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ABSTRACT 
An important but still partially unanswered question in the investment field is why different 

assets earn substantially different returns on average. Financial economists have typically 

addressed this question in the context of theoretically or empirically motivated asset pricing 

models. Since many of the proposed “risk” theories are plausible, a common practice in the 

literature is to take the models to the data and perform “horse races” among competing asset 

pricing specifications. A “good” asset pricing model should produce small pricing (expected 

return) errors on a set of test assets and should deliver reasonable estimates of the underlying 

market and economic risk premia. This chapter provides an up-to-date review of the statistical 

methods that are typically used to estimate, evaluate, and compare competing asset pricing 

models. The analysis also highlights several pitfalls in the current econometric practice and 

offers suggestions for improving empirical tests. 

 
INTRODUCTION 

Many asset pricing theories predict that the price of an asset should be lower (its expected 

return higher) if the asset provides a poor hedge against changes in future market conditions 

(Rubinstein, 1976; Breeden, 1979).  The classic capital asset pricing model (CAPM) of Sharpe 

(1964) and Lintner (1965) considers the case in which investment opportunities are constant 
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and investors hold efficient portfolios so as to maximize their expected return for a given level of 

variance. The CAPM predicts that an asset’s risk premium will be proportional to its beta − the 

measure of return sensitivity to the aggregate market portfolio return. The considerable 

empirical evidence against the CAPM points to the fact that variables other than the rate of 

return on a market-portfolio proxy command significant risk premia. The theory of the 

intertemporal CAPM (ICAPM) (Merton, 1973; Long, 1974) suggests that these additional 

variables should proxy for the position of the investment opportunity set. Although the ICAPM 

does not identify the various state variables, leading Fama (1991) to label the ICAPM as a 

“fishing license,” Breeden (1979) shows that Merton's ICAPM is actually equivalent to a single-

beta consumption model (CCAPM) since the chosen level of consumption endogenously 

reflects the various hedging-demand effects of the ICAPM.  

Over the years, researchers have made many attempts to refine the theoretical 

predictions and improve the empirical performance of the CAPM and CCAPM. Popular 

extensions include internal and external habit models (Abel, 1990; Constantinides, 1990; Ferson 

and Constantinides, 1991; Campbell and Cochrane, 1999), models with non-standard 

preferences and rich consumption dynamics (Epstein and Zin, 1989, 1991; Weil, 1989; Bansal 

and Yaron, 2004), models that allow for slow adjustment of consumption to the information 

driving asset returns (Parker and Julliard, 2005), conditional models (Jagannathan and Wang, 

1996; Lettau and Ludvigson, 2001), disaster risk models (Berkman, Jacobsen, and Lee, 2011), 

and the well-known “three-factor model” of Fama and French (1993). Although empirical 

observation primarily motivated the Fama-French model, its size and book-to-market factors are 

sometimes viewed as proxies for more fundamental economic variables.  

The asset pricing theories listed above, to be of practical interest, need to be confronted 

with the data. Two main econometric methodologies have emerged to estimate and test asset 

pricing models: (1) the generalized method of moments (GMM) methodology for models written 
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in stochastic discount factor (SDF) form and (2) the two-pass cross-sectional regression (CSR) 

methodology for models written in beta form.  

The SDF approach to asset pricing indicates that the price of a security is obtained by 

"discounting" its future payoff by a valid SDF so that the expected present value of the payoff is 

equal to the current price. In practice, finding a valid SDF, i.e., an SDF that prices each asset 

correctly, is impossible and researchers have to rely on some candidate SDFs to infer the price 

of an asset. Although testing whether a particular asset pricing model is literally true is 

interesting, a more useful task for empirical researchers is to determine how wrong a model is 

and to compare the performance of competing asset pricing models. The latter task requires a 

scalar measure of model misspecification. While many reasonable measures can be used, the 

one introduced by Hansen and Jagannathan (1997) has gained tremendous popularity in the 

empirical asset pricing literature. Many researchers have used their proposed measure, called 

the Hansen-Jagannathan distance (HJ-distance), both as a model diagnostic and as a tool for 

model selection. Examples include Jagannathan and Wang (1996), Jagannathan, Kubota, and 

Takehara (1998), Campbell and Cochrane (2000), Lettau and Ludvigson (2001), Hodrick and 

Zhang (2001), Dittmar (2002), Farnsworth, Ferson, Jackson, and Todd (2002), Chen and 

Ludvigson (2009), Kan and Robotti (2009), Li, Xu, and Zhang (2010), and Gospodinov, Kan, 

and Robotti (2011a). Asset pricing models in SDF form are generally estimated and tested using 

GMM methods. Importantly, the SDF approach and the HJ-distance metric are applicable 

whether or not the pricing model is linear in a set of systematic risk factors.  

When a model specifies that asset expected returns are linear in the betas (beta-pricing 

model), the CSR method proposed by Black, Jensen, and Scholes (1972) and Fama and 

MacBeth (1973) has been the preferred method in empirical finance given its simplicity and 

intuitive appeal. Although there are many variations of the CSR methodology, the basic 

approach always involves two steps or passes. In the first pass, the betas of the test assets are 

estimated using the usual ordinary least squares (OLS) time series regression of returns on 
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some common factors. In the second pass, the returns on the test assets are regressed on the 

betas estimated from the first pass. Running this second-pass CSR on a period-by-period basis 

enables obtaining the time series of the intercept and the slope coefficients. The average values 

of the intercept and the slope coefficients are then used as estimates of the zero-beta rate 

(expected return for risky assets with no systematic risk) and factor risk premia, with standard 

errors computed from these time series as well. Given its simple intuitive appeal, the most 

popular measure of model misspecification in the CSR framework has been the ܴଶ for the 

cross-sectional relation (Kandel and Stambaugh, 1995; Kan, Robotti, and Shanken, 2010). This 

ܴଶ  indicates the extent to which the model's betas account for the cross-sectional variation in 

average returns, typically for a set of asset portfolios.  

After reviewing the SDF and beta approaches to asset pricing, this chapter describes 

several pitfalls in the current econometric analyses and provides suggestions for improving 

empirical tests. Particular emphasis is given to the role played by model misspecification and to 

the need for more reliable inference procedures in estimating and evaluating asset pricing 

models.    

 
STOCHASTIC DISCOUNT FACTOR REPRESENTATION 

The SDF approach to asset pricing provides a unifying framework for pricing stocks, bonds, and 

derivative products and is based on the following fundamental pricing equation (Cochrane, 

2005): 

௧݌  ൌ  ௧ାଵሿ,   (3.1)ݔ௧ሾ݉௧ାଵܧ

where ݌௧ is an ܰ-vector of asset prices at time ݔ ;ݐ௧ାଵ ൌ ௧ାଵ݌ ൅ ݀௧ାଵ is an ܰ-vector of asset 

payoffs with ݀௧ାଵ denoting any asset’s dividend, interest or other payment received at time ݐ ൅

1; ݉௧ାଵ is an SDF, which depends on data and parameters; and ܧ௧ is a conditional expectation 

given all publicly available information at time ݐ.  
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Dividing both sides of the fundamental pricing equation by ݌௧ (assuming non-zero prices) 

and rearranging yields 

௧ሾ݉௧ାଵሺ1ܧ  ൅ ܴ௧ାଵሻ െ 1ேሿ ൌ 0ே,  (3.2) 

where ܴ௧ାଵ ൌ ௫೟శభ
௣೟

െ 1 ൌ ௣೟శభାௗ೟శభ
௣೟

െ 1 is an ܰ-vector of asset returns and 1ே and 0ே are ܰ-

vectors of ones and zeros, respectively. 

