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Abstract  

Abstract 

Nowadays, coal mining is extending to deeper and deeper levels, facing ever 

increasing coal seam gas contents, much higher gas emissions and outburst risks. 

Capturing coal seam gas before it migrates into atmosphere has been seen as an 

effective approach to simultaneously improve mining safety, reduce greenhouse gas 

emissions, and produce clean energy.  

Thick seams account for a considerable share of global coal reserve. The application 

of longwall top coal caving (LTCC) method to extract thick seams generally yields a 

much higher productivity and is more efficient in comparison to a mechanised 

single-slice longwall panel. However, the greater productivity achieved by LTCC 

may further exacerbate the gas emission problems often faced in longwall mining. 

Geomechanical response of the strata and associated gas emission patterns around 

thick seam layouts are significantly different from coal mining under thinner multi-

seam mining conditions, which is not well understood.  

This thesis focuses on establishing an understanding of the stresses, pressure 

regimes, and gas emission patterns around advancing LTCC faces. During the PhD 

research, gas pressure and gas concentration were measured in a large number of 

boreholes in and around an advancing LTCC face at a coal mine. These data are 

complemented with ventilation and seismic monitoring programmes at the same 

LTCC district. An integrated analysis of the monitoring data has been carried out and 

conceptual models for gas emission and drainage for LTCC faces have been 

developed. These were later used as the basis for numerical modelling research. 

A two-way sequential coupling of a geomechanical simulator with a reservoir 

simulator has been achieved, whereby mining induced stresses and pressures are 

linked by two coupling parameters: permeability and pore pressure. By applying this 
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approach, gas emission during coal extraction at a LTCC panel in the study coal 

mine has been successfully modelled and history matched with field data. 

Recognising that coal and gas outbursts are the most serious and violent gas 

emissions in both thick and thin seam mining, the application of the coupled 

modelling approach has been further extended to model two common types of 

outbursts experienced in an outburst-prone coalfield.  

Gas drainage before mining is a standard gas emission control technique, however, 

its application is largely limited to high permeability coal seams and roof/floor 

source seams undermined/overmined by single level longwall mining. The feasibility 

of utilising mining induced permeability enhancement zones to drain gas at thick and 

tight seams mined by multi-level LTCC method was studied via field trials and 

numerical models. Building upon the gas emission model developed earlier, a 

parametric study was carried out to assess different borehole layouts in order to 

optimise gas drainage designs. 

It is believed that the findings of this research and gas drainage methods developed 

for thick seam mining will create a safer underground environment for miners at high 

productivity LTCC panels.  
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Chapter 1 Introduction and Objectives 

Chapter 1 Introduction and Objectives 

1.1 Motivation 

‘Coal provides around 30.1% of global primary energy needs, generates over 40% of 

the world's electricity and is used in the production of 70% of the world's steel 

(World Coal Association, 2015).’ There is no doubt that coal will still play an 

important role in the foreseeable future, particularly in emerging economies such as 

China and India. Unfortunately, the history of coal mining is written by not only 

black coal but also red blood. After two hundred years of struggle with harsh and 

extreme underground conditions, modern mining techniques have significantly 

improved mining safety, however, underground coal mining accidents still claim 

thousands of lives every year. 

Coal mine gas emissions (consisting of mainly methane and carbon dioxide), which 

occur along with coal extraction activities, have long been recognised as the main 

threat to mining safety. More specifically, methane is an explosive gas when its 

concentration ranges from 5 to 15% in air, and carbon dioxide can have major 

detrimental physiological effects on human metabolism at a concentration above 2% 

in air. Generally, in order to maintain the concentrations of these harmful gases 

below a safety threshold, ventilation systems are essential for coal mines.  

In recent years, with the depletion of shallow coal resources, coal mining is 

extending to deeper and deeper levels, facing ever increasing coal seam gas contents 

and much higher gas emission rates at production districts. This situation, 
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unfortunately, cannot be simply addressed by a ventilation system, or at least on its 

own. It is even worse that the increase of gas content with burial depth coincides 

with an increase of in-situ stress conditions and decreasing permeability. This 

combination makes today’s coal mining more susceptible to a mining hazards such 

as outbursts or uncontrolled gas emissions. An outburst is recognised as a 

spontaneous and instant ejection of rock/coal and gas from a solid coal face into 

mine openings. The dynamic ejection of rock/coal can destroy equipment at mine 

openings and even cause fatalities. Furthermore, excessive gas emissions within a 

short time period can significantly increase gas concentrations in the ventilation air 

and result in secondary disasters such as methane explosions, dust explosions, and 

fire. Table 1.1 summaries a number of large-scale gas-related coal mine disasters 

which occurred in several major coal production countries since the 1990’s (Mining 

accident, 2015). 

Table 1.1: Major gas-related coal mine accidents which occurred in recent years. 

Country Year Mine Fatalities Country Year Mine Fatalities 

Canada 1992 Westray mine 26 United 
States 2006 Sago mine 12 

Turkey 1992 TCC Kozlu mine 263 China 2007 Xinyao coal mine 105 
South 
Africa 1993 Middelbult coal 

mine 53 China 2007 Tunlan coal mine 78 

China 2000 Muchonggou mine 159 Russia 2007 Yubileinaya mine 39 

China 2002 Chengzihe 124 Russia 2007 Ulyanovskaya mine 108 

China 2004 Daping mine 148 China 2009 Xinxing mine 108 

China 2004 Chenjiashan mine 166 China 2009 Xinhua No.4 mine 54 

China 2005 Dongfeng mine 171 Turkey 2009 Bursa province 19 

China 2005 Sunjiawan mine 214 China 2010 Pingyu coal mine 37 

China 2005 Shenlong Mine 83 Russia 2010 Raspadskaya 66 

China 2005 Xishui colliery 72 Turkey 2010 Zonguldak province 30 

China 2005 Liuguantun colliery 103 China 2012 Xiaojiawan mine 45 

China 2006 Linjiazhuang Mine 57 China 2013 Machang coal mine 25 

China 2006 Nanshan colliery 24 China 2013 Babao coal mine 53 

Poland 2006 Halemba mine 21 China 2013 Taozigou coal mine 28 

In addition, the release of coal mine gas into the atmosphere can exacerbate global 

climate change. Methane accounts for 16% of all global greenhouse gas (GHG) 

emissions, and emissions from coal mines represent 8% of global anthropogenic 

methane emissions (IEA, 2009). According to recent estimates, worldwide methane 

emissions from coal mines have reached and exceeded 390 MMt CO2 equivalents 

(Figure 1.1), with approximately two-thirds of this methane being emitted in the 
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ventilation air, the rest being captured via the methane drainage systems employed 

and only partly utilised.  

 
Figure 1.1: Global methane emissions from coal mines (IEA, 2009). 

However, there is the bright side to the presence of natural gas in coal: methane is a 

clean energy source to alleviate current global energy demands. Over the last 30 

years coalbed methane developments have flourished in North America where, 

today, gas extracted from coal makes up around 5% of US domestic gas consumption 

(U.S. Energy Information Administration, 2014). Therefore, capturing/collecting 

coal mine methane before it migrates into atmosphere has been seen as an effective 

approach to simultaneously improve mining safety, reduce GHG emissions, and 

produce clean energy.  

1.1.1 Gas Emissions in Thick Seam Mining  

The thickness of coal seams varies significantly from region to region. Multi-layer 

thin seams each measuring less than 3.5 metres are commonly seen in almost every 

coal producing country. To extract thin seams, longwall mining has been developed 

in Germany, the UK, and the US, and then being widely accepted all over the world. 

As the mining of thin seams with the application of longwall layouts thrived, the 

knowledge on gas emission patterns around traditional longwall faces has become 

well-established.   

Thick seams (thickness > 3.5 - 4.0 m) also account for a considerable share of coal 

reserves in many coal production countries, e.g., China, Australia, India, Turkey, 

South Africa, former Yugoslavia, and Spain (Ghose, 1984). It is estimated that 

around 45% of total coal reserves are categorised as thick seams in China. In India, 
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this number is reported to be over 60% (Singh, 2011). The measured and indicated 

thick seam resources in Australia amount to 6.5 and 17.6 billion tonnes, respectively 

(Hebblewhite, 2005).  

After years of perfection, the longwall top coal caving (LTCC) mining method has 

emerged as the most effective approach to extract thick seams. Being able to recover 

a coal seam as much as 20 m thick by operating only one longwall face, a LTCC face 

generally yields a much higher productivity and is more efficient in comparison to a 

traditional longwall face. However, the greater productivity achieved by LTCC 

mining may further exacerbate the gas emission problems often faced in longwall 

mining. 

Although there has been widespread applications of LTCC in thick seam mining, 

fundamental investigations regarding gas emissions around LTCC faces during the 

extraction of thick seams are relatively limited. It is expected that mining thick seams 

may result in a distinctly different stress pattern and strata behaviour, which can 

consequently affect gas flow patterns around mine openings. The face advance rate 

and coal productivity of a LTCC panel may be seriously constrained by high gas 

emissions in some gassy mines. Gas emission control during the recovering of thick 

gassy seams presents a new challenge for today’s mining industry. 

1.1.2 In-situ Measurement and Monitoring of Gas Emissions  

Stress distributions, pressure regimes, and gas emissions around an operating coal 

face are three factors interacting with each other, which are best evaluated using in-

situ measurements. Borehole measurements and ventilation environment monitoring 

are standard techniques used to understand the responses of strata and gas dynamic 

behaviour around mining activities. Coal seam responses to face advance including 

stress, pressure, and permeability changes can be directly or indirectly measured via 

underground boreholes. The amount of gas emissions induced by coal extraction can 

be recorded by sensors installed in return airways.  

In recent years, the application of geophysical techniques, such as seismic 

tomography and microseismic monitoring, in underground coal mining has received 

increasing attention (Lu et al., 2013, 2014; Cai et al., 2014). Attempts to use these 

techniques to provide early warning for mining hazards (catastrophic roof failure, 
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rock burst, and outburst) have been made by many researchers (McKavanagh and 

Enever, 1978; Styles et al., 1988; Fujii et al., 1997; Li et al. 2007; Kabiesz and 

Makówka, 2009; Lu et al., 2013; Cai et al. 2014). These techniques are demonstrated 

to be able to image geological structures, interpret stress redistributions, and even 

analyse fracture source mechanisms.  

Field measurement results provided by some standard and some novel techniques are 

essential to study the mechanism of gas release and migration around coal faces. 

However, these techniques have so far been conducted in thin seams with longwall 

layouts and, in most cases, on their own. An integrated analysis of different 

measurement data has rarely been achieved, and even less practised in the case of 

thick seam mining.  

In addition, although geophysical techniques are promising, they are still immature 

in field applications, particularly regarding the early detection of uncontrolled gas 

emissions. Geophysical data obtained from the field needs further analysis and 

interpretation using other monitoring data which may support these analyses.  

1.1.3 Numerical Modelling of Gas Emissions around Coal Faces 

In addition to field measurements and monitoring, numerical modelling is a tool to 

explore stress, pressure, and permeability distributions around operating coal faces. 

Geomechanical simulators can realistically reproduce stress responses and strata 

behaviour to coal extraction and estimate the size of mining disturbed zones. It is 

essential to achieve coupled geomechanical and fluid flow modelling in order to 

simulate gas flow induced by mining activities within these zones. By this approach, 

the amount of gas being released during mining can be predicted and the 

corresponding gas control techniques can be assessed and optimised.  

However, previous coupling approaches in coal mine gas emission modelling have 

mainly used one-way coupling (Esterhuizen and Karacan, 2005; Whittles et al., 

2006; Karacan et al., 2007b), ignoring the impact of pore pressure changes on 

permeability. This may lead to errors in the simulation of gas flow around coal faces. 

Furthermore, the modelling approach to simulate progressive longwall face advance 

and associated gas flow in detail has rarely been attempted, nor implemented for 

LTCC panels. As another application of coupled geomechanical and fluid flow 
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modelling, current outburst modelling practice is mostly limited to a small number of 

theoretical studies (Choi et al., 2004a, 2004b; Xu et al., 2006; Xue et al., 2011). 

1.1.4 Gas Drainage in Thick and Low Permeability Coal Seams 

In terms of gas control techniques in thick seam mining, in-seam borehole pre-

drainage is widely accepted as a standard methodology, not only to reduce gas 

content of mined seams for mining safety, but also capture gas for utilisation. There 

is one main limitation about this technique: it can only be applied in coal seams with 

relatively high permeability (≥ 1×10-15 m2). In low permeability coal seams, gas 

drainage performance is low and stimulation techniques are normally required to 

enhance gas recovery. 

The idea of taking the advantage of mining-enhanced permeability zones to improve 

gas drainage performance in thick seam mining sounds practical and feasible, 

however, this requires more fundamental studies to guide field practice. The 

relationship between gas drainage performance and face advance in thick seam 

mining is yet unclear and extremely rare in thick and low permeability coal seams.  

1.2 Research Objectives and Methodologies 

It can be concluded that gas emission problems experienced in mining of thick seams 

are challenging and yet to be explored well. Knowledge gaps in terms of gas 

emission modelling and prediction, early detection of outburst and the development 

of gas drainage methods for thick and low permeability seams need to be 

investigated thorough integrated field measurements and data analysis.  

Therefore, the main objective of this PhD research was to improve the understanding 

of gas emission patterns around LTCC faces used in thick seam coal mining. This 

was achieved through:   

• an integrated analysis of field measurement data from various sources such 

as, borehole gas pressure and concentration and ventilation measurements; 

• field implementation and analysis of seismic monitoring;  

• a two-way coupled geomechanical and fluid flow modelling approach to 

simulate gas emissions and coal/gas outbursts at outburst prone seams; and  
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• the implementation of the models developed to assess and optimise gas 

drainage performance of underground boreholes that are stimulated by 

mining activities.  

In doing so, the author has worked closely with industrial partners over his PhD 

period. The two European Commission funded research projects (CoGasOut and 

GHG2E) by provided extensive field data collected by the industrial partners of these 

projects. Thus, the first phase of this research involved intensive analysis and 

interpretation of field data. At a study coal mine, gas pressure and gas concentration 

were measured with a large number of boreholes in and around an advancing LTCC 

face. These data were complemented with ventilation and seismic monitoring data 

around LTCC districts. At the end of the first phase, a conceptual model describing 

stress, pressure, and gas emission patterns around LTCC faces was developed. 

Building upon the knowledge gained during this first phase, the second phase of 

research focused on developing a two-way sequential coupling of geomechanical and 

fluid flow simulators and applying this methodology to model gas emissions around 

LTCC faces. Field measurement data from the study mine provided input for the 

development of numerical models and, in return, numerical models provided an 

insight into stress and pressure distributions and gas migration pathways around 

LTCC faces. Later, the coupling approach was further modified to model two 

different types of coal and gas outbursts at development headings in an outburst-

prone coal field in China.  

The third phase of this research investigated the impact of mining activities on the 

performance of gas drainage with different types of borehole layouts. Gas drainage 

data from field trials were analysed and borehole layouts and settings from these 

trials were then used as the reference for further numerical modelling studies. A 

number of drainage scenarios with various borehole parameters (length, inclination, 

azimuth, and spacing) were assessed to optimise gas drainage performance.   

1.3 Thesis Structure 

The main structure of this thesis and inter-relationship between the chapters are 

depicted in Figure 1.2. Chapter 2 reviews the fundamentals of coal science, including 

coal structure, gas storage and transport mechanisms in coal, rock mechanics, and 
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performance with different types of boreholes layouts. Gas production stimulated by 

face approach is studied via field trials and numerical models. A parametric study 

regarding borehole layouts is also conducted to optimise gas drainage designs.  

Finally, Chapter 9 draws the main conclusions and accomplishments from the 

research presented and makes recommendations for future research. 
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Chapter 2 Coal as a Reservoir Rock 

The maturation process of coal driven by temperature and pressure over long 

geologic time involves physical as well as chemical reactions changing the molecular 

structure of coal. Associated with these reactions, coal seam gases, such as methane, 

are evolved in large volumes. Meanwhile, micropores develop to store a considerable 

amount of gas per unit coal, which characterise coal seams as both source and 

storage reservoirs. This chapter reviews the fundamentals of coal structure, gas 

storage and transport mechanisms in coal, rock mechanics, and permeability 

behaviour.  

2.1 Coal Structure 

2.1.1 Pore Structure 

The internal structure of coal is dominated by its dual-porosity characteristics, which 

can be generalised as micropores and macropores. Micropores, which are essential 

for gas storage, refer to the capillaries and cavities of molecular dimensions, which 

mainly exist in the coal matrix (Rogers et al., 2007). The macropores consist of 

mutually orthogonal or near orthogonal fractures called cleats. As shown in Figure 

2.1, there are two kinds of cleats, perpendicular or near perpendicular to bedding 

planes: face cleats and butt cleats, which are known as primary fractures and 

secondary fractures in coal, respectively.  Face cleats are continuous throughout coal 

seams, whereas butt cleats are discontinuous and terminated by face cleats at 

intersections. Since the matrix is normally low permeability or impermeable, the 
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2.1.2 Coal Rank  

Coal rank is used to characterise different coal types in terms of chemical and 

physical properties after maturation. Coal rank classification proposed by the 

American Society for Testing and Material (ASTM) is shown in Figure 2.3. Various 

measures are used to establish rank. For higher coal ranks, measures such as the 

values of Vitrinite Reflectance, Volatile Matter, and Fixed Carbon content are 

normally used. Whereas calorific value and moisture content are more suitable in 

distinguishing lower rank coals.  

 
Figure 2.3:  Classification of coal rank suggested by the American Society for Testing and Materials 

(after Schweinfurth and Finkelman, 2003). 

Physical properties such as mechanical strength, density, and porosity normally vary 

with rank and most of these properties peak as minimum values when the percentage 

of fixed carbon ranges from 70% to 90% (see Figures 2.4 and 2.5). Lignite and 

subbituminous coals possess relatively high compressive strengths. The compressive 

strength of coal decreases as the Fixed Carbon percentage increases, reaches 

minimum at mid-volatile bituminous (MVB) rank, and later rebound in low-volatile 

bituminous (LVB) and anthracite (A) classes (Jones et al., 1988). Porosity has also 

been found to decline with increasing rank, being the lowest at mid-volatile 

bituminous coal, and increase again in the anthracite range (King and Wilkins, 

1944). The density of coal shows a similar trend with the variation of rank, which 

bottoms in the upper bituminous ranks. 
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Figure 2.4:  Relationship between coal porosity and coal rank (extracted from Rodrigues and Lemos 

de Sousa, 2002). 

 
Figure 2.5:  Relationship between coal’s unconfined compressive strength with rank (after Jones et 

al., 1988). 

Note that the brittleness of coal increases throughout coal rank, and fractures are hard 

to develop in lignite due to its ductility (Das et al., 1991). The most well-developed 

cleat system is reported to be in high-volatile A bituminous and low-volatile 

bituminous coals, and this can be partly attributed to brittleness increase with rank.      

Methane generation is relatively mild in the lower ranks of coal and accelerates in 

mid-volatile bituminous coal (Das et al., 1991). It is estimated that about ten times 

more methane than that retained may have been generated during coalification. Most 

of this methane escaped to the atmosphere in the early stages due to the incomplete 

sealing of the cap rock. Ground water movement over long geological time could 

also have dissolved and removed a large portion of gas (Hedberg, 1980). In addition, 
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deep coal deposits may be uplifted by tectonic activities and lose the methane 

produced earlier (Patching, 1970).  

2.1.3 Gas Retention in Coal 

Compared with conventional gas reservoirs, the storage mechanism of methane in 

coal seams is significantly different. Rather than in a free state compressed in pores, 

gas in coal seams is primarily adsorbed on the internal surfaces of pores and micro-

fractures. The percentage of adsorbed methane can be as high as 98% and the other 

2% is retained as free gas (Gray, 1987). It is estimated that the micropores account 

for 95% percentage of the total internal coal surfaces (Thimons and Kissell, 1973). 

Thus, a remarkable volume of gas is stored on the surfaces of coal micropores in an 

adsorbed state. Macropores are expected to be statured with formation water. Figure 

2.6 shows a schematic of gas molecules inside a coal pore. 

 
Figure 2.6: Schematics of gas molecules inside a coal pore (after Durucan, 1981). 

The primary mechanism of gas sorption in coal is a reversible process controlled by 

weak physical forces. Sorption isotherms, which describe the relationship of gas 

pressure and adsorbed/desorbed gas volume under a constant temperature, are widely 

used to represent the adsorptive properties of coal. Due to its close fit for the sorption 

data for various coals and its appealing simplicity, the Langmuir isotherm 

(Langmuir, 1918) has gained the widest application. The Langmuir isotherm is given 

as follows:  

L

L

V PV
P P

=
+

     2.1 
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where, V (m3/kg) is the volume of adsorbed gas per unit weight of coal; VL (m3/kg) is 

the Langmuir volume, representing the maximum volume of gas that can be 

adsorbed at gas pressure P (Pa) per unit weight of coal; PL (Pa) is the Langmuir 

pressure, corresponding to the pressure at which half of the Langmuir volume has 

been adsorbed.  

In addition to pressure, the sorption capacity of coal is determined by certain other 

factors. With the increase of reservoir temperature, moisture, or coal ash content, the 

sorption capacity of coal decreases substantially (Barker Read and Radchenko, 1989; 

Mavor et al., 1990). On the other hand, increase of coal rank can favour sorption 

capacity (Kim, 1977).   

In coal mining activities, it is not unusual to encounter coal seams which hold more 

than one type of gas, such as a mixture of CO2 and CH4. In this case, the Langmuir 

isotherm has to be extended to take into account of the adsorption of gas mixture. 

The extended Langmuir isotherm is presented in Equation 2.2 (Harpalani and Pariti, 

1993).  

1

1

Li i i
i n

j j
j

V b PV
b P

=

=
+ ∑

    2.2 

where, Vi (m3/kg) is the gas volume of gas component i adsorbed per unit weight of 

coal at partial pressure Pi (Pa); VLi (m3/kg) is the Langmuir volume for component i 

per unit weight of coal; n is the total number of gas components in the mixture; bj 

(Pa-1) is the reciprocal of the Langmuir pressure of gas component j. 

Note that coal matrix shows preferential adsorption to different gases. Compared 

with CH4, CO2 has a stronger affinity for the pore surface of coal, and N2 is less 

readily adsorbed by the pore surface. The selective adsorption of CO2 in coal was 

also reported to be affected by moisture and coal composition (Clarkson and Bustin, 

2000). 

2.2 Gas Flow in Coal Seams  

Gas migration in coal can be represented as a two-stage process. The first stage is 

diffusional flow in the matrix and the second stage is Darcy flow in cleats and 

fractures. In fact, before gas diffuses from the matrix to cleats, gas desorption from 
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the pore surfaces takes place. However, this process is usually considered along with 

the diffusion stage as it is much faster than the diffusion process (Smith and 

Williams, 1984). A schematic describing the whole process of gas migration is 

shown in Figure 2.7.  

 
Figure 2.7: Schematic of gas transport processes in coal seams (after Ahsan, 2006). 

2.2.1 Diffusional Flow 

As gas is originally adsorbed on the surface of micropores in low permeability 

matrix, the migration of gas in coal mining is not simply driven by pressure gradient 

created by ventilation. Due to mining disturbance or other degasification activities, 

pore pressure in cleats and micropores can decrease substantially, especially around 

mine openings. According to the Langmuir isotherm, together with the decreasing of 

pore pressure, gas desorbs from the micropore surfaces. Consequently, a 

concentration gradient is established between the coal matrix and cleats. Since the 

mean free path of gas molecules is larger than the diameter of micropores, this is a 

diffusional process which follows the Fick’s law (Harpalani and Chen, 1997). Using 

Fick’s second law, spherically symmetric gas diffusion in coal matrix can be 

described as (Crank, 1975): 

2
2

g gcC CD r
t r r r

∂ ∂ ∂
= −  ∂ ∂ ∂ 

    2.3 

where, Cg (fraction) is the gas concentration, Dc (m2/s) is the diffusion coefficient, t 

(s) is the time of gas molecule diffusion, and r (m) is the radial distance from the 

centre of a particle.  
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2.2.2 Darcy Flow 

Following diffusion, when desorbed gas reaches the cleat system, gas migration 

starts to be dominated by the permeability of cleats and fractures. The driving force 

for this flow regime is pressure gradient, and in this case Darcy’s law can be applied. 

For incompressible laminar flow through homogenous porous media along x 

direction, Darcy’s law can be simplified as: 

( )x f x
kA PQ g

x
ρ

µ
∂

= − −
∂

    2.4 

where, Qx (m3/s) is the mass flow rate along x direction, k (m2) is the absolute 

permeability, A (m2) is the cross sectional area, µ (Pa·s) is the fluid viscosity, ρf 

(kg/m3) is the fluid density, gx (m/s2) is the gravitational acceleration component in x 

direction, and P (Pa) is the pressure at cleats/fractures. 

Gas slippage may be important in narrow passages, especially under low pressure 

conditions. This phenomenon, known as the Klinkenberg effect, can increase 

effective permeability of gas linearly with the reciprocal pressure. 

(1 )c
Sk k
P∞= +     2.5 

where, kc (m2) is the corrected permeability due to Klinkenberg effect, k∞ (m2) is the 

permeability at high pressure, S (dimensionless) is the slippage factor.  

Using Darcy’s law, the general time-dependent equation for a perfect gas flowing 

through a porous media can be described as (Ediz, 1991): 

21 ˆ( )
2

P k P
t µφ

∂
= ∇ ⋅ ∇

∂
    2.6 

where, k̂  (m2) is a tensor indicating anisotropic permeability, and φ  (fraction) is the 

porosity of the porous media.  

2.2.3 Sorption Kinetics  

Sorption time indirectly provides a hint about the magnitude of diffusion coefficient. 

Airey (1968) conducted an experimental and theoretical investigation on gas 

emissions from broken coal. He measured the rate of methane released at different 
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pressures, and proposed an empirical equation for the volume of gas emissions (V(t), 

m3) in terms of time: 

max
0

( ) 1 exp ( ) tntV t V
t

   = − −  
   

   2.7 

where, t0 (s) is a time constant which is defined as the time taken for 63.2% of the 

total methane to be released from coal, Vmax (m3) is the maximum volume of gas to 

be released from coal, and nt (dimensionless) is a time index depending on coal rank 

and degree of cleating.  

Sorption-kinetic characteristic Sτ (s) has been suggested as a reliable parameter to 

assess gas desorption behaviour and quantify the risk of outbursts in the disturbed 

areas of a coal seam. The value of Sτ  is largely dependent on the degree of 

geological disturbance, i.e. the amount and distribution of the macropores and 

fractures in test samples (Barker Read and Radchenko, 1989). Ettinger et al. (1986) 

proposed Equation 2.8 to estimate Sτ as: 

2

060 1 exp ( )
60

tn

S
tt

−−   = − −     
   2.8 

where, t0 and nt are the same as that defined in Equation 2.7. 

2.3 Stress, Strain and Failure 

Coal as a rock material follows the fundamentals of rock mechanics. The in-suit 

stress conditions on coal are determined by burial depth, geology, and tectonic 

history. As a nine-component tensor, stress at one point can be expressed in the form 

of maximum ( 1σ , Pa), intermediate ( 2σ , Pa), and minimum ( 3σ , Pa) principal 

stresses. For shallow coal seams where the burial depth is less than 500 m, the 

maximum principal stress is normally the vertical stress ( Vσ , Pa) and a result of 

gravitational force induced by the overlying rock layers, which can be determined as 

(Harrison and Hudson, 2000):  

1 V ghσ σ ρ= =     2.9 

where, ρ (kg/m3) is the mean density of rock layers, g (m/s2) is the gravitational 

acceleration, and h (m) is the burial depth from the surface.  
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The horizontal stresses, which include intermediate stress 2σ ( Hσ , Pa) and minimum 

stress 3σ  ( hσ , Pa), are induced by the confining force to constrain the tendency of 

rock body to expand by the effect of vertical compressing force. This is referred to as 

the Poisson effect and the two horizontal stresses are seen as a function of the 

vertical stress and Poisson’s ratio (υ , dimensionless).  

2,3 , 1 1H h V ghυ υσ σ σ ρ
υ υ

= = =
− −

       2.10 

Stress regimes at deep coal seams are rather complex and cannot be simply estimated 

by burial depth. The maximum principal stress may be no longer in the vertical 

direction but in the horizontal direction since tectonic stresses, which are generally 

horizontal and uniform over large areas, start to play a dominant role. In this case, in-

situ stress measurements are necessary to provide sufficient information to guide the 

design of underground workings.  

The existence of fluid within coal pore-structures acts isotropically as a normal 

stress. Based on Terzaghi’s theory (Equation 2.11), effective stress ( eσ , Pa) imposed 

on coal structure can be described as the difference between the total stress (σ , Pa) 

and pore pressure (P, Pa). In Equation 2.11, α  (fraction) is the Biot coefficient and 

normally taken as unit for rock (Jaeger et al., 2007). 

e Pσ σ α= −      2.11 

Strain is a measure of rock deformation to stress changes. It can be divided into 

elastic strain and plastic strain depending on whether rock will return to its initial 

shape after applied stress is removed. Figure 2.8 depicts the complete stress-strain 

curve under triaxial compression. The Young’s modulus is defined to describe the 

ability of rock to resist stress changes in elastic deformation. For triaxial conditions, 

the increase of confining stress can significantly increase the peak strength of a 

specimen and shift the post-failure behaviour of the specimen from brittle to ductile 

(Harrison and Hudson, 2000).  

19 | 2 0 2  



Chapter 2 Coal as a Reservoir Rock 

 
Figure 2.8:  Complete stress-strain curves during tri-axial compression tests (after Harrison and 

Hudson, 2000). 

A classical form of a stress-strain relationship can be found in Equation 2.12, where 

ijε (dimensionless) is the elastic strain, E (Pa) is the Young’s modulus, G (Pa) is the 

shear modulus, I1 ( 1 1 2 3I σ σ σ= + + , Pa) is the first invariant of stress tensor, and ijδ  

is the Kronecker delta. 

12
ij

ij ijI
G E

σ υε δ= −     2.12 

Rock failure is an inevitable part of coal mining activities, which suggests the 

degrading of the capability of rock to withstand loading. Unlike in most of the civil 

engineering practices, which aim at avoiding failure as much as possible, mining 

engineering requires accommodating and making the best use of failed (fractured) 

rock. As rock has natural flaws, with a lot of defects called micro-cracks, failure can 

occur under both compression and tension, being represented by extending and 

coalescing micro-cracks into macroscopic fractures.  

The Mohr-Coulomb failure criterion, which is defined by a group of shear failure 

envelopes, has been widely used to analyse whether shear failure on a plane is to be 

initiated by comparing shear stress (τ , Pa) with normal stress ( nσ , Pa) acting on it, 

as described in Equation 2.13:  

tannct σ θ= +     2.13 

where, c (Pa) is the cohesion indicating the shear strength of rock when the normal 

stress is zero and θ is the internal friction angle (Jaeger et al., 2007). 
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Since Mohr-Coulomb failure criterion is developed for shear failure induced by 

compression, a tensile cut-off (T0, Pa) is introduced to quantify whether applied 

tensile stress can cause failure. In order to generate a tensile failure, the applied 

tensile stress ( tσ , Pa) needs to be: 

0t Tσ >      2.14 

After the yielding point, elastic strain is almost negligible compared with plastic 

strain, which can be estimated by Levy-Mises equations:  

p
ij

ij

d
d

S
ε

λ=      2.15 

where, 
ij

pε  (dimensionless) is the plastic strain, Sij (Pa) is the deviatoric stress and 

1

3ij ij
IS σ= − , and λ  is a scalar plastic multiplier determined from the yield criteria 

by ensuring the stress-state lies on the yield surface during plastic flow (Khan, 1995). 

2.4 Coal Permeability  

Permeability is the measure describing the ability for fluid to flow through porous 

media, and it is probably the most important parameter that needs to be considered 

for gas flow in coal seams. In-situ permeability is influenced by a variety of factors, 

including the characteristics of cleats, water saturation, and in-situ stress conditions. 

Furthermore, mining induced stress changes and fractures may significantly alter 

initial permeability fields. Therefore, it is difficult to determine the initial 

permeability from laboratory experiments without reproducing the in-situ stress 

conditions and considering the size effect of test samples. In reservoir engineering, 

in-situ permeability is normally estimated by history matching well production data 

and performing pressure transient tests such as slug test, injection falloff test, and 

pressure build-up test. 

2.4.1 Absolute Permeability and Relative Permeability 

The absolute permeability of coal is reported to have considerable diversity in 

various coal basins throughout the world. But, in general, as the in-situ stress 

increases with depth, deeper coal seams tend to have lower permeability values. 

More than one order of magnitude reduction (from 10-13 to 10-14 m2) in permeability 
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was observed when the depth of coal seams varied from 30 m to 300 m at San Juan 

Basin in the US (McKee et al., 1988). As Darcy flow takes place in coal cleats, the 

absolute permeability of fluid passing through a serious of parallel cleats can be 

related to the cleat aperture and spacing using a cubic law as described by Snow 

(1968). Since cleats are expected to be initially occupied by water, gas transport in 

coal involves two-phase flow. The presence of water can significantly hinder gas 

transport. The effective permeability for gas (kg, m2) increases rapidly with the 

reducing of water saturation, which is normally described by gas-water relative 

permeability curves (see Figure 2.9 for example). 

g rgk k k= ⋅      2.16 

Effective permeability for water (kw, m2):  

(1 )w rw rgk k k k k= ⋅ = ⋅ −     2.17 

where, k (m2) is the absolute permeability, krg (fraction) is the relative permeability to 

gas, and krw (fraction) is the relative permeability to water.  

