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Summary 

 

Current recommended methods for managing carious lesions involve sealing 

the carious biomass within the tooth.  At present, it is only possible to monitor 

sealed lesions over time using radiography, and digital subtraction radiography 

(DSR) has been demonstrated to be more accurate and reproducible compared 

to pairwise comparison of radiographs. 

The aim of this research project was to investigate in-vitro, whether alteration of 

X-ray source subject projection geometry affected the accuracy and 

reproducibility of DSR for detecting demineralisation in artificially created 

occlusal cavities.  The discriminatory ability and reproducibility of a grading 

system for assessing changes in the proximal relationships of teeth, on paired 

digital radiographs taken with horizontal variations in X-ray source subject 

projection geometry, was also investigated. 

Digital radiographs were obtained of 40 extracted molar teeth with occlusal 

cavities following 7 and 15 degree horizontal, and 10 and 15 degree vertical 

angulation variations in X-ray source subject projection geometry in addition to 

0 degrees.  Following placement of demineralising solution in 19 cavities, 0 

degree radiographs were taken after 12, 18 and 24 hours.  Digital subtraction 

images were produced for each variation in angulation and length of 

demineralisation and scored by examiners as to their level of certainty that 

demineralisation of the occlusal cavity had occurred.  The proximal relationships 

between teeth on the paired digital radiographs taken following 7 and 15 degree 

horizontal angulation variations in X-ray source subject projection geometry 

compared to 0 degrees were also scored by examiners using a grading system.     

The highest accuracy for detecting demineralisation in occlusal cavities using 

DSR was obtained when a reproducible 0 degree X-ray projection geometry 

was used.  However, no statistically significant reduction in accuracy was 

identified compared to this when digital subtraction images were produced 

following a 7 degree horizontal angulation variation in X-ray source subject 

projection geometry after 12 and 24 hours demineralisation.  Intra- and inter-

examiner reproducibility was moderate.  When a 7 degree horizontal angulation 

variation in X-ray source subject projection geometry existed between paired 



xix 
 
digital radiographs, the majority of differences observed regarding the size of 

inter-proximal spacing, or proximal overlapping between teeth was less than 

half the width of enamel.  The intra- and inter-examiner reproducibility of the 

grading system was almost perfect. 



1 
 

1 Literature Review 

 

1.1 Dental caries: the disease process and lesion formation 

Cariogenic bacteria produce acid as a by-product during the metabolism of 

fermentable carbohydrates which can cause demineralisation of dental hard 

tissues, however, under suitable conditions this process can be arrested and 

even reversed in its early stages by remineralisation (Selwitz et al., 2007).  

Plaque-mediated dental diseases develop as a consequence of imbalances in 

the resident oral microflora due to an enrichment of oral pathogens within the 

bacterial community (Marsh, 1994, Marsh, 2003, Marsh and Bradshaw, 1995, 

Marsh and Devine, 2011).  The ‘ecological plaque hypothesis’ states that ‘the 

selection of pathogenic bacteria is directly coupled to changes in the 

environment’ (Marsh, 2003) and that ‘diseases need not have a specific 

aetiology; any species with relevant traits can contribute to the disease process’ 

(Marsh, 2003). 

Potentially cariogenic bacteria are often found naturally in dental plaque or 

biofilm on the surface of the tooth, but are weak competitors, so at a neutral pH 

only represent a small proportion of the total bacterial community.  The levels of 

these potentially cariogenic bacteria are insignificant in the presence of a 

conventional diet and the processes of demineralisation and remineralisation 

remain in equilibrium.  Any environmental change will affect the microbial 

balance.  For example, an increase in the amount of fermentable carbohydrate 

within the environment results in the dental plaque spending more time at a low 

pH, which in turn favours the proliferation of more acidogenic and aciduric 

Gram-positive cariogenic bacteria such as mutans streptococci and lactobacilli.  

More acid is therefore produced, at a faster rate, favouring demineralisation of 

the enamel if the pH is lower than the critical value of 5.5.  Net mineral loss 

within dental hard tissues therefore occurs at the microscopic level, which if left 

unchecked will develop into the white spot carious lesion.  Individuals are never 

free of dental caries at the histological level (Kidd, 2011) as the dynamic 

process of enamel demineralisation and remineralisation constantly moves 

between net loss and net gain of tooth mineral (Frencken et al., 2012). The aim 

of appropriate caries management is to ensure that the fine balance between 
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the two processes is tipped in favour of remineralisation.  If this fails, further 

demineralisation of the tooth will occur, creating a carious lesion; the 

manifestation of the disease process.  If this continues, the lesion will penetrate 

deeper into the tooth tissues and eventual microcavitation and subsequent 

bacterial invasion of the tooth will occur leading potentially to the need for 

operative intervention (Ricketts and Pitts, 2009). 

 

1.2 Dental caries: epidemiology  

Dental caries has been, and still is considered a major global oral health burden 

with untreated caries in permanent teeth the most prevalent oral condition in the 

2010 Global Burden of Disease (GBD) Study, with a global prevalence of 35% 

(Marcenes et al., 2013).  Untreated caries was also ranked 80th in the top 100 

detailed causes of disability-adjusted life-years (DALYs) in 2010, eight places 

higher than recorded in 1990 (Marcenes et al., 2013).  The estimated global 

economic impact on productivity losses during the same time period due to 

untreated caries in the permanent and primary dentitions were $25,138 million 

and $2,094 million respectively (Listl et al., 2015). 

The decayed, missing and filled teeth (DMFT) index provides a lifetime 

measurement of dental caries in the permanent dentition and demonstrates 

global variation.  The 2004 World Health Organisation (WHO) epidemiological 

databanks reported that DMFT scores for 12-year-olds were relatively high in 

Europe and North America (DMFT 2.6-3.0), but much lower in some African 

countries and South-East Asia (DMFT 1.7) (Petersen et al., 2005).  However, 

since 1988/1989 there has been a reduction in the DMFT scores for 12-year-

olds in developed countries such as England and Wales (Davies et al., 2012, 

Evans and Dowell, 1990) generally considered attributable to the introduction of 

public health measures including the effective use of fluorides and changes in 

lifestyle, living conditions and improved self-care practices (Petersen et al., 

2005).  However, the reverse has been observed in developing countries, most 

likely due to the increased exposure to sugars and lack of the effective use of 

fluorides (Petersen et al., 2005). 

Dental caries is a preventable disease and significant effort is required on both 

a population and individual level to target prevention and reduce its prevalence.  
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However, complete eradication of dental caries is unlikely to occur so accurate 

detection methods are essential to aid its diagnosis so appropriate and effective 

evidence based management can be carried out. 

 

1.3 Dental caries: management 

There has been a change in philosophy around the management of dental 

caries (Kidd and Fejerskov, 2013) from the complete surgical excision of the 

carious lesion towards less invasive treatment approaches adopting the 

principles of ‘minimal intervention dentistry’ (Frencken et al., 2012) which aims 

to arrest the lesion and promote remineralisation (Tyas et al., 2000).   

1.3.1 Prevention and remineralisation of carious lesions 

Dental caries can be prevented by interfering with any of the environmental 

factors favouring the selection and increased proliferation of bacterial 

pathogens (Marsh, 2006).  The evidence supporting the role of sugar as an 

aetiological factor in dental caries is indisputable, due to the number of studies, 

rather than the individual power of one (Sheiham, 2001, Moynihan and Kelly, 

2014).  One-to-one dietary interventions can change behaviour, however the 

evidence supporting changes in sugar consumption is less than that for 

changing fruit/vegetable and alcohol consumption (Harris et al., 2012). 

The removal, or at least disturbance of the plaque biofilm around teeth 

minimises the development of carious lesions (Frencken et al., 2012), and in 

combination with the use of topical fluoride can slow and even arrest carious 

lesion progression (Fejerskov et al., 2015, Nyvad et al., 1997). 

Topical fluoride changes the mineral saturation characteristics of a tooth’s 

surface (Fejerskov, 2004) and is incorporated into the carbonated 

hydroxyapatite crystalline structure of enamel during the process of 

demineralisation and remineralisation which decreases its solubility (De Leeuw, 

2004).  However, the effectiveness of fluoride to remineralise enamel is limited 

by the bio-availability of phosphate and calcium ions (Featherstone, 2003, 

Featherstone, 2006, Reynolds, 2008) and true subsurface remineralisation is 

rarely achievable as the remineralised surface zone acts as a diffusion barrier 

(Ten Cate, 2001, Ten Cate and Duijsters, 1982, Ten Cate, 1999, Ten Cate, 
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1990, Fejerskov et al., 2015).  Cochrane reviews have demonstrated the 

effectiveness of fluoride for preventing dental caries, including topical fluorides 

such as fluoride gels (Marinho et al., 2015), varnishes (Marinho et al., 2013), 

toothpastes (Walsh et al., 2010) and mouthrinses (Marinho et al., 2003).  For 

systemic fluoride, they have shown fluoridated milk reduces dental caries in 

primary teeth (Yeung et al., 2005), however, fluoride supplements such as 

tablets, drops, lozenges and chewing gums, in school children over 6-years of age 

are unlikely to significantly reduce dental caries in permanent teeth compared to 

topical fluorides (Tubert-Jeannin et al., 2011). 

Preventative strategies including dietary interventions, plaque control and the 

use of topical fluoride should be implemented to prevent dental caries, but 

should also form the basis of its management (Frencken et al., 2012).    

1.3.2 Management of carious lesions 

All carious lesion management strategies, irrespective of the stage and/or 

activity of the lesion should aim to inactivate and control the disease process; 

preserve dental hard tissues; avoid initiating the cycle of re-restorations; and 

preserve the tooth for as long as possible (Schwendicke et al., 2016).  The 

restoration of a carious lesion is only indicated if there is cavitation, and it is 

either non-cleansable or it can no longer be sealed (Schwendicke et al., 2016).  

In all other situations, carious lesions should be managed by implementing a 

preventative regime and considering micro-invasive treatments including 

sealants or resin infiltration. 

