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Abstract 

 

 
Parameter estimation of a sinusoidal signal in real-time is encountered in applications 

in numerous areas of engineering. Parameters of interest are usually amplitude, frequency 

and phase wherein frequency tracking is the fundamental task in sinusoidal estimation. This 

thesis deals with the problem of identifying a signal that comprises n (n ≥ 1) harmonics from 

a measurement possibly affected by structured and unstructured disturbances. The structured 

perturbations are modeled as a time-polynomial so as to represent, for example, bias and 

drift phenomena typically present in applications, whereas the unstructured disturbances are 

characterized as bounded perturbation. Several approaches upon different theoretical tools 

are presented in this thesis, and classified into two main categories: asymptotic and non- 

asymptotic methodologies, depending on the qualitative characteristics of the convergence 

behavior over time. 

The first part of the thesis is devoted to the asymptotic estimators, which typically con- 

sist in a pre-filtering module for generating a number of auxiliary signals, independent of 

the structured perturbations. These auxiliary signals can be used either directly or indi- 

rectly to estimate—in an adaptive way—the frequency, the amplitude and the phase of the 

sinusoidal signals. More specifically, the direct approach is based on a simple gradient 

method, which ensures Input-to-State Stability of the estimation error with respect to the 

bounded-unstructured disturbances. The indirect method exploits a specific adaptive observer 

scheme equipped with a switching criterion allowing to properly address in a stable way 

the poor excitation scenarios. It is shown that the adaptive observer method can be applied 

for estimating multi-frequencies through an augmented but unified framework, which is a 

crucial advantage with respect to direct approaches. The estimators’ stability properties are 

also analyzed by Input-to-State-Stability (ISS) arguments. 

In the second part we present a non-asymptotic estimation methodology characterized by 

a distinctive feature that permits finite-time convergence of the estimates. Resorting to the 

Volterra integral operators with suitably designed kernels, the measured signal is processed, 

yielding a set of auxiliary signals, in which the influence of the unknown initial conditions 

is annihilated. A sliding mode-based adaptation law, fed by the aforementioned auxiliary 

signals, is proposed for deadbeat estimation of the frequency and amplitude, which are dealt 



xii 
 

 

 

with in a step-by-step manner. The worst case behavior of the proposed algorithm in the 

presence of bounded perturbation is studied by ISS tools. 

The practical characteristics of all estimation techniques are evaluated and compared 

with other existing techniques by extensive simulations and experimental trials. 
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Notation 

 

∃ there exists 

∀ for all 

∈ is an element of 

/'. define 

! factorial 

R real numbers 

R≥0 non-negative real numbers 

R>0 strictly positive real numbers 

Rn real valued n-vectors 

Rm×n real valued m × n-matrices 

C complex numbers 

Z the set of integers 

Z≥0 non-negative integers 

Z>0 strictly positive integers 

∅ empty set    

 imaginary unit, 
√

−1 

|x| Euclidean norm of x 
n 

∥x∥1 L1 norm       |xi| 
i=1 

∥x∥∞ sup norm over a time-varying vector, sup t≥0|x(t)| 

inf infimum or greatest lower bound 

sup supremum or greatest upper bound 

arg argument or solution of an optimization problem 

P projection operator 

I the identity matrix 

0 the null matrix 

di 

dti 
u(t) i-th derivative of u(t) 
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v(t) a measurement perturbed by a structured and unstructured disturbance 

y(t) a measurement perturbed by a structured disturbance only 

y̆(t) a stationary single sinusoidal signal 

ω angular frequency of a sinusoidal signal 

Ω square of the true frequency ω2
 

a amplitude of a sinusoidal signal 

ϕ phase of a sinusoidal signal 

d(t) an unstructured disturbance 

ωc pre-filter coefficient related to the cutoff frequency of a low-pass filter 

Kc damping coefficient of the pre-filter 

Ts sampling period 

 
Subscripts, superscripts and accents 

x̂ estimate 

x̃ estimation error 

x0 initial state 

x̆ steady state, stationary signal 

xi i-th component of the vector x 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background and Motivations 
 

Consider the signal 
 

 
n nd  

v(t) =     ai sin(ϕi(t)) +     bktk−1 + d(t) 
  

i=1 k=1 (1.1) 
ϕ̇ (t) = ω  

 ϕi(0) = ϕi0 

where for a given positive and known integer nd, the term 
),nd

 bkt
k−1  represents a time- 

polynomial structured exogenous measurement perturbation 1  , with bk  unknown for any 

k ∈ {1, . . . , nd}, and where d(t) characterizes an unstructured perturbation (referred to as 

measurement noise in the thesis). The structured measurement disturbances have a practical 

interest because they may incorporate bias and measurement drift up to any given order, 

the presence of which are commonly acknowledged in several practical applications (see 

[35]). For example, physical transducers and A/D converters are often affected by offsets that 

correspond to nd = 1, while several sensing devices are influenced by temperature variations 

that cause drift phenomena (i.e., nd = 2). Note that in principle nd is the expected order of 

the structured perturbations, chosen a-priori by the designer (see Figure 1.1 for examples 

with nd = 1 and nd = 2, respectively). 

The problem of estimating the amplitudes ai  ∈ R>0, the frequencies ωi  ∈ R>0  and 

the phases ϕi(t) ∈ R, t ∈ R≥0 on the basis of the perturbed measurement (1.1) has drawn 
 

 

1The given time-polynomial representation includes all the possible structured perturbation in a unified 
way. A reasonable SNR within a bounded time interval is ensured by proper weighting factors bk . In the 

following chapters, we will show that the influence of the structured uncertainty (though unbounded as t → ∞) 
is removable. 
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Fig. 1.1 Examples of structured perturbations: (a) nd = 1, b1 = 2 (i.e., Bias).  (b) nd  = 
2, b1 = 1, b2 = 0.1 (i.e., Drift). (c) A sinusoidal signal affected by the bias (a). (d) A signal 

affected by the drift (b). 

 

considerable attention in the past few decades (see, for instance, the recent contributions 

[2, 8, 18, 28, 106]). In Fig. 1.2, this task of detecting the characteristics of sinusoidal signals, 

which is also referred to as an AFP problem in this thesis is illustrated.  In the majority 
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perturbation 
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frequencies 
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Fig. 1.2 Basic scheme of the sinuosidal estimation. 

 
of the AFP problems, real-time frequency estimation is the fundamental issue since the 

amplitude and the phase can be identified afterwards. Contributions can be found with impact 

on specific application domains like vibrations suppression (see for example [10] and the 

references therein) and periodic disturbance rejection (see [9, 13, 68, 82, 109]) and power 

quality assessment (see for example [91] and the references cited therein). Specific examples 

of application can be found in the system of micro-power grids, the control units need to track 

+ 

 
Sinusoidal 
estimation 
algorithm 

? 
the objective 

â i 

 

ω̂i 

 

ϕ̂ i 

 
 



 

1.1 Background and Motivations 3 

the frequency and phase variations of electrical signals with fast dynamics in order to ensure 

effective synchronization of the distributed power generators [11, 25, 26]. Moreover, the 

massive use of switched-mode power electronics circuits—that inject higher-order harmonics 

in the system—requires the development of phase-frequency-tracking techniques that, besides 

being fast compared to the time constants of the micro-generators, are robust with respect to 

large harmonic distortion and measurement noise. Another example is continuous casting 

which is a very important stage of the process of steel manufacturing. A typical setup of 

the control architecture in continuous casting plants is depicted in Fig. 1.3 (see [40]). One 

 
 

 
 

Fig. 1.3 Mould level control scheme in a steel continuous casting process (drawn from [40]). 

 

 
of the most significant control problems in this setup concerns mould level control against 

disturbances that may affect the quality of the final products. In particular, the disturbance 

caused by the bulging phenomenon generates serious periodic level fluctuation, especially 

at high casting speed (see [40] and the references cited therein). Substantial research has 

been recently carried on in terms of advanced control schemes improving the rejection of 

bulging disturbance. An important component of these control architectures is the estimator 

of the bulging disturbance exploiting on-line measurement of the mold level fluctuations. In 

this thesis, we concentrate on the design of AFP estimators that are robust against various 

disturbances appear in the highlighted challenges, such as structured perturbations modeled 

as time-polynomial functions, harmonics and unstructured noises. 



4 INTRODUCTION 
 

   

 

In the signal processing community there is a rich literature on the problem of frequencies 

detection, among which the Prony method, Fourier transform (e.g. FFT and DFT), Chirp 

Z transform, the contraction mapping method, adaptive least square methods and subspace 

method represent frequently used tools. The principles behind the methods are conceptually 

off-line in most cases or are devised for complex exponential sinusoidal signals, hence a 

detailed discussion of these methodologies is beyond the scope of the present work and the 

reader is referred to [39, 93, 102] and the references cited therein. 

On the other hand, a wide variety of approaches for sinusoidal parameter estimation are 

already available in the systems and control community. These exploit concepts and tools 

such as phase-locked-loop (PLL), state-variable filtering, adaptive observers, adaptive notch 

filters (ANF) or Kalman/extended Kalman filters (KF/EKF). A comprehensive review of 

some techniques in these categories is carried out in next section. 

 

 

1.2 Literature review 
 
1.2.1 Kalman Filtering 

 

The Kalman filter appears as one of the most attractive solutions, which has numerous 

applications in entire areas of engineering. Ever since the KF and EKF were applied in the 

field of frequency detection [101], a large amount of EKF-based frequency trackers have 

been proposed in the literature (see, for example [6, 97, 99] and the references cited therein). 

In principle, EKF is the nonlinear version of the KF, whereas its process essentially linearizes 

the nonlinear dynamics around the previous state estimates without any stability guarantee. 

As an example, a representation of the stochastic model for the parametric estimation of a 

single sinusoidal signal may be written as 
 

  
a(k + 1)  

 
1   0   0 

s 

  
a(k) 

  ϕ(k) 

ω(k) 

 
 

 + w1(k) 

 

 
(1.2) 

(k) 

where k denotes the discrete time step index with sampling period Ts, a(k), ϕ(k), ω(k) and 

y(k) represents the amplitude, phase, angular frequency and the extracted sinusoid at the time 

step index k. The random process w1(k) and w2(k) within the state and output equations 

are usually white noise characterized by their covariance matrices. In view of (1.2), the 

sinusoidal parameters can be retrieved iteratively by implementing the extended Kalman 

filter in a straightforward way. 
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Since the Kalman filter is extremely susceptible to model parameters, the relationship 

between its behavior and the tunable parameters has been investigated in [6, 97] to gain 

some heuristic guidelines. In the power system community, the KF or EKF still remain the 

preferred choice in several applications [91]. For instance, the EKF algorithms proposed 

in [50, 95] are shown to be effective in coping with the severely distorted signal in power 

systems, although the EKF frequency estimators are characterized by local stability only (see 

[98]). Recently, a new EKF-based frequency identifier that relies on a higher order state space 

representation, embedding the dynamics of amplitudes is presented in [44]. Compared to the 

standard EKF models, the integration of the amplitude’s dynamics significantly improves the 

frequency tracking accuracy, especially in the case of a time-varying amplitudes. Last but 

not least, structured uncertainties, such as bias or drift, have not been addressed so far in the 

context of KF or EKF algorithms. 

 

1.2.2 Phase-Locked-Loop 

The Phase-Locked-Loop method and its many variants still represent the most used 

approach in many application contexts of electrical and electronic engineering for its ease of 

implementation in digital signal processing platforms and its robustness to environmental 

and measurement noise (see [3, 41, 48, 103] and the references cited therein).  However, 

the conventional PLL exhibits the well-known double-frequency ripple phenomenon, which 

causes undesired oscillations on the reconstructed signal. In this connection, several modified 

PLL architectures are devised in the literature with the aim of improving the conventional 

PLL, such as magnitude PLL (MPLL) [110], enhanced PLL (EPLL) [59] and quadrature- 

PLL (QPLL) [57]. More specifically, the MPLL consists in providing the PLL of an outer 

adaptation loop which is in charge of estimating the amplitude of the input signal, while the 

QPLL is based on a mechanism that estimates quadrature amplitudes and frequency of the 

input signal. The applicability and benefits of the QPLL in the power and communication 

systems are surveyed in [53]. On the other hand, the enhanced PLL (EPLL) [59] along with 

its variants [62, 116] represents another class of successful approaches with particular focus 

on power and energy applications. A block diagram of the EPLL architecture is shown in 

Fig. 1.4, highlighted by the dashed rectangle. The dynamics of the amplitude, frequency and 

phase-angle estimates of the EPLL are given equations: 
  

ȧ̂ (t) = µ1 
 sin (ϕ̂(t)) e(t) , 
 
∆̇ 

ω (t) = µ2 cos (ϕ̂(t)) e(t) , 
ϕ̇̂ (t) = ω0 + ∆ω (t) + µ3  cos (ϕ̂(t)) e(t) ,  

 
e(t) = v(t) − â(t) sin (ϕ̂(t)) , 

(1.3) 



6 INTRODUCTION 
 

 ̂

b1 

 
 

 
 

Fig. 1.4 Detailed scheme of the modified EPLL. Compared to the nominal EPLL scheme it 

contains an additional integrator for estimation of the DC component (highlighted by the red 

rectangles). 

 
with the initial conditions â(0), ϕ̂(0), Δω (0) and where Δω (t) represents the frequency 

correction term generated by the algorithm with respect to the nominal frequency ω0, such 

that the estimated frequency is given by ω̂(t) = Δω (t)+ω0. Substantial evaluations involving 

simulations and experiments can be found in [54] and [60], which justify their effectiveness 

in practical implementation. The stability properties of the EPLL dynamics have been studied 

in [61] resorting to the periodic orbit analysis by which local stability is proved. It is worth 

noting that in [115], mathematical analysis has been performed to evidence that the three 

PLL approaches emerging from different areas (see [110], [59] and [70] respectively) are 

intrinsically equivalent. 

To address the structured disturbance shown in Fig. 1.2, the nominal EPLL has been 

augmented in [58] by another outer loop to estimate and reject the bias term through an 

additional integrator designed by (see Fig. 1.4): 

˙ 
b1(t) = μ0 e(t) , (1.4) 

 

where e(t) = v(t) − â(t) sin (ϕ̂(t)) − ̂
˙
 (t). 

Finally, in multi-sinusoidal scenarios, a chain of PLLs are usually used. In [ 55], the de- 

vised multi-EPLL methodology that links n EPLL units within one “external" loop succeeds 

in extracting the harmonics and inter-harmonics from a multi-sinusoidal measurement. The 

problem becomes more challenging in case of an input with two frequencies that are close to 

each other. It has been shown in [88] that any two nearby frequencies can be discriminated 

by a two PLL configuration that is equipped with a de-correlator module. An alternative 
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solution is given in [43], where the estimates from two identifiers are separated by enforcing 

a minimum frequency interval. However, such de-correlation methods are hardly applicable 

for a number of harmonics larger than two. In spite of the popularity of the PLL techniques, 

the stability results available for the PLL nonlinear AFP algorithms provide, in most cases, 

only local stability guarantees, or, when averaging analysis is used, global results are valid 

only for small adaptation gains [61, 82, 110]. 

 

 

1.2.3 Adaptive Notch Filtering 
 

Another significant category of techniques is the one concerning algorithms based on the 

adaptive notch filtering model that is characterized by constrained poles and zeros. In [92], a 

very important ANF estimator is proposed in a lattice-based discrete-time form, while the 

continuous time version is introduced in [9] for a typical application to sinusoidal disturbance 

rejection with unknown frequency. As reported in [5], the standard ANF model is either 

sensitive to the initial condition or subject to biased estimates depending on the positions of 

the poles and zeros. To remove such restrictions, a modified ANF-based frequency estimator 

that is capable to provide reliable estimates in the presence of colored noise, is presented in 

[5]. Thereafter, on the basis of [92], the first globally convergent ANF estimator (i.e., scaled 

normalized ANF) has been developed in [49], although the global property is guaranteed 

only for sufficiently small adaptation gain. In [71, 72], an improved version of the scaled 

normalized ANF that is also known as a second order generalized integrator (SOGI)-based 

frequency-locked-loop (FLL) is discussed. The stability results obtained by averaging theory 

only ensure local convergence. As can be seen in Fig. 1.5, the DC bias in the measurement 

can be handled by an augmented integral loop in addition to the nominal FLL, the revised 

ANF turn out to be a SOGI-based orthogonal signal generator (OSG-SOGI) [34, 58]), the 

associated frequency adaptation law of which is given by: 

 
˙
 

 b1(t) = k0 ω̂(t) e(t) , 
 
 v̇ 1(t) = −ω̂(t)v2(t) + k ω̂(t) e(t) , 
v̇2(t) = ω̂(t) v1(t) , 

 
(1.5) 

 ω̇̂ (t)  = −γe(t)v2(t) , 
 
e(t)  = v(t) − v1(t) − ̂b1(t) . 

The OSG-SOGI structure is also studied in [28] and [31] for biased sinusoidal signals. In 

particular, the frequency adaptation law is integrated into the OSG-SOGI in [31], thus leading 

to a new extension, namely a third order generalized integrator-based OSG (OSG-TOGI). 

Moreover, the estimation problem for a multi-sinusoidal signal is addressed in [29] resorting 
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Fig. 1.5 Detailed scheme of the enhanced ANF. Compared to the nominal ANF scheme it 

contains the an additional integrator for estimation of the dc component (highlighted by red 

rectangles). 

 

 
to a bank of such FLL filters, which ensures unbiased frequency estimates in the presence of 

a white noise. 

It has been recently shown that the ANF is an effective alternative of PLL in many 

applications. More specifically, in [74] the ANF approach reported in [71, 72] is numerically 

evaluated and compared with the QPLL [53] in terms of some typical power system signals. 

To address a three phase system, three identical ANFs reported in [74] are combined in [77], 

the integrated architecture permits the use of all three-phase signals together, thus achieving  

a unique and accurate estimation of the frequency. It has been evidenced that such a new 

ANF based scheme significantly improves the performance of the conventional three-PLL 

mechanism (see [56, 94] and the references cited therein). Following the preliminary work 

(see [73, 75]), an improved work reported in [76] concerning a bank of ANF schemes 

has been shown advantageous from a computational perspective in comparison with the 

counterpart with respect to the PLL (see [55]). In order to avoid the interference, frequency 

limiters that determine the range of individual frequencies are exploited based on the a priori 

informations (i.e., precise bound of the frequencies) which, however, impose additional 

restrictions thus limiting the generality. Moreover, in [64, 81], multiple ANFs are linked 

in series rather than in parallel in order to prevent two or more estimators to converge to 

the same frequency.  It is worth noting that this cascaded architecture works only when 

the amplitudes of the sinusoids can be sorted hierarchically, and it suffers from a so called 

“beating phenomena”, due to the mutual interaction between the estimators. 
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For the sake of digital implementation, the discrete-time versions of the continuous- 

time FLL filters is introduced in [30] and [105], where the influences of sampling periods 

and discretization policies are studied. Although the discretization from a continuous-time 

algorithm is a fairly straightforward task, such an analysis is instrumental for the practical 

implementation in embedded systems. 

 
1.2.4 State-Variable Filtering 

In recent years, significant research activities have been devoted to nonlinear AFP 

algorithms involving the use of state-variable filtering (SVF) techniques. The SVF technique 

can be illustrated as follows. Consider a linear oscillator generating a single sinusoidal signal: 

 

y̆̈(t) = −Ωy̆(t) , (1.6) 

where y̆(t) /'. A sin (ωt + ϕ0) and Ω /'. ω2. Auxiliary filtering techniques are used to 

generate the filtered input’s derivatives for the construction of the frequency adaptation 

mechanisms. In this respect, the squared angular frequency is adapted, and then the frequency 

is estimated according to 

ω̂(t) = 

I  

max{0, Ω̂ (t)} . (1.7) 
 

A simple third-order estimator is presented in [1] for pure sinusoidal signals, and later 

it was modified in [2] by adding a leakage correction term to the adaptation law (i.e., the 

so-called switching σ modification technique) to prevent estimation drifts in case of perturbed 

input. The main drawback of this approach is that the boundedness in a predetermined set 

is not guaranteed (“soft projection” is used [51, Chapter 3]). In [90], a minimum-order 

frequency estimator for biased sinusoidal signals is introduced; the method offers attenuation 

of the high-frequency noise in steady state thanks to the use of switching strategies. However, 

the switching algorithm has to be reset if the nominal frequency changes. Finally, in [8], 

the same research group presented a fourth-order frequency estimator bringing significant 

improvements in robustness compared to [90]. 

Another class of approaches based on SVF techniques concerns a specific pre-filtering 

module composed of a set of identical-cascaded first-order low pass filters. A method 

coping with a large class of structured perturbations parameterized in the family of time- 

polynomial functions is proposed in [86]. In the spirit of previous work on estimation 

of unbiased harmonic signals (see [89]), the robustness of the method against bounded 

unstructured perturbations (noise or additive exogenous signals having bounded amplitude) 

is characterized by Input-to-State-Stability analysis (also referred to ISS in this thesis). The 

ISS-Lyapunov tool also allows to assess the influences of the tunable parameters on the 
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transient performance of the frequency-estimator and on the practical convergence of the 

estimates toward a neighborhood of the true values in presence of non-fading perturbations. In 

[19, 23], a parallel pre-filtering system (extending the pre-filter used in [86, 89]) is designed. 

This enhanced structure allows to simplify the adaptation law introduced in [ 21, 86], while 

maintaining the stability properties. 

 
 

1.2.5 Adaptive Observers 
 

Methods based on adaptive observers yielding the simultaneous estimation of states and 

parameters constitute valid alternatives to the aforementioned techniques. The theoretical 

properties of these observers have been extensively characterized leading to global or semi- 

global stability results (see [7, 45] and the references therein). For example, the recent 

paper [20] extends the results presented in [21] (where both structured and unstructured 

uncertainties are addressed using suitable pre-filtering techniques) and deals with a “dual- 

mode” estimation scheme, in which a switching algorithm (depending on the real-time 

excitation level) is integrated into an adaptive observer-based sinusoidal estimator.  In 

addition, the robustness against bounded unstructured disturbance is proved resorting to ISS 

arguments. The dynamic order of this estimator is equal to 6 + nd with nd the order of the 

time-polynomial structured perturbations (see (1.1)) that are assumed to possibly affect the 

input signal. 

It is worth noting that the approaches based on adaptive observers can be extended to 

address multi-sinusoidal signals by state augmentation. Specifically, the frequency estimation 

problem is addressed by introducing a state space representation of the measured signal, 

in which the unknown frequencies are incorporated by a suitable linear parameterization. 

Typically, these algorithms do not provide direct estimates of the frequencies. Instead, the 

parameter adaptation laws are applied to a set of coefficients of the characteristic polynomial 

of the autonomous signal generator system: 
 

n 

P (s) = 
n

(s2 + ωi
2) = s2n + θn 

k=1 

1s
2n−2 + · · · + θ1s

2 + θ0 

 
(1.8) 

 

where s is the Laplace variable and (θ0, θ1, · · · , θn−1) are the parameters undergoing adapta- 

tion. The frequency estimates are determined as the zeros of the characteristic polynomial. 

The first global adaptive observer-based estimator for estimating n frequencies is proposed 

in [67] with dynamic order 5n − 1 (5n for the biased case), whereas the dimension of the 

adaptive observer is reduced to 3n (3n + 1 for the biased case) in [46, 47, 80, 111] at the price 

of a slight degradation of the convergence properties. Moreover, on the basis of the algorithm 

− 
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given in [15] dealing with a methodology with minimum order 3n − 1 (3n with bias), the 

frequency estimation problems of single sinusoidal signals [16] and multi-frequency signals 

[17, 18] with saturated amplitudes are addressed via hybrid systems tools (see [42]). 

Alternative schemes in multi-frequency estimation are based on multiple ANFs and PLLs 

in parallel. The major issue of such schemes based on banks of adaptive filters in parallel 

is the interference between estimators. The adaptive observer approach circumvents this 

restriction by estimating the frequencies in a single adaptive system framework, thereby 

resulting in an indirect frequency adaptation. The drawback is the computational burden in 

the presence of a large number of sinusoids, thus restricting the application in practice. In 

this respect, a direct adaptation scheme is designed in [22] with semi-globally exponential 

convergence guaranteed thanks to an adaptive observer framework with state-affine linear 

parameterization (see [84]). 

Theoretically, an arbitrarily large number of sinusoids can be handled by multi-sinusoidal 

estimators with properly set order. However, it is commonly acknowledged that the perfor- 

mance deteriorates as the number of sinusoids grows. In addition to the above limitation in 

multi-sinusoidal estimation, the parameter estimation (e.g. frequencies) problem of a generic 

periodic signal with a possibly infinite number of harmonics can not be recast in a traditional 

adaptive observer or be solved by multiple PLLs and ANFs. In this respect, most research 

efforts only focus on the detection of the fundamental frequency. The PLL and ANF tools, 

that are originally conceived for parameter extraction of a single sinusoid, are shown also 

to be effective in the presence of a generic periodic signal comprised of arbitrary (possibly 

infinite) number of harmonics (see [71, 72, 110]). On the other hand, the internal model 

principle proposed by Francis and Wonham [37, 38] also plays an important role in periodic 

signal estimation. In [12], an adaptive internal model parametrized by the frequency of the 

periodic input is embedded in a fictitious closed-loop system, giving rise to a novel estimation 

algorithm. Moreover, the stochastic analysis performed in [113] verifies the robustness of 

[12] with respect to additive white noise. Alternatively, [32] deals with an adaptive ‘quasi’ 

repetitive control (RC) scheme for asymptotic tracking of the fundamental frequency of a 

periodic signal. The time-delay of the RC is steered on-line to the period of the input by a 

FLL, thereby improving the accuracy by mitigating the effect of the harmonics other than 

the fundamental. Nevertheless, the stability analysis of the aforementioned methods is local 

and is based on singular perturbation or averaging theory. Recently, a globally convergent 

fundamental frequency estimator is proposed [69] using an adaptive observer of order 10 (see 

[67]). Moreover, it is shown in [ 24] that another adaptive observer framework presented in 

[21] can be generalized, producing a valid alternative for global frequency estimation where 

the minimum-dynamic order is reduced to 8. 
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1.2.6 Estimators with Finite-Time Convergence 

Despite the numerous sinusoidal estimators available in the literature, only a few of 

them can drive the estimation error to 0 within a finite time, which is a desirable feature 

in control applications. A deadbeat frequency estimation method is first proposed in [107] 

based on the concept of algebraic derivatives, and this methodology is extended in [106] 

by processing a measured signal corrupted by an unknown bias. Although the method in 

[106] is capable to address the AFP problem with instantaneous convergence by taking 

quotients, re-initialization may needed due to the presence of singularities at certain time 

instants. This issue has been tackled in [65] and [66] by means of recursive least squares 

algorithms, while preserving the deadbeat property. In [108], the algebraic identification 

approach [107] is further extended to address the parameter estimation of two sinusoidal 

signals from a perturbed measurement. Besides, a modulating function (MF)-based approach 

is presented in [33], which allows non-asymptotic frequency detection by processing the 

input with suitably truncated periodic functions. Moreover, it has been shown in a recently 

proposed FLL framework [34] that the convergence speed and steady state accuracy are 

enhanced by employing the MF method [33] for the adjustment of the resonant frequency. 

As shown in the very recent papers [83, 87] (dealing with non-asymptotic continuous- 

time systems identification), Volterra operators turn out to be an effective tool for finite-time 

estimation. Resorting to such kernel based-linear integral operators, a novel finite-time 

frequency identifier is presented in [85], implementing a variable-structure adaptation law 

based on a sliding mode technique.  Instantaneous convergence gets lost in this way, but 

a major improvement in robustness to measurement noise is attained while keeping the 

deadbeat property with tunable finite-time convergence rate. This is the first finite-time 

convergent frequency estimator, the behavior of which is analyzed also in the presence of 

unstructured (though bounded) measurement perturbations. 

 

1.3 Aims and Contributions 
 
1.3.1 Research Challenges in Sinusoidal Estimation 

We now list the most significant challenges in sinusoidal estimation that this thesis will 

address. 

• Global stability. Global stability is an important property for sinusoidal estimators. 

Although global or semi-global stability has been theoretically proved in methods 

based on adaptive observers, this property is not available in some practical AFP tools, 

e.g., PLL and ANF due to the use of averaging analysis. 
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• Robustness and accuracy. The works concerning the AFP estimation in the presence 

of bias is vast, yet there is a lack of a comprehensive investigation for the perturbations 

other than the bias, e.g. drifts, harmonics and unstructured perturbations, which are 

also often encountered in practice. 

• Digital implementation. In most cases, AFP methods are devised in a continuous-time 

setting which is useful in terms of a possible analog implementation in electronics 

and power engineering application contexts. In this connection, one of the issues that 

deserve further investigation from a practical perspective is the steady-state bias in the 

frequency estimate caused by the discretization of the continuous-time algorithms. 

• Persistency of excitation. The persistency of excitation (PE) assumption usually 

plays a key role in AFP estimation. It is assumed in standard estimation tools to 

guarantee that the estimated sinusoids are sufficiently informative in the presence of 

additive disturbances. The loss of excitation is a phenomenon that has not been widely 

addressed. 

• Multi-sinusoidal signal estimation. Existing methods in the literature are either locally 

convergent (refer to PLLs and ANFs in parallel) or less efficient due the indirect 

estimation (refer to AO methods). 

• Finite-time (instantaneous) estimation . Despite the large number of AFP techniques, 

the currently available literature is still short of the deadbeat AFP estimators. This 

type of estimators are needed in typical scenarios where the estimates are required 

to converge in a neighborhood of the true values within a predetermined finite time, 

independently from the unknown initial conditions. 

 
1.3.2 Contribution of the Thesis 

The main objective of this thesis consists in providing reliable tools to estimate the 

amplitude, frequency and phase of sinusoidal signals in real time from a given perturbed 

measurement (1.1) with known n. This includes AFP estimation of a single (i.e., n = 1 in 

(1.1)) or multiple sinusoidal signal (i.e., 1 < n < +∞), and even fundamental frequency 

tracking of a generic periodic signal that is the sum of an arbitrary (possibly infinite) number 

of sinusoids (i.e., n → ∞). The thesis consists of two main parts. Part I regards estimators 

with asymptotic convergence property, whereas Part II is devoted to the non-asymptotic 

detection of a sinusoidal signal. The contribution of each chapter is briefly outlined in the 

following. 

In Chapter 2, a specific state variable filtering tool, which plays an important role in 

the presented AFP approaches, is introduced (see for example [20, 86]).  Thanks to the 
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pre-filtering stage that is configured by cascaded 1-st order low-pass filters, structured per- 

turbations with arbitrary order are addressed in a consistent way. Thereafter, we propose 

a fundamental frequency estimator that is based on a suitable adaptive observer, which is 

characterized by ISS properties in the presence of a class of disturbances, such as structured 

perturbations modeled as time-polynomial functions, harmonics and unstructured distur- 

bances [20, 24]. The estimator is equipped with a switching criterion enabling the adaptation 

only when the excitation condition is fulfilled, thus preventing a possible drift of the estimates 

in poor excitation conditions. Although the discretization gives rise to a biased equilibrium, 

a post-correction scheme for the proposed methodology is proposed. 

In Chapter 3, the basic AO method is extended to identify n unknown frequencies 

embedded in a biased signal. In contrast with existing methods, the nonlinear AO allows 

the frequency estimates to be updated directly while guaranteeing semi-global stability 

property (proved resorting to ISS tools). Moreover, the proposed algorithm is able to tackle 

the problem of overparametrization (when the internal model accounts for a number of 

sinusoids that is greater than the actual spectral content) or temporarily fading sinusoidal 

components by a specific switching criterion: the parameter adaptation scheme with respect 

to n frequencies is controlled by an n-dimensional excitation-based switching logic, that 

enables the update of a parameter only when the measured signal is sufficiently informative. 

Chapter 4 deals with an enhanced pre-filtering configuration, in which the signals pro- 

duced by the pre-filtering modules are employed directly for constructing estimation algo- 

rithms. In contrast with the AO approach illustrated in Chapter 2, this simplified algorithm 

relieves the computation burden whilst still enjoying ISS stability properties with respect to 

bounded measurement perturbations. 

Finally, in Chapter 5, a deadbeat parametric identifier for biased and perturbed sinusoidal 

signals is presented (see [85]). Thanks to Volterra integral operators with suitably designed 

kernels, a set of auxiliary signals (regardless of the unknown initial conditions) are produced 

by processing the measured signal. These auxiliary signals are exploited for the amplitude 

and frequency adaptation, yielding a sliding mode-based methodology that ensures finite-time 

convergence of the estimation error. It is worth noting that another significant contribution 

consists in the investigation for the worst case behavior of the algorithm in the presence of 

bounded additive disturbances; this analysis is currently missing in the literature. 

 
1.3.3 Publications 

The research results illustrated in the thesis have been published or are currently under 

review in several archival journals . These results have been also presented in several 

international conferences. The list of these publications is reported in the following. 
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• Papers in international journals 
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2. B. Chen, G. Pin, W. M. Ng, C. K. Lee, S. Y. R. Hui, and T. Parisini, “An 
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• Papers included in proceedings of international conferences 
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6. G. Pin, B. Chen and T. Parisini, “The Modulation Integral Observer for Linear 

Continuous-Time Systems ,” in Proc. of the European Control Conference, Linz, 

2015. 
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7. G. Pin, B. Chen and T. Parisini, “Deadbeat Kernel-based Frequency Estimation 

of a Biased Sinusoidal Signal,” in Proc. of the European Control Conference, 

Linz, 2015. 
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• Papers currently under review 
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based Estimator for Multi-sinusoidal Signals,” IEEE Trans. Automatic Control. 
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Modulation integral Observer for Online Detection of the Fundamental and 

Harmonics in Active Power Filters,” IEEE Trans. on Power Electronics. 

 

1.4 Preliminaries 

The purpose of this section is to provide the reader with the basic notations, definitions and 

assumptions that are employed throughout the thesis, in order to set a consistent framework. 

More specific definitions and assumptions that are not included in this section will be 

introduced in the relevant parts of the thesis. 

Let M ∈ Rn×m be a matrix. M⊤ denotes the transpose of M while σ(M ) denotes the 

set of singular values of M . Let σ(M ) be the maximum singular value of M , whereas σ(M ) 

be the minimum singular value of M , then ∥M ∥ denotes the induced 2-norm of M , that is 

∥M ∥ = σ(M ). 

Let M ∈ Rn×n be a symmetric matrix, such that M⊤ = M . The notations M−1, det(M ) 

and tr(M ) are used to respectively denote the inverse, determinant and trace of M . The set of 

eigenvalues values of M is denoted by λ(M ). Similarly, λ(M ) is the maximum eigenvalues 

value of M , whereas λ(M ) is the minimum eigenvalues value of M . 

Definition 1.4.1 (Positive Definite Matrix) [96] A symmetric matrix M ∈ Rn×n is positive 

definite if and only if any one of the following conditions holds: 
 

1. λi(M ) > 0, i = 1, 2, · · · , n. 
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1 

 

2. There exists a nonsingular matrix M1 such that M = M1M
⊤. 

 

3. Every principal minor of M is positive. 

4. x⊤Mx ≥ α|x|2 for some α > 0 and ∀x ∈ Rn
 

A symmetric matrix M ∈ Rn×n has n orthogonal eigenvectors and can be decomposed as 

M = U⊤ΛU (1.9) 
 

where U is a unitary (orthogonal) matrix (i.e., U⊤U = I) with the eigenvectors of M and Λ 

is a diagonal matrix composed of the eigenvalues of M . Moreover, a matrix M is negative 

definite if −M is positive definite. 