Portfolios based on excess returns, ܴ௧ାଵ
௘ ൌ ܴ௧ାଵ െ ܴ௧

௙1ே, where ܴ௧
௙ denotes the risk-free 

rate at time ݐ, are called zero-cost portfolios. Since the risk-free rate is known ahead of time, it 

follows that ܧ௧ሾ݉௧ାଵሺ1 ൅ ܴ௧
௙ሻሿ ൌ ௧ሾ݉௧ାଵሿሺ1ܧ ൅ ܴ௧

௙ሻ ൌ 1 and ܧ௧ሾ݉௧ାଵሿ ൌ ଵ
ሺଵାோ೟

೑ሻ
. In this case, with 

zero prices and payoffs ܴ௧ାଵ
௘ ,  the fundamental pricing equation is given by 

௧ሾ݉௧ାଵܴ௧ାଵܧ 
௘ ሿ ൌ 0ே.  (3.3) 

As an example of the SDF approach, consider the problem of a representative agent 

maximizing her lifetime expected utility 

 ෌ ௧ஶߚ
௧ୀଵ  ሺܿ௧ሻሿ  (3.4)ݑ଴ሾܧ

subject to a budget constraint 

 ܽ௧ାଵ ൌ ሺܽ௧ ൅ ௧ݕ െ ܿ௧ሻሺ1 ൅ ܴ௧ାଵሻ,   (3.5) 

where ߚ, ܿ௧, ܽ௧ and ݕ௧ denote the time preference parameter, consumption, asset’s amount and 

income at time ݐ, respectively. The first-order condition for the optimal consumption and portfolio 

choice is given by 

௧ܧ  ቂߚ ௨ᇲሺ௖೟శభሻ
௨ᇲሺ௖೟ሻ ሺ1 ൅ ܴ௧ାଵሻ െ 1ேቃ ൌ 0ே,   (3.6)  

where ݑᇱሺܿሻ denotes the first derivative of the utility function ݑሺܿሻ with respect to ܿ. This first-

order condition takes the form of the fundamental pricing equation with SDF given by the 

intertemporal marginal rate of substitution 

 ݉௧ାଵ ൌ ߚ ௨ᇲሺ௖೟శభሻ
௨ᇲሺ௖೟ሻ .    (3.7) 
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While the SDF in Equation 3.7 is positive by construction, an SDF can possibly price 

assets correctly and, at the same time, take on negative values, especially when the SDF is 

linear in a set of risk factors. Although a negative SDF does not necessarily imply the existence 

of arbitrage opportunities, dealing with positive SDFs is generally desirable, especially when 

interest lies in pricing derivatives (positive payoffs should have positive prices). Therefore, a 

common practice in the derivative pricing literature is to consider Equation 3.1 with ݉௧ାଵ ൐ 0, 

which implies the absence of arbitrage. In some situations, however, imposing this positivity 

constraint can be problematic. For example, if one is interested in comparing the performance of 

competing asset pricing models on a given set of test assets using the distance metric proposed 

by Hansen and Jagannathan (1997), constraining the admissible SDF to be positive is not very 

meaningful. Gospodinov, Kan, and Robotti (2010a) provide a rigorous analysis of the merits and 

drawbacks of the no-arbitrage HJ-distance metric. 

 
BETA REPRESENTATION  

By the law of iterated expectations, the conditional form of the fundamental pricing equation for 

gross returns can be reduced to its unconditional counterpart: 

ሾ݉௧ାଵሺ1ܧ  ൅ ܴ௧ାଵሻሿ ൌ 1ே.  (3.8) 

From the covariance decomposition (suppressing the time index for simplicity), the pricing 

equation for asset ݅ can be rewritten as  

 1 ൌ ሾ݉ሺ1ܧ ൅ ܴ௜ሻሿ ൌ ሾ1ܧሾ݉ሿܧ ൅ ܴ௜ሿ ൅ ,ሾ݉ݒ݋ܥ ሺ1 ൅ ܴ௜ሻሿ.   (3.9)               

Then, dividing both sides by ܧሾ݉ሿ ൐ 0 and rearranging,  

ሾܴ௜ሿܧ ൌ ଵ
ாሺ௠ሻ ൅ ஼௢௩ሾ௠,ோ೔ሿ

௏௔௥ሾ௠ሿ
ቂെ ௏௔௥ሾ௠ሿ

ாሾ௠ሿ
ቃ ൌ ଴ߛ ൅  ௠,                                      ሺ3.10ሻߣ௜,௠ߚ

using that ଵ
ாሾ௠ሿ

ൌ 1 ൅ ܴ௙ ൌ 1 ൅ ௜,௠ߚ ଴ from above. Note thatߛ ൌ ஼௢௩ሾ௠,ோ೔ሿ
௏௔௥ሾ௠ሿ

 is the regression 

coefficient of the return ܴ௜ on ݉ and ߣ௠ ൌ െ ௏௔௥ሾ௠ሿ
ாሾ௠ሿ

൏ 0 denotes the price of risk. 
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Recall that the SDF ݉ is a function of the data and parameters. Suppose now that ݉ 

can be approximated by a linear function of ܭ (risk) factors ݂ that serve as proxies for marginal 

utility growth: 

 ݉ ൌ ሚ݂ᇱ(3.11) ,ߠ    

where ሚ݂ ൌ ሺ1, ݂ᇱሻᇱ. Then, substituting for ݉ into the fundamental pricing equation and 

rearranging (see Cochrane, 2005, pp.107−108), 

ሾܴ௜ሿܧ  ൌ ଴ߛ ൅ ଵߛ
ᇱߚ௜,  (3.12) 

where the ߚ௜ ’s are the multiple regression coefficients of ܴ௜ on ݂ and a constant, ߛ଴  is the zero-

beta rate and ߛଵ is the vector of risk premia on the ܭ factors. The beta representation of a factor 

pricing model can be rewritten in compact form as 

ሾܴሿܧ  ൌ  (3.13)   ,ߛܤ

where ܤ ൌ ሾ1ே, ߚ  ,ሿߚ ൌ ,ሾܴݒ݋ܥ ݂ሿܸܽݎሾ݂ሿିଵ is an ሺܰ ൈ ߛ ሻ matrix of factor loadings andܭ ൌ

ሺߛ଴, ଵߛ
ᇱሻԢ. Constant portfolio characteristics can easily be accommodated in Equation 3.13 (Kan 

et al., 2010). Jagannathan, Skoulakis, and Wang (2010) show how to write the beta-pricing 

relation when characteristics are time-varying. 

For ease of exposition, the following analysis will mostly focus on the case of linear 

asset pricing models, but the techniques in this chapter are applicable to nonlinear models as 

well.   

 
GMM ESTIMATION AND EVALUATION OF ASSET PRICING MODELS IN SDF FORM 
 
Using Equation 3.11, the pricing errors of the ܰ test assets can be expressed as 

 ݃ሺߠሻ ൌ ሾ݉ሺ1ܧ ൅ ܴሻሿ െ 1ே ൌ ሺ1ൣܧ ൅ ܴሻ ሚ݂ᇱߠ൧ െ 1ே ൌ ߠܦ െ 1ே,   (3.14)  

where ܦ ൌ ሾሺ1ܧ ൅ ܴሻ ሚ݂ᇱሿ. Let ݐ ൌ 1,2, … , ܶ denote the number of time series observations on the 

test assets and the factors. The sample analog of the pricing errors is given by 

 ்݃ሺߠሻ ൌ ଵ
்

∑ ሺ1 ൅ ܴ௧
்
௧ୀଵ ሻ ሚ݂௧ᇱߠ െ 1ே.   (3.15)  
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For a given weighting matrix ்ܹ, the GMM estimator of ߠ minimizes the quadratic form 

 ்݃ሺߠሻԢ ்்ܹ݃ሺߠሻ    (3.16)  

and solves the first-order condition 

்ܦ 
ᇱ

்ܹሺߠ்ܦ െ 1ேሻ ൌ 0,     (3.17)  

where ்ܦ ൌ డ௚೅ሺఏሻ
డఏᇲ ൌ ଵ

்
∑ ሺ1 ൅ ܴ௧ሻ்

௧ୀଵ ሚ݂௧ᇱ. Solving this system of linear equations for ߠ yields 

෠ߠ  ൌ ሺ்ܦ
ᇱ

்ܦሻିଵሺ்ܦ்ܹ
ᇱ

்ܹ1ேሻ. (3.18)  

The optimal GMM estimator (under the assumption that the model is correctly specified) 

sets ்ܹ ൌ ்ܸିଵ, where ்ܸ ൌ ሾܶିଵݎܸܽ ଶ⁄ ்݃ሺߠሻሿ. In this case, 

෠ߠ  ൌ ሺ்ܦ
ᇱ ்ܸିଵ்ܦሻିଵሺ்ܦ

ᇱ ்ܸିଵ1ேሻ, (3.19)  

where ்ܸ  is evaluated at some preliminary (consistent) estimator ߠ෨ (typically obtained using 

்ܹ ൌ  ே). If the model is correctly specified, i.e., it explains the test assets correctly, the pricingܫ

errors ݃ሺߠሻ ൌ ሾሺ1ܧ ൅ ܴሻ ሚ݂ᇱߠሿ െ 1ே are zero and the model’s restrictions can be tested using the 

statistic 

 ்ܶ݃൫ߠ෠൯Ԣ்ܸିଵ்݃൫ߠ෠൯ ՜ௗ ߯ሺேି௄ିଵሻ
ଶ . (3.20)  

If the model is misspecified, the value of the test statistic depends on the choice of ்ܹ. 