 
        (a) Schwalbach coal sample from Germany      (b) Warndt-Luisenthal coal sample from Germany 

 
 (c) Dora coal sample from France            (d) Tupton coal sample from the UK 
Figure 2.9:  Examples of relative permeability curves for selected Europen coals (after Ahsan, 2006 

and Durucan et al., 2014). 
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Due to the friable and brittle nature of coals, the measurement of coal relative 

permeability is more challenging compared with reservoir rocks such as sandstone. 

Most of the early work to determine the gas-water permeability behaviour is given 

by Reznik et al. (1974). Later, Gash (1991) conducted both steady state and unsteady 

state experiments to measure relative permeability curves in coal under the context of 

coalbed methane production. Using the unsteady state method, Ahsan (2006) 

measured gas-water relative permeability curves for seven European coals of 

different ranks. He noticed that the shapes of relative permeability curves vary 

considerably for different rank coals (Figure 2.9).  

2.4.2 Stress Dependent Permeability 

Numerous investigators have shown the effects of stress on the permeability of coal 

measure rocks and coals (Patching, 1965; Mordecai, 1971; Somerton et al., 1975; 

Durucan, 1981). The earliest study into the effects of confining stress on coal 

permeability was carried out by Patching (1965). More than three orders of 

magnitude decrease in permeability was observed by him when confining pressure 

was raised from 0.07 to 20.7 MPa. Mordecai conducted an extensive research on 

stress dependent permeability of carboniferous strata rocks for the first time from the 

viewpoint of mining engineering. He suggested that the application of confining 

stress first closed up permeable channels and, as confining stress increased, 

permeability decreased gradually (Mordecai, 1971). However, he also found that a 

sufficiently high deviatoric stress could result in the opening up of fractures and 

contribute to the propagation of flow channels which would significantly increase the 

permeability of coal measure rocks.  

An in-depth investigation on stress dependent permeability of different ranks of coal 

was presented by Durucan (1981). He proposed the following empirical stress-

permeability relationship after extensive laboratory tests on different coals:  

3 3(1.12 0.03 )
3 0(1.12 0.03 ) Ck k e σ σσ − −= − ⋅       2.18 

where, k (m2) is the permeability at the confining stress 3σ (MPa), k0 (m2) is the 

initial permeability, and C (MPa-1) is the permeability compressibility factor 

depending on coal rank. The permeability compressibility factor C for a number of 
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UK coals has been reported to be in the range of 0.38 to 0.73, which is believed to 

correlate with coal Volatile Matter content as shown in Figure 2.10 (Durucan, 1981). 

 
Figure 2.10: Compressibility factor plotted against percentage volatiles for UK coals (after Durucan, 

1981). 

 
(a) Tupton coal sample 

 
(b) Schwalbach coal sample 

Figure 2.11: Stress and permeability versus axial strain (after Ahsan, 2006).  
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Based on the assumption of bundled matchsticks geometry for coal structure, the 

mathematical derivation of stress-dependent permeability in cleats was given by 

Seidle et al. (1992): 

3
0

cCk k e σ− ∆=      2.19 

where, k0 (m2) is the initial permeability, Cc (MPa-1) is the cleat compressibility and 

σ∆  (MPa) is the stress change in the direction perpendicular to k.  

Ahsan (2006) conducted multistage triaxial tests to further investigate permeability 

response of different coal samples to stress under different confining stresses. An 

exponential reduction in permeability was observed as the confining stress increased 

if the sample remained intact (Figure 2.11 a). On the other hand, a sharp increase in 

permeability was observed once failure was initiated in a tested coal sample (Figure 

2.11 b). 

2.5 Summary 

The maturation process of coal over long geologic times can evolve large volumes of 

gas as well as micropores for gas storage. Gas storage in coal is controlled by the 

sorption mechanism, which enables a considerable amount of gas to be retained in 

coal seams provided by the well-developed pore structure. Gas flow in coal can be 

divided into two stages: diffusional flow and Darcy flow. The former controls gas 

migration from matrix to cleats while the latter dominates gas flow in cleats and 

fractures. 

Like any other type of rock, coal follows the fundamentals of rock mechanics. 

Elastic strain and plastic strain are used to define recoverable and unrecoverable 

deformation of coal to stress changes, respectively. Three types of fractures induced 

by different failure mechanisms are introduced. The most common shear failure 

criterion and tensile failure criterion are also presented. Stress changes of samples 

under loading can be reflected by P-wave and S-wave velocity changes. The failure 

process of coal is reported to be associated with detectable geophysical signals such 

as microseismic emissions. 

Permeability is recognised as the key parameter that controls gas transport in coal 

seams. The permeability of porous media is believed to be highly stress-dependent. 
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An exponential relationship between permeability and stress changes has been 

constantly observed by laboratory experiments as well being observed in the field.   

The fundamental characteristics of coal introduced in this chapter will be helpful to 

understand the mechanism of gas release and migration induced by mining activities. 

Next chapter will expand the literature review into the engineering application of 

longwall mining, LTCC, and associated gas emission phenomena.  
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Chapter 3 Previous Research on Gas Emissions in 
Longwall Coal Mining 

3.1 Introduction 

The basic principles of longwall coal mining operations, including longwall top coal 

caving, are introduced at the beginning of this chapter. Previous investigations into 

geomechanics and gas dynamics around mechanised single-slice longwall panels are 

reviewed. In comparison, literature on gas emissions in longwall top coal caving 

(LTCC) panels is relatively rare. Next, coal and gas outburst as a special case of 

excessive gas emissions is introduced, followed by the review of gas emission 

control techniques. Knowledge gaps in these subjects are also identified.  

3.2 Longwall Coal Mining Layouts 

Longwall mining gained wide application all over the world due to its advantages of 

high productivity and high resource recovery. Conventional mechanised longwall 

mining operations progressively extract a panel of coal in a single slice with the 

thickness of up to 4.0 - 4.5 m. A longwall panel, which is typically 250~400 m wide 

and 2~3 km long, is normally outlined by pre-developed gateroads or entries (Figure 

3.1). The height of a longwall panel is mostly restricted by the thickness of a coal 

seam.  

Coal is cut by a shearer under hydraulic shields, which also ensure the safety of 

miners at a working face. Coal extraction process is continuous and affects an 
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3.2.1 Longwall Top Coal Caving 

Being developed to exploit relatively thinner seams separated by coal measure rocks, 

longwall mining cannot easily recover thick seams (~> 4.5 m) without a 

modification. A simpler approach, referred to as multi-level or sublevel mining, 

provides an option to extract thick seams without improving coal production. This 

approach divides an entire coal deposit into several levels with an appropriate 

thickness that mechanised single-slice longwall mining can be adopted to. Roof 

control is sometimes problematic in the mining of lower levels since they are 

operated just under the previously mined goaf.  

As a derivative to mechanised single-slice longwall panel (referred to as 

conventional mechanised longwall panel in this thesis), longwall top coal caving 

(LTCC) has been developed to extract thick seams of up to 20 m in a much more 

productive and efficient manner. The most distinct difference between conventional 

mechanised longwall mining and LTCC is that a caving stage of top coal is 

performed apart from the normal coal cutting process. As shown in Figure 3.2, the 

whole height of the extracted coal can be divided into the lower part and the upper 

part. In a mechanised LTCC panel, the lower section of the coal seam is cut by a 

shearer supported by the hydraulic shields, while the upper section of the mined 

seam is allowed to cave by gravity and be collected at the face. Therefore, a LTCC 

panel generally yields a much higher productivity and is more efficient in 

comparison to a mechanised single-slice longwall panel. However, the greater 

productivity achieved by LTCC mining may further exacerbate the gas emission 

problems often faced in longwall mining, and thus poses a serious challenge for 

underground gas emission control.  

 
Figure 3.2: Schematic of longwall top coal caving with two AFCs (after Mining.com, 2014). 
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The application of LTCC may be slightly different depending on the how the caved 

top coal is collected. The normal practice in China and Australia is that the caving 

process occurs at the back of shields, which requires an additional armoured face 

conveyor (AFC) at the rear of shields (Figure 3.2). This may also need a special 

design of shields to protect both the front and rear conveyors.  

A key debate about the feasibility of LTCC is the recovery ratio of top coal, which is 

highly dependent on the strength of coal and the flow pattern of coal particles. Small 

fragments with low friction between each other are desirable to maintain an efficient 

coal flow. Since strong coal is difficult to fracture into small fragments and large 

coal blocks will not favour LTCC production, LTCC is preferred to be applied in the 

mining of low strength and brittle coals. In addition, to increase the fragmentation of 

coal ahead of a LTCC face and improve the recovery ratio of top coal, techniques 

such as pre-blasting, hydraulic fracturing, and vibration are frequently used (Unver 

and Yasitli, 2006; Xie and Zhao, 2009).  

3.3 Geomechanics and Gas Flow in Conventional Mechanised 
Longwall Faces 

3.3.1 Gas Release Mechanism During Longwall Coal Extraction  

As discussed in Section 2.1.3, since coal serves as a source and storage rock for gas, 

its extraction process is inevitably associated with gas release and migration. Being 

extensively fractured and exposed to ventilation pressure, coal extracted by a shearer 

loses a high proportion of its in-situ gas in a relatively short time, which can be a 

direct source of longwall gas emission.  

Furthermore, coal extraction at a longwall face can disturb surrounding coal seams 

and stimulate gas desorption. A longwall at near atmospheric pressure can be viewed 

as a ‘horizontal well’. Significant pressure drawdown can be expected around the 

low pressure sink created by the face, the gateroads and parts of the goaf area. 

Driven by the declining pore pressure, the originally adsorbed gas starts to desorb 

from the surrounding coal seams and migrate towards the low pressure sink. This gas 

migration provides the remaining share of total gas emissions at a longwall face. 

The progressive advance of a longwall face and the response of surrounding strata to 

mining disturbances are a continuous and dynamic process. This suggests that, with 
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the advance of a longwall face, the pressure sink and mining disturbed zone moves 

and extends simultaneously with the face. Consequently, gas will be continuously 

emitted from newly disturbed coal along with face the advance. Therefore, the 

amount of gas that is released during longwall mining is highly dependent on coal 

production rate and how much surrounding coal is being disturbed.  

3.3.2 Stress Distribution around Conventional Mechanised Longwall Faces 

Stress regimes around a longwall coal face evolve with progressive face advance. 

During the process of coal extraction, the initial stress equilibrium breaks down and 

readjusts to establish a new equilibrium, which has zones with both increased and 

reduced stress regimes. The increased stress zone, also referred to as the abutment 

stress zone, normally occurs ahead of a face-line and its magnitude is related to 

mining height and in-situ stress conditions (Whittaker, 1974). A vertical stress 

profile along the direction of face advance at the mining horizon is plotted in Figure 

3.3, where the stress distribution around a face is depicted.   

In response to coal extraction, three distinct zones in the overlying strata can be 

identified according to the degree of rock deformation and fracturing, namely the 

caved zone, the fractured zone and the continuous deformation zone (Peng and 

Chiang, 1984; Hasenfus et al., 1988; Whittaker and Reddish, 1989; Yavuz, 2004). 

After coal extraction, the overlying roof layers break into irregular shapes and 

various sizes, fall down, and backfill the space created by previous mining. This 

highly fractured zone is called the caved zone. Above the caved zone is the fractured 

zone which is defined by rock blocks, vertical fractures and horizontal fractures 

caused by bedding layer separations. From the top of the fractured zone to the 

surface is called the continuous deformation zone, in which major fractures hardly 

propagate. In addition, the stress state of the underlying strata is also affected, though 

to a lesser degree and extent, by longwall mining. 
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Figure 3.3: Longitudinal section of an advancing longwall coal face: strata stress and permeability 

behaviour around longwall workings (complied after Whittaker, 1974 and McPherson, 
1975). 

Through field drilling tests, Palchik (2002; 2003) concluded that the height of the 

caved zone might reach 4.1~11.25 times the height of extracted coal; and the 

fractured zone might vary greatly from 19 to 92 times the thickness of the mined 

seams. The development of the fractured zone is highly dependent on the properties 

of overlying strata. Kelly et al. (2002) conducted an assessment to study the longwall 

stress and near-face fractures in Australian coal mines using integrated tools, which 

include microseismic monitoring, numerical stress and deformation modelling, and 

underground piezometer and extensometer monitoring. They suggested that the 

complex strata stresses induced by mining required a multi-path programme to gain 

as much information as possible from different approaches. Unfortunately, 

integrating various measurement sources to achieve a comprehensive understanding 

about mining problems has been rarely attempted.   

3.3.3 Permeability Distribution around Conventional Mechanised Longwall 
Faces 

Recognising the impact of stress on coal permeability, McPherson (1975) was one of 

the early researchers who considered dynamic changes in permeability of worked 

seam in responses to longwall coal extraction (Figure 3.3). As shown in Figure 3.3, 
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the coal in the front abutment zone is tri-axially compressed. Although micro-

fractures can be generated in this zone, permeability may not experience an increase 

as the high confining stress. In the fractured zone, the vertical stress reaches a peak, 

whereas the horizontal stress presents a dramatic reduction as the confinement on the 

coal is removed due to production at coal faces. Thus, this high deviatoric stress 

opens the micro-fractures and contributes to the enhancement of permeability. The 

stress in the stress relief zone is relatively complex and low in magnitude, fractures 

are well propagated and connected, and the adjacent rocks are much more stable than 

the previous two zones. All of these factors considerably further increase 

permeability in the stress relief zone. In the recompaction zone, stress starts to 

recover to in-situ stress gradually, and the permeability of fractured rocks starts to 

decrease but still higher than the in-situ value.  

 
(a)                                                                            (b) 

Figure 3.4: (a) Numerically simulated maximum and minimum principal stresses, and (b) mean stress 
and permeability profiles around a 500m deep longwall face (after Durucan, 1981). 
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Figure 3.5: Different permeability zones and suggested flow paths of methane around an advancing 

longwall face (after Durucan, 1981). 

Later, based on his laboratory investigations into stress-permeability relationship of 

coals and numerical modelling of stresses around working longwall faces, Durucan 

(1981) derived models for permeability distribution and associated gas flow around 

an advancing longwall coal face (see Figure 3.4). He suggested that coal seams 

within 100 m above and 50 m below the coal seam being-mined are the main gas 

sources after stress relief and permeability increase. Based on these observations, 

Durucan (1981) proposed a gas emission zone and flow paths for gas migration as 

illustrated in Figure 3.5 above. 

3.3.4 Theory of Gas Emission around Conventional Mechanised Longwall 
Faces 

The early approaches to predicting gas emissions around working longwall panels in 

Europe were mostly empirical and adopted the same basic principle of degree of gas 

emission function (Curl, 1978). Research carried out by the Mining Research and 

Development Establishment (MRDE) in the UK during the 1970’s and 80’s 

developed a methane prediction method which was unique in Europe, such that time 

dependent behaviour of gas emission was introduced to the predictions. The method 

is based on Airey’s theory of gas emission from broken coal, which was later 

extended to include fractured or fragmented coal seams around a working longwall 
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face (Airey 1968; 1971). The rate of gas release from the coal blocks was assumed 

be determined entirely by the emission characteristics of the broken coal, represented 

by a variable time constant t1 (s) defined as a function of distance from the face 

(Airey, 1971) as,  









=

o
o x

xtt exp1 , 0≥x     3.1 

where x (m) represents the distance ahead of the position of the maximum stress 

(front abutment), xo (m) is a distance constant and to (s) is the minimum time 

constant in hours, which occurs at and behind the front abutment position. Therefore, 

smaller the value of t1, larger the gas emission rate from the relatively smaller blocks 

of coal nearer to the working coal face.  From a subsequent theoretical work in rock 

mechanics, Airey used the ratio of principal stresses σ1/σ3 as a criterion for coal 

failure around a longwall face and assumed that surfaces of equal σ1/σ3 would be 

coincident with the surfaces of equal t1 (MRDE, 1980), thus providing the theoretical 

basis to his degree of gas emission surfaces. Using analytical solutions for the 

stresses around a coal face given by Berry and Sales (1967), Airey then computed 

the distribution of time constants around a coal face, and hence the degree of gas 

emission from sources seams in the roof and floor as a function of distance from the 

face line. As well as accounting for the emission from the roof and floor source 

seams, Airey proposed gas emission curves for the seam being mined, based on the 

weekly advance rate, and the coal being transported out of the district on the 

conveyor in order to calculate the total gas volume entering the longwall district. 

These methods were progressively fine-tuned using extensive field observations. 

Airey’s theory and the accuracy of his degree of gas emission curves were validated 

through field measurements of gas quantities and residual gas contents of coal seams 

at a large number of UK collieries. Based on these validation studies carried out over 

a period several years the gas emission curves were modified to eliminate the 

observed over- and underestimates and produced the British Coal Firedamp 

Prediction Method as it is known today.   

Later, another function (Equation 3.2) to link gas emissions with coal production in 

high productive longwall faces was proposed by Lunarzewski (1998). Where q (m3/t) 

is the gas emission rate, CP (t/day) is the coal production per day, and a and b are 
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empirical coefficients related to coal production levels and the number of working 

days per week. 

q a CP b= +      3.2 

By considering gassy coal seams in both floor and roof, total amount of gas emission 

per tonne of mined coal into a seam being-mined (Q, m3/t) can be estimated by 

(Lunarzewski, 1998):  

f f f r r r
m

GC DC TA GC DC TAQ Q
TM TM

× × × ×
= + +∑ ∑   3.3 

where, Qm (m3/t) is the volume of gas release from the coal seam being-mined with 

respect to per tonne extraction, GC (m3/t) is the gas content in the floor (f) and roof 

(r) coals, DC (fraction) is the degassing coefficient for (f) and (r), TA (m) is the 

thickness of the gassy strata in (f) and (r), and TM (m) is the thickness of the coal 

seam being-mined. 

Karacan and Goodman (2011) developed a probabilistic approach to define gas 

emission zones in specific sites. Gas flow percentage, gas content, and displacement 

as a function of distance from a mined seam were determined by deriving bivariate 

normal distributions from a series of borehole experiments.   

An interesting attempt at using an artificial neural network (ANN)-based 

methodology to predict gas emissions in ventilation airflow from longwall faces was 

achieved by Karacan (2008). By establishing a database including ventilation 

emission data, coalbed properties, geographical information, and longwall operation 

parameters in a wide range of coal mines in the US, ANN models gave high accuracy 

in predicting gas emissions in the ventilation systems of US longwall faces. Later, by 

employing this ANN model together with other statistical and mathematical 

predication approaches (Karacan, 2009a, b, c), a software suite (Methane Control 

and Prediction) was developed to predict gas emissions from longwall faces 

(Dougherty and Karacan, 2011). However, these methodologies cannot reflect the 

actual physics involved in the gas emission process and require a database pool for 

model training. 
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3.3.5 Modelling of Longwall Geomechanics and Associated Gas Emissions   

Researchers at Nottingham University have contributed greatly to the early-stage 

development of gas flow modelling around longwall faces (Keen, 1977; 

O'Shaughnessy, 1980; Ediz, 1991). Keen (1977) was the first to develop transient 

solutions for methane flow in longwall mining using the finite difference method. 

Later, O'Shaughnessy (1980) used finite element method instead to investigate gas 

flow around a longwall workings. Their models were only suitable for single-

porosity media and the time-dependent gas transport from micropores to macropores 

was not considered. Ediz (1991) further developed a finite element approach, which 

could account for the time-dependent behaviour of desorption and diffusion for 

methane flow simulation in longwall faces. However, in most of these early studies, 

the mechanical impact of coal extraction on gas flow was neglected or over 

simplified.  

It is widely recognised that coupled simulation is necessary in order to capture the 

interactive physics between mining geomechanics and gas flow (Ren and Edwards, 

2000; Esterhuizen and Karacan, 2005; Whittles et al. 2006; Guo et al., 2012). Four 

types of coupling methods are available and listed according to the level of coupling 

tightness as follows: pseudo coupling, one-way coupling, two-way coupling, and full 

coupling. In pseudo coupling, geomechanical responses have been incorporated into 

a fluid simulator through empirical relationships, analytical functions or simple 

lookup tables (Beattie et al., 1991). One-way coupling only transfers coupling 

information from one simulator to another and no feedback is considered (Minkoff et 

al., 1999). Two-way coupling is an upgraded version of one-way coupling, whereby 

geomechanical equations and fluid flow equations are solved separately and 

sequentially in different simulators. Solutions are iteratively exchanged between 

different simulators in two-way coupling (Longuemare et al., 2002; Tran et al., 2005; 

Gu and Chalaturnyk, 2010). Full coupling, which has internal consistency for solving 

geomechanical and flow equations simultaneously, may provide the most accurate 

solutions, but it is also the most complex method and requires the largest 

computational time (Osorio et al., 1998; Chin et al., 2000). Since one-way and two-

way coupling can benefit from the latest developments in both geomechanical 

simulators and fluid simulators, they have gained the most popularity in solving 

problems that require coupled modelling. 
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boundary problem and restart models were run sequentially representing different 

mining steps and corresponding strata responses.  

Guo et al. (2012) presented a comprehensive study regarding stress changes, 

fractures, and gas flow patterns in the mining of multi-seams separated by coal 

measure rocks. To understand the effect of mining on surrounding rock and gas flow, 

displacements at overburden strata, stress and pressure changes were monitored at a 

study panel in Huainan Coal Mine Group, China. Numerical modelling was 

conducted with an in-house code to obtain a full-scale understanding about the 

mining-induced stress changes and corresponding permeability responses. 

Permeability distribution was later used as the input for gas migration modelling in a 

CFD code. From this one-way coupling approach, the authors found that there is a 

three-dimensional annular-shaped overlying zone along the perimeter of the longwall 

panel (Figure 3.7:), which can be used to maximise gas drainage performance.  

 
Figure 3.7: Three-dimensional zone of optimum gas drainage in the overburden strata of a 

conventional mechanised longwall panel (after Guo et al., 2012). 

Although significant improvements have been made in modelling gas flow around 

longwall coal faces by applying a one-way coupled approach, this coupling 

methodology does not provide feedback from the output of the flow simulator back 

to the geomechanical simulator to update the pore pressure distribution for 

computing the changes in the effective stresses. On the other hand, experience in 

coalbed methane industry suggests that two-way coupled modelling between 

geomechanics and fluid flow can improve the model predictions significantly (Shi 

and Durucan, 2005; Connell, 2009; Gu and Chalaturnyk, 2010).  It is believed that, 
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in the case of coal mine methane flow predictions, this missing link may incorrectly 

estimate the dynamic permeability, especially where significant changes in the pore 

pressure are expected in the fractured zone around a producing longwall face.  

3.4 Previous Research into Longwall Top Coal Caving in Thick 
Seam Mining 

Although extensive research has been carried out on gas emissions from longwall 

panels operated in relatively thin coal seams, only a relatively few studies have been 

reported on multi-level or LTCC operations. The gas emission hazards, together with 

spontaneous combustion and top-coal recovery, are referred to as the top three 

challenges that impede LTCC production (Wang et al., 2014).  

The distinctly different mining layouts and processes of LTCC generate different 

responses of strata stresses and gas dynamics in thick seams. Abutment stress ahead 

of a LTCC face is reported to be able to cover a larger area with a higher peak than 

conventional mechanised longwall faces (Xie et al., 2011). This means that LTCC 

mining disturbance can propagate into a larger area with acute permeability changes. 

Given that an LTCC face is normally operated under mostly or completely coal 

surroundings, a larger mining disturbance area may result in more coal contributing 

to gas emissions at the face. In addition, the increased coal production brings about 

the issue of heightened gas emissions released by extracting or caving coal at a 

LTCC face. Therefore, LTCC is expected to further exacerbate the gas emission 

problems often faced in longwall mining.  

Cheng et al. (2003) reported that, compared with the conventional mechanised 

longwall mining, using LTCC had significantly increased gas emission rate in 

Yangquan Coal Group in China. They believed that over 90% of gas emissions were 

from the overlying adjacent strata. They also introduced the method of developing 

high-level strike or mid-level drainage roadways above or below the panels to reduce 

LTCC gas emissions. Later, the application of this method at a LTCC panel with 

increased width was reported by Xu et al. (2007). Although this method was reported 

to be able to maintain gas emissions below the statutory limits, the development of 

extra roadways in rock would significantly increase production costs.  
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Yasitli and Unver (2005) developed an approach to numerically reproduce the 

process of LTCC. The finite difference code FLAC3D was applied into simulate 

LTCC operation at the Ömerler underground coal mine in Turkey. They suggested 

that uniformly fractured top coal could decrease dilution and increase recovery ratio. 

Later, they applied this modelling approach to study the strata movement induced by 

LTCC in thick seam coal mining (Unver and Yasitli, 2006). In addition, pre-fracture 

blasting as a method to generate uniform fractures was numerically assessed in their 

studies.   

Through numerical and experimental studies, Xie et al. (2006) found that there was a 

stress shell arching between the virgin coal ahead of the face and goaf rubbles behind 

the face. This stress shell acted as a primary support, bearing and diverting the loads 

of the overlying strata. The authors also stated that since LTCC faces operated under 

the protection of this stress shell, stress loads on the shields of LTCC faces were 

generally lower than conventional mechanised longwall faces, which was also 

consistent with their field observations. 

Xie and Zhao (2009) applied the discrete element method to model the caving 

process of LTCC. In order to improve the recovery rate, a novel technique was 

introduced, whereby vibration devices on the beams of shields were employed. The 

performance of this technique was numerically assessed by a 2D model. It has been 

found that the employment of vibration devices can effectively break the arching 

structure which is formed in LTCC and generate a uniform size of fractured top coal.  

Based on the analysis of in-situ geological, geometrical and geotechnical conditions, 

Alehossein and Poulsen (2010) proposed a yield and cavability criterion to assess the 

productivity of a LTCC face. Similarly, a cavability assessment system was 

developed by Vakili and Hebblewhite (2010), and major parameters that can affect 

the cavability of a LTCC were also discussed.  

In particular, the top coal caving process at Coal Mine Velenje was analysed by 

Likar et al. (2006) through laboratory physical, analytical and numerical models. A 

3D numerical model was developed based on the actual geological condition at the 

mine. It was found that, if the height of extracted coal by a shearer is 4 m, the height 

of caving coal can range from 6 to 8 m. Through compression tests on crushed clay 

and coal, Jeromel et al. (2010) suggested that the mixture of clay and coal material at 

41 | 2 0 2  



Chapter 3 Previous Research on Gas Emissions in Longwall Coal Mining 

goaf could reach 98% of its maximum deformation immediately after reloading. 

Stress distribution around a LTCC face was simulated using the geomechanical code 

FLAC3D, and have shown that the results compared reasonably well with stress 

monitoring data from the face (Jeromel et al., 2010). More recently, dynamic stress 

response of the coal seam to coal production at different levels of the coal seam was 

monitored and compared with the numerical modelling results (Likar et al., 2012). 

Compared with conventional mechanised longwall mining, the fracturing and de-

stressing of the floor coal during the extraction of a multi-level LTCC face may be 

more critical in evaluating its gas emission behaviour. Therefore, the stress and gas 

pressure regimes resulting from previous coal extraction in the upper levels of a 

multi-level LTCC operation need to be understood well. Furthermore, potential 

cavities and coal left in the upper levels of a multi-level operation may act as an 

additional gas emission source during top coal caving stage of a LTCC face.  

3.5 Uncontrolled Gas Emissions/Gas Outbursts 

3.5.1 Definition and Background 

Gas outbursts, which are also referred to as uncontrolled gas emissions, pose a 

serious threat to the safety of underground coal mining throughout the world. As the 

understanding of the structural conditions and mechanisms leading to gas outbursts 

improve, more effective preventative measures are being developed and 

implemented. However, gas outbursts in coal mining still occur in both thin and thick 

seam mining. 

Since the first documented coal and gas outburst occurred in the Issac Colliery in 

France (1843), as many as 30,000 outbursts have occurred in the world coal mining 

industry (Lama and Bodziony, 1998). An outburst can be defined as spontaneous and 

violent ejection of gas from a solid coal surface. Depending on the seam gas 

composition, the ejected gas can sometimes be a mixture of methane and carbon 

dioxide, and normally one component predominates (Beamish and Crosdale, 1998).  

For some powerful outbursts, the ejection of gas is normally accompanied by a 

considerable volume of failed coal. During the process of an outburst, a sudden state 

change of the rock-coal-gas system from static to dynamic occurs along with the 

release of a significant volume of gas over the duration (Choi and Wold, 2004b). It 

has been reported that the ejected coal and released gas can be as much as several 
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hundred tonnes and thousand cubic meters in some catastrophic outbursts (Lama and 

Bodziony, 1998). 

Farmer and Pooley (1967) suggested that outbursts only occur in districts subject to 

severe tectonic movement, hence their association in many places with depositional 

structures such as folds, faults, rolls and slips and in particular with rapid fluctuations 

in the seam thickness. Hargraves and Upfold (1985) have also concluded that 

microstructurally altered coal will lead to higher outburst tendency. Thresholds of 9 

m3/tonne for CH4 and 6 m3/tonne for CO2 have been used in the Sydney Basin, 

Australia, to indicate outburst prone conditions (Beamish and Crosdale, 1998). In 

China, 10 m3/tonne methane is used as the outburst threshold and the gas contents in 

the mines experiencing outbursts are higher than 10 m3/ton, and generally range from 

15 to 25 m3/tonne coal (Cao et al., 2001).   

It is suggested that outburst-prone coal exhibits low permeability. Lama and 

Bodziony (1998) found that coal seams with in situ permeability >5 mD are not 

liable to outburst. Other studies (Hargraves, 1993; Shepherd, 1995) have concluded 

that stress is an additional contributing factor to outbursts. Kidybinski (1980) took 

into consideration the gas content and flow, stress, and coal failure to explain his 

theory of gas outbursts. Williams and Weissmann (1995) referred to the outbursts 

frequently encountered Australian conditions and stated that ‘‘the most important 

parameter is gas desorption rate, in conjunction with the gas pressure gradient ahead 

of the face”. 

Over last 150 years of research on outbursts, two main theories, the gas pocket 

theory and the dynamic theory, have been proposed and evolved based on countless 

field observations and gradually established knowledge (Shepherd et al., 1981; 

Singh, 1984; Lu et al., 2011). As suggested by Choi and Wold (2001), the initiation 

of an outburst may be either dominated by geological factors or mining induced 

factors. In the gas pocket theory, outbursts are assumed to be dominated by 

geological structures. These geological structures are denoted by a large amount of 

soft or crushed coal, sometimes even coal powder, with high gas content enclosed by 

less fractured and low permeability coal. When mine openings advance close enough 

to this type of geological structure, this is considered to be a potential risk of 

outburst. An outburst induced by a gas pocket in Pingdingshan Coal field, China, is 
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illustrated in Figure 3.8. A more detailed explanation on such structures will be 

presented in Chapter 7. 

 
Figure 3.8: Illustration of an outburst induced by the gas pocket structure in Pingdingshan Coal field, 

China (after Li, 2001).  

Compared with the gas pocket theory, mining effects overtake the importance of 

geological structures in the dynamic theory. The importance of mining-induced 

fractures adjacent to advancing faces has been emphasised: gas originally adsorbed 

in either solid or crushed coal can be rapidly released during mining-induced 

intensive failure. For example, as documented in the UK, the difficulties in fracturing 

relatively less permeable or impermeable floor strata might result in gas 

accumulation beneath the mining level and subsequent rapid release after fractures 

reoccurred at these strata (Shepherd et al., 1981).  

3.5.2 Modelling of Gas Outbursts  

Due to the difficulties in accessing first-hand field data of the initiation and 

development of an outburst, replicating the evolution of an outburst numerically may 

be the best approach to understand this violent mining hazard. Paterson (1986) first 

developed an outburst model to explain field observations associated with outbursts 

in which gas flow, stress, and failure in coal seams were simulated. His modelling 

results suggested that an outburst is the structural failure of coal triggered by gas 

pressure gradients. To prevent outbursts, gas pressure gradient in advance of mine 

openings should be maintained below a certain threshold by degasification 

techniques. 

On the basis of a series of research projects investigating gas outbursts carried out by 

CSIRO in Australia, coupled geomechanical-fluid models with the ability of 

modelling dual-porosity coal and multi-component gas flow have been developed to 
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study outburst initiation (Choi and Wold, 2001). Stress-dependent permeability, large 

strain deformation, and gas and water two-phase flow in coal can also be considered 

by that model. Later on, in their upgraded models, the post-initiation of outbursts, 

including coal fragmentation and particle flow was incorporated (Choi and Wold, 

2004a, b). The importance of coal strength was emphasised: the increase of coal 

strength can reduce the size of fragments that will be ejected and an outburst can be 

subdued if the coal strength is high enough. 

Xu et al. (2006) developed a coupled gas flow and solid deformation numerical 

model to simulate the evolution of fractures in coal during an outburst. Four stages of 

an outburst are characterised in their models, which are stress concentration, 

coal/rock fracturing and splitting, crack propagation, and the ejection of coal (see 

Figure 3.9). The authors believed that in-situ stress, gas pressure, and the properties 

of coal and rock are the primary factors that contribute to the occurrence of coal and 

gas outbursts.  

 
Figure 3.9: Simulation results of an instantaneous coal and gas outburst induced by the creation of a 

mine opening (after Xu et al., 2006). 

Using an integrated field, laboratory and numerical modelling approach, Wold et al. 