1.3.2.1 Micro-invasive treatment of carious lesions 

Micro-invasive treatment involves the use of acid to condition the tooth surface, 

which removes a few microns of tooth tissue, prior to treating the tooth surface 

and carious lesion with either a resin sealant or infiltration material.  Although 

classically a highly efficacious way to prevent carious lesions forming on 

occlusal surfaces (Ahovuo-Saloranta et al., 2013), sealants can also be used to 

manage established but non-cavitated carious lesions by depriving bacteria of 

fermentable carbohydrate, slowing and even arresting lesion progression.  Non-

cavitated occlusal carious lesions extending into dentine have been effectively 

managed with resin sealants over a 44 month period (Fontana et al., 2014), 

agreeing with smaller and shorter, earlier seminal studies (Mertz-Fairhurst et al., 
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1986, Handelman, 1991).  Sealants have also been shown to be effective for 

preventing the progression of proximal carious lesions (Martignon et al., 2006, 

Martignon et al., 2010). 

Resin infiltration involves filling the porous intercrystalline spaces of the body of 

an enamel lesion with a low-viscosity light curable resin which seals the lesion 

and blocks the diffusion pathways of cariogenic bacteria inside the lesion.  It is 

particularly useful for managing carious lesions in proximal sites as unlike 

sealing, no temporary tooth separation is required.  Resin infiltration of proximal 

carious lesions in enamel and dentine is effective at reducing the risk of lesion 

progression (Ekstrand et al., 2010, Paris et al., 2010). 

A recent Cochrane review concluded that the ‘available evidence allows us to 

be moderately confident that micro-invasive treatment of proximal caries lesions 

is effective for arresting non-cavitated enamel and dentine lesions and has a 

significant benefit over non-invasive interventions’ (Dorri et al., 2015). 

1.3.2.2 Minimally invasive restoration of carious lesions 

In the past, the management of cavitated carious lesions involved the complete 

surgical excision of the lesion.  This approach was advocated by GV Black as 

he wrote in his book published in 1908 that; ‘it is better to expose the pulp of a 

tooth than to leave it covered only with softened dentin (sic)’ (Black, 1908).  

However, the idea of preserving tooth tissue and not removing the carious 

lesion as a whole is not a new one.  In 1859, Tomes wrote ‘it is better that a 

layer of discoloured dentine should be allowed to remain for the protection of 

the pulp rather than run the risk of sacrificing the tooth’ (Tomes, 1859).  More 

recent studies have shown that if the cariogenic bacteria within a carious lesion 

are sealed into teeth, using minimally invasive techniques, lesion progression 

stops and the lesion becomes inactive (Handelman et al., 1981, Mertz-Fairhurst 

et al., 1998, Ribeiro et al., 1999, Kuwabara and Massler, 1966).   

As the complete removal of the carious lesion is not essential to arrest the 

cariogenic process and has undesirable adverse effects, less invasive treatment 

approaches have been developed which aim to arrest the carious lesion and 

promote remineralisation by sealing the carious biomass within the tooth.  

These have the advantages of being more conservative of tooth structure and 

reducing the chances of iatrogenic pulpal damage.  Clinical studies have 



6 
 
demonstrated a reduction in cariogenic bacteria, radiographic increase in 

mineral content and clinical characteristics indicating carious lesion arrest, 

following the selective removal of carious tissue and sealing of the carious 

biomass within the tooth (Maltz et al., 2002, Oliveira et al., 2006). 

Historically, three broad minimally invasive techniques have been described: 

stepwise excavation, indirect pulp capping and partial caries removal.  The 

stepwise excavation technique involves the removal of caries over two visits for 

the management of asymptomatic deep carious lesions in vital teeth where the 

complete removal of the carious lesion in one visit may result in pulpal exposure 

or damage (Leksell et al., 1996).  The clinical procedure involves removing only 

part of the carious lesion at the first visit so that soft, carious dentine is left over 

the pulp and there is no risk of mechanically exposing the pulp (Schwendicke et 

al., 2016).  Peripheral cavity dentine should be hard to allow a tight seal of the 

lesion and cavity using a temporary restoration and left for a period of time, 

during which a marked reduction in bacterial growth occurs (Bjorndal et al., 

1997), and tertiary and sclerotic dentine forms (Massler, 1978).  The cavity is 

then re-opened some months later at the second visit and further excavation of 

the remaining soft carious dentine is carried out prior to restoring with a 

definitive restoration (Schwendicke et al., 2016).   

Indirect pulp capping involves removing all soft carious dentine so that only firm 

carious discoloured dentine is left at the base of the cavity with no knowledge of 

its proximity to the pulp, prior to placing a lining and definitive restoration 

(Prader, 1958, Eidelman et al., 1965). 

There have been a variety of descriptions of partial caries removal techniques, 

both for the extent of carious lesion removal and for restorative procedures 

(Innes et al., 2016). 

Due to this lack of standardisation of terminology and techniques, in particular 

the relative degree of caries removal carried out, it is difficult to make 

meaningful comparisons between different studies investigating stepwise 

excavation, indirect pulp capping and partial caries removal.  A recent Cochrane 

review investigated the effects of selective, or no, caries removal in previously 

unrestored primary and permanent teeth (Ricketts et al., 2013).  It concluded 

that ‘stepwise and partial excavation reduced the incidence of pulp exposure in 
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symptomless, vital, carious primary as well as permanent teeth’ and ‘these 

techniques show clinical advantage over complete caries removal in the 

management of dentinal caries’ (Ricketts et al., 2013). 

The lack of standardisation of the terminology and techniques used by clinicians 

has recently led to the International Caries Consensus Collaboration (ICCC) 

publishing recommendations on carious tissue removal and its terminology 

(Schwendicke et al., 2016, Innes et al., 2016, Frencken et al., 2016).  They 

recommended that the selective removal of carious tissue to firm dentine is the 

treatment of choice for shallow or moderately deep cavitated dentinal lesions, 

and that selective removal of carious tissue to soft dentine (for primary teeth) 

and stepwise removal (for permanent teeth) are the treatments of choice for 

deep cavitated lesions.  The priorities of carious tissue removal and restoration 

are to preserve healthy and remineralisable tissue; achieve a restorative seal; 

maintain pulpal health; and maximise restorative success (Schwendicke et al., 

2016).   

1.3.3 Monitoring carious lesions 

Despite the evidence-based change in philosophy regarding the management 

of carious lesions to techniques that seal the carious biomass within the tooth, 

and a variety of diagnostic techniques, there are no clinically proven accurate, 

reproducible and validated methods for monitoring the behaviour (progression, 

non-progression and regression) of the carious lesion over time, especially 

occlusal caries.  Further research is therefore required.   

 

1.4 Detection of carious lesions 

1.4.1 Detection of carious lesions versus diagnosis of dental caries 

The word ‘diagnosis’ is derived from its Greek meaning, ‘through knowledge’ 

and is a decision process informed by the collection of relevant information.  

The diagnosis of dental caries involves the assimilation of information gathered 

from the patient through accurate history taking, meticulous clinical examination 

with supplemental tests where indicated, an assessment of lesion activity and 

an individual’s caries risk (Pitts, 2009). 
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Detection of a carious lesion is simply the identification of its presence and 

therefore forms only one factor in its diagnosis.  In addition to detecting the 

presence or absence of a carious lesion, quantitative and qualitative information 

regarding its extent, severity and activity are also very important  in the 

diagnostic process (Pitts, 2009).   

1.4.2 Properties of the ideal carious lesion detection method  

Carious lesion detection methods should have a high degree of validity, 

accuracy and reproducibility.  In addition, due to the dynamic nature of the 

disease process they should also have the ability to monitor carious lesions 

over time especially following the implementation of preventative or micro-

invasive management strategies.  They should be suitable for use in general 

dental practice and have low technique sensitivity so identical results can be 

obtained irrespective of a clinician’s experience of any given method and the 

interpretation of results.  They should also be acceptable to patients, which 

means, they should cause minimal discomfort, be quick to carry out, universally 

available and economically viable to use.  

1.4.2.1 Validity 

The validity of any detection method or test can be defined at a basic level as 

the extent to which it measures what it claims to measure.  In the past, four 

specific types of validity have been described for carious lesion detection 

methods; criterion, predictor, construct and content validity (Nyvad et al., 2003, 

Nyvad et al., 1999).  As only criterion validity was used in this research project, 

predictor, construct and content validity will not be discussed any further. 

Criterion validity requires the results of a detection method to be compared to 

an external ‘gold standard’ which represents the highest level of truthfulness 

that a carious lesion is either present or absent (Nyvad et al., 2003).  Usually, 

the external ‘gold standard’ used is confirmation of a carious lesion (presence or 

absence, or extent) by histological examination of tooth sections, either visually 

or microradiographically (Downer, 1989).  Variations may however even exist in 

this ‘gold standard’ as it relies on the subjective interpretation of what is seen on 

the section image (Ismail et al., 2007). 
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1.4.2.2 Accuracy 

Sensitivity and specificity are traditional operating characteristics that are used 

to assess the accuracy of detection methods, describe results in a dichotomous 

way (Van Erkel and Pattynama, 1998) and are not affected by the prevalence of 

the disease being detected (Petrie et al., 2002).  As many carious lesion 

detection methods produce either continuous quantitative, or nominal and 

ordinal categorical qualitative data, threshold values or decision criteria are 

required to convert this data into a dichotomous form to enable sensitivity and 

specificity to be calculated (Van Erkel and Pattynama, 1998).    

1.4.2.2.1 Sensitivity  

Sensitivity is defined as ‘the proportion of individuals with the disease or 

condition of interest who are correctly detected by the test’ (Petrie et al., 2002) 

(Table 1).  If a carious lesion detection method has low sensitivity it will be less 

likely to detect a carious lesion when it is actually present, resulting in a false 

negative result.  