Theorem 1.4.1 [52] Let M ∈ Rn×n. The following statements are equivalent: 

1. all the eigenvalues of M have negative real part; 

2. for all matrices Q = Q⊤ > 0 there exists an unique solution P = P⊤ > 0 to the 

following (Lyapunov) equation: 

M⊤P + PM + Q = 0 

 

Definition 1.4.2 [63] A continuous function α(r) : R≥0 → R≥0 belongs to the class K if it 

is continuous, strictly increasing and α(0) = 0. If, in addition limr→∞ α(r) = ∞ then it 

belongs to the class K∞. 

 

Definition 1.4.3 [63] A continuous function β : R≥0 × R≥0 → R≥0 belongs to the class KL 

if, for any fixed t ∈ R≥0, the function β(·, t) is a K-function with respect to the first argument 

and if, for any fixed r ∈ R≥0, the function β(r, t) is monotonically decreasing with respect to 

t and limt→∞ β(r, t) = 0. 

 

Definition 1.4.4 (Piecewise Continuity) [63] A function f : [0, ∞) → R is piecewise 

continuous on [0, ∞) if f is continuous on any finite interval [t0, t1] ⊂ [0, ∞) except for a 

finite number of points. 

 

Definition 1.4.5 (Lipschitz) [96] A function f : [x, x] → R is Lipschitz on [x, x] if |f (x1) − 

f (x2)| ≤ κ|x1 − x2|, ∀x1, x2 ∈ [x, x], where κ ≥ 0 is a constant referred to as the Lipschitz 

constant. 
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1 

0 

≥0 

 

Consider the following dynamical system 

 

ẋ = f (x, u) (1.10) 

 

with x ∈ Rn, u ∈ Rm, f (0, 0) = 0 and f (x, u) locally Lipschitz in Rn × Rm. 

Definition 1.4.6 (ISS)  [63] The system (1.10) is ISS (Input-to-State Stable) if there exist a 

KL-function β(·, ·) and a class K-function such that, for any input u ∈ Rm and any initial 

condition x0 ∈ Rn, the trajectory of the system verifies 

|x(t)| ≤ β(|x0|, t) + γ(∥u∥∞) (1.11) 

 
 

Definition 1.4.7 (ISS-Lyapunov Function) [63] A function V : Rn → R of class C1 is 

an ISS-Lyapunov function for (1.10) if there exist three K∞-functions α(·), α(·), α(·) and a 

K-function X (·) such that 
 

α(|x|) ≤ V (x) ≤ α(|x|),  ∀x ∈ Rn (1.12) 
 

and  

|x| ≥X (|u|) ⇒ 

 

∂ V 
f (x, u) ≤−α(|x|), ∀x ∈Rn

 

 

, ∀u ∈Rm
 

 
(1.13) 

 

Theorem 1.4.2 ([63])  The system (1.10) is ISS if and only if it admits an ISS-Lyapunov 

function. D 

Definition 1.4.8 [96] The set Lq, q ∈ {1, 2, · · · }, q < ∞, consists of all the measurable 

functions f : R≥0  → R that satisfy 
 

r ∞ 

∥f (t)∥qdt < ∞ 
0 

 

Moreover 
(( ∞ 

∥f (t)∥qdt
) 

q   is the Lq norm of the function f ∈ Lq. If q = ∞, the set L 

consists of all measurable functions f : R≥0 → R which are bounded, namely 
 

 

 
with norm ∥f ∥∞ = supt∈R>0 

∥f (t)∥ 

sup 
t∈R>0 

∥f (t)∥ < ∞ 

 

Lemma 1.4.1 (Bellman-Gronwall’s Inequality-differential form) Let T = [t0, t1]. Sup- 

pose g: T → R and h: T → R are continuous, and suppose u: T → R is in C1(T ) and 

∂x 

∞ 
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t0 ≤  0 

r t 

 

satisfies 

 

 
Then 

 

u̇ (t) ≤ g(t)u(t) + h(t) for t ∈ T , and u(t0) = u0. 

u(t) u e
r t 

g(s)ds 

r t 
+ e s 

g(τ )dτ h(s)ds (1.14) 
t0 

 

Moreover, let us introduce following assumptions on the main problem formulated in (1.1): 
 

Assumption 1 (Boundedness of the Disturbance) The unstructured measurement noise 

d(t) defined in (1.1) is subject to an a-priori known bound d, that is 

 

|d(t)| ≤ d , t ∈ R≥0 . (1.15) 

 

 
Assumption 2 (Boundness and Uniqueness of the Frequencies) The frequencies of the si- 

nusoids in (1.1) are all unique strictly-positive time-invariant parameters, bounded by a 

positive constant ω, such that ωi > 0, ωi ̸= ωj for i ̸= j and 

ωi < ω, ∀i ∈ {1, · · · , n}. (1.16) 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Part I 
 

ASYMPTOTIC  ESTIMATORS 



 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

ADAPTIVE OBSERVER APPROACH: THE 

SINGLE SINUSOIDAL CASE 

 

2.1 Introduction 

In this chapter, the AFP estimation of a single sinusoidal signal from a measurement 

affected by structured and unstructured disturbances is addressed. Let us recall the generic 

sinusoidal measurement (1.1) and let n = 1, consequently forming the available signal as 

follows: 
nd 

v(t) = y̆(t) +       bkt
k−1 + d(t) , t ∈ R 

k=1 

, (2.1) 

where y̆(t) represents the stationary sinusoidal signal described by 
 

 y̆(t) = a sin(ϕ(t)) , 

ϕ̇ (t) = ω , 
 
ϕ(0) = ϕ0 , 

 
t ∈ R≥0 , (2.2) 

 

with unknown amplitude, angular frequency and phase respectively denoted by a, ω, and ϕ, 

wherein ω < ω according to Assumption 2. Note that the choice of nd is not unique. For 

instance, a bias is involved with all nd ≥ 1. Therefore, in case of a sensing devise affected by 

uncertain perturbations, a proper choice of nd has to be carried out depending on the a-priori 

knowledge about the possible structured uncertainties in the specific application. In addition, 

d(t) is subject to the constraint (1.15) given in Assumption 1. 

In the works [21, 86, 89], a set of cascaded first-order low-pass (LP) filters, called “pre- 

filter” is exploited with the aim of both canceling the effect of structured “time-polynomial” 

perturbations (such as bias and linear drift) and obtaining auxiliary signals for AFP detection. 

≥0 
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1,n 

 

The said signals can be used either directly (see [89] and [86]) or indirectly (see [21]) to 

estimate the unknown parameters of the measured sinusoid with high noise immunity. 

This chapter deals with a class of sinusoidal estimators that employ the auxiliary pre- 

filtered signal indirectly resorting to a specific adaptive observer system. The behavior of 

the approach against various types of disturbances is characterized by a comprehensive 

robustness analysis. In Sec. 2.3, we will start from a problem formulated by (2.1) based 

on some preliminary results in [21], a “dual-mode” estimation scheme is dealt with by 

incorporating a switching algorithm (depending on the real-time excitation level) into an 

adaptive observer-based sinusoidal estimator. In comparison with the typical adaptive 

estimators relying on an integral-type persistency of excitation condition (see, for instance, 

[8, 67, 111]), the devised method allows to check the excitation level in real-time which 

might be advantageous from a computational perspective. The stability properties of the 

devised method are rigorously analyzed in terms of ISS arguments thus coping with bounded 

measurement noise. 

In Sec. 2.4, we study the behavior of the introduced AO estimator in the scenario where 

the input is corrupted by a series of harmonics of the fundamental. Consider a bounded 

piecewise continuous periodic signal y(t) of unknown frequency ω, that can be expressed in 

terms of its Fourier harmonic components as follows: 
 

 

y(t)  = 
a0 

 

2 
 a0 

∞ 

+     [a1,n cos (nωt) + a2,n sin (nωt)] 
n=1 

 

 

(2.3) 
/'. + a1,n cos (ωt) + a2,n sin (ωt) + h(t) 

2 

= 
a0 

2 

2 
1,n 

2 
2,n sin (ωt + ϕ0) + h(t), t ∈ R≥0 

 

in which ϕ0 = arctan (a1,n/a2,n) and h(t) collects all the high order harmonics of y(t). We 

assume that a2
 

2 
2,n > 0. Our objective consists in estimating the fundamental frequency 

of y(t) from a noisy measurement v(t) = y(t) + d(t), which can be subsumed into (1.1) 

with the number of the frequencies tend to infinity: n → +∞. Assuming that the amplitude 

of the fundamental is larger than that of the high-order harmonics, we will investigate the 

convergence of the AO technique by considering the high-frequency content as a bounded 

perturbation (i.e.,∥h∥∞ ≤ h, h ∈ R≥0) whose effect on the estimated frequency can be 

bounded by adopting a deterministic worst-case viewpoint. Compared with [69], where the 

availability of a pure periodic signal y(t) is assumed, the ISS analysis performed in this work 

encompasses also the presence of a bounded measurement noise, i.e., d(t) other than the 

harmonics. By explicitly expressing the ISS asymptotic gains of the estimator in terms of the 

tuning parameters of the algorithm, it is possible to highlight the influence of each parameter 

+ a 
I 

+ a 

+ a 
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k=1 

 

on the accuracy of the estimates. The practical characteristics of the estimator are evaluated 

and compared with other existing tools by extensive simulation trials in Sec. 2.6. 

 
 

2.2 The Pre-Filtering Scheme 
 

2.2.1 Nominal Pre-Filtering System 

To deal with the structured perturbation term
),

nd
 

 
 

bktk−1 appearing in (2.1), we extend 

the state variable filtering tool proposed in [89] (see also the alternative GPI observer 

approach [27]) to compute the unavailable time-derivatives of y(t) that are needed to remove 

the effect of structured perturbations from the AFP estimates. To this end, we first address 

the problem for the noise-free signal 
 

nd 

y(t) = y̆(t) + 
'\" 

bktk−1 , t ∈ R 
k=1 

 
. (2.4) 

A block diagram of the proposed pre-filter’s architecture [86] is shown in Fig. 2.1. In the 

 

 
 

Fig. 2.1 Detailed scheme of the proposed pre-filtering system. 

 
simplified setting given by (2.4), we adopt a np-th order pre-filter, the dynamics of which 

obey ( 
ẋ  1(t) = ωc (Kcy(t) − x1(t)) 

ẋ  k (t) = ωc (Kcxk−1(t) − xk (t)) , ∀k ∈ {2, . . . , np}, 
(2.5) 

where xk (0) = xk 0, k ∈ {1, . . . , np}; ωc and Kc are positive parameters to be selected by 

the designers. In qualitative terms, ωc determines the cut-off frequency while Kc ∈ (0, 1] 

acts as a damping coefficient. More details of parameter tuning and the benefit of using a 

non-unity DC gain Kc will be discussed in Sec. 2.6 (see Fig. 2.5). In the following, we will 

s + ω c s + ω 
q filters 

c s + ω c 

ẋ  q (t) 

ẍq (t) 

y(t) 

dq 

dtq 
xq (t) 

≥0 
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0     

  

 

show that for all np ≥ nd, there exists a class of computable auxiliary signals derivatives that 

are independent of the structured disturbance in steady state. 

Defining x(t) /'. [ x1(t) . . . xnp (t)]
⊤, a state-space realization of the filter evolving from 

np 

arbitrary initial conditions x0 /'. [ x10   . . . xnp ]⊤ ∈ R is 
 

( 
ẋ (t) = Ax(t) + B y(t) 

xnp (t) = Cx(t) 

 
(2.6) 

 

where   
−ωc 0 · · · · · · 0  

  
  
  

 
 
Kcωc 

 
 . . . . ..    

A = 
 Kcωc −ωc . 

. .  
, B =  

0  
, (2.7)  

. . . 
. . . 

. . . 
...  

  
 ... 

 
   ... 

. . . 
 . . .

 
. . . 0 

 
0 

 
 

and 

0 · · · 0 Kcωc −ωc 

C = 
I 

0  · · ·  0  1 
1 

. (2.8) 
 

In view of the proposed filter’s structure, it follows that 

 

C Ak B = 0, ∀k ∈ {0, . . . , np − 2} . 
 

d2 dnp 

Then, the time-derivatives ẋ np (t), dt2 xnp (t), · · · , dtnp xnp (t) can be computed as follows: 
 

dk 

dtk 
xnp (t) = CA 

kx(t), ∀k ∈ {1, . . . , np − 1} , 
 

 
(2.9) 

dnp 

dtnp 
xnp (t) = CA 

np−1 
(Ax(t) + By(t)) . 

 

Now, the Laplace transform of xk, ∀k ∈ {1, 2, · · · , np} is 

 
L[xk ](s) = Hk (s)L[y](s) with Hk (s) = 

 

 

ωk Kk 
c c . 

(s + ωc)k 

 

Neglecting the initial conditions of the internal filter’s states, the Laplace transform of the 

auxiliary signal is: 
 

L[xnp ](s) = Hnp (s)a 
s sin(ϕ0) + ω cos(ϕ0) 

s2 + ω2 
+  Hnp (s) 

nd 

  

 
k=1 

1 

bk (k − 1)! 
sk

 

0 
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  p 

dti 

dti 

 
and hence 

 

  
dixn 

L 
dti 

 
(s) = Hnp (s)a 

 s sin(ϕ0 ) + ω cos(ϕ0 )  i 

s2 + ω2 
s
 

 
+ Hnp (s) 

nd 

  

 
k=1 

bk (k − 1)!s 
i−k . 

 

which implies that for all nd ≤ i ≤ np the time-polynomial perturbation vanishes asymp- 

totically due to the time-derivative operations. Clearly,  di  

x (t) tends asymptotically to a 

sinusoidal regime d
i 

x̆ 

 

 

 
where 

(t) given by 

 

di 

dti 
x̆np (t) = ai sin(ϕi(t)) , 

 
π 

ai = a ω i |Hn ( )|,  ϕi(t) = ϕ(t) + ∠Hn ( ) + i . (2.10) 
p p 2 

It is worth noting that the order of the pre-filter np (subject to np ≥ nd) can be set arbitrarily, 

whereas the use of higher-order filters is not encouraged mainly due to following reasons: 

1) higher complexity; 2) decrease in convergence speed (the pre-filter is a cascade of scalar 

low-pass filters); 3) excessive attenuation that may lead to numerical issues. In this respect, 

the filter’s order is fixed at the minimum value in the rest of this section, that is np = 1 + nd, 

and then we introduce a pair of auxiliary derivatives for the sake of further discussion: 

z(t) = 
I 

z (t)  z (t) 
1⊤ 

/'.    
d

 d1+nd 
⊤ , 

1 2 

dtnd 
x1+nd (t) 

dt1+nd 
x1+nd (t) 

in which z(t) tends asymptotically to a sinusoidal regime z̆(t) = [z̆1(t) z̆2(t)]⊤ given by 

dnd 

z̆1(t) = 
dtnd 

x̆1+nd (t) = az sin(ϕz (t)) , 

z̆2(t) = azω cos(ϕz (t)) , 
 

with  
az = a ωnd |H1+n ( )|,  ϕz (t) = ϕ(t) + ∠H1+n ( ) + 

 
π 

nd   . (2.11) 
d d 2 

In view of (2.9), the auxiliary derivatives z(t) can be written in a compact form z(t) = 

Φ 
l
y(t)  x(t)⊤

l⊤
, with Φ given by 

  
0 CAnd 

l
 

Φ = . 
CAnd B CA 1+nd

 

np 

np 

nd 
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d d 

∞ 

⊤ 

 
As a final remark, it is immediate to see that the sinusoidal regimez̆(t) can be described 

in terms of the following simple state equations: 
( 

ż̆(t) = Az z̆(t) + ΩGz z̆(t) 

z̆1(t) = Cz z̆(t) 
(2.12) 

 

by setting the initial conditions as 
 

z̆(0) = 
I 

az sin 
(
ϕ0 + ∠H1+n ( ω) + nd

\  
azω cos 

(
ϕ0 + ∠H1+n ( ) + 

2 nd

\ 1 
,
 

2 
 

 
with Ω = ω2, Az = 

  
0   1  
l 

0   0 

 
, Gz = 

  
0 0  

l 

−1   0 
, and Cz = 

I 
1  0 

1
. 

 

 

2.2.2 Stability of the Pre-Filtering System 
 

Consider again the perturbed measurement signal v(t) given by (2.1), we denote by x̂(t) 

the actual state vector of the pre-filter, driven by the noisy signal v(t) and evolving from an 

arbitrary initial condition x̂0 as follows: 
( 

ẋ̂ (t) = Ax̂(t) + Bv(t) , 

x̂1+nd (t) = Cx̂(t) . 
(2.13) 

 

Introducing the error vector with respect to x̆(t), which is driven by a choice of the filter’s 

initial state x̆0 such that auxiliary signal derivative z(t) matches the stationary sinusoidal 

behavior since the very beginning, 

 

x̃(t) /'. x̂(t) − x̆(t) 
 

and noticing that d(t) = v(t) − y(t), the dynamics of x̃(t) can be written as: 

( 
ẋ̃ (t) = Ax̃(t) + B d(t) , 

x̃(0) = x̂0 − x̆0 . 

 
 

 
(2.14) 

 

The following results can be proved: 

 
 

Theorem 2.2.1 (ISS of the pre-filtering system)  Given the sinusoidal signal y̆(t) and the 

perturbed measurement v(t) (2.1), the error dynamic of the pre-filtering system (2.13) is ISS 

w.r.t. any additive disturbance signal d(t) ∈ L1  . D 

π π 
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1 

 

Proof:  Being A Hurwitz, there exists a positive matrix P that solves the the Lyapunov 

equation P A + A⊤P = −I. Let W (x̃) /'. 

α1, α2  ∈ R>0 such that 

x̃⊤P x̃; then there exist two positive scalars 

α1|x̃|
2 ≤ x̃⊤P x̃ ≤ α2|x̃|

2, ∀x̃ 

The derivative of W along the system’s state trajectory satisfies 
 

 

 

 
For any 0 < ϵ < 1, let 

∂ W 

∂x̃ 
(Ax̃ + Bd) ≤ −|x̃|2 + 2 ∥P ∥ |B| |d| |x̃|. 

 
2 ∥P ∥ |B| 

X (s) /'. 

with r ∈ R≥0. It is easy to show that 

r. 
1 − ϵ 

 

|x̃| ≥ X (|d|) ⇒ 
∂ W 

∂x̃ (Ax̃ + B d) ≤ −|x̃|2, 
 

and that the system is ISS with asymptotic gain 
 

γx(r) = α −1
 α2 X (r). 

 

In view of the ISS property of the linear auxiliary filter (2.36), for any arbitrary ν ∈ R>0 

and for any finite-norm initial error x̃0, the error vector x̃(t) enters in a closed ball of radius 

γx(∥d∥∞) + ν ≤ γx(d) + ν in finite time Tx̃0,ν . • 

Now, let z̆̂(t) be the vector of the computable perturbed counterpart of z(t): 
 

z̆̂(t) = Φ[v(t) x̂(t)⊤]⊤  , (2.15) 
 

the boundedness of z̆̂(t) is characterized by the following corollary: 

 
Corollary 2.2.1 Given the sinusoidal signal y̆(t) and the perturbed measurement v(t) (2.1), 

if the pre-filtering system (2.6) is applied, then the available auxiliary signal vector z̆̂(t) 

derived by (2.15) is bounded. D 

Proof: Using (2.1) and (2.15), it is immediate to conclude that the vector z̆̃(t) /'. z̆̂(t) − z̆(t) 

enters in finite-time Tδz = Tx̃0,ν (for the sake of simplifying the notation, we have dropped 

the dependence of the reach-time Tδz on initial conditions) in a closed hyper-sphere of radius 

γz (d) + δ centsred at the origin, with 

 

γz (s) = φ(γx(r) + r), ∀r ∈ R≥0, δ = φυ (2.16) 
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d 

 
 

 

where φ ≥ ||Φ||. 

From the equality z̆̂(t) = z̆̃(t) + z̆(t), it turns out that the proven boundedness of both 

z̆̃(t) and z̆(t) implies the boundedness of the z̆̂(t), thus ending the proof. • 

 

 

2.3 Estimation of a Single Sinusoidal Signal 

 
In view of (2.12), by introducing the estimated squared-frequency Ω̂ (t) = ω̂(t)2, the filter 

output z̆̂(t) is used as the input for the following adaptive observer having internal state ẑ(t): 
 

 
ˆ̇
 

 ż̂(t) = (Az − Lz Cz )ẑ(t) + LCẑ̆(t) + Gz z̆̂(t)Ω̂ (t) + ξ(t)Ω(t) 
 
ξ̇ (t) = (A — L C )ξ(t) + G z̆(t) 

, (2.17) 
 ˆ̇  

z z   z z ̂  
ˆ 

 Ω(t) = −µξ(t)⊤(ẑ(t) − z̆(t)) 

where µ ∈ R≥0 is an arbitrary positive constant and L is the observer gain such that 

(Az − Lz Cz ) is Hurwitz. Roughly speaking, increasing µ corresponds to an acceleration 

in the convergence rate of the estimation error, whereas the accuracy is degraded due to a 

typical trade-off between asymptotic accuracy and convergence speed (see Fig. 2.4). Finally, 
 

 

ω̂(t) = 

I  

max{0, Ω̂ (t)} . (2.18) 
 

Given Ω̂ (t) and ẑ(t) and assuming, for the moment, that 

 

Ω̂ (t) > 0, ∀ t , (2.19) 

then, the filtered regime amplitude and phase (az, ϕz ) defined in (2.11) are estimated by 
 

 

âz (t) = 

I  

(Ω̂ (t)ẑ1(t)2  + ẑ2(t)2)/Ω̂ (t), (2.20a) 

ϕ̂z (t) = ∠ [ẑ2(t) + ω̂(t)ẑ1(t)] . (2.20b) 

 
Thanks to the availability of âz , ω̂, ϕ̂z related to the auxiliary signal z̆1(t), from (2.11), with 

the assumption (2.19), we obtain the following estimates of the original parameters: 
 

â(t) = âz (t) 
1 

, (2.21a) 

ω̂(t)
nd |H1+n ( ω̂(t))| 

π 

ϕ̂(t) = ϕ̂z (t) − ∠H1+nd ( ω̂(t)) − nd 
2 

. (2.21b) 
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c 

1 2 

2 

 

After some algebra, we finally get: 
 

 
â(t) = 

âz (t) 

ω̂(t)
nd

 

 
(ω2  + ω̂(t)

2
) 

1

 

ωcKc 

1+nd  
, (2.22a) 

 

ϕ̂(t) = ϕ̂z (t) + (1 + nd) arctan 

  
ω̂(t) 

 
 

 

 

ωc 

π 

− nd 
2 

. (2.22b) 

 

Assumption (2.19) is needed for (2.20a) and (2.21a) to be well-posed at any time-instant t. 

Let us remove the need for (2.19) by resorting to the following adaptive amplitude estimators. 

To this end, from the equality (2.20a), we define the time-varying residual that depends on 

the frequency estimate Ω̂ (t) and on the instantaneous values of the filtered signals ẑ1(t) and 

ẑ2(t): 

R(āz (t), t) /'. āz (t)ω̂(t) − 

I 

Ω̂ (t)ẑ1(t)2 + ẑ1(t)2 , 
 

the following adaptation law stemming from gradient algorithm [96] can be designed 
 

ǡ z (t) = −µa 

∂R(āz , t) 
 

∂āz R(āz , t)    

= −µaω̂(t) ω̂(t)āz (t) − 

/(
Ω̂ (t)ẑ (t)2 + ẑ (t)2

\ 
, 

(2.23) 

 

where the estimates is clipped by: âz (t) = max{0, āz (t)}, âz (0) = āz (0) = 0 and µa ∈ R>0 

is a tuning gain set by the designer to steer R(âz (t), t) to 0 asymptotically. It is worth to point 

out that µa plays a similar role as µ does in (2.17), hence the ways of tuning are likewise 

referred to Fig. 2.4. Thanks to (2.23), the estimate of the filtered amplitude âz (t) can be 

computed through (2.23) without the need of assuming (2.19). Using âz (t) provided by 

(2.23), the following adaptive algorithm can be finally used to estimate the original amplitude: 
 

ǡ (t) = −µaω̂(t)nd
 ā(t)ω̂(t)nd    − 

  âz (t)  
 

 

|H1+nd  ( ω̂(t))| 

 

, (2.24) 

with a simple clipping: â(t) = max{0, ā(t)} and â(0) = ā(0) = 0. In Section 2.6, the 

amplitude estimate given by (2.24) is evaluated by simulations. 

 

 

 
 

2.3.1 ISS Property of the Adaptive Estimator 

 
In order to address the stability of the adaptive observer, let us introduce some instrumen- 

tal error variables: z̃(t) /'. ẑ(t) − z̆(t), Ω̃ (t) /'. Ω̂ (t) − Ω, and ζ̃(t) /'. z̃(t) − ξ(t)Ω̃ (t). Then, 
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we have: 
 

ż̃(t) = (Az − Lz Cz )z̃(t) + (Lz Cz + ΩGz )z̆̃(t) + Ω̃ (t)Gz z̆̂(t) + ξ(t) ̂
˙
 

 

 

t) , (2.25a) 

Ω̃
˙ 

(t) = −µξ(t)⊤ξ(t)Ω̃ (t) + µξ(t)⊤ 
(
z̆̃(t) − ζ̃(t)

\ 
, (2.25b) 

ζ̃
˙
(t) = (Az − Lz Cz )ζ̃(t) + (Lz Cz + ΩGz )z̆̃(t). (2.25c) 

The following assumption is needed to address the convergence analysis of the estimator. 

Assumption 3 The solution ξ(t) of ξ̇ (t) = (Az − Lz Cz )ξ(t) + Gz z̆̂(t) is instantaneously 

persistently exciting (IPE) in the sense that there exist a positive constant ϵ such that 
 

ξ(t)⊤ξ(t) > ϵ, ∀t ≥ 0. (2.26) 

 
It is worth noting that, instead of the typical integral type of persistency of excitation 

condition (see, for instance, [8]) that requires on-line buffering by a moving time window, the 

exploitation of the above IPE condition in the switching algorithm presented in Section 2.3.2 

greatly enhances the on-line implementation of the adaptive estimation technique, because 

the IPE condition is easily computable at each time instant without any delay (the reader is 

referred to Example 1 in Section 2.6 for an instance). 

Now, the following basic stability result is given and proved. 

 
Theorem 2.3.1 (ISS of the adaptive observer system) Suppose that Assumption 1, 3 hold. 

Then, given the sinusoidal signal y̆(t) generated by (2.2) and the perturbed measurement 

model (2.1), the adaptive observer as well as the frequency estimator given by (2.13), 

(2.15) and (2.17) are ISS with respect to any additive measurement perturbation such that 

|d(t)| ≤ d . 

D 

Proof: Consider the candidate Lyapunov function Vζ = ζ̃(t)⊤Qζ̃(t), where Q is a positive 

definite matrix solving the linear Lyapunov’s equation: 

Q(Az − Lz Cz ) + (Az − Lz Cz )
⊤Q = −I. (2.27) 

In view of the dynamics of ζ̃(t) obeying (2.25c), the time-derivative of the Lyapunov function 

verifies the inequality 
 

∂ Vζ 
ζ̃
˙
(t) ≤ −|ζ̃(t)|2 + 2||Q|| ||L C + ΩG || |z̆̃(t)| |ζ̃(t)| . (2.28) 

∂ζ̃ 
z    z z 
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Hence, Vζ is an ISS-Lyapunov function for ζ̃(t) w.r.t. the z̃̆(t). Moreover, the dynamics of z̆̃(t) 

is ISS w.r.t. disturbance d(t), so that ζ̃(t) is, in turn, ISS w.r.t. d(t) such that |d(t)| ≤ d. Now, 

let VΩ̃ = 1 Ω̃ (t)2 be a candidate Lyapunov function of the frequency-estimation subsystem. 

Then, the derivative of VΩ̃ verifies the inequality 

∂ VΩ̃ 
Ω̃
˙ 
(t) ≤ −µ|ξ(t)|2|Ω̃ (t)|2 + µ|ξ(t)||z̆̃(t) − ζ̃(t)| |Ω̃ (t)| . (2.29) 

∂Ω 

In view of (2.29), Assumption 3, and the boundedness of |ξ(t)| (it is immediate to show that 

the dynamics of ξ(t) is ISS w.r.t. the bounded input z̆̂(t)), we have that Ω̃ (t) is ISS w.r.t. ζ̃(t) 

and z̆̃(t), which are all proven to be ISS w.r.t. d(t) such that |d(t)| ≤ d. 

Finally, the identity z̃(t) = ζ̃(t) + ξ(t)Ω̃ (t), and the boundedness of |ξ(t)| together imply 

that also the state-estimation error z̃(t) is ISS w.r.t. d(t) such that |d(t)| ≤ d. • 

Next, we are going to establish the relationship between the excitation condition and the 

observer poles location. 

 
 

Lemma 2.3.1 (Observer Poles and Excitation) Assume that in the noise-free mode of be- 

haviour (that is, d(t) = 0), the poles of Az − Lz Cz are assigned to (p1, p2), where p1, p2 = 

e1 ± 2 with e1 ∈ R<0, e2 ∈ R, such that 
 

e2 2 

1 > e2, e1 ∈ R<0, e2 ∈ R . (2.30) 

 
Then, the IPE condition (2.26) is verified for any t > 0 by any sinusoidal signal. 

 

Proof: In stationary conditions, by defining Bξ = [0 − 1]
⊤

, the dynamic equation of ξ(t), in 

absence of noise can be rewritten as 

 

ξ̇ (t) = (Az − Lz Cz )ξ(t) + Bξ z̆1(t) , 

 
with ξ(0) = 0. Then, in the Laplace domain we have ξk (s) = Hξ,k (s)z̆1(s), k ∈ {1, 2}, 

where Hξ,k (s) = ι⊤(sI − Az + Lz Cz )
−1Bξ and ιk denotes the i-th unit vector. 

Now, letting ps /'. p1 + p2 and pm /'. p1p2, by a simple algebra we obtain 
 

  1   
Hξ,1(s) = − 

s2 − p s + p
 

, H (s) = 
 s − ps 

, 
ξ,2 − 

s2 − p s + p 
s m s m 

 

and  
    psω   p2ω − pmω + ω3

 

ϕξ,1 = arctan 
m 

, ϕξ,2 = arctan 
— ω2 

. 
pspm p 
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Owing to the structure of Hξ,1 and Hξ,2, the following inequality holds 

 

2 

ξ⊤(t)ξ(t) ≥    hξ,ka
2 sin2(ϕz + ϕξ,k ), 
z 

k=1 

 
 

where hξ,k = |Hξ,k ( ω)| and ϕξ,k represents the phase shift of Hξ,k (s) at the frequency of the 

sinusoid. 

Now, we show that ϕξ,1(ω) ̸= ϕξ,2(ω), ∀ω > 0 by contradiction. Let us assume that 

there exists ω > 0, such that ϕξ,1 = ϕξ,2. The hypothesis is verified if and only if 
 

  ps  p2 − pm + ω2
 

 
 

which is equivalent to 

pm − ω2 pspm 

ω4 + (p2 − 2pm)ω2 + p2
 = 0 . (2.31) 

s m 
 

In view of (2.30), Eq. (2.31) does not admit positive roots in the variable ω (since p2 − 2pm = 
p2 2 2 

1 + p2 > 0 and pm > 0). Therefore, we can conclude that ϕξ,1 ̸= ϕξ,2, ∀ω > 0. Finally, due 

to the phase separation property, the following inequality is verified for all t > 0 

2 

ξ⊤(t)ξ(t) ≥    hξ,ka
2 sin2(ϕ + ϕ ) > 0 
z 

k=1 

z ξ,k 

and there always exist a constant ϵ ∈ R>0 that fulfills (2.26), thus ending the proof. • 

 
2.3.2 Switching Mechanism Based on Excitation Level 

Note that the excitation condition (2.26) might not be satisfied on certain time-instants, 

especially when the magnitude of the sinusoidal signal (2.2) is small compared to magnitude 

of disturbances and higher order harmonics. In order to avoid the estimate drift phenomena, 

the adaptation parameter µ is switched based on the following normalized excitation level 

Σ(t) = 
(
ξ(t)⊤ξ(t) + ρ

)−1 
ξ(t)⊤ξ(t) , 

 
where ρ is a given positive scalar. We introduce a pre-defined excitation threshold δ so that 

 
µ = 0 if Σ(t) < δ (poor excitation) . 

 

The normalized IPE signal Σ(t) is easily accessible for all t due the availability of ξ(t), ∀t ≥ 
0, thereby permitting an switching adaptation law in correspondence with the excitation level 

, 
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in real-time. In Example 1 demonstrated in Section 2.6, we will show the behavior of the 

estimator along with the time-varying switching signal determined by Σ(t). 

Clearly, it is important to show that the estimation error remains bounded even during the 

poor excitation scenarios. This is carried out in the following 

 

Lemma 2.3.2 (Boundedness in dis-excitation phase) Assume that µ = 0, ∀t ≥ t > 0, 

where t denotes the time-instant at which the adaptation is switched off. Then, the dynamics 

of the adaptive observer-based sinusoidal estimator given by (2.17) is ISS w.r.t. d(t) such 

that |d(t)| ≤ d and w.r.t. the value of the frequency estimation error before the adaptation is 

switched off (that is, Ω̃ (t
−

)). 

 
Proof: In the suppressed identification phase, ˆ̇  

D 

t) = Ω̃
˙ 
(t) = 0, such that Ω̃ (t) = Ω̃ (t

−
) and 

the error dynamics z̃(t), ζ̃(t) evolve according to the following differential equations: 

 

ż̃(t) = (Az − Lz Cz )z̃(t) + (Lz Cz + ΩGz )z̃(t) + Ω̃ (t)Gz z̆̂(t) , 

ζ̃
˙
(t) = (Az − Lz Cz )ζ̃(t) + (Lz Cz + ΩGz )z̃(t) . 

Note that the ISS properties of ξ(t) and ζ̃(t) are preserved in this scenario. Due to the identity 

z̃(t) = ζ̃(t) + ξ(t)Ω̃ (t), we conclude that the dynamics of z̃(t) admits a bound that depends 

on the disturbance level d and on the initial parametric error Ω̃ (t
−

). • 

Remark 2.3.1 (Robustness during dynamic switching) It is worth noting that some stabil- 

ity issues may affect the behavior of the estimator under alternate switches unless additional 

constraints are introduced on the minimum duration time between consecutive switching 

events. A detailed discussion of this subject is carried out in Chapter 3 concerning the 

estimation of n frequencies (n ≥ 1), in which we prove that a simple time-based switching 

constraint derived from Lyapunov stability considerations guarantees the stability of the 

adaptive observer (a minimum finite duration between transitions is ensured). 