Therefore, for model comparison, using the same ்ܹ across models makes more sense. 

Hansen and Jagannathan (1997) suggest using ܹ ൌ ܷିଵ, where ܷ ൌ ሾሺ1ܧ ൅ ܴሻሺ1 ൅ ܴሻᇱሿ 

is the second moment matrix of the gross returns with sample analog ்ܷ. Then, the sample HJ-

distance is defined as 

ሻߠሺ்ߜ  ൌ ඥ்݃ሺߠሻԢ்ܷ
ିଵ்݃ሺߠሻ. (3.21)  

and 

෠ߠ  ൌ argminఏ்ߜ௵אሺߠሻ ൌ ሺ்ܦ
ᇱ ்ܷ

ିଵ்ܦሻିଵሺ்ܦ
ᇱ ்ܷ

ିଵ1ேሻ (3.22)  

is the resulting GMM estimator. The HJ-distance has an interesting economic interpretation: (1) 

it measures the minimum distance between the proposed SDF and the set of valid SDFs, and 

(2) it represents the maximum pricing error of a portfolio of returns with unit second moment. 
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The HJ-distance test of correct model specification is based on (Jagannathan and 

Wang, 1996; Parker and Julliard, 2005) 

்ߜܶ 
ଶ൫ߠ෠൯ ՜ௗ ∑ ௝,ேି௄ିଵݒ௝ߦ

௝ୀଵ  (3.23)  

 where the ݒ௝’s are independent ߯ଵ
ଶ random variables and the ߦ௝ ’s are the non-zero eigenvalues 

of the matrix 

 ܸଵ ଶ⁄ ܷିଵ ଶ⁄ ቂܫே െ ൫ܷିଵ ଶ⁄ ൯
ᇱ
ᇱܷିଵܦሻିଵܦᇱܷିଵܦሺܦ ଶ⁄ ቃ ൫ܷିଵ ଶ⁄ ൯

ᇱ
൫ܸଵ ଶ⁄ ൯

ᇱ
. (3.24)  

If ்ܶߜ
ଶ൫ߠ෠൯ exceeds the critical value from this weighted chi-squared distribution, then the model 

is misspecified. In this case, the traditional standard errors of the estimates ߠ෠ proposed by 

Hansen (1982) need to be adjusted for model misspecification (Kan and Robotti, 2009; 

Gospodinov et al., 2011a). Even if all candidate asset pricing models are misspecified, knowing 

which model provides the smaller pricing errors is still interesting. The statistical comparison of 

the HJ-distances of two or more competing models depends on whether the models are 

correctly specified or misspecified, nested or non-nested. Kan and Robotti (2009) and 

Gospodinov et al. (2011a) provide model selection tests to compare the performance of linear 

and nonlinear asset pricing models. 

 
BETA-PRICING MODELS AND TWO-PASS CROSS-SECTIONAL REGRESSIONS   

From Equation 3.13, the expected-return errors of the ܰ assets are given by 

 ݁ ൌ ሾܴሿܧ െ  (3.25)   .ߛܤ

A popular goodness-of-fit measure used in many empirical studies is the cross-sectional ܴଶ. 

Following Kandel and Stambaugh (1995), this is defined as 

 ܴଶ ൌ 1 െ ொ
ொబ

,   (3.26) 

where ܳ ൌ ݁Ԣܹ݁, ܳ଴ ൌ ݁଴Ԣܹ݁଴, ݁଴ ൌ ሾܫே െ 1ேሺ1ே
ᇱ ܹ1ேሻିଵ1ே

ᇱ ܹሿܧሾܴሿ represents the deviations of 

mean returns from their cross-sectional average, and ܹ is a positive-definite weighting matrix. 

Popular choices of ܹ in the literature are ܹ ൌ ܹ ,ே (OLS)ܫ ൌ  ሾܴሿିଵ (generalized leastݎܸܽ
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squares, GLS), and ܹ ൌ ௗߑ
ିଵ (weighted least squares, WLS), where ߑௗ is a diagonal matrix 

containing the diagonal elements of ߑ, the variance-covariance matrix of the residuals from the 

first-pass time series regression. In order for ܴଶ to be well defined requires assuming that ܧሾܴሿ 

is not proportional to 1ே (the expected returns are not all equal) so that ܳ଴ ൐ 0. Note that 

0 ൏ ܴଶ ൏ 1 and it is a decreasing function of the aggregate pricing-error measure ܳ. Thus, ܴଶ is 

a natural measure of goodness of fit.  

As emphasized by Kan and Zhou (2004), ܴଶ is oriented toward expected returns 

whereas the HJ-distance evaluates a model's ability to explain prices. With the zero-beta rate as 

a free parameter, the most common approach in the asset pricing literature, they show that the 

two measures need not rank models the same way. Thus, both measures are of interest with 

the choice depending on the economic context and perhaps the manner in which a researcher 

envisions applying the models. 

The estimated multiple regression betas of the ܰ assets with respect to the ܭ factors are 

defined as  

መߚ  ൌ  ෠ܸோ௙ ෠ܸ௙
ିଵ, (3.27)  

where ෠ܸோ௙ and ෠ܸ௙ are consistent estimators of ݒ݋ܥሾܴ, ݂ሿ and ܸܽݎሾ݂ሿ, respectively. Some studies 

allow ߚ’s to change throughout the sample period. For example, in the original Fama and 

MacBeth (1973) study, the authors estimated the betas used in the CSR for month ݐ from data 

before that month. A more customary practice in recent decades is to use full-period beta 

estimates for portfolios formed by ranking stocks on various characteristics.  

Then, the estimated ߚ′s are used as regressors in the second-pass CSR and the 

estimated risk premia, ߛ, are given by  

ොߛ  ൌ ሺ்ܤ
ᇱ

்ܤሻିଵ்ܤ்ܹ
ᇱ

்ܹ തܴ, (3.28)  

where ்ܤ ൌ ሾ1ே, መሿ and തܴߚ ൌ ଵ
்

∑ ܴ௧
்
௧ୀଵ . Under the correctly specified model, the asymptotic 

standard errors of the risk premia estimates in Equation 3.28 are provided by Shanken (1992) 
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and Jagannathan and Wang (1998). Further, Shanken shows that, when the factors are portfolio 

returns, the most efficient estimates of the factor risk premia are the time-series means of the 

factors. He also shows how to incorporate the portfolio restriction in the cross-sectional relation 

when some of the factors are traded and others are not.  

The vector of sample pricing errors is given by  

 ݁̂ ൌ തܴ െ   ො (3.29)ߛ்ܤ

and the sample ܴଶ is  

 ෠ܴଶ ൌ 1 െ ொ෠
ொ෠బ

,   (3.30) 

where ෠ܳ ൌ ݁̂ᇱ
்ܹ݁̂, ܳ଴ ൌ ݁̂଴

ᇱ
்ܹ݁̂଴, ݁̂଴ ൌ ሾܫே െ 1ேሺ1ே

ᇱ
்ܹ1ேሻିଵ1ே

ᇱ
்ܹሿ തܴ. To determine whether the 

model is correctly specified, one can test if the CSR ܴଶ is equal to one. Kan et al. (2010) show 

that if expected returns are exactly linear in the betas, then the limiting distribution of ܶሺ ෠ܴଶ െ 1ሻ 

is that of a linear combination of ܰ െ ܭ െ 1 independent ߯ଵ
ଶ random variables. Further, they 

characterize the asymptotic distribution of the sample ܴଶ when the true ܴଶ is 0 (i.e., the model 

has no explanatory power for expected returns) and when the true ܴଶ is between 0 and 1 (i.e., a 

misspecified model that provides some explanatory power for the expected returns on the test 

assets). Shanken (1985), Gibbons, Ross, and Shanken (1989), and Kan et al. (2010) provide 

alternative tests of the validity of the beta-pricing relation.   

