, (c,d) Initially open crack; Details of geometry,
mesh and contact are given in Figs. (5.5) and (5.6). The analytical solutions for the SIFs are given
in Appendix. The average SIF computation error is as follows: (a) et = 0.01, (b) et = 0.022, (c)
et = 0.015, (d) et = 0.024.

5.6.2 Single penny-shaped and elliptical crack

Consider a single penny-shaped/elliptical crack in a large cube subjected to uniform com-

pression as shown in Fig. (5.5a). A crack length to body width ratio of a/w = 0.1 was

used in order to eliminate any influence of the cube boundaries on the crack fields. Figure

(5.5b) shows the finite element mesh of the penny-shaped crack, together with two close-up

pictures of the mesh structure over the penny-shaped and elliptical (b/a = 0.4) cracks.

The following boundary conditions are applied for this configuration: u1 = 0 over the edge

X1 = X2 = −w, u2 = 0 over the plane X2 = −w, u3 = 0 over the edge X2 = X3 = −w,

and σ = 1 over the plane X2 = w. Figures (5.5c) and (5.5d) also show the distribution

of εr over the surfaces of the penny-shaped and elliptical cracks. This variation generates

a square root singular penalty variation near the crack front (ε = ε0/εr), which makes it

possible to compute accurate contact tractions very close to the crack front.

Figure 5.6 shows the distribution of normalized augmented gap and contact traction over
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(a) (b)

(c) (d)

Figure 5.8: The distribution of normalized augmented gap (a,b) and contact traction (c,d) over the
slave surfaces of a slipping elliptical crack with the geometrical configuration of a/w = 0.1, b/a = 0.4
and β = 45◦; Contact details: ε

0
= E/Ln with three augmentations; (a,c) Initially closed crack with

p
0
/σ = 0, τc/σ = 0.2, μ = 0.2; (b,d) Initially open crack with Initially open crack with p

0
/σ = 0.25,

τc/σ = 0, μ = 0.5. The average contact traction errors are ec = 0.00015, and ec = 0.00053 for
initially closed (c) and initially open (d) cracks, respectively.

the slave surfaces of a slipping penny-shaped crack. As is seen, the augmented gap maintains

zero magnitude along the crack front, increasing towards the center of the crack where it

attains its maximum. The application of an inverse singular penalty parameter variation

near the crack front allows computing very accurate contact tractions for the elements

attached to the crack front. Application of a constant penalty parameter over the crack

surface, however, would not compute accurate contact tractions near the crack front, where

the contact traction tends to zero when the crack front is approached. The more accurate

the displacements over the fracture surface near crack front, the more accurate the contact

tractions. Therefore, for more accurate contact tractions, a more accurate FE displacement

solution near the crack front is required. Although the accuracy of displacements increases

by using quarter-point tetrahedra at the crack front region, some inaccuracies may still

remain due to the low quality of the element resulting from the random size, shape and

orientation of the elements in the crack front region (see Section 3.5). A more structured

mesh, in which significant variation of the size of quarter-point tetrahedral elements along

the crack front is avoided, is therefore expected to produce more accurate contact tractions.
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Figure 5.9: The variation of normalized mixed mode analytical and numerical SIFs along the front
of a slipping elliptical crack using domain integral, (a) and (c), and displcement correlation, (b) and
(d), methods; (a,b) Initially closed crack, (c,d) Initially open crack; Details of geometry, mesh and
contact are given in Figs. (5.5) and (5.8). The average SIF computation error is as follows: (a)
et = 0.011, (b) et = 0.027, (c) et = 0.013, (d) et = 0.028.

Figure 5.7 also shows the variation of the numerical pointwise mixed-mode SIFs along the

crack fronts of the penny-shaped crack under two different contact conditions. Analytical

solutions for 3D penny-shaped and elliptical cracks embedded in infinite solids (Appendix)

are also plotted. Here, φ and ω are the polar angle of the circle, and the parametric angle of

the ellipse, respectively. These results demonstrate the efficiency of the disk-shaped domain

integral and displacement correlation to accurately compute the SIFs from arbitrary meshes

even when crack surfaces are in contact.

Figure (5.8) shows the distribution of normalized augmented gap and contact traction

over the slave surfaces of a slipping elliptical crack. As is seen, the application of an inverse

singular penalty parameter variation near the crack front has resulted in very accurate

contact tractions. Figure 5.9 also shows the variation of the numerical pointwise mixed-

mode SIFs along the crack fronts of the elliptical crack subjected to two different contact

conditions. One important feature in Figs. 5.7 and 5.9 is the mode I crack deformation for

the initially open cracks. This significant negative KI, which is due to the crack deformation
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Figure 5.10: (a) The variation of the computation error of contact traction and SIFs during the
augmentation process in a single penny-shaped crack embedded in a large cube under uniaxial
compression; (b) The variation of the master contact tractions, tm, augmented gaps, g∗ and penalty
parameter along in a radial ray emanating from the crack front of the penny-shaped crack shown
in Fig (5.5b). Geometrical details: a/w = 0.1, β = 45◦; Mesh details: Ln ≈ a/20; Contact details:
ε
0
= E/a, Stick condition: p

0
/σ = 0, τc/σ = 0, μ = 1.2, Slip condition: p

0
/σ = 0, τc/σ = 0, μ = 0.2.

Results in (b) are obtained after three augmentations.

before the crack closure, can significantly influence the growth behavior of cracks under

compression. It is noteworthy that open cracks accounts for a large percentage of the

cracks in the subsurface, even at great depths.

Figure (5.10a) shows the convergence of the contact tractions through the augmentation

process. A very low penalty parameter (ε0 = E/a) has been considered, where the role of

the augmentation procedure in enforcing the contact constraints is significant. The errors

in the contact traction and the SIFs drop considerably in the first two augmentations,

indicating that very efficient enforcement of the contact constraints is achieved by only

two augmentations. More than four augmentations enforce the contact constrains almost

exactly by strictly penalizing any penetration on the contact surfaces. It is evident that a

larger value of the penalty parameter yields a faster convergence of the contact tractions to

the exact values. In order to make the augmentation procedure most efficient, the penalty

parameter has to be chosen as large as possible without making the system of equations

ill-conditioned. The contact precision for heavily fractured media can attain very high

values, and therefore a lower bound of the penalty parameter, for which no ill-conditioned

behavior occurs in the system, has to be defined irrespective of the contact precision. A

penalty parameter based on the ratio of Young’s modulus to the average crack surface

element size introduces penalty terms into the system which are comparable to the values

of the members in stiffness matrix corresponding to the nodes near the contact surfaces.

As defined previously, Ln indicates the average size of the elements at the crack front

region. A penalty parameter defined as the ratio of Young’s modulus to this average size
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Figure 5.11: (a) Finite element mesh discretizing an embedded penny-shaped crack in a cube with
different degrees of mesh refinement n (a/w = 0.1, β = 45◦); (b) The variation of contact traction
error ec defined in Eq. (5.52) against the average size of elements (Ln) for different number of
augmentations (A) in stick condition at an initially closed crack (p

0
/σ = 0); (c) The variation of SIF

computation error et defined in Eq. (5.52) computed from the domain integral method against the
normalized domain radius Rd/Ln for different degrees of mesh refinement; (d) The variation of et
computed from the displacement correlation method against the normalized distance of correlation
point from crack front rm/Ln in different degrees of mesh refinement. The results in (b)-(d) are
obtained using ε

0
= E/a and five augmentations. Details of contact parameters in (c) and (d) are

τc/σ = 0, μ = 0.5 and p
0
/σ = 0.