 
 

2.4 Estimation of Fundamental Frequency of a Generic Pe- 

riodic Signal 

2.4.1 Problem Formulation and Preliminaries 

In this section, we show that the simple adaptive observer method (2.17)-(2.18) originally 

conceived to estimate the frequency of a single sinusoid is valid for retrieving the fundamental 
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0 

 
 

  

 

frequency of a generic periodic signal (2.3). Thanks to the analysis performed in Sec. 2.2, a 

2-nd order pre-filter is enough to annihilate the dc component a0/2 asymptotically, whereas 

we adopt the nominal pre-filter of order 3 (i.e., np = 3) herein in order to avoid a direct 

feedthrough from the noisy measurement, thereby giving rise to a lower sensitivity to the 

additive disturbance (see (2.9)). 

 

 

 
For the sake of further analysis, let us define the bias-plus-fundamental signal 

 

η(t) /'. a0/2 + 

I  

1,n 

 
2 
2,n sin (ωt + ϕ0), (2.32) 

 

in order to split the pre-filtered signal x(t) in two parts:  x(t) /'. ηf (t) + hf (t), where 

ηf (t) /'. [ηf 1(t)  ηf 2(t)  ηf 3(t)]
⊤ is the state of a virtual pre-filter driven by η(t): 

 

η̇f (t) = Aηf (t) + Bη(t) (2.33) 

 

with arbitrary initial conditions ηf   ∈ R3. By analogy with (2.6), it is immediate to obtain 
 

 
−ωc 0 0   

K ω  
 

A =  
c   c  I 1  

 Kcωc −ωc 0 

0 Kcωc −ωc 

 , B =  
 

0  , C = 

0 

0   0   1 . 

 

Moreover, let ηf 3(t) = Cηf (t) be the output of the virtual pre-filter. Introducing the vector 

of auxiliary derivatives 
 

z(t) = 
I 

z (t)  z (t) 
1⊤ 

/'. 

 

 
d2 ⊤ 2, (2.34) 

1 2 η̇f 3(t)   

dt2 
ηf 3(t) ∈ R 

 

we have that z(t) tends asymptotically to the stationary sinusoidal regime, which are offset- 

free due to differentiation. It is easy to show that the vector of stationary sinusoidal derivatives 

z̆(t) = [z̆1(t) z̆2(t)]⊤ can be assumed to be generated by the linear marginally stable exosys- 
tem (2.12). Furthermore, let z̆̂(t) /'. [ z̆̂1(t) z̆̂2(t) ]⊤ = 

I
ẋ̂ 

3(t) d
 x̂ (t)

1⊤

 be the vector of the 
dt2   3 

perturbed filtered derivatives, computable from the accessible state vector of the prefilter: 
 

 

z̆̂(t) = Φx̂(t), with Φ = 

   
CA 

CA2
 

l 

. (2.35) 

a + a 

2 
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2.4.2 ISS Property of the Adaptation Scheme 

 
Stability of the pre-filtering scheme 

 

From the analysis performed in the case of single sinusoidal signal, it turns out that the 

ISS property of the pre-filtering scheme holds inevitably due the boundedness of h(t) and 

d(t). However, the following investigations are carried out to gain a less conservative error 

dynamics’ bound, which is also instrumental for the tuning of parameters. 

First, observe that there exist an (unknown) initial state ηf (0) = η̆f0 of the unperturbed 

virtual pre-filter (2.33) giving rise to an unknown state trajectory η̆f (t) whose projection 

on the subspace containing z(t) (see (2.34)) matches the stationary sinusoidal behavior 

since t = 0. Introduce the error vector x̃(t) /'. x̂(t) − η̆f (t), and owing to the fact that 

h(t) + d(t) = v(t) − η(t), the dynamic of x̃(t) is given by: 

( 
ẋ̃ (t) = Ax̃(t) + B (h(t) + d(t)) 

x̃(0) = x̂0 − η̆f0 

 

 
 

. (2.36) 

 

We can split the error in two vectors as x̃(t) = x̃h(t) + x̃d(t), where x̃h(t) and x̃d(t) obey 

the two concurrent dynamic equations: 
 

ẋ̃ 
h(t) = Ax̃h(t) + B h(t), (2.37a) 

ẋ̃ 
d(t) = Ax̃d(t) + B d(t) . (2.37b) 

 
Owing to the structure of the pre-filter, let us denote byHj (s) the transfer function from the 

input to the j-th state variable: 
 

ωj Kj 

Hj (s) = c c , (2.38) 
(ωc + s)j 

such that L[x̃hj ](s) = Hj (s)L[h](s), and then by defining ϕn = arctan(nω/ωc), in steady 

state we get 
 

 
x̃hj (t) = 

∞
 

ωcKc 
 

 
ω2 2    2 

j 

[a1,n cos(nωt + jϕn) + a2,n sin(nωt + jϕn)], ∀j = 1, 2, 3 

n=2 c + n ω  

(2.39) 

which can be rewritten in a compact form: 
 

x̃hj (t) = Σ(t)⊤R Γ (2.40) 
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n 

j=1 j 

1 

ω2 

 

j 

 

where  

Σ(t) = [cos 2ωt sin 2ωt cos 3ωt sin 3ωt · · · · · · ]⊤, 
j j j 

R = block diag[R2  R3   · · · ], 
j   

  ωcKc   

    
cos jϕn sin jϕn   

l
 

Rn = 
 

ω2 2    2 
,
 

 
and 

c + n ω — sin jϕn cos jϕn 

Γ = [a1,2  a2,2  a1,3  a2,3   · · · · · · ]⊤ . 

In view of (2.40) and letting σ(Rj ) be the maximum singular value of Rj , we have: 
 

2 j 2 2 j 2 2 

|x̃hj (t)| ≤ σ(R ) |Σ(t)Γ| = σ(R ) |h(t)| . 

In order to determine an upper bound to the largest singular value of the Rj , we first compute 

the maximum singular value among all the sub-blocks Rj , ∀n = 1, 2, · · · as follows: 

  /  
  

ωcKc 

  
ωcKc  j   

σ(Rj ) = λ 
(
Rj ⊤Rj 

\ 
=    ≤   = σ(Rj 

) . (2.41) 
n n n 

 
ω2 2    2 2 2 2 

c + n ω ωc + 4ω 

The overall high-order harmonic error vector |x̃h(t)| can be norm-bounded as shown in (2.42) 

below: 

|x̃h(t)| = 

I),3 
x̃h (t) 

2
1

2
 

1 
I),3

 
≤ j=1 σ(Rj )2|h(t)|2

1
 

1 

  
3
 

  
ω K 

 2j 
 
2 

= |h(t)|2 
 

 
c c 

 
ω2 2 

 

j=1 c + 4ω 
1 (2.42) 

 ( 
ω2

 2  
\3   

 
2 

ω2 2 c Kc 

c Kc 
1 − 

c +4ω2 

= 
 

2 
 

|h(t)| 
ω2

 2 2 2  
 

ωcKc 

c + 4ω — ωc Kc 

≤ 
ω2

 
2 2 2 

|h(t)| 

c + 4ω — ωc Kc 

in which ω2 + 4ω2 − ω2K2 > 0 for any non-zero angular frequency ω. 
c c c 

As far as the dynamics of the filtered disturbance x̃d(t) is concerned, it is immediate 

to show that x̃d(t) is ISS, thereby it will enter in a closed ball of radius γxd (∥d∥∞) + ν ≤ 

γxd (d) + ν in finite time Tx̃d0,ν by analogy with the analysis given in Sec. 2.2.2. By linking 

the available bounds on x̃h(t) and x̃d(t), we can establish the following asymptotic bound of 

j 

2 
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c 

≥0 

 

the actual filtering error: 

 

|x̃(t)|  ≤  |x̃h(t)| + |x̃d(t)| 
ωcKc 

= 
ω2

 h + γx (d) + ν 
2 2 2 

c + 4ω 
= γx(h, d). 

— ωc Kc 

 

 

Thanks to (2.35), the vector z̆̃(t) /'. z̆̂(t) − z̆(t) will enter in finite-time Tδ = Tx̃0,ν in a 

closed ball of radius γz (h, d) + δ centered at the origin, with 
 

δ = φν,   γz (r) = φ γx(r), ∀r ∈ R2
 , (2.43) 

 
  

where φ is suitable upper bound on ∥Φ∥ such that ∥Φ∥ ≤ φ. Such a bound can be expressed 

in terms of the tuning parameters of the algorithm and will be used to analyze the effect of 

the above parameters on the accuracy of the frequency estimate. In order to determine φ, it is 

worth noting that 

∥Φ∥ = 

I  

λ(Φ⊤Φ) ≤ tr(Φ⊤Φ). 

The trace of Φ⊤Φ follows that tr(Φ⊤Φ) = |CA|
2 

+ |CA 2|
2 

, wherein the square-power of 

A can be calculated by applying the block-Jordan matrix multiplication rule. After some 

algebra, we obtain: 

 

CA 2 = [(Kcωc)
2 2(Kcωc)(−ωc) (−ωc)

2] . 

Therefore, we get the following bound: 
 

tr(Φ⊤Φ) ≤ 2ω2 + 6ω4 . 
c c 

 

and thus, finally:  

∥Φ∥ ≤ φ /'. ωc   2 + 6ω2 . (2.44) 
 

Denoting by ωcκ(ωc) the right-hand side of (2.44), the comparison function γz (r) in (4.30) 

can be taken as 

γz (r) = ωcκ(ωc) γx(r), ∀r ∈ R2
 . (2.45) 

 

In view of (2.45), the slope of the function γz (·) can be made arbitrarily small by reducing 

the parameter ωc of the pre-filter, thus allowing to attenuate the effect of both the bounded 

perturbation and high-order harmonics. Note that the extra attenuation of the uncertainty is 

obtained at the price of decreasing the speed of convergence of the estimator. 
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Stability of the adaptive observer system 
 

Analogously, we have the error variables z̃(t) = ẑ(t) − z̆(t), Ω̃ (t) = Ω̂ (t) − Ω, ζ̃(t) = 

z̃(t) − ξ(t)Ω̃ (t), obey the differential equations (2.25a)-(2.25c). In order to prove the 

convergence of the estimation error, let us recall Assumption 3. The IPE condition (2.26) is 

verified in noise-free scenario with properly assigned poles, the reader is referred to Sec. 2.3.1 

for a detailed discussion on this subject. In case (2.26) gets lost in a noisy environment, the 

robust (conservative) excitation-based switching (see Sec. 2.3.2) can be employed likewise 

to avoid the estimates diverge in weakly excited interval. 

 

 

Theorem 2.4.1 (ISS of the adaptive observer system) If Assumption 3 holds, then given 

the periodic signal y(t) generated by (2.3) and the perturbed measurement v(t) the adaptive 

observer as well as the frequency estimator given by (2.17)-(2.18) are ISS w.r.t. the bound 

of harmonics |h(t)| ≤ h in the periodic signal and to any bounded additive measurement 

perturbation |d(t)| ≤ d. D 

 
 

Proof: Consider a Lyapunov function Vζ  = ζ̃(t)⊤Qζ̃(t), where Q is a positive definite 

matrix that solves the linear Lyapunov’s equation (2.27).  In view of the ζ̃(t) dynamics 

(2.25c), the derivative of the Lyapunov function verifies the inequality (2.28). Hence, Vζ is an 

ISS-Lyapunov function for ζ̃(t) w.r.t. z̆̃(t). For the sake of the further analysis, let us define 
 
 

 

q /'. λ(Q), q /'. λ(Q) 
 

and  

ps /'. (p1 + p2) ≤ −λ(Lz Cz + ΩGz ). 
 

Then we rewrite (2.28) by completing squares: 
 

∂ Vζ 
ζ̃
˙
(t) ≤− 

3 
|ζ̃(t)|2 − 

1 
|ζ̃(t)|2 + 2||Q|| ||L C 

 

+ ΩG || |z̆̃(t)| |ζ̃(t)| 
∂ζ̃ 4 4 z    z z 

3  2 

≤− 
4q 

Vζ (t) + 4q|ps| |z̆(t)| 

=−βζ (Vζ (t) − γζ (z̆̃(t)
2)) 

(2.46) 

 

where we have posed βζ /'. 3/4q and γζ (s) /'. (4q|p|)/βζs
2, ∀s ∈ R . By the Gronwall- 

Bellman Lemma, the value of the Lyapunov function Vζ can be bounded as follows 

Vζ (t) ≤ e−βζ tVζ (0) + (1 − e−βζ t)γζ (z̆̃(t)
2) . (2.47) 
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Now let VΩ̃ = 1 Ω̃ (t)2 be a candidate ISS-Lyapunov function for the frequency-estimation 

subsystem. Then the derivative of VΩ̃ verifies the inequality 

∂ VΩ̃ 
Ω̃
˙ 
(t) ≤ −µ|ξ(t)|2|Ω̃ (t)|2 + µ|ξ(t)||z̆̃(t) − ζ̃(t)| |Ω̃ (t)| 

∂Ω 
≤ −(µ − ϵ2)|ξ(t)|2|Ω̃ (t)|2 − ϵ2|ξ(t)|2|Ω̃ (t)|2 + µ|ξ(t)||z̆̃(t) − ζ̃(t)| |Ω̃ (t)| 

1 1 

≤ −(µ − ϵ2)|ξ(t)|2|Ω̃ (t)|2 +  
µ

 |z̆̃(t) − ζ̃(t)|2
 

1 2ϵ1 

≤ −(µ − ϵ2)|ξ(t)|2|Ω̃ (t)|2 +  
µ 

(z̆̃(t)2 + 
Vζ (t)

) 
1 ϵ1 q  

(2.48) 

where ϵ1 ∈ R such that ϵ2 ≤ µ. In view of (2.47) and Assumption 3, we get to: 
 

∂ VΩ̃ 
Ω̃
˙ 

(t) ≤ −(µ − ϵ2)ϵ|Ω̃ (t)|2 + 
µ 

z̆̃(t)2 +  
µ

 [e−βζ tV (0) + (1 − e−βζ t)γ (z̆̃(t)2)] 

∂Ω̃ 1 ϵ1
   

˜
 

 

qϵ1 
  2   

≤ −(µ − ϵ2)ϵ|Ω̃ (t)|2 + 
µ

 z̆(t)2 + 
16q

 
|ps| 

z̆̃(t)2 + δ 
1 ϵ1

   
˜
 3q   q|p | ̃  

= −(µ − ϵ2)ϵ|Ω̃ (t)|2 + 
µ

 z̆(t)2 + 
16kq

 

s  
z̆(t)2 + δ , 

1 ϵ1 3 
(2.49) 

in which δζ denotes the exponentially decaying initial condition and kq /'. q/q. Hence, VΩ̃ is 

an ISS-Lyapunov function for Ω̃ (t) with respect to the pre-filtered auxiliary derivative vector 

z̆̃(t), which, in turn, has been proven to be ISS with respect to the higher-order harmonics 

|h(t)| and the uncertainty |d(t)|. We can conclude that the overall frequency estimator is ISS 

with respect to h and d. Finally, z̃(t) is ISS evidenced by z̃(t) = ζ̃(t) + ξ(t)Ω̃ (t) and the 

boundedness of ξ(t). • 

Although the analytical results are, in principle, similar to the counterparts in Sec. 2.3.1, 

proofs are reported above to gain more insights in the influence of all the parameters. 

According to the performed ISS analysis of the AO estimator discussed in this chapter, the 

accuracy of the frequency estimation is adjustable by the tuning parameters: ωc, Kc, µ, more 

details pertaining the tuning of ωc, Kc, µ are provided in the next section by simulations. 

 

 

2.5 Digital implementation of the proposed method 

 
2.5.1 Discretization of the AFP algorithm 

 

For the sake of analysis, the main algorithm is established in continuous-time domain, 

which also permits flexibility in the discretization method and sample-time choice. Due to 

the discrete nature of the switching dynamics, it is worth to address the discretization of 

ζ 
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 s 

 

the algorithm for digital implementation in order to gain more insight into this important 

practical aspect. In the following, we provide a counterpart in the discretized version that 

is obtained by Euler method with a fixed sampling time Ts as a simple instance. Thanks 

to Assumption 2, an admissible set of sampling time that meets the Nyquist criterion is 

determined, i.e., Ts ∈ (0, π/ω]. 

Given a measured signal v(t) sampled at tk = kTs, k = 1, 2, · · · , without loss of gener- 

ality, we denote by v(k) the sample collected at k-th sampling instant, then the discretized 

on-line algorithm is given as follows with a choice of the tuning parameters Kc, ωc, µ and 

ρ, δ (if the dynamic switching is adopted): 

Defining x(k) /'. [ x1(k) . . . xnd−1(k)]⊤, the pre-filter that evolves from arbitrary initial 
nd−1 

conditions x0 /'. [ x10   . . . xnp ]⊤ ∈ R is 
 

( 
x̂(k) = x̂(k − 1) + Ts (Ax̂(k − 1) + B v(k)) 

x̂nd−1(k) = Cx̂(k) 

 
(2.50) 

 

where A, B and C are give in (2.7) and (2.8). Then, we immediately get: 
 

 

z̆̂(k) = 

  
CAnd x(k) 

l
 
. 

CAnd (Ax(k) + Bv(k)) 
 

The frequency is iteratively adapted by the adaptive observer in the discrete-time domain: 
 

 
ẑ(k) = ẑ(k − 1) + T 

 

(
(Az − Lz Cz )ẑ(k − 1) + LCz̆̂(k) + Gz z̆̂(k)Ω̂ (k − 1)

\
 

−ξ(k − 1)µξ(k − 1)⊤(ẑ(k − 1) − z̆̂(k)) . 

 ξ(k) = ξ(k − 1) + Ts 

(
(Az − Lz Cz )ξ(k − 1) + Gz z̆̂(k)

\
 

The excitation signal is checked at each sampling instance by 

Σ(k) = 
(
ξ(k)⊤ξ(k) + ρ

)−1 
ξ(k)⊤ξ(k) , 

 
which determines a switching dynamic on the adaptation gain µ 

( 
0 if Σ(k) < δ 

 

(2.51) 

µ(k) = . 
µ,  otherwise 

 

Thereafter, the frequency is estimated by 
 

Ω̂ (k) = Ω̂ (k − 1) − Tsµ(k)ξ(k)⊤(ẑ(k) − z̆̂(k)) 

0 
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s 

2 

T 2 

 
 

ω̂(k) = 

I  

max{0, Ω̂ (k)} 

with an initial frequency set to Ω̂ (0) = ω̂(0)2. Finally, by using ẑ(t) and ω̂(k), the amplitude 

and the phase are estimated straightforwardly by the discretized equations of (2.23), (2.24), 

(2.20b) and (2.22b). 

 
Estimation bias due to discretization 

 

In the practical digital implementation of the proposed continuous-time AFP methodology, 

a bias on the frequency estimate has to be expected due to the discretization [86]. In order 

to evaluate this bias, let us assume that the filter equations (2.5) are discretized by a Euler 

method with sampling-time Ts. We immediately get 

(ωcKcTs)
1+nd

 

X1+nd (z) = 
(z − 1 + ω T )1+nd 

Y (z) , 
c   s 

 

where Y (z) represents the discretized measurement. After discretization and some simple 

algebra, the Z-transforms of the auxiliary derivatives z1, z2 are given by 

(z − 1)nd
 

 

 
and 

Z1(z) = (ωcKc)
1+nd Ts 

(z − 1 + ωcTs)1+nd 

 
(z − 1)1+nd

 

Y (z) 

Z2(z) = (ωcKc)
1+nd

 

(z − 1 + ωcTs)1+nd 

Y (z) . 

Owing to the asymptotic sinusoidal steady-state behavior, the squared frequency after dis- 

cretization is computed by 
z − 1 Z2(z) 

Ωdiscr /'. − 
s 

. 
Z1(z) 

After some simple algebra, we get Ωdiscr = − (z−1)
 and then, for a given measurement with 

true frequency ω, we have 

 
Ωdiscr = − 

 
Re[(ejωTs )2] 
 

 

2 
s 

 
2 cos(ωTs)(1 − cos(ωTs)) 

2 
s 

 

Thus, the steady-state value of the frequency after discretization is 

 

ωdiscr =    2 cos(ωTs)(1 − cos(ωTs))/Ts . (2.52) 

The relationship (2.52) may turn out to be useful in practice to correct the effects of dis- 

cretization after convergence of the estimator. 

T T 

T 

= . 
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2.6 Simulation and Experimental Results 
 
2.6.1 Simulation Results 

In this subsection, some numerical examples are given to illustrate the effectiveness of the 

proposed AO-based methodology. The Forward-Euler discretization method with sampling 

period Ts = 1ms is used in all simulations. 

Example 1: Consider a biased sinusoidal measurement affected by a high-order harmonic 

and a bounded perturbation: 

 
v(t) = 1 + a1(t) sin 3t + a2(t) sin 12t + d(t), 

 

where a1(t) and a2(t) are step-wise changing amplitudes of the sinusoid and harmonic term 

respectively: a1(t) = 5, a2(t) = 0.5 for t ∈ [0, 15), a1(t) = 0.5, a2(t) = 2 for t ∈ [15, 30), 

a1(t) = 5, a2(t) = 0.5 for t ≥ 30, while d(t) is a unstructured uncertainty with uniform 

distribution in the interval [−0.5, 0.5]. With the tuning parameters set: ωc = 2, Kc = 

0.7, p1  = −4, p2  = −6, the results for the algorithm without switching for µ = 5 and 

µ = 2 are depicted in Fig.2.2 (red and green dotted lines respectively). For comparison, the 

estimates obtained in the same situations with the switching rule characterized by ρ = 1 

and δ = 0.1, is plotted in the Fig. 2.2 as well (blue and black dotted lines respectively). In 

the same figure, the switching time-instants are enhanced by vertical dotted lines, while the 

availability of the excitation level in real-time is verified in Fig. 2.3. 

 

Estimated frequency from a biased and noisy input signal 
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3 
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=5 without switching 

=5 with switching 

=2 without switching 

   =2 with switching 

  switching transitions 
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Time [s] 

 

Fig. 2.2 Estimated frequency obtained by using the proposed AFP method with and without 

switching. The switching time-instants are shown by vertical dotted lines. 
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Fig. 2.3 Left: Instantaneous excitation level ξ(t)Tξ(t).  Right: Normalized instantaneous 

excitation level Σ(t). 
 

 

 
Frequency estimation error from a perturbed input 
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-15 
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Fig. 2.4 Time-behavior of log |ω̃(t)| in the presence of the switching. 

 
As expected, during the time-windows in which enough excitation is present, the proposed 

AFP estimator is able to provide reliable estimates. On the other hand, during poorly-excited 

scenarios, the estimated frequency is frozen at the value taken immediately before turning-off 

the adaptation whereas, in case of no switching, the estimate shows a drift, as expected. 

Moreover, the influence of the adaptive gain μ is highlighted in Fig. 2.4, which shows that a 

larger value of μ improves the convergence rate at the expense of weaker noise attenuation 

(typical trade-off between asymptotic accuracy and convergence speed). Finally, we observe 

that the harmonic disturbance does not influence significantly the estimation performance 

due to its relatively small amplitude. Larger amplitudes clearly would have generated an 

attractive different equilibrium regime for the estimator. 

Let us now address two important aspects, namely, guidelines for the tuning of the 

parameters ωc and Kc and the effects on the estimates of the discretization. 

μ=5 with switching 

μ=2 without switching 



46 ADAPTIVE OBSERVER APPROACH: THE SINGLE SINUSOIDAL CASE 
 

F
re

q
u

e
n

c
y
 [

ra
d
/s

] 
F

re
q
u

e
n
c
y
 [

ra
d
/s

] 

 

Tuning rules for ωc and Kc 

 

Consider a signal v(t) = b1(t)+ 3 sin 5t + d(t), where b1(t) = 2 for t ∈ [0, 10), b1(t) = 1 

for t > 10, while d(t) is subject to uniform distribution in the interval [−2.5, 2.5]. First, we 

apply the nominal estimator with a constant µ = 5 (no adaptation), and after we tune ωc and 

Kc with the constraint of keeping constant products ωcKc = 4 and ωcKc = 6, respectively. 

The results that have been obtained are shown in Fig. 2.5. For the sake of comparison, the 

results obtained with the same election of parameters but without d(t) are plotted as well. 
 

 
Estimated frequency from a noise free input signal 
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Estimated frequency from a perturbed input signal 
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Fig. 2.5 Frequency tracking behavior based on the three sets of ωc and Kc for a biased 

sinusoidal signal (top row:ωcKc = 4, bottom row:ωcKc = 6). 

 

 
As can be noticed from the plots given in Fig. 2.5, the robustness against d(t) depends on 

the product of ωc and Kc: smaller values of this product give rise to better suppression of the 

disturbance but worse convergence speed and vice versa. Moreover, for a given value of the 

product of ωc and Kc, a reduction of Kc typically yields better transient performance. 

Example 2: In this example, a biased signal with two frequency steps is employed to 

compare the proposed AFP technique with two techniques available from the recent literature: 

the AFP method presented in [28] and the PLL-based technique in [58]. Let us assume that 

the signal that is perturbed by the same signal d(t) as the one considered in the previous 

example: 

v(t) = b1(t) + 3 sin(ω(t)t) + d(t) , 
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with  

 
ω(t) = 

 4,  0 ≤ t < 10 
6, 10 ≤ t < 35 

 

 
,  b1(t) = 

( 
1, 0 ≤ 

 
t < 20 

. 
 
2 35 ≤ t < 50 

3 20 ≤ t < 50 

All the methods are initialized with the same initial condition ω̂(0) = 1. Method [58] 

is tuned with: µ0 = 1, µ1  = 1, µ2  = 3, µ3   = 0.8, while method [28] is tuned with: 

Ks = 1, λ = 1, ωs = 4, Q0 = (1/λ)I. The adaptive parameters of the proposed method are 

chosen as: ωc = 5, Kc = 0.7 , µ = 4, p1 = −4, p2 = −6. The simulation results are shown 

in Fig.2.6. 
 
 

Estimated Frequencies from a biased and noisy input signal 
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AFP method [9] 

1 PLL−based method [15] 

Proposed AFP method 
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Time [s] 
 

Fig. 2.6 Estimated frequencies from a biased and noisy input signal. 

 

 

As can be noticed, all methods are capable to track the step-wise changing frequency with 

the similar response time to the first frequency value, however the PLL method [58] suffers 

from relatively larger overshoots for new values of the frequency and requires quite a long 

response time to deal with the considerable frequency drop. The AFP method [28] shows 

the best robustness against the disturbance at the cost of slowly tracking the intermediate 

frequency. Meanwhile, [28] is more sensitive to a bias variation. The proposed method shows 

the best transient performance and satisfactory capability of noise attenuation. In addition, it 

is worth noting that the PLL method is likely to be more sensitive to the adjustments of the 

tuning parameters than the other two methods. 

For the sake of completeness, the behaviour of the amplitude adaptation scheme (2.23) is 

compared in Fig.2.7 with the outcome of the direct equation (2.20a). The adaptive mechanism, 

besides resolving the division by 0 issue of (2.20a), significantly improves the estimate in 

correspondence of the jumps in the frequency estimates. 
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Estimated Amplitudes from a biased and noisy input signal 
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Fig. 2.7 Comparison of the behaviors in terms of amplitude estimation with adaptive mecha- 

nism (blue line) and unadapted algorithm(red line). 

 

 
Example 3: Let us consider a measured signal corrupted by a drift term: 

 

ŷ(t) = 5 sin(3t + π/4) + 1 + 0.5t + d(t) , 

 
where d(t) has the same characteristics as in the previous example. The tuning coefficients 

are set: ωc = 2.5, Kc = 0.6 and µ = 10, while the observer poles and initial condition are 

the same as given in previous example. 

The results of the simulation are shown in Fig. 2.8, where we observe successful detection 

of the sinusoidal signal in the presence of bounded noise and an unknown drift term. 

 

 

Sinusoidal signal reconstruction 
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Fig. 2.8 Estimated sinusoidal signal by the proposed AFP method. 
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Example 4: In this example, the method presented in [69] is compared with the algorithm 

described in Sec. 2.4 by resorting to the same example reported in [ 69], with the exception 

of adding an unstructured perturbation term to the measurement. The periodic signal to be 

estimated is represented by a biased square waveform (see Fig.2.9) with unitary amplitude 

and frequency ω = 3 rad/s: 

 

ŷ(t) = sign(sin (3t) − 0.5) + 1 + d(t) , 

where d(t) is a bounded disturbance with uniform distribution in the interval [−0.25, 0.25]. 

The order of the prefilter for the method described in [69] is l = 1, yielding a total state 
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Measured square wave 

 
2 

 
1.5 

 
1 

 
0.5 

 
0 

 
-0.5 

 

0 5 10 15 20 25 30 

Time [s] 
 

Fig. 2.9 Measured square waveform. 

 

 

 
dimension of 10 for the overall dynamics of the adaptive observer. The adaptive coefficients 

of the estimator [69] take the same values reported in the Example section of [69]: γ = 

10000, d2  = 4, d3  = 5, d4  = 2, λf  = λ = k0  = 1. 

The AO method presented in this chapter is tuned accordingly to ωc = 1.2, Kc = 0.5, µ = 

15000, while the poles are placed at (−2, −1) to ensure that both approaches have similar 

response time with identical initial condition Ω̂ (0) = 0.1. Note that the overall dimension of 

the proposed periodic signal estimator is 8. 

According to the results illustrated in Fig.2.10, both the estimators succeeded in detecting 

the fundamental frequency in the presence of bounded disturbance. Indeed, the proposed 

estimator shows slightly better transient using a estimator characterized by a lower dynamic 

order. 
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Fig. 2.10 Estimated frequency from a noisy square wave. 

 

2.6.2 Experimental Results 

Now, a practical implementation depicted in Fig.2.11 is conducted in order to evaluate 

the response time and accuracy of the proposed approach. Fig.2.11 also shows a picture 

 

 

Fig. 2.11 Experimental setup and a picture of the experimental setup based on Lab-Volt Wind 

power training system. 

 
of the actual setup based on the Lab-Volt wind power training system, wherein the prime 

mover drives the wind turbine generator with a transmission belt, thereby producing an ac 

voltage across the generator windings. It is worth noting that the rotational speed of the 

prime mover to maintain the generator output AC frequency of 50Hz is 665 rpm. During the 

experiment, the speed of the prime mover is programmed to emulate the intermittent nature 

of wind power. As a result, the generator output voltage and frequency are not constant. 

Moreover, the resistive load is applied as the electrical load. The instantaneous line voltage 

across the generator windings is measured by an analog-to-digital-converter (ADC) with 
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a sampling frequency of 60kHz, while a digital-to-analog-converter (DAC) is utilized to 

generate the estimated frequency. Such estimates are iteratively produced by the proposed 

estimator, which is integrated in a digital real time processor. Finally, the measured prime 

mover rotational speed and the estimated frequency are captured by an oscilloscope and 

recorded by a high precision digital-multimeter (DMM) with 5 digits resolution. 
 

 

Fig. 2.12 Experimental results. Ch1. (bule) Estimated frequency obtained by using the 

proposed AFP method (20Hz/Div), Ch2. (pink) Output voltage from the analog tachometer 

(500rpm/Div), Ch3. (yellow) line voltage across the wind turbine generator (50V/Div). Time 

base: 5s/Div. 

 
The dynamic behaviour of the proposed AFP algorithm is shown in Fig.2.12, where 

we observe that the estimated frequency tracks the fluctuating rotational speed of the wind 

turbine from 8Hz to 55Hz closely with almost identical profile. Fig. 2.13 shows the values of 

the identified frequency and prime mover rotational speed. The subtle differences between the 

frequency estimates and reading from tachometer (less than 0.25mV) are due to the instrument 

tolerance and noise generated by the prime mover drive. Therefore, these results show that 

the accuracy of the proposed algorithm is limited by the resolution of the measurement 

equipment. It is important to note that the proposed AFP algorithm achieves high precision 

frequency estimation with an accuracy of 0.05Hz resolution in this setup. 

 

2.7    Concluding Remarks 

In this chapter, a novel dual-mode adaptive observer-based technique for estimation of 

the amplitude, frequency and phase of sinusoidal signals from perturbed measurements has 
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Fig. 2.13 Comparison of the estimated frequency obtained by using the proposed AFP method 

and measured prime mover rotational speed. 

 

been presented. The estimator embeds a switching criterion that disables the adaptation in 

real-time under poor excitation conditions, thereby the behavior of the estimator in “dis- 

excited” time interval is characterized. The ISS analysis is carried out to enhance not only 

the robustness properties, but also the roles and the impacts of the adaptive parameters. This 

chapter also offers a comprehensive investigation on the influence of different types of per- 

turbations, including structured, unstructured and harmonic disturbances. More specifically, 

the structured disturbances are modeled as a time-polynomial so as to represent bias and 

drift phenomena typically present in applications, whereas the unstructured disturbances 

are modeled as bounded noise signals. Harmonic disturbances are addressed through a 

fundamental frequency identification problem, where the harmonics are treated as a part of 

the generic periodic signal. Extensive simulations and real experiments have been carried 

out to show the effectiveness of the proposed adaptive algorithm. 



 

 

 

 

 

 

 

 

 

 

Chapter 3 

 
ADAPTIVE OBSERVER APPROACH: THE 

MULTI-SINUSOIDAL  CASE 

 

3.1 Introduction 

 
In chapter 2, we presented an AO method for single (fundamental) frequency estimation 

that is one of the basic issue arising in numerous practical applications.  Nevertheless, 

particular applications require online frequency estimates of harmonics and inter-harmonics. 

In this respect, various types of methods emerge in the recent literature, such as [29, 55, 75, 

76], which stem from the PLL and ANF concepts. As a consequence, only local stability 

can be guaranteed in the most cases because of the averaging tools used for analysis. On the 

contrary, the AO techniques [17, 46, 80, 100, 111] relying on a system model parametrized 

by the coefficients of the characteristic polynomial, usually ensure global or semi-global 

stability.   The main drawback of the AO methods is the indirect frequency estimation 

(computed as the zeros of the characteristic polynomial) which might result in an excessive 

on-line computational burden. 

In this chapter, the AO method discussed in Chapter 2 is extended to a solution for multi- 

sinusoidal signals by proper model augmentation. In spirit of the initial results presented 

in [22], the presented method deals with a direct adaptation mechanism for the squares of 

the frequencies with semi-global stability guarantees. In contrast with [22] that is equipped 

by a scalar switching signal globally regulating the adaptation of the frequency parameters, 

the new estimator adopts a n dimensional excitation-based switching logic. Thanks to the 

suitable matrix decomposition techniques, this novel switching criterion enables the update 

of a parameter when the signal is sufficiently informative in that direction, thus enhancing the 

practical implementation and avoiding unnecessarily disabled adaptation in the scenario that 
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0 

i 

 

only parts of the directions fulfill the excitation condition (e.g. over-parametrization). The 

stability analysis proves the existence of a tuning parameter setting for which the estimator’s 

dynamics are ISS with respect to bounded measurement disturbance. 

The chapter is organized as follows: Section 3.2 is devoted to the formulation of the AFP 

problem in the multi-frequency scenario. In particular, the nominal linear multi-sinusoidal 

oscillator is transformed into an observable system with state-affine linear parametrization, 

in which the parameter-affine term depends on the unknown frequencies. In Section 3.3, the 

design of the adaptive observer-based estimator is treated. The embedded excitation-based 

switching dynamics permit the analysis in case of poor excitement by freezing the estimates 

under certain circumstances. Then, the stability of the presented approach is dealt with in 

Section 3.4 by ISS concepts. Section 3.5 gives an example of the discretized algorithm for 

digital implementation. Finally, in Section 3.6, simulations and practical experiments are 

carried out to evaluate the behavior of the algorithm. 