 

Table 1.  A 2x2 contingency table illustrating the outcomes of a detection test for a 

disease compared to the true presence of the disease in the population tested 

 

 Disease present Disease absent Total 

Test positive True positive (TP) False positive (FP) TP+FP 

Test negative False negative (FN) True negative (TN) FN+TN 

Total TP+FN FP+TN FN+TN+FP+TP 

 Sensitivity = TP/(TP + FN)  

 Specificity = TN/(FP + TN) 

 

1.4.2.2.2 Specificity 

Specificity is defined as ‘the proportion of individuals without the disease or 

condition of interest who are correctly identified by the test’ (Petrie et al., 2002) 

(Table 1).  If a carious lesion detection method has a low specificity it will falsely 

detect a carious lesion when it is actually not present, resulting in a false 

positive result.  
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1.4.2.2.3 Relationship between sensitivity and specificity  

The ideal detection method for carious lesions would have sensitivity and 

specificity values of 1, which would require the probability distributions of the 

results to not overlap and for the chosen threshold value or decision criteria to 

exist between them (Van Erkel and Pattynama, 1998).  However, the probability 

distributions of the results for carious lesion detection methods overlap which 

results in false negative and false positive results, affecting sensitivity and 

specificity which are inversely related to one another (Van Erkel and Pattynama, 

1998).  The balance between sensitivity and specificity for carious lesion 

detection methods can therefore be altered by changing the threshold value or 

decision criteria.   

1.4.2.2.4 Describing and comparing the accuracy of detection methods  

It is inadequate to use a single pair of sensitivity and specificity values at a 

specific threshold value or decision criteria to describe or compare the accuracy 

of carious lesion detection methods (Van Erkel and Pattynama, 1998).  As the 

choice of threshold values and decision criteria are also subject to both inter- 

and intra-examiner variation, it is more comprehensive to describe and compare 

the accuracy of detection methods or tests independent of the chosen threshold 

value or decision criteria (Van Erkel and Pattynama, 1998).  This can be 

achieved by carrying out receiver operating characteristic (ROC) analysis (Van 

Erkel and Pattynama, 1998).  

1.4.2.2.5 Receiver operating characteristic (ROC) analysis 

ROC analysis represents graphically the reciprocal relationship between a 

detection method’s sensitivity and specificity at all possible threshold values.  

Sensitivity, on the Y-axis, is plotted against one minus the specificity on the X-

axis for the various threshold values for the detection of a carious lesion (Figure 

1).  If categorical qualitative data is used, at least five rating categories are 

required to create a meaningful curve (Metz, 1989, Rockette et al., 1992). 

If the probability distributions of the results of a carious lesion detection method 

are identical, the resulting ROC curve generated would be a straight diagonal 

line from bottom left to top right and is termed ‘the line of no discrimination’ 

(Figure 1).  This means the detection method has no discriminative power and 

the area under the ROC curve (AuROC curve) is 0.5 (50% of the total area).  If 
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there is no overlap of the probability distributions of the results, the ROC curve 

would contain the optimal threshold value where there are no false positive or 

false negative results, which represents the top left hand corner of the ROC 

diagram.  The AuROC curve would be 1 (100% of the total area).  As discussed 

previously, in reality, this is not possible, so the ROC curves generated for 

carious lesion detection methods usually lie somewhere in between these two 

values (Figure 1).  The AuROC curve therefore represents the accuracy of the 

detection method, and allows the accuracy between different detection 

methods, or examiners, to be compared using various statistical tests, each with 

their relative advantages and disadvantages (Swaving et al., 1996, Metz, 1989). 

 

 

Figure 1.  Receiver operating characteristic analysis 

 

1.4.2.3 Reproducibility 

Reproducibility is an umbrella term for the concepts of agreement and reliability 

(De Vet, 1998).  The intra-examiner reproducibility of a carious lesion detection 

method is concerned with whether or not the results of the carious lesion 

detection method are reproducible in test-retest situations by the same 

examiner over a period of time where no clinical changes have occurred.  The 

inter-examiner reproducibility of a carious lesion detection method is concerned 

with whether or not the results of the carious lesion detection method are 
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reproducible between two or more different examiners at the same period of 

time where no clinical changes have occurred.    

The type of data produced by the carious lesion detection method dictates the 

statistical test required to assess reproducibility.  If continuous quantitative data 

is produced, intraclass correlation coefficient and Bland and Altman tests should 

be used (Rankin and Stokes, 1998).  If categorical qualitative data is produced, 

percentage agreement can be calculated, however, kappa is preferred (Rankin 

and Stokes, 1998).  Percentage agreement calculates the proportion of 

measurements between two examiners (inter-examiner reproducibility) or within 

the same examiner on different occasions (intra-examiner reproducibility) that 

are the same, however, it ignores the agreement that could have occurred by 

chance.  Kappa takes into account how much agreement would be expected to 

be present by chance and compares this to the difference between how much 

agreement is actually present (Viera and Garrett, 2005).  Kappa is usually used 

for nominal categorical qualitative data, however, it does not take into account 

near misses.  Weighted kappa is preferred for ordinal categorical qualitative 

data as the degree of disagreement between examiners can be weighted, so 

that it attaches a greater emphasis to larger differences (Cohen, 1968).   

1.4.3 Current carious lesion detection methods 

Various methods have been described for detecting carious lesions, and 

assessing their extent, severity and/or activity, in addition to monitoring them 

over time.  Visual, visual-tactile, fibre-optic transillumination (FOTI), electrical 

measurements (EM), fluorescent techniques (FT) and radiographic detection 

methods have all been investigated in the literature and will be discussed.  

Although optical coherence tomography (Ngaotheppitak et al., 2005, Amaechi 

et al., 2004), near infra-red imaging (Fried et al., 2005) and ultrasound (Hall and 

Girkin, 2004, Ng et al., 1988) have also been suggested, they are not within the 

scope of this literature review. 

1.4.3.1 Visual and visual-tactile detection methods 

Visual examination is the most common method used to detect carious lesions 

in clinical practice (Bader et al., 2002, Braga et al., 2010).  The visual detection 

of non-cavitated carious lesions is based upon the optical properties of enamel 

and dentine and the phenomenon of light scatter which occurs due to the effect 
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that carious lesions within a tooth’s structure have on penetrating photons of 

light (Pretty, 2006).  Teeth should be clean prior to examination as this improves 

the ability to detect carious lesions (Sognnaes, 1940), and due to the relative 

difference in the refractive indices of air and water compared to enamel, it is 

easier to detect enamel demineralisation if a tooth’s surface is dry to reduce 

light scatter (Ismail, 2004).  Good illumination is advised, however the use of 

additional white light may reduce the ability to detect carious lesions in dentine 

(Neuhaus et al., 2015).  The benefit of magnification is debatable as although 

some studies suggest it improves the detection of carious lesions (Erten et al., 

2005), others suggest it doesn’t (Mendes et al., 2006, Akarslan and Erten, 

2009). 

As the visual detection of carious lesions can be unreliable due to its subjective 

nature (Braga et al., 2010) and the inconsistencies that exist between clinicians’ 

interpretation of the clinical characteristics of carious lesions (Bader et al., 

2002), a large number of criteria systems have been suggested for the visual 

detection of carious lesions (Ismail, 2004).  However, the majority are 

ambiguous, do not measure the different stages of the caries process or its 

activity, don’t apply to all surfaces of a tooth and don’t include detection of 

carious lesions associated with restorations or sealants (Ismail, 2004, Bader et 

al., 2002).  Therefore, in 2002 a group of caries researchers, epidemiologists 

and restorative dentists proposed a new validated system for detecting and 

assessing carious lesions at the International Consensus Workshop on Caries 

Clinical Trials in Loch Lomond, Scotland.  It was named the International Caries 

Detection and Assessment System (ICDAS) and the philosophy and rationale 

for its development have been described (Pitts, 2004).  In 2005, ICDAS was 

improved by exchanging codes to ensure the system reflected increasing 

severity of lesions which resulted in the creation of ICDAS-II (Ekstrand et al., 

2007, Ismail et al., 2007).  The accuracy of visually detecting carious lesions is 

improved when detailed and validated indices are used, in particular ICDAS, as 

it has been demonstrated to be statistically significantly more accurate for 

detecting initial and advanced occlusal caries in primary teeth, and advanced 

occlusal caries in permanent teeth compared to when no criteria system is used 

(Gimenez et al., 2015b). 
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A recent systematic review and meta-analysis (Gimenez et al., 2015b) 

investigated the accuracy of visual inspection for detecting carious lesions, and 

concluded that the overall accuracy was similar to that previously reported in 

systematic reviews investigating radiographic (Bader et al., 2002) and 

fluorescence-based (Gimenez et al., 2013) detection methods.  The systematic 

review and meta-analysis by Gimenez et al. in 2015 (Gimenez et al., 2015b) 

also identified that visual inspection tends to have a greater specificity 

compared to sensitivity for detecting carious lesions, which is the opposite to 

radiographic and fluorescence-based detection methods which tend to have 

higher sensitivity compared to specificity (Bader et al., 2002, Gimenez et al., 

2013).  Historically, when carious lesions were routinely managed by removing 

the lesion in its entirety and the placement of a restoration, it had been stated 

that it was more appropriate for carious lesion detection methods to have a high 

specificity, even at the expense of a lower sensitivity, as this reduced the 

number of false-positive results that could result in the overtreatment of a slowly 

progressing disease (Downer, 1989).  However, following the change in 

philosophy for managing carious lesions, especially for non-cavitated carious 

lesions towards the use of preventative and micro-invasive methods, the 

consequences of overtreatment are less significant.  The recent systematic 

review and meta-analysis by Gimenez et al. in 2015 (Gimenez et al., 2015b) 

concluded that visual inspection alone appears to be effective for detecting 

carious lesions, without having to use adjunct radiographic or fluorescence-

based detection methods.  However, most studies investigating the accuracy of 

visual inspection for detecting carious lesions have not been directly related to 

the improvement of patients’ oral health, and not clinically relevant or useful 

(Baelum, 2010) so it has been recommended that future studies investigating 

carious lesion detection methods should evaluate patient-centred and clinically 

relevant outcomes in addition to accuracy (Gimenez et al., 2015a).      