(ε0 = E/Ln) can therefore be recommended as the lower bound for the value of the penalty

parameter for individual cracks. For a reasonably fine mesh, suitable for the crack problems,

this proposed value for the penalty parameter yields less contact traction errors and faster

convergence than the one shown in Fig. (5.10a). Therefore, a penalty parameter ε0 = E/Ln

defined individually for each fracture, together with 2-3 augmentations, enforces the contact

constraints accurately and efficiently.

Consider a ray emanating from an arbitrary point on the crack front, lying on the surface

of the penny-shaped crack and extending in a direction normal to the crack front, as shown

in Fig. (5.5b). Figure (5.10b) presents the variation of the magnitude of the augmented gap,

penalty parameter, and the magnitude of the contact traction after three augmentations

along this ray against the normalized distance from the crack front. This plot clearly shows
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how a singular square root variation of the penalty parameter forces the contact traction to

have finite values very close to the crack front. As is seen in the plot, the magnitude of the

gap vector tends to zero when the crack front is approached (limr→0 ||g∗|| = 0), and a square

root singular penalty parameter ε = ε0/εr = ε0/
√

r/a makes it possible to obtain a non-

zero limit for the magnitude of contact traction (limr→0 ||tm|| = limr→0 ε||g∗|| �= 0). Such

a variation of contact traction cannot be reproduced when a constant penalty parameter is

considered. In fact, the contact traction approaches zero in the case of constant penalty, as

a result of the influence of zero magnitude gap along the crack front.

A mesh sensitivity analysis was conducted to demonstrate the efficiency of the proposed

contact and stress intensity factor computation algorithms. Figure (5.11a) shows five crack

surface meshes with different degrees of refinement, ranging from a coarse mesh (n = 1)

to a fine one (n = 5). Figure (5.11b) presents the variation of the contact traction error

ec against the average element size for stick condition. A similar convergence behavior is

seen for slip condition as well. These results confirm that the contact tractions are accurate

irrespective of the degree of mesh refinement over the crack surface. Figures (5.11c) and

(5.11d) also show the variation of SIF computation error et against the normalized domain

size Rd/Ln and normalized distance of correlation point from the crack front rm/Ln in

DI and DC methods, respectively. The main features of these plots are as follows: (1) For

coarse meshes, domain integral computes more accurate SIFs than displacement correlation,

provided that the domain integral is small enough with respect to the mesh size. (2) For fine

meshes, both methods compute very accurate SIFs, with an error in the range of et ≈ 1−2%.

(3) The dependencies of the SIF error on the correlation point distance in DC method and

domain size in DI method are similar. This suggests that the mesh-dependent values of

rm = Rd ≈ Ln/4 and rm = Rd ≈ Ln compute the most accurate SIFs in very coarse and

very fine meshes, respectively. The general recommendation for the mesh size near the crack

front is that the quarter-point element must be entirely inside the singular-dominant zone.

The size of the singular-dominant zone mainly depends on the characteristic crack length,

ranging between a/10 and a/50 [Kuna, 2013]. Therefore, a suitable mesh size for a penny-

shaped crack requires Ln < a/10 for which rm = Rd = Ln is recommended for computing

accurate SIFs from DC and DI methods. Similar values have been suggested for rm and Rd

in the case of cracks under tensile loadings (see Chapetrs 3 and 4). It is noteworthy that

for the purpose of accurate SIF computation, a local refinement at the crack front region

suffices. Therefore, coarse meshes should be used for the regions far from the crack front to

avoid unnecessary computational cost (see mesh structures in Fig. (5.5b)).
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Figure 5.12: (a) Schematic of two interacting penny-shaped cracks embedded in a cube subjected to
uniaxial compression; (b) Finite element mesh discretizing it; Geometrical details: a1/w = a2/w =
0.5, β1 = 60◦, β2 = 150◦, c1 = (0, 0,−3), c2 = (−3, 0, 2); Mesh details: Ln ≈ a/20; (c) Schematic
of two intersecting penny-shaped cracks embedded in a cube subjected to uniaxial compression; (d)
Finite element mesh discretizing it; Geometrical details: a1/w = 0.7, a2/w = 0.6, β1 = 60◦, β2 =
150◦, c = (0, 0, 0); Mesh details: Ln ≈ a/20.

5.6.3 Two penny-shaped cracks

Consider two cubes, one with a pair of interacting penny-shaped cracks (Fig. (5.12a)),

another one with a pair of intersecting penny-shaped cracks (Fig. (5.12c)). Each cube is

subjected to uniform compression in the X2 direction over the top and bottom surfaces. The

geometrical details of the cracks in both configurations are given in Fig. (5.12). Both cracks

lie in the plane X2 = X1 cotβ which generates the angle β with the direction of applied load.

Figures (5.12b) and (5.12d) show the finite element mesh of these crack configurations. The

same boundary conditions as in the single crack problem are applied.

Figure (5.13) shows the distribution of contact traction over the master surfaces of

these penny-shaped cracks in the slip condition. The details of the contact parameters

are given in Fig. (5.13). The main features are as follows: (i) Figure (5.13a) depicts how

the singular field of one crack can influence the contact tractions enforced on the surfaces
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(a) (b)

Figure 5.13: (a) The distribution of contact tractions over the master surfaces of two interacting
cracks described in Fig. (5.12a); Contact details: ε

0
= E/Ln with three augmentations, crack 1:

p
0
/σ = 0, τc/σ = 0, μ = 0.2., crack 2: p

0
/σ = 0, τc/σ = 0, μ = 0.4; (b) The distribution of contact

tractions over the master surface for two intersecting fractures described in Fig. (5.12c); Contact
details for both fractures: ε

0 = E/Ln with three augmentations, p0/σ = 0, τc/σ = 0, μ = 0.2.

of another crack when two close cracks are slipping next to each other. This interaction

cannot be captured well unless the singular stress state along the crack front is modeled

accurately. (ii) Figure (5.13b) demonstrates the efficiency of the proposed contact algorithm

in enforcing the contact constraints, even for very complex configurations involving crack

intersections. The main difficulty is dealing with the corner singularity at the points where

crack 2 intersects the surfaces of crack 1. (iii) Some limited inaccuracies in contact traction

are visible near the crack fronts in both configurations. As was mentioned previously, these

inaccuracies result from the low quality of some elements due the random placement of

quarter-point tetrahedra near the crack front. Nevertheless, these slight inaccuracies are

limited to a few quarter-point nodes, and the contact tractions are obtained with a high level

of accuracy elsewhere. Overall, these results demonstrate the applicability and efficiency of

the proposed methodology in the contact treatment of very complex contact configurations.

Figure (5.14) shows the variation of the pointwise mixed-mode SIFs along the crack

fronts of the penny-shaped cracks of the interacting and intersecting configurations shown

in Fig. (5.12). The results are obtained from the displacement correlation and domain

integral methods. Here, φ is the polar angle of the circle as shown in Fig. (5.12). A few

characteristics of the SIF variation along the crack front must be noted: (i) The results from
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Figure 5.14: The variation of normalized mixed mode numerical SIFs along the front of interact-
ing/intersecting penny-shaped cracks using domain integral (DI) and displacement correlation (DC)
methods; (a) and (b) show the SIF variation along cracks 1 and 2 at two interacting cracks config-
uration, respectively (see Figs. (5.12) and (5.13) for geometrical and contact details); (c) and (d)
plot the SIF variation along cracks 1 and 2 at two intersecting crack configurations (see Figs. (5.12)
and (5.13) for geometrical and contact details).

displacement correlation and domain integral methods are in good agreement everywhere,

except very close to the corner points, i.e. near φ = −90◦ and φ = 90◦ in Fig. (5.14d). The

reason is the complex stress state near these points. In fact, the stress intensity factor loses

its meaning at the exact corner points, since the order of singularity at this point is different

from the order of singularity of the crack. The reader is referred to Section 4.7.4 for more

details. (ii) The interaction of the singular fields of one crack with the singular field or

enforced contact conditions in the other one, significantly influences the SIF variation along

the crack front. For example, one can see these considerable interactions about φ = 0◦ in

Fig. (5.14b), due to the interaction of singular field of crack 1 with boundary conditions

over surfaces of crack 2, and near φ = −90◦ and φ = 90◦ (see Figs. (5.14c) and (5.14d)). (iii)

Slight oscillations are visible in mode I SIF values obtained from the domain integral method.