 

 

 

3.2 Problem formulation and preliminaries 

 
Consider the following perturbed multi-sinusoidal signal: 

 

 n 

 v(t) = b +        ai sin(ϕi(t)) + d(t) , 
i=1 

 

(3.1) 
 
ϕ̇ i(t) = ωi 

 

with ϕi(0) = ϕi0 , where b is an unknown constant bias, the amplitudes of the sinusoids verify 

the inequality ai ≥ 0, ∀i ∈ {1, . . . , n}, ϕi0 is the unknown initial phase of each sinusoid, 

while the term d(t) and the frequencies comply with Assumption 1 and 2 (see page 19) 

respectively. Now, let us denote by y(t) the noise-free signal 
 

n 

y(t) = b +      ai sin(ωit + ϕi ) (3.2) 
i=1 

 

which is assumed to be generated by the following observable autonomous marginally-stable 

dynamical system: 
 

 n 

 ẋ (t) = Axx(t) +      Aix(t)θ∗,  x(0) = x0 
 

(3.3) 

 
y(t) = Cxx(t) 

i=1 



 

∗ 

i 

c 

 0 c   
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with x(t) /'. [x1(t)  · · ·  x2n+1(t)]
⊤  ∈ R2n+1  and where x0  represents the unknown initial 

condition which leads the output to match the stationary sinusoidal behavior since the 
very beginning. The new parametrization θ∗, . . . , θ∗ used in (3.3) is related to the original 

1 n 

frequency parameters by the relationships 

θi  = αi + Ωi, ∀i ∈ {1, · · · , n}, (3.4) 

with Ωi = ω2, ∀i ∈ {1, · · · , n} and where α1, α2, · · · , αn are non-zero constants that are 

designed with the only requirements to satisfy αi ̸= αj for i ̸= j. The matrices of the linear 

multi-oscillator (3.3) are given by 

 
J1 02×2 · · · 02×2 0   

⊤ 
 

1  
02×2 J2 

 
. . . 0 

 
2×2   

⊤ 
 2   

Ax = 
 .. . . . . . . ..  

,  C⊤
   ..  

 
 . . . 
 

. .  
 x =  

 .   ,   . . . 
. . . J 0 

  ⊤  
 02×2 n   cn  

0 · · · · · · 0 0 1 
 

where 0r×s represents a r × s zero matrix, for generic indexes r and s 

   
0 1 

l 

Ji =  

αi 0 
,  ci = 

I 
1   0 

1 
. 

 

Moreover, each Ai in (3.3) is a square matrix having the (2i, 2i − 1)th entry equal to −1. 

Letting 

 

 
 

A1 and A2 for instance are given by: 

J0 = 
    

0 0  
l 

−1  0 

 

  
J0 02 

l 
(2n  1) 

 
02

 2 02× 2 02× (2n 

 
−3) 

A1 = 
× − 

,  A2 =  02×2 J0 02×(2n−3) 
 
. 

0(2n−1)×2 0(2n−1)×(2n−1) 
 

0(2n−3)×2 0(2n−3)×2 

 

0(2n−3)×(2n−3) 

 

 

 

Thanks to (3.3), the noisy signal v(t) can be generated by the observable system 

( 
ẋ (t) = Axx(t) + Gx(x(t))θ∗, x(0) = x0 

v(t) = Cxx(t) + d(t) 

 

 

 

 

 

 

(3.5) 

× 
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1 n 

i 2i−1 2i 

i 2i−1 2i 

 

in which 

Gx(x(t)) = 
I 

G 

 
(x(t)) · · · Gxi 

 
(x(t)) · · · Gxn (x(t))  

1 
, (3.6) 

 

 
 

Gxi (x(t)) = [01×(2i−1)   x2i−1(t)  01×(2n+1−2i)]
⊤, ∀i = 1, 2, · · · , n , (3.7) 

and θ∗ ∈ Rn denotes the true parameter vector [θ∗
 · · · θ∗ ]

⊤
. According to Assumption 2, 

there exists a known positive constant θ
∗
, such that |θ∗| ≤ θ

∗ 
. More specifically, in the 

remaining parts of this chapter we consider θ∗ ∈ Θ∗, where Θ∗ ⊂ Rn is a hypersphere of 

radius θ
∗
. It is important to stress that the constraint on θ∗ is instrumental for proving the 

stability of the parameter adaptation law introduced in the next section, but is not needed in 

the actual implementation of the algorithm. 

It is clear from (3.6) and (3.7) that the elements of Gx(·) are globally Lipschitz continuous 

functions due to the linearity of Gx(·). Moreover, the true state x(t) is norm-bounded for any 

initial condition, i.e. |x(t)| ≤ x, ∀t ∈ R≥0. Both the Lipschitz condition on Gx(·) and the 

bound x allow to establish the following further bound 

 

∥Gx(x(t))∥ ≤ x, ∀t ∈ R≥0 . 

 
Now, assuming that the estimates x̂(t) and θ̂(t) are available, then the full AFP estimates 

are obtained by 
 

Ω̂ 
i(t) = max{0, θ̂i(t) − αi}, 

 

ω̂i(t) = 

I  

max{0, θ̂i(t) − αi}, (3.8) 
 
 

 

 

 

and 

 

âi(t) = 

/(
Ω̂ (t)x̂ (t)2 + x̂ (t)2

\
 /Ω̂ 

i(t), (3.9) 

ϕ̂i(t) = ∠ (x̂2i(t) + ω̂i(t) x̂2i−1(t)) , i = 1, 2, · · · , n. (3.10) 

In addition, the estimates of the offset is obtained directly by b̂ = x̂2n+1. Note that the 

possible singularity issue Ω̂ 
i(t) = 0 affecting (3.9) is addressed by the following adaptive 

amplitude estimators (3.11) in spirit of the previous treatment reported in Section 2.3 on the 

estimation of a single sinusoidal signal: 
 

 
 ǡ i(t) = −µaω̂i(t) ω̂i(t)āi(t)  − 

/ (
Ω̂ (t)x̂ (t)2 + x̂ (t)2

\ 

 
 

, (3.11) 
 
âi(t) = max{0, āi(t)} 

x1 
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f 

× × 

 

where âi(0) = āi(0) = 0, µa ∈ R>0 is an adjustable gain subject to the trade-off between 

accuracy and convergence speed (see Fig. 2.4). 

 

 

 
 

3.3 Filtered-augmentation-based adaptive observer 

 
Recall the biased multi-oscillator (3.5), in which n unknown frequencies are embedded. 

In order to address the frequency estimation task by means of an adaptive observer approach 

(see [84] for a special case), let us first augment the dynamics of the observed system with a 

synthetic low-pass filter driven by the noisy measurement: 

 

v̇f (t) = Af vf (t) + Bf v(t) , (3.12) 

 

where Af and Bf are set by the designer such that Af  is Hurwitz and the pair (Af , Bf ) 

is controllable. vf (t) ∈ Rnf denotes the accessible state vector and with arbitrary initial 

condition vf0 , such that the dimension nf of the augmented dynamics verifies nf = n − 1. 

For the sake of the forthcoming analysis, it is convenient to split the filtered output into 

two components: 

vf (t) /'. yf (t) + df (t) , 

where yf (t) and df (t) can be thought as produced by two virtual filters, driven by the 

unperturbed output and by the measurement disturbance, respectively: 
 

ẏf (t) = Af yf (t) + Bf y(t), ḋf (t) = Af df (t) + Bf d(t). (3.13) 

 

Consequently, in view of (3.5), (3.13), the overall augmented system dynamics with the 

extended perturbed output measurement equation can be written as follows: 
 

 ż(t) = Azz(t) + Gz (z(t))θ 

η(t) = Czz(t) 
 
η̂(t) = η(t) + dη (t) 

 

, (3.14) 

 

with  z(0)  =  z0   ∈ Rnz , nz   =  2n + 1 + nf   =  3n, and z(t)  /'. [x⊤(t) y⊤(t)]⊤, z0   /'. 
[x⊤(t) ŷ⊤ ]⊤, η̂(t) /'. [v(t) v⊤(t)]⊤, dη (t) /'. [d(t) d⊤(t)]⊤, 

0 f0 
 
 
Az /'. 

f 
 
   

Ax 0(2n+1)  (n 

 

 
−1) 

 

l 

,  Cz /'. 

f 
 
   

Cx 01  (n 

 

l 

−1) 
,
 

BeCx Af 0(n−1)×(2n+1) I(n−1) 

∗ 
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θ 

× 

 

and  

Gz (z(t)) /'. 

  
Gx(Tzxz(t))  

l
 

, 
0(n−1)×n 

 

with the transformation matrix given by Tzx /'. [I2n+1 0(2n+1)×(n−1)]. It is worth noting 

that Gz (z(t)) is also Lipschitz, with unitary Lipschitz constant as Gx(x(t)), and can be 

norm-bounded by x̄. Moreover, the assumed norm-bound d on the output noise implies the 

existence of dη such that dη > 0 : |dη (t)| ≤ dη, ∀t ∈ R≥0 . 

Now, we introduce the structure of the adaptive observer for obtaining estimates of the 

unknown parameter vector θ∗, and in turn frequency estimates Ω̂ 
i, i = 1, · · · , n. Besides the 

measured output filter (3.12), the architecture of the estimator also includes three dynamic 

components (3.15), (3.16) and (3.18), which are described below: 

1) Augmented state estimator: 
 

ż̂(t) = (Az − LCz )ẑ(t) + Lη̂(t) + Gz (ẑ(t))θ̂(t) + Ξ(t)ˆ̇ (t) (3.15) 

with ẑ(0) = ẑ0 and where Ξ(t) is defined in (3.17). The gain matrix L is given by 

 

L /'. 

  
Lx 0(2n+1)   (n 

l 
−1) 

0(n−1)×1 0(n−1)×(n−1) 

where Lx is a suitable gain matrix such that (Ax − LxCx) is Hurwitz. Additional constraints 

on the poles’ selection are discussed in Theorem 3.4.1. 

2) Parameter-affine state-dependent filters: 

Let Gz1 (z(t)), · · · , Gzn (z(t)) be the columns of Gz (z(t)), that is 
 

Gz (z(t)) = 
I 
G (z(t)) · · · Gzi (z(t)) · · · Gzn 

(z(t)) 
1 

. 

 

Then, we introduce a set of auxiliary signal ξi(t), i = 1, · · · , n, whose dynamics obeys the 

following differential equations driven by the available (estimated) counterpart of Gz (z(t)): 

 

ξ̇i(t) = (Az − LCz )ξi(t) + Gzi (ẑ(t)), ∀i = 1, · · · , n , (3.16) 

with ξi(0) = 0nz×1 . By collecting all the filters’ states, we get the auxiliary signal matrix 

Ξ(t) = [ξ1(t) · · · ξi(t) · · · ξn(t)] , (3.17) 

 
used in (3.15). 

3) Frequency adaptation unit: 

z1 
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 ̂  ̂

θpre 

θpre 

Ψ 

z 

 ̂

 

Herein, an projection operator P is utilized to confine the estimated parameter θ̂(t) to the 

predefined convex region Θ∗
 

 

˙ 
θ(t) = P 

I 
˙
 1 

θpre(Ψ(t), t) 
|≤θ̄∗ 

(3.18) 

with θ̂(0) = θ̂0 set arbitrarily, and where ˆ̇ is the unconstrained parameter’s derivative, 

whose explicit expression is given in (3.21); Ψ(t) ∈ Rn×n  represents a diagonal matrix 

consisting of binary (1: on, 0: off) on-off switching signals which enable or disable the 

adaptation of a specific parameter: 

 

Ψ(t) /'. diag[ψ1(t), · · · , ψi(t), · · · , ψn(t)] . (3.19) 

The adaptation-enabling signals ψi(t), ∀i = 1, 2, · · · , n will be specified later on. For the 

sake of brevity, we write θ̂pre(t) instead of θ̂pre(Ψ(t), t), dropping the dependence of θ̂pre on 

Ψ(t) in the rest of the section. The parameters’ derivative projection operator in (3.18) is 

defined as [52]: 
 

I
ˆ̇
 1 

θpre 

θ̂(t)θ̂⊤(t)  ˙ 
e P θpre(t) 

|≤θ̄∗ /'. ̂
˙ (t) − I(θ) 

θ̄∗2 
θpr  (t) (3.20) 

where I(θ) denotes the indicator function, defined as: 
( 

1,  if |θ̂(t)| = θ̄∗ and θ̂⊤(t)ˆ̇  (t) > 0 , 
I(θ) /'. 

0,  otherwise . 

Now, the unconstrained derivative is given by: 

ˆ̇ ˘ 
θpre(t) /'. −µUΨ(t) (Ψ(t)SΨ(t)) U⊤(t)UΞ(t)SΞ(t)U⊤(t)Ξ⊤(t)C⊤ (Cz ẑ(t) − η̂(t))  , 

Ψ Ξ z 

(3.21) 

with UΨ, SΨ, UΞ, S̆Ξ defined in the following. The matrices UΨ and SΨ are obtained by the 

SVD of ΣΨ(Ξ(t)): 

ΣΨ(Ξ(t))  /'. 
(
Ξ⊤(t)Ξ(t) + ρ2I

)−
 

= UΨ(t)SΨ(t)U⊤(t) 

Ξ⊤(t)C⊤Cz Ξ(t) 

 
in which SΨ(t) is a diagonal matrix comprising all the eigenvalues of ΣΨ(Ξ(t)). Analogously, 

UΞ and SΞ are obtained by the SVD of the matrix ΣΞ(Ξ) defined as: 

ΣΞ(Ξ(t)) /'. Ξ⊤(t)C⊤Cz Ξ(t) = UΞ(t)SΞ(t)U⊤(t) . 
z Ξ 

1 
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ne(t) 

ne(t) n (t) 

 

Thanks to the above decomposition, let us define the matrix S̆Ξ(t) /'. diag {s̆Ξi (t)} where 
( 

λi (SΞ(t))
−1 

,  if ψi(t) = 1 , 

s̆Ξi (t) = 
0, if ψi(t) = 0 

. (3.22) 

 

The binary switching signal ψi(t), i = 1, 2, . . . , n that determines the activation/suppression 

of the parameter adaptation possesses the following hysteretic property: 
 

 
¯
 

 
ψi(t) = 

 1, if  λi (Σ(Ξ(t))) ≥ δ 
0, if λi (Σ(Ξ(t))) < δ 

 
ψi(t

−),   if δ ≤ λi (Σ(Ξ(t))) < δ̄ 

 
(3.23) 

 

The transition thresholds δ, δ̄ are fixed by the designer such that 0 < δ < δ̄ < 1.  The 

introduction of the hysteresis is motivated by the need to ensure a minimum finite duration 

between transitions (see Fig. 3.11). 

 

Remark 3.3.1 To avoid the possible interference between the estimators (e.g., two or more 

estimators to converge to the same frequency value), we may apply distinct frequency ‘clips’ 

in different ranges of frequency based on a priori knowledge on the nominal frequency values 

(a similar idea of frequency separation can be found in [76]). 

 

3.4 Stability analysis 

Before we carry out the stability analysis, let us define the augmented state-estimation 

error vector 

z̃(t) /'. ẑ(t) − z(t). 

Moreover, in order to address the case of overparametrization (that is, the number of model 

parameters n is larger than the number of sinusoids ne(t) ∈ N : 0 ≤ ne(t) ≤ n that at time t 

are adapted), it is convenient to define two parameter estimation errors, one accounting for 

all the parameters 

θ̃(t) /'. θ̂(t) − θ∗ ∈ Rn, 

and the other considering the ne(t) components that are adapted at a given instant 
 

˜ 
ne(t) (t) /'. θ̂ 

∗ 
ne(t) ∈ Rne(t), 

 

where θ̂ (t) and θ∗
 
e 

collect all and only those scalar components of the estimated and 
ne(t) 

true parameter vectors for which ψi(t) = 1. In this connection, let Ene(t) ∈ N be a set 

θ (t) − θ 
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∗ 

i=1 

θi 

 

containing the integer indexes of all and only those components for which the adaptation is 

enabled at time t. 

As said above, the case of overparametrization herein corresponds to a situation in which 

the number of frequency parameters of the observer, n, is larger than ne(t), the number 

of dominant sinusoids in terms of amplitude with unique frequency forming the measured 

signal1 (more details of overparametrization in the context of adaptive control can be found 

in [104]). In this case a minimal realization of the generator of the measured signals is a 

multi-harmonic oscillator of order 2ne, composed by the collection of exactly ne unique 

harmonic oscillators [37]. Accordingly, a non-minimal realization for such a signal generator 

can be taken as the union of the said minimal multi-harmonic oscillator with an augmented 

dynamics formed by (n − ne) harmonic oscillators with null-states and arbitrary frequencies. 

The possibility to assign arbitrarily the frequency of the augmented null-amplitude multi- 

oscillator is the key for proving the stability in this context. For the sake of the further 

discussion, without loss of generality, let us take the frequency parameters of the augmented 

dynamics equal to the present estimates produced by the filter for the components not adapted 

due to poor excitation, achieved by 

 

θi  = θ̂i(t), ∀i ∈ {1, 2, · · · , n}\Ene(t), (3.24) 

 

which implies 
θ̃i(t) /'. θ̂i(t) − θ∗ = 0, ∀i ∈ {1, 2, · · · , n}\En (t). (3.25) 

i e 
 

For the sake of the further discussion let us also define the linear time-varying combination 

of state and parameter vectors ζ̃(t) /'. 
),n

 

evolves according to the differential equation: 

ξi(t)θ̃i(t) − z̃(t), The state-estimation error 

 

n 

ż̃(t) =(Az − LCz )z̃(t) + Ldη (t) + Gz (ẑ(t))θ̃(t) + Gz (z̃(t))θ
∗ +     ξi(t)ˆ̇ 

(t) 

=(Az − LCz )z̃(t) + Ldη (t) + Gz (z̃(t))θ
∗ + 
 

 
i=1 

Gz (ẑ(t))θ̃i(t) + Ξ(t) ˆ̇ (t) , 
 

i 

i∈Ene(t) 

θ 
 

(3.26) 

where Gz (z̃(t))  /'. Gz (ẑ(t)) − Gz (z(t)) . Meanwhile, the auxiliary variable ζ̃(t) evolves 

according to 

ζ̃
˙
(t)  =   

 
 

i∈Ene(t) 

ξ̇i(t)θ̃i(t) + Ξ(t)θ̃
˙
(t) − ż̃(t) , (3.27) 

 

 
 

1The residual sinusoidal signals not accounted for by the adaptation are masked and implicitly treated as a 

disturbance. 



62 ADAPTIVE OBSERVER APPROACH: THE MULTI-SINUSOIDAL CASE 
 

i 

 

which, after some algebra, leads to 
 

ζ̃
˙
(t) =   
 

 
i∈Ene(t) 

(
(Az − LCz )ξi(t)θ̃i(t) + Gz (ẑ(t))θ̃i(t)

\ 
+ Ξ(t)θ̃

˙
(t) − (Az − LCz )z̃(t) 

−Gz (z̃(t))θ̃(t) − Ldη (t)−Gz (z(t))θ̃(t)−Gz (z̃(t))θ
∗−Ξ(t)θ̃

˙
(t) 

=   (Az − LCz )ζ̃(t) − Ldη (t) − Gz (z̃(t))θ
∗ . 

 
 

(3.28) 
 

In Fig. 3.1, we draw the overall excitation-based switching scheme, which is instrumental 

for the forthcoming analysis. In principle, the adaptation is deemed activated as long as 

ne ̸= 0, which means at least one component is updating. An active identification interval 

always starts from a transition to active identification time-interval, and ends up with a 

transition to dis-excitation time-interval, while the dis-excitation interval is the opposite. 

More specifically, let ke(t) be a counter for the transitions to excitation, described by the 
 

 
 

 
 

Fig. 3.1 Scheme of the excitation-based switching scheme for enabling/disabling the param- 

eter adaptation. The transitions to dis-excitation (a) and to active identification phases (b) 

have been highlighted. 
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1 

1 
ne 

 

jump dynamics given below: 
( 

ke(t−) + 1,  if En (t
−) = ∅ and En (t) ̸= ∅ , 

ke(t) = 
e e

 

ke(t−), if Ene (t
−) ̸= ∅ and Ene (t) = ∅ . 

 

Analogously, let k1→0(t) be a counter with respect to the transition from excitation to dis- 

excitation: ( 
kd(t−) + 1,  if En (t

−) ̸= ∅ and En (t) = ∅ , 
kd(t) = 

e e
 

kd(t−), if Ene (t
−) = ∅ and Ene (t) ̸= ∅ . 

Moreover, let td(k) and te(k) denote the transition time-instants: 

 

te(k) /'. inf(t ≥ 0 : ke(t) = k) ,  td(k) /'. inf(t ≥ 0 : kd(t) = k) . 

 
Without loss of generality and taking into account that the system starts from zero-excitement, 

then 

te(k) > td(k), ∀k ∈ Z>0 . 

and the counters are initialised by ke(0) = 0, kd(0) = 1 . Hence, the integer k always 

identifies a two-phase time-window made of a dis-excitation interval followed by an active 

estimation interval (see Fig. 3.1). 

 

Since (Az − LCz ) is Hurwitz, for any positive definite matrix Q, there exist a positive 

definite matrix P that solves the linear Lyapunov equation 
 

(Az − LCz )
⊤P + P (Az − LCz ) = −2Q . 

 
In the following, we analyze the behaviour of the adaptive observer in two situations by a 

Lyapunov candidate that accounts for all the parameters: 
 

 

 
where g ∈ R>0. 

V (t) /'. 
2 

(
z̃⊤(t)P z̃(t) + θ̃⊤(t)θ̃(t) + gζ̃⊤(t)P ζ̃(t)

) 
, (3.29) 

 

i) Active adaptation interval of finite duration, i.e. in which ne(t) ≥ 1 = ne, ∀t ∈ 

[te(k), td(k + 1)] (we omit the time-dependence of ne assuming that for the whole interval it 

remains constant). In this case the set Ene (t) is non-empty, V (t) defined in (3.29) shrinks to 

the following positive definite function, considering the sole components actively adapted: 

Vne (t) /'. 
2 

(
z̃⊤(t)P z̃(t) + θ̃⊤ (t)θ̃ne (t) + gζ̃⊤(t)P ζ̃(t)

) 
. (3.30) 
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θpre 

θpre 

θpre 

θpre 

 

In this interval, we prove that Vne is an ISS-Lyapunov function for the system comprising 

all states and only the parameters undergoing adaptation, that will converge to the true 

values. The present scenario comprises, besides the overparametrization case, also the 

full-parametrization case, which yields to the ISS of the whole dynamics. 

ii) Total dis-excitation, i.e., none of the parameters is adapted due to poor excitation. In 

this scenario the set Ene(t) is empty. In this case we show that the overall function (3.29) 

remains bounded. 

After that, the Lyapunov analysis in these two scenarios are linked properly and we are 

able to prove that the alternate occurrence of active identification phases and poorly excited 

phases yields to convergence, provided that the active identification phases have a sufficient 

duration. To simplify the analysis, we will consider that the number of adapted sinusoidsne 

is fixed (i.e., Ene(t) is an invariant set) within a whole excitation/dis-excitation interval (see 

Fig. 3.1), that is the set Ene(t) may be either the empty set {0} during the dis-excitation phase, 

either a set Ene  ̸= ∅ for an arbitrary active adaptation interval. Note that this assumption 

does not limit the applicability of the adaptive observer to this very special case, being it 

just a technicality needed to render the problem tractable in a simple analytical way (an 

active adaptation phase with time-varying ne(t) can be regarded as a combination of multiple 

excited intervals). 

 

 

 

3.4.1 Active adaptation interval of finite duration 
 

Consider an arbitrary active identification phase te(k) ≤ t < td(k + 1) (see Fig. 3.1) and 

let Ψne (t) be the binary matrix in this scenario with only ψi(t) = 1, ∀i ∈ Ene . The upcoming 

analysis is carried out in order to exhibit the benefit of using the derivative projection on 

the parameters’ estimates. Thanks to (3.20), in the presence of the projection I(θ) = 1 and 

|θ̂(t)| = θ̄∗, we have 
 

θ̃⊤(t)ˆ̇ (t) = θ̃⊤(t)ˆ̇  (t) − θ̃⊤(t) θ̂(t)θ̂⊤(t)ˆ̇  

¯ 

 (t) 

θ θpre θ∗2 θpre 

= θ̃⊤(t)ˆ̇  
1 

(t) − 
θ̄∗2

 
θ̃⊤(t)θ̂(t)θ̂⊤(t)ˆ̇  (t) . 

 

Owing to the convexity of the admissible set, it holds that θ̃⊤(t)θ̂(t) = 
(
θ̂⊤(t) − θ∗⊤

\ 
θ̂(t) ≥ 

0 . Now, we recall the triggering condition of projection θ̂⊤(t)ˆ̇  (t) > 0, which implies that 
 

1 

θ̄∗2 
θ̃⊤(t)θ̂(t)θ̂⊤(t)ˆ̇  (t) ≥ 0 . 



3.4 Stability analysis 65 
 

and ̂ 

θpre 

θpre θ 

θpre 

z 

ne 

d 
2 

 

Finally, we can bound the scalar product θ̃⊤(t)θ̃
˙
(t) by: 

θ̃⊤(t)θ̃
˙
(t) = θ̃⊤(t)ˆ̇ (t) ≤ θ̃⊤(t)ˆ̇  

 

 
 (t) . 

θ θpre 

 

For instance, a 2-dimensional pictorial representation of the projection-based adaptation is 

shown in Fig. 3.2 to enhance the influence of the derivative projection on the parameters 

estimates. In virtue of the fact that 

 

 

Fig. 3.2 A 2D pictorial representation of the projection-based adaptation. When |θ̂(t)| = θ
∗
 

˙ 
θpre (t) points out of the feasible region, then the derivative of the parameter vector is 

obtained by projecting ˆ̇  (t) to the tangential hyperplane. To visually compare the values 

of the scalar products −θ̃⊤ ̂̇  (t) and −θ̃⊤ ̂˙(t), consider the projected vectors (a) and (b) 
respectively. 

 

 

UΨ(t) (Ψn (t)SΨ(t)) U⊤(t) = 
(
Ξ⊤(t)Ξ(t) + ρ2I

)−
 UΞ(t) (Ψn  (t)SΞ(t)) U⊤(t) 

Ψ 

 

the unconstrained derivative ˆ̇  

ˆ̇ 

e Ξ 
 
 

(t) can be expanded as follows: 
 

−1 
θpre(t) = −µ 

(
Ξ⊤(t)Ξ(t) + ρ2I

)
 UΞ(t) (Ψn (t)SΞ(t)) U⊤(t)UΞ(t)S̆Ξ(t)U ⊤(t) 

×Ξ⊤(t)C⊤
 

e Ξ Ξ 
(
Cz Ξ(t)θ̃(t) − dη (t) − Cz ζ̃(t)

\
 

= −µ 
(
Ξ⊤(t)Ξ(t) + ρ2I

)−1 
Ψ (t)Ξ⊤(t)C⊤ 

(
C  Ξ(t)θ̃(t) − d \ 

(t) − C ζ(t) . 
ne z z 

η z ̃  (3.31) 

Thanks to (3.25), the following inequality holds in the presence of overparametrization: 
 

dt 
(θ̃⊤ (t)θ̃ne (t)) ≤ −µδ|θ̃ne (t)|  + 

µc̄ 

2ρ 
|θ̃ne (t)||dη (t)| 

µc̄2
 

2ρ 
|θ̃ne (t)||ζ̃(t)| , 

e 

1 
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 ̃ | ñe || η | −  ̃

2 

 ̃

 

where c̄ /'. ∥Cz ∥. 

The following result can now be proven. 

Theorem 3.4.1 (ISS of the dynamic estimator) If Assumption 2 holds, given the sinusoidal 

signal y(t) defined in (3.2) and the perturbed measurement (3.1), then in an active adaptation 

interval te(k) ≤ t < td(k + 1), there exist poles of (Ax − LxCx), µ ∈ R>0 and ρ ∈ R>0 

such that Vne (t) is an ISS Lyapunov function with respect to any bounded disturbance dη and 

in turn ISS w.r.t. bounded measurement disturbance |d(t)| ≤ d. Thus z̃(t) and θ̃ne (t) are ISS 

w.r.t. d. D 

Proof: In view of (3.24), we immediately have |θ̃(t)| = |θ̃ne |, which implies V (t) = Vne (t), 

and makes it possible to study the time-derivative of Vne (t) in place of V (t): 
 

1 ⊤ ˜̇  g ( ˜
 ˜̇ ˜̇ ˜ 

V̇ne (t) = 
(
z̃⊤(t)P ż̃(t) + ż̃ 

2 
(t)P z̃(t)

) 
+ θ̃ne (t)

⊤θne (t) + 
2 

ζ⊤(t)P ζ(t) + ζ⊤(t)P ζ(t)
) 
. 

(3.32) 

By letting l̄ /'. ∥L∥, q /'. λ(Q), 

follows: 

p̄ /'. λ(P ), after some algebra, V̇ (t) can be bounded as 

 
2 ˜ 2 ˜ 2 ¯ 2  ˜ 

V̇ne (t) ≤ −q|z̃(t)| — gq|ζ(t)| — µδ|θne (t)| + p̄l|z̃(t)||dη (t)| + p̄|z̃(t)| |θ(t)| 

+p̄x̄|z̃(t)||θ̃(t)| + p̄θ̄∗|z̃(t)|2 + µp̄c̄2|z̃(t)|2 + µp̄c̄|z̃(t)||dη (t)| 
c̄ +µ |θne (t)||dη (t)| + µ c̄

2
 |θ̃ne (t)||ζ̃(t)| + gp̄l̄ ζ̃(t)||dη (t)| + gp̄θ̄∗

 |z̃(t)||ζ̃(t)| . 
 

 

 

2ρ 2ρ 
| ne 

 

In view of the inequality |θ̃ne (t)| = |θ̃(t)| ≤ 2θ̄∗ and by re-arranging the above inequality to 

put in evidence the square monomial and the binomial terms, we get: 
 

2 ¯∗ 2 ¯ gq 
˜ 2 

gq
 2

 

V̇ne (t) ≤ −(q − µp̄c̄ — 3p̄θ )|z̃(t)| + p̄
(
l + µc̄

)
|z̃(t)||dη (t)| − 

2 
|ζ(t)| − 

4 
|ζ̃(t)| 

gq 

| ̃  

µδ ˜ 2 µδ ˜ 2 

+gp̄θ̄∗|z̃(t)||ζ̃(t)| − 
4 

|ζ̃(t)| + gp̄l̄ ζ(t)||dη (t)| − 
2 

|θne (t)| − 
6 

|θne (t)| 

+p̄x̄|z̃(t)||θ̃ne (t)| − 
c̄2

 

µδ 2 

6 
|θne (t)| 

c̄ 
+ µ  θ  (t)  d (t) 

2ρ 

µδ 2 

6 
|θne (t)| 

+µ 
2ρ 

|θ̃ne (t)||ζ̃(t)| . 

Now, we complete the squares, thus obtaining 

 
(q − µp̄c̄2 − 3p̄θ̄∗) g (

¯ 
)2 3(p̄x̄)2 

l
 gq 3µc̄4

 

V̇ne (t) ≤ − 
2 

− 
q 

p̄ θ∗
 

− 
2µδ |z̃(t)|2

 − ( 
2 

− 
8ρ2δ 

)|ζ̃(t)| 

2
(
¯ 2 

l 
µδ ˜ 2 p̄  l + µc̄

)
 3µc̄2

 g  2 2̄ 2 

− 
2 

|θne (t)| + 2(q − µp̄c̄2 
3p̄θ̄∗) 

+ 
8ρ2δ 

+ 
q 

p̄ l
 |dη (t)| . 

2 

2 

− 
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β 

l 

 
Finally, the following inequality can be established: 

V̇ne (t) ≤ −β1 

l
Vne (t) − γ1(dη )

l 
, (3.33) 

 

where  
(
(q − µp̄c̄2 − 3p̄θ̄∗) 

 

g  (¯ 
)2 

 

 
3x̄2p̄ µδ q 

 

 
3µc̄4

 

β1 /'. 2 min 
2p̄ — 

q 
p̄ θ∗

 
, 

2µδ 2 
, 

2p̄ 
− 

8gρ2δp̄ 
(3.34) 

 

 

and 
1 p̄2

(
l̄ + µc̄

)2
 

 
3µc̄2

 g2 2̄ 2 

γ1(r)/'. 
1 2(q − µp̄c̄2 

3p̄θ̄∗) 
+ 

8ρ2δ 
+ 

q 
p̄ l

 r , ∀r ∈ R≥0 . (3.35) 

Hence, the proof is concluded if 

β1 > 0. (3.36) 

In view of (3.36), all the components involved in (3.34) should be positive, wherein µδ/2 > 0 

can be immediately verified by choosing a positive µ. Now, we set the excitation threshold  

δ and the Q matrix arbitrarily, determining q. Then, assume the poles of (Ax − LxCx) are 

placed such that p̄ is sufficient small. Letting p̄ ≤ µ, we determine a sufficient condition to 

ensure the positiveness of the first term in (3.34): 

(q − µ2c̄2 − 3µθ̄∗) (
¯ 

)2    

2 g 

2 
− µ 

q  
θ∗

 

3x̄2
 

− µ 
2δ  

> 0. (3.37) 

Being the Lyapunov parameter g > 0 arbitrary, let us fix g = 1 for simplicity. At this point, 

with any fixed regularization parameter ρ ∈ R>0 (we do not pose limits on ρ now) we can 

always determine a sufficiently small value of µ for which the inequality holds true. Next, by 

suitably allocating the poles, we compute the output-injection gain L that realizes the needed 

p̄. Finally, to render β1 strict-positive, we choose a sufficient large ρ such that 

q 3µc̄4
 

2p̄ 
− 

8gp̄ρ2δ 
> 0 .

 

thus ending the proof. • 

 
Remark 3.4.1 (Parameter tuning) To avoid the increase of the worst-case sensitivity to 

bounded noises, instead of excessively reducing the value of p̄ that leads high-gain output 

injection through L, and high values of l̄ and γ1 correspondingly, we can set p̄ = µ and 

increase the regularization parameter ρ. 

− 

− 
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i=1 

2 

2 4 

˜ 

2 4 

˜ 

2 

 

3.4.2 Total dis-excitation phase 

Clearly, it is important to show that the estimation error remains bounded also during the 

time-intervals in which no excitation is present (e.g., td(k) ≤ t < te(k) as illustrated in Fig. 

3.1). This is carried out in the following result. 

Lemma 3.4.1 (Boundedness in dis-excitation phase) Under the same assumptions of The- 

orem 3.4.1, consider an arbitrary dis-excitation interval td(k) ≤ t <  te(k) in which 

Ene (t) = ∅. Then, under suitably chosen µ ∈ R>0, ρ ∈ R>0 and the poles of (Ax − LxCx), 

V (t) is an ISS Lyapunov function w.r.t. d(t) (where |d(t)| ≤ d) and w.r.t. V (td(k)).          D 

Proof: In the considered dis-excitation scenario, the estimation is totally unexcited in all 

directions, i.e. 
),n

 ψi(t) = 0, ∀t ≥ td(k) > 0, thus yielding θ̃
˙
(t) = 0n ×1, and θ̃(t) = θ̃(t̄−). 