(2008) described the potential of applying stochastic coal strength and permeability 

data into outburst risk assessments. Reservoir heterogeneities including permeability, 
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stress, and coal strength were repeatedly measured from both field and laboratory to 

obtain sufficient data for statistical descriptions of these properties. These statistical 

descriptions were formulated to generate realisations for outburst risk analysis and 

assessment. This provides a new approach for outburst risk assessment, but also 

requires abundant field work to generate reliable and robust statistical distributions.  

By linking and sequentially executing a geomechanical stress analysis code FLAC3D 

and a reservoir simulator COMET3, Xue et al. (2011) developed a coupling 

approach to model the initiation of an outburst. A simple two dimensional roadway 

development model was used to test the capability of the coupling approach. Since 

the FLAC3D code is based on continuum media, coal fracturing and fragmentation 

was not considered in the model.  

The abovementioned outburst modelling techniques have set very good examples of 

numerically reproducing the process of an outburst, including its initiation and post-

initiation. However, most of these investigations focused on the development of 

modelling techniques, and only a few of them applied outburst modelling to actual 

geological settings and explained outburst cases that took place. Although the gas 

pocket theory and dynamic theory have been widely documented in most coal 

producing countries (Farmer and Pooley, 1967; Shepherd et al., 1981; Singh, 1984; 

Guan et al., 2009), outburst models tailored to reproduce these two most common 

outburst patterns are surprisingly rare. 

In addition, stress evolution induced by mining activities, such as face advance or 

roadway development, as the trigger of an outburst was not simulated or over-

simplified in previous studies. Furthermore, the criterion of quantifying an outburst 

element has not been clearly defined in these studies.  

3.6 Gas Emission Control Techniques  

3.6.1 Stress Relief Mining  

One of the precautions used in outburst protection is “Stress Relief Mining” or 

“Protective Mining”. This method emphasises utilising redistributed stress and 

fracture fields induced by mining. A less gassy seam referred to as the “Protection 

Seam” is mined super or sub adjacent to a gassy coal seam called the “Protected 

Seam”. The principal aim of protective mining is to release the gas trapped at high 
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pressure protected seams by reducing the stress distributed on them. As the 

protection seam is mined, open fractures and enhanced permeability allow gas to be 

released from the protected seam (Figure 3.10).  

 
Figure 3.10: Schematic of protective mining applied in multi-seams. 

Ideally, gas emissions from protected seams can be diluted and transported by the 

ventilation system in the protection seam. However, in order to capture and utilise 

coal seam gas, gas drainage in conjunction with stress relief mining may be a better 

solution. Boreholes can be drilled into the de-stressed areas with enhanced 

permeability and desorbed gas, where gas drainage performance can be maximised.  

3.6.2 Gas Drainage through Underground Boreholes   

Gas drainage through underground boreholes is an essential part to tackle high gas 

emissions from coal seams disturbed by mining when ventilation cannot maintain 

gas levels within statutory limits. Two types of underground boreholes, horizontal 

boreholes and inclined boreholes are normally used to capture as much gas as 

possible before it migrates into ventilation airways. In the mining of thin seams, 

horizontal boreholes are normally known as inseam boreholes to capture gas 

emissions from the seams being-mined and inclined boreholes, also referred to as 

cross-measure boreholes, are used to capture gas emissions from adjacent seams 

(Figure 3.11). Since thick seams are the main subject of this thesis, the terminology 

‘horizontal’ and ‘inclined’ are used instead of ‘inseam’ and ‘cross-measure’ in order 

to avoid confusion. 
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Figure 3.11: Various gas drainage techniques used for the extraction of coal seam gas.  

Horizontal boreholes drilled into the intact coal of mined seams are normally used to 

reduce in-situ gas content prior to mining activities. The applicability of this method, 

however, is highly dependent on the natural permeability of coal seams. Measures 

such as hydraulic fracturing or blasting can be used to increase in-situ coal 

permeability (Lu et al., 2011), but with largely increased working load and cost. 

Note that horizontal boreholes may also be stimulated by the approaching longwall 

faces but for a relatively short period before they are intercepted. Although this 

period of gas drainage during mining is short, it is important for low permeability 

seams as well as in the cases that pre-mining drainage has limited duration (Karacan 

et al., 2007a).  

Inclined boreholes have a big advantage over horizontal boreholes as they can 

produce for a longer period and utilise mining-induced permeability enhancement 

zones without being intercepted. Same as in stress relief mining, adjacent coal seams 

are expected to experience significant increase in permeability, which can stimulate 

gas drainage performance in inclined boreholes.  

Although utilising mining-induced permeability enhancement zones to increase gas 

drainage performance has been practised in many coal mines, their application was 

mostly based on engineering experience. Furthermore, in thick or ultra-thick seam 

mining, this technique has seldom been trialled.  
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3.6.3 Numerical Modelling of Gas Drainage Techniques 

Borehole gas drainage as the most cost-effective approach to control underground 

gas emissions has been an important area of research for decades. As this technique 

shares many common features with reservoir engineering in the coalbed methane 

industry, literature from this industry can also be referred to and learnt from. The 

transient behaviour of water and gas flow through dual-porosity coal seams into a 

vertical well was mathematically and numerically described by King et al. (1986). 

Remner et al. (1986) conducted a parametric study to investigate the effects of coal 

seam properties on gas drainage efficiency. Parameters including absolute 

permeability, sorption time, relative permeability curves, and well spacing were 

numerically assessed. Later, a numerical approach to simulate gas drainage from coal 

seams was proposed by Spencer et al. (1987) in which the dual-porosity 

characteristic of coal, gas desorption process, and pressure dependent porosity and 

permeability were considered. Ertekin et al. (1988) investigated the production 

performance of horizontal drainage wells for the degasification of coal seams by 

developing a two-phase coal seam degasification model. Although the primary 

motivation of these investigations were recovering and utilising methane from coal 

seams, and not the safety considerations, experience from these studies can be 

transferred to mining engineering. 

The most significant difference between gas drainage in coal mining and reservoir 

engineering is the presence of dramatic stress changes induced by mining activities. 

Stress changes and associated fracturing of coal and the coal measure rocks may 

largely alter in-situ permeability, which may consequently have a significant impact 

on gas drainage performance. On the basis of established coupling approaches of 

geomechanics and fluid flow simulators, drainage functions can be simply modified 

and added in. Ren and Edwards (2002) incorporated their pseudo coupling approach 

with vertical well modelling to help the design of gas recovery wells in the goaf area 

of a longwall face. By coupling a geomechanical simulator and a reservoir simulator, 

Karacan et al. (2007b) assessed the performance of goaf wells in the Pittsburgh coal 

field and the impact of completion practices on optimising goaf gas production. Gas 

drainage performance from inseam horizontal boreholes with different borehole 

patterns, borehole lengths, and leading times were also evaluated by the same 
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coupling approach (Karacan et al., 2007a). A screenshot of the model developed by 

Karacan et al. (2007a) is shown in Figure 3.12.  

 
Figure 3.12: Gas drainage modelling with horizontal boreholes and goaf wells (after Karacan et al., 

2007a). 

Compared with horizontal boreholes and goaf wells, investigations regarding 

inclined boreholes are relatively limited. Whittles et al. (2007) developed a 

numerical model to predict the stability of gas drainage boreholes during the 

extraction of a longwall panel. The model was used to optimise roadway support 

systems and spacing between boreholes to achieve effective drainage. No gas flow 

modelling was carried out in that model.  

In conclusion, it is clear from the literature that there is scope for further research on 

the performance of in-seam (both horizontal and floor) drainage boreholes placed in 

the zone affected by face advance during mining, particularly with respect to their 

application in the mining of thick and low permeability coal seams.  

3.7 Summary  

Continuous longwall extraction results in dynamic stress changes around 

underground openings. Recognising that coal seams are both the source and storage 

reservoirs for gases, the extraction of coal is inevitably associated with considerable 

gas emissions, and a potential hazard for mining operations. The migration of gases 

in the strata is driven by the pressure gradient created between the coal seams and 

near atmospheric pressure ventilation air stream, and largely dependent on 
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permeability distribution around mine openings. Being sensitive to stress changes, 

permeability of coal and coal measure rocks near mine openings also change as 

mining progresses. A comprehensive understanding about stress changes, pressure 

regimes, and permeability responses around mine openings is necessary for the 

control of gas emissions induced by mining activities. 

In thin seam mining, mining geomechanics and gas flow around mechanised 

conventional longwall panels are well understood after years of investigation. 

Hypotheses on stress and permeability redistributions around progressively 

advancing longwall faces are proposed and verified by extensive field observations. 

On the other hand, knowledge on stress, gas pressure and flow patterns around 

LTCC panels is relatively poor.  

The phenomenon of uncontrolled gas emissions (or outbursts) as one of the most 

destructive mining hazards also requires research in thick and ultra-thick seam coal 

mining. An outburst is believed to be induced by the combined effect of mining 

stresses, coal/rock failure, and gas pressure gradient under certain geological 

conditions. A number of theories have been proposed to describe the mechanism of 

outburst occurrences and, among them, the gas pocket theory and the dynamic theory 

are the most accepted. The former emphasises the importance of geological 

structures while the latter places more weight on mining process as the precursor for 

an outbursts. Stress relief mining and gas drainage methods are normally applied in 

order to reduce in-situ gas content and the risk of outbursts. However, the use of 

geophysical techniques to help predict or warn against gas outbursts is yet to be 

explored. 

One of the main objectives of this PhD research is to establish a thorough 

understanding of changes in stress, pressure regimes, and gas emission patterns 

around advancing LTCC faces. To achieve this, a suite of field measurements were 

carried out to capture geomechanical as well as fluid responses of a seam mined by 

LTCC at a coal mine. The next chapter will present a detailed description of these 

field measurements and data analysis at the study mine.  
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Chapter 4 Characterisation of Gas Dynamics around 
Longwall Top Coal Caving Panels 

4.1 Introduction  

This chapter describes field research carried out in order to establish a preliminary 

understanding of gas dynamics around an advancing LTCC face. A number of 

underground boreholes have been drilled and instrumented to monitor gas pressure 

and gas composition changes with respect to LTCC face advance at Coal Mine 

Velenje, the case study coal mine used in this research. Ventilation environment 

monitoring was also conducted to identify gas emission patterns induced by the 

LTCC production at the same panels. An integrated analysis of all the monitoring 

results has been carried out and a conceptual model for gas emission around multi-

level LTCC panels has been developed. The data and experience gained through 

these analyses will be utilised in the numerical modelling work described in Chapter 

6. Note that the teams at Coal Mine Velenje and Imperial College worked closely to 

design these experiments, which were performed by the mine. The author was mostly 

involved in the data analysis and interpretation of the results. 

4.2 An Introduction to Coal Mine Velenje, Slovenia 

4.2.1 Geology and Coal Lithotypes 

Coal Mine Velenje, which is located in the North of Slovenia, has over one hundred 

forty years of mining history. The coal basin lies in a synclinal valley, which extends 
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between the Šoštanj and Smrekovec faults (Figure 4.1). The Pliocene coal seam is 

overlain by a layer of clay and sand, which are followed by several younger rock 

layers. The sequence was caused by the subsidence of the area between faults and the 

simultaneous backfilling of continuous alluvial deposits (sand, silt, and marl). Figure 

4.1 presents the main geological structure of the coal seam and surrounding rocks.  

 
Figure 4.1: A plan view of the main geological structures of Velenje basin (after Brezigar, 1985/86). 

Coal Mine Velenje currently mines a lens-shaped deposit, which is 165 m thick at 

the centre and pinches out towards the margins (Figure 4.2) (Markič and 

Sachsenhofer, 2010). The coal seam extends to a length of 8.3 km in the WNW-ESE 

direction and has a width between 1.5 and 2.5 km. The bedding planes are nearly 

horizontal or slightly inclined. Approximately four million tonnes of coal are 

currently produced per year from LTCC panels capable of yielding on average 8,000 

tonnes of coal per day per panel. 

 
Figure 4.2: Schematic SW–NE trending geological cross-section of the Velenje coalfield (after Markič 

and Sachsenhofer, 2010). 
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(a)  Detrite (D) fine lignite typically crushed and cracked 

due to drying 

 
(b)  Xylo-detrite (xD) composed of xylitic pieces smaller 

than the half of the core diameter 

 
(c)  detro-xylite (dX) composed of xylitic pieces larger 

than the half of the core diameter within the fine 
detrital matrix 

 
(d)  Xylite (X) as xylitic pieces larger than the core 

diameter 

Figure 4.3: Lithotype components of the Velenje lignite as visible in horizontally drilled borehole 
cores (after Markič and Sachsenhofer, 2010). 

The Velenje coal is a type of lignite, with varying abundance in xylite, fusinite, and 

mineral matter. Its matrix is fine-detrital, dark brownish in colour. Petrographic 

heterogeneity is further shown by different sizes, shapes, and orientations of xylitic 

fragments and by different degrees of gelification, which affects more severely the 

fine-detrital matrix. Figure 4.3 shows the lithotype components of the Velenje lignite 

as observed in borehole cores. The macerals and/or microlithotypes of the Velenje 

lignite are typical for the soft brown coals or lignites (Markič and Sachsenhofer, 

2010). 

Core samples taken from exploration boreholes suggested that the percentage of 

xylite and detrite might vary a lot even within a single borehole. It is worth noting 

that, depending on the ratio of xylite to detrite and the shape and spatial distribution 

of xylitic components, the Velenje lignite possesses different rock mechanical and 

reservoir properties with respect to gas content, sorption characteristics, permeability 

etc. This suggests that the coal deposit at Coal Mine Velenje is highly heterogeneous.  

In terms of geomechanical strength, detrite is easily fractured once it loses moisture, 

and its unconfined compressive strength may range from 6 to 9 MPa. On the 
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contrary, the xylite component in Velenje lignite shows a strong wooden structure 

and its unconfined compressive strength can be as much as twice of that for detrite. It 

may be expected that fracturing is more likely to be initiated preferentially and more 

intensively in a detrite-rich area than a xylite-rich area. Furthermore, it has also been 

established that the P-wave velocities measured in xylitic samples were up to 1.5 

times that of detritic samples (Figure 4.4).  

 
Figure 4.4: P-wave velocity for different coal lithotype at Coal Mine Velenje (lab measurement results 

provided to Coal Mine Velenje by the Graz University of Technology). 

4.2.2 Velenje Mining Method 

The so called “Velnje Mining Method” practised at Coal Mine Velenje in Slovenia is 

a combination of multi-level mining and longwall top coal caving, as illustrated in 

Figure 4.5. From the top to the bottom, the entire coal deposit is divided into a series 

of mining levels ranging from 10 to 20 m thick, mined in time-sequence with at least 

six months between the mining of each underlying longwall panel. At each level, the 

lower part of the seam (3 - 4 metres high) is cut by a shearer under the hydraulic 

supports while the upper section (7 - 17 metres) is allowed to cave.   

Unlike most LTCC applications where the caved top coal is loaded from behind the 

hydraulic supports, the top coal is caved and recovered in front of the supports at 

Coal Mine Velenje. This is achieved by the use of shield supports with an extending 

canopy which allows up to 4 m face advance, through several cuts at the face, before 

the extending arm is collapsed and the top coal is caved. The caved coal is then 

cleared and transported by further cuts and advance of the longwall face. If the top 

coal to be caved is more than 10 m thick, or if the coal at the face is unstable, the 

length of face advance before top coal caving is less than 4 m. Through the 
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implementation and continuous improvement of the technique at Coal Mine Velenje 

over the last several decades, the Velenje Mining Method has now been recognised 

worldwide as a standard mining method suitable for the exploitation of thick/ultra-

thick coal seams (Unver and Yasitli, 2006). A more detailed account of the Velenje 

Mining Method can be found in Likar et al. (2012). 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                            (b) 

Figure 4.5:(a) Schematic of the multi-level longwall top coal caving mining method implemented at 
the ultra-thick coal deposit of Coal Mine Velenje (after Jeromel et al., 2010), the yellow 
arrows indicate top coal caving direction; (b) schematic of the multi-level longwall layout. 

Longwall and shaft monitoring data from the Velenje mine suggests that the coal 

mine emits 20 to 30 million m3 methane and a similar volume of CO2 to the 

atmosphere in its ventilation air each year.  Due to the difficult mining conditions 

experienced and the application of novel thick seam mining methods it has so far not 

been possible to implement a gas drainage system at the mine. 

4.2.3 Seam Gas Composition  

Seam gas at Velenje is a mixture of CO2 and CH4. As reported by the mine, the gas 

mixture in coal varies from 98% CO2 - 2% CH4 to 0% CO2 - 100% CH4 throughout 

the mine. The distribution, composition and the origin of mine gases at Velenje 

Basin have been studied extensively and reported in detail by Lazar et al. (2014), 

however, CH4 and/or CO2 sorption characteristics, in situ gas pressure and content, 

U
pp

er
 c

av
in

g 
se

ct
io

n
Lo

w
er

 
ex

ca
va

tio
n 

se
ct

io
n

2n
d

Le
ve

l

1s
t
Le

ve
l

Shearer
Chain conveyorSupport

56 | 2 0 2  



Chapter 4 Characterisation of Gas Dynamics around LTCC Panels 

and permeability of the Velenje coals have not been well established until very 

recently.  

Previous laboratory studies carried out on samples of different lithotypes of lignite 

from Velenje report significant differences in some reservoir properties of different 

lithotypes, especially in porosity and pore surface area. For example, pore surface 

area of homogenous fine detrital lignite was measured as > 180 m2/g, whereas that of 

xylite was “only” 35 m2/g (Zapušek and Hoćevar 1998), indicating that detrite can 

adsorb much more gas than xylite.  

The predominant component in underground gas emissions at Coal Mine Velenje is 

CO2, rather than CH4.  CO2 released from coal during mining depends on petrological 

characteristics of coal and production method/type at different levels and stages of 

mining. Likar (1995) quotes a CO2 specific emission rate of 26 m3/tonne of coal 

mined for Velenje. As normal practice, the mine measures gas composition in 

development headings as well as the coal seam using samples taken from 3m long 

boreholes during roadway and face development and monitors CO2 and CH4 content 

in the sample (%), Carbon Isotope (δ13 C) in CH4 and CO2. The gas composition in 

the lignite is used to calculate the so called Carbon Dioxide and Methane Index 

(CDMI), which is: 

2

2 4

100%COCDMI
CO CH

= ×
+

           4.1 

Therefore, the higher the CDMI, the higher the CO2 content of the coal seam in that 

region. As shown in Figure 4.6, the CDMI for coal varies throughout the deposit 

depending on seam height, geology, lithology, floor strata, and tectonic influences. 

Here, light blue shaded areas represent areas with lower CH4 content (or higher CO2 

content) in coal.  

Langmuir isotherms measured at Imperial College showed that, at a pore pressure of 

2 MPa (Figure 4.7), around three times more CO2 can be adsorbed by Velenje lignite 

compared to CH4. The corresponding Langmuir parameters for the tested coal 

sample shown in Figure 4.7 are listed in Table 4.1. 
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Figure 4.6: The CDMI index for the two longwall districts at Coal Mine Velenje (Courtesy of Coal 

Mine Velenje researchers). 

 
Figure 4.7: Pure gas adsorption isotherms for Velenje lignite. 

Table 4.1: Langmuir parameters for pure gas adsorption on Velenje lignite 

Gas Langmuir parameters 
Pressure  (MPa) Volume (m3/t) 

Methane 7.5 25 
Carbon dioxide 4.7 50 

 

Here, VL is the Langmuir Volume, which represents the maximum volume of gas that 

can be adsorbed by a given coal at reference temperature and PL is the Langmuir 

Pressure, corresponding to the pressure at which 50% of the gas represented by the 

Langmuir Volume is adsorbed. 
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4.3 In-situ Gas Pressure and Composition Monitoring and 
Analysis 

In-seam boreholes were used as the most effective and direct method to investigate 

the changing pressure regimes at longwall panels throughout this study. In order to 

capture the impact of multi-level longwall top coal caving mining on gas pressure 

behaviour, a large number of boreholes were drilled in to panels operated at different 

mining levels within the coal seam. In addition, gas sampling boreholes were drilled 

adjacent to the pressure monitoring boreholes in order to analyse the composition of 

seam gas in the same location.  

The gas pressure and composition monitoring is carried out in two stages: a) initial 

borehole stabilisation and b) impact of face dynamics. The first stage measurements 

were designed to establish the initial conditions at the study panel, which is 

independent of the face movement and normally involves a long period of 

pressure/gas composition stabilisation. The second stage covers the period of face 

advance towards the monitoring boreholes, so that the dynamic effects of face 

advance on gas pressure and composition can be investigated. 

The boreholes used to measure gas pressure and composition changes were designed 

and implemented by the engineers at Coal Mine Velenje. A detailed description of 

the designs of these boreholes can be found in Appendix 1. 

4.3.1 Gas Dynamics Monitoring around Longwall Panel K.-50/C 

The LTCC panel K.-50/C was the first field site used for integrated analysis of the 

effect of face advance on gas dynamics around the mining panels. As depicted in 

Figure 4.8, the LTCC panel K.-50/C was unique that it is partly overlain by an intact 

clay roof and partly by the goaf created by the previous level of coal extraction.  

   
Figure 4.8: A cross-section of K.-50/C LTCC panel at Coal Mine Velenje. 
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Coal excavation at panel K.-50/C started in November 2010 and ended in October 

2011. The average daily face advance and coal production were 2.9 m and 7,930 

tonnes respectively.  

 
Figure 4.9: Gas pressure response to longwall face advance at panel K.-50/C. 

Figure 4.9 presents the seam gas pressure response to longwall face advance in 

borehole JPK34, which was 25 m long, drilled into panel K.-50/C at +2o from the 

horizontal. As this borehole was drilled long after the district development and start 

of longwall production, it only recorded the gradual pressure decline period and 

failed to establish the in-situ seam gas pressure in this panel. The pressure 

monitoring data show that, as the face approaches the borehole location, the seam 

gas pressure is reduced by nearly 0.15 MPa until the face is approximately 70 m 

from the borehole. From then on, the seam gas pressure shows a significant increase 

until the face is 40 m away from the borehole, which is followed by a rapid pressure 

decline due to extensive fracturing ahead of the coal face. 

 
(a) Short borehole V2 (at 0o to the horizontal plane)      (b) Long borehole JPK 33 (at +30o to the horizontal plane) 

Figure 4.10: Seam gas composition changes in monitoring boreholes as the longwall face K.-50/C 
approaches. Both boreholes were drilled and monitored during December 2010 – April 
2011 in parallel with borehole JPK34. 
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As illustrated in Figure 4.10, in-seam gas composition in the boreholes remained 

largely unchanged until the face was around 100 to 70 m from the boreholes. After 

that, the gas mixture became increasingly enriched in CH4 until the face was 

approximately 40 m from the boreholes, at which point this trend was reversed and 

CO2 concentration started to increase. 

4.3.2 Monitoring and Analysis of Gas Pressure Dynamics at Different Mining 
Levels 

Following on from the first stage in-seam gas pressure and concentration 

measurements at panel K.-50/C a systematic monitoring of gas dynamics around 

working LTCC panels was carried out over the next three years period. Table 4.2 

summaries the gas pressure monitoring results from six roof boreholes drilled into 

LTCC panels in five different mining levels of the coal seam at Coal Mine Velenje 

(see Figure 4.11). Unfortunately, the mine did not have any longwall panels 

operating in third or fourth levels during the research period. Longwall panels K.-

65/A, K.-65/B, K.-65/C, and K.-65/E were neighbouring panels operated at same 

elevation but with different previous mining histories and original coal thickness 

above. The longwall K.-5/A was operated at a higher elevation but excavated the 

lowermost section of the coal seam in the same area of the coalfield). 

 

Table 4.2: In-situ gas pressure data for different mining levels. 

Mining 
level Borehole  LTCC 

panel 

Height of 
previously mined 
coal above the 

panel (m) 

Time to 
pressure 

stabilisation 
(day) 

Stabilised 
pressure (MPa) 

First JPK 69 K.-65/E 0 129 ~2.00* (1.70) 
Second JPK 74 K.-65/C 20 84 1.03 
Fifth JPK 65 K.-65/B 75 76 0.55 
Sixth JPK 47 K.-65/A 90 84 0.70 
Seventh JPK 39 K.-5/A 75 80 0.68 
Seventh JPK 40 K.-5/A 75 - 0.80 

*After borehole completion, pressure build-up in borehole JPK 69 took more than four months before being 
affected by the consolidation of the roof/goaf in the recently completed LTCC panel close to the borehole. 
Later on, the borehole pressure stabilised at 1.70 MPa. As a result, the initial gas pressure stabilisation was not 
fully achieved in this borehole.   

 While all other boreholes were drilled in-seam at the mining level borehole JPK 40 was drilled at +60o in to the 
roof (goaf) area of LTCC panel K.-5/A.  
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Figure 4.11: Mining layout illustrating the LTCC panels used for monitoring gas pressure and 

concentration during coal production at different mining levels in Coal Mine Velenje 
(after Si et al., 2015a). 

In-seam gas pressure measurements have shown that the gas pressures in the first 

mining level were the highest, at over 2 MPa (Figure 4.12). From then on, and due to 

over-mining, seam gas pressure dropped significantly when coal extraction moved 

down to the lower levels (Table 4.2). Progressive reduction in gas pressure with 

depth of mining also resulted in reduced rates of gas emission in lower mining levels. 

Figure 4.13 presents the measured seam gas pressure data against distance from the 

face line in borehole JPK 69 as the LTCC face approaches the monitoring site. Note 

that only the pressure gauge readings were available during 12 April 2013 to 29 

October 2013, after which the data communication cables were extended to the panel 

and real-time data collected. During mining, the seam gas pressure was largely stable 

until the face moved within approximately 53 m of the borehole. After that point, the 

pressure readings were erratic and, once the distance to the face line reached 40 m, a 

dramatic pressure reduction was observed. 
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Figure 4.12: Gas pressure build-up at the first mining level borehole JPK69 at panel K.-65/E.  

 
Figure 4.13: The effect of face advance on gas pressure at the first mining level (panel K.-65/E). 

Daily average gas pressures recorded at three in-seam boreholes (JPK39, JPK47, and 

JPK65) which were located at lower level mining panels are plotted against distance 

to the face-line position in Figure 4.14. As can be seen, seam gas pressure responses 

to face advance varied from borehole to borehole but with a general reduction trend 

as the face approached the boreholes.  

For borehole JPK39, gas pressure started to decrease when the face was 200 m away 

from the borehole, and it declined gradually to atmospheric pressure when the 

distance reduced to 70 m. A nearly 0.2 MPa reduction in pressure was observed in 

borehole JPK47 when the face advanced from 200 m to 100 m away from the 

borehole. Then a dramatic pressure drop from 0.5 MPa to atmospheric pressure was 

observed when the face was 100 m away from the borehole.  
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Figure 4.14: The effect of face advance on in-seam gas pressure in lower mining levels. 

A period of pressure drop and re-stabilisation was occasionally observed in 

boreholes JPK65 and JPK47. A notable pressure drop was first recorded in JPK 65 

when the face was around 100 m away. After that, the pressure stabilised at 0.3 MPa 

and dropped to atmospheric pressure when the face reached a point less than 10 m 

away from the borehole. 

In addition to the three in-seam boreholes referred to above, a +60˚ inclined borehole 

JPK 40, located at K.-5/A panel, was drilled into the mined out roof (goaf) area of 

the panel to improve the understanding of gas pressure regimes at previous mined 

levels and its responses to face advance. The measured gas pressure in the goaf was 

surprisingly high (over 0.8 MPa) and increased slightly until the face was within 

approximately 40 m away from the borehole. After that, gas pressure dropped 

sharply as the face approached the borehole. Atmospheric pressure was recorded 

when the face was 17.3 m away from the borehole.  

Figure 4.15 shows the gas composition monitored in a 25 m long borehole drilled 

into a first level panel (K.-65/E) against the distance between the borehole and the 

face-line. The ratio of CH4 to CO2 was maintained around 7:3 until the face was 

approximately 55 m away from the borehole. A slight increase of CH4 concentration 

was recorded when the face was 49 m from the borehole. As the face approached 

closer, CO2 concentration increased dramatically and became the dominant 

component.  
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Figure 4.15: Seam gas composition changes in the gas concentration monitoring borehole JPK 70 as 

the first mining level longwall face K.-65/E approaches the borehole, which was drilled 
at +10° to the horizontal and monitored from 3 October 2013 to 4 December 2013. 

 
Figure 4.16: Seam gas composition changes in the 25 m long gas concentration monitoring borehole 

JPK 52 as the sixth mining level longwall face K.-65/A approaches the borehole, which 
was drilled at +10° to the horizontal and monitored from 4 June 2012 to 5 July 2012. 

As illustrated in Figure 4.16, the gas composition behaviour at a lower level panel 

(K.-65/A) is significantly different to that observed in a first mining level panel. 

Here, CO2 was recorded as the primary gas component. The share of CO2 increased 

slightly when the face approached to less than 40 m away from the borehole.  

4.4 Ventilation Environment Monitoring at Longwall Panel K.-
50/C 

Besides borehole gas dynamics measurements, mine environmental monitoring at 

return gateroads, which records gas concentration and ventilation quantity, is 
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performed as normal practice at the mine. A representative period of face advance 

and gas data for the LTCC panel K.-50/C have been selected and plotted in Figure 

4.17, in which an episode of increased gas emission was recorded as well as gas 

emissions during a two-week holiday period. CO2 concentration in the emitted gas 

and daily face advance rate are also cross-plotted in this figure.  

 
Figure 4.17: Emitted gas flow rate, CO2 concentration in the emitted gas, and daily face advance rate 

at K.-50/C (from 23rd May to 28th August 2011). 

Figure 4.17 suggests that gas emission pattern follows the coal production schedule 

at the mine closely, significantly reduced in the absence of mining activities at 

weekends. Furthermore, it is clear that, larger the daily face advance rate, the higher 

the gas emission. The peak rates of gas emissions were normally observed on 

Thursdays or Fridays. A marked increase (by over 20%) in gas emission rate was 

observed at around 14-15 July 2011 and production at the face was interrupted. The 

subsequent sharp reduction in gas emission was due to a two-week summer holiday 

at the mine. The gas flow rate recovered to its normal levels with the resumption of 

coal production. 

Note that gas flow rates during weekends were almost identical, which have 

stabilised at around 50 m3/min. This amount of gas, which provides a ‘baseline’ for 

gas emissions in this panel, is not a direct result of coal production activities, but due 

to gas migration around the coal face. Therefore, the total gas emission at this LTCC 
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panel can be represented by two components: 1) the baseline gas emission, 

representing the period when no coal is produced, which is around 50 m3/min and 2) 

the dynamic emission, representing the period during coal extraction, which is 

normally 30 to 40 m3/min higher than the baseline emission and directly caused by 

the coal production at the K.-50/C panel.  

As can be seen in Figure 4.17, CO2 accounts for 70 - 80% of the total gas emitted 

during coal production. An interesting observation is that CO2 concentration in the 

emitted gas followed the same trend as the gas flow rate, which increased during 

production days and decreased at weekends. This correlation will be further 

discussed by the modelling results in Section 6.5.4. In addition, the ratio of CO2 to 

CH4 in the emitted gas was almost consistent with the gas sorption capacity of CO2 

and CH4 indicated by the Langmuir isotherms measured as well as the final gas 

compositions measured from boreholes. 

4.5 Discussions  

4.5.1 Pressure Relief and Gas Composition Changes as a Result of Multi-
Level Longwall Top Coal Caving Extraction 

The effect of coal extraction in the upper mining levels of an ultra-thick seam LTCC 

on the gas pressure regimes of the lower mining levels can be clearly seen in Table 

4.2. It is clear that a pressure relief zone is established in the floor coal during multi-

level mining. 

 

  
Figure 4.18:  A conceptual illustration of pressure relief zones induced by multi-level LTCC mining 

(not to scale). 

As illustrated in Figure 4.18, after coal extraction in the first mining level, a fractured 

and a de-stressed zone with reduced gas pressure occur at lower mining levels. The 
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fractured zone may have a uniform and largely reduced pressure due to the creation 

of high permeability fractures. While the enhanced permeability induced by stress 

relief in the de-stressed zone is most likely to result in a reduced gas pressure 

gradient in the region. Coal extraction in the second mining level can turn the 

previously de-stressed zone into a new fractured zone and, compared with the 

previous fractured zone, a further gas pressure reduction can be expected in there. In 

addition, the original undisturbed zone may be affected by the second level coal 

extraction and start releasing its gas. After that, coal extraction in the third mining 

level may cause the previous de-stressed zone and undisturbed zone to be replaced 

by a new fractured zone and a de-stressed zone. This process would continue as 

mining extends to the lowermost levels of the coal seam. 

The reduction of gas pressure in the lower mining levels also results in an upwards 

migration of gas and gases emitted from the lower levels of unmined coal would be 

accumulated in the goaf area. This goaf gas may be a potential source of gas 

emission during the mining of the next level. 

Borehole gas concentration data suggest that the initial free gas at the first level 

panels is predominantly CH4. After pressure relief induced by mining in the upper 

levels, CO2 becomes the primary gas component of the free gas in lower level panels. 

This is consistent with the knowledge that coal has a higher adsorption affinity to 

CO2 than CH4, and CO2 is much more strongly held in the coal matrix than CH4 and 

will not be released unless the seam gas pressure is reduced significantly.  