These are due to the existence of inaccuracies in the contact tractions near the crack front.

However, by using the proposed new version of line integral in Eq. (5.47), the influence
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of these inaccuracies on the computation of SIFs is significantly reduced. Overall, these

results demonstrate the efficiency of both disk-shaped domain integral and displacement

correlation methods to accurately compute the SIFs of complex crack configurations.

5.6.4 Multiple planar cracks

Figures (5.15) and (5.16) present the results of the contact simulation of two networks of

fractures, where solid cubes are filled with randomly oriented, randomly placed, penny-

shaped cracks. For both cases, the cube is subjected to a uniform compression in the X2

direction over the top surface, and the same boundary conditions as in Section 5.6.2 are

applied. This boundary condition requires that no crack intersects the bottom face of the

cube, where a Dirichlet boundary condition is applied. Figure (5.15a) shows the finite

element discretization of a network of twenty four cracks with a power-law size distribution,

while Fig. (5.16a) presents the FE mesh of a network of seventy five cracks of the same size.

Figures (5.15b) and (5.16b) illustrate the distribution of normalized stick contact tractions

over the slave surfaces, where the average contact traction error for both cases remains

less than ec = 0.0003. This indicates the efficiency of the proposed contact algorithm

for enforcing accurate contact constraints with small penalty parameters in high contact

precision problems. In fact, assigning an individual penalty parameter based on the local

mesh refinement of each fracture avoids the system to become ill-conditioned, yet performing

augmentation enssures high accuracy enforcement of the contact tractions. Figures (5.15c)

and (5.16c) also show the contact tractions over the slave surfaces when contact conditions

τc = 0.1, μ = 0.4 and τc = 0, μ = 0.6 are applied for networks with power-law and uniform

size distributions, respectively. For these cases, the distributions of normalized tangential

gap (slip) over the crack surfaces are presented in Figs. (5.15d) and (5.16d). The ratio of

external load to the Young’s modulus (σ/E) is very small in the context of infinitesimal

strain theory. Therefore, according to the normalized slip values in Figs. (5.15d) and

(5.16d), the values of tangential slip remain very small compared to the size of the cracks.

This indicates the applicability of isoparametric contact discretizations in geometrically

linear applications such as the linear elastic simulation of fractured media.

5.7 Conclusions

A tetrahedral-based finite element formulation is presented for the treatment of contact

between fracture surfaces in high density fractured media. In this framework, the application

of a singular square root penalty parameter near the crack front ensures the enforcement of

contact constraint accurately close to the crack front. The introduced gap-based augmented

Lagrangian approach also circumvents the difficulty of not being able to define contact
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(a) (b)

(c) (d)

Figure 5.15: Finite element mesh discretizing a network of 24 randomly-oriented penny-shaped
cracks inside a cube of length 2w. The size of cracks follows a power-law size distribution where
the minimum and maximum of crack radius are rmin = 0.1w and rmin = w, respectively. (b)
The distribution of normalized contact traction over the slave surfaces when all cracks are in stick
condition. The average contact traction error for this case is ec = 0.0003. (c,d) The distribution
of normalized contact traction and tangential gap (slip) over the slave surfaces when p0/σ = 0,
τc/σ = 0.1, μ = 0.4 govern the contact condition of the cracks; For all cases, a penalty parameter of
ε
0
= E/Ln is assigned individually for each fracture, and three augmentations are performed.

tractions at the nodes located along the crack front. The proposed contact algorithm is

able to enforce the contact constraint accurately over the crack surfaces of densely fractured

media even with small penalty parameters. Results from numerical experiments on a cube

containing single, and multiple cracks indicate the efficiency, accuracy and reliability of the

FE framework introduced in this paper. Employing a suggested version of the line integral

for computing the SIFs from domain integral method also prevents a possible significant

influence of contact traction inaccuracies on the SIF computation. Accurately computed

SIFs using the displacement correlation and disk-shaped domain integral methods indicate

the efficiency and accuracy of these methods using unstructured meshes.
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(a)
(b)

(c) (d)

Figure 5.16: Finite element mesh discretizing a network of 70 randomly-oriented penny-shaped
cracks inside a cube of length 2w. Cracks are of the same size of r/w = 0.2 where r is the crack
radius. (b) The distribution of normalized contact traction over the slave surfaces when all cracks
are in stick condition. The average contact traction error for this case is ec = 0.0003. (c,d) The
distribution of normalized contact traction and tangential gap (slip) over the slave surfaces when
p0/σ = 0, τc/σ = 0, μ = 0.6 govern the contact condition of the cracks. For all cases, a penalty
parameter of ε

0
= E/Ln is assigned individually for each fracture, and three augmentations are

performed.
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Applications in modeling rock
hysteresis and brittle crack growth
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6.1 Abstract

This chapter discusses two applications of the numerical methodology developed in this

thesis in rock deformation problems. These include: (i) Understanding the hysteretic be-

havior in rock deformation with regards to the frictional contact in micro-cracks; and (ii)

Simulating three-dimensional brittle crack growth under mixed-mode loading conditions.

The numerical results indicate the applicability and efficiency of the proposed numerical

methodology for a better understanding of elastic and inelastic processes in rock deforma-

tion.

137



Chapter 6: Applications

6.2 Modeling rock hysteresis

Nonlinearity and hysteresis, which are two key features of elastic rock deformation, are often

attributed to the presence of cracks and crack-like voids. The hysteretic behavior of rocks

is related to the concept of unrecovered energy, where mainly two processes are involved:

(i) the work of frictional forces and (ii) the strain energy trapped in the solid [Jaeger et al.,

2007]. In this section, a literature review is presented to address the previous research in

this area. Then, finite element analyses are performed to evaluate the sliding crack model

in reproducing hysteretic behavior in rock deformation.

6.2.1 Introduction

Many geomaterials, such as volcanic and sedimentary rocks (granite, basalt, sandstones,

limestones, and slates), and artificial materials such as concrete and mortar, have impurities,

inclusions, and defects, which are inherent properties of their micro-structure. Generally,

all solids that are not single crystals can be regarded as materials with an inherent random

structure at a mesoscopic scale, i.e., a scale that significantly exceeds the atomic size, but

is still small compared to macroscopic dimensions [Aleshin and Van Den Abeele, 2007b].