 When the beta-pricing model is misspecified, the asymptotic standard errors proposed 

by Shanken (1992) and Jagannathan and Wang (1998) are incorrect. Shanken and Zhou (2007) 

and Kan et al. (2010) show how to compute misspecification-robust standard errors of the risk 

premia estimates. Finally, Kan et al. (2010) provide the necessary econometric techniques to 

compare the cross-sectional ܴଶs of two or more beta-pricing models. As for the HJ-distance 

measure, the asymptotic distributions of their tests depend on whether the models are correctly 

specified or misspecified, nested or non-nested.  
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CONDITIONAL ASSET PRICING MODELS AND RETURN PREDICTABILITY 

Recall that the fundamental pricing equation in Equation 3.2 is defined in terms of conditional 

expectations. Although the law of iterated expectations permits the estimation of the model in 

terms of unconditional moments, some relevant information may get lost in the process. This 

section explains how to incorporate conditioning information in a linear asset pricing model, 

describes the underlying assumptions, and provides an interpretation of the zero-beta rate and 

risk premia in the cross-sectional regression. 

Let ݖ௧ be an ܮ-vector of observed conditioning variables (instruments) that belongs to the 

information set at time ݐ and define ܨ௧ାଵ ൌ ሾݖ௧
ᇱ, ௧݂ାଵ

ᇱ , ௧ݖ
ᇱ ٔ ௧݂ାଵ

ᇱ ሿᇱ as a ܭ෩ ൌ ሺܭ ൅ 1ሻሺܮ ൅ 1ሻ െ 1 

vector of scaled factors.  Recently, many empirical studies  (see, for example, Shanken, 1990; 

Lettau and Ludvigson, 2001; Lustig and Van Nieuwerburgh, 2005; Santos and Veronesi, 2006) 

have considered a cross-sectional regression of unconditional expected returns on their 

unconditional betas with respect to ܨ௧ାଵ: 

ሾܴ௧ାଵሿܧ  ൌ 1ேߛ଴ ൅  ଵ,  (3.31)ߛߚ

where 

ߚ  ൌ ,ሾܴ௧ାଵݒ݋ܥ  ௧ାଵሿିଵ . (3.32)ܨሾݎ௧ାଵሿܸܽܨ

There are two ways for obtaining the unconditional relationship between ܧሾܴ௧ାଵሿ and ߚ in 

Equation 3.31. The first approach is a time-varying SDF coefficients approach, which assumes 

that the SDF is linear in a set of risk variables:   

 ݉௧ାଵ ൌ ܽ௧ ൅ ܾ௧
ᇱ

௧݂ାଵ.  (3.33) 

The linearity of the SDF in ௧݂ାଵ allows obtaining the following conditional asset pricing model: 

௧ሿݖ|ሾܴ௧ାଵܧ  ൌ 1ேߛ଴,௧ ൅  ଵ,௧,  (3.34)ߛ௧ߚ

where ߚ௧ ൌ ,ሾܴ௧ାଵݒ݋ܥ ௧݂ାଵ|ݖ௧ሿܸܽݎሾ ௧݂ାଵ|ݖ௧ሿିଵ is the matrix of conditional betas and  

଴,௧ߛ  ൌ ଵ
ாሾ௠೟శభ|௭೟ሿ

െ 1,  (3.35) 

ଵ,௧ߛ  ൌ െ ௏௔௥ሾ௙೟శభ|௭೟ሿ௕೟
ாሾ௠೟శభ|௭೟ሿ

. (3.36) 
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If a zero-beta asset exists with raw return ܴ଴,௧ାଵ (with ܴ଴,௧ାଵ conditionally uncorrelated with 

݉௧ାଵ),  it follows that 

଴,௧ߛ  ൌ 1 ൅  ௧൧.  (3.37)ݖ|଴,௧ାଵܴൣܧ

The SDF coefficients, ܽ௧ and ܾ௧, are often assumed to be linear functions of the instruments ݖ௧: 

 ܽ௧ ൌ ܽ଴ ൅ ܽଵ
ᇱ  ௧ (3.38)ݖ

and 

 ܾ௧ ൌ ܾ଴ ൅  ௧. (3.39)ݖଵܤ

Then, ݉௧ାଵ can be written as  

 ݉௧ାଵ ൌ ܽ଴ ൅ ෨ܾᇱܨ௧ାଵ,  (3.40) 

where ෨ܾ ൌ ሾܽଵ
ᇱ , ܾ଴

ᇱ ,  ଵሻᇱ ሿᇱ. As a result, assuming that the coefficients of the SDF are linearܤሺܿ݁ݒ

in ݖ௧ is equivalent to assuming that the SDF is linear in the scaled factors. For example, in a 

model with one risk factor and one conditioning variable, the SDF is given by 

 ݉௧ାଵ ൌ ሺܽ଴ ൅ ܽଵݖ௧ሻ ൅ ሺܾ଴ ൅ ܾଵݖ௧ሻ ௧݂ାଵ ൌ ܽ଴ ൅ ܽଵݖ௧ ൅ ܾ଴ ௧݂ାଵ ൅ ܾଵሺݖ௧ ௧݂ାଵሻ,  (3.41) 

i.e., going from a one-factor model with time-varying coefficients to a three-factor model with 

fixed coefficients is possible. Therefore, one can use the new (scaled) factors with the 

unconditional moment procedure developed above.  

However, ߛ଴ in Equation 3.31 should not be interpreted as the unconditional expected 

return on the zero-beta asset. The reason is that, using Equation 3.37, Jensen’s inequality and 

the fact that ܧሾ݉௧ାଵ|ݖ௧ሿ is a positive random variable (positivity of ݉௧ାଵ is required here), it 

follows that   

଴,௧ାଵ൧ܴൣܧ  ൒  ଴. (3.42)ߛ

The equality holds if and only if ܧሾ݉௧ାଵ|ݖ௧ሿ is constant over time. This result suggests that if a 

risk-free asset exists, then ߛ଴ tends to be less than the average risk-free rate. Similarly, the 

elements of ߛଵ that correspond to the original ܭ factors should not be interpreted as 

unconditional risk premia. 
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The second approach that can deliver Equation 3.31 is a time-varying regression 

coefficients approach (Shanken, 1990) with data generating process given by  

 ܴ௧ାଵ ൌ ௧ߙ ൅ ௧ߚ ௧݂ାଵ ൅  ௧ାଵ,  (3.43)ߝ

where ߚ௧ is the matrix of conditional betas defined above and ߙ௧ ൌ ௧ሿݖ|ሾܴ௧ାଵܧ െ ሾܧ௧ߚ ௧݂ାଵ|ݖ௧ሿ. 

When the conditional ܭ-factor beta-pricing model holds,  

௧ሿݖ|ሾܴ௧ାଵܧ  ൌ 1ேߛ଴,௧ ൅  ଵ,௧.  (3.44)ߛ௧ߚ

Assuming the conditional expectation of Equation 3.43 holds, the conditional ܭ-factor beta-

pricing model imposes the following restrictions on ߙ௧: 

௧ߙ  ൌ 1ேߛ଴,௧ ൅ ଵ,௧ߛ௧൫ߚ െ ሾܧ ௧݂ାଵ|ݖ௧ሿ൯ ൌ 1ேߛ଴,௧ ൅  ௧߮௧,  (3.45)ߚ

where ߮௧ ൌ ଵ,௧ߛ െ ሾܧ ௧݂ାଵ|ݖ௧ሿ. The betas, the zero-beta rate, and the risk premia in Equation 3.45 

are time-varying. Since these restrictions are too general to test, some ancillary assumptions 

are needed. One possibility is to assume that ߛ଴,௧ and ߮௧ are constant over time and that ߙ௧ and 

 :௧ݖ ௧ are linear functions ofߚ

௧ߙ  ൌ ܽ଴ ൅  ௧,  (3.46)ݖଵܣ

௧ሻߚሺܿ݁ݒ  ൌ ܾ଴ ൅  ௧.  (3.47)ݖଵܤ

The restriction in Equation 3.45 then becomes: 