In addition, the long period of pressure build-up observed at the first mining level 

borehole JPK69 in LTCC panel K.-65/E, Figure 4.12 suggests that the in-situ 

permeability of Velenje lignite is extremely low and unfavourable for the pre-

drainage of in-seam gas. However, pressure and stress relief caused by mining in the 

upper levels may help gas drainage from the roof (goaf) areas and the fractured floor 

coal in lower levels.  

4.5.2 A Conceptual Model for Gas Emissions in Multi-Level Longwall Top 
Coal Caving Mining of Ultra-Thick Coal Seams 

Based on the analysis of the borehole gas pressure and composition data presented 

above, a conceptual model has been developed to describe the response of the ultra-

thick seam to multi-level LTCC mining at Coal Mine Velenje. Since the first mining 
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level panels may have a distinct gas pressure and composition behaviour as 

compared to the lower level panels, LTCC faces operated at the first and second 

mining levels are presented in Figure 4.19 (a) and (b), where the second mining level 

is used to generalise the gas pressure regime experienced in lower mining levels. 

Given the relatively low gas pressure and CO2 dominated initial gas composition at 

LTCC panel K.-50/C, the borehole gas pressure and concentration data from this 

panel were attributed to lower mining level panels.  

   
(a)                                                                                 (b) 

Figure 4.19: A conceptual model for gas emission zones of a LTCC panel in the (a) first mining level 
and (b) the second and lower mining levels at Coal Mine Velenje. 

As depicted in these two figures, the region of a LTCC panel ahead of the advancing 

face may be divided into three zones, characterised by distinctive gas pressure and 

composition behaviour that reflects the response of the panel to LTCC mining at a 

progressively reduced distance to the face:   

− Farfield abutment zone  

The farfield abutment zone in the first mining level is believed to be over 50 m 

away from the face line. The most common observation made in this zone is the 

stabilised gas pressure and steady gas composition throughout the production 

period. The increase in the mining abutment stress is not large enough to cause a 

notable change in either gas pressure or composition. It can be concluded that, for 

intact coal, gas composition in the released free gas is around 70% CH4 and 30% 

CO2, and the in-situ gas pressure is at least 2.00 MPa.  

In the case of lower mining levels, this zone extends from 70 to 200 m from the 

face line. The initial low gas pressure and CO2-dominated gas composition 

69 | 2 0 2  



Chapter 4 Characterisation of Gas Dynamics around LTCC Panels 

suggest that these levels have already been largely disturbed by previous mining 

and the coal seam may not be intact anymore. A minor mining disturbance may 

rearrange pressure regimes around the LTCC panels. Different degrees of 

fracturing may result in the difference in the timing and extent of pressure drop in 

the seam as observed across the lower mining level boreholes (see Figure 4.14). 

It is worth noting that the coal extraction of an upper level may not completely 

fracture the next lower level, and certain intact areas with high strength xylite may 

exist. Moreover, pressure communication between the fractured and unfractured 

areas is expected to be minimum due to the very low permeability of intact xylite. 

This may result in a considerable volume of high pressure gas retained by a detrite 

rich zone enclosed or protected by a xylite-rich zone as illustrated in Figure 4.19 

(a). In this case, the gas content of this heterogeneous zone is expected to be same 

as the in-situ conditions with primary CO2 and secondary CH4.  

As it will be further discussed in Chapter 5, time-lapse (repeat) seismic 

tomography surveys were carried out over a fixed 100 m long section of panel K.-

50/C as the face advanced towards this section. In addition, microseismic 

activities at this panel were monitored continuously. These measurements have 

identified a xylite-rich zone (matched by localised microseismic events, changes 

in P-wave velocities and gas pressure patterns) which formed a gas flow barrier 

ahead of the face. It is also in the mine’s records that this relatively large area of 

xylitic zone lead to an episode of sudden and excessive gas emission when the 

front abutment stresses were high enough to fracture this zone, which interrupted 

coal production (please see Figure 4.17 for the emission rate on 15 July 2011). 

− Peak abutment zone  

The peak abutment zone, which is around 40 to 50 m from the face line in the first 

mining level, is characterised by a dramatic gas pressure reduction as observed in 

borehole JPK69 (see Figure 4.13). Local fracturing of the coal seam is initiated 

due to the peak abutment stress effecting this zone. The sudden drop and rebound 

of gas pressure observed in JPK69 at around 50 m from the face line can be 

explained by the gas communication between the low and high pressure regimes 

around the borehole. The slight increase of CH4 concentration (compensated by a 

similar decrease in the CO2 level) observed in the same period may also confirm 

this conclusion (see Figure 4.15).   
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The peak abutment zone in the lower mining levels is developed around 40 to 70 

m distance from the face line. Unless the coal seam is primarily xylite-rich, this 

zone is characterised by relatively low gas pressure and CO2 dominated 

composition in the released gas. On the other hand, if the xylite-rich coal seam is 

not affected by over-mining, the increased abutment stresses may fracture the 

otherwise intact xylite-rich zones and increase the CH4 concentration in the 

released gas (see Figures 4.9 and 4.10).  

− Near face fracturing zone  

The near face fracturing zone extends up to 40 m from the face line and the in-

seam gas pressure and composition regimes generally show a similar trend in both 

the first and lower mining levels. The seam gas pressure experiences a sharp drop 

and the emitted gas concentration is enriched in CO2 in this zone. The rapid drop 

in seam gas pressure may be due to the combined effect of massive coal fracturing 

and the proximity of a pressure sink at the face. Note that higher CO2 

concentrations recorded against high gas emission rates in Figure 4.17 also 

confirm that CO2 is released from the near face fracturing zone during production 

rather than at weekends and holiday periods when the face is idle and the 

emission rates are represented by the baseline rate. As suggested by the fast gas 

pressure decline in the roof (goaf) borehole JPK40 at LTCC panel K.-5/A (Figure 

4.14), additional gas inflow from the roof area would also play a significant role 

in contributing to the overall gas emission in this zone.  

The analysis of ventilation air gas concentrations and specific gas emission at LTCC 

panel K.-50/C also supports the above conceptualisation. Table 4.3 presents 

estimated in-situ gas contents for the Velenje coal at different gas pressures and 

mining levels based on the Langmuir parameters listed in Table 4.1. As the table 

illustrates, the estimated in-situ gas contents at various pressure regimes and gas 

compositions are all less than the actual specific gas emission recorded at K.-50/C. 

Given that the in-situ seam gas pressure of coal at panel K.-50/C is likely to be close 

to a second level panel (1.1 MPa), this suggests that a large share of gas emitted into 

the ventilation system in this panel was not from the mined coal, but from the roof 

area (goaf) and/or floor (lower level coal seam). In fact, on occasions where the roof 

coal is not completely caved and left behind the advancing supports, an inrush of a 
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mixture of gas and coal dust into the working area from the roof has occasionally 

been observed by the production engineers at the mine. 

Table 4.3: Comparison of estimated in-situ and/or residual gas contents per tonne of coal at different 
in-situ gas pressures (or mining levels) and the specific gas emission recorded at LTCC 
panel K.-50/C during the period of borehole observations. 

P 
(MPa) 

ϕ 
(%) 

ρ 
(kg/m3) 

Sw 
(%) R (CO2:CH4) 

Ve 
(m3/t) 

Va 
(m3/t) 

Ve/Va 
(%) 

0.7 10 1250 30 7:3 5.27 17.58 29.99 
0.7 10 1250 30 8:2 5.67 17.58 32.27 
1.1 10 1250 30 7:3 7.82 17.58 44.46 
1.1 10 1250 30 8:2 8.39 17.58 47.74 
2.0 10 1250 30 7:3 12.66 17.58 72.00 
2.0 10 1250 30 8:2 13.52 17.58 76.91 

*P is the initial gas pressure, ρ is coal density, Sw is water saturation, ϕ is porosity, R is the volume 
ratio of CO2 to CH4, Ve is the estimated in-situ gas content per tonne of coal, and Va is the actual 
specific gas emission (total volume of emitted gas / total tonnage of produced coal) recorded at 
LTCC panel K.-50/C. 

 

4.6 Conclusions  

Gas pressure and gas composition changes induced by multi-level coal extraction in 

LTCC faces have been investigated through borehole measurements at different 

mining levels of an ultra-thick coal seam at Coal Mine Velenje. A conceptual model 

for gas emissions from multi-level mining layouts has been proposed based on 

extensive field measurements of gas pressure, gas composition, and ventilation 

environment. Three gas pressure zones, namely the farfield abutment, peak abutment 

and near face fracturing zones, ahead of an advancing LTCC have been characterised 

in the conceptual model.  

The near face fracturing zone, which is ~40 m ahead of a LTCC face, is believed to 

play a significant role in contributing to the gas emissions at the face. It was also 

confirmed that the gas emission into the LTCC face is very sensitive to the rate of 

fracturing experienced due to stress relief and the size of fractured zone in the floor 

coal at multi-level mining layouts.   

As also confirmed by the mine’s past experience, the first mining level is expected to 

experience the highest rate of gas emission both from the mined coal and the floor 

level due to high initial in-situ gas pressure. On the other hand, for LTCC panels 

operating at lower mining levels, gas inflow from both the floor coal and the roof 

goaf may form a considerable share of overall gas emissions. The concentration of 
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CO2 in the gas emitted to the ventilation air is expected to increase progressively as 

the mining reaches lower level of the ultra-thick seam. 

Although seam gas pressure may be relatively low when mining the lower level 

panels, xylite-rich zones trapping high pressure gas may still exist due to the 

heterogeneous lithological structure of Velenje lignite and uneven fracturing induced 

by coal extraction in the upper mining levels. Although xylite is not capable of 

storing large volumes of gas, it may enclose detrite, which is weak and gas-rich. 

Such structures of strong xylitic coal, enclosing pockets of weak detritic coal with 

high gas pressure and content, may increase the risk of coal and gas outbursts. 

As briefly mentioned and illustrated in Figure 4.17, an episode of increased gas 

emissions was actually recorded at the K.-50/C LTCC panel during the research 

periods. Since this episode may share some common features with outbursts, 

analyses of the seismic monitoring data recorded during this period was also carried 

out to understand the nature of this excessive emission episode. A detailed discussion 

on these analyses will be presented in Chapter 5. 
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Chapter 5 Seismic Monitoring and Analysis of Gas 
Dynamics in Longwall Top Coal Caving 
Panels 

5.1 Introduction and Background 

Seismic velocity tomography is an established non-invasive technology used to 

investigate geological formations (Friedel et al., 1992; Young and Maxwell, 1992; 

Friedel et al., 1996). By transmission of acoustic waves through the rock, lithological 

parameters and structural information can be gained. With active seismic 

tomography, the transmitters and the receivers of the seismic waves are placed on 

different sides of a block of rock or coal in the field. The result of the measurement is 

the distribution of the seismic velocity in a plane and tomograms are created by 

mapping this velocity distribution. Active sources have also been implemented 

repeatedly to image individual pillars in underground mines (Watanabe and Sassa, 

1996; Scott and Williams, 2004). Tunnels have also been imaged to determine stress 

distribution around an excavation, implementing both passive (Maxwell and Young, 

1996) and active sources.  

In the early days, seismic tomography measurements have been used in coal mines 

mainly to detect voids, to image structures and/or old workings well ahead of 

planned developments (Hanson et al., 2002). This reduced the need to drill probe-

holes. An earlier study was able to image velocity on a longwall panel and has shown 

that high velocity areas advanced with the longwall face (Kormendi et al., 1986). 
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There are fewer large scale mine studies in the literature. Roof bolt mounted 

receivers have been used with a longwall shearer as the seismic source to image a 

section of a longwall panel mine in the western United States (Westman, 2001). This 

study has shown a correlation between averaged tomogram values and seismically 

active areas and demonstrated that the tomography system is capable of imaging 

heavy shield-leg loading and outburst-prone conditions prior to them disrupting the 

face operation. Recognising that outbursts are often associated with geological 

anomalies, active seismic tomography may be useful in detecting these anomalies 

and providing early warnings. 

Underground coal extraction activities lead to continuous stress and pressure 

redistributions around mine openings. It has been well documented that dynamic 

failure of rocks is associated with detectable geophysical signals such as 

microseismic events (Cook, 1976; Sato and Fujii, 1988; Tang, 1997). The energy 

released in an outburst is from accumulated strain energy in the coal, roof or floor. 

Numerous factors have been stated to influence the occurrence of bumps, including 

properties of coal, geology (joints, folds, faults, etc.), mining induced stresses, strong 

sandstone beds in the roof, pillar size and shape, mining technique and mining rate 

(Westman, 2001). Therefore, microseismic monitoring has been suggested as a 

potential approach to provide early warning and even prediction for rock bursts and 

gas outbursts (Flores, 1998; Shepherd et al., 1981). 

Microseismic monitoring first gained wide applications for rock burst prediction in 

hard rock mines. In a pioneering study of applying microseismic monitoring at gold 

mines in South Africa, Cook (1976) noted that mining-induced microseismic events 

tended to concentrate in the afternoon of a working day and on Thursday and Friday 

of a working week. Based on the observation of anomalous seismic behaviour, 

miners were successfully evacuated prior to a moderate rock burst at a zinc-mine in 

the US (Brady and Leighton, 1977). High-frequency seismic waveform was 

monitored prior to a rock burst event, which was believed to be a valid precursor 

(Archibald et al., 1990).   

In recent years, with the improvement of monitoring and interpretation techniques, 

microseismic monitoring has been accepted as a standard approach to understand and 

predict rock bursts in coal mines (Fujii et al., 1997; Kabiesz and Makówka, 2009; Lu 
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et al., 2013; Cai et al. 2014). Li et al. (2007) suggested that rock bursts might induce 

high gas emission in underground coal mining. In Laohuitai coal mine, China, a few 

incidences of unusual gas emissions were found to be correlated with rock bursts 

which occurred within 1,500 m of the face. Lu et al. (2014) reported that gas 

outbursts at Junde coal mine in China were induced by shock waves associated with 

rock bursts. 

In terms of application of microseismic monitoring to gas outburst prediction, several 

case studies in the US, Canada, the UK, Poland and China can be found in literature 

(Leighton, 1984; Lu et al., 2012; Styles et al., 1988; Talebi et al., 1995). The first 

effort to develop microseismic monitoring as a predictive tool for coal and gas 

outbursts was made by McKavanagh and Enever (1978). Anomalous microseismic 

activities suggesting irregular fracturing was occasionally recorded prior to the 

occurrence of outbursts in the collieries investigated. Rapid micro-fracturing was 

suggested by the seismic events prior to outbursts (Leighton, 1984). Styles et al. 

(1988) noted a strong correlation between coal extraction rate and the intensity of 

seismic events at Cynheidre Colliery in the UK. .  

Seismo-acoustic activity and permeability of sandstone samples taken from the 

outburst prone Nowa Ruda mine subjected to triaxial  stresses were measured in the 

laboratory by Majewska and Marcak (1989). The experiments have shown that 

fracture formation and propagation, accompanied by a significant increase in 

permeability, also increased seismo-acoustic emission as a result of fracturing. 

Furthermore, field monitoring of seismo-acoustic emissions in the former Thorez 

mine in Poland, which was classified as gas and rock outburst hazard mine, have 

confirmed that, with increased gas flow, the micro-seismological activity was also 

much higher than that observed when gas flow/emissions were much smaller 

(Majewska and Marcak, 1989). It has also been reported that P-wave velocity 

increases with increase in stress (Kowalczuk and Szwejkowski, 1975). Every seismic 

event is a source of discontinuous deformation and development of fractured zones 

in coal seam or rock mass, which are conducive to stronger gas flow. Therefore, the 

measurements of seismic wave velocities can be used to estimate gas emission 

hazards. 
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Although previous research has achieved some success in using microseismic 

monitoring to provide early warning for rock bursts, the relationship between 

microseismicity and gas outbursts is still poorly understood. In particular, the spatial 

evolution of microseismic events with respect to longwall face advance and its 

impact on gas emissions need to be investigated. Furthermore, active seismic 

tomography in conjunction with microseismic monitoring has rarely been applied 

together to investigate excessive gas emissions and gas outbursts. 

Building upon the field monitoring results presented in Chapter 4, this chapter 

focuses on seismic monitoring data and their analyses and interpretation in terms of 

gas dynamics around the K.-50/C LTCC panel. The episodes of increased gas 

emissions at this panel will be explained using an integrated analysis of the borehole 

monitoring, seismic tomography, microseismicity and ventilation air gas 

concentration data. Finally, the microseismic monitoring data is used to propose a 

methodology for the early detection of the build-up of uncontrolled gas emissions 

and gas outbursts, which needs to be investigated further in the future.  

5.2 The Field Monitoring Site at Coal Mine Velenje  

In order to study microseismicity induced by LTCC method of coal extraction and 

explore the possibility of using microseismic monitoring to predict outbursts in thick 

seam mining, two LTCC panels (K.-130/A and K.-50/C) at Coal Mine Velenje were 

selected to set up a microseismic monitoring programme. Compared to the LTCC 

panel K.-130/A, the monitoring scheme at panel K.-50/C included a more 

comprehensive data collection programme, which included time-lapse seismic 

tomography, gas dynamics and ventilation environment monitoring as the LTCC 

face advanced towards the instrumented section of the panel. The deployment of a 

suite of monitoring techniques implemented at LTCC panel K.-50/C is depicted in 

Figure 5.1.  

As presented in Figure 5.2, the longwall top coal caving panel K.-50/C, which was 

being developed for production at the start of the research described here, was 

selected as the test panel for the seismic monitoring campaigns. Panel K.-50/C lies at 

-350 m depth, overlain partly by a layer of clay and partly by a previously caved 

goaf. Coal excavation at panel K.-50/C started in November 2010 and ended in 

October 2011. In addition to seismic tomography and microseismic monitoring, 
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ventilation air gas concentration, face advance rate and coal production were also 

recorded throughout the research period. The average weekly face advance rate and 

daily coal production were approximately 11 - 12 metres and 7,930 tonnes 

respectively. The study area for active seismic tomography is shaded in blue in 

Figure 5.1.  

 

 
Figure 5.1: Seismic stations and the configuration of sensors used for microseismic monitoring and 

ventilation measurements at LTCC panel K.-50/C in Coal Mine Velenje (after Si et al., 
2015b). 

 
Figure 5.2: A cross-section of K.-50/C LTCC panel at Coal Mine Velenje. 
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Continuous monitoring of gas emissions as a result of coal production at K.-50/C 

LTCC face was performed with permanent gas composition (CH4 and CO2) and 

velocity sensors placed at the outby end of the return gateroad. All measurements 

were recorded in 10-second intervals to analyse and identify short-time gas build up 

and potential high gas emission episodes. This allowed for accurate analyses of the 

events leading to large volumes of gas emitted. The recorded gas emission data were 

sent to and stored at the surface information centre of Coal Mine Velenje via 

underground fibre optic cables.  

Figure 5.3 shows the measured daily gas emission rate and coal production tonnage 

during the period from 23 May to 28 August 2011. The figure demonstrates that gas 

emission pattern follows closely the coal production schedule at the mine, reduced 

significantly in the absence of coal production at weekends or holidays. Peak 

emissions have normally been recorded on Thursdays or Fridays. A marked increase 

in the near steady gas emission rate recorded each week was observed on 15 July 

2011, which interrupted coal production at the face. A closer review of gas emission 

rate during the week from 11 to 17 July 2011 (later presented in Figure 5.18) has 

shown that gas emission rate increased very rapidly (from 100 to 179 m3/min) within 

two hours on 15th July, resulting in the abandonment of the production area as 

required by the mine. The subsequent sharp reduction was due to a two-week 

summer holiday at the mine management. The gas flow rate recovered to its normal 

levels with the resumption of coal production. 

 
Figure 5.3: Gas flow rate and daily coal production tonnage from 23 May to 28 August 2011. 
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5.3 Time-lapse Seismic Tomography at Coal Mine Velenje 

5.3.1 Overview 

Underground coal extraction activities can significantly alter the in-situ stress field 

around mine openings. Mining-induced stresses may lead to fracture initiation, or the 

reactivation of pre-existing faults. It has been found that the variation of applied 

stress on rock mass can positively affect the P-wave velocity (Maxwell and Young, 

1996). In addition, the creation of fractures during the process of rock failure can 

dramatically reduce the P-wave velocity perpendicular to the loading direction (Scott 

et al., 1993). Therefore, seismic tomography allows for the inference of stress 

distribution and fractured areas through a velocity image (Westman et al., 1996; 

Scott et al., 1999; Westman, 2004). 

Furthermore, seismic velocity is characterised by rockmass properties such that local 

variations in coal lithology would affect P-wave velocity as:  

4 / 3
P

K Gv
ρ

+
=      5.1 

where Pv (m/s) is the P-wave velocity, K (Pa) is bulk modulus, G (Pa) is the shear 

modulus, and ρ  (kg/m3) is the density of the rock.   

Solving velocity tomograms is a classic problem of inversing travel time data. 

Assuming that n rays are recorded by a receiver, there is a vector of travel time T 

(n×1). By spatially discretising the study area into an m number of grids, the 

slowness vector S (m×1) for all grids has the following relationship with travel time 

T:  

T = DS      5.2 

To solve S, 

S = (DTD)-1DTT     5.3 

where D (n×m) is the matrix of ray path and its data represent the distance of each 

ray at each grid to the receiver point. In order to effectively solve S, iterative 

methods, such as Algebraic Reconstruction Techniques (ART), Simultaneous 

Iterative Reconstruction Technique (SIRT), conjugate gradient, and least squares 

method, can be used (Mendecki, 1997).   
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5.3.2 Field Implementation of Time-Lapse Seismic Tomography 

In this research, time-lapse active seismic imaging was conducted at a 100 m-long 

section of K.-50/C LTCC panel to detect geological anomalies in this section. In 

addition, the idea of repeat/time-lapse seismic tomography was introduced to study 

the changes of seismic wave velocity as the face approaches to the tomography zone 

(Figure 5.1). It was believed that, within the tomography section, changes in stress 

and fracturing induced by mining can be inferred from repeat tomography 

campaigns.  

Time-lapse seismic tomography measurements at Coal Mine Velenje were jointly 

conducted by K-UTEC Salt Technologies (Germany) and the mine staff. The seismic 

sources and receivers were placed along two gateroads. The horizontal distance 

between the two gateroads was 141 m. The boreholes required for the sources and 

receivers were planned and drilled in advance, before the installation of conveyors 

and other mining equipment in the main (intake) gateroad. In total, 40 receiver and 

40 source boreholes, which were spaced regularly at ~2.5 m, were prepared in the 

intake and return gateroads, respectively. During the surveys, 120 receiver 

components located on 40 receiver points (each point equipped with x-, y- and z- 

three component) were used. X-component represents the P-wave velocity parallel to 

the gateroad, y-component represents the P-wave velocity perpendicular to the 

gateroad, and z-component represents vertical direction. For the generation of P-

waves, explosive sources in small boreholes were used. The seismic wave recording 

equipment consisted of geophones, signal transceivers and system control/recording 

computer.  

During the lifetime of longwall K.-50/C, two seismic tomography measurement 

campaigns were carried out successfully (face positions with respect to the 

tomography zone as indicated in Figure 5.1). The first (baseline) successful survey 

was carried out on the weekend of 21st/22nd May 2011. During this campaign the 

nearest receiver was 95 m away from the longwall face which was advancing 

towards the tomography zone. For the second measurement, carried out during 

18th/19th June 2011, this distance was 47 m.  

Note that two more campaigns had been planned, but unfortunately, they were not 

successful. The very first campaign failed on 7th May 2011 because the mine power 
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supply system was unable to serve the test purpose and the mine had to prepare a 

battery pack as an alternative. The second failed campaign should have been 

conducted during the weekend of 25th/26th June 2011, when the face line was 32 m to 

the tomography study zone. However, during this period, the CH4 and CO2 

concentrations in the mining district remained too high throughout the weekend and 

the test equipment had to be withdrawn from the mine due to safety requirements.    

5.3.3 Analysis of Time-lapse Seismic Tomography Results  

The seismic tomography data were processed by K-UTEC using the software 

GeoTomGC licensed by GeoTom, LLC of Apple Valley, Minnesota, which uses the 

SIRT method for performing the inversion required to solve Equation 5.3 for S, and 

also offers good anisotropy analysis functions. The grid dimension measuring 5×5 m 

was used to discretise the study area. As in the case of microseismic monitoring, the 

vertical sample range of active seismic tomography was also highly constrained by 

the conditions in the workspace underground. Thus, in the inversion process, a 2D 

horizontal plane was simply assumed. P-wave velocities were calculated and gridded 

to produce velocity tomograms for each receiver component and every campaign. 

After finishing the processing of data from these two campaigns, the differences of 

the velocity images have also been computed and imaged.  

Figure 5.4 to Figure 5.6 show the P-wave velocity tomograms of the 1st and 2nd 

campaign when the LTCC face was 95 m and 47 m away from the tomography zone 

respectively. For either the 1st or 2nd campaigns, the tomograms produced by the 

three components were reasonably consistent, reflecting the overall stress 

concentrations on both sides of the panel (NW under the solid roof coal and the SE 

under caved roof) with differences caused by lithology and anisotropy effects.  

Note that a relatively high velocity zone was detected diagonally across at the centre 

of the study area by the 1st campaign. During the time of the first campaign, the 100 

× 141 m tomography zone was relatively far from the face-line and almost 

unaffected by the mining-induced abutment stresses, which suggests that the P-wave 

velocity variations reflect the lithological conditions within the study zone. No 

notable faults were detected. As mentioned earlier in Section 4.2.1, the relatively 

high seismic velocity zone is believed to be a xylite-dominated zone. Naturally, even 
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In coal mining, it is well recorded and established through field measurements that 

extreme stress concentrations are experienced under solid coal pillars, whereas areas 

under caved waste are stress relieved.  Therefore, it is expected that the NW half of 

longwall K.-50/C should experience higher levels of stress abutment and, as the face 

moves closer to the tomography zone, the stress abutment effects may be further 

amplified. On the other hand, by the very nature of LTCC method, there is always a 

slice of roof coal over the working face which later will be extracted by caving. 

Thus, in the case of K.-50/C, even the SE half of the longwall panel, which is under 

the caved roof should experience a kind of abutment loading, but this would be much 

gentler. 

The tomograms shown in the above figures support these hypotheses. According to 

the borehole gas pressure and concentration measurements presented in Chapter 4, 

the coal seam from around 40 m to 70 m ahead of the face-line experiences peak 

abutment stresses and pre-failure cracks are initiated. With the longwall face 47 

metres from the tomography zone, the area nearest to the face-line in the NW half of 

the panel has the lowest P-wave velocities, suggesting the fracturing of the coal 

under extreme abutment stresses. A medium-to-high velocity zone beyond this may 

indicate compacted coal under the initial stages of stress build up. 

The SE half of the tomograms, on the other hand, suggest that the seam under a 

relatively thin slice of coal and caved roof only experiences a mild stress abutment, 

enough to compact the coal seam, but not fracture, leading to high P-wave velocities 

nearer the face, and lower P-wave velocities beyond this area due to a slight increase 

in the stress.  

5.4 Microseismic Monitoring at Coal Mine Velenje   

5.4.1 Overview 

Both fracture initiation and fault reactivation involve the change of elastic energy in 

a rockmass, which are generally accompanied by the radiation of some energy in the 

form of seismic waves (Cook, 1964). Fracture initiation around mine openings is 

predominately caused by tensile failure (Cai, 1998). The potential energy (Ec, J) 

released from this type of failure is of low magnitude and can be described by 

(Griffith, 1921; Broek, 1986):  
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2 2 2(1 ) n
c

aE
E

µ πσ−
=      5.4 

where a (m) is the half length of the crack, E (Pa) is the Young’s modulus, µ  

(dimensionless) is the Poisson’s ratio, nσ  (Pa) is the normal stress acting on the 

crack. 

Fault reactivation as a result of shear failure occurs some distance from the mining 

activities and the potential energy (Ef, J) released is associated with larger magnitude 

(Gibowicz and Kijko, 1994):  

1
2f f f f f f fE D A D Aσ σ= D +     5.5 

where Af (m2) is the surface area of the fault, Df (m) is the average fault slip, fσ∆  

(Pa) is the stress drop between the initial stress and the final stress fσ  (Pa) after 

faulting. 

The measured seismic energy is a relatively small fraction of the total energy 

released (Ec or Ef). The energy released during failure can also be consumed in 

overcoming the cohesion of crack tips/faults or attenuated during wave transmission. 

In the absence of attenuation, the radiated seismic energy (Er, J) can be computed 

based on the time-integrated values of P-wave and S-wave seismograms, uP(t) and 

uS(t) respectively (Shearer, 2009):  
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where R (m) is the distance between the source and receiver, ρ (kg/m3) is the density 

of medium, vP (m/s) and vS (m/s) are P-wave and S-wave velocities of the medium, 

UP
2 and US

2 are the radiation pattern terms, and <UPm
2> and <USm

2> are the mean 

values for P-wave and S-wave. t1 (s) and t2 (s) are times bounding a group of P-wave 

and S-wave. 
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Microseismic monitoring does not only record the scale of energy released during 

fracturing or faulting, but also locate the hypocentre of a failure episode by assessing 

the P-wave and S-wave arrival times at geophones. Ideally, the geophones should be 

placed in a non-planar array, but this is sometime restricted by the engineering 

conditions, such as that in underground longwall panels where access to the coal 

seam is limited to the gateroads.  

5.4.2 Field Implementation of Microseismic Monitoring  

The underground microseismic monitoring campaign at Coal Mine Velenje was 

jointly conducted by the Department of Geology and Geophysics of Central Mining 

Institute (GIG) in Poland and the mine staff. GIG has designed a flameproof 

automated seismic observation system (SOS) for underground installation in coal 

mines (Mutke, 2013). An entire SOS includes a number of low frequency 

underground geophones combined with seismic signal transmitters in the form of 

current signals via transmission lines, and a surface DLM-SO Receiving Station 

which is connected with the Seismic Recording System (see Figure 5.8). The 

hardware allows for automatic triggering and recording of mining induced seismic 

events. The MULTILOK and SEISGRAM software, which are integrated into the 

SOS seismic system, enable data acquisition and data processing so as to provide 

information about source parameters and location of seismic events. The 32-channel 

SOS was designed as flame-proof equipment.  

 

 
  (a)      (b) 

Figure 5.8: Microseismic monitoring equipment: (a) the low frequency DLM-2001 geophone probe 
and (b) DLM-SO surface data receiver (after Si et al., 2015b). 
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Figure 5.11: Daily seismic activity, seismic energy and face advance at LTCC panel K-50/C in Coal 

Mine Velenje during the monitoring period (Courtesy of GIG researchers). 

 
 (a) 27 April to 22 May 2011   (b) 23 May to 19 June 2011 

Figure 5.12:  Bent-ray tomography P-wave velocity images (units m/s) obtained using seismic 
events recorded from (a) 27 April to 22 May 2011 and (b) 23 May to 19 June 2011 for 
K.-50/C LTCC panel in Coal Mine Velenje (Courtesy of GIG researchers).  

Using microseismic data as the passive source P-wave velocity tomograms were 

constructed by GIG (see Figure 5.12). It was concluded that the high P-wave velocity 

zones correlate with the highest stress zones due to a combination of mining and 

local geological conditions. The zones of the lowest P-wave velocity may correlate 

with weaker or fractured coal seam and in these zones more intensive gas emission 

may be expected. However, these assumptions proposed in the preliminary analysis 

needed to be supported by further analysis of gas emission data at K.-50/C. 
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5.4.4 Analysis and Interpretation of the Processed Microseismic Data  

Preliminary analysis of the processed microseismic data showed a strong link with 

the mining activity: there was little or no microseismicity at weekends or during the 

holidays when coal extraction was halted. Furthermore, during a production week, 

the intensity of seismic activities experienced was the lowest on Mondays (Figure 

5.13). As shown in Figure 5.14, the seismic magnitude M (Gutenberg and Richter, 

1956) of most of the mining-induced microseismic events fell in the range -1.5 to 

+1.0, which is consistent with that observed by Fujii and Ishijima (1991).  

 
Figure 5.13: Weekly distribution of mining-induced seismic events from 2 May to 30 August 2011. 

 
Figure 5.14: Richer-Gutenberg magnitude-frequency plot for mining-induced microseismic events. 
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Microseismic events falling outside this range were considered to be not directly 

related to the mining activities at this face and were filtered.  

The two repeat (or time-lapse) seismic tomography campaigns discussed before were 

also conducted in the area outlined by the two blue dotted lines and the roadways 

shown in Figure 5.15. As the LTCC face advanced over a period of several weeks, 

the seismic tomography and microseismic data analysis zones have overlapped, 

which will be discussed later in the Chapter.  

Figure 5.16 shows the spatial distribution of the weekly microseismic events over a 

period of 12 weeks, during which the coal face advanced 139 m. It can be seen that 

the events predominantly occurred within 70 m of the advancing coal face and 

tended to concentrate in the central region of the face width. With the advance of the 

longwall face, the new microseismic events tended to cluster and form a cloud, and 

be localised at certain areas. As shown in Figure 5.16 (d), the start of microseismic 

event localisation is characterised by new events (red circles) with relatively low 

energy, occurring in a ‘virgin’ area and further away from the coal face. This is 

probably because the near face area was already highly fractured.  As the face 

advanced further in the following weeks, new microseismic events with increased 

seismic energy occurred in the same area (Figures 5.16 e to i). By the time week 8 - 

14 August 2011 is reached, a dense cloud of microseismic events was formed in this 

area, which was highly fractured and close to the face-line (Figure 5.16 j).  
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(a) Week 30 May to 5 June 2011   (b) Week 6 to 12 June 2011 

 
(c) Week 4 to 10 July 2011    (d) Week 11 to 17 July 2011 

Figure 5.17: Analysis of seismic energy released in a production week and previous weeks. 