The use of tactile examination using probes, in combination with visual 

examination has been questioned because of the occurrence of iatrogenic 

damage, with probing-related defects, enlargements and damage to tooth 

surfaces with early carious lesions having been reported (Kühnisch et al., 2007, 

Ekstrand et al., 1987).  However, detecting the surface texture of carious 

lesions can be useful in assessing carious lesion activity and the Lesion Activity 
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Assessment (LAA) involves tactile examination, by dragging a ball ended probe 

across the surface of the lesion which doesn’t cause any damage and allows 

the operator to detect whether the surface of the tooth is rough (active enamel 

carious lesion) or smooth (inactive enamel carious lesion scar) (Ekstrand et al., 

2007). 

1.4.3.2 Fibre-optic transillumination (FOTI) 

FOTI uses the phenomenon of light scatter to detect carious lesions, which 

occurs due to the effect that the demineralisation of enamel and dentine has on 

penetrating photons of light.  It enhances these optical properties by shining a 

high intensity white light through the tooth which results in areas of 

demineralisation appearing visually as a shadow (Pretty, 2006).  FOTI has been 

claimed to be particularly useful for detecting proximal carious lesions (Peers et 

al., 1993, Deery et al., 2000, Davies et al., 2001, Mialhe et al., 2009), however, 

most likely due to the subjective nature of interpreting FOTI, large variations in 

sensitivity (Bader et al., 2002) and inter-examiner reproducibility (Hintze et al., 

1998) have been reported.  A recent systematic review investigating non-

cavitated carious lesion detection methods concluded that the strength of 

evidence for the use of FOTI as a method for detecting carious lesions was 

poor due to the limited number and average quality of studies (Gomez et al., 

2013).  To attempt to overcome the subjective nature of interpreting FOTI, 

algorithms have been developed to provide quantitative characterisation of a 

carious lesion (Schneiderman et al., 1997) and to enable it to be used to 

monitor carious lesions over time, digital imaging fibre-optic transillumination 

(DIFOTI) has been introduced which produces a digital image which can be 

saved.     

1.4.3.3 Electrical measurements (EM) 

EM detect carious lesions by assessing either electrical conductance or 

electrical impedance of the tooth tissue.  Tissues with high concentrations of 

fluid and electrolytes are more conductive than tissues with low concentrations.  

Electrical conductance measurements (ECM) detect the increase in 

conductance associated with carious lesions compared to sound tooth tissue 

that occurs following the demineralisation of enamel and dentine and increase 

in fluid filled pore volume.  The impedance of tissues is determined by their 

molecular composition and refers to the degree that they resist electric current 
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flow.  Electrical impedance measurements (EIM) detect the lower electrical 

impedance that is associated with carious lesions compared to that of sound 

tooth tissue.  The systematic review by Bader et al. in 2002 (Bader et al., 2002) 

which investigated the performance of methods for identifying carious lesions 

reported that it is difficult to compare the results from different studies using 

different devices that measure EM as validation methods and the severity of 

carious lesions differ.  Despite these limitations, EM appeared to have a lower 

specificity for detecting occlusal carious lesions than the use of FOTI, visual and 

visual-tactile methods despite having a higher sensitivity (Bader et al., 2002). 

1.4.3.4 Fluorescent techniques (FT) 

Fluorescence is a form of luminescence and is the emission of light by an object 

that has absorbed light or other electromagnetic radiation.  Quantitative light-

induced fluorescence (QLF) and diode laser fluorescence (DLF) have both been 

used to aid the detection of carious lesions.    

The source of fluorescence in teeth when QLF is used is believed to be from the 

fluorophores contained within the amelo-dentinal junction (ADJ) (van der Veen 

and de Josselin de Jong, 2000, Pretty, 2006).  Demineralised tooth tissue 

demonstrates reduced fluorescence compared to sound tooth tissue due to the 

scattering effect of the carious lesion, which results in less excitation light 

reaching the ADJ, and back scattering of fluorescence from the ADJ by the 

carious lesion (Pretty, 2006).  QLF devices transmit visible blue light to a tooth 

using a handpiece and the resultant fluorescence is detected and measured.  

QLF can be used to image all tooth surfaces with the exception of proximal 

sites.  Unlike QLF, the source of fluorescence in teeth when DLF is used is 

believed to be from bacterial porphyrins, hence DLF measures the degree of 

bacterial activity (Pretty, 2006).  DLF devices use a diode laser to emit a red 

excitation light to the tooth.  The resultant induced fluorescence from the 

bacterial porphyrins is detected and measured.  DLF can be used to detect 

carious lesions on occlusal and smooth surfaces, in addition to proximal sites.   

A systematic review and meta-analysis by Gimenez et al. in 2013 (Gimenez et 

al., 2013) investigated the accuracy of all fluorescence-based methods for 

detecting carious lesions on all tooth surfaces of both permanent and primary 

teeth, compared to the previous systematic review by Bader and Shugars in 
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2004 (Bader and Shugars, 2004) which was limited to laser fluorescence 

methods only.  Despite the heterogeneity of studies, Gimenez et al. (Gimenez 

et al., 2013) demonstrated that all the fluorescent techniques had similar 

accuracy for detecting occlusal and proximal carious lesions on permanent and 

primary teeth, however, accuracy was greater for detecting more advanced 

carious lesions.  Fluorescent techniques have a higher sensitivity than visual 

examination for detecting more advanced occlusal carious lesions, however, the 

specificity tends to be lower (Gimenez et al., 2013, Bader and Shugars, 2004).   

1.4.3.5 Radiographic detection methods 

The use of radiographic techniques for detecting and monitoring carious lesions 

is discussed in more detail in section 1.7 of this literature review. 

1.4.4 Monitoring carious lesions following their management 

Visual, visual-tactile, FOTI, EM and FT methods can all be used to detect 

carious lesions, however, depending on how a carious lesion is managed, not 

all of these methods are suitable for monitoring progression, non-progression or 

regression of carious lesions over time.  For management using preventative 

strategies alone (e.g. dietary interventions, plaque control and topical fluoride), 

these methods are suitable.  However, these methods become redundant if a 

carious lesion is sealed, using either a sealant, resin infiltration or by placing a 

restoration as part of stepwise excavation or following the selective removal of 

carious tissue.  In this situation radiographic methods have to be used to 

monitor the behaviour of the carious lesion over time.  

 

1.5 Dental Radiography 

X-rays were discovered in 1895 by Wilhelm Conrad Roentgen and were used in 

dentistry for diagnostic imaging as early as 1896 (Langland and Langlais, 

1997).  Since then significant advances have been made in the field of oral and 

maxillofacial radiology (Langland and Langlais, 1995).  One of the most recent 

advances following the advent of computers has been the development of 

digital radiography (DR), which demonstrates a number of significant 

advantages over conventional film-based radiography (van der Stelt, 2008). 
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1.5.1 Digital radiography (DR) 

The early stages of DR involved scanning, or digitising images from 

conventional radiographic films which enabled them to be viewed on a 

computer monitor which is known as indirect digital radiography (IDR) (Analoui 

and Stookey, 2000).  Electronic image receptors were introduced in the 1960s 

which enabled the development of direct digital radiography (DDR) (Analoui and 

Stookey, 2000).  The use of DDR in dental practice has become increasingly 

common through two systems; those using charged-coupled devices (CCD) and 

those using photo-stimulable phosphor (PSP) plates. 

1.5.1.1 Image production in DR 

Conventional X-ray equipment is used to irradiate the real time solid-state 

sensors used in CCD.  The amount of X-radiation that reaches the different 

points of the surface of the sensor is converted into a signal, the strength of 

which determines the grey-scale value of each pixel in the digital image.  PSP 

plates produce direct digital images through a process termed photo-stimulable 

phosphor luminescence (PSPL).  Conventional X-ray equipment is used to 

irradiate the coating of the PSP plate which stores energy within it.  A laser 

stimulates the coating of the plate which releases the stored energy as light and 

a scanner connected to a computer records the amount of light emitted from 

different points of the surface which determines the grey-scale value of each 

pixel in the digital image.   

The digital image is comprised of binary digits (bits) positioned in rows and 

columns which form a matrix and each point in the matrix is termed a picture 

element (pixel).  The spatial resolution of the digital image is dictated by the 

pixel size and the resolution of DR systems currently ranges from 20µm to 

50µm (Analoui and Stookey, 2000).  Each pixel is characterised by three 

numbers, its x- and y-coordinate within the matrix and its grey-scale value.  The 

grey-scale value corresponds to the X-ray intensity at that location during the 

exposure of the sensor and the number of grey-scale shades within a digital 

system therefore determines the radiographic image contrast.  Typically, a 

standard matrix in intra-oral radiography would have a matrix size of 512 x 512 

pixels with 256 shades of grey, from 0 (black) to 255 (white). 
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The quality of any radiographic image is related to sharpness (which is defined 

by contrast and blur) and noise (Haus, 1985).  Contrast describes the difference 

in magnitude of the optical densities of the structures of interest and their 

surroundings and blur describes the lateral spread of a structural boundary 

(Wenzel, 1993).  Noise reflects all the factors that have disturbed the signal of 

interest such as anatomic background structures (referred to as anatomic noise) 

and those caused by receptor mottle (referred to as random noise) (Wenzel, 

1993).  The radiographic image quality of a conventional radiograph is 

determined by factors related to its exposure, sensitometric properties of the 

film and processing procedures, so once a conventional film has been 

processed the quality of the radiographic image has been determined and 

cannot be changed (van der Stelt, 2008).  In contrast, it is possible to 

manipulate digital radiographic images once they have been acquired via image 

processing which allows the image quality to be altered. 