 ܽ଴ ൅ ௧ݖଵܣ ൌ 1ேߛ଴ ൅ ሺ߮ᇱ ٔ ேሻሺܾ଴ܫ ൅  ௧ሻ.  (3.48)ݖଵܤ

This restriction implies that 

 ܽ଴ ൌ 1ேߛ଴ ൅ ሺ߮ᇱ ٔ  ேሻܾ଴  (3.49)ܫ

and  

ଵܣ  ൌ ሺ߮ᇱ ٔ  ଵ.  (3.50)ܤேሻܫ

The return generating process can be written as 

 ܴ௧ାଵ ൌ ܽ଴ ൅ ௧ݖଵܣ ൅ ሺ ௧݂ାଵ
ᇱ ٔ ேሻሺܾ଴ܫ ൅ ௧ሻݖଵܤ ൅  ௧ାଵ,  (3.51)ߝ

which has ܰሺܭ ൅ 1ሻሺܮ ൅ 1ሻ parameters. This result is the same as running a regression of ܴ௧ାଵ 

on a constant term and the scaled factors ܨ௧ାଵ: 
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 ܴ௧ାଵ ൌ ෤ߙ ൅ ௧ݖ෨ଵߚ ൅ ෨ଶߚ ௧݂ାଵ ൅ ௧ݖ෨ଷሺߚ ٔ ௧݂ାଵሻ ൅  ௧ାଵ.  (3.52)ߝ

Comparing Equations 3.51 and 3.52 yields  

෤ߙ  ൌ ܽ଴,    ߚ෨ଵ ൌ ෨ଶ൯ߚ൫ܿ݁ݒ    ,ଵܣ ൌ  ܾ଴,     ܿ݁ݒ൫ߚ෨ଷ൯ ൌ  ଵሻ.     (3.53)ܤሺܿ݁ݒ 

Taking the unconditional expectation of Equation 3.52,  

ሾܴ௧ାଵሿܧ  ൌ ෤ߙ ൅ ௧ሿݖሾܧ෨ଵߚ ൅ ሾܧ෨ଶߚ ௧݂ାଵሿ ൅ ௧ݖሾܧ෨ଷߚ ٔ ௧݂ାଵሿ.  (3.54) 

Using the asset pricing restrictions 

෤ߙ  ൌ 1ேߛ଴ ൅  ෨ଶ߮,  (3.55)ߚ

it follows that 

ሾܴ௧ାଵሿܧ  ൌ 1ேߛ଴ ൅ ௧ሿݖሾܧ෨ଵߚ ൅ ෨ଶሺ߮ߚ ൅ ሾܧ ௧݂ାଵሿሻ ൅ ௧ݖሾܧ෨ଷߚ ٔ ௧݂ାଵሿ.  (3.56) 

The risk premia associated with ߚ෨ in the regression setup are not free, which differs from 

the time-varying SDF coefficients setup. In the regression framework, ߛ଴ indeed has a zero-beta 

interpretation and the risk premia associated with ߚ෨ଶ are indeed equal to the risk premia on the 

original factors. However, this relationship comes at the expense of assuming that ߛ଴ and ߮ are 

constant over time. Additionally, imposing the restriction ܣଵ ൌ ሺ߮ᇱ ٔ  ଵ, which is equivalentܤேሻܫ

to ߚ෨ଵ ൌ ௅ܫ෨ଷሺߚ ٔ ߮ሻ, results in a simpler cross-sectional regression: 

ሾܴ௧ାଵሿܧ  ൌ 1ேߛ଴ ൅ ෨ଶሺ߮ߚ ൅ ሾܧ ௧݂ାଵሿሻ ൅ ௧ݖሾܧ෨ଷߚ ٔ ሺ߮ ൅ ௧݂ାଵሻሿ.  (3.57) 

In summary, both approaches can lead to the unconditional relationship in Equation 3.31. 

However, the time-varying regression coefficients approach requires many assumptions 

(linearity assumptions on ܰሺܭ ൅ 1ሻ regression coefficients together with constant ߛ଴ and ߮). In 

contrast, the SDF approach requires far fewer assumptions (linearity assumption on ܭ ൅ 1 SDF 

coefficients) and does not assume that the zero-beta rate and the risk premia are constant over 

time. In the regression approach, the ߛ଴ and ߛଵ associated with the original factors retain the 

zero-beta rate and risk premia interpretation. Conversely, in the SDF approach, the ߛ଴ and ߛଵ 

associated with the original factors cannot be interpreted as unconditional zero-beta rate and 

risk premia. Finally, Equation 3.57 shows that under the regression approach, the cross-
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sectional regression should be run with a constant, ߚ෨ଶ and ߚ෨ଷ only. Although the risk premia 

associated with ߚ෨ଵ are in general not zero (unless the information variables are de-meaned), 

including ߚ෨ଵ does not provide additional explanatory power in the cross-sectional regression. 

Conditional asset pricing models presume the existence of some return predictability. 

For the conditional restriction in Equation 3.2 to be empirically relevant, there should exist some 

instruments ݖ௧ for which the first and second moments of the SDF and of the returns vary over 

time. A typical predictive regression model of stock returns has the form: 

 ܴ௧ାଵ ൌ ߙ ൅ ௧ݖ
ᇱߚ ൅ ݁௧ାଵ,  (3.58) 

where ݁௧ାଵ is a martingale difference sequence. The vector of financial and macro predictors ݖ௧ 

includes valuation ratios (dividend-price ratio, dividend yields, earnings-price ratio, dividend-

earnings ratio, and book-to-market ratio), interest and inflation rates (short-term rates, yield 

spreads, default premium, and inflation rate), consumption and wealth-income ratio, stock return 

volatility (realized or implied volatility), among others. 

The main drawback of this approach is the reliance on a small number of conditioning 

variables, which is unlikely to span the information set of market participants (Ludvigson and 

Ng, 2007). Furthermore, the predictive ability of individual conditioning variables, if there is any, 

is only short-lived (Timmermann, 2008), unstable and subject to structural breaks over longer 

time periods (Lettau and Van Nieuwerburgh, 2008). To a large extent, these drawbacks can be 

remedied by estimating a few common factors from a large panel of economic time series that 

are believed to span the information set of investors (Ludvigson and Ng, 2007). 

To introduce the main idea behind the estimation of common factors, suppose that the 

researcher has access to a large panel of data ݔ௜௧ ሺ݅ ൌ 1, … , ;ܯ ݐ ൌ 1, … , ܶሻ, where ܯ is the 

number of variables (financial and macro variables) and ܶ is the number of time series 

observations. Assume that ݔ௜௧ admits an approximate factor structure of the form: 

௜௧ݔ  ൌ ߱௜
ᇱ

௧݂ ൅ ݁௜௧,  (3.59) 
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where ௧݂ is a ܭ-vector of latent factors, ߱௜ is a ܭ-vector of factor loadings and ݁௜௧ are errors 

uncorrelated with the factors. Let ܺ ൌ ሾݔଵ ݔଶ ܨ ெሿ andݔ … ൌ ሾ ଵ݂ ଶ݂ … ௄݂ሿ denote the stacked 

matrices for the data and the factors. Then, under some technical conditions, the latent factors 

can be estimated by the method of principal components analysis by minimizing the objective 

function 

 ଵ
ெ்

∑ ∑ ሺݔ௜௧ െ ߱௜
ᇱ

௧݂ሻଶ்
௧ୀଵ

ெ
௜ୀଵ ,  (3.60) 

subject to the identifying restriction ிᇲி
்

ൌ  ௞. The problem of estimating ௧݂ is identical toܫ

maximizing trሺܨᇱሺܺᇱܺሻܨሻ and the estimated factors መ݂௧ are √ܶ times the ܭ eigenvectors 

corresponding to the ܭ largest eigenvalues of the matrix ܺܺᇱ/ሺܶܯሻ. 

The evaluation of predictability of stock returns is performed either in-sample or out-of-

sample using statistical or economic criteria. The in-sample predictability is assessed in terms of 

the time-series ܴଶ of the model and of the statistical significance of the coefficient on a particular 

predictor. Typically, predictive regressions of stock returns are characterized by a statistically 

small but possibly economically relevant ܴଶ (Campbell and Thompson, 2008). As discussed 

later, the statistical significance of the slope parameter may be misleading if the predictor is 

highly persistent. 

The out-of-sample prediction is performed by dividing the sample into two subsamples 

with the first subsample used for parameter estimation and the second subsample used for out-

of-sample forecast evaluation. The statistical evaluation is based on the out-of-sample ܴଶ 

coefficient, mean squared or absolute errors that compare the actual and predicted values of 

the returns. Conversely, the profit-based evaluation involves computing returns from a trading 

strategy of stocks and bonds depending on whether the predicted excess returns from the 

model are positive (position in stocks) or negative (position in bonds). Then, the Sharpe ratio of 

the model-based trading strategy is compared to the Sharpe ratio of a buy-and-hold benchmark 

strategy over the out-of-sample evaluation period. Welch and Goyal (2008) provide a 
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comprehensive study of the out-of-sample performance of various financial and macroeconomic 

variables for predicting stock returns.  