The presence of micro-cracks can be attributed not only to mechanical or thermal damage,

but also to the process of formation, such as solidification and deposition, which results in

shrinkage due to drying and chemical reactions. Internal defects can be roughly categorized

into three classes: dislocations (regarded as one-dimensional or 1D), internal contacts (2D)

and pores and voids (3D). The internal contacts and crack-like voids are the most essential

ones contributing to non-linearity and hysteresis [Aleshin and Van Den Abeele, 2007b]. If

a microcrack suddenly appears during these processes, its surfaces will be separated over

distances significantly exceeding the atomic size [Aleshin and Van Den Abeele, 2005]. It is

generally believed that the mechanical behavior of this class of materials, in both elastic

deformation and inelastic processes such as yielding and failure, is controlled by these defects

and imperfections. Hysteresis, in particular, is believed to be one of the main features of

deformation in this class of solid materials.

In micro-structured materials, when cracks are all open and randomly distributed, the

overall response is isotropic. When some cracks close and undergo frictional sliding, however,

the overall response becomes anisotropic and dependent on the loading conditions, as well

as on the loading history [Horii and Nemat-Nasser, 1983]. This anisotropy is highly load-

dependent, and may even be affected by the sequence of load applications [Walsh, 1965;

Kachanov, 1982a]. Hence, it is expected that the overall shear modulus depends on the

hydrostatic pressure, and the overall bulk modulus is influenced by the applied overall shear
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stresses. To simulate the elastic behavior of micro-structured materials, the characterization

of the stress–strain constitutive equations is of great importance. Only a few investigations

have established constitutive laws of micro-structured materials based on frictional contact

of the internal cracks [Walsh, 1965; Kachanov, 1982a; Horii and Nemat-Nasser, 1983; Lawn

and Marshall, 1998]. In these publications, the interaction between cracks is neglected.

Most of them consider the loading stage only, and none has addressed the energy loss

mechanisms and sources. The cracks were generally considered to be initially closed, as

well. In addition, no numerical simulation has been carried out to verify the analytical

results. There remains a need for precise numerical simulation of the stress–strain behavior

of elastic bodies containing interacting frictional cracks. These numerical simulations can

eventually help to build more precise constitutive models that can capture the nature of

the micro-structured materials under a general loading conditions.

The classic work of Walsh [1965], was among the first to describe the role of frictional

contact at the microscale in inducing nonlinear and hysteretic behavior. According to the

proposed sliding crack model, hysteresis occurs due to the sliding of closed micro-cracks in

the loading stage, which is followed by a delayed reverse-sliding in the unloading stage. The

hysteretic behavior of materials introduces the concept of unrecovered energy via two main

processes: (i) the work of frictional forces, and (ii) the strain energy trapped in the solid. The

work of the frictional forces is lost as heat energy, while the trapped strain energy remains

available in the solid, and may be recovered at a later loading stage. David et al. [2012]

extended Walsh’s formulation to consider initially open cracks, and analyzed the behavior

of a body containing a system of micro-cracks during both loading and unloading, under

uniaxial compression. They compared a two-dimensional analytical formulation against

experimental data on sandstones and thermo-mechanically loaded granite specimens, and

concluded that the elastic deformation of the rock subjected to uniaxial compression can

be fully characterized by four microstructural parameters: the modulus of the uncracked

rock, the crack density, an initial crack aspect ratio, and a friction coefficient.

The formulation developed by David et al. [2012] is able to reproduce residual strain

as a part of the hysteretic behavior of rock, and therefore the analytical results fit the

experimental stress–strain curves. However, this formulation needs to be re-examined as

it lacks proper use of the reciprocal theorem. This was highlighted in [Nejati et al., 2013],

where the results of the analytical formulation and numerical simulation on a solid cube

containing 3D penny-shaped cracks under uniaxial compression clearly show that frictional

contact between the faces of initially open cracks lead to only frictional energy loss, and

no residual strain is reproduced after complete unloading. Therefore, one can conclude the

results from a sliding crack model based on initially open cracks cannot possibly agree with
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Figure 6.1: Schematics of (a) A cube containing a penny-shaped crack under uniaxial compression;
(b) A cube containing a set of randomly-oriented penny-shaped cracks under uniaxial compression.

the experimental stress–strain curves for rock materials. In this section, we investigate the

influence of a cohesion term in the frictional constitutive law on the hysteretic behavior of

cracked bodies. The results from various finite element simulations show that in order to

be able to fit the experimental results, a cohesion term in the frictional constitutive law is

necessary to reproduce the residual strain.

6.2.2 Methodology

Assume a cube of edge length 2w which contains single or multiple cracks and is subjected

to the uniaxial compression σ as shown in Fig. 6.1. Due to the applied load in X2 direction,

the crack surfaces might undergo frictional sliding, where the effective Young’s modulus of

the cube is influenced by the excess energy input into the body [Nejati et al., 2013]. During

the unloading stage, reverse-sliding does not begin immediately due to the change of the

direction of frictional force. Therefore, the overall stress–strain curve of these cracked

bodies exhibits a hysteretic behavior. The response of the cube to the applied load is

nonlinear due to the frictional sliding, and therefore the load must be applied incrementally

in a numerical simulation. Consider the maximum compressive stress σm is applied over n

increments, followed by the complete removal of the load in another set of n increments.

The incremental load applied in each increment is Δσ = σm/n and Δσ = −σm/n in

loading and unloading stages, respectively. Here, positive stress implies compression. In

each increment, the load Δσ results in the relative displacement of the top surface with

respect to the bottom surface in the direction of applied load, Δu2. The effective Young’s
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modulus of Ee = Δσ/Δεav is then computed in each increment, where Δεav is the average

of overall strain in the direction of applied load:

Δεav =
1

8w3

∫
A

Δu2dA (6.1)

Here, A is the top/bottom surface of the cube. Assuming the bottom surface is fixed in

the load direction, X2, in the numerical model, the average strain is obtained using the

numerical integration of displacement over the top surface as

Δεav ≈ 1

8w3

elems∑
A

gpts∑
p

{
Δu2|J|

}
p
wp (6.2)

where summation over area A includes all the element, ‘elems’, over the top surface, the

sum over p includes element integration points, ‘gpts’, where the bracketed quantities {}p
are evaluated and multiplied by the corresponding weight wp. |J| denotes the determinant

of the coordinate Jacobian matrix of the elements, and the incremental displacement at

integration points can be ready obtained using the shape functions (Δu =
∑nodes

i NiΔu2i).

After the computation of Δu in each increment, the incremental effective Youngs modulus is

readily computed, and the overall stress–strain curve is obtained by plotting stress against

the average total strain.

6.2.3 Numerical examples

Consider two cubes, one with a single large penny-shaped crack with the crack radius to

the cube edge length of a/2w = 0.5, and another with 70 randomly-oriented penny-shape

cracks of the same size (a/w=0.2). The crack in the single configuration is oriented at angle

β = 45◦ relative to the direction of the uniaxial compression load σ. The finite element

(a)
(b)

Figure 6.2: Finite element mesh of (a) a cube with a large penny-shape crack and (b) a cube with
70 randomly-oriented penny-shape cracks.
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Figure 6.3: Stress–strain curves for a cube containing a large closed penny-shaped crack. (a) μ =
0.2, τc/σm = 0; (b) μ = 0.6, τc/σm = 0; (c) μ = 0.2, τc/σm = 0.2; (d) μ = 0.2, τc/σm = 0.25.

meshes of these cracked bodies are shown in Fig. 6.2. The following displacement boundary

conditions are applied: u1 = 0 over the edge X1 = X2 = −w, u2 = 0 over the plane

X2 = −w, and u3 = 0 over the edge X2 = X3 = −w. The Coulomb frictional constitutive

law, τf = μ|p| + τc, is used over the crack surfaces, where τf is the frictional resistive

traction, p is the normal traction, and μ and τc are the friction coefficient and cohesive

stress, respectively. Arbitrary values of E = 10GPa, and ν = 0.3 were used for Young’s

modulus and Poisson’s ratio, respectively. The maximum compressive stress of σm = 1 is

gradually applied over the top surfaces in five increments (n = 5). This is followed by five

more increments to remove the load completely, adding up to ten total increments.