In this respect, the time-derivative of the Lyapunov function V (t) satisfies 
 

V̇ (t) ≤ −(q − 3p̄θ̄∗)|z̃(t)|2 + p̄l̄|z̃(t)||dη (t)| − 
gq 

|ζ̃(t)|2 − 

gq 

|ζ̃(t)|2 + gp̄θ̄∗|z̃(t)||ζ̃(t)| 

gq 
˜ 2 ˜

 

| 
− 

4 
|ζ(t)| 

+ gp̄l̄ ζ(t)||dη (t)| + p̄x̄|z̃(t)||θ(t)| . 
 

Applying the inequality |θ̃(td(k))|2 ≤ 2V (td(t)), ∀t ≥ td(k), we have: 
 

V̇ (t) ≤ −(q − 3p̄θ̄∗)|z̃(t)|2 + p̄l̄|z̃(t)||dη (t)| − 
gq 

|ζ̃(t)|2 − 

gq 

|ζ̃(t)|2 + gp̄θ̄∗|z̃(t)||ζ̃(t)| 
gq 

˜ 2 ˜ 2 ˜ 

| 
− 

4 
|ζ(t)| 

+ gp̄l̄ ζ(t)||dη (t)| − |θ(t)| + 2V (td(k)) + p̄x̄|z̃(t)||θ(t)| . 
 

By completing squares, we obtain the following upper bound for V̇ (t): 
  

(q −3p̄θ̄∗) g (
¯ 

)2 3(p̄x̄)2 
l 

5 gq 

V̇ (t) ≤− 
2 

− 
q 

p̄ θ∗ − 
2
 |z̃(t)|2

 − 
6 
|θ̃(t)| − 

2 
|ζ̃(t)| 

+ 2V (td(k)) 
 

 

p̄2l̄2 

2(q − 3p̄θ̄∗) 

+ 
g 

p̄2l̄2 

q 

 

|dη (t)|
2
 

 

and hence, after some algebra, it follows that 

V̇ (t) ≤ −β0

(
V (t) − L0V (td(k)) − γ0(dη (t))

) 
(3.38) 

 

where L0 /'. 2/β0, 
 

 

β0 /'. 2 min 

 
(
(q − 3p̄θ̄∗) 

 

2p̄ 

 

 
g 

— 
q 

p̄ 

 
(
θ̄∗)2 

−
 

 
 

3p̄x̄2
 
, 

2 

 

5 q 
  

, 
6 2p̄ 

 

2 

+ 

l 
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β 

1 

d 

l 

 

and  
1 p̄2l̄2  g  2 2̄  2 

γ0(r) /'. 
0 2(q 3p̄θ̄∗) 

+ 
q 

p̄ l
 r , ∀r ∈ R≥0 . 

  

The positiveness of β0 can be justified by following the same steps taken in Section 3.4.1. It 

is easy to show that β0 > 0 is ensured through a suitable design of µ and ρ, thus concluding 

the proof. • 

 

3.4.3 Robustness Under Alternate Switching 

At this stage, the stability of the adaptive observer under alternate switching is charac- 

terized by linking the results obtained for the two excitation phases. Thanks to the Bellman 

Gronwall lemma, we are able to prove that the alternate occurrence of active identifica- 

tion phases and poorly excited phases may yield to convergence provided that the active 

identification phases have a sufficient duration. 

Theorem 3.4.2 Under the same assumptions of Theorem 3.4.1, consider the adaptive ob- 

server (3.12), (3.15)- (3.18) equipped with the excitation-based switching strategy defined in 

(3.42). Then, the discrete dynamics induced by sampling the adaptive observer in correspon- 

dence of the switching transitions has the asymptotic ISS property if the excitation phases 

last longer than β−1 ln(L0). D 

Proof: By the B-G Lemma, the value of the Lyapunov function (3.38) within the dis-excitation 

intervals can be bounded as follows: 

V (t) ≤ V (td(k)) + 
(
1−e−β0(t−td)

) (
L0V (t−(k))+γ0(dη )−V (td(k))

) 
, 

∀t ∈ [td(k), te(k)), ∀k ∈ Z>0 . 

 
Instead, during the excitation phases, the Lyapunov function (3.33) can be bounded as 

V (t) ≤ V (te(k)) + 
(
1 − e−β1(t−te(k))

) (
γ1(dη ) − V (te(k))

) 
, 

∀t ∈ [te(k), td(k + 1)), ∀k ∈ Z>0 . 

 
In order to link the two modes of behaviour, let us denote by Vk = V (td(k)) the value of the 

Lyapunov function sampled at the k-th transition to dis-excitement, occurring at time td(k) 

(or equivalently, at the end of the (k − 1)-th active identification phase). 

Due to the poor excitation during the interval [td(k), te(k)), at the transition time te(k) 

we can establish the (possibly conservative) bound 

 

V (te(k)) ≤ L0Vk + γ0(dη ) . 

− 
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0 

β−1 

t 

 
Such a bound holds for any duration the disexcitation phase. For any subsequent active 

identification time t = te(k) + ∆t with ∆t < td(k + 1) − te(k), we get the inequality: 

V (t) ≤V (te(k))+
(
1 − e−β1(t−te(k))

) (
γ1(dη )−V (te(k))

)
 

=γ1(dη )−e−β1(t−te(k))γ1(dη )+e−β1(t−te(k))V (te(k)) 

≤ γ1(dη ) − e−β1(t−te(k))γ1(dη ) + e−β1(t−te(k)) 
(
γ0(dη ) + L0Vk 

) 

= γ1(dη ) + e−β1∆t 
(
γ0(dη ) − γ1(dη ) + L0Vk 

) 
. 

Now, let us arbitrarily set 0  < κ < 1 and let ∆Te  =  −β−1 ln 
(
L−1κ

)
.  If the active 

1 0 

identification phase is long enough to verify the inequality td(k + 1) − te(k) > ∆Te, then we 

can guarantee the following difference bound on the discrete (sampled) Lyapunov function 

sequence: 
κ 

Vk+1 ≤ γ1(dη ) + 
0 

(
γ0(dη ) − γ1(dη )

) 
+ κVk 

which can be rewritten in the following compact form: 

 

Vk+1 − Vk ≤ −(1 − κ)Vk + γ(dη ) , 

where γ(s) = γ1(s) + κL−1 (γ0(s) − γ1(s)) , ∀s ≥ 0. 

We can conclude that Vk is a discrete ISS Lyapunov function for the sampled sequence, 

with samples taken at the end of the excitation phases assumed always to last longer than 

1      ln(L0). 

Now, we recover the ISS properties for the continuous-time system by studying the inter- 

sampling behaviour of V (t). Let k(t), ∀t > 0 denote the index of the current time-window: 

k(t) = k : t ∈ 
l
td(k), td(k + 1)

) 
and consider two positive constants ∆t1, ∆t2, such that 

∆t1 ≤ te(k) − td(k), ∆t2 ≤ td(k + 1) − te(k). Between two samples, the Lyapunov function 

is bounded by: 
 

V (t) ≤  max 
∆t1∈R≥0 

{
Vk(t) + 

(
1 − e−β0∆t1 

) (
L0Vk(t) + γ0(dη ) − Vk(t)

)�
 

+ max 
{
γ1(dη ) − e−β1∆t2 

(
γ1(dη ) − γ0(dη ) − L0Vk(t)

)�
 

∆t2∈R≥0    

≤ 
l
(1 + L0)Vk(t) + γ0(dη )

l 
+ 

l
γ1(dη ) + γ0(dη ) + L0Vk(t)

l
 

= (1 + 2L0)Vk(t) + γ1(dη ) + 2γ0(dη ) . 

(3.39) 

 

If we let k(t)  −−−→ 
→∞ 

∞ (i.e., an infinite number of active identification phases occurs 

asymptotically or a single excitation phase lasts indefinitely), then the estimation error in 

the inter-sampling times converges to a region whose radius depends only on the assumed 

disturbance bound. • 

L 



 

β−1 

1 

1 
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Remark 3.4.2 It is worth noting that the thresholds δ and δ play important roles in the 

behavior of the estimator under alternate switches. Because of the hysteretic property, the 

values of δ and δ have to be properly set to avoid the excitation signals of the adapted 

frequencies being confined in the transient interval (i.e., [δ, δ]). Suitable choices can be 

found off-line by a priori information of the inputs. 

Remark 3.4.3 In practical applications, in order to the improve the speed of convergence, a 

robust provision can be adopted consisting in re-initializing the parameter-vector with the 

value estimated by a previous sufficiently long identification phase (i.e. td(k + 1) − te(k) ≥ 

1    ln(L0)) after any insufficiently long excitation interval. In this respect, let k∗
 be a counter 

for the sole active identification phases lasting more than the minimal duration β−1 ln(L0) 

and consider Vk∗ = V (td(k∗)). In this case, Vk∗ is a discrete ISS Lyapunov function for the 

sampled adaptive observer, with samples collected at the end of the sole excitation phases 

lasting longer than β−1 ln(L0). 

 
 

3.5 Digital implementation of the proposed method 

In this section, we show a counterpart of this switched algorithm in the discrete-time 

domain to enhance the applicability. Similar to the one presented in Section 2.5, the first 

step consists in selecting a set of parameters Af , Bf , α1, α2, µ, ρ, µA, δ, δ; after that, Euler 

method is employed with a sampling period is Ts, thus resulting in a discretized algorithm 

given as follows, provided a measurement v(k), k = 1, 2, · · · 

 

vf (k) = vf (k − 1) + Ts (Af vf (k − 1) + Bf v(k)) , (3.40a) 

ẑ(k) = ẑ(k − 1) + Ts 

(
(Az − LCz )ẑ(k − 1) + Lη̂(k) + Gz (ẑ(k − 1))θ̂(k − 1)

\
 (3.40b) 

+ Ξ(k − 1)(θ̂(k − 1) − θ̂(k − 2)) , 

(3.40c) 

Ξ(k) = Ξ(k − 1) + Ts ((Az − LCz )Ξ(k − 1) + Gz (ẑ(k))) , (3.40d) 

θ̂pre(k) = θ̂pre(k − 1) (3.40e) 

+ Ts 

(
−µUΨ(k) (Ψ(k)SΨ(k)) U⊤(k)UΞ(k)S̆Ξ(k)U ⊤(k)Ξ⊤(k)C⊤ (Cz ẑ(k) − η̂(k))

\ 
, 

Ψ Ξ z  

(3.40f) 

θ̂(k) = θ̂(k − 1) + θ̂pre(k) − θ̂pre(k − 1) − I(θ) 
θ̂(k − 1)θ̂⊤(k − 1) 

θ̄∗2 
\ 

 
(3.40g) 

(
ˆ ˆ 

×  θpre(k) − θpre(k − 1) , (3.40h) 
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f 

θpre 

i 2i−1 2i 

 

where η̂(k)  /'. [v(k) v⊤(k)]⊤, UΨ(k), SΨ(k), UΞ(k), S̆Ξ(k) are obtained by the SVD of 

ΣΨ(Ξ(k)) and ΣΞ(Ξ(k)) at the corresponding sampling instant, that is 
 

ΣΨ(Ξ(k)) = 
(
Ξ⊤(k)Ξ(k) + ρ2I

)−
 Ξ⊤(k)C⊤Cz Ξ(k) = UΨ(k)SΨ(k)U⊤(k) 

z Ψ 

 
ΣΞ(Ξ(k)) /'. Ξ⊤(k)C⊤Cz Ξ(k) = UΞ(k)SΞ(k)U⊤(k) . 

z Ξ 

Furthermore, in view of (3.22), we have S̆Ξ(k) = diag {s̆Ξi (k)} where 
( 

λi (SΞ(k))
−1 

, if ψi(k) = 1 , 

s̆Ξi (k) = 
0, if ψi(k) = 0 

, (3.41) 

 

and the binary switching signal ψi(k), i = 1, 2, . . . , n is determined by 
 

 
¯
 

 
ψi(k) = 

 1, if  λi (Σ(Ξ(k))) ≥ δ 
0, if λi (Σ(Ξ(k))) < δ 

 
ψi(k − 1),   if δ ≤ λi (Σ(Ξ(k))) < δ̄ 

 
. (3.42) 

 

The indicator function is given by 
( 

1,  if |θ̂(k − 1)| = θ̄∗ and θ̂⊤(k − 1)ˆ̇ 

 

 

(k) > 0 , 
I(θ) /'. 

0,  otherwise . 
 

Thereafter, the estimates of the frequencies are obtained as follow by using θ̂(k): 
 

 

ω̂i(k) = 

I  

max{0, θ̂i(k) − αi}, (3.43) 
 

Finally, the amplitude and the phase of the sinusoids as well as the offset are estimated by 
 

 
 āi(k) = āi(k − 1) − Tsµaω̂i(k) 

 
âi(k) = max{0, āi(k)} 

ω̂i(k)āi(k)  − 

/(
Ω̂ (k)x̂ (k)2 + x̂ (k)2

\ 

 
, 

 
and 

(3.44) 

 
ϕ̂i(k) = ∠ (x̂2i(k) + ω̂i(k) x̂2i−1(k)) ,  i = 1, 2, · · · , n. (3.45) 

In addition, the offset is estimated directly by 

 

b̂(k) = x̂2n+1(k). 

1 
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3.6 Simulation and Experimental Results 
 
3.6.1 Simulation Results 

In this subsection, some numerical examples are given to illustrate the effectiveness 

of the proposed multi-sinusoidal estimator. The Forward-Euler discretization method with 

sampling period Ts = 3 × 10−4s is employed in all simulations. 

Example 1: In this example, we compare the proposed method with two techniques 

available from the literature: the adaptive observer method [67] and the parallel AFLL 

method [29], all fed by the following signal composed by two sinusoids: 

 
y(t) = sin 2t + sin 5t . 

 
All the methods are initialized with the same initial conditions ω̂1(0) = 3 and ω̂2(0) = 4. 

Method [67] is tuned with: γ1 = γ2 = 8 × 103, k = 1, d2 = 9, d3 = 27, d4 = 27, while 

method [29] is tuned with: Ks1 = Ks2 = 1, γs1 = 0.3, γs2 = 0.5, ωs1 = 3, ωs2 = 4. The 

tuning gains of the proposed method are chosen as: α1 = 0, α2 = −0.5, Af = −5, Bf = 

4.5 , µ = 6, ρ = 0.2, µA = 0.15 with the poles placed at (−2, −0.7, −0.5, −0.2). The 

simulation results are reported in Fig.3.3. 

 

Estimated frequencies from a noisy-free input 
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Fig. 3.3 Time-behavior of the estimated frequencies obtained by using the proposed method 

(blue) compared with the time behaviors of the estimated frequencies by [67] (green) and 

[29] (red). 

 
It is worth noting from Fig. 3.3 that all the estimators succeeded in detecting the frequen- 

cies in a noise-free scenario, after a similar transient behavior (throuhg a suitable choice of 

the tuning gains), though method [67] is subject to a slightly larger overshoot. 
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Let us now consider the input signal y(t) corrupted by a bounded perturbation d(t) uni- 

formly distributed in the interval [−0.5, 0.5]. As shown in Fig. 3.4, the stationary performance 

of method [67] deteriorates due to the injection of the perturbation. Moreover, as shown in 

Fig. 3.5, where we plot log |ω̃(t)| with respect to one frequency ω = 5 rad/s as an example 

to appreciated the behavior of [29] and the proposed observer in detail, the presented method 

exhibits a slightly better immunity to the bounded uncertainty. 
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Fig. 3.4 Time-behavior of the estimated frequencies by using the proposed method (blue line) 

compared with the time behaviors of the estimated frequencies by the method [67] (green 

line) and the method [29] (red line). 
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Fig. 3.5 Time-behavior of log |ω̃(t)| with ω = 5 rad/s by using the proposed method (blue 
line) compared with the time behaviors of the estimated frequencies by the method [29] (red 
line). 

 
The estimated amplitudes obtained by applying [29] are compared with the outcome 

of the proposed adaptive observer in Fig. 3.6 and 3.7 (the algorithm proposed in [67] is 
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not considered here, since it deals with frequency estimation only). Thanks to the adaptive 

scheme (3.11), the proposed method offers enhanced transient and steady state behavior with 

a similar convergence speed in the presence of d(t). 

 
 

1.2 
Estimated amplitude from a perturbed input 
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Fig. 3.6 Time-behavior of the estimated amplitudes by using the proposed method (blue 

lines) compared to the estimates by the method [29] (red lines). 
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Fig. 3.7 Time-behavior of log |ã1(t)| with a1 = 1 rad/s by using the proposed method (blue 
lines) compared to the estimates by the method [29] (red lines). 

 

Moreover, resorting to the estimated amplitudes and phases, the input is reconstructed by 

the next equation 

ŷ(t) = â1(t) sin ϕ̂1(t) + â2(t) sin ϕ̂2(t). 

Some periods of the estimates are plotted for observation in Figure 3.8, where the accuracy 

of the phase estimation is verified. 
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Fig. 3.8 Estimated sinusoidal signal by the proposed AFP method. 

 

Now, we instead consider a more aggressive disturbance d(t) that obeys uniform distribu- 

tion in the interval [−2.5, 2.5] in order to observer the influence of the coefficients ρ and µ. 

The results are given in Fig. 3.9, and for the sake of comparison, the root mean square of the 

frequency estimation error within a time-interval in steady state is calculated and presented 

in Table 3.1. As can be seen, for a fixed value of either ρ or µ, the tuning of other parameter 

is subject to the typical trader-off between accuracy and convergence speed. 

 
Table 3.1 Comparison of frequency estimation with different valued coefficents. 

 

Tuning Parameters Root mean square of the frequency estimation error (60s-100s) 

fixed µ ρ = 0.25 frequency 1 0.0141 frequency 2 0.0107 

ρ = 0.15 0.0282 0.0324 

fixed ρ µ = 4 frequency 1 0.0135 frequency 2 0.0095 

µ = 8 0.0264 0.0183 

 
 

Example 2: In order to evaluate the performance of the method in the presence of a DC 

offset and of a partial dis-excitation, consider a biased signal consisting of two sine waves 

that turn into a pure single sinusoid after a certain time instant: 

 
v(t) = 4 sin 3t + A2(t) sin 2t + 1 + d(t) 

 

where A2(t) obeys a step-wise change: A2(t) = 3, 0 ≤ t < 120, A2(t) = 0, t ≥ 120 and 

d(t) has the same characteristics as in the previous example. The behavior of the proposed 

estimator is recorded in Figs. 3.10-3.12 with the tuning gains chosen as follows: Af  = 

−6, Bf = 6, α1 = −2, α2 = −1, µ = 70, ρ = 0.3, µA = 0.1, δ = 3 × 10−4, δ = 3 × 10−5
 

and the poles’ location [−0.6, −0.5, −0.3, −1, −10]. 
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Estimated frequencies from a noisy input signal 
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Estimated frequencies from a noisy input signal 
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Fig. 3.9 Frequency tracking behavior with different values ofρ and µ for a noisy input. Top: 

ρ = 0.25 (blue lines), ρ = 0.15 (red lines). Bottom: µ = 4 (blue lines), ρ = 8 (red lines). 

 

 

 
 

More specifically, in Fig. 3.10 the excitation signals λ1(Φ(Ξ(t))), λ2(Φ(Ξ(t))) are shown 

together with the correspondent switching signals ψ1(t), ψ2(t), to enhance the availability 

of the individual excitation level in real-time, thus in turn allowing to disable the parameter 

adaptation in directions with poor excitation conditions. 

 
Moreover, it follows from Fig. 3.11 and Fig. 3.12 that all the initialized parameters includ- 

ing the offset are successfully estimated. After time t = 120s, the system is characterized 

by overparametrization. The vanishing of the second sinusoid is captured by the associated 

amplitude estimate, that fades to 0 eventually, though the frequency estimate is non-zero. 

Conversely, the parameters of the excited sinusoidal components remains at the accurate 

estimates after a transient response. 
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Fig. 3.10 (a) Excitation level λ1(Φ(Ξ(t))); (b) Excitation level λ2(Φ(Ξ(t))); (c) Switching 

signal ψ1(t); (d) Switching signal ψ2(t). 
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Fig. 3.11 Time-behavior of the estimated frequencies by using the proposed method. One of 

frequency estimates diverges after 120s due to the loss of excitation in one direction after 

120s (see the description on page 77). 

×10
-3

 
Excitation level < 

2
() (% (t))) 

F
re

q
u

e
n

c
y
 [
ra

d
/s

] 



3.6 Simulation and Experimental Results 79 
 

 
 

Estimated amplitude from a biased and noisy input signal 
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Fig. 3.12 Time-behavior of the estimated amplitudes (blue lines) and the estimated bias (red 

line) by using the proposed method. One of the sinusoid vanishes after 120s, therefore its 

amplitude decays to 0, resulting in a dis-excitation phase in one direction (see the description 

on page 77). 

 

3.6.2 Experimental Results 
 

In this section, an experimental example is illustrated to investigate the behavior of the 

approach in a real-time digital implementation. The proposed method has been deployed 

on a dSpace board connected to a programmable electrical signal generator (see Fig. 3.13): 

Tektronix AFG3102 dual channel function generator, which produces a voltage signal, given 

by 

y(t) = 4 sin 7t + 2 sin 5t 

affected by unknown bounded uncertainties. Fig. 3.14 shows some periods of the noisy 

sinusoidal signal generated by the programmable source. Computation burden is one the 

most important aspects of implementation in practice. For the sake of simplicity, all the 

dynamic equations of the estimator are discretized by the forward Euler method, avoiding an 

excessive load for the dSpace system. The parameters of the estimator (4th order for two 

frequencies) is set to α1 = 0, α2 = −1, Af = −2, Bf = 1 , µ = 20, ρ = 1, µA = 0.2 with 

the poles placed at (−0.7, −0.4, −0.5, −1). 

The dSpace board computes the estimates in real-time with a fixed sampling rate of 

10KHz based on the Maltab/Simulink platform. The results are captured by an oscilloscope 

with 4 channels respectively allocated to dual frequencies and amplitudes. The measured 

signals are then imported in Matlab for carrying out the post-analysis. As shown in Fig. 3.15 

and 3.16, the estimator is capable to gather the frequency and amplitude contents with great 

accuracy, despite the unavoidable measurement noise due the limitation of the measurement 
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Fig. 3.13 The experimental setup. 
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Fig. 3.14 A real-time noisy signal generated by the electrical signal generator. 

 

devices. Note that the limitation on the dSpace processor puts a restriction on the practical 

comparisons, since the computing power is not enough to handle more than one algorithms 

simultaneously. 

 
 

3.7    Concluding Remarks 
 

The problem of estimating the amplitudes, frequencies and phases of a biased multi- 

sinusoidal signal is discussed in this chapter. A typical signal generator is formulated, thus 

allowing direct frequency adaptation by a novel adaptive observer approach that is based 

on the AO technique for singular frequency (see Chapter 2). Compared to other adaptive 
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Fig. 3.15 Real-time frequency detection of a single with two frequency contents by using the 

proposed method. 
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Fig. 3.16 Real-time amplitude detection of a single with two frequency contents by using the 

proposed method. 

 

 
observer methods (e.g., [47, 67]) that estimate the characteristic polynomial’s coefficients 

of the signal-generator system, the proposed algorithm significantly enhances an on-line 

implementation feature, thereby addressing one of the challenging issues in multi-frequency 

estimation. On the other hand, thanks to the excitation-based switching dynamics that freeze 

the estimates as long as a weak excitation condition is detected in real-time, the phenomenon 

of poor excitation is approached, and the proposed estimator is proven to be ISS with respect 

to bounded disturbances and overparametrization. The tuning criteria of the adaptation 

parameters of the estimator are obtained analytically as a result of the ISS based analysis. 
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The effectiveness of the proposed algorithm has been shown by extensive simulations and 

real-time experiments. 



 

 ̂

 

 

 

 

 

 

 

 

 

Chapter 4 

 
STATE-VARIABLE  FILTERING-BASED 

APPROACH 

 
 
4.1 Introduction 

 

In this chapter, following the treatment introduced in Chapter 2, we also use a pre-filtering 

technique in order to obtaining a set of signals, independent of the structured perturbation, 

for the constructions of the frequency adaptation law. Nevertheless, the pre-filtered signals 

are directly exploited for AFP estimation to achieve a simpler algorithm in terms of dynamic 

order. Consider 

v(t) = y̆(t) + b + d(t) , t ∈ R≥0 (4.1) 

where y̆(t) is the stationary sinusoid given in (2.2), and the order of the structured perturbation 

nd is set to 1 without loss of generality. In fact, in the next section, we show that the arbitrarily 

higher order perturbation (compared to (2.1)) can be addressed by augmenting the order of 

the pre-filters by analogy to the nominal pre-filtering system given in Sec. 2.2.1. 

Recent works [86, 89] have shown that the derivative signals generated by the single 

pre-filtering action (2.6) of order 4 can be directly used for robust frequency detection from 

biased measurement (4.1). Let us choose from [86] the frequency adaptation law for the 

reader’s convenience: 
 

˙ 
Ω(t) = −µ 

f
[z0(t)z2(t) + z1(t)z3(t)] 

I
Ω̂ (t)z0(t) − z2(t)

1
 z0(t) 

+ 
l
(z0(t))2 + (z1(t))2

l I
Ω̂ (t)z1(t) − z3(t)

1 
z1(t)  , (4.2) 
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R 

 

where the vector of auxiliary derivatives are defined w.r.t. the filtered signals x4(t) generated 

by a 4th order pre-filter in the form of (2.6): 
 

d2 d3 
d4 ⊤ 

z(t) = [ z0(t), z1(t), z2(t), z3(t) ]
⊤ /'. ẋ 4(t), − 

dt2 
x4(t), − 

dt3 
x4(t), 

dt4 
x4(t) 

.  (4.3) 

 

The method presented in [86], where the pre-filter was conceived as a cascade of first-order 

low-pass (LP) filters, is generalized by proposing a parallel pre-filtering scheme in which two 

LP filters with different pole locations are used to generate auxiliary signals that are directly 

used to estimate the parameters of the sinusoid. This enhanced structure allows to simplify 

the adaptation law (4.2) without violating the ISS property against the exogenous disturbance 

d(t). In contrast with other methods [2, 8, 21, 90] that are also based on a single pre-filter 

system, this novel mechanism permits the squared-frequency parameter to be adapted directly 

without resorting to intermediate variables or tools as in [2, 8, 21, 90]. The ISS analysis 

also makes it possible to obtain useful tuning guidelines, since the dissipation rate and the 

ISS-asymptotic-gain are both expressed in terms of the estimator’s parameters. Finally, the 

effectiveness of the proposed technique is shown by comparative numerical simulations and 

by a real experiment addressing the estimation of the frequency of the electrical mains from 

a noisy voltage measurement. 

This chapter is organized as follows: In Section 4.2, we introduce the parallel pre-filtering 

scheme with dual filters characterized by distinct poles. Starting from the generalized parallel 

pre-filtering estimator presented in Section 4.3, a minimum order configuration characterized 

via a specific stability analysis is introduced in Section 4.4. The associated amplitude and 

phase detection method is given in Sec. 4.5. Section 4.6 gives an example of the discretized 

algorithm for digital implementation. Finally, Section 4.7 is dedicated to the simulations and 

the real-time experiments. 

 

 

 

4.2 Parallel Pre-Filtering System 

 
The parallel pre-filtering scheme consists in combining a pair of independent low-pass 

filters (2.5) and indexed by k ∈ {1, 2}.  The architecture is shown in Fig. 4.1 by a block 

diagram. Without loss of generality, assuming we adopt anp-th order pre-filter, in such case 

let us denote by 
 

xk (t) = 
l
xk,1(t) · · · xk,np (t)

l
 ∈ np , k ∈ {1, 2} 
⊤ 



 

0 

⎢ 

⎢ ⎢ 

4.2 Parallel Pre-Filtering System 85 
 

 

 

Fig. 4.1 Detailed scheme of the proposed pre-filtering system. 

 

 

 
two “virtual” state vectors (i.e., not implemented in practice but instrumental to carry out the 

stability analysis) of the k-th filter, driven by y(t) !:. y̆(t) + b (not measurable) in place of 

v(t) and evolving from arbitrary initial conditions: 
( 

ẋ  k (t) = Akxk (t) + Bky(t),  ∀k = 1, 2 t ∈ R 

xk (0) = xk0 

where Ak ∈ Rnp×np and Bk ∈ Rnp , ∀k ∈ {1, 2} are given by 

≥0    
, (4.4) 

 

⎡ ⎤ 
−ωck 0 · · · · · · 0 

⎢ ⎢ 
⎢ ⎢ 
⎢ ⎢ 

 

Kck 
ωck ⎢ 

Kck 
ωck ωck ⎢ ⎢ 

0 
⎢ 

Ak = 
⎢ −

 
⎢ 

,  Bk = 
⎢

 
⎢ 

, ∀k ∈ {1, 2}. ⎢ ⎢ 
⎢ 

..

 . . .
 

. . . . 

⎢ ⎢ 
⎢ . . 0 
⎢
 

⎢ ... 
⎢ 

⎣ ⎦ 
0 

⎢ 
. 

. . . ⎢ 
⎣ ⎦ 

0 · · · 0 Kck ωck −ωck 

x1,1(t) x1,2(t) x1,q (t) 

s + ωc 
q filters 

1 s + ωc 1 s + ωc 1 

ẋ  1,q (t) 

ẍ1,q (t) 

y(t) 

y(t) 
dq 

dtq 
x1,q (t) 

2 
ω 

2 2 
ω 

2 

s + ωc 2 s + ωc 
q filters 

2 
ω 

2 

2 s + ωc 2 

ẋ  2,q (t) 

ẍ2,q (t) 

y(t) 

dq 

dtq 
x2,q (t) 

⎡ ⎤ 

. . .
 . . .

 ...
 

. . .
 . . .

 ...
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dti 

ck 

∞ 

 

The parameters ωc1 , ωc2  ∈ R>0, with ωc1  ̸= ωc2 represent the poles of the low-pass filters, 

while Kc1 , Kc2 ∈ (0, 1] play the role of damping gains. For the sake of further analysis, let 

us introduce the combined virtual state vector x(t) = [x1(t) x2(t)]
⊤

, which is governed by 

the following differential equation, taking on the same form as in the nominal case (2.6): 

 

ẋ (t) = Apx(t) + Bpy(t),  t ∈ R≥0 , (4.5) 

 

with x(0) = [x⊤ , x⊤ ]⊤ and 
10 20 

 

 
Ap = 

   
A1 0 

0 A2 

 

l 

,  Bp = 
  

B1   

l 
. 

B2 

 

Following the same procedure as in Sec 2.2.1, it is readily seen that in the time-domain the 

derivatives di 

x 
 

k,np (t), 1 ≤ i ≤ np are available and tend asymptotically to the sinusoidal 

regime as t → ∞. Let us consider the stationary sinusoidal conditions 

di 

dti 
xk,np (t) ≈ ak,i sin(ϕk,i(t)), ∀t >> 0, k ∈ {1, 2} , (4.6) 

 

where  
ak,i = a ωi|Hk,n ( )|, ϕk,i(t) = ϕ(t) + ∠Hk,n ( ) + 

 
π 

i , (4.7) 

 
with 

p p 2 

ω
np np 

  ck Kck   

Hk,np (s) = 
(s + ω

 )np 
. 

Clearly, the derivative signals (4.6) are directly computable from the filters’ states (see (2.9)) 

and can be used as auxiliary signals to retrieve the frequency, the amplitude, and the phase of 

the input sinusoid. It is clear that a high order perturbation can be dealt with by a sufficient 

large np following the same procedure (see Section 2.2 for more details). 

Theorem 4.2.1 (ISS of the parallel pre-filtering system)  Given the sinusoidal signal y̆(t) 

and the perturbed measurement v(t) (2.1), the error dynamics of the parallel pre-filtering 

system (4.5) is ISS w.r.t. any additive disturbance signal d(t) ∈ L1  . D 

Proof: The proof is trivial due to the fact that Ap < 0. It is thus omitted here (the reader is 

referred to the single-filter case dealt with in Sec 2.2.2). • 

Although the selection of np is not unique, the use of higher-order filters is not advisable 

unless needed (e.g., in the presence of higher order perturbation, see Chapter 2) because of 

the drawbacks of the higher order filtering (stated on page 27 in Sec. 2.2). To this end, in 

the rest of this chapter, we first characterize the stability properties of a generalized parallel 
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pre-filtering-based estimation scheme, where each filter has order equal to np; the order can 

be minimized to a 3 + 3 configuration characterized by the same unified convergence analysis. 

Then, in Section 4.4, we further reduce the order yielding to a simplified 2 + 2 scheme the 

stability analysis of which has to be carried out in a different way. Practically, the choice 

of pre-filter’s configuration is determined by the designer depending on the performance 

requested to the estimator. Indeed, in Section 4.7, we show that, at the cost of increasing 

the order of the pre-filter, the 3 + 3 algorithm can provide an enhanced noise immunity in 

contrast with the 2 + 2 technique. 

 

 

 

 

 

4.3 Generic Order np + np Pre-Filtering-Based Frequency 

Estimator 

 
4.3.1 Underlying Idea 

 

Without loss of generality, let us start from considering a parallel pre-filtering stage 

having two pre-filters each of order np, where np ≥ 3. In correspondence to the available 

auxiliary vectors 
 

 

ẑ1(t) = 

  
dnp−2 

dtnp−2 
x̂1,np (t) 

dnp−2 ⊤ 

dtnp−2 
x̂2,np (t) , 

 

ẑ2(t) = 

  
dnp 

dtnp 
x̂1,np (t) 

dnp ⊤ 

dtnp 
x̂2,np (t) , 

(4.8) 

formed by the derivatives of the internal pre-filter’s states, we introduce the counterparts in 

the noise-free conditions: 
 

 

z1(t) = 

  
dnp−2 

dtnp−2 
x1,np (t) 

dnp−2 ⊤ 

dtnp−2 
x2,np (t) 

 

, z2(t) = 

  
dnp 

dtnp 
x1,np (t) 

dnp ⊤ 

dtnp 
x2,np (t) , 

 

which have the sinusoidal regime z̆1(t), z̆2(t). For simplicity, let us create the combined 

vectors ẑ(t) = [ẑ1(t) ẑ2(t)]
⊤

, z̆(t) = [z̆1(t) z̆2(t)]
⊤

, and the error vector in the presence of 

d(t): z̃(t) = ẑ(t) − z̆(t). The vector of auxiliary signals ẑ(t) can be expressed directly in 

terms of the available input y(t) and the np-th order filter’s states, x̂1(t) and x̂2(t): 
 

I 

ẑ(t) = Φnp v(t) x̂1(t)⊤ x̂2(t)⊤ 

1⊤ 

, (4.9) 
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2 

1 0 

 
 

 ̂

 

with 
 

0 CA
np−2  

 
0 0 CA

np−2  
Φnp =  np−1 np 

 . 
 CA1 B1 CA1 0  
CA

np−1 np 

2 B2 0 CA2 

Accordingly, the “virtual” combined auxiliary derivatives z̆(t) = 
l
z̆1(t)⊤ z̆2(t)⊤

l⊤ 
can be 

expressed as 
I 

z̆(t) = Φnp y(t) x̆1(t)⊤ x̆2(t)⊤ 

1⊤ 

. (4.10) 
 

Moreover, the stationary sinusoids z̆1(t), z̆2(t) defined in (4.10) satisfy the equality 

 
Ωz̆1(t) + z̆2(t) = 0. 