 
NONLINEAR ASSET PRICING MODELS 

The generality of the SDF representation and GMM estimation based on the HJ-distance 

becomes obvious in the case, for example, of nonlinear consumption-based asset pricing 

models. As discussed above, the SDF for a representative agent model can be written as the 

product between a time-preference parameter ߚ and the ratio of the marginal utilities of 

consumption at time ݐ ൅ 1 and ݐ, respectively.  

Consider the constant relative risk aversion (CRRA) or power utility function 

ሺܿ௧ሻݑ  ൌ ௖೟
భషഐିଵ
ଵିఘ

,  (3.61) 

where ߩ ൐ 0 is the coefficient of relative risk aversion. For example, when ߩ ՜ ሺܿ௧ሻݑ ,1 ൌ

logሺܿ௧ሻ. The Arrow-Pratt coefficient of relative risk aversion ௖೟௨ᇲᇲሺ௖೟ሻ
௨ᇲሺ௖೟ሻ  is ߩ, i.e., relative risk aversion 

is constant. 

Substituting into the fundamental pricing equation delivers the following set of moments: 

௧ܧ  ቂߚ ቀ௖೟శభ
௖೟

ቁ
ିఘ

ሺ1 ൅ ܴ௧ାଵሻ െ 1ேቃ ൌ 0ே.  (3.62) 

For a vector of instruments (conditioning variables) ݖ௧ that belongs to the information set at time 

 the sample analog of the above population moment condition is ,ݐ

 ்݃ሺߠሻ ൌ ଵ
்

∑ ቂߚ ቀ௖೟శభ
௖೟

ቁ
ିఘ

ሺ1 ൅ ܴ௧ାଵሻ െ 1ேቃ ٔ ௧ݖ
்
௧ୀଵ ൌ 0௠,  (3.63) 

where ݉ ൌ dimሺܴ௧ାଵሻ dim ሺݖ௧ሻ and ߠ ൌ ሺߚ,  are then estimated ߠ ሻԢ. The unknown parametersߩ

by GMM. 

Several drawbacks of the CRRA utility function are worth mentioning. First, the equity 

premium puzzle (Mehra and Prescott, 1985) implies unrealistically large values of risk aversion 

 in order to fit U.S. data. For example, in a gamble that offers a 50 (as high as 30 to 50 ߩ)
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percent chance to double one’s wealth and 50 percent chance to cut one’s wealth by half, a 

value of risk aversion parameter of 30 implies that one would be willing to pay 49 percent of her 

wealth to hedge against the 50 percent chance of losing half of her wealth (Siegel and Thaler, 

1997). Second, in the CRRA framework, ߩ is inversely related to the elasticity of intertemporal 

substitution (EIS). This is inappropriate because EIS is related to the willingness of an investor 

to transfer consumption between time periods whereas CRRA is about transferring consumption 

between states of the world. The non-expected and time non-separable (habit persistence) 

utility functions described below separate risk aversion and intertemporal substitution. 

The non-expected (Epstein-Zin-Weil) utility is given by 

ሺܿ௧ሻݑ  ൌ ሾሺ1 െ ሻܿ௧ߚ
ଵିఎ ൅ ௧ାଵݑ௧ሾܧሺߚ

ଵିఘሿሻሺଵିఎሻ ሺଵିఘሻ⁄ ሿଵ ሺଵିఎ⁄ ሻ  (3.64) 

which gives rise to the following pricing equation (conditional moment restriction): 

௧ܧ  ൤ߚఒ ቀ௖೟శభ
௖೟

ቁ
ିఎఒ

ሺ1 ൅ ܴ௠,௧ାଵሻఒିଵሺ1 ൅ ܴ௧ାଵሻ െ 1ே൨ ൌ 0ே,  (3.65) 

where ߣ ൌ ଵିఘ
ଵିఎ

 and ܴ௠ denotes the market return. Note that for ߣ ൌ 1 (or, equivalently, ߟ ൌ  ,(ߩ

this equation reduces to the one corresponding to time-separable (CRRA) utility. The sample 

analog of the moment condition above is given by 

 ்݃ሺߠሻ ൌ ଵ
்

∑ ൤ߚఒ ቀ௖೟శభ
௖೟

ቁ
ିఎఒ

ሺ1 ൅ ܴ௠,௧ାଵሻఒିଵሺ1 ൅ ܴ௧ାଵሻ െ 1ே൨ ٔ ௧ݖ
்
௧ୀଵ ൌ 0௠,  (3.66) 

where the parameter vector is ߠ ൌ ሺ ߚ, ,ߟ  .ሻԢߣ

Another popular extension of the CRRA framework is the utility function with habit 

persistence and durability: 

,ሺܿ௧ݑ  ܿ௧ିଵሻ ൌ ௦೟
భషഐ

ଵିఘ
,  (3.67) 

where ݏ௧ ൌ ܿ௧ ൅ ߬ܿ௧ିଵ. The conditional moment restrictions are given by 

௧ାଵݏ൫ߚ௧ൣܧ 
ିఘ ൅ ௧ାଶݏ߬ߚ

ିఘ ൯ሺ1 ൅ ܴ௧ାଵሻ െ ൫ݏ௧
ିఘ ൅ ௧ାଵݏ߬ߚ

ିఘ ൯൧ ൌ 0ே,  (3.68) 

and their sample analog takes the form 
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 ்݃ሺߠሻ ൌ ଵ
்

∑ ൤ߚ ൬௦೟శభ
షഐ ାఉఛ௦೟శమ

షഐ

௦೟
షഐሺଵାఉఛሻ ൰ ሺ1 ൅ ܴ௧ାଵሻ െ ൬௦೟

షഐାఉఛ௦೟శభ
షഐ

௦೟
షഐሺଵାఉఛሻ

൰ 1ே൨ ٔ ௧ݖ
்
௧ୀଵ ൌ 0௠,  (3.69) 

where ߠ ൌ ሺߚ, ,ߩ ߬ሻ′ and the original moment conditions are divided by the ݏ௧
ିఘሺ1 ൅  ሻ habit to߬ߚ

induce stationarity and rule out trivial solutions (note that if ߩ ൌ 0 and ߬ߚ ൌ െ1, the moment 

conditions are trivially satisfied). As in the case of non-expected utility, the time-separable 

(CRRA) utility is a special case of Equation 3.69 for ߬ ൌ 0. While estimating the set of moment 

conditions for the habit persistence model and testing the implied model restrictions are 

possible, Equation 3.69 does not have a clear pricing error interpretation. One possibility is to 

make lognormality assumptions as in Balduzzi and Kallal (1997), cast the restrictions in pricing 

error form and use the HJ-distance metric for model evaluation and comparison. To conclude, 

all linear and nonlinear asset pricing models that have been proposed in the literature can be 

written in terms of the fundamental asset pricing equation in Equation 3.2 and can be estimated 

using GMM-type techniques.    

 
PITFALLS IN THE CURRENT PRACTICE AND SUGGESTIONS FOR IMPROVING 
EMPIRICAL WORK 
 
One empirical finding that consistently emerges from the statistical tests and comparisons of 

competing asset pricing models is that the data are too noisy for a meaningful and conclusive 

differentiation among alternative SDF specifications. Given the large noise component in returns 

on risky assets, explaining the cross-sectional variability of asset returns by using slowly 

changing financial and macroeconomic variables appears to be a daunting task. Even if the 

asset pricing theory provides guidance for the model specification, the properties of the data 

and some limitations of the standard statistical methodology can create further challenges in 

applied work. This section discusses several pitfalls that accompany the estimation of risk 

premia and evaluation of competing asset pricing models using actual data. Particular attention 

is paid to the possibility of model misspecification, presence of useless factors, highly persistent 
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conditioning variables, large number of test assets, potential lack of invariance to data scaling, 

and interpretation of the risk premia. 

 
Misspecified Models 

A widely-held belief is that asset pricing models are likely to be misspecified and should be 

viewed only as approximations of the true data generating process. Nevertheless, empirically 

evaluating the degree of misspecification and the relative pricing performance of candidate 

models using actual data is useful.  