Figures 6.3 and 6.4 present the stress–strain curves for the cubes with single and multiple

cracks, respectively. Different choices of frictional contact parameters are used in the simu-

lations. At the end of each increment, the average strain is computed from Eq. (6.2), and

eventually the stress is plotted against the average strain. The following features in these

plots are highlighted: (1) A hysteretic behavior is seen in all the plots, due to the work of

frictional forces. (2) The plots in Fig. 6.3a,b and Fig. 6.4a show the results in the absence of

the cohesive stress (τc = 0). These plots clearly show that although a hysteretic energy loss
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Figure 6.4: Stress–strain curves for a cube containing 70 randomly-oriented closed penny-shaped
cracks of the same size (a/w = 0.2). (a) μ = 0.4, τc/σm = 0; (b) μ = 0.2, τc/σm = 0.2.

is apparent in the solid deformation, no residual strain occurs after the complete removal

of the load. This is because after the removal of the load, no resistive frictional force exists

to prevent the solid from relaxing the strains. (3) The results for the cases with cohesive

stress in Figs. 6.3c,d and 6.4b, however, show that a residual strain appears at the end of

unloading stage. This is because the resistive cohesive stress can prevent the strain energy

from being released. The uniaxial compression tests of rocks often demonstrate a hysteretic

behavior with significant residual strains at the end of unloading stage [David et al., 2012].

Therefore, a cohesion term appears to be necessary in the frictional constitutive law when

one describes the hysteretic behavior based on the sliding of micro-cracks.

6.2.4 Conclusions

Simulation results of the deformation of a cube containing large number of randomly-

oriented cracks provide significant evidence that the frictional sliding along micro-cracks

causes the hysteretic behavior of rock. The results also show that a cohesion term is nec-

essary in the frictional constitutive law of micro-cracks in order to reproduce the residual

strain feature of hysteretic stress–strain curves.

6.3 Modeling brittle crack growth

Simulating crack growth in brittle solids is of vital importance and great interest to a variety

of scientific and engineering fields. Brittle crack growth is a complex process in which cracks

propagate with very high speeds, and the solid might fragment into smaller parts due to

crack coalescence and/or crack extension to the solid boundaries. In this section, a few

examples of finite element modeling of growth of three-dimensional crack configurations are

discussed.
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6.3.1 Introduction

Brittle crack growth is one of main processes leading to sudden failure. One of the simplest

numerical methodologies to model the crack propagation is the erosion element algorithm.

This method is based on the deletion of elements, and once a certain damage criterion

is met within an element, the stiffness of the element is reduced to model the reduced

stiffness of the damaged material [Fan and Fish, 2008; Rabczuk et al., 2010]. Modeling

cracks explicitly is not required in this method, which is advantageous because of low

computational cost. However, the results of this method may exhibit mesh-dependency

unless an appropriate energy-based failure criterion is used [Beissel et al., 1998]. In addition,

this method is not able to model the strain singularity at the front of sharp cracks in elastic

materials. The cohesive element approach is another attractive tool to model crack growth

without modeling the crack singularity [Ortiz and Pandolfi, 1999]. This method allows

the separation of finite element boundaries once a local failure criterion is met at the inter-

element boundaries. The crack advance is then updated by the detachment of elements. One

of the main weaknesses of this method is that non-smooth crack growth path is obtained,

and the results are vulnerable to mesh-sensitivity unless very fine meshes are employed [Fan

and Fish, 2008]. In addition, the crack path must conform to the boundaries of elements in

the pre-existing mesh.

The classical modeling of brittle crack propagation involves the explicit representation of

crack as sharp material discontinuity, and handling the crack evolution and geometry change

by using remeshing techniques. In this approach, new crack surfaces are inserted along

the computed crack path, and the new geometry is remeshed to allow separation between

the elements over the new crack surfaces [Shephard et al., 1985]. The main weakness of

this method is that remeshing accounts for a significant portion of the computational cost,

particularly in three-dimensional models. A mesh modification, which uses a local remeshing

rather than a complete one, can reduce the computational costs due to remeshing, but

requires specific re-meshing techniques to be implemented as part of the numerical code

[Li et al., 2005]. Full remeshing, however, allows the FE implementation and the meshing

procedure to remain independent of each other. Several commercial fracture growth codes

such as FRANC3D use local mesh modification technique to propagate explicit fractures in

solids [Carter et al., 2000]. However, these software use either hybrid meshes [Carter et al.,

2000; Bremberg and Dhondt, 2008, 2009; Bremberg and Faleskog, 2015] or submodeling

technique [Schöllmann et al., 2003; Rabold and Kuna, 2014] to accurately model the strain

singularity at the crack front. Complications may arise in both methodologies due to the

incompatibility of different element types in hybrid meshes, or significant computational

cost in sub-modeling procedures.
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A very popular method to model the crack growth is the extended finite element method

(X-FEM). X-FEM was proposed by Moës et al. [1999] and Sukumar et al. [2000], and allows

one to model the crack independent of the mesh, which alleviates the need for remeshing

during crack propagation. X-FEM uses enrichment functions, which makes it possible for

the crack to pass arbitrary through elements. The level set method proposed by Osher and

Sethian [1988] is often used with X-FEM to simplify the selection of enriched nodes, and

the definition of enriched functions. Due to the simplicity of modeling crack propagation

by X-FEM, this method has become very popular. However, defining enrichment functions

for very close cracks may be problematic, and difficulties may arise when cracks interact or

intersect.

Another methodology is the use of unstructured tetrahedral meshes to model crack

growth in solids. This method lies between the classical methods based on hybrid meshes

or submodeling techniques, and the more recent advanced enrichment-based X-FEM. This

methodology uses quarter-point tetrahedra to model the crack singularity, and therefore

does not require different types of elements, sub-models, or enrichment functions to model

singularity at the crack front. This methodology has been successfully applied in the context

of crack propagation [Paluszny and Matthäi, 2009; Paluszny and Zimmerman, 2011] as well

as fragmentation [Paluszny et al., 2013]. It is well known that meshing procedures using

unstructured tetrahedra are much simpler, and these elements are best suited to automati-

cally mesh arbitrary domains and complicated geometries. Additionally, adaptive meshing

procedures can be applied to discretize the domain efficiently [Pain et al., 2001]. The effi-

ciency of quarter-point tetrahedral elements for reproducing square root strain singularity

was discussed in Chapter 2. Also, accurate, efficient and reliable methods were introduced

in Chapters 3 and 4 to extract the fracture parameters from the FE solution of tetrahedra.

In this section, the tools developed in this thesis are used to model of mixed mode brittle

crack growth in solids.

6.3.2 Methodology

The development of algorithms for growing cracks involves three steps: (i) Solving the

boundary value problem for the current loading conditions, and computing the fracture

parameters such as the stress intensity factor and the J-integral for all cracks in the domain.

(ii) Employing a well-validated crack propagation criterion to estimate the angle and the

extent of the crack growth of segments over the crack front. (iii) Change the geometry by

extending the crack and continue the simulation from step i. In this algorithm the crack

growth process is subdivided into several increments where the cracks advance until the

energy released due to crack growth is not large enough to overcome the surface energy
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required to advance the crack. During all the increments, the boundary value problem

is solved to satisfy the equilibrium condition throughout the model. For a fixed set of

boundary conditions, the model is iteratively deformed, until no more growth is registered.