We propose to obtain the unknown frequency of the measured signal by enforcing the above 

constraint on the estimated one. To this end, the following gradient-based adaptation law 

represents the core of the methodology, which exploits the available pre-filtered signals 

ẑ1(t), ẑ2(t) in place of the unavailable pure sinusoids z̆1(t) and z̆2(t): 

˙ 

Ω(t) = −µẑ1(t)⊤ 

(
Ω̂ (t)ẑ1(t) + ẑ2(t)

\
 
 

. (4.11) 

 

Besides the frequency-adaptation mechanism just described, the pre-filter-based AFP scheme 

also involves an amplitude and phase estimation method that will be described later on in 

Section 4.5. 

 

 

4.3.2 Stability Analysis of the Frequency Estimator 

 
Assume the unknown sinusoidal regime x̆(t) induced by the initial filter’s state x̆0 gives 

rise to a “virtual” signal vector z̆(t) that matches the stationary sinusoidal behavior since the 

very beginning, when driven by the unperturbed sinusoid y(t), that is: 
 

I 

x̆(t) : Φnp y(t) x̆(t)⊤ 

1⊤ 

= z̆(t) = 
I
 z̆1(t)⊤ z̆2(t)⊤ 

1⊤ 

, ∀t ∈ R≥0. (4.12) 

 

The ISS of the error dynamics x̃(t) claimed in Theorem 4.2.1 immediately implies that 

z̃(t) /'. ẑ(t) − z̆(t) is ISS due to the identities (4.9) and (4.10). The error trajectory will enter 

in finite-time in a closed ball of radius γz (d) + δ centered at the origin, where 

 

γz (r) = Φnp (γx(r) + r), ∀r ∈ R≥0, δ = Φnp υ (4.13) 
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npπ 

p 

 
 

 

and where Φnp  ≥ ∥Φnp ∥. 

Introducing the frequency estimation error Ω̃ (t) /'. Ω̂ (t) − Ω, and applying the identity 

z̆2(t) = −Ωz̆1(t), the dynamics of the frequency estimation error Ω̃ (t) evolves according to 

Ω̃
˙ 
(t) = −µ(z̆1(t) + z̃1(t))⊤ 

(
Ω̂ (t)(z̆1(t) + z̃1(t)) − Ωz̆1(t) + z̃2(t)

\
 

= −µΩ̃ z̆1(t)⊤z̆1(t) + µΩ̃ f1(t, z̃) + µf2(t, z̃) , 
(4.14) 

 

where 
f1(t, z̃) = −2z̆1(t)⊤z̃1(t) − z̃1(t)⊤z̃1(t) 

f2(t, z̃) = Ω(f1(t, z̃) + z̃1(t)⊤z̆1(t)) − ẑ1(t)⊤z̃2(t). 

Note that the functions f1(t, z̃) and f2(t, z̃) verify f1(t, 0) = 0, f2(t, 0) = 0 for all t ∈ R≥0. 

Moreover, owing to the boundedness of z(t), there exist two K∞-functions γf,1(·) and γf,2(·) 

such that 

|f1(t, z̃)| ≤ γf,1(|z̃|) , |f2(t, z̃)| ≤ γf,2(|z̃|) . (4.15) 

The following assumption is needed to prove the convergence of the estimation error. 

Assumption 4 The signal z̆1(t) is persistently exciting in the sense that there exist a constant 

o > 0 such that 

z̆1(t)⊤z̆1(t) ≥ ε, ∀t > 0. (4.16) 

 
 

In the following derivations, we show that Assumption 4 is verified under a suitable choice 

of ωc1 and ωc2 in the nominal (noise-free) condition. Let us expand z̆1(t)⊤z̆1(t) as follows: 
 

  
dnp−2x̆1,n

 
  

dnp−2x̆2,n
 

z̆1(t)⊤z̆1(t) = 
dtn 

2 
p−2 

(t) + dtnp−2 (t) 

π 

=     ak,n 

k=1 

2 sin2 
(
ϕ(t) + ϕ k,np 

+ 

\ 

2 
(np − 2) , 

 

where ak,np−2 = aω 

algebra, we get 

np−2 |Hk,np ( )| and ϕk,np denotes the phase of Hk,np ( ). After some 

 

ϕ1,np = np arctan 
ω 

− 
ωc

 
,  ϕ2,np  = np arctan 

ω 

− 
ωc

 

 

Thanks to the fact that |ϕ1,np  − ϕ2,np | < 

t > 0 if 

2  , ∀ω > 0, z̆1(t)⊤ z̆1(t) is strictly positive for 

|ϕ1,np − ϕ2,np | ̸= jπ, j ∈ [0, 1, 2, ....⌊np/2⌋), ∀ω ∈ R>0 (4.17) 

1 2 

2 
p 

2 

p− 

. 
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± 

 

with ⌊·⌋ being the floor operator. 

In view of (4.17), it is readily seen that |ϕ1,np − ϕ2,np | ̸= 0, i.e., ϕ1,np ̸= ϕ2,np , ∀ω > 0 

as long as ωc1 and ωc2 are distinct. Next, we show a choice of the pre-filters’ parameters such 

that 
ω2 2 2 

c1 
+ ωc2 

− (2 + 4α )ωc1 ωc2 < 0 , (4.18) 

where α = tan(π/np), implies that the condition |ϕ1,np −ϕ2,np | ̸= jπ, j ∈ [1, 2, ....⌊np/2⌋), ∀ω > 

0 is satisfied. Let us suppose that there exists ω ∈ R>0, such that |ϕ1,np − ϕ2,np | = jπ. Such 

hypothesis holds if and only if 

arctan 

   
ω 

ωc1 
— arctan 

   
ω jπ 

= . 
ωc2 np 

 

Taking tan(·) on both hand side of the above equation, and owing to the property of trigono- 

metric functions, we get 
 

   
ω 

ωc1 

ω 

ωc2 

 

/ 1 + 
ω2 

ωc1 ωc2 
= ± tan(jπ/np) 

 

which can be rearranged as follows: 
 

tan(jπ/np)ω2  ± (ωc — ωc )ω + tan(jπ/np)ωc ωc = 0 . (4.19) 
1 2 1 2 

 

Note that equation (4.19) does not admit any real root in the variable ω as long as 
 

ω2 2 2 

c1 
+ ωc2 

− (2 + 4 tan(jπ/np) )ωc1 ωc2  < 0, 

which is always true if (4.18) holds since 0 < tan(π/np)  ≤ tan(jπ/np)  < tan(π/2). 

Therefore, by contradiction, the condition 

 

|ϕ1,np − φ2,np | ̸= jπ, j ∈ [0, 1, 2, ....⌊np/2⌋), ∀ω ∈ R>0 

 
can be ensured by proper selection of ωc1 , ωc2 . Finally, due to the phase separation property, 

there always exist a positive constant ε, such that excitation condition (4.16) is verified for 

all t > 0. 

 

 

Theorem 4.3.1 (ISS of the adaptive frequency identifier) Under Assumption 4, given the 

sinusoidal signal y(t) and the perturbed measurement model (4.1), the frequency estimation 

system made up of the two filters (4.4) of order n (n ≥ 3) and by the adaptation law (4.9) 

− 
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∞ 

∞ z f,1 

2 

Ω̃ (t) ≤ −µ
(
ε − γ 

2 

⊤ 

 

and (4.11) is ISS w.r.t. any additive disturbance signal d(t) ∈ L1
 such that 

 

∥d∥ < d < γ−1 
(
 γ

−1(ε)
)
 , (4.20) 

 

where γz and γf,1 are given by (4.13) and (4.15), respectively. D 

 

Proof: According to (4.13), for any positive δ ∈ R>0 there exists a finite time-instant Tδ such 

that |z̃(t)| ≤ γz (d) + δ, ∀t ≥ Tδ , which implies 

 

γf,1(|z̃(t)|) ≤ γf,1(γz (d) + δ),  ∀t ≥ Tδ. (4.21) 

If the bound (4.20) on the disturbances holds, then, for some δ  ∈ R>0, the following 

inequality is satisfied 

ε − γf,1(γz (d) + δ) > 0. (4.22) 

Thus, in view of (4.14), (4.15) and Assumption 4, the following bound on the derivative of 

candidate Lyapunov function V = 1 Ω̃ 2 can be established for any t > Tδ : 
 

∂ V ˙ 

∂Ω̃ 

 

f,1 (γz (d) + δ)
\
|Ω̃ (t)|2 + µγ 

 

f,2 (|z̃(t)|)|Ω̃ (t)| 
 

(4.23) 

≤ −∆µ |Ω̃ (t)|2 + µγf,2(|z̃(t)|)|Ω̃ (t)|, t ≥ Tδ , 

where ∆µ /'. µ 
l
ε − γf,1(γz (d) + δ)

l 
is a positive constant. Thus, Ω̃ (t) is ISS w.r.t. z̃(t) and 

in turn, ISS w.r.t. d. • 

 
4.3.3 Pre-Filter of Order 3 + 3 

 

In this paragraph, we specialize the previous scheme to the case np = 3. Considering 

np = 3 in (4.8), the auxiliary vectors are: 
 

ẑ1(t) = 
I
ẋ̂ 

1,3(t) ẋ̂ 
2,3(t)

1  
, 

 

ẑ2(t) = 

  
d3 

dt3 

 

x̂1,3(t) 
d3 

dt3 

 ⊤ 

x̂2,3(t) , 

 

formed by the derivatives of the internal pre-filter’s states of order 3. For simplicity, let 

us consider the combined vector of auxiliary signals ẑ(t) = [ẑ1(t) ẑ2(t)]
⊤ 

which can be 

expressed directly in terms of the available measurement v(t) and the pre-filter’s states 

x̂k (t) ∈ R3, k = 1, 2: 
 

ẑ(t) = Φ3 

I 
v(t) x̂1(t)⊤ x̂ (t)⊤ 

1⊤

 , (4.24) 
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 Φ  =  

2 −−−→ 2 1 

1 −−−→ 1 1,0 1,0 2,0 2,0 

 

2 2 

 

with   

  

3 
 

.
 

 CA2B1 CA3 0  
1 1 

CA2B2 0 CA3
 

2 2 

Finally, the frequency is estimated by the recursive algorithm (4.11) on the basis of the 

updated ẑ1(t) and ẑ2(t). The stability analysis of the 3 + 3 frequency estimator is a special 

case of the one given in Section 4.3.2 and is therefore omitted. 

 

 

4.4 Order 2 + 2 Pre-Filtering-Based Frequency Estimator 

 
4.4.1 Underlying Idea 

In this section, we aim to further reduce the dynamic order of the estimator, by decreasing 

the order of the two pre-filters to np = 2. Let us choose Kc1  = Kc2  = Kc and then introduce 
the auxiliary signals z1(t) = x1,2(t) − x2,2(t) and z2(t) = d   x (t) − d  x (t). It is easy 

dt2 1,2 dt2 2,2 

to show that both z1 and z2 tend asymptotically to a sinusoidal regime given by: 
 

z (t)  
t→∞  

z̆ (t) = a sin(ϕ (t)) − a sin(ϕ (t)) , 

z (t)  
t→∞  

z̆ (t) = −Ωz̆ (t) , 

with Ω = ω2 is the true (unknown) squared-frequency, and where 

 
(4.25) 

 

ak,0 = a |Hk,2( )|, ϕk,0(t) = ϕ(t) + ∠Hk,2( ). (4.26) 
 

with  

ω2 K2 

Hk,2(s) = ck c 
 2 

(s + ωck ) 

In view of (4.25), z̆1(t) turns out to be a pure single sinusoidal signal having frequency ω 

and amplitude 

az1 = 
I 

y2 + y2 , (4.27) 
p q 

 

in which 

yp = a1,0 cos ∠H1,2( ) − a2,0 cos ∠H2,2( ), 

yq = a1,0 sin ∠H1,2( ω) − a2,0 sin ∠H2,2( ω) . 

Similar to the order np + np algorithm, the following gradient-based adaptation law that 

exploits the available pre-filtered signals ẑ1(t), ẑ2(t) in place of the unavailable pure sinusoids 

. 

0 CA1 0 

0 0 CA2 
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 ̂

2 

1 2 

− 

 

z̆1(t) and z̆2(t), is adopted for the frequency estimation: 
 

˙ 
Ω(t) = −µẑ1(t) 

(
Ω̂ (t)ẑ1(t) + ẑ2(t)

\
 , (4.28) 

 

with µ > 0 being a user-defined adaptation gain aimed at tuning the convergence speed of 

the estimator. 

 

 
 

4.4.2 Stability Analysis of the Frequency-Adaptation Scheme with 2+2 

Pre-Filter 

Let us introduce the combined vector ẑ(t) = [ẑ1(t) ẑ2(t)]
⊤ 

that can be expressed as 
 

ẑ(t) = Φ2 

I 
v(t) x̂1(t)⊤ x̂ (t)⊤ 

1⊤

 , (4.29) 

 

where x̂1(t) = [x̂1,1(t) · · · x̂1,2(t)]
⊤ 

, x̂2(t) = [x̂2,1(t) · · · x̂2,2(t)]
⊤ 

and 
 

 
Φ2 = 

  
0 C C 

l
 
. 

C(A1B1 − A2B2)    CA2
 −CA2

 

 

By analogy to the foregoing analysis illustrated in Section 4.3.2, we immediately conclude 

that the trajectory of z̃(t) will enter in a closed ball of radius γz (d) + δ centered at the origin 

in finite-time, where 

 

γz (r) = Φ2(γx(r) + r), ∀r ∈ R≥0, δ = Φ2ν , (4.30) 

being Φ2 ≥ ||Φ2||. Thanks to the relationship z̆2(t) = −Ωz̆1(t), let us rewrite (4.28) in terms 

of the errors z̃1  and z̃2: 

Ω̃
˙ 

(t) = −µ
(
z̆1(t) + z̃1(t)

)(
Ω̂ (t)(z̆1(t) + z̃1(t)) − Ωz̆1(t) + z̃2(t)

)
 

= −µΩ̃ z̆1(t)2 + µΩ̃ f1(t, z̃) + µf2(t, z̃) , 
(4.31) 

 

where 

f1(t, z̃) = −2z̆1(t)z̃1(t) − z̃1(t)2 , 

f2(t, z̃) = Ω(f1(t, z̃) + z̃1(t)z̆1(t)) − (z̆1(t) + z̃1(t))z̃2(t) . 

It is not difficult to see that there exist two K∞-functions γf,1(·) and γf,2(·) such that 

|f1(t, z̃)| ≤ γf,1(|z̃|) , |f2(t, z̃)| ≤ γf,2(|z̃|) . (4.32) 
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The following result characterizes the stability properties of the frequency estimator. 

 
 

Theorem 4.4.1 (ISS of the adaptive frequency identifier) Given the sinusoidal signal v(t) 

and the perturbed measurement model (2.1), let the bound on the measurement disturbance 

d verify the inequality: 
 

  
1 −1 

  
ωκa2

 ln ((1 − κ∆)/κ) 
  

 

||d||∞ < d < γ−
 γf,1 

µπκa2   − 2ω ln (1/κ) 
, (4.33) 

 

where az1 is given by (4.27), κ : κ ∈ (0, 1) is chosen arbitrarily, κ∆  ∈ R>0 is such that 

1 − κ∆ > κ, and µ is chosen large enough to verify the following two inequalities: 

ω ln (1/κ)/(µκa2  ) < π (4.34) 

 

and  
cos2

 

   
ω ln (1/κ) 

 
 
 
— κ ≥   ωκ ln ((1 − κ∆)/κ) 

 

. (4.35) 
2µκa2 µπκa2 − 2ω ln (1/κ) 

Then, the frequency estimation system given by the two filters (4.5) with n = 2 and by (4.28) 

and (4.29) is ISS w.r.t. d(t). D 

 

Proof: Consider the following candidate Lyapunov function V (Ω̃ ) = 
1 

Ω̃ 2. In view of (4.31) 
2 

and (4.32), the time-derivative of V (t) along the system’s trajectory satisfies: 
 

∂V ˆ̇  ˜ ˜̇ 2 ˜ 2 ˜ 

∂Ω̃ 
Ω(t) = Ω(t)Ω(t) ≤ −µ(z̆1(t) − γf,1(|z̃(t)|)) Ω(t) + µγf,2(|z̃(t)|)|Ω(t)| , (4.36) 

 

in which the stationary sinusoidal signal z̆1(t) appears explicitly. Now, under the assumption 

of d given by (4.33) and the inequalities (4.34) and (4.35), then the period of the squared 

sinusoid z̆2(t) can be partitioned in three intervals: P2, in which it holds that 
 

(
z̆1(t)2 − γf,1(γz (d) + δ)

) 
≥ κa2

 

 

and P1, P3, in which this inequality is not guaranteed. In the following, we denote by t0, 

t1 and t2 the transition time-instants between the aforementioned modes of behavior, as 

described in Fig.4.2. Without loss of generality, the duration of P2 is denoted by Te that is 
subject to Te ≤ π , while the duration of P1 and P3 are identical denoted by Td =  π  − Te

 

ω 2ω 2 

We prove that there exist a suitably specified constant, such that if the interval P2 lasts for 

more than Te, then the discrete-time Lyapunov function obtained by sampling the continuous- 

time Lyapunov function at the end of the three phases is a discrete-ISS Lyapunov function. 

. 
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Fig. 4.2 An example plot of the excitation signal z̆2(t) (blue line) induced by the station- 

ary sinusoidal signal z̆1(t) with amplitude az1  (dotted red line), as well as two horizontal 

thresholds γf,1(γz (d) + δ) (dotted green line) and γf,1(γz (d) + δ) + κa2
 (green line). 

 

 

 
 

Moreover, we show that the required duration Te of P2 can be guaranteed if the disturbance 

verifies inequality (4.33) reported in the statement of the theorem. 

During P2, we have: 

 

V̇ (t) ≤ −µκa2 Ω̃ (t)2 + µγf,2(|z̃(t)|)|Ω̃ (t)| . (4.37) 

By completing squares, we get: 

V̇ (t)   ≤  −µ 

κa2
 

z1 Ω̃ (t)2 + 
2 

µ 
 

 

2κ a2 
γf,2(|z̃(t)|)2

 
 

(4.38) 

≤  −µκa2 (V (t) − γe(d)) , 

with γe(d) = (2κ2a4 )−1γf,2(|z̃(t)|)2. Analogously, during P1 and P3, we obtain the follow- 

ing upper bound for V̇ (t) 
 

V̇ (t)  ≤ µγf,1(|z̃(t)|) 
(
V (t) + γd(d)

) 
, (4.39) 

 

where γd(r) is a K-function such that γd(r)γf,1(r)
2  ≥ 

γf,2(r)2 
 

2 , ∀r ≥ 0. 

Applying the Gronwall-Bellman Lemma to (4.38), the value of the Lyapunov function 

during P2 (t1 ≤ t < t2) can be bounded as follows: 

V (t)   ≤  V (t1) + (1 − e−µκaz1 
(t−t1))(γe(d) − V (t1)) 

2 2 (4.40) 

= e−µκaz1 
(t−t1)V (t1) + γe(d)(1 − e−µκaz1 

(t−t1)), ∀t ∈ [t1, t2) . 

κ 

2 
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z1 

z1 

z1 

2 

z1 

 
Taking the same steps as above, we obtain a further bound of V (t) during the “dis-excited” 

intervals P1 and P3: 

 

V (t) ≤ V (tp)eµγf,1(|z̃(t)|)(t−tp)  + (eµγf,1(|z̃(t)|)(t−tp)  − 1)γd(d), 
π 

∀t ∈ [t0, t1), if p = 0 or ∀t ∈ [t2, t0 + 
ω 

), if p = 2 .  (4.41) 

Due to the poor excitation during P1 and P3, at the end of these intervals we can establish a 

(possibly) conservative bound 

V (te) ≤ eµγf,1(|z̃(t)|)Td 
(
V (tp) + γd(d)

) 
, te = t1, if p = 0 (i.e., in P1) 

or t  = t  + 
π 

, if p = 2 (i.e., in P ) .  (4.42) 
e 0 

ω
 3 

Then, in view of (4.40), assuming that the mode P2 occurs for a time Te (we do not pose a 

lower-bound on Te at this point, possibly Te = 0 ), we get the inequality: 

2 2 

V (t2) ≤ e−µκaz1 
Te 

l
eµγf,1(|z̃(t)|)Td 

(
V (t0) + γd(d)

)l 
+ γe(d)(1 − e−µκaz1 

Te ) .   (4.43) 

Finally, denoting by Vk /'. V 
(
t0 + k π 

) 
the value of the Lyapunov function at the end of each 

k-th P3 interval, and considering that t0 is arbitrary within the set t0 ∈ {t : z̆2(t) = 0}, from 

inequalities (4.42) and (4.43), we can easily get the following expression: 

 
2 2 

Vk+1 ≤ e2µγf,1(|z̃(t)|)Td−µκaz1 
Te Vk + γe(d)(1 − e−µκaz1 

Te )eµγf,1(|z̃(t)|)Td 

+ (e2µγf,1(|z̃(t)|)Td−µκaz1 
Te + eµγf,1(|z̃(t)|)Td )γd(d) .  (4.44) 

 
We now show that a minimum time-duration of phase P2, denoted by Te, is ensured as long 

as the bound (4.33) is verified. Indeed (4.33) implies that 
 

 
 

γf,1(γz (d) + δ)  < 
ωκa2

 ln ((1 − κ∆)/κ) 

µπκa2 − 2ω ln (1/κ) (4.45) 

= 
 ln ((1 − κ∆)/κ) 

.
 

2µ(π/2ω − ln (1/κ)/µκa2   ) 

 
 

Then, thanks to (4.35), there exists a positive constant Td  that bounds the length of the 

dis-excitation interval (Td ≤ Td) : 
 

  ( 
π
 2 2 ω ln (1/κ) 

  
 

T d /'. min t ≤ 
ω 

: z̆1(t0 + t) ≥ az1 
cos 2µκa2 

.
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z1 
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Owing to the fact that z̆1(t0 + T d)2 = a2
 sin2(ω(t0 + T d)), then Td can be computed as the 

minimum positive solution of the equation:  
   

ω ln (1/κ) 
 

 

z1 
sin 

2 
(
ωT d

) = a2  cos 2   . 
2µκa2 

 

From (4.34), it holds that 

 

 

Hence, 

 
π  

T d = 
2ω 

− 

 
π 

Te ≥ 
ω 

− 2T d ≥ 

 

ln (1/κ) 

2µκa2 

 
ln (1/κ) 

 

 

µκa2 

 

. 
 
 

= T e. 

 
 

Combining T d and (4.45), we also get 

e2µγf,1(|z̃(t)|)Td   < e2µγf,1(|z̃(t)|)T d   < 
(1 − κ∆) 

. 
κ 

Next, we prove that the Lyapunov function with discrete dynamics induced by sampling 

the frequency estimator in correspondence of the transitions is ISS with respect to the 

measurement disturbance d(t). Since 
 

t2 − t1 = Te ≥ 
ln (1/κ) 

µκa2 
,
 

 

picking ϵ ∈ R>0 such that 1 − κ∆ < ϵ < 1, then we can guarantee the following bound on 

the discrete (sampled) Lyapunov function sequence: 
 

1 1 

Vk+1 ≤ ϵVk + γe(d)(1 − κ) √
κ 

+ (1 + √
κ 

)γd(d) . 
 

In compact form:  

Vk+1 − Vk ≤ −(1 − ϵ)Vk + γv (d) , 
 

where the function γv (·) is a K-function defined as 

1 1 

γv (r) = γe(r)(1 − κ) √
κ 

+ (1 + √
κ 

)γd(r),  ∀r ∈ R≥0 . 

Hence, we are able to conclude that Vk is a discrete ISS Lyapunov function for the sampled 

sequence. 

Finally, we show the ISS for the continuous-time system by using the continuity ofV (t) 

and the boundedness of its time-derivative in the inter-sampling. Thanks to the periodicity 
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√ 

−−−→ 

  

  

( 

 

of the excitation signal z̆1(t)2, let us denote by t0(k), t1(k) and t2(k) the transition time- 

instants of the k-th period of z̆1(t)2, and k(t) the index of the current period: k(t) = k : t ∈ 
l
t0(k), t0(k + 1)

)
. Between two samples, the Lyapunov function can be bounded (possibly 

in a conservative way) by, 
 

  1             )  l 

V (t) ≤ √
κ 

l
V (t0) + γd(d)

l 
+ 
l
 

  

κ V (t0) + γd(d) 

1 

+ γe(d) 

1 

+ V (t0) + √
κ
γe(d) + (1 + √

κ 
)γd(d) 

1 + 
√

κ + κ 1 2 

= √
κ 

Vk(t) + (1 + √
κ 

)γe(d) + (2 + √
κ 

)γd(d) .  (4.46) 

Since k(t)  
t→∞

 ∞, an infinite number of excited phases with length Te occurs asymptoti- 

cally; the estimation error in the inter-sampling times converges to a compact region whose 

radius depends on the bound on the disturbance (assumed to exist), hence concluding the 

proof. • 

 

 
 

4.5    Amplitude and Phase Estimation 

 
Finally, we propose a unified algorithm for estimating the amplitude and the phase that 

applies to all the np + np (np ≥ 2) methods presented in this chapter. Following the same 

procedure carried out in Section 2.3, the amplitude and phase (ak,q, ϕk,q ) of the q-th derivative 

of the np-th state variable of the k-th pre-filter (see (4.6) and (4.7)) can be estimated as follows 

by using ω̂(t) obtained by either methods illustrated in this chapter: 
 

     
I   

dq−1 
 2   

dq
  2

  

âk,q (t) = 
I

 Ω̂ (t) dtq−1 x̂k,np (t) + 
dtq 

x̂k,np (t) , (4.47a) 

  
dq

 dq−1 

ϕ̂k,q (t) = ∠ 
dtq 

x̂k,np (t) + ω̂(t) 
dtq−1 

x̂k,np (t) 
, ∀q ≤ np , (4.47b) 

 

and  

 

â(t) = 

 
âk,q (t) 

II  
ω2 

 

 
+ ω̂(t)2/(Kc 

 

 
ωc ) 

 
1np 

 
 

, (4.48a) 
ω̂(t)q ck k k

 

π 

ϕ̂(t) = ϕ̂k,q (t) + np arctan(ω̂(t)/ωck ) − 
2 

q . (4.48b) 



 

2 

Φ  =  

2 2 

2 
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The “ill” defined non-adaptive formulas (4.47a) and (4.48a) (they are not defined when 

ω̂(t) = 0) are amended by the following adaptive mechanisms: 

   
I  

ȧ̂ 
k,q (t) = −µa âk,q (t) − 

I
 

Ω(t) 

  
dq−1  2 

x̂k,n (t) 
  

dq
 

+ x̂k,n (t) 

 2
  

(4.49) 

ˆ 

dtq−1 p 

dtq p  

and 

ȧ̂ (t) = −µaω̂(t)q
 ω̂(t)q â(t) − âk,q (t)

I
 

 
 
 

+ ω̂(t)2/(Kc 

 
 
 

ωck 

 

 
1np 

 
 

) 

 

 

 
 

(4.50) 

 

with initial condition âk,q (0) = 0, â(0) = 0 and tunable parameters µa ∈ R>0 that determine 

the rate of convergence. The above adaption laws makes it easy to enforce, simply by a 

clipping (e.g., (3.11)), the positivity constraints â ≥ 0. 

 
 

4.6 Digital implementation of the proposed method 
 

In this section, we briefly illustrate the digital implementation of the introduced algo- 

rithms. Consider a measured signal v(k), k = 1, 2, · · · sampled by Ts, we firstly make a 

choice of the tunable parameters ωc1 , ωc2 , Kc1 , Kc2 , µ. It is worth noting that both methods 

rely on the filtered signals obtained by the parallel pre-filtering system (4.5), which in the 

discrete-time domain is represented by 

 

x(k) = x(k − 1) + Ts (Apx(k − 1) + Bpv(k)) , (4.51) 
 

where x(t) = [x1(t) x2(t)]
⊤

, x̂1(t) = [x̂1,1(t) · · · x̂1,2(t)]
⊤ 

, x̂2(t) = [x̂2,1(t) · · · x̂2,2(t)]
⊤

. 

Thanks to (4.51), the auxiliary signal ẑ(k) for the method 1 (see Section 4.3.3) is obtained by 
 

ẑ(k) = Φ3 

I 
v(k) x̂1(k)⊤ x̂ (k)⊤ 

1⊤ 

, 
 

with  
0 CA1 0  

 
0 0 CA2  

3 
    CA2B1 CA3 0  

1 

CA2B2 

1 

0 CA3
 

On the other side, for method 2 (see Section 4.4), we get 
 

ẑ(k) = Φ2 

I 
v(k) x̂1(k)⊤ x̂ (k)⊤ 

1⊤ 

, 

ω 2 
I  

ck k 

. 
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1 2 

 

− 

 
with  

 
Φ2 = 

  
0 C C 

l
 
. 

C(A1B1 − A2B2)    CA2
 −CA2

 

The frequency adaptation laws for both methods have the same representation, which in the 

discrete-time domain writes: 

Ω̂ (k) = Ω̂ (k − 1) − Tsµẑ1(k) 
(
Ω̂ (k − 1)ẑ1(k) + ẑ2(k)

\ 
, 

I  

ω̂(k) = max{0, Ω̂ (k)} 

where z1(k), z2(k) for method 1 are vectors, however for method 2 they are scalars. 

Finally, by using ẑ(t) and ω̂(k), it is straightforward to estimate the amplitude and the 

phase by the discretized equations of (4.49), (4.50), (4.47b) and (4.48b). 

 
 

4.7 Simulation and Experimental Results 
 
4.7.1 Simulation Results 

In this subsection, the behaviour of the proposed methods are evaluated and compared 

with three recently proposed AFP techniques [58], [28] and [90].  All the algorithms are 

discretized by Forward-Euler discretization method with fixed sampling period 1 × 10−3s. 

The algorithms considered in the comparative analysis have been tuned to have a similar 

response time when fed by a unitary-amplitude sinusoid of frequency 1/(2π), when initialized 

with zero initial conditions (indeed, the initial transient of the frequency-estimates shown in 

Fig.4.3 put in evidence that the considered methods share the same rise-time). The evaluations 

are conducted in the case of a biased sinusoidal signal, undergoing both frequency and offset 

steps-wise variations. 

Let us consider a sinusoidal measurement corrupted by a bounded disturbance: 

 
v(t) = b(t) + 3 sin(ω(t) t + π/4) + d(t), (4.52) 

 

with  

 
ω(t) = 

 4,  0 ≤ t < 10 
8, 10 ≤ t < 35 

 

 
,  b(t) = 

( 
1, 0 ≤ 

 
t < 20 

. 
 
2 35 ≤ t < 50 

3 20 ≤ t < 50 

d(t) is a bounded disturbance with uniform distribution in the interval [-0.5, 0.5]. All the 

methods are initialized with the same initial condition ω̂(0) = 1. Method [58] is tuned 

with: µ0 = 1.5, µ1 = 3, µ2 = 3, µ3 = 0.8, while method [28] is tuned with: Ks = 1, λ = 
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0 

 

1, ωs = 4, Q0 = (1/λ)I. For method [90], we set γ0 = λ2 = 8, γ1 = 6, k = 0.18. Finally, 

the tuning parameters of the proposed methods are selected by: ωc1 = 6, ωc2 = 3, Kc1 = 

0.6, Kc2 = 0.8 , µ = 1 and ωc1 = 9, ωc2 = 2, Kc1 = Kc2 = 0.6, µ = 4 respectively 

(heuristic tuning guidelines of the pre-filtering parameters ωck , Kck and the adaptive gain µ 

can be referred to the Figure 2.4 and 2.5). The frequency-estimation trends obtained by the 

simulations are depicted in Fig.4.3. 
 

Estimated Frequencies from a biased and noisy input signal 
10 

AFP method [91] 

AFP method [29] 

8 PLL method [59] 

Method 2 (’2+2’) 

Method 1 (’3+3’) 
6 

 
4 

 
2 

 
0 

0 5 10 15 20 25 30 35 40 45 50 

Time [s] 
 

Fig. 4.3 Time-behavior of the estimated frequency by using the proposed AFP methods (blue 

and red line respectively) compared with the time behaviors of the estimated frequency by 

the AFP methods [28] (black line), [58] (green line) and [90] (cyan line). 

 
All the methods are capable to track the initial frequency satisfactorily, with similar 

response time (the constraint for choosing parameters). The PLL method [58] exhibits a 

good noise immunity in stationary conditions, but is quite slow to track frequency variations, 

specially in the low-frequency range. The AFP method [28] is the more sensitive to the 

bias change, however, it performs the best noise attenuation at the cost of slow reaction to a 

significant frequency change. The proposed methods can handle considerable frequency vari- 

ations with relatively fast response time and acceptable robustness against noise. Compared 

to the single pre-filter-based method [90] (note that the switching dynamic consists in this 

algorithm is switched off in order to consider the time-varying frequency), in this example 

the presented methods equipped with parallel pre-filters show certain improvements in terms 

of noise immunity without deteriorating the transient performance. 

The amplitude estimates of each method are reported in Fig.4.4 ([90] is excluded, since 

it only deals with frequency estimation). Among the three recursive algorithms, the PLL 

method [58] is the simplest in terms of dynamic order, but it is prone to be affected by the 

parametric perturbations. On the other hand, the proposed methods estimate the amplitude 

in a relatively smoother manner, in particular, method 1 (see Section 4.3) provides the best 

noise immunity in the stationary phases. 
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Estimated Amplitudes from a biased and noisy input signal 

5 

Overshoot over18 

4 
 

3 
 

2 
 

1 
 

0 AFP method [29] 

PLL method [59] 

−1 Method 2 (’2+2’) 

Method 2 (’3+3’) 
−2 
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Fig. 4.4 Time-behavior of the estimated amplitude by using the proposed AFP methods (blue 

and red line respectively) compared with the time behaviors of the estimated frequency by 

the AFP methods [28] (black line) and [58] (green line). 

 
 

Thanks to the availability of the phase estimation, the sinusoidal signal reconstructed 

by the proposed method is depicted in Fig.4.5, in which the unbiased signal is recovered 

successfully in a smooth manner even the input is affected by a bounded uncertainty. 

 
 

8 Unbiased input 

Biased input 

Sinusoidal signal reconstruction 

6 
Estimated sinusoid 

4 
 

2 
 

0 
 

−2 
 

−4 
 

−6 
0 5 10 15 20 25 30 35 40 45 50 

Time [s] 
 

Fig. 4.5 Estimated sinusoidal signal by the proposed AFP method 2 (blue line). To appreciate 

the time-behavior of the estimated signal, the biased noisy input is depicted (red line), as 

well as the same signal without the time-varying bias term (green line). 