Two main problems with the econometric analyses are present when performed in the 

existing asset pricing studies. First, even when a model is strongly rejected by the data (using 

one of the model specification tests previously described, for example), researchers still 

construct standard errors of parameter estimates using the theory developed for correctly 

specified models. This process could give rise to highly misleading inference especially when 

the degree of misspecification is large. Kan and Robotti (2009) and Gospodinov et al. (2011a) 

focus on the HJ-distance metric and derive misspecification-robust standard errors of the SDF 

parameter estimates for linear and nonlinear models. In contrast, Kan et al. (2010) focus on the 

beta representation of an asset pricing model and propose misspecification-robust standard 

errors of the second-pass risk premia estimates. For example, for linear SDF specifications, the 

misspecification adjustment term, associated with the misspecification uncertainty surrounding 

the model, can be decomposed into three components: (1) a pure misspecification component 

that captures the degree of misspecification, (2) a spanning component that measures the 

degree to which the factors are mimicked by returns, and (3) a component that measures the 

usefulness of the factors in explaining the variation in returns. The adjustment term is zero if the 

model is correctly specified (component (1) is zero) and/or the factors are fully mimicked by 

returns (component (2) is zero). If the factors are poorly mimicked by the returns, the adjustment 
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term could be very large. This issue will be revisited in the discussion of the useless factors 

case in the next section.  

Second, many researchers are still ranking competing models by simply eyeballing the 

differences in sample HJ-distances or sample ܴଶ’s without any use of a formal statistical 

criterion that accounts for the sampling and model misspecification uncertainty. Kan and Robotti 

(2009), Kan et al. (2010), and Gospodinov et al. (2011a) develop a complete statistical 

procedure for comparing alternative asset pricing models. These model selection tests take into 

account the restrictions imposed by the structure of the competing models (nested, non-nested 

or overlapping) as well as the estimation and model misspecification uncertainty. Gospodinov et 

al. (2011a) also propose chi-squared versions of these tests that are easy to implement and 

enjoy excellent finite-sample properties. 

One recommendation for empirical work that emerges from these remarks is that the 

statistical inference in asset pricing models should be conducted allowing for the possibility of 

potential misspecification. This will ensure robust and valid inference in the presence of model 

misspecification as well as when the models are correctly specified. 

  
Useless Factors 

Consistent estimation and valid inference in asset pricing models crucially depends on the 

identification condition that the covariance matrix of asset returns and risk factors is of full rank. 

Kan and Zhang (1999a, 1999b) study the consequences of the violation of this identification 

condition. In particular, they show that when the model is misspecified and one of the included 

factors is useless (i.e., independent of asset returns), the asymptotic properties of parameter 

and specification tests in GMM and two-pass cross-sectional regressions are severely affected.  

 The first serious implication of the presence of a useless factor is that the asymptotic 

distribution of the Wald test (squared t-test) of statistical significance of the useless factor’s 

parameter (HJ-distance case) is chi-squared distributed with ܰ െ ܭ െ 1 degrees of freedom 
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instead of one degree of freedom as in the standard case when all factors are useful. The 

immediate consequence of this result is that the Wald test that uses critical values from a chi-

squared distribution with one degree of freedom will reject the null hypothesis too frequently 

when the null hypothesis is true. The false rejections are shown to become more severe as the 

number of test assets ܰ becomes large and as the length of the sample increases. As a result, 

researchers may erroneously conclude that the useless factor is priced when, in reality, it is 

pure noise uncorrelated with the stock market.  

Another important implication is that the true risk premium associated with the useless 

factor is not identifiable and the estimate of this risk premium diverges at rate √ܶ. The standard 

errors of the risk-premium estimates associated with the useful factors included in the model are 

also affected by the presence of a useless factor and the standard inference is distorted. Similar 

results also arise for optimal GMM estimation (Kan and Zhang, 1999a) and two-pass cross-

sectional regressions (Kan and Zhang, 1999b). 

 The useless factor problem is particularly serious because the traditional model 

specification tests previously described cannot reliably detect misspecification in the presence 

of a useless factor. This manifests itself in the failure of the specification tests to reject the null 

hypothesis of correct specification when the model is indeed misspecified and contains a 

useless factor.   

More generally, similar types of problems are symptomatic of a violation of the crucial 

identification condition that the covariance matrix of asset returns and risk factors must be of full 

rank. Therefore, a rank restriction test (see, for example, Gospodinov, Kan, and Robotti, 2010b) 

should serve as a useful pre-test for possible identification problems in the model (see also 

Burnside, 2010). However, this test cannot identify which factor contributes to the identification 

failure. Kleibergen (2009) proposes test statistics that exhibit robustness to the degree of 

correlation between returns and factors in a two-pass cross-sectional regression framework. In 

the SDF framework, Gospodinov, Kan, and Robotti (2011b) develop a simple (asymptotically 
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߯ଵ
ଶ-distributed) misspecification-robust test that signals the direction of the identification failure. 

Only after the useless factor is detected and removed from the analysis, the validity of the 

(misspecification-robust) inference and the consistency of the parameter estimates can be 

restored.  

 
Estimating Models with Excess Returns 

When excess returns (ܴ௘) are used to estimate and test asset pricing models, the moment 

conditions (pricing equation) are given by 

ሺܴ݉௘ሻܧ  ൌ 0ே.  (3.70) 

Let ݉ ൌ ଴ߠ െ ሺߠଵ ଵ݂ ൅ ڮ ൅ ௄ߠ ௄݂ሻ. In this case, the mean of the SDF cannot be identified or, 

equivalently, the parameters ߠ଴ and ሺߠଵ, … ,  ௄ሻ cannot be identified separately. This requires aߠ

particular choice of normalization. One popular normalization is to set ߠ଴ ൌ 1 in which case 

݉ ൌ 1 െ ሺߠଵ ଵ݂ ൅ ڮ ൅ ௄ߠ ௄݂ሻ. An alternative (preferred) normalization is to set ߠ଴ ൌ 1 ൅ ሺܧଵߠ ଵ݂ሻ ൅

ڮ ൅ ሺܧ௄ߠ ௄݂ሻ in which case ݉ ൌ 1 െ ଵሾߠ ଵ݂ െ ሺܧ ଵ݂ሻሿ െ ڮ െ ௄ሾߠ ௄݂ െ ሺܧ ௄݂ሻሿ with ܧሺ݉ሻ ൌ 1. These 

two normalizations can give rise to very different results (see Kan and Robotti, 2008; Burnside, 

2010). 

Kan and Robotti (2008) argue that when the model is misspecified, the first (raw) and the 

second (de-meaned) normalizations of the SDF produce different GMM estimates that minimize 

the quadratic form of the pricing errors. Hence, the pricing errors and the p-values of the 

specification tests are not identical under these two normalizations. Moreover, the second (de-

meaned) specification imposes the constraint ܧሺ݉ሻ ൌ 1 and, as a result, the pricing errors and 

the HJ-distances are invariant to affine transformations of the factors. This is important because 

in the first normalization, the outcome of the model specification test can be easily manipulated 

by simple scaling of factors and changing the mean of the SDF. This problem is not only a 

characteristic of linear SDFs but also arises in nonlinear models. The analysis in Burnside 

(2010) further confirms these findings and links the properties of the different normalizations to 



25 
 

possible model misspecification and identification problems discussed in the previous two 

subsections.  

In a two-pass CSR framework, Kan et al. (2010) explore an excess returns specification 

with the zero-beta rate constrained to equal the risk-free rate. Imposing this restriction seems 

sensible since, when the beta-pricing models are estimated with the zero-beta rate as a free 

parameter, the estimated zero-beta rate is often too high and the estimated market premium is 

often negative, contrary to what economic theory suggests. The zero-beta restriction in the CSR 

context can be implemented by working with test portfolio returns in excess of the T-bill rate, 

while excluding the constant from the expected return relations. As is typical for regression 

analysis without a constant, the corresponding ܴଶ measure involves (weighted) sums of 

squared values of the dependent variable (mean excess returns) in the denominator, not 

squared deviations from the cross-sectional average.  

With the zero-beta rate constrained in this manner, it follows from the results of Kan and 

Robotti (2008) that equality of GLS ܴଶ’s for two models is equivalent to equality of their HJ-

distances, provided that the SDF is written as a linear function of the de-meaned factors as 

mentioned above. No such relation exists for the OLS ܴଶ.  