Since the mesh is dependent on the geometry of the crack, after crack advance in each

increment the domain has to be remeshed in order to capture the emerging crack geometry.

In every increment the geometry changes, the previous stress state is invalidated and new

updated stresses are re-computed. In summary, the simulation of fracture growth involves

the following steps [Paluszny and Zimmerman, 2011]:

1. Generate the geometry of cracked body

2. Generate mesh automatically

3. Apply boundary conditions

4. Solve for deformation

5. Compute fracture parameters

6. Compute propagation angle and length

7. Extend cracks

8. Remesh the new geometry and map the variables

9. Go to step 3 unless no growth is registered for the current increment

There have been mainly three criteria to estimate the angle of crack growth as well as

the critical conditions required for the onset of crack growth in brittle materials: Maximum

tangential stress (MTS) [Erdogan and Sih, 1963], minimum strain energy density (SED)

[Sih, 1974] and maximum energy release rate (G) [Nuismer, 1975]. The MTS criterion has

been used extensively because of its simplicity and consistency with the experimental results

on brittle fracture growth [Ayatollahi et al., 2006]. An extension of this method for mixed

mode I/II/III loading in three-dimensional cracks has been introduced in [Schöllmann et al.,

2002]. Based on this criterion, once the value of tangential stress in this direction reaches

its critical value, the crack propagates along the direction of maximum tangential stress.

This criterion is used in this research for estimating the extent and the direction of crack

propagation. Once the stress intensity factors are computed along the crack front, the

magnitude and the direction of crack growth can be estimated. More detail about fracture

geometric representation and remeshing process can be found in Paluszny and Zimmerman

[2011].

Simulating the propagation of a three-dimensional crack requires another criterion to es-

timate the extent of crack advance in different locations over the crack front. This is because

the crack extension speed differs from one point to another along the crack front. Numerical

studies show that within a group of cracks, and in order to reproduce patterns found in
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the growth experiments, cracks must grow at different speeds [Renshaw and Pollard, 1994].

Generally, the extension rate of crack front points can be benchmarked against the highest

extension rate. In this research, the weighing of the speeds and crack advances per points

is formalized by a propagation criterion proposed by Charles [1958], and further extended

by Renshaw and Pollard [1994]. This criterion proposes that the extension of crack front

points is proportional to the point-wise energy released rate. The point with the maximum

energy released rate grows fastest, while other points with less energy released rate grow

slower proportionally. At each increment, the point with the highest energy released rate

attains a fixed distance of extension, and the extensions of the other points are estimated

proportionally according to variation of point-wise energy released rate. This means that

the point with the highest released energy advances most in one increment, while points

with less energy released rate grow to a lower extent [Paluszny and Matthäi, 2009].

6.3.3 Results and discussion

In order to demonstrate the efficiency and accuracy of the crack growth simulation using

unstructured tetrahedral elements, penny-shaped and elliptical cracks embedded in large

cubes are considered for growth experiments (Fig. 6.5a). Initially, the crack planes are at

an angle of β = 45◦ with respect to the direction of applied load. a denotes crack radius for

the penny-shaped crack, and semi-major axis for the elliptical crack. The semi-minor axis

b of the elliptical crack is perpendicular to the X1X2 plane. The geometrical specifications

a/w = 0.1 and b/w = 0.4, and Young’s modulus and Poisson’s ratio values of E = 1GPa

and ν = 0.3 are considered. The following boundary conditions are also applied: u1 = 0

over the edge X1 = X2 = −w, u2 = 0 over the plane X2 = −w, u3 = 0 over the edge

X2 = X3 = −w, and σ = 1MPa over the plane X2 = w. Unstructured meshes based on 10-

noded isoparametric tetrahedral elements are used to discretize the specimens, and quarter-

point elements are employed at the crack front region. In all increments of simulation, the

degree of mesh refinement in the crack front region was controlled by keeping the average

crack front element size at about one twentieth of the crack length (Ln ≈ a/20). This

restriction ensures that the quarter-point elements at the crack front predominantly remain

in the singular dominant zone [Kuna, 2013]. Figure 6.5b shows the finite element mesh of

the penny-shaped crack configuration.

All crack growth procedures including incremental geometry change, remeshing, and

mapping have been previously implemented into the Imperial College Geomechanics Tool

(ICGT) [Paluszny and Matthäi, 2009; Paluszny and Zimmerman, 2011]. The procedures to

estimate the crack parameters in this tool were upgraded in the ICGT by employing the

displacement correlation and disk-shaped domain integral methods described in Chapters
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Figure 6.5: (a) Schematics of penny-shaped and elliptical crack embedded in a large cube under
uniaxial tension; (b) Unstructured tetrahedral mesh.

3 and 4. Figures 6.6 and 6.7 show the incremental growth of penny-shaped and elliptical

cracks under uniaxial tension. The incremental growth is simulated using eight steps. In

both configurations, although cracks are initially under mixed mode loading, the change of

geometry aligns the cracks normal to the load direction in a predominantly mode I loading

condition. This behavior agrees with the results of growth experiments. The reason for this

behavior is that the crack path follows the direction in which maximum energy is released

to overcome the surface energy of new crack faces, and therefore an inclined crack reorients

itself to grow in mode I, in alignment with the boundary conditions. Cracks extended

towards pure mode I seem to release the maximum amount of strain energy compared

to alternative crack path configurations. The mixed mode elliptical crack also gradually

extends to a penny-shaped crack normal to the load direction. This shows that a penny-

shaped crack is a more stable crack configuration as compared to an elliptical one. The

same approach can be used to grow multiple interacting fractures. Figures 6.8 and 6.9 show

the incremental growth of cubes with ten and fifty interacting randomly-oriented penny-

shaped cracks under uniaxial tension. In such a model, the interaction of nearby cracks can

considerably influence the growth path.

6.3.4 Conclusions

The results of the simulation of crack growth show that a growth simulator based on tetra-

hedral elements is efficient and accurate to predict paths of single and interacting cracks.

Since tetrahedral meshes are suitable for meshing complex geometries with multiple cracks,
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a growth simulator based on tetrahedrals can be potentially used to investigate the influence

of crack interactions on the growth behavior.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Incremental growth of an inclined penny-shaped crack in a large cube subjected to
uniaxial tension.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Incremental growth of an inclined elliptical crack in a large cube subjected to uniaxial
tension (a/b = 0.4).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Incremental growth of ten interacting randomly-oriented penny-shaped cracks in a large
cube subjected to uniaxial tension.
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(a) (b)

(c) (d)

Figure 6.9: Incremental growth of fifty interacting randomly-oriented penny-shaped cracks in a large
cube subjected to uniaxial tension.
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Conclusions

This thesis introduces a novel three-dimensional finite element formulation using unstruc-

tured tetrahedral meshes to accurately model the linear elastic deformation of fractured

media under tensile and compressive loadings. Overall, this research provides significant

evidence to the applicability, efficiency and accuracy of unstructured tetrahedral meshes to

analyze fractured media. The main contributions of this work include:

• Quarter-point tetrahedral finite elements [Nejati et al., 2015c]:

It is mathematically proven that quarter-point tetrahedral finite elements reproduce

a square-root strain singularity along the crack front. This advancement enables one

to model the crack strain singularity using unstructured tetrahedral meshes, which

results in a considerable decrease in the computational cost. It is shown that the

Jacobian becomes negative in a small region near the curved side of the quarter-

point tetrahedra attached to the curved crack fronts. To avoid this, it is suggested

to make these curve sides straight when using the quarter-point tetrahedra along the

curved crack fronts. The numerical results on the relative displacements over the

crack surfaces clearly demonstrate very good performance of quarter-point tetrahedra

in reproducing a square root displacement variation near the crack front. Overall,

quarter-point tetrahedra are efficient, accurate and reliable in linear elastic fracture

mechanics applications.