 

 
In order to complete the comparison of the proposed methods, in Fig.4.6, the time- 

behaviors of the estimated frequency are shown in another case in which higher level of 

noise affects the input. It can be observed that method 1 with an order 3 + 3 configuration 

(see Section 4.3) offers slightly better steady state performance at the expense of increased 

complexity. 
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Estimated Frequencies from a biased input signal with intensive noise: noise u.d.in [−5,5] 
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Fig. 4.6 Comparison of the behaviors of the proposed AFP method 1 (blue line) and 2 (red 

line) in the presence of a bounded perturbation within the interval [−5, 5]. 

 

4.7.2 Experimental Results 

 
In order to evaluate the robustness of the proposed algorithm in practice, we have 

deployed the method 2 introduced in Section 4.4 on a dSpace system. In order to confirm 

the simulation results on an experimental test-rig, the two prior methods [58] and [28] have 

been implemented in the same system, with the task of estimating the frequency, the phase 

and amplitude of an electrical voltage signal generated by a programmable power supply 

able to reproduce the perturbations typically experienced in micro-grids. Note that all the 

methodologies are discretized by Euler method with sampling rate set to 60kHz. Fig. 4.7 

shows some periods of the noisy sinusoidal signal generated by the programmable power 

supply. The large voltage ripples superimposed on the measured sinusoid correspond to the 

perturbations that may arise from the switching actions of grid-connected power electronic 

devices. On the other side, voltage-injected spikes are used to reproduce the large voltage 

transients due to the sudden change of electric loads or to severe radio frequency interference 

such as those caused by lightning. 

In the first test, the frequency of the supply is varied according to the following pattern: 

50-48-50-52-48Hz (which is likely to occur on a small-scale power system such as a micro- 

grid).  In particular, the frequency changes are composed of multiple steps in order to 

imitate the inertia of electro-mechanical generators. The tuning gains of the methods [58] 

and [28] are set to the following values:  µ0   =  15, µ1   =  µ2   =  300, µ3   =  0.07 and 

Ks = 1, λ = 10, ωs = 2π50, Q0 = (1/λ)I , while the parameters of the proposed estimator 

are: ωc1  = 320, ωc2  = 250, Kc1  = Kc2  = 0.6, µ1 = 50. The dSpace board computes the 

frequency estimates in real-time and converts them to analog signals that are collected by an 

F
re

q
u

e
n

c
y
 [

ra
d

/s
] 

  Method 2 (’2+2’) 

Method 2 (’3+3’) 

 

 



104 STATE-VARIABLE FILTERING-BASED APPROACH 
 

S
ig

n
a

l 

 
 

 

2.5 

 
Practical sinusoidal input 

 
2 

 
1.5 

 
1 

 
0.5 

 
0 

 
-0.5 

 
-1 

 
-1.5 

 
-2 

 
-2.5 

 
 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Time [s] 

 

Fig. 4.7 A real-time 50 Hz sinusoidal voltage signal corrupted by ripples reproducing the 

perturbation due to a typical switching device and 4 large spikes per cycle to reproduce RF 

interference. 

 
 

oscilloscope whose plot is given in Fig. 4.8. The estimates show that all the methods can be 

adjusted to achieve a similar response time to the given frequency step-wise variations. 

 

 
Estimated frequency from a practical input with spikes and step frequency changes 
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Fig. 4.8 Real-time frequency tracking of a sinusoidal signal with a step-wise changing 

frequency (50-48-50-52-48 Hz): the time behaviors of the estimated frequency by the AFP 

methods [28] (greed line), [58] (red line) and the proposed method 2 (blue lines). 

 

 
For the sake of completeness, with the fixed parameter setting the robustness against bias 

variations is tested by introducing a measurement offset with step-wise changes (0-0.5-0) 

over the alternating current voltage signal given in Fig. 4.7 . According to the results shown 
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in Fig. 4.9, the proposed method shows an enhanced transient behavior with only minor loss 

on the stationary accuracy compared with the other two approaches. 

51.5 
Estimated frequency from practical input with spiks and step bias changes 
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Fig. 4.9 Real-time frequency tracking of a sinusoidal signal with a step-wise changing offset: 

the time behaviors of the estimated frequency by the AFP methods [28] (greed line), [58] 

(red line) and the proposed method 2 (blue lines). 

 

 

 

4.8    Concluding Remarks 

This chapter deals with an AFP scheme based on the parallel pre-filtering paradigm 

with the aim of reducing the dynamic order of the adaptive observer approach introduced in 

Chapter 2. The parallel pre-filtering methodology consists in filtering a noisy-biased sinusoid 

with a pair of two low-pass filters of a given order, whose inner states are used to estimate 

the frequency, the phase and the amplitude of the original sinusoid. The robust stability 

properties of the presented methods with respect to additive measurement perturbations are 

characterized by an Input-to-State stability analysis, which also provides basic tuning rules 

for the parameters of the adaptation laws. Numerical simulations and practical experiments 

on a laboratory test-rig confirm that the proposed method is robust with respect to additive 

measurement noise and is able to track large and sudden frequency variations. Finally, the 

ease of implementation of the pre-filter-based method makes it a valid alternative to existing 

AFP methodologies for the task of electrical network monitoring and synchronization with 

mains. 
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Chapter 5 

 

FINITE-TIME  PARAMETRIC 

ESTIMATION OF A SINUSOIDAL SIGNAL 

 

5.1 Introduction 
 

In the previous chapters, we elaborated a few types of AFP techniques which ensure 

asymptotic convergence of the estimates. The purpose of this chapter is to present a method 

that can accomplish finite-time parameter estimation of a single sinusoidal signal possibly 

corrupted by an offset. 

Let us consider 

 

y(t) = b + a sin (ϕ(t)), ϕ̇ (t) = ω,  ϕ(0) = ϕ0 (5.1) 

 

where b ∈ R>0, a ∈ R>0, ϕ and ω ∈ R>0 are the unknown offset, amplitude, phase 

and frequency, respectively. Our objective consists in providing the AFP estimates of the 

sinusoidal signal (5.1) in a deadbeat manner. After that, we also show that the estimation error 

is ISS with respect to the measurement noise, provided a noisy signal, i.e., v(t) = y(t) + d(t), 

in which d(t) is a bounded disturbance. 

Substantial numbers of tools are currently available in the literature for estimating the 

characteristics of a biased sinusoidal signal (referred to Sec. 1.2 for more details). However, 

only a few of the algorithms are capable to achieve the convergence of the estimates to 

the true values within an arbitrarily small finite time, which is a very desirable feature in 

several application contexts like, for example, micro-grids power systems that are affected 

by severe frequency fluctuations due to low inertia of generators, and vibration suppression 

in high-value mechanical systems. Typically, algebraic derivatives (see e.g. [66, 106]) 

and modulating functions [33] represent two main tools for constructing a non-asymptotic 



110 FINITE-TIME PARAMETRIC ESTIMATION OF A SINUSOIDAL SIGNAL 
 

loc 

loc 

 

estimator. Nevertheless, a comprehensive investigation concerning the stability properties in 

a noisy environment is still missing so far. 

In this chapter, we propose a robust parametric finite-time estimation methodology for 

biased sinusoidal signals by employing a class of kernel based-linear integral operators. The 

use of such integral operators allows to annihilate the effects of the unknown initial conditions, 

which produce an asymptotic behavior in terms of estimation error convergence. In the spirit 

of preliminary work on the sole frequency estimation problem (see [85]), this chapter deals 

with a finite-time convergent estimation scheme in which the frequency, amplitude and 

phase of a sinusoidal signal are estimated in finite-time. Volterra integral operators [83] with 

suitably designed kernels are exploited and, in contrast with existing works, the behavior of 

the estimator in the presence of a bounded additive measurement disturbance is rigorously 

characterized by ISS arguments as well. To the best of the author’s knowledge, this is the 

first finite-time convergent sinusoidal estimator the behavior of which is analyzed also in the 

presence of unstructured and bounded measurement perturbations. 

This chapter is organized as follows: Section 5.2 introduces several useful notations and 

basic definitions regarding a typical linear integral operator. In Section 5.3, the Volterra 

integral operators are characterized whereas in Section 5.4, the finite-time estimation tech- 

nique is illustrated. In Section 5.5, the stability and robustness properties of the proposed 

estimation tool are dealt with. Section 5.6 gives an example of the discretized algorithm 

for digital implementation. Extensive simulation results are provided in Section 5.7 and 

Section 5.8 draws some concluding remarks. 

 

 

5.2 Preliminaries 
 

In the following, for the reader’s convenience, some basic concepts of linear integral 

operators’ algebra (see [14] and the references therein) are recalled.  More specifically, 

we use transformations acting on the Hilbert space L2
 (R≥0 

2 
) of locally square-integrable 

functions with domain R≥0  and range R (i.e., u(·) ∈ Lloc(R≥0)  ⇔ (u(·) : R≥0 → R)  ∧ 
(
( 

2 2 

B |u(t)| dt < ∞, ∀ compact B ⊂ R≥0). Given a function u ∈ Lloc(R≥0), its image 

through the Volterra (linear, integral) operator VK induced by a Hilbert-Schmidt HS Kernel 

Function K(·, ·) : R × R → R is usually denoted by [VKu](·), and is defined by the inner 

product: 

[VKu] (t) /'. 

r t 

K(t, τ )u(τ )dτ, t ∈ R≥0 . (5.2) 
0 

Any explicit function of time u(t) : t → u(t) ∈ R, such that u(·) ∈ L2
 (R≥0 ) will be 

addressed in this paper as a signal. Then, given two scalars a, b ∈ R≥0, with a < b, let us 



 

 

≥0 

≥0 
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denote by u[a,b](·) and u(a,b](·) the restriction of a signal u(·) to the closed interval [a, b] and 

to the left open interval (a, b], respectively. Moreover, let u(t) ∈ R, ∀t ≥ 0 be an i-times 

differentiable signal, we denote by u(1) the i-th order time-derivative signal. The operator 

sign(·) used in this chapter is defined by 

 1 if x > 0 , 

sign(u) /'. −1 if x < 0 , 
 
∈ [−1, 1] if x = 0 . 

(5.3) 

Given a kernel function K(·, ·) in two variables, its i-th order weak derivative with 

respect to the second argument will be denoted as K(i), i ∈ Z .  For obvious practical 

implementability reasons, it is convenient to devise a differential form for the operators. 

By applying the Leibniz differentiation rule to the Volterra integral, the transformed signal 

[Vkx](t), for t ≥ 0, can be obtained as the output of a dynamic system described by the 

following scalar integro-differential equation: 

 
 ξ̇(t) = K(t, t)x(t) + 

r t     ∂
 
K(t, τ ) x(τ )dτ, t ∈ R≥0 

 
[VKx] (t) = ξ(t) 

0 ∂t , (5.4) 

with ξ(0) = ξ0 = 

r 0 

K(0, τ )x(τ )dτ . Now, we introduce some useful results dealing with 
0 

the application of Volterra operators to the derivatives of a signal. 
 

 

 

Lemma 5.2.1 (Volterra image of a signal’s derivative) For a given i ≥ 0, consider a sig- 

nal u(·)  ∈ L2(R ) that admits a i-th weak derivative in R≥0 and a kernel function 

K(·, ·) ∈ HS that admits the i-th derivative (in the conventional sense) with respect to 

the second argument, ∀t ∈ R≥0. It holds that: 

 
i−1 

l
VKu(i)

l 
(t) =    (−1)i−j−1u(j)(t)K(i−j−1)(t, t) 

j=0 

i−1 

+       (−1)i−ju(j)(0)K(i−j−1)(t, 0) + (−1)i
l
VK(i) u

l
(t),  ∀t ∈ R 

j=0 

 

 

 

 
,  (5.5) 

 

that is, 
l
VKu(i)

l 
(·) is non-anticipative with respect to u(·) and its first (i-1)-th derivatives 

u(1)(·), . . . , u(i−1)(·). D 

≥0 
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Proof: Integrating by parts, we have: 
 

l
VKu(i)

l 
(t) = 

r t 

K(t, τ )u(i)(τ )dτ 
0 

= u(i−1)(t)K(t, t) − u(i−1)(0)K(t, 0) − 

 
 

r t 

K(1)(t, τ )u(i−1)(τ )dτ .  (5.6) 
0 

 

The integral operator on the right-hand side of (5.6) can be further split by parts: 
 

r t 

− K(1)(t, τ )u(i−1)(τ )dτ 
0 

= −u(i−2)(t)K(1)(t, t) + u(i−2)(0)K(1)(t, 0) + 

 

 
r t 

K(2)(t, τ )u(i−2)(τ )dτ . 
0 

 

Proceeding by induction we obtain 

 
r t i 

K (t, τ )u(i)(τ )dτ =    (−1)j+1u(i−j)(t)K(j−1)(t, t)+ 
0 j=1 

i 
 

(−1)ju(i−j)(0)K(j−1)(t, 0) + (−1)i
 

j=1 

 

 
 

r t 

K(i)(t, τ )u(τ )dτ,  (5.7) 
0 

 

that is, the function obtained by applying the Volterra operator to the i-th derivative is non- 

anticipative with respect to lower-order derivatives. The identity (5.5) can be verified by 

rearranging indexing of the summation in (5.7), thus completing the proof. • 

Lemma 5.2.1 allows to identify a class of kernels such that for each derivative u(i), i ∈ 

{0, · · · , n − 1}, the image signal 
l
Vku

(i)
l 
(t), t > 0 is independent from the initial states 

u(0), u(1)(0), · · · , u(i−1)(0), according to the following definition. 

 
Definition 5.2.1 (i-th order non-asymptotic kernel) Consider a function K(·, ·) satisfying 

the assumptions of Lemma 5.2.1; if, in addition, for a given i ≥ 1, the kernel verifies the 

condition 

K(j)(t, 0) = 0 , ∀t ∈ R ,  ∀j ∈ {0, . . . , i−1}, (5.8) 
 

then, it is called an i-th order non-asymptotic kernel. D 

 
Assuming that K(·, ·) is an n-th order non-asymptotic kernel function, (5.7) can be 

further simplified by removing the initial condition-dependent term on the right hand side, it 

≥0 



 

∈ 
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holds that: 

i−1 

l
VK u(i)

l 
(t) =      (−1)i−1−ju(j)(t)K(i−j−1)(t, t) + (−1)i[VK(i) u](t), i ∈ {1, . . . , n − 1}. 

j=0 

 
Considering the case i = 1, by some trivial manipulation of (5.9) we have that 

(5.9) 

 
l
VK u

(1)
l 
(t) = u(t)K (t, t) − [VK(1) u] (t) . (5.10) 

Moreover, changing the kernel K with K(j) and and performing the substitution of u(i) for 

u, for any j ∈ {1, . . . , n − 1} we have that also the following integral equation holds 

l
VK(j) u(i+1)

l 
(t) = u(i)(t)K(j)(t, t) − 

l
VK(j+1) u(i)

l 
(t) . (5.11) 

 
5.3 Bivariate Feedthrough Non-asymptotic Kernels 

At this stage, we introduce a typical non-asymptotic kernel for the sake of further 

discussion. 

Definition 5.3.1 (i-th Order BF-NK) [87] A kernel K(·, ·) ∈ HS that satisfies the assump- 

tions given in Lemma 5.2.1 and that, for a given i ≥ 1, also verifies the conditions 

 

K(j)(t, t) ̸= 0, ∀t ̸= 0, ∀j ∈ {0, . . . , i − 1}, (5.12) 

is called i-th Order Bivariate Feedthrough Non-asymptotic (BF-NK) kernel. 

 

Here, we introduce a BF-NK that fulfils (5.12), expressed in the following lines: 

F (t, τ ) = e−β(t−τ )(1 − e−β̄τ )n, (5.13) 

which is parametrized by the constants β R>0 and β̄. In view of (5.13), all the non- 
n 

asymptotic conditions up to the n-th order are met by the factor 
(
1 − e−β̄τ 

\
 regardless 

of the choice of β and β̄. For any i ∈ {0, 1, · · · , n}, the τ derived kernel functions read 

(an exmaple of BF-NK is depicted in Fig. 5.1 showing the behavior of the kernel and its 

derivatives): 

F (i)(t, τ ) = e−βt  d eβτ (1 − e−β̄τ )n . (5.14) 
dτi 

Specializing (5.4) to the kernel (5.14) with respect to the sinusoidal signal y(t), we have that 

the transformed signal [VF (i) y] (t), for any i ∈ {1, 2, · · · , n} can be obtained as the output of 

i 
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Fig. 5.1 Plots of the Bivariate Feedthrough Non-asymptotic Kernels and its derivatives (see 

(5.14)), for β = β̄ = 1 and n = 3. 

 

a linear time-varying scalar system. Letting ξ(t) = [VF (i) y] (t), we have that 
 

ξ̇(t) = F (i)(t, t)y(t) + 

r

 
0 

  
∂ 

  
F (i)(t, τ ) y(τ )dτ 

∂t 

 

(5.15) 

= F (i)(t, t)y(t) − βξ(t), t ∈ R 
 

with ξ(0) = ξ0 = 0. Being F (i)(t, t) bounded, and β strictly positive, it holds that the scalar 

dynamical system realization of the Volterra operators induced by the proposed kernels is 

BIBO stable with respect to y(t). 

 

 

 

5.4 Finite-time AFP estimation in the presence of bias 

 
It is worth noting that the biased sinusoidal signal y(t) given in (5.1) is generated by the 

undamped linear oscillator: 

y(3)(t) = −Ωy(1)(t), (5.16) 

where Ω = ω2. Taking the Volterra linear integral operator on both sides of (5.16), we obtain 

l
VKy(3)

l 
(t) = −Ω 

l
VKy(1)

l 
(t) . (5.17) 

t 

≥0 
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1 

F1 

F2 

F3 

 

In view of (5.11), we can expand both sides of (5.17) by 

l
VKy(3)

l 
(t) = y(2)(t)K(t, t) − 

l
VK(1) y(2)

l 
(t) 

= 
l
VK(2) y(1)

l 
(t)−y(1)(t)K(1)(t, t)+y(2)(t)K(t, t) 

= y(t)K(2)(t, t) − [VK(3) y] (t) − y(1)(t)K(1)(t, t)+y(2)(t)K(t, t) 
 

and 
l
VKy(1)

l 
(t) =   y(t)K (t, t) − [VK(1) y] (t) . 

 

After some algebra, we get 

 
[VK(3) y] (t) − K(2)(t, t)y(t) + K(1)(t, t)y(1)(t) 

− K (t, t)y(2)(t) + Ω ([VK(1) y] (t) − K(t, t)y(t)) = 0 .   (5.18) 

Consider three BF-NKs (5.13) denoted by F1, F2 and F3 with n = 3, that is 

Fh(t, τ ) = e−βh(t−τ )(1 − e−βhτ )3, 

where βh ∈ R>0, ∀h = {1, 2, 3} and β̄h are set by the designers such that 

βi ̸= βj,  for i ̸= j (5.19) 

while β̄i and β̄j may possibly coincide. Then let us rewrite (5.18) with respect to F1, F2 and 

F3, obtaining the following three equations: 
 

l
VF (3) y

l 
(t) − F 

(2) 
1 (t, t)y(t) + F 

(1) 
1 (t, t)y (1) 

(t) − F1(t, t)y 
(2) (t) 

+ Ω 
(I
V (1) y

1 
(t) − F1(t, t)y(t)

\ 
= 0, (5.20a) l

VF (3) y
l 
(t) − F2   (t, t)y(t) + F2   (t, t)y (t) − F2(t, t)y 

(t) 
(2) 

2 

(1) (1) (2) 

+ Ω 
(I
V (1) y

1 
(t) − F2(t, t)y(t)

\ 
= 0, (5.20b) l

VF (3) y
l 
(t) − F3   (t, t)y(t) + F3   (t, t)y (t) − F3(t, t)y 

(t) 
(2) 

3 

(1) (1) (2) 

+ Ω 
(I
V (1) y

1 
(t) − F3(t, t)y(t)

\ 
= 0 . (5.20c) 

 

Now, it is convenient to introduce the following auxiliary signals that are kernel-dependent 

(and thus a-priori known functions of time) and are computable by processing the measure- 
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(2) 

h 

Fh 

h F 

h 

h h 

h 

V 

⊤ 

 

ment by the Volterra operators: 

κa,h(t)   /'.  
l
VF  (3) y

l 
(t) − Fh   (t, t)y(t), 

h 

κb,h(t) /'.  F 
(1)

(t, t), 

κc,h(t) /'.  −Fh(t, t), 

 
(5.21) 

κd,h(t) /'.  
I
V (1) y

1 
(t) − Fh(t, t)y(t), ∀h = 1, 2, 3. 

 

In the following, we show that the signals 
l
VF (3) y

l 
(t) and 

I 
(1) y

1
 

h 

(t) appearing in κa,h(t) 

and κd,h(t), respectively, can be obtained as the output of a linear time-varying system. To 

this end, let us define the internal state vector 
 

ξ(t) /'. 
l
ξβ1 (t)

⊤ ξβ2 (t)
⊤ ξβ3 (t)

⊤
l 

∈ R 
 

with ξβ  (t) ∈ R3, ∀h ∈ {1, 2, 3} in turn defined as 
 

ξβh (t) /'. 

II 1 

V
F (1) y (t) 

I 1 

V
F (3) y (t)

1⊤ 

. 

In view of (5.15), the time evolution of the internal state vector ξ(t) of (5.15) is described by 

ξ̇(t) = Gξξ(t) + Eξ (t)y(t) , (5.22) 

with ξ(0) = 0 and where Gξ is a diagonal, time invariant and Hurwitz matrix.  More 

specifically, Gξ  = blockdiag[Gξh , h = 1, 2, 3] ∈ R 6×6 , with Gξh  = diag(−βh) ∈ R 2×2, 

while the time-varying input matrices Eξ (t) ∈ R6 can be expressed as 

Eξ (t) = 
I 

E (t)⊤ Eξ2 (t)⊤ Eξ3 (t)⊤ 
1⊤ 

, 

2 
I 

(1) (3) 
1⊤

 

where Eξh (t) ∈ R are given by: Eξh (t) = Fh   (t, t)   Fh   (t, t) . Finally, κa,h(t) and 

κd,h(t) can be expressed in terms of the scalar elements of ξ(t) = [ξ1(t), ξ2(t), · · · , ξ6(t)]
⊤ ∈ 

R6: 

κa,h(t)    /'.   ξ2h(t) − F 
(2)

(t, t)y(t) 

κd,h(t) /'.  ξ2h−1(t) − Fh(t, t)y(t), ∀h = 1, 2, 3. 
(5.23) 

Substituting (5.21) into (5.20a)-(5.20c), after some algebra we can eliminate the variables, 

y(1)(t) and y(2)(t) from the system, obtaining equation (5.24) that has Ω as the only unknown 

6 

ξ1 
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c,1 − κ 
2 

c,1κ 

c,1κ 

2 

c,1) 

2 

c,1 

 

(for brevity, we have dropped the dependence of all variables on t): 

 

κa,3κb,2κ
2

 

 
a,3 κb,1 κc,1 κc,2 + κa,1 κb,3 κc,1 κc,2 — κa,2 κb,3 κc,1 + κa,2 κb,1 κc,1 κc,3 

− κa,1κb,2κc,1κc,3  + Ω 
(
κb,3κc,1κc,2κd,1  − κb,3κ

2
 

 
d,2 + κb,1 κc,1 κc,3 κd,2 

−κb,2κc,1κc,3κd,1 + κb,2κ
2

 

 
d,3 — κb,1 κc,1 κc,2 

) 
d,3 = 0 .  (5.24) 

 

Let us rearrange the left-hand-side of (5.24) by extracting the variables indexed by a and d 

respectively, thereby getting 

 

κa,1(κb,3κc,1κc,2 − κb,2κc,1κc,3) + κa,2(κb,1κc,1κc,3 − κb,3κc,1) + κ 
 
a,3 (κb,2 

2 
c,1 — κb,1 κc,1 κc,2) 

+ Ω 
(
κd,1(κb,3κc,1κc,2  − κb,2κc,1κc,3) + κd,2(κb,1κc,1κc,3  − κb,3κ

2
 

+κd,3(κb,2κc,1  − κ 
 
b,1 κc,1 κc,2 )

) 
= 0 , 

 

which, in turn, can be rearranged in vector form as follows: 

 
a (t)F(t, t) = −Ωκd (t)F(t, t) , (5.25) 

κ⊤ ⊤ 

 

with κa(t) = [κa,1 κa,2 κa,3]
⊤, κd(t) = [κd,1 κd,2 κd,3]

⊤ and 
 

 
F1(t, t)  

 
κb,3κc,1κc,2 − κb,2κc,1κc,3   

F(t, t) = 
 
F2(t, t) 

 
=  κb,1κc,1κc,3 − κb,3κ

2 
 

  

F3(t, t) 

 

κb,2κ
2

 

c,1  
— κb,1κc,1κc,2 

 

that depends only on the kernels Fh(t, t), h = 1, 2, 3 in correspondence with κb,h(t) and 

κc,h(t) defined in (5.21).  By rewriting (5.25) in a compact form, we finally obtain the 

following equality: 

κ1(t) = −Ωκ2(t) (5.26) 

with κ1(t) = κ⊤(t)F(t, t), κ2(t) = κ⊤(t, t)F(t, t). Note that, due to the positivity of the 
a d 

squared frequency, it also holds that: 

 

|κ1(t)| = Ω|κ2(t)| . (5.27) 
 

Applying to both sides of (5.27) the linear operator VKg , with kernel Kg (t, τ ) = e−
 

R>0, we have that 

g(t−τ ) 
, g ∈ 

Ω[VKg |κ2(t)|](t) = [VKg |κ1(t)|](t) . (5.28) 

κ 

κ 
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Defining γ1(t) /'. [VKg |κ1(t)|](t) and γ2(t) /'. [VKg |κ2(t)|](t), it follows that γ1(t) and γ2(t) 

obey the differential equations: 

 

γ̇ i(t) = |κi(t)| − gγi(t), i = 1, 2 (5.29) 

 
with γi(0) = 0, i = 1, 2. Finally, in view of (5.28) we have that Ω verifies the following 

constraint for any t: 

γ1(t) = γ2(t)Ω. 

When an estimate Ω̂ (t) of the squared frequency is available, we have that the constraint is 

not met when Ω̂ ̸= Ω and a residual term can be introduced: 

RΩ(t) = γ1(t) − γ2(t)Ω̂ (t) . 

The following assumption is needed in order to propose a sliding mode-based adaptation law 

for frequency estimation. Note that a modified excitation condition is employed instead of 

the standard PE condition (see, for instance, [96]) to facilitate the upcoming analysis only. 

 

Assumption 5 (Persistency of Excitation) The signal κ2 is persistently exciting in R with 

a level of excitation ϵ > 0, i.e. ∃tϵ > 0 such that 

1 
r t 

 
 

tϵ t−tϵ 

|κ2(τ )|dτ ≥ ϵ, ∀t ≥ tϵ . (5.30) 

 

 
 

Under Assumption 5, thanks to (5.29), γ2(t), driven by |κ2(t)|, is ensured to be positive for 

all t ≥ tϵ, as follows: 
r t 

γ2(t) = e−g(t−τ )|κ2(τ )|dτ 
t−tϵ r t 

≥ e−gtϵ 

t−tϵ 

≥ tϵϵe−gtϵ . 

|κ2(τ )|dτ 
(5.31) 

Let δϵ /'. tϵϵe−gtϵ , then the following adaptation law on the basis of the second order sliding 

mode technique, exploiting the residual signal R(Ω̂ , t), is proposed: 
  (

γ (t)
−1 

(
η (t) + L    |R (t)|sign(R (t)) − Ω̂ (t)γ̇ (t) + γ̇ (t)

\ 
, if γ (t) ≥ δ , 

 ˆ̇  2 Ω 1 Ω Ω 2 1 2 ϵ  
Ω(t)= 

 

 

0, otherwise. 
 η̇Ω(t) = L2sign(RΩ(t))  

(5.32) 
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with Ω̂ (0) > 0 set arbitrarily and ηΩ(0) = 0, L1, L2 ∈ R>0 are constant gains set by the 

designer, such that L1 ≥ 8L2. The operator sign(·) is defined by (5.3) and the solution of 

(5.32) is understood in the Filippov sense [36] (this applies to all the sliding mode algorithms 

introduced in this chapter). 

Later, in Section 5.5, we will show that the frequency adaptation algorithm (5.32) is able 

to identify the squared-frequency in finite-time in a noise-free scenario, while the estimation 

error is ISS in the presence of measurement noise. Compared to the preliminary work [ 85] 

that exploits a first order sliding mode-based adaptation law, the use of a second order sliding 

mode (see [78] and [114]) allows a significant suppression of the chattering phenomenon, 

which will be highlighted in the simulation results provided in Section 5.7. Moreover, the 

time-based switching condition in [85] is enhanced by a more robust switching mechanism 

that depends on a known signal and the above excitation condition. 

 

Remark 5.4.1 The constraint L1 ≥ 8L2 is imposed in order to facilitate the forthcoming 

convergence analysis only. In fact L1 and L2 can be set as arbitrary positive constants, which 

is sufficient to ensure the stability of the estimator. 

 

Now, with the aim of estimating the amplitude of the sinusoid in finite time, we exploit a 

further structural constraint verified by the derivatives of the measured signal. Indeed, thanks 

to (5.20a)-(5.20c) and introducing the signals 

 
ρh(Ω, t) = κa,h(t) + Ωκd,h(t), h = 1, 2, 3 , 

 
it follows that the derivatives verify the following identities: 

 

 
 y(1)(t) = F1(t, t)ρ2(Ω, t) − F2(t, t)ρ1(Ω, t)  

,
 

 F (1) (1) 

1    (t, t)F2(t, t) − F1(t, t)F2    (t, t) (5.33) 
(1) (1) 

 (2) F1   (t, t)ρ2(Ω, t) − F2   (t, t)ρ1(Ω, t) 
 y (t) = 

F (1) (1) 

 
if F (1) 

 

 
 

(1) 

1    (t, t)F2(t, t) − F1(t, t)F2    (t, t) 

1   (t, t)F2(t, t) − F1(t, t)F2   (t, t) ̸= 0, and 
 

 
 y(1)(t) = F1(t, t)ρ3(Ω, t) − F3(t, t)ρ1(Ω, t)  

,
 

 F (1) (1) 

1    (t, t)F3(t, t) − F1(t, t)F3    (t, t) (5.34) 
(1) (1) 

 (2) F1   (t, t)ρ3(Ω, t) − F3   (t, t)ρ1(Ω, t) 
 y (t) = 

F (1) (1) 

 
if F (1) 

 

 
 

(1) 

1    (t, t)F3(t, t) − F1(t, t)F3    (t, t) 

1   (t, t)F2(t, t) − F1(t, t)F2   (t, t) = 0. 
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I 

2 

 

It is worth noting that the above expressions are always well-posed (singularity-free) for 

any t > 0 thanks to the condition (5.19) on the parameters of the three kernels. 

By deriving (5.1) twice with respect to time, we obtain that the true squared-frequency Ω 

verifies the following structural constraint: 

 
Ωy(1)(t)2 + y(2)(t)2 = a2Ω2 . (5.35) 

 

Applying to both sides of (5.35) the linear operator VKga 
, with kernel Kga (t, τ ) = e−

 

R>0, we have that 

ga(t−τ ) 
, ga ∈ 

 

 

VKga 

I 

Ωy(1) (t)
2

 

 

+ y(2) 

  

(t)
2

 (t) = a[VKg Ω](t). (5.36) 

 

We have that the constraint (5.36) is in general not met unless â(t) = a, when only the 

estimates Ω̂ (t) of Ω, â(t) of a and y(̂i)(t) of y(i)(t) are available. Assuming that the frequency 

estimation error vanishes within a finite time, bounded by T Ω (see the proof in Section 5.5), 

the estimated derivatives can be obtained from (5.33), (5.34) by using Ω̂ (t) in place of Ω, 

thus becoming exact in finite time after Ω̂ (t) has converged to Ω. Following the same steps 

taken for the frequency adaptation, we introduce a time-varying residual that depends on the 

frequency estimate Ω̂ (t) and on the signals y(̂1)(t) and y(̂2)(t) obtained by (5.33) and (5.34) 
 

Ra(t) /'. 

 

VKga 

I 

Ω̂ (t)y ̂(1) 

 

(t)2 + y(̂2) 

  

(t)2 (t) − â(t)[VKg Ω̂
 (t)](t) 

= γa1 (t) − â(t)γa2 (t), ∀t ≥ tϵ + T Ω 

 

in which  
γ̇ a1 (t) = ψ(t) 

  

Ω̂ (t)y(̂1)(t)2 + y(̂2)(t)2 − gaγa1 (t) , 

γ̇ a2 (t) = ψ(t) 
(
Ω̂ (t) − gaγa (t)

\ 
, 

 
 

with γa1 (0) = γa2 (0) = 0, ψ(t) a binary on-off switching signals: ψ(t) = 1, ∀t ≥ tϵ + T Ω, 

ψ(t) = 0, ∀t < tϵ + T Ω. The following adaptation law based on the second order sliding 

mode is designed 
( 

ȧ̂ (t)= ψ(t)γa (t)
−1 

(
ηa(t) + L3    Ra(t)|sign(Ra(t))−â(t)γ̇ a (t)+γ̇ a (t)

\ 
, 

2 | 

η̇a(t) = L4sign(Ra(t)) 

2 1 
(5.37) 

 

with â(0) = 0 and where L3, L4  ∈ R>0 are tuning gains set by the designer to steer the 

residual term Ra(t) to 0 in finite-time. Note that the invertibility of γa2 (t) is verified for any 
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Ω( 

  

 

t > tϵ + T Ω due to the positiveness of Ω̂ (t). Finally, the phase of the sinusoidal signal can be 

easily estimated as follows: 

ϑ̂(t) = ∠ 
I
y(̂2)(t) + jω̂(t)y(̂1)(t)

1 
, ∀t ≥ tϵ + T Ω . (5.38) 

 
5.5 Finite-time convergence and robustness analysis 

 
In this section, we first address the convergence properties of the proposed estimator in 

absence of external perturbations. Subsequently, the stability properties in the presence of a 

bounded measurement disturbance are analyzed. 

 

 

5.5.1 Finite-time convergence 
 

The main result consists in the following theorem. 