1.5.1.2 Image analysis 

Image analysis refers to the ability of digital radiographic software packages to 

carry out certain calculations and extract specific information from digital 

radiographic images without altering the image (van der Stelt, 2008).  Image 

analysis tools include ones that can measure angles or distances, however they 

have to be calibrated as they do not account for any magnification or distortion 

of the radiographic image that may have occurred due to the geometric 

relationship between the X-ray beam, sensor and patient (van der Stelt, 2008). 

1.5.1.3 Image processing 

The manipulation of a digital radiographic image after it has been acquired is 

termed image processing and involves the application of mathematical 

operations to alter pixel values over the whole digital radiographic image. 

1.5.1.3.1 Image quality 

The blur, noise and contrast of a digital radiographic image can be altered to 

improve its quality (van der Stelt, 2008).  Underexposed or overexposed digital 

radiographic images can be corrected by adjusting the contrast and density 

manually, or automatically by applying standard gamma optimisation 

procedures which distribute evenly the grey-scale values of the pixels in the 
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digital radiographic image over the full grey-scale range that is available (van 

der Stelt, 2008, Wenzel, 1993). 

1.5.1.3.2 Contrast enhancement 

Alteration of the contrast and density of a correctly exposed digital radiographic 

image is termed contrast enhancement and is related to image sharpness 

(Wenzel, 1993).  It has been reported that increasing the contrast and density of 

a digital radiographic image enhances the ability to detect carious lesions (van 

der Stelt, 2008, Wenzel et al., 1991, Mouyen et al., 1989, Verdonschot et al., 

1992, Wenzel et al., 1993).  Contrast enhancement can also improve the ability 

to detect carious lesions using digitised images generated from conventional 

films of poor quality, compared to viewing the original conventional films used 

(Wenzel and Fejerskov, 1992). 

1.5.1.3.3 Edge enhancement 

Edge enhancement converts contrast gradients within digital radiographic 

images into a texture that is visible as a shape which effectively sharpens the 

edges of imaged structures making it easier to identify boundaries (Kal et al., 

2007).  Edge enhancement has been demonstrated to improve the ability to 

detect and assess occlusal carious lesions on digital radiographic images when 

used in combination with contrast enhancement, compared to viewing 

conventional films (Wenzel et al., 1990, Wenzel et al., 1991).  It may not 

however be as effective as contrast enhancement when used alone as the 

improvement in accuracy for detecting occlusal carious lesions has been 

credited to the effect of contrast enhancement rather than edge enhancement 

(Wenzel and Fejerskov, 1992). 

1.5.1.3.4 Zoom 

The alteration of the size of digital radiographic images displayed on computer 

monitors is commonly termed as the ability to zoom in and out.  If a digital 

radiographic image is enlarged to a size greater than its original resolution its 

diagnostic value is reduced.  This is because either interpolation, which is the 

construction of new pixels within a known range by analysing the neighbouring 

pixels, or duplication of the rows and columns of pixels is carried out which can 

both result in the appearance of artefacts (van der Stelt, 2008).   
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1.5.1.3.5 Digital subtraction  

Digital subtraction involves obtaining two digital radiographs taken of the same 

object, but on two separate occasions (using identical or similar X-ray projection 

geometry and densitometric parameters), and digitally superimposing them so 

that the grey-scale values of the corresponding pixels can be subtracted from 

each other.  This eliminates the identical structures present in the two digital 

radiographic images of the same object, and enables visualisation and 

detection of any differences that exist between them on the resulting image 

which is called a digital subtraction image.  It is often necessary to apply patch 

minimisation and density normalisation to the two digital radiographic images 

prior to subtracting them from each other, to standardise any geometric or 

densitometric variations that may exist between them.  Patch minimisation 

attempts to correct geometric misalignments that exist between pairs of digital 

radiographs, and density normalisation attempts to correct differences in 

densitometric properties (density and contrast) that exist between pairs of digital 

radiographs.  Patch minimisation, density normalisation and digital subtraction 

will be discussed further in the next section. 

 

1.6 Subtraction radiography 

Prior to DR, subtraction images were obtained from conventional radiographs 

by photographic methods.  Following the introduction of IDR, the alignment and 

superimposition of digital radiographic images was initially carried out by 

digitising one of the conventional films and manually superimposing it over the 

other conventional film using a micromanipulator and real-time continuous 

signal grabbing under a video camera, prior to digitising the second 

conventional film (Grondahl et al., 1983).  The development of DDR has made 

this process a lot easier as two digital radiographic images can simply be 

aligned and superimposed over each other using corresponding reference 

points.  Digital subtraction software is then used to subtract the grey-scale 

values of the corresponding pixels of the two digital radiographic images to 

produce a digital subtraction image (van der Stelt, 2008).   
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1.6.1 Digital subtraction radiography (DSR) 

Reliable DSR requires that the two digital radiographic images used to produce 

the digital subtraction image have geometric and densitometric standardisation 

between them, i.e. the two digital radiographic images have been generated 

using a reproducible X-ray projection geometry and have identical grey-scale 

values (van der Stelt, 1993, van der Stelt, 2008, Christgau et al., 1998, 

Eberhard et al., 2000, Wenzel, 2002, Dove and McDavid, 1992, Haiter-Neto et 

al., 2005, Rudolph et al., 1987, Grondahl et al., 1984, Hausmann et al., 1991, 

Ruttimann et al., 1981, Wenzel et al., 1993, Janssen and van Aken, 1989).  

Geometric and densitometric variation affects the quality of the resultant digital 

subtraction image due to the generation of structured noise in the image.  

Digital subtraction software packages therefore use patch minimisation and 

density normalisation processes to attempt to standardise any geometric or 

densitometric variations that may exist between digital radiographic images 

prior to digitally subtracting them to produce the digital subtraction image.    

1.6.1.1 Geometric standardisation 

Two main sources of geometric error exist when comparing two radiographs.  

Firstly, a difference in the relationship between X-ray beam and subject which 

results in a source-subject error and secondly, a difference in the relationship 

between the subject and the imaging medium which results in a subject-film 

error (Jeffcoat et al., 1987).  A source-subject error results in a different 2-

dimensional representation of a 3-dimensional subject, however, a subject-film 

error results in a different 2-dimensional projection of the same 3-dimensional 

data (Ellwood et al., 1997).  It has been stated that ‘it is impossible to 

manipulate images which have a source-subject error to try to overcome this 

distortion without having additional information regarding the 3-dimensional 

relationship between structures’ (Ellwood et al., 1997).  However, ‘subject-film 

errors can be overcome as the relationship between the two images can be 

defined mathematically and one of the images transformed into the same 

projection geometry as the other’ (Ellwood et al., 1997) using patch 

minimisation (Jeffcoat et al., 1984, Webber et al., 1984).   

Although subject-film errors can be compensated for using patch minimisation 

processes, other techniques are required when taking digital radiographs to 

reduce source-subject errors.  Prior to the development of subtraction 
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radiography, the importance of standardising X-ray projection geometry for 

aiding the comparison of two different radiographic images of the same object 

had been identified.  The first intra-oral film holder was described only four 

years after the discovery of X-rays and was used to aid with periapical 

radiography (Kells, 1899).  Since then various devices have been suggested 

and research carried out to identify the best method to standardise intra-oral X-

ray projection geometry.   

1.6.1.1.1 Devices for standardising intra-oral X-ray projection geometry 

A wide variety of devices have been developed in an attempt to standardise 

intra-oral X-ray projection geometry, all of which essentially comprise the same 

components; a film holder, bite block and beam aiming device which are 

connected together but differ in design.  Film holders stabilise the position of the 

radiographic film or sensor in a fixed position.  Bite blocks enable the device to 

be stabilised in relation to the teeth and can be customised, however reseating 

customised bite blocks fully can be difficult over time due to either distortion of 

the block or material used to customise it, movement or extraction of the 

supporting teeth or modification of the occlusal surfaces of teeth with 

restorations.  Beam aiming devices are connected to the film holder and bite 

block and allow standardisation of the X-ray tube head position to the device.  

The majority of beam aiming devices use a non-rigid connection, however a 

rigid or fixed connection between the beam aiming device and X-ray tube head 

is possible.     

A number of studies have investigated the reproducibility of a variety of 

customised commercially available or custom fabricated devices for 

standardising intra-oral X-ray source subject projection geometry (Allen et al., 

1994, Duckworth et al., 1983, Hausmann et al., 1995, Janssen et al., 1989, 

Rudolph and White, 1988) (Table 2).  The use of customised bite blocks with 

commercially available devices can limit intra-oral X-ray source subject 

angulation errors to less than 3 degrees in both the vertical and horizontal 

dimension over a 6-month period (Duckworth et al., 1983, Rudolph and White, 

1988).  Although custom fabricated non-commercially available devices have 

demonstrated slightly lower angulation errors over the same or slightly longer 

time periods (Allen et al., 1994, Hausmann et al., 1995, Janssen et al., 1989), it 

is necessary to investigate what evidence there is to suggest that this 
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significantly improves the diagnostic quality of the digital subtraction images 

produced.  
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Table 2.  Studies investigating the reproducibility of customised commercially available and custom fabricated devices for standardising intra-oral X-ray source 

subject projection geometry 

Study Device(s) Duration Mean average source-subject angulation error 

Duckworth et al. 
(1983) 

 
 
 

3 customised VIP Film Holders™ (Dentsply Rinn, Illinois) 

- Polyether bite block 
- Silicone bite block 
- Acrylic bite block 

 

6 months 
 
 
 
 

VIP Film Holder™ (Dentsply Rinn, Illinois) using a polyether 
bite block (Polyjel, L.D. Caulk Company, Delaware) 

- Horizontal = 1.25 degrees +/- 0.93 
- Vertical = 2.39 degrees +/- 2.23 

(P<0.001 compared to all other devices tested) 

Rudolph & White 
(1988) 

 
 
 
 
 

7 Rinn XCP Instruments™ (Dentsply Rinn, Illinois) 

- Standard bite block 
- 6 different customised bite blocks using different types 

of acrylic, compound, polyether and silicone 
1 Customised VIP Film Holder™ (Dentsply Rinn, Illinois) 