In order to analyse the energy released by the microseismic events, histograms of the 

energy released per week have also been plotted (see Appendix 2). Four examples of 

the weekly microseismic energy histograms are shown in Figure 5.17. In this figure, 

red bars indicate the statistics of the new events which occurred during the reference 

week; while blue bars represent the events which occurred during the previous four 

production weeks. As can be seen, the energy released by different events varied 

significantly, spanning as much as four to five orders of magnitude. The distribution 

of microseismic events within a production week follows a Gaussian distribution. A 

notable shift of the red bars to the right (higher energy levels) was observed during 

the week of 11 to 17 July 2011 (Figure 5.17 d). Although the number of events 

recorded during this week was relatively smaller, the total energy released reached a 

maximum, coinciding with the unusually high gas emission episode which 

interrupted the coal production at the face on 15 July 2011. 
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5.4.5 Results and Discussions 

5.4.5.1 Correlation Between Increased Gas Emissions and Microseismicity 

Since the geophones placed in the gateroads at LTCC panel K. -50/C could not be 

spaced widely in the vertical plane, the hypocentres of detected events are not well 

constrained vertically, on the other hand, horizontally, a relatively high accuracy 

(within 5 to 10 m) is expected. Although microseismic monitoring did not provide 

sufficient data on the sources and migration of gases in the vertical plane, most 

detected events were assumed to occur within the coal seam and around the mining 

level, given the large thickness of each LTCC level, as well as the coal deposit itself. 

The spatial distributions of seismic events induced during the production weeks from 

23 May to 12 June 2011 (Figures 5.16 a, b, and c) suggest that seismic events mostly 

occurred within 40 m of the face. The variation in the spatial distribution of the 

seismic events from 13 June 2011 onwards is believed to be caused by coal 

heterogeneity. 

Figure 5.18 presents a cross-plot between the gas flow rate (at 30 minute intervals) 

and the cumulative seismic energy released during 11-17 July 2011 period. Although 

the mine normally works three shifts per day and each shift is 8 hours (06.00 to 

14.00, 14.00 to 22.00 and 22.00 to 06.00) the production schedule at LTCC panel K. 

-50 C, had to be rescheduled as 2 shifts of production and 1 shift of pause cycles 

because of increased gas emissions experienced in the district. As shown in Figure 

5.18, the gas emission peaks are normally reached during the night (or the second 

production shift). The most significant increase in gas emission was experienced 

during the early hours of 15th July 2011, which increased by 80% and peaked at 179 

m3/min within two hours. This also coincides with the heightened microseismic 

activity identified for the 11-17 July 2011 production period (Figures 5.16 h and 5.17 

d). Figure 5.18 also confirms that there is a direct correlation between 

microseismicity and the gas emission rate, and that gas emission rate tends to reach a 

peak when seismic energy increases dramatically.  
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Figure 5.18: Microseismic activities and gas flow rate during the week of increased gas emissions (11 

to 17 July 2011). 

As mentioned earlier, a xylite-rich zone has a high mechanical strength and, if this 

zone creates a barrier in front of a low mechanical strength and high gas content 

detritic coal, this may result in gas build up and a sudden emissions of gas when the 

stress abutment exceeds the strength of the gas barrier as the face gets closer to this 

zone. It is believed that, as marked in Figures 5.16 and 5.19, a xylite-rich zone 

located ahead of the face-line has formed one such barrier, progressive fracturing and 

eventual failure of which eventually led to the increased gas emissions. This would 

also explain the significant increase in microseismic energy released during this 

week and its correlation with the high rate of gas emitted.  

In view of reduced coal production schedule at LTCC panel K. -50/C, the 

microseismic events which occurred during this week were organised into five 

clusters to match the timing of production shifts at the same longwall district 

(Figures 5.18 and 5.19). The spatial distribution of each cluster of microseismic 

events is presented in Figure 5.19, which helps to identify the sources of gas 

emission peaks. As the figure illustrates, the majority of high energy (>104 Joule) 

microseismic events are located in an area between 30 to 50 metres ahead of the coal 

face, which also overlaps with the xylite-rich zone confirmed by the 1st seismic 

tomography data (Figures 5.4 to 5.6). This is reasonable as relatively stronger xylitic 
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zone can, for some period of time, withstand the higher stress concentration 

experienced along the transition zone between solid coal roof (to the NW) and the 

partially mined out zone (to the SE) over this LTCC panel but, once it fails, more 

seismic energy will be emitted. At the time of highest gas emission recorded on 15 

July 2011, the LTCC face had reached the edge of the tomography zone, bordering 

on the xylite-rich coal zone, causing extensive fracturing of the xylite-rich barrier 

and releasing the gas trapped in the detrite-rich coal behind.  

 
Figure 5.19:  Spatial distribution of microseismic clusters observed during the week of increased gas 

emissions at K.-50/C LTCC panel (11 to 17 July 2011). 

5.4.5.2 Fractal Dimension as an Indicator for Fracture Network Evolution 

Fractal dimension is an effective measure to characterise the fracture patterns in rock 

failure process (Balankin, 1997; Poliakov et al., 1994; Zhao et al., 1993). During the 

analysis of the microseismic data, an attempt was made to compute the fractal 

dimension (D) of recorded weekly events in order to characterise the fracture 

network induced by mining. A box counting method was used (Barton and Larsen, 

1985), whereby the study area ahead of the face-line (blue area referred to as the 

“Filter Zone” in Figure 5.15) was first discretised into 2D small boxes of p × p in 

length. A script written in MATLAB was then run to count the number of boxes (N) 

which contain at least one event. By varying the size of the box (p), N as a function 

of p can be obtained for the determination of fractal dimension D: 
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DpN −∝       5.7 

By plotting log(N) against log(p), the slope of the straight-line section can be used to 

compute D as illustrated in Figure 5.20. Same box size range, log(p) from 0.8 to 2.0, 

was used to fit the straight lines for individual weeks. The lower boundary of the 

straight line fitting was selected based on Odling (1997), in which the cut-off point 

was suggested as 5% to 10 % of the study region size. The spatial distribution of 

microseismic events for each coal production week presented under Figure 5.16 is 

shown in Figure 5.21, which illustrates that the fractal dimension of the weekly 

seismic events displays a positive correlation with the measured gas flow rate. The 

calculation of fractal dimensions for the rest of production weeks can be found in 

Appendix 3. 

 
Figure 5.20: Calculation of fractal dimension by box counting (week 11 to 17 July 2011). 

These preliminary analysis has shown that the fractal dimension increased steadily, 

from just below 1.60 to 1.75 over the 8 weeks period leading to the heightened flow 

rate. Following the two-week holiday period, the fractal dimension of the seismic 

events started to drop, after peaking as the production was resumed. It is clear that, 

during the two week holiday period, the gas emission was significantly reduced as no 

coal was produced, however, the microseismic activity continued with further 

fracturing of the xylite-rich zone and the re-settlement of the roof coal and the goaf.  

Investigating rockbursts in mines, Lu et al. (2005) concluded that fractal dimension 

decreases as the degree of clustering of microseismicity increases, and this might be 

used as a possible precursor of a catastrophic failure in the roof or floor rock. 
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xylite-rich zone observed at LTCC face K.-50/C exists in this moving front ahead of 

the longwall face, progressive fracturing of this zone (represented by increasing D) 

would at some point form a flow conduit and lead to an excessive gas emission or a 

gas outburst.  

5.5 Conclusions  

A suite of monitoring techniques has been employed to investigate the dynamic 

response of the coal seam being mined to longwall face advance at Coal Mine 

Velenje in Slovenia. The data obtained from ventilation environment monitoring, 

time-lapse seismic tomography, and microseismic monitoring at LTCC panel K.-

50/C were analysed and integrated. The following observations were made:  

• The onset of microseismic events ahead of an advancing LTCC face tended 
to be localised over relatively stronger zones, such as the xylite-rich coal. 

• A marked increase (by ~ 80% in two hours) in gas emission at the study 
LTCC face coincided with the period where there was heightened 
microseismic activity.  

• Seismic tomography can accurately detect coal heterogeneity and reflect 
mining-induced stress changes around a longwall panel  

• A detailed analysis of microseismic events which occurred during the week 
of excessive gas emissions suggests the spatial and temporal clustering of 
microseismic events at the heterogeneous zone indicated by seismic 
tomography.  

• Although the number of seismic events recorded during the week when 
excessive gas emissions interrupted production was relatively smaller, the 
total energy released during this week reached a maximum, coinciding with 
the unusually high gas emission episode. 

• Fractal dimension, estimated from the spatial density of the recorded 
microseismic events, displays a positive correlation with the measured gas 
flow rate. 

As reported earlier in Chapter 4, a comprehensive borehole gas pressure and 

composition monitoring programme around production faces at Coal Mine Velenje 

has shown that, an extensively fractured “near face fracturing zone”, within ~40 m of 

the LTCC faces in the upper mining levels of the seam contributes significantly to 

the gas emissions in a longwall district. A conceptual gas emission model proposed 

at the end of Chapter 4 also suggested that, a relatively strong xylite- rich zone 

forming a barrier in front of a high gas content but relatively weaker detrite-rich zone 
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may be the cause of increased gas emissions or gas outbursts at the mine. A detailed 

analysis of the spatial concentration of the microseismic events and gas emission 

rates described in this Chapter provides further evidence towards this 

conceptualisation.  

The underground testing of active time-lapse seismic tomography have confirmed 

that geological anomalies, such as the xylite-rich zone at Coal Mine Velenje, as well 

as increased stress abutments can be detected by this technique. However, this 

technique requires significant underground activity and staff time, yet it is not 

effective in providing continuous remote monitoring data. On the other hand, long 

term real-time microseismic monitoring has the advantages of detecting high stress 

zones and fracturing of the coal around mine openings to provide early warning for 

the potential occurrence of high rates of gas emissions and perhaps even outbursts.   

Although no coal or gas outbursts have been observed during the microseismic 

monitoring period at LTCC face K.-50/C, the strong correlation between the episode 

of excessive gas emission and the increased microseismic activity strengthens our 

confidence in using microseismic monitoring as a tool for the early detection of 

mining conditions which may lead to gas and/or coal outbursts and help take 

preventative measures. The proposed approach by using fractal dimension to 

characterise mining induced microseismic activity may provide a quantitative 

methodology to predict excessive gas emissions or gas/coal outbursts. However, this 

methodology needs to be further validated through long-term field measurements and 

in-depth analyses of monitored microseismic data.  

As already discussed in Chapters 4 and 5, the analysis and interpretation of different 

sources of field data helped establish an understanding of gas dynamics around 

working LTCC panels. Nevertheless, field measurements can only reflect the 

underground conditions in an area where these measurements are taken. Numerical 

simulation of mining scenarios, on the other hand, can help further this knowledge 

and obtain an in-depth understanding of the global stress and pressure changes 

around LTCC faces. The following chapters will therefore focus on the development 

of numerical models for simulating mining activities and associated gas emissions 

around LTCC panels.  
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Chapter 6 Numerical Modelling of Gas Emissions 
around Longwall Top Coal Caving Panels  

6.1 Introduction  

This chapter focuses on numerical modelling of gas emission patterns around LTCC 

panels. Recognising that gas emissions into a LTCC face is a process involving 

interactive physics between geomechanics and fluid flow, a two-way coupling 

approach is proposed. Preliminary numerical tests are then performed to optimise 

computational time and simulation accuracy. After that, using the field data 

presented in Chapters 4 and 5 as the input, a field-scale model based on the K.-50/C 

LTCC panel at Coal Mine Velenje is developed. About three months of face advance 

and associated gas emissions are simulated and matched with field data. The 

modelling results provide a new insight into the gas emission patterns in advancing 

LTCC faces.  

6.2 Methodological Development for Coupled Gas Emission 
Modelling  

6.2.1 Two-way Coupling Model Workflow 

Modelling of gas emissions in a longwall panel can be carried out through either one-

way or two-way coupling of a geomechanical and flow simulator.  With one-way 

coupling, mining induced dynamic stress changes are first solved using the 

geomechanical simulator assuming a constant pore pressure field in the model 

domain. The computed (effective) stress profiles, which evolve with the advance of 
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FLAC3D to compute a provisional total stress (σn’) after coal extraction in the first 

instance of the current excavation step n, using the pore pressure field (pn-1). Then, 

the permeability field kn, which is computed based on the provisional total stress σn’ 

and pore pressure pn-1,  is sent to ECLIPSE 300 as the input to derive the pressure 

field (pn) after coal extraction. The simulated fluid time from tn-1 to tn represents the 

actual time spent in coal extraction activity at step n. The updated pore pressure field 

pn is then fed back to FLAC3D to re-equilibrate the disturbance caused by pressure 

change within step n. The final stress field σn at pore pressure pn is then produced as 

the input for the next excavation step n+1. A special script was written in Matlab to 

facilitate seamless exchange of parameters between the two software packages. Since 

the permeability of coal is controlled by the effective stress, two-way coupling 

allows a more accurate representation of the dynamic permeability where significant 

changes in the pore pressure are expected, e.g. in the fractured zone around a 

longwall face.  

6.2.2 Geomechanical and Gas Flow Modelling of Coal Excavation in a 
Longwall Top Coal Caving Panel 

As with mechanised conventional longwall mining, face advance at a LTCC face in a 

given period of time (e.g. one weekday) is modelled as a single coal excavation step 

in FLAC3D. Considering that the top coal is allowed to cave shortly after the coal 

underneath has been taken out by a shearer, the following procedure is adopted in the 

modelling of coal excavation/top coal caving and goaf recompaction: at each 

excavation step those elements in the grid representing the coal blocks to be 

extracted by shearer, and the associated top coal that is deemed to cave, are 

“removed” from the geomechanical model grid; these elements are “reinstated” at 

the next excavation step but assigned with the properties of a recompacted goaf 

material. Each excavation step in geomechanical modelling thus involves removing, 

simultaneously, of the elements to be mined/caved and reinstating the elements 

removed at the previous excavation step. 

The elements used to represent reinstated goaf are simulated as totally elastic. 

Furthermore, to capture the behaviour of goaf recompaction, the elastic modulus of 

each goaf element is updated with the change of its volumetric strain after every 

excavation step. A simple reciprocal relationship between bulk (shear) modulus (K) 
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and volumetric strain (εV) of each goaf element is adopted to reproduce the strain-

hardening behaviour of goaf as depicted by Equation 6.1: 

V

KK
ε−

=
1

0      6.1 

where K0 is assumed to be one third of caved roof bulk modulus. The same principle 

also applies to the shear modulus. The elastic properties of the broken goaf material 

are based on observations that goaf material is highly compactable and its stiffness 

may increase during recompaction (Pappas and Mark, 1993). At each excavation 

step, the FLAC3D model is solved to equilibrium to leave sufficient computational 

time-steps for the propagation of plastic zone and stress redistribution. Mohr-

Coulomb failure criterion is used to evaluate failure of coal and coal measure rocks 

caused by coal excavation, and post-failure strength of the rocks is described using 

the strain-softening constitutive model.  

In flow simulations using ECLIPSE, the low pressure sinks, namely the gateroads 

and the LTCC face, are modelled by placing a horizontal well with its pressure fixed 

at the ventilation pressure to the relevant elements (see Figure 6.9 c). Note that no 

ventilation air flow was simulated and thus the modelled gas flow in the gateroads 

and the face was the gas emitted from the coal seam alone. In order to keep up with 

the face advance, a group of horizontal wells is placed in advance at different face-

line positions coinciding with the excavation steps. When the coal face moves to a 

new face-line position, the corresponding horizontal well at this position is set as 

‘OPEN’, while the others remain ‘SHUT’. The gas produced from this well over one 

excavation step is then taken as the gas emission when the face-line reaches this 

position.  

Since this model is designed to reproduce gas emissions during progressive face 

advance, the initial conditions representing the stress and pressure distributions 

before the first excavation step are almost impossible to be accurately assigned. 

Disturbances caused by roadway development or previous coal extraction outside the 

model domain are difficult to be evaluated. However, it can be assumed that 

progressive face advance normally results in a steady change of stress and pressure 

regimes around the LTCC panel. Although first several excavation steps in a 
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simulation can hardly reflect reality, it may be useful in generating initial conditions 

for areas that are critical in the analysis of gas emissions. Therefore, a number of 

extra excavation steps are required to produce the relativistic initial conditions for a 

study area.  

6.2.3 Stress Dependent Permeability  

With the advance of coal face, it is expected that the coal seams and coal measure 

rocks around the coal face would undergo a cycle of ‘in-situ stress – stress abutment 

– failure and stress reduction – stress recovery’, as illustrated in Figure 6.2. 

Permeability of intact coal at i direction (ki) has been shown to be highly stress 

dependent (Equation 6.2), through laboratory experiments and field measurements, 

decreasing exponentially with increasing stress or burial depth:  

∑
⋅= =

−⋅∆−
3

1

)1(

0
j

ijjC

ii ekk
δσ

     6.2 

where, ki0 (m2) is the initial permeability for intact coal in i direction, C (MPa-1) is 

the permeability compressibility factor for intact coal, Δσj (MPa) is the stress change 

in j direction, and δij is the Kronecker Delta. 

 
Figure 6.2: Conceptual stress and permeability paths from intact coal to fractured coal. 
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As mentioned in Section 2.4.2, the permeability compressibility factor C for a 

number of UK coals has been reported to be in the range of 0.38 to 0.73 and may be 

correlated with the fraction of volatile matter in coal as shown in Figure 2.10 

(Durucan, 1981). Based upon the proximate analysis for the Velenje lignite samples, 

which yielded a volatile matter in the range from 34% to 47%, a permeability 

compressibility factor of 0.7 was used in this work.  

The permeability of failed (fractured) coal is usually between one to two orders of 

magnitude higher than that of intact coal. Thus, it may be assumed that the 

permeability of coal within the stress abutment zone would experience a dramatic 

increase once it is failed and de-stressed (see Figure 6.2). It has also been shown that 

the post-failure permeability of coal tends to be less sensitive to stress than intact 

coal (Durucan et al., 1993). In this work, in addition to Equation 6.2 for intact coal, a 

separate equation is employed to compute the permeability response of post-failure 

coals (Equation 6.3):  

∑
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    6.3 

where kf (m2) and Cf (MPa-1) are the fractured coal permeability and compressibility 

respectively. 

Velenje lignite disintegrates rapidly once it loses its moisture content in ambient 

conditions, therefore, it was not possible to determine its post-failure flow 

characteristics through long term stress-permeability experiments. In this study, the 

models were run using a range of kf0 (kf0 = 5k0, 10k0, and 20k0) and Cf (Cf = 0.25, 

0.45, and 0.65) values and the results compared with field observations. 

The following assumptions were made when representing the permeability of mine 

openings and voids: elements representing the gateroads and the excavated 

(including both extracted and caved) coal in an excavation step were assigned with a 

permeability value of 1×10-11 m2. It is rather difficult to accurately define the goaf 

permeability since the goaf is formed of a large number of disordered coal/rock 

fragments. For a detailed investigation on how to predict goaf porosity and 

permeability one can refer to Karacan (2010), whereby fractal scaling in porous 

media is integrated with the principles of fluid flow. Here, a relatively simplified 

assumption was made such that the goaf permeability also follows a stress dependent 
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permeability relationship (Equation 6.3), but with a much higher initial permeability 

(1×10-13 m2). Given the increasing stiffness of goaf material during gradual 

recompaction as explained in Equation 6.1, stress recovery as well as a reduction in 

goaf permeability can be expected, which is updated at every excavation step as 

shown in Figure 6.1. This simplified assumption is justified since the goaf area close 

to the face normally has low pressure and low gas content. Thus, compared with 

other gas emission sources, such as the solid coal face, gas emission from the goaf 

accounts for a relatively small portion of overall gas emission in a longwall district. 

6.3 Preliminary Numerical Experiments  

6.3.1 Grid Resolution along the Face Advance Direction 

The first problem that needed to be addressed was the selection of grid size along the 

face advance direction. A high resolution grid cannot only represent the dynamic 

movement of face advance as detailed as possible, but also would not produce 

accurate prediction of stress and pressure distributions induced by mining. On the 

other hand, a refined grid will inevitably increase the computational time required for 

problem solving.  

 
Figure 6.3: Schematic representation of the model geometry for the grid size assessment. 

As shown in Figure 6.3, a simple model was developed to study the dependency of 

model results on grid size. A 5 m thick coal seam under 5 m thick clay roof was 

simulated. Vertical loading to reproduce the weight caused by a 325 m thick 

overburden was applied at the top of the model domain. The model domain was 100 

m long along its x-axis, which was also assumed as the face advance direction. Seven 
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displacement changes induced by mining. However, the number of computational 

steps used also increases dramatically for scenarios with smaller grid block sizes 

(Figure 6.5 a). As shown in the logarithm plot of cumulative error against grid block 

size (Figure 6.5 b), the order of convergence is close to unit. This suggests increasing 

grid block size by one order of magnitude can linearly amplify the error by the same 

magnitude. 

  
(a)        (b) 

Figure 6.5: (a) The number of computational steps versus grid block size (along the x-axis) required to 
reach equilibrium in the model; (b) Logarithm plot of cumulative error against grid block 
size. 

6.3.2 Determination of Convergence Criteria  

In FLAC3D, mechanical ratio, which is the ratio of maximum unbalanced force to 

average applied grid force, is defined for users to adjust and decide the equilibrium 

states of models. FLAC3D solves equations in an explicit and time-marching scheme, 

and the termination of each run is controlled by checking whether unbalanced forces 

on nodes approach zero. A model in equilibrium suggests that the maximum 

unbalanced force is small compared to the average applied grid force.  
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In order to establish the impact of modelled face advance rate at each time step on 

stress response, a simple numerical experiment was designed using the same model 

presented in Section 6.3.1. In this experiment, each grid block was assigned a 

uniform size of 1×1×1 m, and a 12 m long mine opening, instead of 5 m as in the 

previous section,  was used. The clay layer was assumed to be elastic with the same 

properties listed in Table 6.1. Strain-softening model was assigned to the coal seam 

and its plastic properties used in the model are listed in Table 6.2. Residual strength 

was used once the inelastic strain exceeds 0.001. 

Table 6.2: Plastic properties used in the model. 

Lithology Cohesion 
(MPa) 

Friction angle 
(o) 

Tensile strength 
(MPa) 

Residual cohesion 
(MPa) 

Coal 2.10 23 0.92 0.35 

 

 
Figure 6.7: Illustration of different coal extraction strategies used in the numerical experiments. 

As illustrated in Figure 6.7, the 12 m long mine opening was created by different 

extraction strategies implemented in the numerical experiments. For example, in the 

first scenario, each excavation step only represented 1 m coal extraction per face 

advance and, in total 12, excavation steps were performed sequentially to create the 

12 m long mine opening. Five more scenarios with 2 m, 3 m, 4 m, 6 m, and 12 m 

face advance per excavation step were tested.  
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Due to the density difference between coal and clay, this simplification may have 

slightly overestimated the load on the solid side, however, its impact was marginal 

compared with the stress induced by the entire overburden. 

There are 340,000 elements in the model grid, each measuring 1 m × 5 m × 5 m 

(length × width × height). For seamless two-way coupling, the corresponding flow 

model in ECLIPSE was also assigned exactly the same grid dimensions as the 

geomechanical model (see Figure 6.9 c). 

The selection of grid size in the direction of face advance was based on the 

preliminary numerical experiments conducted in Section 6.3.1. Since the focus of the 

study is the coal seam and gas dynamic responses to face advance, a larger grid size 

was used in the other two directions to save computational resource. 

The key geomechanical parameters used in this study are summarised in Table 6.3. 

Rock elastic and strength properties were obtained from laboratory tests on samples 

taken from exploration boreholes at Coal Mine Velenje. For the post-failure 

behaviour of clay and coal it was assumed that cohesion would be reduced by 83.3% 

when the inelastic strain exceeds 0.001. The Velenje Mining Method ensures a 

relatively high recovery of top coal and leaves a very small portion of coal under the 

clay roof. Therefore, roof goaf was assumed to be occupied mostly by failed clay and 

assigned the post-failure properties of clay.   

Table 6.3:  Rock mechanical and strength properties used in the K. -50/C LTCC panel model (after 
Zavšek, 1993).  

Lithology K 
(GPa) 

G 
(GPa) 

c 
(MPa) 

θ 
(o) 

T0 
(MPa) 

cr 
(MPa) 

Tr 
(MPa) 

Coal 0.90 0.19 2.10 23 0.92 0.35 0.52 
Clay 1.10 0.24 1.90 30 0.92 0.63 0.52 

Roof goaf 0.77 0.17 0.63 30 0.52 0.63 0.52 

*K is the bulk modulus, G is the shear modulus, c is the cohesion, θ is the internal friction angle, T0 is 
the tensile strength, cr is the residual cohesion, and Tr is the residual tensile strength. 

 

The pre-mining horizontal stresses were assumed to be equal and are a result of the 

rock Poisson’s Ratio response to gravity loading, while the vertical stress was 

estimated by computing the overburden weight using an average rock density of 

2,360 kg/m3. The initial stress equilibrium was established in the model before any 

excavation was performed. The boundary conditions of the model were such that it 

was laterally confined and fixed at the base.  
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The reservoir properties used in the flow model were taken from laboratory 

experiments and field measurements carried out at Coal Mine Velenje, and are 

presented in Table 6.4. Both laboratory experiments and field observations have 

shown rapid gas desorption from Velenje lignite, therefore, a relatively high 

diffusion coefficient was assumed.  

A dual porosity model was used to simulate the unique coal structure, whereby coal 

matrix was assumed to be saturated with gas while the gas saturation in the cleat was 

90%. The relative permeability relationship measured by Durucan et al. (2014) for 

the Schwalbach coal with a similar volatile matter content was adopted. Reservoir 

temperature was set as 35 ˚C, which is also the temperature for the measured 

Langmuir parameters. The horizontal wells that are placed to simulate the intake 

gateroad, the longwall face, and the return gateroad were assumed to have a radius of 

2 m and a bottomhole pressure of 90, 85, and 80 kPa, respectively.  

Table 6.4: Reservoir properties used for the modelled LTCC panel K. -50/C. 

Lithology ϕ  
(%) 

Dc 
(m2/day) 

PL 
CO2/CH4 (MPa) 

VL 
CO2/CH4 (m3/t) 

k0  
(×10-15 m2) 

kf0  
(×10-15 m2) 

Coal 10 200 4.7/7.5 50/25 0.2 0.1 
Clay 5 - - - 0.2 0.1 

Roof goaf 30 - - - 30 30 

*ϕ is the porosity, Dc is the diffusion coefficient, PL is the Langmuir pressure, VL is the Langmuir 
volume, k0 is the initial permeability for intact coal, kf0 is the initial permeability for fractured coal. 

 

Figure 6.10: The initial pressure gradient and pre-defined fractured zone around the K. -50/C LTCC 
panel. 

118 | 2 0 2  



Chapter 6 Numerical Modelling of Gas Emissions around LTCC Panels 

Field borehole gas pressure and composition measurements conducted at Coal Mine 

Velenje have shown that, for undisturbed coal seams, the in-situ pore pressure is 

around 2 MPa and the primary component of free gas is CH4 (~70%), while CO2 

dominates (~80%) the adsorbed gas.  The same measurements have also suggested 

that the LTCC panel K.-50/C is more likely to act like a second mining level panel 

due to its part mined out roof. Therefore, the seam gas pressures in the roof goaf, 

mined coal and undisturbed floor coal in the K.-50/C panel coupled model were 

assigned as 0.8, 1.0 and 2.0 MPa respectively. In addition, the predominant gas 

component in the free gas for the mined coal was assumed to be CO2 due to 

overmining stress relief and pressure drawdown.  

Table 6.5: Simulated face advances for K.-50/C LTCC panel from 9th May to 7th Aug 2011. 

Date 
(dd/mm/yy) 

Face 
advance 

(m) 

Date 
(dd/mm/yy) 

Face 
advance 

(m) 

Date 
(dd/mm/yy) 

Face 
advance 

(m) 

Date 
(dd/mm/yy) 

Face 
advance 

(m) 

Date 
(dd/mm/yy) 

Face 
advance 

(m) 

09/05/11 2 28/05/11 0 15/06/11 3 03/07/11 0 21/07/11 0 

10/05/11 5 29/05/11 0 16/06/11 2 04/07/11 2 22/07/11 0 

11/05/11 3 30/05/11 3 17/06/11 2 05/07/11 3 23/07/11 0 

12/05/11 4 31/05/11 2 18/06/11 0 06/07/11 2 24/07/11 0 

13/05/11 5 01/06/11 2 19/06/11 0 07/07/11 3 25/07/11 0 

14/05/11 0 02/06/11 3 20/06/11 3 08/07/11 3 26/07/11 0 

15/05/11 0 03/06/11 2 21/06/11 2 09/07/11 0 27/07/11 0 

16/05/11 3 04/06/11 0 22/06/11 3 10/07/11 0 28/07/11 0 

17/05/11 3 05/06/11 0 23/06/11 3 11/07/11 2 29/07/11 0 

18/05/11 3 06/06/11 3 24/06/11 3 12/07/11 3 30/07/11 0 

19/05/11 2 07/06/11 2 25/06/11 0 13/07/11 3 31/07/11 0 

20/05/11 2 08/06/11 2 26/06/11 0 14/07/11 3 01/08/11 2 

21/05/11 0 09/06/11 3 27/06/11 2 15/07/11 2 02/08/11 3 

22/05/11 0 10/06/11 2 28/06/11 3 16/07/11 0 03/08/11 2 

23/05/11 2 11/06/11 0 29/06/11 2 17/07/11 0 04/08/11 2 

24/05/11 3 12/06/11 0 30/06/11 4 18/07/11 0 05/08/11 2 

25/05/11 2 13/06/11 2 01/07/11 0 19/07/11 0 06/08/11 0 

26/05/11 3 14/06/11 4 02/07/11 0 20/07/11 0 07/08/11 0 

27/05/11 2         

 

Moreover, a fractured zone with enhanced permeability around the LTCC panels also 

needs to be considered. Before running the coupled model, a geomechanical model 
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simulating only the coal extraction at the assumed first mining level was run to 

determine the approximate size of the fractured zone. Geomechanical properties 

listed in Table 6.3 were used and the face advance rate was set as 3 m/day in that 

model. It was found that coal extraction at the first mining level would result in a 

fractured zone extending 20 m into the floor coal. Therefore, the initial pressure 

gradient and gas composition (in the cleat and matrix) in the fractured zone of the 

coupled model were assigned as illustrated in Figure 6.10.  

The face was advancing from right to left at a depth of -350 m, leaving behind the 

face a layer of newly caved goaf (Figure 6.9 b). During geomechanical modelling of 

coal excavation, each excavation step represented the actual face advance achieved 

by the K.-50/C panel on the relevant date (please see Table 6.5). Note that there was 

no production during weekends and over a two-week holiday period which started on 

16th July 2011.  

6.5 Results and Discussion 

The fractured coal elements around the LTCC face on 30th Jun 2011 are shown in 

Figure 6.11. As can be seen, the fractured zone extends 40 m ahead of the coal face 

and 10 to 30 m below the mining level depending on the face advance rate.  

 
Figure 6.11: Fractured zone around the face-line position at 30th Jun 2011 (kf0 = 10k0, Cf = 0.65). 

Vertical stress and pore pressure profiles at different depths along A-A’ (as shown in 

Figure 6.11) with respect to distance from the face-line on 9 May 2011, 16 May 
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2011, 30 May 2011 and 13 Jun 2011 are plotted in Figures 6.12 and 6.13. On these 

dates, face had advanced 2m, 22 m, 47 m, and 70 m, respectively, from the face 

starting position in the model. Note that these profiles are plotted along a vertical 

section below a mined out zone or previously caved goaf (Figure 4.8). The figures 

show that modelled stress and pore pressure profiles stabilise after 30 May 2011. The 

figures show that, at K.-50/C mining horizon, a notable stress relief and pore 

pressure drop induced by fracturing of the coal seam is observed within 40 m ahead 

of the face-line. Abutment stress at mining level and roof coal peaks at around 40 m 

ahead of the face-line but is not as notable in the floor coal except for the fractured 

zone within 20 m of the mining horizon. Pressure profiles at and above the K.-50/C 

mining level present the most dramatic pressure decline, which is believed to be the 

main source for gas emissions at the face. Pressure relief at floor coal also confirms 

its contribution to overall gas emissions, however, this effect becomes weakened 

with an increase in burial depth.  

 
Figure 6.12: Evolution of stress profiles with respect to distance from the face-line (kf0 =10 k0, Cf = 

0.65). 
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The evolution of pressure contours during face advances is shown in Figure 6.14. A 

40 m pressure relief zone can be seen in front of the face-line, which moves along 

with the advance of the coal face. The simulated stress, pressure, and fractured zone 

distributions generally agree well with field observations at Coal Mine Velenje. The 

model findings also confirm the conceptual designs presented in Section 4.5.2. 

6.5.1 The Effect of Coal Production on Permeability around Longwall Top 
Coal Caving Faces 

Figure 6.15 illustrates vertical permeability distribution around the K.-50/C LTCC 

face with respect to distance from the face-line. In order to cover the wide range of 

permeability changes experienced, the ratio of new to initial permeability is plotted 

in log scale in these figures. Five cross-sections of permeability contours at different 

distances from the face-line on 30th Jun 2011 (when the face had advanced 106 

metres from the face starting position in the model) are shown in this figure. The 

most significant permeability enhancement, which is about two orders of magnitude, 

is found to be above the K.-50/C mining level 10 metres ahead of the face-line 

(Figure 6.15 c). In all cases, permeability in the floor coal also shows an increasing 

trend, and note that the largest magnitude of increase can be found in an area 15~20 

m below the current mining level. Permeability in the recompacted goaf elements 

declines as the face moves away as indicated in Figures 6.15 (e) and (f). 