• Displacement correlation method for tetrahedra [Nejati et al., 2015c]:

An efficient displacement correlation (DC) method is proposed for extracting the

SIFs from the FE solution of tetrahedral meshes. This method is based on correlating

displacement at a fixed distance from the crack front. It is computationally very

cheap, can be readily implemented in any FE code, and can be applied on unstructured

meshes even for non-conforming crack surface elements. The application of the method
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on several crack configurations in tension and compression shows that the average

SIF computation error remains about 2-3%. A comparison of the results from the

DC method for standard and quarter-point elements also reveals that the average

SIF computation error more than doubles when using standard tetrahedra instead of

quarter-point ones at the crack front region. The results from an extensive parametric

study also suggest that there is an optimum mesh-dependent distance from the crack

front at which the average SIF computation error hits its minimum. This distance is

roughly equal to the average size of the elements at the crack front region.

• Disk-shaped domain integral approach [Nejati et al., 2015a]:

A novel, efficient and accurate domain integral approach is proposed for computing

pointwise J-integral and stress intensity factors. This method is based on the evalua-

tion of domain integrals over disk-shaped domains discretized with virtual triangular

elements. The main advantages of this method over classic volumetric domain ap-

proaches based on tubular domains are: (1) It can be directly applied to arbitrary

tetrahedral meshes. (2) It requires less computational cost, as it performs integration

over a disk rather than a tube. (3) It directly applies the original definition of the

pointwise J- and interaction integrals. (4) Integration is performed over a disk per-

pendicular to the crack front, which is easy to generate and low in cost, and expressing

the fields in curvilinear coordinates is no longer required for curved cracks. (5) As

2D plane strain auxiliary fields satisfy compatibility and equilibrium equations over a

disk, the term containing the higher order gradients of the auxiliary fields vanishes in

this new formulation. (6) The in-plane and anti-plane fields are separated, and cannot

influence each other in the computation of fracture parameters. Based on the numer-

ical results of several crack configurations, the SIF computation error remains within

1% for fine meshes, and 2-3% for coarse ones. The results of an extensive parametric

study also suggests that an optimum mesh-dependent domain radius exists at which

the SIF computation error hits its minimum. This optimum radius is roughly equal

to the nominal size of the elements at the crack front region.

• Singular penalty parameter on the crack front [Nejati et al., 2015b]:

It is shown that the application of a singular square root penalty variation near the

crack front ensures the enforcement of contact constraints accurately close to the crack

front. The gaps vanish on the crack front nodes, and the application of a constant

(standard) penalty near the crack front enforces the contact tractions to follow the

variation of the gaps there. The use of a singular square root penalty variation, how-

ever, compensates for the gradual decrease of the gaps near the crack front, and leads
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to the computation of accurate contact tractions. Results from numerical experiments

demonstrated the efficiency of the singular penalty variation for obtaining accurate

contact tractions near the crack front.

• Gap-based augmented Lagrangian approach [Nejati et al., 2015b]:

A gap-based augmented Lagrangian algorithm is introduced for updating contact

forces over the crack fronts. This algorithm is based on the augmentation of gaps

rather than the augmentation of Lagrange multipliers, and circumvents the difficulty

of not being able to define contact tractions at the nodes located along the crack

front. The crack front is excluded from the contact region, and therefore no traction

is available for the nodes along the crack front. Therefore, Lagrange multipliers can-

not be defined for the crack front nodes, and this causes a difficulty in using standard

traction-based augmented Lagrangian method. The introduced gap-based augmented

Lagrangian approach, however, is based on gaps and does not require the nodal trac-

tions. Therefore, it can be effectively used to update the contact forces over the crack

surfaces. The results from several numerical experiments demonstrated the efficiency

of the gap-based augmented Lagrangian algorithm in accurately enforcing the contact

constraints.

• Efficient contact algorithm for fractured media [Nejati et al., 2015b]:

An efficient algorithm is presented for the treatment of contact between fracture sur-

faces in high density fractured media. In this algorithm, the contribution of the in-

ternal forces is accumulated once at the start, and is repeatedly used throughout the

simulation. The penalty parameter is chosen for each fracture individually based on

the value of Young’s modulus and the average size of the elements over that fracture.

This ensures that no ill-conditioning occurs in the system. The fracture parameters

such as J-integral and stress intensity factor are computed for each fracture using the

domain integral and displacement correlation methods. The recommended value for

the domain radius and sampling distance in these methods is the average size of the

quarter-point elements. The algorithm is efficient, reliable, and accurate for resolving

internal contact in heavily fractured media.

• Hysteresis and crack growth [Nejati et al., 2013]:

The numerical simulations demonstrated that a cohesive stress is required in the

constitutive frictional law in order to model the hysteretic behavior of rocks based on

sliding of micro-cracks. The results clearly show that no residual strain is reproduced

when the cohesive stress is zero. The residual strain is a very important feature
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of hysteretic behavior of rock, and these numerical simulations provide interesting

insights on how it can be reproduced. The research on this topic is still ongoing, and

more detailed numerical simulations with higher crack densities will be produced.

Extensions of this work fall into two categories: (i) extending the numerical methodologies

introduced in this thesis to more generic loading and material conditions, and (ii) employing

the current methodologies to understand complex geomechanical processes. The suggested

extensions into the numerical methodology include:

• The domain integral to compute higher order parameters:

The main focus of the present research is the computation of SIFs as the dominant

influential parameters near the crack front. Numerical and experimental results have

recently demonstrated that higher-order terms of the crack tip asymptotic field, in

particular the T-stress, can also influence the stress distribution near the crack tip,

and consequently the onset of fracture growth [Smith et al., 2001; Ayatollahi et al.,

2006; Berto and Lazzarin, 2010]. Therefore, the accurate computation of higher order

parameters is also of great importance in analyzing the growth of cracked bodies.

The domain integral method presented in this thesis can be extended to compute

the T-stress in 3D cracked bodies based on the original works of Kfouri [1986] and

Toshio and Parks [1992] that describe contour and domain integral formulations for

evaluating the T-stress.

• The domain integral to include body forces and thermal strains:

The formulation of the domain integral presented in this thesis includes the surface

traction contribution only, and excludes the contributions of body forces and ther-

mal strains which require extra terms in the integral formulation [Shih et al., 1986].

An extension to the proposed disk-shaped domain integral method therefore should

include those contributions as extra integral terms in order to demonstrate the ap-

plicability of this approach for more general loading conditions such as the ones in

thermo-hydro-mechanical coupled systems.

• The SIF computation of sharp V-notches:

The proposed SIF estimation methodologies are also applicable to determine the notch

stress intensity factors of sharp isotropic and bi-material V-notches. This requires the

evaluation of energy integrals at the notch tip using disk-shaped domains and virtual

triangular elements. This allows to efficiently use unstructured meshes to analyze

V-notched structures.
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• The SIF computation and contact treatment of interfacial cracks:

Interfacial cracks are present in many geological and engineering applications, and

therefore the accurate crack growth modeling of those cracks is of great importance.

The contact treatment and SIF computation methodologies developed in this thesis

can be extended to bi-material media to study the behavior of interfacial cracks.