- Polyether bite block (as described by Duckworth et al. 
(Duckworth et al., 1983)) 

6 months 
 
 
 
 
 
 

Rinn XCP Instrument™ (Dentsply Rinn, Illinois) with a silicone 
bite block (Regisil, L.D. Caulk Company, Delaware) 

- Horizontal = 1.34 degrees +/- 0.63 
- Vertical = 2.04 degrees +/- 0.82 

(P<0.05 compared to standard Rinn XCP Instrument™ and 
customised VIP Film Holder™) 
 

Janssen et al. 
(1989) 

 
 
 

2 custom fabricated paralleling devices with bite blocks 

- Unilateral acrylic bite block 
- Bilateral acrylic bite block 

 
 

1 year 
 
 
 
 

Bilateral bite block 

- 1.15 degrees 
Unilateral bite block 

- 1.47 degrees 
(P<0.07 therefore no statistically significant difference) 

Allen et al. 
(1994) 

 
 
 
 

1 custom fabricated stent based system (as described by 
McHenry et al.(McHenry et al., 1987) which was based on the 
device described by Rosling et al. (Rosling et al., 1975))  

- Full arch custom acrylic stent with a stainless steel film 
holder attached to it, which is rigidly attached to the X-
ray tube with a brass bar 

6 months 
 
 
 
 
 

1.55 degrees 
Errors < 2 degrees 75% of the time 
 
 
 
 

Hausmann et al. 
(1995) 

 
 
 
 

1 custom fabricated electronically guided, force-sensitive 
sensor-based alignment system 

- Full arch custom acrylic stent 
- Alignment arch and ring 
- Matching ring for X-ray tube with 3 force-sensitive 

sensors and electric monitor 

6 months 
 
 
 
 
 

Anterior sites 

- 1.95 degrees +/- 1.17 
- Errors <2 degrees 68% of the time 

Posterior sites 

- 1.58 degrees +/- 1.07 
- Errors <2 degrees 68% of the time 
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1.6.1.1.2 The effect of variations in X-ray source subject projection 

geometry on the quality of intra-oral digital subtraction images 

Four in-vitro studies have investigated the effect that variations in X-ray source 

subject projection geometry have on the ability to detect changes using intra-

oral DSR.  However, these were investigating changes in bone (Davis et al., 

1994, Grondahl et al., 1984, Rudolph et al., 1987, Wenzel, 1989).  All of the 

studies demonstrated that as the size of the variation in X-ray source subject 

projection geometry increased, the accuracy of the resulting digital subtraction 

images for detecting changes decreased (Davis et al., 1994, Grondahl et al., 

1984, Rudolph et al., 1987, Wenzel, 1989).  Three studies demonstrated that 

DSR can accurately detect artificially created bony defects up to 1mm3 

(Grondahl et al., 1984), and increases in thickness of bone of 0.42mm (Rudolph 

et al., 1987) and 0.55mm (Wenzel, 1989) with variations in X-ray source subject 

projection geometry of up to 3 degrees.  This degree of X-ray source subject 

error is within that achieved using the intra-oral devices reported by Duckworth 

et al. (1983) and Rudolph and White (1988) for standardising X-ray source 

subject projection geometry.  However, one study suggested that variation in X-

ray source subject projection geometry of 2 degrees or more resulted in a 

statistically significant reduction in the sensitivity of DSR for detecting 1.105mm2 

bony defects, compared to viewing digital subtraction images that had been 

produced using a reproducible X-ray source subject projection geometry (Davis 

et al., 1994).   

Periodontal bony defects are unlikely to present clinically with as well 

demarcated edges as those created artificially in these four in-vitro studies, and 

as detection accuracy is dependent on the size of the difference that actually 

exists and the required difference that is required to be detected, it is difficult to 

know if these results can be applied to the clinical detection of periodontal bony 

changes over time.  To date there have not been any studies that have 

investigated the effect that variation in source subject angulation has on the 

accuracy of DSR to detect demineralisation within teeth, however, horizontal 

changes in source subject angulation affects the assessment of the extent and 

depth of proximal carious lesions when viewing conventional radiographic 

images (Chadwick et al., 1999, Sewerin, 1981b). 
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1.6.1.1.3 Patch minimisation  

Patch minimisation uses semi-automated functions; user-chosen reference 

points and mathematical algorithms, to attempt to correct geometric 

misalignments that exist between pairs of digital radiographs due to subject-film 

errors (Dunn and van der Stelt, 1992, Dunn et al., 1993).  The Compare 

Software (Dental Health Unit, University of Manchester, UK), which has been 

used in this research project and a number of other studies investigating the 

use of DSR, runs as a plug-in to Image Tool (version 1.23, University of San 

Antonio, Texas) and uses a semi-automated registration process to carry out 

patch minimisation.  It requires the operator to manually select two reference 

points, usually the mesial and distal amelo-cemental junction (ACJ) of the tooth 

of interest, on both the ‘before’ (Figure 2) and ‘after’ (Figure 3) digital 

radiographic images to enable a preliminary warp to be carried out of the two 

digital radiographic images.  Following the manual selection of the region of 

interest (ROI) on the ‘before’ digital radiographic image by drawing a patch 

(Figure 4), an automated mathematical algorithm finds the corresponding points 

of least difference on the after digital radiographic image.  The mathematical 

algorithm automatically carries out translation, rotation, scaling and shear of the 

patch to define the relationship of the two digital radiographic images to enable 

a matrix transformation to be carried out to warp the before digital radiographic 

image into the same geometric alignment as the after digital radiographic image 

(Ellwood et al., 1997). 

 

 

Figure 2.  Manual selection of mesial and distal 

ACJ for the lower left second molar tooth on 

‘before’ digital radiographic image  
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Figure 3.  Manual selection of mesial and distal 

ACJ for the lower left second molar tooth on ‘after’ 

digital radiographic image  

 

 

Figure 4.  Manual selection of the ROI for the 

lower left second molar tooth on the ‘before’ digital 

radiographic image by drawing a patch 

 

1.6.1.2 Densitometric standardisation  

Differences in densitometric properties (density and contrast) can exist between 

direct digital radiographic images due to differences in the exposure 

parameters, sensors or X-ray projection geometry used to generate them, or 

differences in anatomical structures.  Any differences in indirect digital 

radiographic images may also be due to variations in radiographic film or 

processing procedures.   
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1.6.1.2.1 Density normalisation 

Density normalisation attempts to correct differences in densitometric properties 

that exist between two digital radiographic images (Wenzel, 1989, Ohki et al., 

1988, Ruttimann et al., 1981, Ruttimann et al., 1986, van der Stelt, 2008).  

Density normalisation procedures densitometrically adjust the geometrically 

transformed after digital radiographic image into concordance with the before 

digital radiographic image (Ellwood et al., 1997).  Mathematical algorithms have 

been developed to derive the required grey-scale transformations and 

parametric methods were initially proposed (Ruttimann et al., 1981).  However, 

a modification of the non-parametric histogram normalisation method to modify 

pixel values was shown to yield statistically significant better results in terms of 

standard deviations in the digital subtraction images (Ruttimann et al., 1986).  

Further research has supported this as a non-parametric algorithm has been 

found to be statistically significantly better than algorithms based on linear 

approximation (Fourmousis et al., 1994a). 

1.6.1.3 Digital subtraction 

As discussed in section 1.5.1.3.5, DSR software superimposes the two digital 

radiographs that have undergone patch minimisation and density normalisation 

on top of one another.  The software then identifies the grey-scale values of the 

corresponding pixels on the before and after image, and subtracts them from 

one another to produce a digital subtraction image.  To ensure that the digital 

subtraction image that is produced is in the centre of the grey-scale range, 127 

is added to each of the resulting grey-scale values that form the digital 

subtraction image.  This means that if there has been no change in the grey-

scale value of the corresponding pixels on the two digital radiographs, then that 

pixel has a grey-scale value of 127 on the digital subtraction image; the middle 

of the grey-scale range.  Any areas of the digital subtraction image that appear 

lighter than this (grey-scale value >127) indicate that an increase in radiodensity 

has occurred for that corresponding pixel, and any areas that appear darker 

than this (grey-scale value <127) indicate that a decrease in radiodensity has 

occurred for that corresponding pixel.  Qualitative assessments can therefore 

be made using digital subtraction images, however, studies have also 

demonstrated that quantitative assessments can be made by calibrating optical 
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densities against a known standard (Vos et al., 1986, Fourmousis et al., 1994b, 

Ellwood et al., 1997, Bragger et al., 1998, Jeffcoat and Reddy, 1993). 

1.6.1.3.1 Contrast enhancement 

Contrast enhancement augments small differences in grey-scale values which 

may not be apparent if the digital subtraction image shows very little grey-scale 

variability.  This theoretically aids visualisation of smaller differences (Versteeg 

and van der Stelt, 1995).  Linear contrast enhancement increases all density 

differences equally including those attributed to various sources of noise.  

Logarithmic contrast enhancement does not increase all density differences 

equally, instead, it increases the differences in grey-scale values closer to 127 

to a greater extent than differences in grey-scale values closer to 0 (black) or 

255 (white).   

1.6.1.4 DSR and its use in dentistry 

At present, the use of DSR in dentistry is primarily limited to research.  Studies 

have investigated its use for assessing and monitoring periodontal bone levels 

(Hausmann et al., 1988, Schmidt et al., 1988, Wenzel et al., 1992, Grondahl 

and Grondahl, 1983), assessing and monitoring peri-implant bone levels 

(Engelke et al., 1990, Bragger et al., 1991, Bittar-Cortez et al., 2006, Jeffcoat et 

al., 1995), monitoring peri-radicular healing following endodontic treatment 

(Nicopoulou-Karayianni et al., 2002) and aiding the identification of victims in 

forensic dentistry (Wenzel and Andersen, 1994).  Its use investigating detection 

and monitoring of dental carious lesions is discussed in section 1.8. 