The horizontal permeability distribution around the LTCC face is illustrated in 

Figure 6.16. The abutment stresses create an arc of reduced permeability at a 

distance from the face-line Figures 6.16 (b) and (c). On the other hand, nearly three 

orders of permeability enhancement is observed in the near face fracturing zone. A 

notable increase in floor coal horizontal permeability can also be observed in an area 

directly below the face, and the degree of enhancement varies with burial depth.   
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(a) Legend and crossectional plane positions       (b) 10 m above the mining level (Plane A) 

 
 (c) the mining level (Plane B)  (d) 10 m below the mining level (Plane C) 

 
(e) 20 m below the mining level (Plane D)  (f) 30 m below the mining level (Plane E) 

Figure 6.16: Plan views illustrating the  distribution of horizontal permeabilities around the LTCC 
face, log(kx/kx0) (kf0 = 10k0 and Cf = 0.65). 

6.5.2 Dynamic Effects of Face Advance on Stress, Pore Pressure and 
Permeability 

One particular floor coal element at -350 m depth (or 10 metres below the working 

horizon) in the centre of the model has been selected as a monitoring element to 

record stress, pore pressure and permeability changes with respect to the face 
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advance at K.-50/C LTCC panel. As shown in Figure 6.17, the changes in 

permeability can be divided into three stages, corresponding to the ‘abutment – 

fracturing – recovery’ zones in the stress profile depicted in Figure 6.2.  

 
Figure 6.17: Stress, pressure, and permeability changes with respect to distance from the face-line (kf0 

= 10k0, Cf = 0.65). 

Coupled geomechanical and flow modelling has shown that, in the first stage, as the 

face advanced from 100 m to 40 m towards the monitoring element, the abutment 

stress on this element increased steadily, and was accompanied by a reduction in the 

horizontal permeability. The second stage saw a steady drop/rise in the 

stress/permeability levels as a result of coal failure and fracturing as the face 

advanced from 40 to 0 m towards the monitoring element. After that, when the coal 

face moved past the monitored element, the vertical stress started building up with 

time and recovered to the level of in-situ stress due to the recompaction of goaf 

above. In the third stage, although the permeability also experienced more than one 

order of magnitude reduction as a consequence of goaf recompaction its value was 

still much higher than the initial value of intact coal due to fracturing. As Figure 6.17 

illustrates, the pore pressure at this monitoring element also responded to the changes 

in horizontal permeability and dropped from 1.27 MPa to 0.7 MPa in the fractured 

zone. The simulated residual pore pressure of 0.7 MPa is also consistent with 

measured field gas pressure at lower level panels which have experienced pressure 

relief.  
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Figure 6.18: The effect of initial fractured coal permeability (kf0) on total gas emission rate (Cf = 0.65). 

 
Figure 6.19: The effect of fractured coal compressibility coefficient (Cf ) on total gas emission rate (kf0 

= 10 k0). 

  
Figure 6.20: A sensitivity plot showing the impact of Cf and kf0 on overall gas emissions. 
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Figures 6.18 and 6.19 show the effect of initial fracture permeability (kf0) and 

fractured coal compressibility coefficient (Cf) on overall gas emission rate, 

respectively. It is not surprising that increased initial fracture permeability shifts the 

entire gas emission curve upwards. On the other hand, the increased fractured coal 

compressibility coefficient mostly affects the peak gas emissions. The same 

observation is presented in the sensitivity plot shown in Figure 6.20, which uses the 

model results obtained with kf0 = 10 k0 and Cf = 0.65 as the benchmark. These two 

parameters are considered as the two most uncertain inputs that can largely affect the 

gas emission modelling output. Further research should be prioritised to obtain more 

accurate estimation of these two values.  

6.5.3 Comparison between the Simulated and Measured Gas Emission Data 
at Longwall Panel K.-50/C  

The mine ventilation and gas monitoring data collected by the sensors illustrated in 

Figure 6.9 (a) were used to compare the predicted gas emission rates with the 

measured values. Here, the total flow rate of gas predicted by the compositional 

simulator represents the CO2/CH4 mixture presented in Figures 6.17 to 6.23. As 

illustrated in Figure 6.21, the best-match was obtained with kf0=10k0 and Cf=0.65. It 

is believed that the rounded face advance rate (from 3.6 m/day to 4 m/day) caused 

the significant overestimate on 30th June 2011. 

 
Figure 6.21: Comparison of predicted and monitored total gas emission rate and cumulative emission 

volume over the modelling period (kf0 = 10k0, Cf = 0.65). 
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Figure 6.21 also shows that the cumulative gas emission predicted during the 

monitoring period  is in good agreement with the monitored data until the week the 

mine experienced an unusually increased gas emission episode which affected 

production at the face.  

As shown in Figure 6.21, the most notable mismatch between the simulated and 

measured gas emission rates is during the week with excessive gas emissions (11th 

July to 17th July, 2011). As discussed earlier in Section 5.4.5, a relatively high 

strength xylite-rich zone forming a barrier in front of a low strength high gas content 

detritic zone detected by both microseismic monitoring and seismic tomography may 

be responsible for the excessive gas emissions at Coal Mine Velenje. However, since 

the model assumed a homogeneous coal seam, the simulated gas emission rates were 

not able to capture the behaviour during this period.  

 
Figure 6.22: Comparison of field monitored and simulated CO2 concentrations in the emitted gas (kf0 

= 10k0, Cf = 0.65). 

Figure 6.22 compares the simulated CO2 concentration in emitted gas with the 

measured concentrations, which generally captures its trend and matches the absolute 

values of the measured data reasonably well.  

6.5.4 Sources of Gas Emission at Longwall Top Coal Caving Panels 

In order to identify the sources of all gas emissions at LTCC panel K.-50/C, the 

origin of gas released in to each gateroad and the face was tracked over the 

simulation period. The flow rates of gas migrated from the mined, floor coal and roof 
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goaf are plotted in Figure 6.23 (a). In addition, CO2 concentration in the gas emitted 

from these sources is illustrated Figure 6.23 (b). As illustrated by this figure, the rate 

of gas emission from the mined coal is strongly affected by the coal face advance. In 

contrast, floor coal and roof goaf act as a constant and steady gas source accounting 

for a considerable part of the overall gas emissions, which is approximately 50% and 

consistent with the mass balance analysis reported in Table 4.3. This observation 

may also explain the difference between the baseline and dynamic gas emissions 

referred to earlier in Section 4.4. The dynamic gas emissions are closely related to 

coal extraction activities, while baseline gas is a mixture of emissions from all the 

above mentioned sources. It is also clear from Figure 6.23 (b) that intense fracturing 

of coal and a significant pressure drop experienced at the face results in the release of 

a large amount of CO2, which is much strongly held in the coal matrix. 

 
(a)            (b)  

Figure 6.23: Sources of gas emission at LTCC panel K.-50/C: (a) gas flow rates from different 
sources, and (b) CO2 concentration in the emitted gas (kf0 = 10k0, Cf = 0.65). 

6.5.5 Comparison Between One-way Coupling and Two-way Coupling 

In addition to the two-way coupling methodology implemented throughout the 

research described here, a one-way coupling simulation without considering the 

feedback of pore pressure from the gas flow modelling to the geomechanical 

modelling was also conducted to compare the two approaches. Model set-up and 

procedures used in the one-way coupling runs were exactly the same as the two-way 

coupling approach, except that the pore pressures were not considered in the 

geomechanical simulations. A comparison between the results of one-way coupling 

and two-way coupling runs, including stress, pressure, and permeability 

distributions, is presented in Figure 6.24.   
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(a)                (b)  

Figure 6.24: Comparison between one-way coupling and two-way coupling results: (a) Stress and 
pressure regimes at K.-50/C mining level; (b) Permeabilities at K.-50/C mining level 
(kf0 = 10k0 and Cf = 0.65). 

The importance of developing a two-way coupling approach in modelling gas 

emissions can be clearly seen. Without considering the impact of pore pressure 

depletion during coal extraction, mining induced fractured zone ahead of the face, 

which is ~40 m as suggested by field observations, is underestimated by the one-way 

coupling approach (~30 m). Furthermore, one-way coupled model seems to predict a 

much stronger effect on coal permeability due to abutment stresses in the far-field or 

coal fracturing in the near face area.  

6.6 Conclusions  

A two-way sequential coupling approach between a geomechanical and a 

compositional reservoir simulator for the modelling of mixed gas emissions around a 

LTCC panel was developed and implemented at Coal Mine Velenje. Permeability 

and pore pressure are used as coupling parameters between the two simulators at 

each longwall excavation step, enabling the representation of interactive physics 

between geomechanics and gas flow. A stress-permeability relationship for intact 

and post-failure coal and rock was implemented.  

The developed coupling approach has been successfully applied to the K.-50/C 

LTCC panel at Coal Mine Velenje, which also was the site of most comprehensive 

data monitoring campaign during the project. By constructing a geomechanical and a 

flow model for longwall panel K.-50/C, a total of 143 m coal face advance was 

simulated by following the mining schedule at the mine. Model findings have shown 

that the modelling method implemented can reproduce the dynamic changes of 
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stresses and gas pressure around a LTCC face and predict the total gas emissions 

accurately.  

Furthermore, model results have clearly shown the permeability enhancement and 

gas mobilisation zones around the panel, which can be the target zones for gas 

drainage boreholes. For example, as pre-drainage of the mined seam in the first 

and/or upper mining levels is not likely to be possible due to low permeability of the 

coal seam, floor drainage boreholes drilled at an angle towards the goaf area below 

the mining level could be effective in pre-draining the next LTCC level below the 

current mining horizon. The results have also shown that there is a zone of 

permeability enhancement ahead of the face, especially in the top coal section which 

can be targeted by the drainage boreholes. Based on these analyses, Coal Mine 

Velenje launched a pilot drainage trial in the first quarter of 2015 and started 

targeting these zones for gas drainage monitoring.  

It is also worth noting that the developed approach is not limited to thick/ultra-thick 

mining and gas emissions around thinner seams with mechanised conventional 

longwall layouts can also be successfully modelled using this technique. In addition, 

with some advanced knowledge of the existence of geological and structural 

anomalies, risk assessment of mining hazards such as uncontrolled gas emissions or 

outbursts can also be performed.  

Gas outbursts or uncontrolled gas emissions also involve the interactive physics 

between geomechanics and gas flow. The two-way sequential coupling approach 

developed in this research can be readily applied to the modelling of this violent 

mining hazard, which will be discussed in detail in the next chapter.  
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Chapter 7 Numerical Modelling of Coal and Gas 
Outbursts  

7.1 Introduction  

As discussed in previous Chapters, numerical modelling research into outburst 

conditions is relatively new and needs further work to improve the techniques 

employed. This Chapter presents the application of the two-way sequential coupling 

approach developed to simulate two types of well-recorded outbursts, more 

specifically, the gas pocket initiated outbursts and the dynamic outbursts. Note that 

the occurrence of outbursts is not limited to thick seams, and a significantly large 

number of field observations and outburst cases are reported in thin seam mining. 

Furthermore, development headings, which are common to both thick and thin seam 

mining, are reported to be the sites with most frequent outburst occurrences in 

underground coal mining (Beamish and Crosdale, 1998). Therefore, outburst 

modelling reported in this chapter aims at studying outbursts in development 

headings, and not restricted to thick seam mining only.  

The first part of this chapter presents a general methodology developed to model 

outbursts, building upon the two-way sequential coupling approach described earlier 

in Chapter 6. An algorithm to characterise the ejection of outburst elements was 

developed and incorporated into the coupling approach. Next, the upgraded two-way 

coupling approach has been applied to simulate two types of outbursts experienced in 
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an outburst-prone coal field in China. Simulation results are used as an aid to explain 

the field observations made before the occurrence of outbursts.  

7.2 Development of an Outburst Modelling Methodology 

7.2.1 Fundamental Concepts  

The onset of an outburst is a result of the domino effect of catastrophic coal failure, 

and the whole outburst process can be characterised by the initiation, development, 

and die-out stages. During the initiation stage, the plastic deformation of yielded coal 

occurs in a quasi-static manner. Following this, a state transfer of the coal/rock/gas 

system from quasi-static to dynamic state suddenly takes place in the development 

stage. With the dissipation of the elastic strain energy stored in rock/coal and the 

energy contribution by compressed gas, the coal/rock/gas system returns into a static 

state.  

In the initiation stage, the creation of mine openings causes stress redistribution, 

which may result in shear/tensile failure in the roof/floor, as well as the coal seam 

being mined. Furthermore, a pressure gradient is created between the mine opening 

at the atmospheric pressure and surrounding coal at a higher pressure (Figure 7.1). 

An outburst may occur if the strength of failed coal cannot withstand the pressure 

driven force.  

 
(a) The initial state        (b) After creating a mine opening at its right hand side 

Figure 7.1:  Changes to a coal element after a mine opening has been created at its right hand side. 

In the development stage, gas pressure and mining stresses jointly contribute to 

fracture initiation and propagation. Highly fragmented rock/coal adjacent to mine 

openings can be pushed into an open space by high velocity gas flow. This complex 

process involves a two-phase flow of particles and gas, as well as the interactions 

between these two media.  
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In the die-out stage, an outburst will cease as the pressure gradient can no longer 

break and eject solid coal. A new equilibrium of pressure and stress is established in 

both free space and the solid coal. The intensity of an outburst depends on the 

volume of gas and the amount of coal that can be released into the mine opening over 

the duration of an outburst. 

Therefore, to simulate the initiation stage of an outburst, dynamic stress and pore 

pressure changes around a mine opening need to be simulated first. Permeability, 

which is stress depedent and determines the pressure distribution around a mine 

opening, also needs to be considered. Furthermore, strain softening behaviour of coal 

needs to be pre-defined as yield generally degrades the strength of coal, as well as its 

ability to resist a pressure driven force. It is believed that all these key physics can be 

captured by the two-way coupling methodology developed in Chapter 6.  

However, modelling of the development and die-out stages of an outburst is not 

feasible in the current simulators since this requires the simulation of two-phase 

turbulent flow of gases and solid particles. Given that the main objective of this 

research was to establish an understanding of the gas outburst mechanism and their 

early detection, accurate modelling of the initiation stage of outbursts was the 

primary target. Furthermore, for the post-initiation stages, based on certain 

assumptions, the author attempted to calculate the volume of the cavity created by an 

outburst to estimate the intensity of an outburst.  

7.2.2 Criterion and Model Development for Coal Ejection in Coal and Gas 
Outbursts 

In order to model coal and/or gas outbursts, the first problem to be addressed is to 

define a criterion in order to detect the outburst onset. Since it is well-recognised that 

an outburst is induced by a combined effect of stress, pressure gradient, and coal 

strength, the outburst criterion proposed here attempts to cover all of these three 

factors.  

In this research, an outburst element is defined as an element which has the potential 

to be detached from its original grid. More specifically, an outburst element which is 

adjacent to an open space is deemed to be ejected if the pore pressure gradient 

towards the opening (which is at atmospheric pressure) exceeds the coal cohesion. 

Coal cohesion can be pre-defined as a function of plastic strain, which is determined 
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by the stress regime. As illustrated in Figure 7.2, the red element will be “ejected” 

from the grid if Equation 7.1 is satisfied and there is an empty space along the 

ejection direction:  

2 2 2( ) ( ) ( ) ( ) 0p
x y z c

P P PL L L g c
x y z

ρ ε∂ ∂ ∂
⋅ + ⋅ + ⋅ + ⋅ + − >

∂ ∂ ∂
    7.1 

where, Lx (m), Ly (m), and Lz (m)  are the size of a coal element along the x-, y-, and 

z-axes respectively, P (Pa) is the gas pressure, cρ  (kg/m3) is the coal density, g 

(m/s2) is the gravitational acceleration, and c (Pa) is the coal cohesion when its shear 

plastic strain is pε  (dimensionless). 

 
Figure 7.2: A schematic representation of the criterion for coal element ejection in outburst modelling. 

7.2.3 Modelling of Outburst Development and Die-out Stages in a 
Development Heading 

A period of roadway drivage is simulated to replicate the dynamic and progressive 

advance of a development heading. In FLAC3D, the development of a roadway is 

modelled by removing coal elements that are to be excavated by a roadheader. 

Similar to the modelling of longwall face advance, the temporal nature of the drivage 

is represented by a series of excavation steps, and each excavation step represents a 

period of time that can be modelled in the fluid simulator.  

In parallel with the geomechanical modelling in FLAC3D, a reservoir model with the 

same mesh is developed in ECLIPSE to obtain the pore pressure distribution around 

the development heading. The modelling of the heading is achieved by assigning a 
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horizontal well with ventilation pressure to the elements representing the heading. 

The length of the horizontal well is extended along with the development of the 

roadway after every excavation step. 

The two-way sequential coupling procedure between FLAC3D and ECLIPSE 

illustrated in Figure 6.1 is used in outburst modelling. A routine written in the built-

in fish code in FLAC3D to detect the outburst elements is added to the coupling 

script. After each coal excavation step, this routine is performed to check if the user-

defined outburst criterion has been violated.  

Once the outburst criterion has been triggered, the modelling of an outburst moves 

from the initiation stage to the development stage. In this stage, only geomechanical 

simulator is used. This is because gas release is mostly turbulent flow and the 

duration of an outburst is normally too short for the reservoir model to respond.  

In FLAC3D, the “ejected” elements are assigned with null properties and the 

simulation is re-run until a new equilibrium state is reached. Then the routine to 

detect outburst elements is performed again to check if there are any new elements 

qualified as outburst elements. This is an iterative process as the ejection of coal 

elements could create a larger cavity and thus more coal elements would be exposed 

to the cavity at a lower pressure. And this, in turn, may result in the ejection of more 

elements.  

With the ejection of coal element(s) and the rapid release of the gas contained in the 

cavity, the cavity gas pressure is likely to experience dynamic changes depending on 

the volume of gas released and the volume of connected void space, including the 

roadways. For each ejected coal element(s) with mass m (kg), the volume of released 

gas (Vgas, m3) can be calculated from the Langmuir isotherm:  

coal

cavity

P

L
gas

L P

V PV m
P P

 ⋅
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    7.2 

where, Pcoal (Pa) is the pore pressure of a solid coal element before being ejected. 

The cavity pressure Pcavity (Pa) is the mean gas pressure in the connected void space 

prior to the ejection of coal element(s). The post-ejection cavity pressure can be 
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estimated from the Boyle’s law (Equation 7.3) assuming that the equilibration of gas 

pressure is quickly established.  

cavity gas

sc void

P V
P V

=         7.3 

where, Vvoid (m3) is assumed to be the cavity volume together with the volume of 

developed roadway, and Psc (Pa) is the atmospheric pressure which is 101,325 Pa.  

After the start of the outburst development stage, a distinct pressure difference is 

established between the solid coal face and the outburst cavity, and this pressure 

difference provides the driving force for the domino effect of an outburst. The 

pressure distribution in solid coal is assumed to be unchanged after the triggering of 

an outburst, since compared with the time required for fluid transport in porosity 

media, the duration of an instantaneous outburst is almost negligible. On the other 

hand, cavity pressure, which can affect the pressure gradient in outburst criterion, is 

updated after each time the coal is ejected.  

In reality, the die-out of an outburst is normally decided by the size of geological 

structures and the amount of gas energy stored in, which are site-specific and 

difficult to be quantified. Therefore, here, it is assumed that a coal and gas outburst 

will cease when there are no more elements in the solid coal which satisfy the 

ejection criterion.  

7.3 Coal and Gas Outbursts in the Pingdingshan Coalfield 

7.3.1 A Brief Introduction to the Pingdingshan Coalfield  

The Pingdingshan coalfield contains the largest coal deposit in the Henan Province, 

central China (Figures 7.3 and 7.4), and suffers the most from catastrophic outbursts. 

Most of the Pingdingshan coalfield is mined by Pingmei Shenma Energy and 

Chemical Group (PCG). PCG currently operates 36 coal mines, producing 50 million 

tonnes coal per year with over 70 % of the coal mined from outburst-prone coal 

seams. The first outburst in the coalfields was reported in 1984. Since then, a total of 

156 outbursts have been recorded in PCG mines. The average amount of ejected coal 

and emitted gas in each outburst is 117.2 tonnes and 8633.6 m3, respectively. 

138 | 2 0 2  



Chapter 7 Numerical Modelling of Coal and Gas Outbursts 

     
Figure 7.3: The Henan Province and the city of Pingdingshan in China. 

 
Figure 7.4: Pingdingshan coal field and the location of Mine No 8. 

Amongst all the minable coal seams in PCG, coal seam groups B, C, and D are 

particularly outburst prone, accounting for approximately 87% of the recorded 

incidents. This is probably due to the fact that these coal seams are made up of soft 

coal with extremely low permeability (coal permeabilities as low as 1×10-19 ~ 

6.1×10-18 m2 have been reported in some regions). In addition, the existence of 

relatively strong roofs may also have contributed to the frequent occurrence of 

outbursts (Lama and Bodziony, 1998).  

Table 7.1:  Average gas contents of coal seams in No.8 coal mine, PCG. 

Coal seam D5-6 C8 C9-10 B15 B16-17 

Gas content (m3/t) 5.2 6.16 17.4 22 20 

 

 

No.8 mine 
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Methane contributes to approximately 90% of overall gas emissions. Thus, it is no 

surprise that the emitted gas in outbursts is mainly methane. Coal seam gas pressure 

and gas content in PCG mines varies with depth of burial and is also affected to a 

different degree by previous mining. The maximum gas pressure is reported to be 6.6 

MPa. Table 7.1 presents the average gas content of coal seams (from top to bottom) 

in mine No.8. 

7.3.2 Coal and Gas Outbursts in PCG Mines  

A fractured coal band, or structurally referred to as a bedding shear zone, has been 

considered as the most common geological structure that is associated with outbursts 

in group C coal seam (noted as Wu coal seam by Li (2001)). In this type of bedding 

shear zone, coal tends to be highly deformed and a rapid variation of thickness is 

normally observed. Field experience also suggests that areas with increased thickness 

of the bedding shear zone are susceptible to outbursts. Most intensive coal and gas 

outbursts in PCG are induced by the thickening of bedding shear zone, which is 

locally known as ‘the thickening of soft coal’. This may be attributed to the decrease 

of coal strength and the increase of gas storage capacity in the bedding shear zone. It 

has also been suggested by Li (2001) that compressive structures existing in the 

bedding shear zone are normally low permeability or even impermeable (see Figure 

3.8). These compressive structures may act as a tectonic intrusion, which can block 

gas migration and yield a dramatic pressure gradient between the bedding shear zone 

and a mine opening.  

Once initiated, catastrophic failure may occur in the bedding zone due to its very soft 

nature. Compressed high pressure gas can easily push the highly fractured and even 

powder-like coal in the bedding shear zone towards the mine opening, which can 

further destabilise the solid coal face. On the other hand, the ejected coal will soon 

lose its retained gas and contribute to overall gas emissions. Therefore, this type of 

outbursts, characterised by the gas pocket theory, always involve the emission of gas 

as well as the ejection of coal particles. 

Outbursts originating from adjacent gassy seams, particularly floor coal seams, have 

also been observed in PCG mines. These can be better described by the dynamic 

theory since it is closely related to mining induced fracturing in the surrounding 

strata.  
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One of the techniques employed in PCG mines for outburst protection is so called 

“Protective Mining”, whereby an over-/under-lying less gassy seam is first mined so 

that a gassy seam can be pre-degassed to reduce the risk of outburst, as illustrated in 

Figure 3.10. However, driving longwall entries in protection seams in PCG mines 

occasionally encounters serious gas emission issues where the expected release of 

gas from the protected seam is sometimes hindered by spatial variations in coal 

strength and/or thickness and lead to floor gas accumulations. When the floor coal 

eventually fails, a rapid release of the accumulated gas may occur, leading to 

(predominantly) gas outburst (the amount of ejected rock/coal, if present, is less than 

100 tonnes).  

7.4 Modelling of Coal and Gas Outbursts Induced by a Bedding 
Shear Zone during Roadway Development  

7.4.1 Model Set-up  

The model developed for a large scale outburst, which involves the violent ejection 

of both coal and gas, aimed at simulating the behaviour of Seam C in Pingdingshan 

coalfield. As one of the C group coal seams, C9-10 is considered as an outburst-prone 

coal seam since it is relatively thick, which ranges from 4.6 ~5.8 m, and contains 

widespread bedding shear zones (Li, 2001). Therefore, a roadway heading driven in 

C9-10 coal seam has been selected as the site for this mode of outburst.  

The immediate roof of the coal seam C9-10 is sandy mudstone with a thickness of 8.0

～13.0 m. The main roof rock is medium strength sandstone. The immediate floor is 

mudstone containing plant roots and fossils, and easily swells when in contact with 

water. Below the immediate floor is a layer of medium strength mudstone followed 

by sandstone. A schematic representation of the simplified stratigraphy used in the 

model is shown in Figure 7.5. 
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Figure 7.5: General stratigraphy used for the coal and gas outburst model. 

As shown in Figure 7.6, the physical dimensions of the model are 50×30×50 m 

(length×width×height) and a uniform size of 1×1×1 m (length×width×height) is used 

for each element. The simulated C9-10 coal seam has a thickness of 5 m and its floor 

depth is -460 m. The roadway has a cross-section of 9 m2 (3 m wide × 3 m high). 

Roadway excavation starts from the left side boundary and advances along the floor 

of this coal seam towards the opposite side. Each excavation step represents 1 m 

advance of the development heading. The simulated drivage rate is set at 10 m/day, 

thus the required fluid simulation time in ECLIPSE is 0.1 day following the reaching 

of geomechanical equilibrium at each excavation step. Within each excavation step, 

four iterations of the coupling parameters are carried out between the two simulators 

to improve coupling tightness. The bottom-hole pressure for the horizontal well 

representing this roadway is assigned as the atmospheric pressure (0.1 MPa).  

A 20×30×10 m (length×width×height) bedding shear zone was assigned to this 

model, which covers 20 m wide section of the coal seam along the x-axis as shown 

in Figure 7.6. The coal seam thickness in this zone was increased to 10 m (from -463 

to -453m vertically) as suggested by Li (2001). A number of geomechanical and 

reservoir input parameters used here are also different from the other parts of C9-10 

coal seam (Tables 7.2 and 7.3). Within this bedding shear zone, a three-metre long 

low permeability area (from 20 to 23 m along the x-axis) corresponding to a tectonic 

intrusion is also defined.  
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Figure 7.6: Model geometry for the coal and gas outburst induced by a bedding shear zone. 

Table 7.2: Rock mechanical properties of coals and coal measure rocks at PCG. 

Lithology K 
(GPa) 

G 
(GPa) 

c 
(MPa) 

θ 
(o) 

T0 
(MPa) 

cr 
(MPa) 

Coal C9-10 0.86 0.40 1.5 22 0.03 0.50 
Bedding Shear Zone 0.86 0.40 0.6 22 0.01 0.20 
Coal B15 1.25 0.60 2.0 25 0.50 0.60 
Inter-bedding layer 2.00 0.92 2.0 23 0.20 0.20 
Coal B16-17 0.86 0.40 0.8 23 0.03 0.24 
Poor Mudstone 2.00 0.92 4.0 26 2.00 0.40 
Average Mudstone 2.90 1.35 5.0 32 2.50 0.50 
Good Mudstone 4.00 1.83 7.0 35 3.00 0.70 
Poor Sandstone 5.00 2.31 8.0 38 3.50 0.80 
Average Sandstone 8.00 3.70 10.0 40 4.00 1.00 
Good Sandstone 10.00 4.62 12.0 45 5.00 1.20 

*K is bulk modulus, G is shear modulus, c is cohesion, θ is internal friction angle, T0 is tensile 
strength, and cr is residual cohesion. 

The maximum principal stress in Pingdingshan coal field is mostly due to tectonic 

stresses and can range from 15 MPa at a depth of -420 m to 28.6 MPa at a depth of -

657 m (Han et al., 2012). Considering the origin of the modelled bedding shear zone, 

the maximum principal stress is assumed to be parallel to the x-axis. Based upon the 

in-situ stress measurement conducted by Han et al (2012), the initial stresses applied 

at the depth of C9-10 coal seam were 16 MPa, 10 MPa, and 13 MPa in x-, y-, and z-

axes, respectively. The boundary conditions of the model were such that it is laterally 

confined and the model base is fixed. 

The constitutive model applied here is the strain-softening model in FLAC3D. The 

post-failure behaviour of coal measure rocks is represented by the weakening of 
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cohesion with respect to inelastic strain. It is assumed that the residual cohesion is 

10% of that of intact rock once the inelastic strain has exceeded 1 millistrain.  

Rock elastic and strength properties used in the model were obtained from the 

laboratory experiments on samples taken from exploration boreholes at PCG. Coal in 

the bedding shear zone has been pre-defined as fractured coal with a reduced 

cohesion of 0.6 MPa. To emphasise the strength contrast between the soft coal in the 

bedding shear zone and the rest of C9-10 seam, a much higher residual cohesion (0.5 

MPa) has been assigned to the rest of C9-10 seam. Table 7.2 summaries the rock 

mechanical properties of the coals and coal measure rocks in PCG mines.  

Table 7.3: Reservoir properties of coals and coal measure rocks in PCG. 

Lithology ϕ 
(%) 

Dc  
(m2/day) 

P 
(MPa) 

PL 
(MPa) 

VL 
(m3/kg) 

k0, horizontal/vertical 
(×10-15 m2) 

Coal C9-10 2.0 100 1.8 2.1 0.023 0.50/0.20 
Bedding shear zone 2.0 100 1.8 2.0 0.055 0.010/0.007* 
Coal B15 1.8 100 1.0 2.9 0.022 0.10/0.05 
Coal B16-17 1.5 1000 2.5 2.6 0.020 0.10/0.07 
Inter-bedding layer 1.0 -- -- -- -- 0.010/0.005 
Other coal measure 
rocks 1.0 -- -- -- -- 1.0/0.6 

*Permeability used for the tectonic intrusion is horizontally 1×10-18 m2 and vertically 7×10-19 m2. ϕ is 
porosity, Dc is diffusion coefficient, P is initial pressure, PL is Langmuir pressure, VL is Langmuir 
volume, k0 is initial permeability for intact coal.  

Reservoir properties used are collected and adopted from laboratory experiments and 

field measurements as summarised in Table 7.3. Since the primary gas emitted from 

the PCG coal is methane, a single component gas model was considered. A dual 

porosity model was applied to simulate the unique coal structure, whereby coal 

matrix was assumed to be saturated with gas while the gas saturation in coal cleats 

was 66.7%. The relative permeability relationship measured by Durucan et al. (2014) 

for the Tupton coal seam from Derbyshire UK, with a similar volatile matter content, 

was adopted. Reservoir temperature was set as 23 ˚C. Low permeability was 

assigned to the bedding shear zone and even lower for the tectonic intrusion. The 

initial permeability (kf0) for fractured coal/rock was assumed to be ten times of that 

for intact coal (k0). Compressibility factors for intact coal (C) and fractured coal (Cf) 

were selected as 0.5 and 0.3, respectively. 
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7.4.2 Model Results 

Figure 7.7 presents a plan view of pressure distribution modelled around the 

development heading in Seam C9-10 at -458 m level in PCG. The figure illustrates the 

evolution of pore pressure with respect to the advance of the development heading 

during the initiation stage of an outburst. It should be noted that in this figure, 

pressure contours indicate the pressure redistribution after the pervious excavation 

step, and the effects of the current excavation step on pressure changes have not yet 

been updated.  

     
(a) Legend and the cutting plane position  (b) Excavation step 6 

    
  (c)  Excavation step 10     (d) Excavation step 14 

    
 (e)  Excavation step 19    (f) Excavation step 20 

Figure 7.7: Pressure evolution as the development heading advances towards the bedding 
shear zone (gas pocket type) scenario (unit: Pa). 
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A relatively stable pressure change can be observed in the first 17 excavation steps. 

Pressure redistribution seems to follow a certain pattern, whereby the dramatic 

pressure drop occurs 3 m ahead of the heading. This is probably because the coal 

within 3 m of the heading is highly fractured and permeable. As the development 

heading approaches the bedding shear zone, the pressure gradient right ahead of the 

heading becomes increasingly high due to the existence of the low permeability 

tectonic intrusion. After the 20th excavation step, the heading starts to come into 

contact with the soft coal in the bedding shear zone, where an elevated pressure 

gradient acts on the low cohesion soft coal. An outburst would be triggered by the 

coal extraction in this excavation step since the pressure gradient driven force could 

easily break and eject the low strength solid coal ahead of the heading.  

 
Figure 7.8: Cavity expansion in an outburst induced by a bedding shear zone. 