 
Conditional Models with Highly Persistent Predictors 

The usefulness of the conditional asset pricing models crucially depends on the existence of 

some predictive power of the conditioning variables for future stock returns. While a large 

literature reports statistically significant coefficients for various financial and macro variables in 

in-sample linear predictive regressions of stock returns, several papers raise the concern that 

some of these regressions may be spurious. For example, Ferson, Sarkissian, and Simin (2003) 

call into question the predictive power of some widely used predictors such as the term spread, 

book-to-market ratio, and dividend yield. Spurious results arise when the predictors are strongly 

persistent (near unit root processes) and their innovations are highly correlated with the 
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predictive regression errors. In this case, the estimated slope coefficients in the predictive 

regression are biased and have a non-standard (non-normal) asymptotic distribution (Elliott and 

Stock, 1994; Cavanagh, Elliott, and Stock, 1995; Stambaugh, 1999). As a result, t-tests for 

statistical significance of individual predictors based on standard normal critical values could 

reject the null hypothesis of no predictability too frequently and falsely signal that these 

predictors have predictive power for future stock returns. Campbell and Yogo (2006) and 

Torous, Valkanov, and Yan (2004) develop valid testing procedures when the predictors are 

highly persistent and revisit the evidence on predictability of stock returns. 

 Spuriously significant results and non-standard sampling distributions also tend to arise 

in long-horizon predictive regressions where the regressors and/or the returns are accumulated 

over ݎ time periods so that two or more consecutive observations are overlapping. The time 

overlap increases the persistence of the variables and renders the sampling distribution theory 

of the slope coefficients, t-tests and ܴଶ coefficients, non-standard. Campbell (2001) and 

Valkanov (2003) point out several problems that emerge in long-horizon regressions with highly 

persistent regressors. First, the ܴଶ coefficients and t -statistics tend to increase with the horizon, 

even under the null of no predictability, and the ܴଶ is an unreliable measure of goodness of fit in 

this situation. Furthermore, the t-statistics do not converge asymptotically to well-defined 

distributions and need to be rescaled to ensure valid inference. Finally, the estimates of the 

slope coefficients are biased and, in some cases, not consistently estimable. All these statistical 

problems provide a warning to applied researchers and indicate that the selection of 

conditioning variables for predicting stock returns should be performed with extreme caution.  

 
Model Evaluation with a Large Number of Assets 

A common practice is to evaluate the empirical relevance of different asset pricing models using 

a relatively large cross-section of returns on 25, 50 or 100 portfolios at monthly or quarterly 

frequencies over a period of 30 years (Fama and French, 1992; Jagannathan and Wang, 1996). 
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Since the size of the cross-section, ܰ, determines the dimensionality of the vector of moment 

conditions in the GMM estimation, the small number of time series observations per moment 

condition renders the asymptotic approximations for some specification and model comparison 

tests inaccurate. 

 For instance, Ahn and Gadarowski (2004) report substantial size distortions of the 

specification test based on the HJ-distance for combinations of ܰ and ܶ that are typically 

encountered in practice. In particular, in some of their simulation designs, the HJ-distance test 

rejects the null hypothesis, when the null hypothesis is true, 99 percent (51 percent) of the time 

for ܰ ൌ 100 and ܶ ൌ 160 (ܶ ൌ 330) at the 1 percent nominal level. This indicates that the 

researcher will erroneously conclude with high probability that the asset pricing model under 

investigation is misspecified. These simulation results suggest that the weighted chi-squared 

asymptotic approximation (for ܰ fixed and ܶ approaching infinity) is inappropriate when the 

number of test assets is large.  

Several testing procedures for correct model specification with improved finite-sample 

properties are available in the literature. Kan and Zhou (2004) derive the exact distribution of the 

sample HJ-distance which can be obtained by simulation. On the other hand, Gospodinov et al. 

(2011a) continue to use the weighted chi-squared asymptotic approximation but compute the 

weights for this asymptotic distribution not from the variance matrix of the pricing errors 

(moment conditions) computed under the null hypothesis but from its analog computed under 

the alternative of misspecification. While these variance matrices are asymptotically equivalent 

under the null of correct specification, the variance matrix computed under the alternative tends 

to be larger in finite samples, thus rendering the too frequent rejection problem less severe. 

Finally, Gospodinov et al. (2011a) propose an alternative model specification test that measures 

the distance of the Lagrange multipliers, associated with the pricing constraints imposed by the 

model, from zero. This new test is easy to implement (critical values are based on a chi-squared 
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distribution with ܰ െ ܭ െ 1 degrees of freedom) and is characterized by excellent size and 

power properties. 

 
Beta or Covariance Risk?  

Historically, researchers have almost exclusively focused on the price of beta risk to infer 

whether a proposed factor is priced. However, a potential issue exists with using multiple 

regression betas when ܭ ൐ 1: in general, the beta of an asset with respect to a particular factor 

depends on what other factors are included in the first-pass time-series OLS regression. As a 

consequence, the interpretation of the risk premia given in Equation 3.28 in the context of model 

selection can be problematic. For example, suppose that a model has two factors ଵ݂ and ଶ݂. 

Interest often lies in determining whether ଶ݂ is needed in the model. Some researchers have 

tried to answer this question by performing a test of ܪ଴: ଶߛ ൌ 0, where ߛଶ is the risk premium 

associated with factor 2. When the null hypothesis is rejected by the data, they typically 

conclude that factor 2 is important, and when the null hypothesis is not rejected, they conclude 

that factor 2 is unimportant.  

Kan et al. (2010) provide numerical examples illustrating that the test of ܪ଴: ଶߛ ൌ 0 does 

not answer the question of whether factor 2 helps to explain the cross-sectional differences in 

expected returns on the test assets. They also provide two solutions to this problem. The first 

remedy is to use simple regression betas instead of multiple regression betas in the second-

pass CSR. The second solution consists in running the second-pass CSR with covariances 

instead of betas. Kan and Robotti (2011) derive the asymptotic theory for the case of simple-

regression betas, while Kan et al. (2010) provide inference techniques for second-pass 

regressions that are run with covariances instead of betas. Therefore, researchers should focus 

on the price of covariance risk and not on the price of beta risk. Finding a statistically significant 

price of covariance risk is indeed evidence that the underlying factor is incrementally useful in 

explaining the cross-section of asset returns. 



29 
 

 
SUMMARY AND CONCLUSIONS 

This chapter provides an up-to-date review of the two most popular approaches for estimating, 

testing and comparing potentially misspecified asset pricing models: the stochastic discount 

factor and the beta methods. The analysis points out various pitfalls with some popular usages 

of these methodologies that could lead to erroneous conclusions. Special emphasis is given to 

the role played by model misspecification in tests of unconditional and conditional asset pricing 

models, to the important issue of selecting information variables that truly predict future returns 

and to different ways of incorporating the predictions of asset pricing theory into competing 

empirical specifications.  

Although the recommendations in this chapter are specifically designed to sharpen asset 

pricing tests and provide a bigger challenge to the existing models, much remains to be done. 

On the one hand, given the limited number of time-series observations for stocks and bonds, 

the asymptotic methods summarized in this chapter should be complemented with more reliable 

finite-sample procedures. Conversely, whether researchers should use individual assets or 

aggregated portfolios in tests of asset pricing theories is not entirely clear. Although the finance 

profession seems to favor the idea of working with portfolios instead of individual assets, 

justifying the almost exclusive reliance on the 25 size and book-to-market Fama-French portfolio 

returns is difficult. How many portfolios should be considered and how should they be formed 

are certainly open questions that future research will hopefully address. 

 
DISCUSSION QUESTIONS 

1. Discuss the advantages and the drawbacks of the Hansen-Jagannathan distance and cross-

sectional ܴଶ for evaluating and comparing possibly misspecified asset pricing models. 

2. Some studies suggest that the predictive power of different financial and macro variables for 

forecasting future stock returns should be evaluated only out-of-sample, i.e., using 
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information only up to the time when the forecast is made. List several reasons that could 

justify the preference for out-of-sample over in-sample evaluation of predictive power. 

3. The SDF approach discussed in this chapter can be used for evaluating the performance of 

mutual and hedge funds. Describe briefly how the SDF approach can be implemented in 

practice for this task if mutual/hedge fund data are available. 

4. Despite the recent developments in asset pricing theory and practice, many statistical 

problems can still potentially compromise some empirical findings reported in the literature.  

Discuss some of the pitfalls in the empirical analysis of asset pricing models.  
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