 

1.7 The detection and monitoring of carious lesions using 

radiography 

The decreased mineral content of enamel, and subsequently dentine within a 

carious lesion reduces the attenuation of an X-ray beam as it passes through it, 

compared to non-carious enamel and dentine.  This produces a relative 

radiolucent area on the radiographic film or digital radiographic image which 

corresponds to the presence of the carious lesion.  The greater the relative 

decrease in mineral content of the carious lesion compared to the adjacent non-

carious enamel and dentine, the more radiolucent the lesion will appear 

radiographically.  However, a carious lesion will not be identified 
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radiographically until approximately 30-40% mineral loss has occurred and 

underestimates the extent of a lesion (Wenzel et al., 1990, Razmus, 1994, 

Shwartz et al., 1984).  As a radiographic image provides a two-dimensional 

representation of a three-dimensional object, it can also be difficult to identify 

the exact geometric position of a carious lesion. 

1.7.1 The detection of carious lesions using radiography 

Radiographs are the most frequently used adjunct to visual examination in 

clinical practice for detecting carious lesions, however, great variability exists 

regarding its reported accuracy between studies (Bader et al., 2001).  A recent 

systematic review and meta-analysis by Schwendicke et al. (2015) investigated 

radiographic caries detection.  It found that clinically, radiographic detection has 

a generally low sensitivity for identifying all carious lesions (enamel and 

dentinal) associated with both occlusal surfaces (0.35), and proximal surfaces 

(0.24), however, its specificity is a lot higher (0.78 and 0.97 for occlusal and 

proximal surfaces respectively) (Schwendicke et al., 2015).  Higher sensitivity 

values were identified when only carious lesions in dentine were assessed (0.56 

and 0.36 for occlusal and proximal surfaces respectively), with the specificity 

values similar (0.95 and 0.94 for occlusal and proximal surfaces respectively), 

however, the highest sensitivity and specificity values were associated with the 

detection of cavitated proximal carious lesions (0.64 and 0.98 respectively) 

(Schwendicke et al., 2015).  These sensitivity and specificity values are very 

similar to two previous systematic reviews (Bader et al., 2002, Gomez et al., 

2013).   

In conclusion, the most recent and comprehensive systematic review 

(Schwendicke et al., 2015) found radiographs to have high accuracy in 

detecting cavitated proximal carious lesions and well suited to detecting carious 

lesions in dentine which may present as ‘hidden’ lesions (Ricketts et al., 1997, 

Schwendicke et al., 2015), which agrees with another review (Bader et al., 

2001).  Also in agreement with Bader et al. (2001) there was little variation in 

the reported accuracy in radiographic detection of carious lesions between in-

vivo and in-vitro studies (Schwendicke et al., 2015).   

Fifteen years ago, in 2001, the National Institutes of Health (NIH) held a 

development conference and their consensus statement for the diagnosis and 
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management of dental caries throughout life stated that ‘digitally acquired and 

post-processed images have great potential in the detection of non-cavitated 

caries and in the diagnosis of secondary caries’ but, that ‘developing digital 

imaging systems require robust laboratory and clinical evaluation’ (NIH, 2001).  

Since this statement, studies have investigated the use of digitally acquired and 

post-processed radiographic images for detecting and monitoring carious 

lesions, which have included the use of DSR, and will be discussed in the next 

section. 

 

1.8 The detection and monitoring of carious lesions using DSR 

There is considerable heterogeneity in the design of the small number of 

studies that have investigated the use of DSR for detecting and monitoring the 

progression of carious lesions over time which makes it difficult to carry out 

meaningful comparisons. 

1.8.1 The detection of carious lesions using DSR at a single point in 

time 

Three studies have investigated the accuracy of DSR for detecting carious 

lesions at a single point in time.  These require contrast media such as 

stannous fluoride (Halse et al., 1990, Wenzel and Halse, 1992) and barium 

sulphate (Valizadeh et al., 2008) to increase the radiographic density of the 

lesion to enable it to be visualised after digital subtraction.   

The use of DSR in combination with stannous fluoride results in an increase in 

the radiographic density of non-cavitated proximal carious lesions identified on 

the digital subtraction image (Halse et al., 1990) which is not seen when barium 

sulphate is used (Valizadeh et al., 2008).  Although the relative increase seen in 

the radiographic density of carious lesions on digital subtraction images 

produced using stannous fluoride is lower in enamel than dentine, it does 

enable the detection of clinically present proximal white spot carious lesions that 

are not visible on digital radiographs (Halse et al., 1990).  If a non-cavitated 

proximal carious lesion can be identified on a digital radiograph, the use of DSR 

in combination with stannous fluoride does not result in a statistically significant 

difference (P>0.05) in the measurement of the size of the lesion (Halse et al., 

1990).  However, if a cavitated proximal carious lesion can be identified on both 
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a digital radiograph and digital subtraction image produced in combination with 

barium sulphate, the measurement of carious lesion depth is statistically 

significantly more accurate on the digital subtraction image (P=0.052) than 

digital radiograph (P<0.001) compared to the histologically validated carious 

lesion depth (Valizadeh et al., 2008).   

The use of DSR in combination with stannous fluoride does not appear to 

improve the ability to detect non-cavitated occlusal carious lesions that extend 

into dentine compared to digital radiographs as more than 40% of teeth with 

such lesions were not detected by either method (Wenzel and Halse, 1992). 

These findings agree with those in a comparable sample of occlusal lesions 

using conventional radiographs (Wenzel and Fejerskov, 1992).  

1.8.2 Detecting and monitoring the progression of carious lesions 

using DSR over time 

A number of in-vitro and in-vivo studies have investigated DSR with and without 

contrast media for qualitatively and quantitatively detecting and monitoring the 

progression of proximal and occlusal carious lesions in enamel and dentine 

over time. 

1.8.2.1 In-vitro studies  

1.8.2.1.1 In-vitro studies involving carious lesions in enamel 

DSR has been shown to be statistically significantly more accurate than 

pairwise comparison of radiographic images for detecting acid induced 

demineralisation within the proximal surfaces of enamel (Ferreira et al., 2006, 

Haiter-Neto et al., 2005).  Haiter-Neto et al. (2005) identified no statistical 

significant difference (P>0.05) in accuracy between the use of logarithmically 

(AuROC curve = 0.98) and linear (AuROC curve = 0.97) contrast enhanced 

digital subtraction images, however, both were statistically significantly more 

accurate for detecting artificially created proximal lesions in enamel (P=0.0000) 

than pairwise comparison of conventional (AuROC curve = 0.90), CCD 

CygnusRay MPS (AuROC curve = 0.85), PSP DenOptix (AuROC curve = 0.91), 

PSP DIGORA (AuROC curve = 0.89) and digitised radiographic images 

(AuROC curve = 0.84).  These findings were supported in a subsequent study 

by Ferreira et al. (2006), who demonstrated that logarithmically contrast 

enhanced digital subtraction images (AuROC curve = 0.98) were statistically 
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significantly more accurate (P<0.05) than pairwise comparison of conventional 

(AuROC curve = 0.9), digitised (AuROC curve = 0.84) and digital radiographic 

images (AuROC curve = 0.91) for detecting artificially created proximal 

demineralisation lesions in enamel.  Both studies revealed no statistically 

significant differences (P>0.05) in detection accuracy comparing digital 

subtraction images produced using digital radiographic images versus digitised 

radiographic images (Ferreira et al., 2006, Haiter-Neto et al., 2005). 

However, these findings conflict with an earlier study where pairwise 

comparison of conventional radiographs (AuROC curve = 0.7 and 0.9) was 

statistically significantly more accurate (P<0.05) than digital subtraction images 

with linear contrast enhancement (AuROC curve = 0.66 and 0.85) in detecting 

proximal lesions created mechanically, to represent 5% and 10% enamel 

mineral loss respectively (Halse et al., 1994).  The conflicting findings are likely 

to be due to the mechanically prepared lesions resulting in well-defined 

radiographic lesions with sharp borders giving a higher contrast to air compared 

to the lesions created using demineralising solution in the other two studies 

(Ferreira et al., 2006, Haiter-Neto et al., 2005).  Demineralising solution is 

considered to be more representative of clinical lesions than mechanically 

prepared ones, so the Ferreira et al. (2006) and Haiter-Neto et al. (2005) 

studies are more likely to represent accuracy in the clinical situation. 

1.8.2.1.2 In-vitro studies involving carious lesions in dentine 

DSR can detect demineralisation associated with naturally occurring (Maggio et 

al., 1990) and artificially created (Minah, 1998) carious lesions over time.  

Maggio et al. (1990) used traditional subtraction radiography techniques and 

observed that over an eight week period, digital subtraction images showed a 

statistically significant increase (P=0.011) in the detection of a radiolucency at 

the deepest extent of naturally occurring carious lesions in dentine in teeth 

stored in a saliva buffer with 5% glucose or 5% sucrose compared to teeth 

stored in a saliva buffer alone.  Interestingly, an increase in radiopacity at the 

deepest extent of the carious lesions stored in the saliva buffer alone was 

identified on a number of the digital subtraction images which likely represents 

detection of remineralisation of the advancing front of the carious lesion due to 

deposition of calcium salts. The type of teeth used or the location of the carious 

lesions in their study was not specified. 
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Minah (1998) investigated quantitative methods in combination with DSR for 

assessing the extent of demineralisation of artificially created occlusal cavities 

in primary teeth incubated in cariogenic cultures over 45 days.  DSR values for 

the carious lesions were calculated by multiplying the average grey-scale value 

of the ROI around the carious lesion by the area of the ROI which corresponded 

to mineral loss, which is similar to a Computer-Assisted Densitometric Image 

Analysis (CADIA) value (Schmidlin et al., 2002).  The digital subtraction values 

for the ROI reduced over time, for all teeth, representing the ability of DSR to 

detect demineralisation and lesion progression over time (Minah, 1998).   