Following the initiation stage, the post-initiation stage of this outburst was modelled 

following the methodology described in Section 7.2.3. A dome-shaped outburst 

cavity resulting from the modelled outburst is plotted in Figure 7.8. This is broadly 

consistent with previous studies that the cavity of an outburst is normally a dome or 

pear shaped (Shepherd et al., 1981; Singh, 1984; Li, 2001). The predicted maximum 

length, width, and height of the outburst cavity are 15 m, 7 m, and 10 m, 

respectively. According to the model, 602.3 tonnes of coal and 9,436 m3 methane in 

total would be released at this stage of the outburst. These numbers are reasonable 

when compared to the recorded outburst cases occurred in group C coal seams at 

PCG. It has been reported that abnormal gas emission rates (gas emissions 
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dramatically increase or decrease) were occasionally observed prior to most of the 

intensive outbursts at PCG. Thus the significant changes in gas emissions in 

development headings may suggest the initiation of an outburst. To confirm this 

observation, the volume of gas emissions over 20 excavation steps is plotted in 

Figure 7.9. Note that gas emission volume at the 20th excavation step is not a 

simulation result from ECLIPSE, but calculated based on the algorithm described in 

Section 7.2.3. 

 
Figure 7.9: Average gas emission volumes during each excavation step as the development heading 

advances. 

As can be seen in Figure 7.9, the predicted evolution of the emitted gas volume over 

20 excavation steps shows a sharp increase following the onset of outburst after the 

19th excavation step (9,500 m3 vs. ~450 m3 during the previous steps), which is 

consistent with the field observations. This is believed to be caused by the increase 

of exposed coal surface with roadway development. The sudden drop in gas 

emissions between the 17th and 19th excavation steps is due to the presence of low 

permeability tectonic intrusion and may also suggest the pre-initiation of an outburst. 

Following this, a sharp increase in gas emissions is observed as a result of the 

outburst onset. 
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7.5 Modelling of Gas Outbursts Induced by an underlying Gassy 
Seam during Roadway Development  

7.5.1 Model Set-up 

This model was developed to simulate floor outbursts (or known as ‘sudden 

emission’ in the UK) which involve sudden release of gas only. As mentioned 

earlier, protective mining is currently being employed in group B coal seams of PCG 

collieries, e.g., Seam B15 is first mined to improve the degassing of underlying seam 

B16-17. Gas bubbling from the B16-17 coal seam is often observed when mining in B15 

coal seam. Therefore, a development heading driven in B15 coal seam has been 

selected as the model site for an outburst scenario induced by the underlying gassy 

seam B16-17. The occurrence of this type of outburst is characterised by a dramatic 

increase in gas emissions, rather than the ejection of coal particles. Since there is no 

coal ejection takes place in this outburst type, only the methodology about outburst 

initiation stage modelling described in Section 7.2.3 is used to simulate this type of 

gas emission event.  

Exploration data have suggested that B15 coal has a relatively high mechanical 

strength, whereas B16-17 is described as brittle, loose, and can be broken into powder 

easily. The two coal seams are separated by a weak mudstone formation and 

sometimes intersected by mudstone with higher strength. This lithological 

heterogeneity may contribute to irregular fracturing and consequent floor gas 

outbursts. A schematic of the simplified stratigraphy used in the model is shown in 

Figure 7.10. 

 
Figure 7.10: General stratigraphy for the gas outburst model. 
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Although the vertical distance between these two seams is only 8 m, pore pressures 

of these seams were reported to be quite different. The initial pressure in B16-17 is 

much higher than B15, and this is probably due to the low permeability of the inter-

bedding layer between them. The existence of this layer allows B16-17 to be less 

affected by the mining of above coal seams than B15 coal seam, and thus gas can be 

largely retained in it. Given this fact, the property of the inter-bedding layer was 

assigned as low strength and low permeability to maintain the in-situ high gas 

pressure in seam B16-17.  

The physical dimensions of this model was set as 50×30×50 m 

(length×width×height) and a uniform size of 1×1×1 m (length×width×height) was 

used for each element (Figure 7.11). Seam B15 has a thickness of 3 m, at -550 m 

depth. Seam B16-17, which is also 3 m thick, is located 8 m below the B15 seam. The 

development heading modelled has a cross-section of 9 m2 (3 m wide and 3 m high).  

 
Figure 7.11: Model geometry used for the gas outburst induced by an underlying gassy seam. 

As in Section 7.4.1, roadway excavation from the left-side-boundary at a rate of 10 

m/day was simulated, with each excavation step representing 1 m advance. The 

bottom-hole pressure for the horizontal well, representing this roadway, was assigned 

as the atmospheric pressure 0.1 MPa. Given the depth of the modelled roadway and 

in-situ stress conditions in PCG (Han et al., 2012), the initial stresses applied at the 

depth of B16-17 seam were 21.3 MPa, 10.3 MPa, and 14.1 MPa along the x-, y- and z-

axes, respectively. The boundary conditions of the model were such that it is laterally 

confined and the model base is fixed.  
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To reflect the heterogeneity in the inter-bedding layer, a region measuring 3×30×3 m 

and positioned at 15 to 18 m along the x-axis was assigned with the strength of 

average mudstone, as illustrated in Figure 7.11. The geomechanical and reservoir 

properties used in the model were the same as those used in the previous section 

(Tables 7.2 and 7.3). So were the other input parameters such as saturation, 

compressibility factor, constitutive model, and temperature.  

7.5.2 Model Results  

Vertical cross sections illustrating pressure distribution around the development 

heading are shown in Figure 7.12. As can be seen, the pressure distributions follow a 

similar pattern during the first 14 excavation steps, showing a notable gas release 

from the protected seam in the region underneath the B15 coal seam being-mined. As 

the development heading approaches the higher strength area in the inter-bedding 

layer, the gas pressure in that region starts to build up. It is noted that this high 

pressure cloud does not dissipate immediately after the passing of the development 

heading at the 18th excavation step, but rather at the 22nd excavation step.  

Fracturing of floor strata plays a critical role for gas transportation from B16-17 to the 

development heading in B15 coal seam. Figure 7.13 (continuous line) plots the 

cumulative number of failed elements in the floor strata (including both the inter-

bedding layer and seam B16-17) with the advance of development heading, showing 

almost a linear trend up to the 14th excavation step. This trend is temporarily 

disrupted as the higher strength area is approached, which leads to a sharp reduction 

in the number of new failed elements in seam B16-17 (dotted line in Figure 7.13) 

suppressed the fracturing of the coal and rock elements in the floor strata. 

As shown in Figure 7.14, the presence of the higher strength region in the floor strata 

leads to a significant reduction in gas emission over the period between the 14th and 

20th excavation steps, compared to the base case with homogeneous strength 

properties in the floor strata, where gas emission is maintained at about 850 m3 over 

the excavation period. During this period, approximately 2,000 m3 of gas would be 

retained. This is followed by a sharp increase in gas emission with the passing of the 

development heading at the 22nd excavation step. The amount of gas emitted in this 

excavation step is as high as 2,206.4 m3, which is made up by the retained gas and 
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section (during the 15th to 18th excavation steps), a reduction in gas emission rate is 

expected to occur. The following resumption of floor strata failure gradually 

reconnect gas flow conduits from B16-17 to B15, from which the gas accumulated over 

previous excavation steps can suddenly rush into the development heading. Thus, a 

dramatic increase of gas emission volume, such as that experienced during the 22nd 

excavation step, is observed as soon as the conduits have been re-established.  

 
Figure 7.13: Number of failed elements in the floor strata as the development heading advances. 

 
Figure 7.14: Gas emission as the development heading advances in a floor outburst scenario. 

7.6 Discussions  

7.6.1 Model Limitations 

The intensity of the gas pocket outburst predicted using the PCG data set in Section 

7.4 is somewhat limited by the conservative assumptions made in this research. For 
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example, Equations 7.2 and 7.3 both assume fast equilibrium and the time-scale 

required in these two processes ideally should be much shorter than an outburst 

incident, however, this does not always hold. A better approach to estimate pressure 

and gas volume in the cavity needs to consider fluid dynamics, which could not be 

modelled by the simulators used. 

In Equation 7.3, Vvoid is the sum of the volume of outburst cavity and a part of the 

development heading involved. However, it is rather difficult to estimate the latter 

accurately without knowing the mine’s roadway network and modelling the outburst 

gas flow rate in roadways. In the model, the latter was assumed to be the modelled 

roadway size (20×3×3=180 m3).  Compared with reality, in which the released high 

pressure gas can push gas front throughout the mine by the well-connected roadway 

network, the assumed low Vvoid may largely overestimate Vpressure and result in the 

early die-out of an outburst. As a consequence, the volume of gas emissions may also 

be underestimated. The author acknowledges that the above assumptions limit the 

ability of model to mimic the development stage of an outburst in reality, however, 

since the main focus of this research was to model the outburst initiation stage, these 

assumptions were considered to be acceptable.  

It may be debated that only cohesion was considered in the outburst criterion and the 

tensile strength should not be ignored, given that most previous investigations have 

stated the importance of tensile failure during an outburst (Gray, 1980; Paterson, 

1986; Xu et al., 2006). However, the author does believe that tensile strength is 

critical in the fragmentation of intact coal, while cohesion is critical for the ejection 

of broken and fractured coal. In terms of outburst modelling, the coal in the bedding 

shear zone has already been represented as highly fractured and powder-like. Thus, 

the cohesion of a coal element, which actually refers to the friction between small 

coal fragments inside the coal element, has been taken as the only factor affecting 

coal ejection. In the case of other outburst types involving a large bulk of coal to be 

fractured and fragmented by high pressure gas, the proposed criterion may need to be 

modified. In that case, parameters characterising the damaging of coal structure, fluid 

driven fractures, and the fragmentation of coal need to be considered. Defining these 

parameters will involve significant experimental work, which is out of the scope of 

this research. 
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7.6.2 Similarities with Thick Seam Outbursts at Coal Mine Velenje  

The two outburst models developed based on the data from the PCG collieries in the 

Pingdingshan coalfield can also be used in modelling the outbursts experienced by 

thick seam mining at Coal Mine Velenje, which is suffering from both gas pocket 

type and dynamic outbursts.  

In Coal Mine Velenje, there is a hypothesis that the different properties between 

xylite and detrite may be the main reason for the occurrence of gas gas outburst. It is 

believed that the conditions for a gas outburst is formed when mine workings 

suddenly pass from the “hard” xylite to “soft” detrite - especially when such contacts 

are sharp and connected to fault zones (Zavšek et al. 1997). The importance of this 

mechanical transitions was also pointed out by Jeremic (1985) who noted that 

existence of large pockets of weak porous coal (i.e. “soft” detrite-rich lignite) 

surrounded by strong heterogeneous coal (i.e. “hard” xylite-rich lignite) or vice versa 

can facilitate coal and gas outbursts after de-stressing of the coal seam. As discussed 

in detail in Chapter 5, the LTCC panel K.-50/C approaching one such structure lead 

to an episode of an excessive gas emission, which was clearly identified by 

microseismic monitoring and seismic tomography. 

Gas emissions from the floor coal at Coal Mine Velenje may be more significant and 

serious than those experienced at PCG. The multi-level LTCC mining method 

implemented at Coal Mine Velenje develops a longwall panel or a heading directly 

above the gas source. In this case, the fracturing of floor coal, which may vary 

depending on lithological heterogeneity, determines the nature of gas emissions at 

the active mining level. As already mentioned in Section 4.5.2, coal extraction in an 

upper level may not completely fracture the coal in the lower level, and some intact 

areas with high strength xylite may exist. Therefore, it is likely that an abrupt 

transition from xylite to detrite in the floor coal may lead to a considerable increase 

in gas emissions.   

7.7 Conclusions 

The two-way sequential coupling methodology developed earlier has been 

successfully implemented in simulating two types of outbursts using field data from 

the outburst prone Pingdingshan coal field in China. Gas pocket type and dynamic 
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outbursts experienced in development headings were simulated and studied 

separately in this Chapter.  

A geological structure, referred to as the “bedding shear zone”, regularly seen at 

PCG is believed to be the cause of gas pocket type outbursts in this coalfield. The 

models implemented simulated not only the stress and pressure redistributions which 

evolve at the initiation stage, but also the cavity expansion that takes place during 

the development stage of coal and gas outbursts. Model findings were consistent with 

the field observations in terms of the quantity of ejected coal, the shape of outburst 

cavity, and the gas emission trends observed before an outburst. 

The second outburst type, induced by gassy floor seam, is believed to be best-

described by the dynamic theory. Although the violent ejection of coal experience in 

this type of outbursts was not captured in the simulations implemented, the 

retention/accumulation and sudden release of gas in an underlying coal seam were 

successfully reproduced.   

The two outburst models presented have both demonstrated that an unusual gas 

emission trend may suggest an incoming outburst. In the case of outbursts induced 

by a bedding shear zone, a reduction in the volume of gas emission was noticed 2 m 

ahead of the outburst loci. A notable reduction in gas emissions was also observed 7 

m ahead of the floor outburst loci. These observations emphasised the importance of 

continuous monitoring of gas emissions at development headings. Precautions such 

as reducing the drivage rate or employing gas drainage can be considered as the 

means to prevent these type of outbursts.  

Underground gas drainage is no doubt the most effective technique that can be used 

to address excessive gas emissions and outbursts. Although gas drainage is widely 

applied in many coalfields, the design of drainage layouts used are mostly based on 

experience and without the guidance of the analysis of mining induced stresses and 

permeabilities. Chapter 8 in this thesis explores the effects of mining on gas drainage 

performance and how to optimise the design of drainage boreholes. 
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Chapter 8 Performance Analysis and Numerical 
Modelling of Field Gas Drainage Trials 
around Longwall Top Coal Caving Panels 

8.1 Introduction 

It has been well-recognised that gas drainage can significantly reduce gas content 

and improve coal mining safety. Although gas drainage from boreholes is not a new 

technique for gas emission control, its applications are mostly limited to high 

permeability or mining stimulated coal seams around relatively thin seam longwall 

operations. On the other hand, only very few examples of the use of gas drainage 

performance in mechanised LTCC panels can be found in the literature. Cheng et al. 

(2003) reported that, compared to the mechanised multi-slice longwall mining of 

thick seams, mechanised LTCC had largely increased gas emission rate at the 

Yangquan Coal Group in China, however, the specific emission was reduced by 

around 25% due to significant increase in coal production rate. Both Cheng et al. 

(2003) and Xu et al. (2007) report on gas drainage trials at LTCC districts in these 

mines, however, the drainage was implemented from roadways in rock above the 

production faces and were mostly targeting emission from the overlying seams and 

the rock strata.   

Chapter 4 described the field monitoring and analysis of gas dynamics around LTCC 

faces at Coal Mine Velenje. The interpretation of the field data by the author led to 

the development of a conceptual model on gas release and emissions around LTCC 
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panels in multi-level thick seam mining. This conceptual model was further validated 

through the analysis of seismic monitoring data as described in Chapter 5.   

Based on the understanding established on gas dynamics around LTCC coal 

extractions in this research, this Chapter focuses on the analysis of the impact of 

mining activities on gas drainage performance at LTCC panels in multi-level thick 

seam mining. Guided by the findings of numerical modelling work presented in 

Chapter 6, a series of short-period drainage trials were designed and conducted at 

Coal Mine Velenje, and results obtained from these trials analysed by the author. 

Later, the gas emission model presented in Chapter 6 was modified to simulate the 

performance of horizontal, as well as inclined, boreholes used in the field trials. A 

parametric study was conducted to compare the effects of different borehole layouts 

(azimuth, inclination, length, and spacing) on gas drainage performance. 

8.2 Gas Drainage Trials at Coal Mine Velenje 

8.2.1 Background and General Description  

Field measurements presented in Chapter 4 suggested that the initial permeability of 

Velenje lignite is relatively low (in the order of 10-16 m2) and unfavourable for pre-

drainage. On the other hand, it was noted that coal extraction at the LTCC face 

increases the permeability of coal 40 m into the seam from the face-line, and released 

a significant volume of roof and floor gas. Therefore, the main objective of gas 

drainage trials performed at Coal Mine Velenje was to investigate the technology 

required to achieve drainage to reduce gas content and pressure in the lignite before 

and during LTCC coal extraction. The associated borehole configuration, pipeline 

deployment, gas vacuum pump selection, and monitoring system set-up can be 

examined as well in these trials.  

A first level LTCC panel (K.-65/F) at a depth of 455 m was selected as the test panel 

for drainage trials. The strata condition of this panel was relatively simple, which 

was under a clay roof and above more than 80 m thick virgin coal. Due to the initial 

high gas pressure and content, the ventilation system in this panel was not sufficient 

to maintain CO2 and CH4 concentration below the statutory levels.  

A series of gas drainage trials were designed and conducted from the end of February 

2013 to the beginning of April 2013 by the engineers at Coal Mine Velenje. Initially 
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four pilot drainage boreholes (R1, R2, R3, and R4) were planned. However, as the 

longwall face advanced over boreholes R1 and R2 before the drainage trials could be 

started, additional (back-up) boreholes R5 and R6 were also drilled.  

Since the mine had no previous experience in underground gas drainage, the trials 

were strictly performed under the mining regulations of Slovenia. The power supply, 

monitoring sensors, and other mechanical parts used for drainage trials were already 

tested and proven in coalmines worldwide, as well as at Coal Mine Velenje leading 

up to the trials. However, long-term automated/unattended performance of the 

drainage system was not possible due to concerns about potential risks. Instead, a 

number of trials with shorter drainage durations (up to 4 hours) were repeated under 

strict inspection. 
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Figure 8.1:  Schematic of the pilot gas drainage trials system (Courtesy of the Coal Mine Velenje Researchers)  

jpk 61 (+10°)/12

CH4 1 CO2 1 CO 1

Drainage w
ell R1 (50 m

, +2°)

Drainage w
ell R2 (30 m

, +20°)

Drainage w
ell R3 (50 m

, +2°)

Drainage w
ell R4 (30 m

, -30°)

jpk 62 (+10°)/12

jgm
 60 (-2°)/13

jgm 59 (-2°)/13

G
as pressure m

onitoring (30 m
, +10°)

Rock stress m
onitoring (33 m

, -2°)

G
as com

position m
onitoring (25 m

, +10°)

Rock deformations monitoring (25 m, -2°)

INTAKE AIR GATEROAD

R1, R2, R3, R4, R5, R6
MT1...MT6
ST1 ...ST6
CH4 1, CH4 2
CO2 1, CO2 2
CO 1, CO 2
ST7, ST8
MT7, MT8
VP1, VP2
STemp1, STemp2
STemp3
jpk 61 (+10°)/12
jpk 62 (+10°)/12
jgm 59 (-2°)/13
jgm 60 (-2°)/13

Drainage boreholes
Pressure gauge (0...16 bar)
Pressure sensor (0...10 bar, 0...25 bar)
Methane concentration sensor (0...100%)
Carbon dioxide concentration sensor (0...100%)
Carbon monoxide concentration sensor (0...200 ppm) 
Pressure sensor (-1...+1 bar)
Pressure gauge (-1...5 bar)
Velocity/flow manual readings (U-tube)
Temperature sensor PT-100 (0...100 C)
Temperature sensor - relay switch-off (0...65 C)
Gas pressure monitoring
Gas composition monitoring and gas sampling
Rock deformations monitoring
Rock stress monitoring

Excavation border LW face advance 330 m 

Drainage w
ell R5 (30 m

, +20°)

Drainage w
ell R6 (50 m

, +2°)

MT1
ST1

MT2
ST2

MT3
ST3

MT4
ST4

MT5
ST5

12,02 m30,49 m6,44  m9,62  m7,92  m56,31  m9,98  m 7,50 m10,47 m

150,75 m

MT6
ST6

ST
7

M
T7

ST
em

p1

VP2

ST
8

M
T8

ST
em

p2

CH4 2 CO2 2 CO 2

STemp3

VP1

1

2

3

4
5

6

7

8

9

10

11

1... Gas-water separator (in-take side)
2... Solid particles filter
3... Vacum gas pump with electric motor
       and mechanical clutch
4... Gas-water separator (pump)
5... Gas-water separator (out-take side)
6... Pump by-pass line
7... Pipeline (separator by-pass 1) 
       (separator (return) - separator (in-take))
8... Pipeline (separator by-pass 2)
       (separator (return) - Main pipe-line)
9... Separator water outlet to sink
10... Gas outlet to main exit ventilation gateroad
         (equipped with yellow flashing light)
11... Main pipeline

Legend

EXCAVATION PANEL K.-65 F

159 | 2 0 2  



Chapter 8 Performance Analysis and Numerical Modelling of Field Gas Drainage Trials around LTCC Panels 

8.2.2 Gas Drainage System and Monitoring Equipment 

8.2.2.1 Drainage Boreholes 

A schematic of the pilot gas drainage trial layout is presented in Figure 8.1. The pilot 

drainage boreholes were designed in different lengths and inclination in order to 

investigate the effects of borehole parameters on drainage performance. The drainage 

boreholes were all drilled in coal, in relative positions with respect to the retreating 

longwall panel K. -65/F (Figures 8.1 and 8.2) with a several other boreholes for 

stress, gas pressure and concentration monitoring. Previous experience has shown 

that drilling of horizontal or slightly inclined (-30 - +20o) boreholes was technically 

possible up to 50 metres, therefore, and in consideration of these limitations, all the 

boreholes were drilled to the planned depths shown in Table 8.1. 

 

Figure 8.2: Locations of gas drainage and seam gas pressure-composition-rock stress and 
deformation monitoring boreholes (Courtesy of Coal Mine Velenje Researchers). 

Table 8.1: Drainage borehole design parameters. 
Borehole 

No. 
Inclination 

(o) 
Borehole length 

(m) 
Borehole diameter 

(mm) 
Standpipe length 

(m) 
R1 +2 50 100 10 
R2 +20 30 100 10 
R3 +2 50 100 10 
R4 -30 30 100 10 
R5 +20 30 100 10 
R6 +2 50 100 10 
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Each borehole was drilled parallel to the face-line in the intake gateroad with spacing 

around 10 m. Primary casing was applied to the first 10 m of the borehole length, and 

the rest of the borehole was equipped with a perforated antistatic plastic drainage 

tube. Borehole seal was completed by injecting cement between the standpipe and 

the surrounding coal. After the completion of a borehole, water was used to clean the 

borehole before the trails started. 

8.2.2.2 Drainage Pipeline 

Since there was no existing underground pipeline network for the transportation of 

captured gas, a new pipeline, which was around 400 m long, was built to transport 

the drained gas at the longwall panel to a return ventilation gateroad. Gas 

concentration sensors for both CH4 and CO2 were installed 20 m away from the 

outlet of the pipeline in the gateroad to continuously monitor the ventilation 

environment there. As shown in Figure 8.3, a rubber hose was used to connect the 

fixed plastic tube inside the borehole to the pipeline. In addition, at the outlet of each 

borehole, a pressure gauge was installed to test borehole seal and monitor seam gas 

pressure in the absence of drainage. After completion, the drainage pipeline was 

tested for leakages with compressed air to make sure the sealing was completed and 

no notable pressure drop was observed.  

 

Figure 8.3: The connection between a drainage borehole and the pipeline at Coal Mine Velenje 
(Courtesy of Coal Mine Velenje Researchers). 

8.2.2.3 Gas Vacuum Pump 

For its capacity, reliability, and cost, Nash 2BE1 203, which is a fully mechanical 

water-cycle vacuum pump was selected as the vacuum pump for the gas drainage 
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trials. To obtain a stable gas flow rate, suction pressure was maintained between -30 

and -20 kPa during all trials. 

In preparation for the underground trials, the pump was equipped with required 

sensors and other safety elements as shown in Figure 8.4. Gas vacuum pump 

required inflow of water as the working media when in operation. Consequently, part 

of the recycle water was continuously pumped into the compression section of the 

pipeline. As a preventative measure, a gas-water separator (element No. 4) was 

installed between the pump and the pipeline. The separated water was led to a sink 

nearby via an outflow hose (element No. 12).  

 
Figure 8.4: The gas vacuum pump used in gas drainage trials (Courtesy of Coal Mine Velenje 

Researchers). 

  
(a)                        (b) 

Figure 8.5: The gas drainage real-time monitoring equipment: (a) Gas concentration sensors (from left 
to right: CO2 (0~100 %), CH4 (0~100 %), and CO (0~200 ppm)); (b) Gas pressure and 
temperature monitoring (from left to right: pressure sensor (-1~1 bar), pressure gauge (-
1~5 bar), and temperature sensor (0~100˚C)) (Courtesy of Coal Mine Velenje 
Researchers). 
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Explanatory

1... Vacuum pump Nash 2BE1 203
2... Electro engine P = 37 kW
3... Mechanic clutch
4... Gas-water separator
5... By-pass
6... Water (working media) intake
7... Power switch
8... Water (working media) level indicator
9... Water (working media) outflow
10... Temperature sensor
11... Pump intake
12... Gas-water separator outflow
13... Pipe-line - vacuum section
14... Pipe-line - compression section 

14
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8.2.2.4 Real-time Monitoring Equipment 

The concentration of captured gas was continuously monitored by a CO2 sensor, a 

CH4 sensor, and a CO sensor installed at the main pipeline (Figure 8.5 a). The 

ventilation environment (CO2 concentration, CH4 concentration, and ventilation flow 

rate) around the pump was also continuously monitored by nearby sensors. In 

addition, a pressure sensor, a temperature sensor, and a pressure gauge were installed 

at the pipeline near the pump to monitor gas drainage performance (Figure 8.5 b). 

Data acquisition was set at 10-second interval, and recorded data were sent to and 

stored on the surface information centre via underground cables.  

The flow rate of captured gas was originally planned to be monitored by a real-time 

sensor. However, since this sensor was not available during the drainage trials, a 

mechanical U-tube was installed onto the pipeline as a substitute. The minimum flow 

rate that could be measured by this mechanical U-tube was approximately 12 l/s. 

The ventilation air was monitored continuously in the area of drainage trials and 

along the pipeline with fixed mine sensors. During whole trials, technical staff in 

charge monitored methane concentration (to <0.5%) in ventilation air with portable 

sensors which were required during experiments and pilot trials. 

8.2.3 Gas Drainage Data Analysis 

In order to establish an understanding of the gas drainage performance of a single 

borehole as the face approached towards it, drainage trials were first performed with 

individual boreholes. As mentioned earlier, repeat drainage trials were conducted 

with respect to different face-line positions, but each trail only lasted from several 

minutes to several hours. Table 8.2 provides a detailed outline of the drainage cycles 

implemented and the performance achieved during the pilot trials using boreholes R3 

and R4. Trials with Borehole R3 were performed in 13 separate time periods with 

respect to the longwall face advance (Table 8.2). The first three trials, when the 

longwall face was over 44.1 m from borehole R3, have recorded gas flow rates 

below the detection limit (~ 12 l/s) due to the low permeability of coal seam. The 

following trails have shown a dramatic increase in the average gas flow rate of up to 

57.04 l/s. For the last trial when the face was 2.9 m from the borehole, the pump was 

switched off and gas flow was driven by the natural pressure difference between the 

gateroad and the coal seam.  
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Table 8.2: Details of the drainage cycles implemented and the performance achieved during the pilot trials using boreholes R3 and R4. 

Date 
Face 

position 
(m) 

Face 
distance to 
borehole 

(m) 

Time trial 
started 

(h/min/sec) 

Time trial 
ended  

(h/min/sec) 

Duration  
(h/min/sec) 

*Suction 
pressure 

(kPa) 

*Concentration (vol %) *Total 
flow 
rate 
(l/s) 

*CH4 
flow 
rate 
(l/s) 

*CO2 
flow 
rate 
(l/s) 

*Air 
flow 
rate 
(l/s) 

CH4 CO2 Air CH4 
in air 

Borehole R3 
27/02/2013 329 78.1     35.00 22.00 43.00 44.87 ** ** ** ** 
11/03/2013 354.5 52.6     37.00 24.00 39.00 48.68 ** ** ** ** 
15/03/2013 363 44.1     37.00 24.00 39.00 48.68 ** ** ** ** 
20/03/2013 

10:35 369.5 37.6 10:35:50 10:36:30 00:00:40 -28.00 20.70 43.25 36.05 36.48 51.67 10.70 22.35 18.63 

20/03/2013 
10:42 369.5 37.6 10:42:10 10:53:00 00:10:50 -29.00 17.37 43.81 38.82 30.92 48.78 8.47 21.37 18.94 

23/03/2013 377.2 29.9 11:10:10 11:20:00 00:09:50 -28.00 20.05 37.59 42.37 32.12 52.47 10.52 19.72 22.23 
25/03/2013 380.3 26.8 09:54:40 10:35:10 00:40:30 -21.00 19.41 44.65 35.94 35.07 39.56 7.68 17.66 14.22 
27/03/2013 386.9 20.2 09:09:10 09:39:50 00:30:40 -20.00 19.66 46.38 33.96 36.67 57.04 11.21 26.46 19.37 
29/03/2013 391.1 16 10:27:00 10:46:40 00:19:40 -24.00 20.22 46.39 33.39 37.72 50.36 10.18 23.36 16.82 
02/04/2013 393.7 13.4 08:40:50 10:29:40 01:48:50 -20.00 14.51 44.19 41.30 26.00 51.44 7.46 22.73 21.24 
03/04/2013 396.6 10.5 08:50:00 09:20:20 00:30:20 -21.00 18.76 45.95 35.30 34.70 53.63 10.06 24.64 18.93 
05/04/2013 400.2 6.9 08:41:50 12:20:40 03:38:50 -20.00 16.93 44.87 38.20 30.70 39.33 6.66 17.65 15.02 
08/04/2013 404.2 2.9 09:36:00 09:39:00 00:03:00 -0.00 2.30 5.80 91.90 2.44 13.89 0.32 0.81 12.76 

Borehole R4 
20/03/2013 369.5 45.8 11:03:50 11:15:20 00:11:30 -31.85 19.16 42.20 38.64 49.58 36.49 6.99 15.40 14.10 
27/03/2013 386.9 28.4 10:18:40 10:48:20 00:29:40 -22.77 20.21 41.70 38.09 53.07 42.58 8.61 17.76 16.22 
29/03/2013 391.1 24.2 10:02:40 10:23:00 00:20:20 -20.34 21.94 44.56 33.50 65.49 41.39 9.08 18.44 13.87 
02/04/2013 

10:43 393.7 21.6 10:43:00 10:59:40 00:16:40 -23.67 20.03 37.03 42.94 46.64 46.62 9.34 17.26 20.02 

02/04/2013 
11:01 393.7 21.6 11:01:20 11:31:00 00:29:40 -18.58 17.25 36.98 45.77 37.68 45.82 7.90 16.94 20.97 

03/04/2013 396.6 18.7 09:33:50 10:09:00 00:35:10 -21.72 18.61 36.86 44.53 41.79 48.05 8.94 17.71 21.40 
05/04/2013 400.2 15.1 12:28:40 12:56:10 00:27:30 -22.84 18.33 37.74 43.93 41.72 42.94 7.87 16.21 18.86 
08/04/2013 404.2 11.1 09:48:50 10:25:00 00:36:10 -17.13 20.16 41.45 38.39 52.51 38.84 7.83 16.10 14.91 
10/04/2013 410.2 5.1 09:46:00 10:01:00 00:15:00 -0.29 14.79 41.42 43.80 33.76 16.76 2.48 6.94 7.34 

Borehole R3 and R4 
20/03/2013 369.5 45.8/37.6 11:24:20 11:34:30 00:10:10 -31.00 20.30 44.51 35.19 36.58 56.11 11.39 24.97 19.75 
* The suction pressure and gas concentrations listed are mean values obtained from the continuous monitoring data during the pilot drainage trials. 
** Flow rate was too low to be detected. 
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Trials with the drainage borehole R4 were performed in parallel with the trials with 

R3, with some delay after the initial tests on R3. A total of 9 separate drainage tests 

were carried out while recording the longwall movement towards R4. Similarly, the 

last trial with R4 also used the natural pressure difference rather than suction 

pressure by the pump. In addition to the trails with individual boreholes, R3 and R4 

were operated together on 20th March 2013 to investigate the gas drainage 

interference between the two boreholes. Similar to the results obtained from borehole 

R3, total flow in borehole R4 pipeline consisted of methane, carbon dioxide and 

ventilation air.  

In the following section, only part of the gas drainage data is plotted to assist the 

discussions. Gas drainage data for all the individual trials (duration ≥ 30 mins) are 

presented in Appendix 4.  

8.2.3.1 The Impact of Suction Pressure on Gas Flow Rate 

Drainage performance of the individual boreholes were analysed for the effect of 

suction pressure on performance, especially the CH4 concentration in the system, 

were investigated. Figures 8.6 (a) and (b) present the flow rate response of different 

gasses to the changes in suction pressure in borehole R3 on two different dates and a 

distance from the longwall face. The total gas flow rate ranged from 30 l/s to 50 l/s 

throughout the period of pilot tests, which is believed to be affected by the change of 

suction pressure. The captured gas was primary a mixture of CO2 and CH4 from coal, 

as well as the air component from ventilation. It was clear that increased suction 

pressure increases the flow rate of air into the borehole, thus the total gas flow rate in 

the system.  

8.2.3.2 The Impact of Suction Pressure on Gas Purity   

Although increased suction pressure may favour total gas flow rate, higher suction 

pressures lead to a reduction in the drained CH4 concentration which needs to be kept 

significantly above the explosive range for safety, as well as drainage efficiency.  As 

shown in Figure 8.7, the concentration of air in total gas flow was very sensitive to the 

change of suction pressure. An increase of 5 kPa suction pressure could result in 

approximately 5% increase of air concentration in the total gas flow. Naturally, as 

the air in the total drained gas increases due to a change in drainage parameters 

(increased suction pressure, leakage of ventilation air in the crushed zone near the 
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Figure 8.10:  Flow rates of drained seam gas (the mixture of CO2 and CH4) during borehole 

interference tests. 