• The SIF computation and contact treatment of anisotropic media:

The proposed methodologies can be extended to compute the SIFs for an anisotropic

medium. The contact treatment, however, requires no extension, and is expected to

perform equally well in an anisotropic medium.

• The contact treatment for two-dimensional fractured media:

Three-dimensional numerical simulations on contact treatment and fracture growth

demand significant computational cost. On the other hand, some geological fractured

media can be modeled with great accuracy as two-dimensional problems. A simi-

lar contact treatment methodology can be proposed for analysing the deformation

behavior of two-dimensional fractured media.

The suggested extensions in understanding geomechanical processes include:

• Simulating crack growth under tension and compression:

The procedure developed in this thesis can be employed to simulate crack growth under

combined tensile and compressive loading conditions. Growth patterns, including the

coalescence and branching mechanisms, can be studied, as well as the influence of

crack field interactions on ensuing crack paths. One can also study the influence of SIF

variation near the corners on the crack growth pattern. Fault activation and rupture

are interesting examples of the introduced numerical methodology in geomechanical

applications.

• New constitutive laws for micro-structured materials:

The numerical simulations of the hysteretic behavior of fractured media showed that

a micromechanical model can be used to reproduce the overall stress–strain curves

of micro-structured materials. These results demonstrate that new constitutive laws

for rocks and similar materials can be developed based on their micro-mechanical

parameters. These stress-dependent constitutive laws can be of great interest when

analyzing rock bodies subjected to complex tri-axial stresses.
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Appendix: Analytical stress intensity factors

Analytical solutions for the SIFs of penny-shaped and elliptical cracks embedded in

infinite solids subjected to uniform tension or shear have been derived in Kassir and Sih

[1975]. Consider an inclined penny-shaped/elliptical crack embedded in a solid under uni-

axial tension σ, as shown in Fig. 4.8b. The crack plane is perpendicular to the X1X2

plane, and makes an angle β with the applied load direction, which is oriented along the

X2 axis. The normal and shear stress components on the crack face are σzz = σ sin2 β and

σzx = σ sinβ cosβ. The SIFs of the penny-shaped crack are therefore given by

KI = 2σ
√
a/π sin2 β

KII =
2σ
√

a/π

2− ν
sin 2β cosφ

KIII =
2(1− ν)σ

√
a/π

2− ν
sin 2β sinφ

(A.1)

where a and ν are the crack radius and Poisson’s ratio, respectively, and φ is the polar

angle, as shown in Fig. A.1a. It should be noted that incorrect solutions for the SIFs

of penny-shaped cracks were reported by Cherepanov [1979]. These solutions, which do

not contain Poisson’s ratio, were incorrectly employed to validate the numerical results by

Nikishkov and Atluri [1987b]. The SIFs of the elliptical crack are given by

KI(ω) =
σ
√
πa

E(k)
sin2 β Π(ω)

KII(ω) =
Ψk′σ

√
πa

2Π(ω)
sin 2β cosω

KIII(ω) =
Ψ(1− ν)σ

√
πa

2Π(ω)
sin 2β sinω

(A.2)

where

x

y



a

(a)

x

y


�

a

b

(b)

Figure A.1: Configurations of (a) penny-shaped and (b) elliptical cracks.
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Ψ =
k2k′(

k2 − ν
)
E(k) + νk′2K(k)

Π(ω) =
(
k′2 sin2 ω + k′4 cos2 ω

)1/4 (A.3)

In these formulas, k′ = b/a, k2 = 1 − k′2, a and b are the lengths of semi-major and semi-

minor axes of the ellipse (a > b), and K(k) and E(k) are the complete first and second

elliptic integrals, given by

K(k) =

∫ π/2

0

1√
1− k2 sin2 t

dt

E(k) =

∫ π/2

0

√
1− k2 sin2 t dt

(A.4)

Angle ω parameterizes the points of the ellipse by the equations x = a cosω, y = b sinω,

and is related to the polar angle φ by k′ tanω = tanφ (see Fig. A.1b). Rewriting Eq. (A.4)

in terms of the polar angle φ gives [Kachanov et al., 2003]:

KI(φ) =
k′σ

√
πa

E(k)

Π1(φ)

Π2(φ)
sin2 β

KII(φ) =
Ψk′2σ

√
πa

2Π1(φ)Π2(φ)
sin 2β cosφ

KIII(φ) =
Ψ(1− ν)σ

√
πa

2Π1(φ)Π2(φ)
sin 2β sinφ

(A.5)

where

Π1(φ) =
(
sin2 φ+ k′4 cos2 φ

)1/4
Π2(φ) =

(
k′2 sin2 φ+ k′4 cos2 φ

)1/4 (A.6)

Now consider an inclined penny-shaped/elliptical crack embedded in a solid under uni-

axial compression σ, as shown in Fig. (5.5a). Here, all compressive stresses and pressures

are considered to be positive. The crack plane is perpendicular to the X1X2 plane, and

makes an angle β with the applied load direction, which is oriented along the X2 axis. Also

consider a fluid pressure p0 is first applied over the crack surfaces, which results in the open-

ing of the crack surfaces and inducing initial aperture. Then, the fluid pressure is removed,

although the inducing aperture is still present, and the external compressive stress is applied

to the cube, where as a result, the crack surfaces might go into contact. The induced normal

and shear stress components on the contacting crack surfaces are σzz = (σ sin2 β − p0) and

σzx = σ sinβ cosβ. The frictional stress is therefore evaluated using Coloumb constitutive
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law as τf = μ(σ sin2 β − p0) + τc. In the stick condition no crack deformation happens after

the crack closure, and only the applied shear and normal stress before the crack closure

contributes to the crack deformation. In slip condition, however, in addition to the normal

and shear deformations happening while the crack is closing, crack deformation also occurs

due to effective shear stress over the crack surface when it is slipping. According to the

analytical solution of a penny-shaped crack under uniform shear given by Segedin [1951],

the relative displacement of the crack surfaces is in the direction of applied shear stress only.

On the other hand, the direction of the frictional traction is opposite to the direction of the

induced shear stress over the crack surface. The effective shear stress is therefore obtained

as τef = σzx − τf, where τf is in the same direction as σzx. The total crack deformation

is then obtained by superimposing the deformations induced before and after the crack

closure, giving the SIFs of the penny-shaped crack in stick and slip conditions respectively

by

KI = σα1

√
a/π

KII = σα1
2
√

a/π

2− ν
cosφ

KIII = σα1
2(1− ν)

√
a/π

2− ν
sinφ

(A.7)

KI = σα1

√
a/π

KII = σα2
2
√

a/π

2− ν
cosφ

KIII = σα2
2(1− ν)

√
a/π

2− ν
sinφ

(A.8)

where

α1 = −2p0/σ

α2 = 2
[
μ
(
sin2 β − p0/σ

)
+ τc/σ

]
− sin 2β − 2(1− cotβ)p0/σ

(A.9)

The first two terms in α2 are associated with the crack deformation during crack sliding,

while the last term is due to the crack deformation during crack closure. The SIFs of the

elliptical crack in stick and slip conditions are also respectively given by
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KI(ω) = σα1

√
πa

2E(k)
Π(ω)

KII(ω) = σα1
Ψk′

√
πa

2Π(ω)
cosω

KIII(ω) = σα1
Ψ(1− ν)

√
πa

2Π(ω)
sinω

(A.10)

KI(ω) = σα1

√
πa

2E(k)
Π(ω)

KII(ω) = σα2
Ψk′

√
πa

2Π(ω)
cosω

KIII(ω) = σα2
Ψ(1− ν)

√
πa

2Π(ω)
sinω

(A.11)
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