 
 

Theorem 5.5.1 If Assumption 5 holds, given the pure sinusoidal signal y(t), the estimated 

frequency Ω̂ (t) that is governed by the adaptation law given by (5.32) converges to the true 

value Ω in finite time. D 

 

Proof: Assuming that the noise-free measurement y(t) is available, we show that the residuals 

RΩ and RA converge to zero in finite-time. Under the P.E. condition (see Assumption 5), 

the finite-time convergence of the residuals implies also the deadbeat convergence of Ω̂ (t) 

and Â(t) to Ω and A, respectively. The dynamics of RΩ(t) obeys the following differential 

equation: 

Ṙ (Ω̂ , t) = γ̇ 1(t) − γ̇ 2(t)Ω̂ (t) − γ2(t) ̂
˙
 

For t ≥ tϵ, by substituting the adaptation law in (5.39), we have 

t) . (5.39) 

 

Ṙ 
Ω(t) = −ηΩ(t) − L1    |RΩ(t)|sign(RΩ(t)) . (5.40) 

Consider an auxiliary variable vector ζ(t) = [ζ1(t) ζ2(t)]
⊤, where 

 

ζ1(t) =   |RΩ(t)|sign(RΩ(t)),  ζ2(t) = ηΩ(t), 
 

then: 
ζ̇ (t) =

 1
 

|RΩ(t)| 
Mζ(t), ∀RΩ (t) ̸= 0 (5.41) 
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4 

| 

2 

   

α 

 

where  
1 1 

 

M =  − 
2 

L1 − 
2 

L2 0 

 , (5.42) 

with spectrum λ{M } = −L1± 

√   
L1−8L2 .  Being M Hurwitz, there always exists a positive 

symmetric matrix P that solves the linear Lyapunov equation M⊤P + PM = −2qI. Re- 

sorting to the following upper bound on the maximum solutionP of the Lyapunov equation 

X⊤P + P X = −Q, for X Hurwitz and Q > 0 (see [112]): 
 

1 1 

 

 
in our case we have 

p /'. λ(P ) ≤ 
2 

λ(−QX− ) , 

 
q 

p ≤ qλ(−M−1) = , 
 

where α /'. min eig(−M ). Now, let us introduce a quadratic function VΩ  = ζ⊤Pζ, which 

can be expanded as 

 

VΩ(t) = p11|RΩ(t)| + p22ηΩ(t)2 + 2p12   RΩ(t)|sign(RΩ(t))ηΩ(t) , (5.43) 

with pij the components of the matrix P . Note that, by taking the limit 

lim VΩ(ζ) = p22ηΩ(t)2
 

ζ1→0 

 

we can rewrite (5.43) as follows: 

 

VΩ(ζ) = 

 
( 

ζ⊤Pζ,  if ζ1(t) ̸= 0 

p22ζ
2, if ζ1(t) = 0 

 

After some algebra, the time-derivative of VΩ(t) along the trajectories of the system (5.41) 

can be written as: 
 

 2q  2 

V̇Ω(t) = 
 − 

|RΩ(t)| 
|ζ(t)| ,   if ζ1(t) ̸= 0 , 

 
0, if ζ1(t) = 0 . 

. 
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√ 

˙    

M⊤ 

α 

 
Clearly, ζ1(t) will stay in 0 when it crosses zero. In case ζ1(t) ̸= 0, using the facts that 

|RΩ(t)|
−1/2 

= |ζ1(t)|−1 > |ζ(t)|
−1 

and VΩ(t) ≤ p|ζ(t)|2, V̇Ω(t) can be bounded as 

2q 

V̇Ω(t) ≤ − 
 

 

|ζ(t)| 
2q 

|ζ(t)|2
 

1 

 

(5.44) 

≤ −√
p 

VΩ(t) 2 
1 

≤ −2  αqVΩ(t) 2 . 
 

In view of the Lyapunov-based finite-time convergence result presented in [4], then (5.44) 

implies that ζ(t) → 0 with a guaranteed reaching-time TΩ(VΩ(tϵ)) verifying the inequality: 

VΩ(tϵ) 
TΩ(VΩ(tϵ)) ≤ √

αq 
/'. T Ω. (5.45) 

 

Finally, noting that ζ(t) → 0 implies RΩ(t) → 0, then we can conclude that Ω̂ (t) → Ω in 

finite-time. • 

 

 
 

In the noise-free condition, the frequency estimate coincides with the true frequency, 

i.e. Ω̂ (t) = Ω for all t > tϵ + TΩ(VΩ(tϵ)), which makes it possible to prove the finite-time 

convergence of the estimated amplitude â(t) ruled by (5.37) to a. By defining 

ζa(t) = [   |Ra(t)|sign(Ra(t)), ηa(t)]⊤, 
 

then 

 

 
where 

 
1 

ζa(t) = 
|Ra(t)| 

 

Maζa(t), ∀Ra ̸= 0, 

 
1 1 

 L3 − 
Ma =  − 

2 2  . (5.46) 

L4 0 

Consider a positive symmetric matrix Pa that solves the Lyapunov equation 

 

a Pa + PaMa = −2qaI, 

and αa /'. min eig(−Ma). The convergence time verifies the upper bound: 

Va(tϵ + TΩ(VΩ(tϵ))) 
Ta(Va(tϵ + TΩ(VΩ(tϵ)))) ≤ 

√ 
aqa

 
. (5.47) 
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Thus, the finite time convergence of the amplitude estimate occurs at time: 

 
t = tϵ + TΩ(VΩ(tϵ)) + Ta(Va(tϵ + TΩ(VΩ(tϵ)))) . 

 
This result can be proved by following the same steps taken to prove the finite-time conver- 

gence of the frequency estimate and is therefore omitted. 

 

 

5.5.2 Robustness in the presence of a bounded measurement distur- 

bance 

Now, we consider the scenario in which the sinusoidal measurement is corrupted by a 

norm-bounded additive noise d(t): |d(t)| ≤ d̄, such that v(t) /'. y(t) + d(t). 

Let us rewrite (5.22) introducing the noise term d(t): 
 

ˆ̇  ˆ 
ξ(t) = Gξξ(t) + Eξ (t)(y(t) + d(t)) (5.48) 

 

and the error ξ̃(t) = ξ̂(t) − ξ(t). Then, the error dynamics can be expressed by 

ξ̃
˙
(t) = Gξ ξ̃(t) + Eξ (t)d(t) . (5.49) 

Being the matrix Gξ Hurwitz, and Eξ (t)d(t) bounded, ξ̃(t) is ISS w.r.t. Eξ (t)d(t). Each 

component in the vector variable ξ̃(t) /'. [ξ̃1(t) ξ̃2(t) · · · ξ̃6(t)]⊤ verifies the inequality: 
 

|ξ̃h×i(t)| ≤e−
 βhtξ̃h  i(0) + 

1 − e−βht
 

βh 

 
sup 

0≤τ<t 
Eh×i(τ )d̄  

≤e−βhtϵ ξ̃h
 

1 
i(0) + sup K

(i)
(τ, τ )d̄, ∀h, i ∈ {1, 2, 3} × {1, 2}, ∀t ≥ tϵ . 

× 
βh 0≤τ<t 

 
 

Let us denote the upper bound of |ξ̃h×i(t)| by ξ̃h×i, such that 
 

βhtϵ ˜ 1  (i) 

ξ̃h×i /'. e−
 ξh×i(0) + 

β
 sup Kh  (τ, τ )d̄. 
h 0≤τ<t 

 

From (5.23), introducing the error signals κ̃a,h(t) /'. κ̂a,h(t) − κa,h(t), κ̃d,h(t) /'. κ̂d,h(t) − 

κd,h(t), it follows that 

 
 

|κ̃a,h(t)| = |ξ̃2h(t) − F 
(2)

(t, t)d(t)| ≤ ξ̃ + sup F 
(2)

(τ, τ )d̄  
h 2h 

   

h 

0≤τ<t 

|κ̃d,h(t)| = |ξ̃2h−1(t) − Fh(t, t)d(t)| ≤ ξ̃ + sup F (τ, τ )d̄  
2h−1 

h 

0≤τ<t 
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a 

ξ h 

d 

ξ h 

t 

2h 

2h 

 

and then |κ̃1(t)|, |κ̃2(t)| are ISS bounded with respect to ξ̃(t) because 

|κ̃1(t)| = |κ̂1(t) − κ1(t)| 

= |κ̃⊤(t)F (t, t)| 

≤ |κ̃a(t)|1|F (t, t)|1    
3 3   

˜ + sup F 
(2)

(τ, τ )d̄  sup Fh(τ, τ ), 
h=1 0≤τ<t 

h=1 
0≤τ<t 

|κ̃2(t)| = |κ̂2(t) − κ2(t)| 

= |κ̃⊤(t)F (t, t)| 

≤ |κ̃d(t)|1|F (t, t)|1    
3 3 

= ξ̃ + sup F (τ, τ )d̄  sup Fh(τ, τ ). 
 

h=1 

2h−1 
h 

0≤τ<t 
 

h=1 
0≤τ<t 

 

Moreover, ξ(t) and the kernels are bounded, thus implying the boundedness of κ1(t), κ2(t) 

and κ̂1(t), κ̂2(t). For the sake of further analysis, let 
 

   
3 3 

κ̃1(d̄) /'. 
  

˜ +  sup F 
(2)

(τ, τ )d̄  sup Fh(τ, τ ) 

h=1 0≤τ<t 
h=1 

0≤τ<t 

 

and     
3 3 

κ̃2(d̄) /'.   
ξ̃

 + sup F (τ, τ )d̄  sup Fh(τ, τ ) . 
 

h=1 

2h−1 
h 

0≤τ<t 
 

h=1 
0≤τ<t 

Under Assumption 5, for all t ≥ tϵ it holds that 
 

1 
r t |κ̂2(τ )|dτ ≥ 1 

r t |κ2(τ )| − |κ̃2(τ )|dτ 
tϵ t−tϵ 

tϵ t−tϵ 

1 
r t 

≥ ϵ − 
   ϵ t−tϵ 

|κ̃2(τ )|dτ 

≥ ϵ − κ̃2(d̄) 

= ϵ − σ(d̄) 
 

where  

σ(d̄) /'. κ̃2(d̄) . (5.50) 
 

Now, consider γ̂1(t) and γ̂2(t) (i.e., the noisy counterparts of γ1(t), γ2(t)). The following dy- 

namic filters driven by the norm of the noisy auxiliary signals |κ̂1(t)| and |κ̂2(t)|, respectively, 

are introduced: 

γ̇̂ 
i(t) = |κ̂i(t)| − gγ̂i(t), i = 1, 2 . (5.51) 

= 
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∞ 

 

By analogy with (5.31), we have 
 

 

γ̂2(t) = 

r t 

t−tϵ 

e−g(t−τ )|κ̂2(τ )|dτ 

≥ tϵe
−gtϵ (ϵ − σ(d̄)), ∀t ≥ tϵ . 

To make γ̂2(t) strictly positive for t ≥ tϵ, we impose another constraint on the noise bound: 

d̄  < σ−1(ϵ) . Let us denote by δ̂ϵ /'. tϵe
−gtϵ (ϵ − σ(d̄)) the transition threshold that determines 

the triggering time of the adaptation. Then, the following frequency adaptation law in the 

noisy case with respect to realizable signals is proposed: 

 
 
ˆ̇
 

 
γ̂2(t)

−
 

  
1 

η̂Ω(t) + L1 |R̂Ω(t)|sign(R̂Ω(t)) − Ω̂ (t)γ̇̂ 
2(t) + γ̇̂ 

1(t) , if γ̂2(t) ≥ δ̂ϵ, 
 

Ω(t)= 

 

0, otherwise. 

 η̇̂Ω(t) = L2sign(R̂Ω(t)) 

where R̂Ω(t) = γ̂1(t) − γ̂2(t)Ω̂ (t). 

 
(5.52) 

The following result characterises the stability properties of the adaptive estimation 

law(5.52). 

 

Theorem 5.5.2  If Assumption 5 holds, then, given the sinusoidal signal y(t) and the per- 

turbed measurement v(t), the estimated frequency Ω̂ (t) that evolves according to the adap- 

tation law given by (5.52), converges in finite-time into a closed interval that contains Ω 

and the frequency estimation error Ω̃ (t) = Ω̂ (t) − Ω is ISS, with respect to any disturbance 

signal d(t) ∈ L1
 such that d̄  < σ−1(ϵ), where σ(·) is defined in (5.50). 

D 
 

Proof: Consider the error variables: γ̃1(t) /'. γ̂1(t) − γ1(t) and γ̃2(t) /'. γ̂2(t) − γ2(t). (5.29) 

implies that the dynamics of the error variables obeys the following differential equations: 

 

γ̇̃ 
i(t) = |κi(t) + κ̃i(t)| − |κi(t)| − gγ̃i(t), i = 1, 2 . 

By using the triangle inequality, we obtain 

 

γ̇̃ 
i(t) ≤ |κ̃i(t)| − gγ̃i(t), i = 1, 2 

that, in turn, lead to the following bounds ∀t ≥ tϵ: 

1    

|γ̃i(t)| ≤ e−gtϵ γ̃i(0) + κ̃i(d̄), i = 1, 2. 
g 
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I   

 

Finally, it turns out that γ̃1(t) and γ̃2(t) are ISS with respect to ξ̃(t) and d̄. 

Following the same steps taken in the noise-free condition, we introduce the noisy 

counterpart of the auxiliary variable vector ζ̂(t) = [ζ̂1(t), ζ̂2(t)]⊤, where 
 

ζ̂1(t) = 

I  

|R̂Ω(t)|sign(R̂Ω(t)), ζ̂2(t) = η̂Ω(t), 
 

and ζ̂(t) obey the differential equations: 
 

ˆ̇   1   
ζ(t) = I 

|R̂Ω(t)| 
M ζ̂(t), ∀R̂Ω(t) ̸= 0. (5.53) 

 

Analogously, the residual R̂Ω(t) can be proved bounded and decays to 0 with a constant rate. 

From the equality R̂Ω(t) = γ̂1(t) − γ̂2(t)Ω̂ (t), we have that 
 

Ω̂ (t) = 
γ̂1(t) 

, t t 
γ̂2(t) 

+ TΩ (VΩ (tϵ)), 

 

in which TΩ(VΩ(tϵ)) is the time of convergence. It turns out that the proven boundedness of 

γ̂1(t), γ̂2(t) and Assumption 5 implies the boundedness of Ω̂ (t) for all t > 0. Moreover, the 

frequency estimates Ω̂ (t) will enter into the compact region 
   

γ̂1(τ ) 
 
 

  
γ̂1(τ ) 

  
 

Ω̂ (t) ∈ inf 
  
,  sup , ∀t ≥ tϵ + TΩ(VΩ(tϵ)). 

0≤τ<t   γ̂2(τ ) 
 
 0≤τ<t   γ̂2(τ ) 

 

which contains Ω. Hence, the estimation error Ω̃ (t) = Ω̂ (t) − Ω is ISS with respect to d̄. • 

Concerning the amplitude estimation in noisy conditions, analogously to the noise-free 

case, we introduce the perturbed residual signal 
 

R̂a(t) /'. 

 

VKga 

I 

Ω̂ (t)y ̂(1) 

 

2 

(t) + y(̂2) 2
  

(t) (t) − â(t)[VKg Ω̂
 (t)](t) 

= γ̂a1 (t) − â(t)γ̂a2 (t), ∀t ≥ tϵ + TΩ(VΩ(tϵ)) 
 

with  
γ̇̂ 

a1 (t) = ψ(t) Ω̂ y(̂1)(t)
2

 

( 
ˆ

 
+ y(̂2)(t)

2

 

\ 

 
— gaγ̂a1 (t) , 

γ̇̂ 
a2 (t) = ψ(t) Ω(t) − gaγ̂a2 (t)   , 

 

and y(̂1)(t), y(̂2)(t), computed by (5.33)-(5.34) with the substitution of ρ̂h(Ω̂ , t) /'. κ̂a,h(t) + 

Ω̂ (t)κ̂d,h(t), h = 1, 2, 3 in place of ρh(Ω, t). 

ϵ 
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Then, the amplitude adaptation law in the presence of noise d(t) is given by 
 

 
 ȧ̂ (t)= ψ(t)γ̂a2 (t)

−
 

  
1 

η̂a(t)+L3 |R̂a(t)|sign(R̂a(t))−â(t)γ̇̂ 
a2 (t)+γ̇̂ 

a1 (t) , 

 

(5.54) 
 
η̇̂a(t) = L4sign(Ra(t)) 

 

with â(0) = 0. 

Thanks to the boundedness of the Ω̂ (t), κ̂a,h and κ̂d,h, it is straightforward to show 

that y(̂1)(t), y(̂2)(t) are bounded when the input is perturbed. Following the same stability 

analysis with respect to the frequency estimation, we immediately prove thatâ(t) converges 

to γ̂a1 (t)/γ̂a2 (t) in finite-time, which is bounded due to the boundedness of y(̂1)(t) and 

y(̂2)(t). 

 

 

 

5.6 Digital implementation of the proposed method 

 
Herein, we provide a discrete-time counterpart of this algorithm, which is sampled by 

Euler method with a fixed sampling period Ts. More sophisticated discretization methods 

may be chosen depending on the computation power and the required accuracy (see Sec. 5.7 

for more details). 

It is worth noting that, kernels to be used at each time sampling instants can be computed 

off-line, thus alleviating the on-line computation burden. By choosing a set of tuning 

parameters βh, β̄h, h = 1, 2, 3, g, ga, L1, L2, L3, L4 and δϵ, then the discretized on-line 

algorithm is described as follows, given a measurement y(k), k = 1, 2, · · · 

 

ξ(k) = ξ(k − 1) + Ts (Gξξ(k − 1) + Eξ (k)y(k)) , 
 

with 

Eξ (k) = 
I 

E 

 

(k)⊤ Eξ2 

 

(k)⊤ Eξ3 (k)⊤ 
1⊤ 

, 
 

2 
I 

(1) (3) 
1⊤

 

where Eξh (t) ∈ R 

ately have 

are given by: Eξh (k) = Fh   (k, k)   Fh   (k, k) 

 
(2) 

. Then, we immedi- 

κa,h(k)   /'.  ξ2h(k) − Fh   (k, k)y(k), 

κb,h(k) /'.  F 
(1)

(k, k), 

κc,h(k) /'. −Fh(k, k), 

κd,h(k) /'.  ξ2h−1(k) − Fh(k, k)y(k), ∀h = 1, 2, 3 . 

ξ1 



 

ˆ − s  2 
−1 | )) 
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After that, κ1(k) = κ⊤(k)F(k, k), κ2(k) = κ⊤(k, k)F(k, k) are available thanks to the 
a d 

relations 

κa(k) = [κa,1(k) κa,2(k) κa,3(k)]⊤, κd(k) = [κd,1(k) κd,2(k) κd,3(k)]⊤ 

and 

 
F1(k, k)  

  
κb,3(k)κc,1(k)κc,2(k) − κb,2(k)κc,1(k)κc,3(k)    

F(k, k) = 
 
F2(k, k) 

 
=  

   

F3(k, k) 

κb,1(k)κc,1(k)κc,3(k)  − κb,3(k)κc,1(k)2  
. 
 

κb,2(k)κc,1(k)2   − κb,1(k)κc,1(k)κc,2(k) 
 

Moreover, the auxiliary signals γ1 and γ2 are computed by 

 

γi(k) = γi(k − 1) + Ts (|κi(k)| − gγi(k − 1)) , i = 1, 2, 

 
which gives rise to the residual term 

 

RΩ(k) = γ1(k) − γ2(k)Ω̂ (k − 1) . 

The estimated frequency adapts according to 
 

  
Ω(k 1) + T γ (k) 

  

(
ηΩ(k − 1) + L1     RΩ(k)|sign(RΩ(k  

\
 

 Ω̂ (k)=  −Ω̂ (k − 1)(γ2(k) − γ2(k − 1)) + (γ1(k) − γ1(k − 1)), if γ2(k) ≥ δϵ, 
 Ω̂ (k − 1), otherwise. 
 
 
ηΩ(k) = ηΩ(k − 1) + TsL2sign(RΩ(k)) 

By using the frequency estimates at each sampling instant, the estimated signal derivatives 

y(̂1)(k) and y(̂2)(k) are obtained from the discretized version of (5.33) and (5.34), that is 
  

(̂1) 

 

F1(k, k)ρ2(Ω̂ , k) − F2(k, k)ρ1(Ω̂ , k)   
,
 

 y (k) = 
F (1) (1) 

1   (k, k)F2(k, k) − F1(k, k)F2   (k, k) 
(1) ˆ (1) ˆ 

 y(̂2)(k) = 
F1    (k, k)ρ2(Ω, k) − F2    (k, k)ρ1(Ω, k)  
F (1) (1) 

1   (k, k)F2(k, k) − F1(k, k)F2   (k, k) 
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| )) 

 

if F (1) (1) 

1   (k, k)F2(k, k) − F1(k, k)F2   (k, k) ̸= 0, and 
  

(̂1) 

 

F1(k, k)ρ3(Ω̂ , k) − F3(k, k)ρ1(Ω̂ , k)   
,
 

 y (k) = 
F (1) (1) 

1   (k, k)F3(k, k) − F1(k, k)F3   (k, k) 
(1) ˆ (1) ˆ 

 y(̂2)(k) = 
F1    (k, k)ρ3(Ω, k) − F3    (k, k)ρ1(Ω, k)  
F (1) (1) 

 
if F (1) 

1   (k, k)F3(k, k) − F1(k, k)F3   (k, k) 

(1) 

1   (k, k)F2(k, k) − F1(k, k)F2   (k, k) = 0, and where 

ρh(Ω̂ , k) = κa,h(k) + Ωκd,h(k), h = 1, 2, 3 . 

 
The following steps are carried out for amplitude and phase estimation 

 I  

γa1 (k) = γa1 (k − 1) + Tsψ(k) 
( 
ˆ

 

Ω̂ (k)y(̂1)(k)2 + y(̂2)(k)2 − gaγa1 (k − 1) , 
\ 

γa2 (k) = γa2 (k − 1) + Tsψ(k) Ω(k) − gaγa2 (k − 1) , 
 
 

  

in which ψ(k) = 1, ∀k ≥ (tϵ + T Ω)/Ts, ψ(k) = 0, ∀k < (tϵ + T Ω)/Ts. Based on the 

residual depending on γa1 (k), γa2 (k) 

 

Ra(k) = γa1 (k) − â(k − 1)γa2 (k),  ∀k ≥ (tϵ + T Ω)/Ts, 

 
the amplitude is adaptively calculated by 

 

 

 â(k) = â(k − 1) + ψ(k) 

I 

Tsγa2 (k)
−

 
1 
(
ηa(k − 1) + L3     Ra(k)|sign(Ra(k  

\
 

−â(k − 1)(γa2 (k)−γa2 (k − 1))+(γa1 (k)−γa1 (k − 1))] , 
 
 ηa(k) = ηa(k − 1) + TsL4sign(Ra(k)) 

with â(0) = 0. Finally, the phase of the sinusoidal signal is identified as follows: 

ϑ̂(k) = ∠ 
I
y(̂2)(k) + jω̂(k)y(̂1)(k)

1 
, ∀k ≥ (tϵ + T Ω)/Ts . 

 

 
5.7 Simulation results 

 
Three numerical examples are given to illustrate the effectiveness of the proposed AFP 

methodology. 
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Example 1: Let us consider the following measured sinusoidal signal: 

 
v(t) = 2 + 3 sin 5 t + d(t), 

 

where d(t) is a bounded disturbance with uniform distribution in the interval [−0.25, 0.25]. 

In this first example, we compare the proposed method with the very recent one (based 

on first order sliding mode) given in [85]. In addition to show the performance, we also 

address the effects of discretization enhancing the superiority of the algorithm in the case of 

a simple digital implementation. More specifically, we let Ts = 1 × 10−4s and evaluate two 

discretization  procedures: 

 
1. Euler method 

 
2. 4-th order Runge-Kutta 

 

 
5.5 

 

1st order SM algorithm 
5 

2nd order SM algorithm 
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Fig. 5.2 Time-behavior of the estimated frequency by using the proposed method and the 

method [85] in noise-free scenario: Top: 4-th order Runge-Kutta method, Bottom: Euler 

method. 

 

The proposed method is equipped with three BF-NKs having parameters: β1 = 1, β2 = 

2, β3 = 3, β̄h  =  2.5, h =  1, 2, 3 also we let g  =  ga  =  25, L1  =  30, L2  =  2, L3  = 

300, L4  = 5 and δϵ = 1e − 5, while the algorithm considered in [85] is tuned by the same 
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initial condition and similar transient under Runge-Kutta discretization in absence of noise 

(i.e. d(t) = 0). The following facts are used for tuning this deadbeat AFP approach: 1) 

In view of (5.49), large values of βh, h = 1, 2, 3 that result in a fast convergence of the 

error variable ξ̃(t), correspond to a higher noisy sensitivity because of (5.5.2); 2) In order 

to increase the convergence speed, we can instead enforce the eigenvalue of M and Ma 

(defined in (5.42) and (5.46)) respectively) far away from the imaginary axis by manipulating 

L1 L2 L3, L4, thanks to the analysis carried out in Section 5.5. 
 

 
 

 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Time [s] 

 
14 

1st order SM algorithm 

12 2nd order SM algorithm 

 
10 

 
8 

 
6 

 
4 

 
2 

 
0 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Time [s] 

 

Fig. 5.3 Time-behavior of the estimated frequency by using the proposed method and the 

method [85] in noisy scenario: Top: 4-th order Runge-Kutta method, Bottom: Euler method. 

 

 
With reference to the results reported in Figs. 5.2 and 5.3, the proposed technique shows 

superior performance compared to the one in [85] when a simple Euler discretization is 

employed whereas using a Runge-Kutta discretization, the two algorithms show similar 

performance. 

In Figs. 5.4, the estimated sinewave reconstructed by ŷ(t) = Â sin ϕ̂(t) are shown using 

the Runge-Kutta discretization procedure. It is worth noting that the proposed method 

succeeds in detecting the amplitude and the phase, thereby recovering the pure sinusoidal 

signal by the amplitude and phase estimates within a very short transient period and a high 

level of noise immunity in the presence of bounded disturbance . 
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Fig. 5.4 Time-behavior of the reconstructed pure sine-wave by using the proposed method in 

noise-free and noisy scenarios. 

 

 
Example 2: In this second more challenging example, the behavior of the proposed 

method is compared with the modulating function-based estimator proposed in [33] and the 

first order sliding mode approach [85]. 

Consider a biased and noisy sinusoidal signal 

 
v(t) = A0(t) + A(t) sin(2πf (t) t) + d(t), 

 

where the amplitude, frequency and the offset change over time according to the follow- 

ing pattern: A(t) = 10, f (t) = 50Hz, A0(t) = 1, 0 ≤ t < 0.5, A(t) = 12, f (t) = 

52Hz, A0(t) = 0.8, 0.5 ≤ t < 1. d(t) is a signal with uniform distribution in the interval 

[−0.5, 0.5]. The parameters of the method in [33] are set as T = π/10, n = 500, µ = 

0.99, K = 6. Method [85] implements three kernels having parameters: β1 = 50, β2 = 

80, β3 = 100, β̄  = 60, while g = 30, L = 1.2 × 106. The proposed method is equipped 

with the same kernels as the 1-st order SM algorithm [85], whereas g = 30, ga = 100, L1 = 

2 × 104, L2 = 20, L3 = 1 × 105 and L4 = 50. 

In principle, the method given in [33] identifies the true frequency “instantaneously" as 

it is enabled, whereas the proposed method achieves finite-time convergence with tunable 

convergence rate determined by the parameter L1, L2. It is worth noting from Fig. 5.5 that 
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Fig. 5.5 Time-behavior of the estimated frequency by using the proposed method (blue line) 

compared with the time behaviors of the estimated frequency by the finite-time method [33] 

(red line) and the 1-st order SM method [85] (green line) respectively. 

 
 

they are tuned with similar response to the initial frequency and the same initial condition 

f̂(0) = 48Hz for fair comparison. Although all the methods deal with the frequency 

step in a very fast manner, the proposed estimator performs slightly better in terms of 

robustness against bounded disturbances. Indeed, the chattering phenomenon in steady state 

is significantly mitigated by using a higher order sliding mode adaptation scheme. 

Example 3: In this example, a comparison concerning the frequency estimation is carried 

out between the presented method and a recently proposed method [79] also addressing 

finite-time frequency estimation. Consider the biased signal used in the example reported in 

[79] 

y(t) = 2 + 3 sin(4t + π/4) (5.55) 

with unknown sinusoidal parameters. The adaptation law of method [79] is initialized 

by Θ̂ 
1(0) = [0, 0, 0]⊤, while the learning gain and other coefficients are set as Γ1 = 

diag([50, 500, 500]), λ1 = 2.5, λ2 = 5, l = 1, κ = 0.001. On the other hand, the pro- 

posed method is tuned by β1 = 1, β2 = 2, β3 = 3, β̄ = 2.5, g = 3, L1 = 30, L2 = 2, δϵ = 

1 × 10−4 and the same initial frequency estimate ω̂(0) = 
√

5. The behavior of both methods 

is shown in a noise-free scenario and in the case of noisy measurements where the noise has 

the same characteristics as in the previous example (see Fig. 5.6). As can be noticed, the 

proposed method compares favorably with the one in [79]. 

Unlike the algorithm illustrated in [79] where the (unknown) initial conditions of the 

signal generators’ state significantly affect the estimates during the transient, the proposed 
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Fig. 5.6 Time-behavior of the estimated frequency by using the proposed method (blue line) 

compared with the time behaviors of the estimated frequency obtained by the method [79] 

(red line) respectively. Top: noise-free case. Bottom: noisy case. 

 

estimation methodology inherently annihilates the initial conditions. To enhance this signif- 

icant feature, in Fig. 5.6 two simulations referred to different initial conditions but using 

the same input signal (5.55) are reported. As can be noticed, the proposed method yields in 

finite-time the same estimate of the frequency, irrespective of the initial conditions. 

 

 

5.8 Concluding Remarks 
 

In the this chapter, the problem of AFP identification from a noisy and biased measure- 

ment has been addressed. With the aim of addressing the challenging issue, we introduce a 

novel deadbeat estimator, which can provide reliable frequency estimates within an arbitrary 

small finite time. The method consists in processing the measured signal with Volterra opera- 

tors, to obtain auxiliary signals that are used in combination with second-order sliding mode 

adaptation laws to estimate the frequency, the amplitude and the phase of the original signal. 

This algorithm has been proved to be finite-time convergent in nominal condition and enjoys 
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Fig. 5.7 Time-behavior of the estimated frequency with different initial conditions and in a 

noise-free scenario. Left: the estimator proposed in [79]. Right: the proposed method. 

 

ISS stability properties with respect to bounded measurement perturbations. Numerical 

examples have been reported showing the effectiveness of the proposed method compared to 

recently published results. 



 

 

 

 

 

 

 

 

 

 

Chapter 6 

 
CONCLUSIONS AND FUTURE 

PROSPECTS 

 

6.1 Concluding Remarks 

 
Parameter estimation of a sinusoidal signal perturbed by additive disturbances has been 

accomplished by a wide variety of techniques in the literature including extended Kalman 

filters, phase locked loop tools, adaptive notch filtering and internal model based techniques. 

This thesis first of all provides a thorough review of the literature with special emphasis 

on several representative approaches, such as KF, PLL, ANF, SVF and AO, which are all 

characterized by asymptotic convergence. On the other hand, AFP estimators that can 

converge within a (possibly very small) finite time represent a special category that is seldom 

discussed and solved so far. The available methods are mainly devised by two strategies: 

algebraic derivative and modulating functions, whereas there is a lack of the theoretical 

investigation for the convergence properties in the presence of bounded measurement noise. 

Besides, as mentioned in Chapter 1.3 research challenges also consist in other aspects (e.g., 

global stability, accuracy, multi-frequency estimation), which are studied herein. 

In this thesis, the problem of adaptive estimation of the characteristics of a single sinu- 

soidal signal from a measurement affected by structured and unstructured disturbances is 

addressed. Thanks to the proposed pre-filtering technique, the structured disturbances that 

belong to a class of time-polynomial signals incorporating both bias and drift phenomena 

can be tackled in a unified manner. We basically propose two asymptotic methods designed 

respectively by adaptive observer and state variable filtering tools. In the estimation context 

presented in the thesis, the “instantaneous” persistency of excitation condition is embedded in 

the proposed algorithms rather than the standard “integral” type PE condition. This is a very 
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significant feature in terms of on-line implementation, since it makes it possible to enhance 

the performance when the system is weakly excited resorting a typical excitation-based 

switching algorithm without the need for on-line approximate computation of integrals. The 

stability of the devised AFP systems are analyzed by an ISS analysis, whereby we induce a 

few tuning guidelines for the adjustable parameters of the proposed algorithms, depending on 

the assumed noise level and on the required asymptotic accuracy. More specifically, the AO 

scheme has been shown robust even in the presence of multi-harmonics, while the ISS bound 

depends on the power of the total harmonic contents. The SVF approach provides advantages 

in terms of implementation due to the reduced complexity. From a practical perspective, the 

discretized algorithm is subject to a steady-state bias, motivated by which a post-correction 

formula is devised for the compensation under Euler discretization method. 

The AO system for a single sine wave has also been extended into a generic structure 

for estimating amplitudes, frequencies and phases of biased multi-sinusoidal signals in the 

presence of bounded perturbations on the measurement. The key aspect of advantages over 

existing tools is the realization of direct detection of the unknown frequencies with ISS 

stability guarantee. On the other hand, thanks to the individual excitation-based switching 

logic embedded in the update laws regarding each frequency component, the problem of 

overparametrization is addressed. 

Finally, a novel finite-time convergent estimation technique is proposed for AFP identi- 

fication of a single sinusoidal signal. Resorting to Volterra integral operators with suitably 

designed kernels, the measured signal is processed, yielding a set of auxiliary signals, in 

which the influence of the unknown initial conditions is removed. A second-order sliding 

mode-based adaptation law–fed by the aforementioned auxiliary signals–is designed for 

finite-time estimation of the frequency, amplitude, and phase. The main contribution lies 

in the characterization of the worst case behavior in the presence of the bounded additive 

disturbances by ISS arguments. 

The effectiveness of the proposed estimation approaches has been examined and com- 

pared with other existing tools via extensive numerical simulations. Experimental results are 

provided as well for the sake of evaluation in real-time. 

 

 

6.2 Future Work 
 

This section is devoted to highlight possible extensions of the presented methodologies. 

These extensions can be explored in two directions: more comprehensive theory and possible 

applications. From a theoretical point of view, the robustness characterization carried out so 

far only accounts for the measurements corrupted by bounded disturbances. Future research 
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efforts could be devoted to a probabilistic analysis of the algorithms with respect to white 

and colored noises with the aim of establishing a relationship between the accuracy and 

signal-to-noise ratio (SNR). Moreover, it is worth to establish the discrete-time counterparts 

of the devised algorithms in an entire discrete-time framework, so that we can avoid problems 

due to discretization (e.g., discretization error in state state, performance discrepancy due 

to distinct discretization policy). In the context of deadbeat AFP estimation, future work 

includes the design of novel kernels as well as the comparative analysis in terms of few 

aspects, such as robustness, tuning of weighting factors and complexity. This may lead to the 

evaluation in some real-world scenarios. 

Concerning the potential application of the proposed techniques, two main research 

directions can be pursued in the future: output regulation of a linear or nonlinear system 

and condition (vibration) monitoring of mechanical systems. More specifically, in many 

practical situations, the frequencies of the external signals are not precisely available, for 

example, the periodic disturbances in rotational machinery. In this respect, it turns out that an 

adaptive learning scheme for updating the profiles of unknown sinusoidal or periodic signals 

is a premise of disturbance cancellation strategies, thus motivating us to embed the proposed 

estimators in regulators, such as internal model principle and feedforward compensator. 

On the other hand, the process of oscillations of a machine in operation is described by 

mechanical vibrations, which reflect the condition of the system. A typical example is a ball 

bearing that is a type of rolling-element bearing widely used in various of machinery. The 

healthy monitoring of a ball bearing system consists in identifying the bearing faults induced 

by different factors, such as excessive loads, over heating and corrosion. The cornerstone 

behind this idea is the vibration analysis based on the on-line frequency detection that can be 

dealt with by the multi-sinusoidal estimator. Finally, in the specific applications that require 

the estimates to converge in a neighborhood of the true values within a predetermined finite 

time, independently from the unknown initial conditions, the deadbeat AFP estimator may 

turns out to be very useful by providing nearly instantaneous estimates. 
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