Compared to the single borehole drainage trials, the third trial with multiple borehole 

drainage has shown a considerable increase in the drained gas flow rate, which was 

23.3% higher than that of R3 alone, or 85% higher than that of R4 on its own (Figure 

8.10). Since the spacing between these two boreholes was only 8 m, competition in 

capturing the seam gas was clearly observed during the third trial. This was indicated 

by the gas flow rate of the third trial being lower than the sum of flow rates for R3 

and R4 alone, which would have been nearly 50 l/s. Note that the air flow rate in the 

total gas flow is much lower than the sum of two single boreholes. Furthermore, the 

concentration of the air component in total gas flow is slightly lower in the third trial 

compared with that in single borehole trials (Figure 8.11).  

 
(a)                        (b) 

Figure 8.11: Air contamination in total gas flow: (a) Air flow rate; (b) Air concentration. 
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8.2.3.6 Multiple Borehole Trials 

Along with single borehole drainage and borehole interference trials, trials with 

multiple boreholes were also planned. Some of the technical specifications of the 

drainage system were modified after the first set of trials and 7 new multiple 

borehole trials were planned to extend the drainage area affected by the boreholes 

(Table 8.3). As detailed in Table 8.3, the flow rates, as well as gas purity, rose 

significantly. This is believed to be the result of enhanced drainage performance due 

to draining a larger fractured area in front of the longwall face (up to 40 metres from 

the boreholes). Total flow rate of gases varied between 56 – 76 l/s and again reached 

the highest values when boreholes R3+R4 were around 22 – 30 m from the longwall 

face. Flow rate and purity of the gas components increased as the longwall face 

approached the boreholes. 

Table 8.3: Multiple borehole drainage trials. 
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20.3.13 R3+R4 37.6 
45.8 20.3 44.51 35.19 -31 56.1 11.4 25.0 19.7 

25.3.13 
10:42 

R3+R4
+ 

R5+R6 

26.8 
35.0 
91.1 

101.1 

19.3 40.46 40.25 -27 63.2 12.2 25.5 25.6 

25.3.13 
11:29 

R3+R4
+ 

R5+R6 

26.8 
35.0 
91.1 

101.1 

21.5 42.86 35.64 -24 65.6 14.1 28.1 23.4 

27.3.13 R3+R4 20.2 
28.4 22.7 47.63 29.71 -20 75.6 17.1 36.0 22.5 

10.4.13* R5+R6 61.2 
71.2 8.7 7.70 83.60      

15.4.13* R5+R6 56.4 
66.4         

17.4.13* R5+R6 50.6 
60.6         

  *Drainage trials were not performed. 

 

Unfortunately, Coal Mine Velenje experienced a number of rock burst incidents 

within close proximity of longwall panel K.-65/F during 2013 which resulted in 

premature abandonment of the district for safety. This limited the number of 

drainage trials carried out at the mine. Nevertheless, one short trial was carried out 
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with borehole R5, which was designed and drilled exactly same as borehole R2 as a 

roof drainage borehole. As presented in Table 8.4, this trial was performed when 

borehole R5 was 24 metres away from the longwall face. Unlike boreholes R3 and 

R4, drainage trials with R5 yielded a higher methane concentration compared to 

carbon dioxide. It was not possible to carry out further drainage trials with borehole 

R5 due to the rock burst incidents and the earlier than planned termination of 

production at longwall face K. -65/F.  

 

Table 8.4: Gas drainage results for borehole R5. 
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8.5.13 20.9 38.64 22.20 39.16 -19 13.9 5.4 3.1 5.4 0:09:50 

 

8.3 Numerical Modelling of Gas Drainage Trials at Coal Mine 
Velenje 

The gas emission model developed for K.-50/C LTCC panel at Coal Mine Velenje 

was further developed to simulate the performance of horizontal and inclined gas 

drainage boreholes. The drainage boreholes were represented by wells in ECLIPSE, 

in the same way as the roadways and longwall faces were modelled earlier. As 

shown in Figure 8.13, the grids hosting a drainage borehole were locally refined in 

order to represent the trajectory of a drainage borehole accurately. The suction 

pressure of the drainage pump was modelled by assigning a bottomhole pressure 

with a value lower than the atmospheric pressure. Borehole performance data, such 

as gas production rate, total volume of gas production, and the volume of each gas 

component drained was continuously recorded throughout the gas drainage period. In 

addition, borehole parameters such as length, inclination, azimuth, and spacing were 

varied to assess gas drainage performance for different borehole layouts.  
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Figure 8.13:  Schematic representation of horizontal, roof and floor drainage boreholes used in gas 

drainage modelling in ECLIPSE 300. 

It is believed that, when compared to coal extraction and face advance, the impact of 

drilling a single borehole, or even a small group of boreholes, on the pressure and 

permeability distribution around longwall faces is fairly limited. Therefore, a 

simplified modelling approach, which uses the permeability distributions obtained 

from the coupled flow and geomechanics modelling of gas emissions for the K.-50/C 

LTCC panel in Chapter 6 was adopted to simulate and assess the drainage 

performance of different borehole layouts. While running the coupled model of K.-

50/C LTCC panel,  permeability distributions after each excavation step (every day 

from 9th May 2011 to 7th Aug 2011) were output and loaded into the reservoir 

simulator at the corresponding simulation time step, following the same modelling 

procedure and input parameters as those reported in Section 6.4.  

Although the stability of inclined boreholes may be a concern since shear failure may 

damage the casing or cause borehole collapse (Whittles et al., 2007), this potential 

impact was ignored as borehole stability issues were out of the scope of this research.  

Instead, it was assumed that a drainage borehole would be ineffective once the face 

is within 2 m of the borehole.  

8.3.1 Drainage Performance of Individual Boreholes  

A total of 23 scenarios with different borehole layouts and operational parameters 

were conducted to assess the performance of single drainage boreholes as presented 

in Table 8.5. In order to emulate the field drainage trials (Figure 8.1 and Table 8.1), 
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three base case scenarios configured same as the horizontal borehole (R1/R3), roof 

borehole (R2), and floor borehole (R4) used in the field trials, which were drilled 

from the intake gateroad  of LTCC panel K.-50/C at 100 m distance to the face-line 

were modelled first. The performance of these boreholes was then compared to the 

performance of different borehole configured as those presented in Table 8.5. The 

selection of borehole parameters ensured that the complete trajectory of each 

borehole remained within the thick coal deposit.  

Note that a zero azimuth denotes that a borehole is parallel to the face. A positive 

azimuth suggests a borehole rotating towards the face, and a negative azimuth 

suggests a borehole rotating away from the face. Naturally, coal extraction will, at 

some point in time, cut through the horizontal and roof boreholes and limit their lead 

time, and larger negative azimuths can cause an early intersection with the borehole. 

Assuming that the gateroads are maintained for some time behind the face-line, the 

floor boreholes were allowed to have a longer lead time compared to the roof or 

horizontal boreholes. 

Table 8.5: Borehole layouts and operational parameters used in different gas drainage scenarios. 

 Scenario 
No. 

Inclination 
(˚) 

Azimuth 
(˚) 

Borehole 
length 

(m) 

Lead 
time 
(day) 

Suction 
pressure 

(kPa) 

Diameter 
(m) 

Standpipe 
length 

(m) 

Base 
cases 

1 0 0 50 50 

-30 0.1 10 

2 +20 0 30 50 
3 -30 0 30 -- 

Azimuth 
change 

4 0 +30 50 50 
5 0 +60 50 50 
6 0 -30 50 37 
7 0 -60 50 18 

Inclination 
angle 

change 

8 +5 0 30 50 
9 +10 0 30 50 

10 -5 0 30 -- 
11 -15 0 30 -- 
12 -45 0 30 -- 
13 -60 0 30 -- 

Borehole 
length 

change 

14 0 0 20 50 
15 0 0 30 50 
16 0 0 40 50 
17 +10 0 20 50 
18 +10 0 40 50 
19 +10 0 50 50 
20 -30 0 15 -- 
21 -30 0 20 -- 
22 -30 0 40 -- 
23 -30 0 50 -- 
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8.3.1.1 Horizontal Borehole Performance Analysis  

Gas drainage performance indicators against distance from the face-line over the life-

time of the base case horizontal borehole (Scenario 1) are presented in Figure 8.14. 

To have a clear vision of face approach and consequent mining effect, the distance 

between the borehole and the face is also plotted in this figure.  

 
(a)                        (b) 

 
  (c)                        (d) 

Figure 8.14:  Gas drainage performance against distance from the face-line for a horizontal borehole: 
(a) Gas drainage rate; (b) Total volume of captured gas; (c) The volume of each gas 
component being captured; (d) CO2 concentration in the captured gas (Scenario 1). 

As shown in Figures 8.14 (a) and (b), due to initial low permeability and high front 

abutment stress, gas drainage rate is extremely low when the face is over 40 m away 

from the borehole. Mining induced fracturing and stress relief as the face advances 

from 40 m to 20 m from the borehole greatly increases the gas production. Following 

that, a further increase in gas production rate is observed as the face moves closer. At 

this point, almost 93% of total gas volume drained is produced as the borehole is 

stimulated by mining.  
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As previously observed from the gas pressure and concentration monitoring borehole 

data (Section 4.3), the composition of captured gas also changes as the face 

approaches the drainage borehole and fracturing and pressure drawdown stimulates 

CO2 desorption. This is indicated by the enriched CO2 concentration in drained gas 

(Figure 8.14 (d)).  

8.3.1.2 Roof Borehole Performance Analysis 

Similar observations apply to the gas drainage performance of a roof borehole 

(Figure 8.15). The first notable drainage increase occurs when the face-line is ~30 m 

from the borehole, followed by a shape increase as the face approaches further. A 

similar increase in CO2 component in the captured gas is also observed in the roof 

borehole.  

 
(a)                        (b) 

Figure 8.15:  Gas drainage performance against distance from the face-line for a roof borehole: (a) 
Gas drainage rate; (b) Cumulative volume of each gas component (Scenario 2). 

8.3.1.3 Floor Borehole Performance Analysis 

In addition to the period of face advance towards the borehole, another 40 days of 

gas production was simulated to cover the period after the face crossed the borehole 

position (Figure 8.16). Again, a sharp increase of gas drainage rate is observed when 

the face-line is ~30 m from the borehole. The gas drainage rate peaks around the 

time face-line overlaps with the borehole position. After that, gas drainage rate 

declines gradually due to gas content depletion and recompaction of the goaf area. It 

is noted that nearly two-thirds of the total gas volume is produced behind the face-

line. 
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(a)                        (b) 

Figure 8.16:  Gas drainage performance against distance from the face-line for a floor borehole: (a) 
Gas drainage rate; (b) Cumulative volume of each gas component (Scenario 3). 

8.3.1.4 The Effect of Azimuth Angle on Gas Drainage Performance 

The results of scenarios with different azimuth angles are presented in Figure 8.17. 

For boreholes with negative azimuth angles the total volumes of gas production are 

rather limited due to early interaction with the production face. Furthermore, since 

the stress abutment and the fractured zone induced by mining are most likely to 

move as a strip together with the face advance (See Figure 6.11), face advance can 

maximise the total gas production from a borehole which is parallel to the face-line. 

It should be noted that, in this scenario, the horizontal permeability was assumed as 

isotropic. On the other hand, depending on the direction of face and butt cleats, and 

the orientation of the face advance direction with respect to these, the change in 

borehole azimuth may help improve gas drainage performance.  

 
(a)                        (b) 

Figure 8.17:  The effect of azimuth on drainage performance: (a) Gas drainage rate; (b) Total volume 
of captured gas (Scenarios 1 and 4 to7).  
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8.3.1.5 The Effect of Borehole Inclination on Gas Drainage Performance 

Figure 8.18 presents the gas drainage performance of roof holes at different angles of 

inclination from the horizontal. Roof boreholes at a higher angle can benefit gas 

drainage performance slightly, however, the angle of inclination available for roof 

boreholes is limited by the thickness of top coal left in LTCC panels. 

 
(a)                        (b) 

Figure 8.18:  The effect of roof borehole inclination on drainage performance of roof boreholes: (a) 
Gas drainage rate; (b) Total volume of captured gas (Scenarios 2, 8 and 9). 

 
(a)                        (b) 

Figure 8.19:  The effect of floor borehole inclination on drainage performance of floor boreholes: (a) 
Gas drainage rate; (b) Total volume of captured gas (Scenarios 3 and 10 to 13). 

Figure 8.19 presents the gas drainage performance of floor holes at different angles 

of inclination from the horizontal. Note that drainage with -15° floor borehole offers 

the highest gas drainage rate and the largest total volume of captured gas. Referring 

back to the numerical modelling results of permeability enhancement in Figure 6.15, 

this optimum drainage performance may be explained by the position of the largest 

permeability enhancement zone in the floor coal.   

178 | 2 0 2  



Chapter 8 Performance Analysis and Numerical Modelling of Field Gas Drainage Trials around LTCC Panels 

8.3.1.6 The Effect of Borehole Length on Gas Drainage Performance 

Figures 8.20 and 8.21 compare the drainage performance of different borehole 

lengths for horizontal and roof boreholes respectively. It is clear that, in both cases, 

increasing the borehole length can improve drainage efficiency, and the boreholes 

being more productive once the face-line is around 30 metres from the drainage 

borehole. 

 
(a)                        (b) 

Figure 8.20:  The effect of horizontal borehole length on drainage performance: (a) Gas drainage rate; 
(b) Total volume of captured gas (Scenarios 1 and 14 to 16). 

  
(a)                        (b) 

Figure 8.21:  The effect of roof borehole length on drainage performance: (a) Gas drainage rate; (b) 
Total volume of captured gas (Scenarios 9 and 17 to 19). 

On the other hand, the optimum length for floor boreholes appear to be 20 metres, as 

further extension of a borehole is not very effective in the low permeability floor 

zone (Figure 8.22).  
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  (a)                        (b) 

Figure 8.22: The effect of floor borehole length on drainage performance: (a) Gas drainage rate; (b) 
Total volume of captured gas (Scenarios 3 and 20 to 23). 

8.3.1.7 Horizontal Boreholes versus Inclined Boreholes  

Using the three base case scenarios, Figure 8.23 compares the performance, in terms 

of gas drainage rate and captured gas volume, of roof, horizontal, and floor boreholes 

as the face approaches the boreholes, are plotted against distance between face and 

borehole. 

 
  (a)                        (b) 

Figure 8.23: Comparison of the performance of horizontal and inclined drainage boreholes: (a) Gas 
drainage rate; (b) Total volume of captured gas (Scenarios 1 to 3). 

All three scenarios present a similar response to face advance: gas drainage rate and 

total drained volume are dramatically stimulated by the time the face-line reaches 

30~40 m from the boreholes. The mining-induced stimulation of drainage 

performance is first observed in the horizontal borehole, and then followed by the 

roof and floor boreholes. In terms of captured gas flow rate and volume, roof and 

floor boreholes are shown to be more effective than the horizontal boreholes. This is 

consistent with the results of field trials as discussed in Section 8.2.3.5. 
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assumed to be the same as the parameters of the three base cases reported in Table 

8.5. As the face approached the boreholes, in-situ gas content in the study zone was 

continuously monitored. In order to represent borehole intersection with the highly 

fractured zone at the face, each roof and/or horizontal borehole was set as ‘SHUT’ 

when the face-line moved within 2 m of it.  

Figure 8.25 illustrates gas drainage performance of multiple boreholes at different 

borehole spacing. Being stimulated by the approaching face, all three scenarios show 

a dramatic increase in gas drainage rate and captured gas volume. As expected, 

denser borehole layouts yield a much higher gas production rate and volume (Figures 

8.25 a and b). However, too closely spaced borehole layouts may result in fierce 

competition between neighbouring boreholes and reduce the efficiency of each 

borehole, as indicated in Figures 8.25 (c) and (d).  

 
  (a)                        (b) 

 
  (c)                        (d) 

Figure 8.25:  Gas drainage performance of multiple boreholes against distance from the face-line: (a) 
Gas drainage rate; (b) Total volume of captured gas; (c) Gas drainage rate per metre 
borehole length; (d) Total volume of captured gas per metre borehole length. 
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Figure 8.26 compares the residual gas in place within the study zone for the three 

borehole spacings simulated. The effect of gas drainage can be clearly observed, 

particularly during the period when the study zone gradually became the near face 

fracturing zone. As can be seen, the best scenario is provided by the 4 m borehole 

spacing, which can reduce the gas content by nearly 60%. 

 
Figure 8.26: The residual gas content within the study zone. 

8.4 Discussion and Conclusions  

Through field trials and numerical experiments, this Chapter investigated the 

feasibility of utilising mining induced permeability enhancement zones to optimise 

gas drainage performance. A series of field trials at Coal Mine Velenje has 

demonstrated that gas drainage rate could increase from less than 12 l/s to around 50 

l/s as a result of face approaching the drainage boreholes. Utilising mining-enhanced 

permeability to capture gas emissions at Coal Mine Velenje has been demonstrated 

as a promising approach for gas emission control in the thick and low permeability 

coal seam mined using LTCC method.  

Numerical models for gas drainage were developed building upon the gas emission 

model of K.-50/C LTCC panel at Coal Mine Velenje. Although the LTCC panel used 

in numerical modelling was different from that used in the field drainage trials, the 

model results generally agree well with the results of the field gas drainage trials, as 

shown in Figure 8.27. The timing of dramatic gas production stimulation has been 

successfully modelled at ~40 m from the face-line. Results from both numerical 

experiments and field trials have suggested that gas drainage with a floor borehole is 
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more efficient than that with a horizontal borehole in terms of gas drainage 

rate/volume per metre of borehole length. The numerical model findings further 

suggest that floor drainage can reduce the gas content at floor level significantly and 

improve the ventilation environment for the coal extraction in the next level. 

Meanwhile, horizontal and roof boreholes are also essential for gas emission control 

at the mining level, especially during the mining of first level panels.  

The drainage rate increase recorded in numerical simulations falls within a 

reasonable range of the field observations. The relatively higher gas drainage rate 

obtained in field trials can be explained as: 

- all field drainage trials were conducted at a first level panel (K.-65/F), which 

had a higher initial gas pressure than the modelled panel (K.-50/C).   

- drainage period in field trials were much shorter than that used in the 

numerical models, and thus no gas pressure/content depletion caused by 

production had been experienced in the field.  

- the suction pressure was simulated to be constant -30 kPa over the whole 

drainage period, however, the suction pressure in field trials varied and 

occasionally dropped to around -20 kPa.  

 
Figure 8.27: Comparison of gas drainage rates: numerical models (Scenario 1) versus field trials 

(borehole R3). 

Borehole parameters including azimuth, inclination, borehole length, and borehole 

spacing were studied to optimise gas drainage performance. Main findings of the 

numerical modelling work are as follows:  
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• In general, inclined roof and floor boreholes are more efficient than the 

horizontal boreholes. Floor boreholes are the most effective since they have a 

longer lead time. 

•  For roof boreholes, increased inclination of the boreholes may slightly 

benefit gas drainage performance, however, the option to control the roof 

borehole inclination is rather limited. On the other hand, an optimal 

inclination angle may exist for floor boreholes, where gas drainage can be 

maximised by the knowledge of mining-enhanced permeability zones in the 

floor coal. 

• Increased borehole length can improve drainage efficiency for horizontal and 

roof boreholes to some extent. However, for floor boreholes, increasing 

borehole length beyond 20 metres has a negative impact on gas drainage 

efficiency. 

• The use of multiple drainage boreholes (roof, horizontal, and floor) can 

largely reduce in-situ gas content within the near face fracture zone. 

Increased borehole spacing can yield a much higher gas production rate and 

volume, however, this lowers the drainage efficiency of individual boreholes. 

• The azimuth of the drainage boreholes should be controlled with the 

knowledge of permeability anisotropy in the seam. 

 

185 | 2 0 2  



Chapter 9 Conclusions and Recommendations for Future Research 

Chapter 9 Conclusions and Recommendations for 
Future Research 

9.1 Introduction 

This thesis described research carried out to improve the understanding of gas 

emission patterns around Longwall Top Coal Caving faces used in thick seam coal 

mining. Knowledge gaps in terms of gas emission modelling and prediction, early 

detection of excessive gas emissions and outburst, and the development of gas 

drainage methods for thick and low permeability seams were investigated.  

The first step in this research was to carry out field measurements and extensive 

analysis and interpretation of data obtained at Coal Mine Velenje. As a result of 

these analyses, a conceptual model describing stress, pressure, and gas emission 

patterns around LTCC faces was developed. The feasibility of using seismic 

monitoring techniques for the early detection of gas outbursts was also explored. 

Next a two-way sequential coupling methodology for geomechanical and fluid flow 

simulators was developed. Using field data as input and matching parameters, this 

coupling methodology was applied to simulate face advance and associated gas 

emissions around LTCC faces. Later, the methodology was further modified to 

simulate common outburst types experience by the coal industry. 

As the last step, this research investigated the impact of mining activities on the 

performance of gas drainage designs with different borehole layouts. Gas drainage 
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data from field trials were analysed and different borehole layouts and settings were 

assessed using numerical models to optimise gas drainage performance.   

9.2 Main Conclusions  

Through integrated field measurements, data analysis, and numerical modelling, this 

research has largely advanced the understanding of gas emission patterns around 

Longwall Top Coal Caving faces used in thick seam coal mining. The main 

conclusions of this research are summarised as follows:  

o A conceptual model describing the gas emission patterns and gas dynamics 

around multi-level LTCC mining in thick seams has been developed. Three 

gas pressure zones, namely the farfield abutment, peak abutment and near 

face fracturing zones, ahead of an advancing LTCC have been characterised 

in the conceptual model. The near face fracturing zone is defined as a highly 

fractured and stimulated zone with enhanced permeability, which contributes 

significant to the gas emissions around a LTCC face.  

o At multi-level mining layouts, the first mining level is expected to experience 

the highest rate of gas emission, both from the mined coal and the floor level 

due to high in-situ gas pressures. On the other hand, in LTCC panels 

operating at lower mining levels, emission from the floor coal and the roof 

goaf are the main sources of overall gas emission. 

o In order to identify and characterise the near face fracturing zone, various 

monitoring techniques, including gas pressure and composition monitoring, 

time-lapse seismic tomography, and microseismic monitoring have been 

tested and proved to be effective.  

o Using microseismic monitoring in conjunction with time-lapse seismic 

tomography can identify geological anomalies, such as heterogeneous coal, 

which may lead to excessive gas emissions and gas outbursts. Compared to 

seismic tomography, real-time microseismic monitoring provides continuous 

remote monitoring data with significantly lower demand on staff time and no 

operational disturbance on production.  

o Research has shown that excessive gas emissions are highly correlated with 

increased microseismicity. Fractal dimension, estimated from the spatial 
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density of mining-induced microseismic incidents, may provide a quantitative 

methodology to predict excessive gas emissions or gas/coal outbursts. 

o Building upon comprehensive field data, this research developed a two-way 

sequential coupling methodology enabling accurate representation of 

interactive physics between geomechanics and gas flow. In particular, this 

modelling approach can reproduce the dynamic changes of stresses and gas 

pressure around LTCC faces and predict the total gas emissions accurately.  

o Implementation of the two-way sequential coupling approach to simulate 

LTCC face advance have confirmed that the proposed conceptual gas 

emission model for thick seam LTCC mining is valid. Mining-enhanced 

permeability zones around LTCC faces can be identified accurately and used 

for gas drainage design. Note that the coupling approach is not limited to 

thick/ultra-thick mining, and that gas emissions around thinner seams with 

mechanised conventional longwall layouts can also be successfully modelled 

using this technique. 

o The two-way sequential coupling approach was later implemented to 

simulate and explain common outburst types experience by the coal industry. 

Model findings were consistent with the field observations in terms of the 

quantity of ejected coal, the shape of outburst cavity, and the gas emission 

trends observed before an outburst. Outburst conditions in both thin and thick 

seam mining layouts can be evaluated via this approach and minimise the risk 

of outburst occurrences. 

o Through field trials and numerical experiments, the feasibility of utilising 

mining induced permeability enhancement zones to optimise gas drainage 

performance in thick seam LTCC mining has been investigated. It was 

demonstrated that a significant increase in gas drainage can be achieved 

through boreholes within the near face fracturing zone.  

o Gas drainage can be maximised by the knowledge of mining-enhanced 

permeability zones and the selection of drainage borehole parameters. In 

general, inclined roof and floor boreholes are more efficient than the 

horizontal boreholes in LTCC mining. Floor boreholes are the most effective 

since they have a longer lead time. The use of multiple drainage boreholes 

(roof, horizontal, and floor) can largely reduce in-situ gas content within the 
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near face fracturing zone, but borehole spacing needs to be determined 

carefully to avoid drainage interference between individual boreholes.  

Strictly speaking, Coal Mine Velenje is a unique case among collieries exploiting 

thick seams, since the coal deposit there is unusually thick, which also provided the 

author with an opportunity to study the gas emission patterns in floor coal seam in 

six or seven mining levels. For more general cases in thick seam mining, where one 

or two levels are mined, the findings of this research would still be valid for 

emissions from the working and floor seam levels.  

Although the only field scale gas emission model in this research was designed for 

the ultra-thick seam mining experience at Coal Mine Velenje, the two-way coupled 

modelling approach developed is generally applicable to both thin and thick seam 

mining. However, the author acknowledges that, in order to ensure that the models 

developed by this approach can accurately simulate gas flow patterns in other 

convention longwall or LTCC panels, a large amount of field data are necessary for 

model development, calibration, and validation. To achieve this, procedures 

presented in this research can be used as reference. 

It is believed that this PhD research has a number of practical applications in the 

mining industry: 

• To predict the amount of gas emissions induced by coal extraction; 

• To design and optimise the ventilation and gas drainage systems;  

• To assess the risk of outbursts and excessive gas emissions and provide early 

warnings;  

• To understand other fluid flow behaviour around mine openings, such as the 

effect of coal extraction on surrounding aquifers and prevention of water 

inrushes.  

9.3 Recommendation for Future Research  

Building upon the main findings of this research, further research can help advance 

knowledge in the field of gas emissions and outburst control in underground coal 

mining. Several interesting subjects, which are worth investigating, are 

recommended as follows. 
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Improvement of stress-dependent permeability representation in numerical 

modelling 

Since the modelling results are very sensitive to the selection of stress-dependent 

permeability relationship, the change in permeability parameters (kf0 and Cf) during 

the transition of rock from elastic to plastic needs more rigorous theoretical 

derivation and strong experimental data support.  

Fractal dimension analysis of microseismic data 

Using fractal dimension to further analyse microseismic data has been demonstrated 

to be a potential approach to detect an episode of increased gas emissions. However, 

the database of microseismic events used in this research is rather limited, which is 

only six-months of monitoring period. Further validation of this approach, using a 

longer monitoring period and a wider range of applications into various geological 

conditions and mining layouts, is needed.  

Moreover, current microseismic data processing and fractal analysis involve several 

weeks, if not months, to finalise, which is too late as a predictive and preventative 

measure. It would be a significant improvement if coupled near-real time processing 

and further analysis of the microseismic data can be achieved to develop short-term 

prediction methods to prevent, risk assess and mitigate gas outburst hazards.  

The heterogeneity of coal seams 

Assuming homogenous coal properties in the numerical models work simplifies the 

modelling procedure, but also leads to the mismatch between simulation and 

measurement results. In addition, field observations suggest that the change of coal 

properties is a possible factor that contributes to the onset of outbursts. For more 

realistic simulations, it may be useful to establish probability functions (Wold et al, 

2008), which can describe the heterogeneity and variability of the geological 

characteristics (e.g. geomechanical properties, reservoir properties etc.), based on 

core sample and borehole imaging data. Then these functions can be used to 

distribute coal properties and generate representative geostatistical realisations in 

numerical models. Critical parameters leading to uncontrolled gas 

emissions/outbursts can be assessed and evaluated by stochastically running various 

realisations.  
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An improved approach for coal and gas outbursts modelling 

As stated in Chapter 7, due to the limitation of the geomechanical and fluid flow 

simulators, current outburst modelling approaches cannot simulate coal 

fragmentation and pressure-driven fracturing, which may be important in 

representing the nature of outburst initiation in a large bulk of intact coal. To solve 

this challenge, a geomechanical simulator which can consider discrete element 

behaviour needs to be integrated.  

Borehole stability assessment and deviated boreholes  

In this research, the borehole stability during face advance towards it was 

oversimplified. Since the life-span of a borehole significantly affects its gas drainage 

performance, it may be helpful to conduct a systematic study regarding the impact of 

mining geomechanics on borehole integrity. A smaller scale but much more detailed 

model needs to be developed to study standpipe strength, borehole deformation, and 

near-borehole stress distribution etc. The dynamic behaviour of these parameters as 

the face approaches also need to be considered.  

In addition, only straight-line boreholes were studied in this research. With the 

advancement of drilling techniques, long distance deviated boreholes are becoming 

normal practice in the US and Australia to reduce gas content in thin seams. It would 

be interesting to explore the possibility of applying long distance deviated boreholes 

into thick seams and explore how these boreholes would perform during coal 

extraction and face advance.  
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Appendices 

Appendix 1: Borehole Configurations Used at Coal Mine Velenje 

1.1 Borehole Design for Gas Pressure Measurement  

Figure A1.1 shows a schematic of the borehole design used for seam gas pressure 

measurements. A 25 m long borehole is first cored at a diameter of 101 mm. The first 

20 m of the borehole is then re-drilled to a larger diameter of 160 mm. Next, a steel 

casing of 128 mm diameter and 20 m long is inserted into the borehole and the 

annulus between the steel casing and the borehole is filled with cement. A 25 m long 

Alcaten tube (ϕ = 25.4 mm) perforated in the bottom 5 m is then inserted into the 

steel casing, with the annulus sealed by a sealant foam. Finally, a flange with a fixed 

digital pressure transducer (Pemex-LC type calibrated to 0  ̶  10 or 0  ̶  20 bar, 

supplied by Kirchgaesser), with an accuracy of ±1 % of its maximum range, is 

connected to the steel casing. Pressure recorded by the transducers is sent to the 

surface information centre of the mine via underground cables. Acquisition of gas 

pressure readings is set at 30 minutes interval and recorded in real time. A pressure 

gauge (rated at 0 - 10; 0 - 16 or 0 - 20 bar) is also connected to the borehole, which is 

read manually to confirm the measurements taken by the digital transducer (Figure 

A1.2).   
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Figure A1.1: Schematic of 25 m borehole for in-seam gas pressure monitoring (after Si et al., 2015a). 

 

Figure A1.2: A completed pressure monitoring borehole on-site (Courtesy of Coal Mine Velenje 
researchers). 

1.2 Borehole Design for Gas Composition Measurement 

Two different borehole configurations have been used for monitoring gas 

composition and its response to face advance. The first design involved the drilling 

of a series of so called short boreholes (3 m in length), at 50 m spacing, into the 

panel under preparation. A schematic of the short borehole is shown in Figure A1.3. 

After drilling the 43 mm diameter borehole a partly perforated Alcaten tube (ϕ = 25.4 

mm) is installed into the borehole. Sealing foam is used to fill the gap between the 

solid part of the Alcaten tube and the borehole and a plug is mounted at the borehole 

mouth to prevent leakage of mine air into the Alcaten tube. Gas samples are 
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manually taken using a capillary sampling tube (ϕ = 0.5 mm) inside the Alcaten tube 

for analysis by a portable gas composition sensor. 

 

Figure A1.3: Schematic of a short borehole for gas composition monitoring (Courtesy of Coal Mine 
Velenje researchers). 

The second borehole configuration was introduced to improve the accuracy of gas 

composition measurements whereby gas samples are taken from 20 m long boreholes 

and analysed in the laboratory. The long boreholes are drilled into the coal panels 

during the development of gateroads for the longwall faces. To improve the stability 

of the borehole, a steel casing and a backup sampling tube are installed (Figure 

A1.4).    

 

Figure A1.4: Schematic of 20 m long borehole for gas composition monitoring (after Si et al., 
2015a). 
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Appendices 

Appendix 2: Histograms of Microseismic Energy  

 

 
 (a) Week 23 to 29 May 2011   (b) Week 30 May to 5 June 2011 

 
 (c) Week 6 to 12 June 2011   (d) Week 13 to 19 June 2011 

 
 (e) Week 20 to 26 June 2011   (f) Week 27 June to 3 July 2011 

Figure A2.1: Histograms of seismic energy released in each production week and the previous weeks. 
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 (g) Week 4 to 10 July 2011   (h) Week 11 to 17 July 2011 

 
 (i) Week 1 to 7 August 2011   (j) Week 8 to 14 August 2011 

 
 (k) Week 15 to 21 August 2011   (l) Week 22 to 28 August 2011 

Figure A2.1: Histograms of seismic energy released in each production week and the previous weeks 
(continued). 
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Appendix 3: Calculation of Fractal Dimensions 

 
(a) Week 23 to 29 May 2011   (b) Week 30 May to 5 June 2011 

 
(c) Week 6 to 12 June 2011   (d) Week 13 to 19 June 2011 

 
 (e) Week 20 to 26 June 2011   (f) Week 27 June to 3 July 2011 

Figure A3.1: Calculation of fractal dimension using the box counting method from 23rd May 2011 to 

28th Aug 2011.  
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 (g) Week 4 to 10 July 2011   (h) Week 11 to 17 July 2011 

 
 (i) Week 1 to 7 August 2011    (j) Week 8 to 14 August 2011 
 

 
 (k) Week 15 to 21 August 2011    (l) Week 22 to 28 August 2011 

Figure A3.1: Calculation of fractal dimension using the box counting method from 23rd May 2011 to 

28th Aug 2011 (continued).  
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