Ricketts et al. (2007) investigated the accuracy and reproducibility of DSR for 

detecting demineralisation in dentine (not reported by Maggio et al. (1990) or 

Minah (1998)) in addition to carrying out a pairwise comparison of digital 

radiographs.  Demineralising solution was placed in occlusal cavities extending 

into dentine over 24 hours and at baseline and after 3 and 6 hours, there was 

no statistically significant difference (P>0.05) in the accuracy for detecting 

occlusal demineralisation between the digital subtraction images (AuROC curve 

= 0.58, 0.64 and 0.71 respectively) and pairwise comparison of the digital 

images (AuROC curve = 0.5, 0.55 and 0.58 respectively).  However, after 12, 

18 and 24 hours, DSR (AuROC curve = 0.95, 0.98 and 0.96 respectively) was 

statistically significantly (P<0.01) more accurate at detecting occlusal 

demineralisation than pairwise comparison of digital radiographs (AuROC curve 

= 0.61, 0.65 and 0.76 respectively).  This agrees with the findings of the Haiter-

Neto et al. (2005) and Ferreira et al. (2006) studies regarding the detection of 

acid induced demineralisation within the proximal surfaces of enamel.  Ricketts 

et al. (2007) found no statistically significant differences (P>0.05) in mean intra-

examiner reproducibility over 24 hours, or mean inter-examiner reproducibility at 

baseline or after 3 hours between pairwise comparison of digital radiographs 

and digital subtraction images.  However, after 6 hours or more there was a 

statistically significant difference (P<0.05) in mean inter-examiner reproducibility 

favouring DSR (Ricketts et al., 2007). 

The majority of the in-vitro studies discussed above provide evidence to support 

the statement that DSR is more accurate than pairwise comparison of digital 

radiographs for detecting carious lesions in enamel and dentine.   
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1.8.2.1.3 In-vitro studies involving recurrent carious lesions  

Two in-vitro studies have assessed DSR for detecting recurrent carious lesions, 

however, due to differences in study design the results cannot be directly 

compared to one another (Eberhard et al., 2000, Nummikoski et al., 1992).  

Nummikoski et al. (1992) assessed the accuracy and reproducibility of DSR 

compared to conventional radiography for detecting mechanically created 

proximal defects underneath two different restorative materials.  They 

demonstrated that DSR was statistically significantly more accurate than using 

conventional radiography in detection of recurrent carious lesions under Valux 

(3M, St Paul, MN, USA) (P<0.0001) and Fulfil composites (L.D. Caulk, Milford, 

DE, USA) (P=0.0004).  Conventional radiography may have been biased 

against in this study as only the post-defect radiographic film was provided to 

examiners and, the pre-defect radiographic film was not available for pairwise 

comparison.  Although Valux has an attenuation coefficient considerably lower 

than enamel and Fulfil has an attenuation coefficient higher than enamel, this 

did not have a statistically significant effect on the accuracy to detect recurrent 

carious lesions using DSR (AuROC curve = 0.931 and 0.948 respectively), but 

did have a statistically significant effect when using conventional radiography 

(AuROC curve = 0.577 and 0.892 respectively).  Nummikoski et al. (1992) also 

found that DSR had a statistically significantly higher (P=0.0258) inter-examiner 

reproducibility (kappa value = 0.671) compared to conventional radiography 

(kappa value = 0.541), however no statistically significant difference (P=0.2950) 

in intra-examiner reproducibility was identified comparing DSR (kappa value = 

0.760) with conventional radiography (kappa value = 0.656), similar to Ricketts 

et al. (2007) for occlusal caries. 

Eberhard et al. (2000) investigated quantitative analysis of grey-scale values 

using digital subtraction images to detect acid induced demineralisation over 42 

days on the proximal surfaces of unrestored non-carious teeth and teeth 

restored with glass ionomer restorative material using a modified tunnel 

preparation technique.  When the crown of the whole tooth was analysed, there 

was no statistically significant difference in mean grey-scale value over 7-42 

days, however, a statistically significant difference was detected when the 

proximal surface and maximum size of the proximal lesion were analysed in 

isolation.  The reduction in mean grey-scale value was less for the lesions 
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associated with the proximal surfaces that had been restored with glass 

ionomer modified tunnel preparations, compared to the unrestored non-carious 

teeth, however, the difference was not statistically significant (P>0.05). 

The findings of this study together with those of Minah (1998) suggest that the 

quantitative analysis of mean grey-scale values from digital subtraction 

radiographic images could be used to monitor carious lesions, but that only the 

lesion should be analysed in isolation, rather than the whole tooth (Eberhard et 

al., 2000).   In-vivo studies investigating quantitative analysis of mean grey-

scale values for detecting and monitoring carious lesions are discussed later. 

1.8.2.1.4 In-vitro studies involving the use of contrast enhancement and 

DSR  

Two studies have compared the accuracy of contrast enhanced and standard 

digital subtraction images against each other for detecting carious lesions 

(Grondahl et al., 1982, Versteeg and van der Stelt, 1995).  Grondahl et al. 

(1982) used computer software to artificially create caries like proximal lesions 

in enamel on digitised radiographs of clinically and radiographically sound teeth, 

and also adjusted the densitometric parameters to simulate underexposure.  

Logarithmically enhanced and standard digital subtraction images were 

produced and viewed by examiners who recorded their certainty as to whether 

or not a carious lesion was present.  Significantly higher accuracies were 

obtained when logarithmically contrast enhanced digital subtraction images 

were viewed compared to unenhanced digital subtraction images using 

underexposed radiographs, however, for normally exposed radiographs, there 

was no statistical difference.  Versteeg and van der Stelt (1995) also compared 

the accuracy of logarithmically enhanced digital subtraction images with 

unenhanced digital subtraction images for detecting computer generated 

lesions on a plain texture, bone and enamel.  Two groups of examiners (one 

containing dentists and one containing final year dental students) viewed the 

images and recorded their certainty as to whether or not a carious lesion was 

present.  The accuracy for detecting the computer generated carious lesions in 

enamel was statistically significantly higher (P<0.05) using the logarithmically 

contrast enhanced digital subtraction images compared to unenhanced digital 

subtraction images in the student group, but not in the group of dentists, or 

when the accuracy of both groups was compared as one.  They also concluded, 
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in agreement with Halse et al. (1994), that structural noise has a significant 

effect on the accuracy of detecting lesions using digital subtraction images.    

Contrast enhanced digital subtraction images therefore appear to improve the 

accuracy of detecting carious lesions over standard digital subtraction images 

under a number of specific conditions including, when the digital radiographs 

being used to produce the image are underexposed (Grondahl et al., 1982); or 

the digital subtraction images are being viewed by inexperienced examiners 

(Versteeg and van der Stelt, 1995). 

In addition, although accuracy was not improved between logarithmically and 

linear contrast enhanced digital subtraction images for detecting artificially 

created proximal demineralisation lesions in enamel, logarithmically contrast 

enhanced digital subtraction images did reduce variation in accuracy (Haiter-

Neto et al., 2005).   

1.8.2.1.5 Conclusions and issues with the in-vitro studies 

The majority of the in-vitro studies discussed above demonstrate that DSR can 

detect and monitor carious lesions over time, and that it is at least as 

reproducible and significantly more accurate than the digital or conventional 

radiographic methods currently used in clinical practice.  The accuracy and 

reproducibility achieved in the in-vitro studies for DSR, and to some extent 

digital and conventional radiography is however likely to be higher than that 

achieved in-vivo in the clinical setting for a number of reasons including: 

1. it is more difficult to standardise X-ray projection geometry clinically, 

even when using customised devices; 

2. variations in densitometric parameters are also harder to control 

clinically, even if the same exposure parameters are selected and the 

same X-ray unit, radiographic film or sensor and X-ray projection 

geometry are used.  Human factors such as soft tissue attenuation, the 

movement of teeth, the presence of restorations and toothwear will all 

lead to variations in densitometric parameters in the same patient; and 

3. in the clinical situation, teeth are not viewed in isolation of other anatomic 

structures unlike in-vitro, where they are viewed as a single unit. 
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These factors are all likely to contribute to a reduction in the quality of the in-

vivo digital subtraction image.  Additional differences that might contribute to 

changes in accuracy of diagnostics between in-vitro and in-vivo studies are: 

1. differences in study designs as in in-vitro laboratory studies, examiners 

are often aware in which surface or location of the tooth they would be 

expected to potentially detect a carious lesion, reducing the complexity 

of decision making often encountered in the in-vivo clinical setting; and 

2. the nature of the carious lesion itself as in in-vitro studies, existing 

natural carious lesions are either identified or created artificially, and 

even if an existing natural carious lesion is identified, it is difficult to 

mimic artificially progression of the lesion; in the in-vivo clinical setting 

this involves a complex dynamic process which involves both 

demineralisation and remineralisation over a significant period of time 

which is often longer than the period that studies are carried out. 

1.8.2.2 In-vivo studies  

In-vivo clinical studies have investigated the accuracy and reproducibility of 

subtraction radiography for qualitatively and quantitatively detecting and 

monitoring carious lesions in enamel and dentine on proximal and occlusal 

tooth surfaces.  This includes studies that have investigated a variety of 

techniques ranging from non-invasive approaches involving topical fluoride, 

sealants and resin infiltration to more invasive techniques incorporating 

stepwise excavation.  For ethical reasons, histological validation is rarely 

possible, so the accuracy and reproducibility of subtraction radiography has 

often been validated against other detection methods, in particular the use of 

conventional radiographic techniques.  Due to the low number of studies and 

the differences in their study design, it is difficult to make meaningful 

comparisons between the studies that have been published, however, they will 

be discussed below.  

1.8.2.2.1 In-vivo studies involving quantitative analysis 

Five in-vivo studies have investigated DSR for assessing the progression of 

carious lesions over time using quantitative measurement of mean grey-scale 

values on digital subtraction images, however, no comparisons were made with 

any other detection methods and the mean grey-scale values were validated 
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against qualitative assessment of lesion change on the same digital subtraction 

image (Alves et al., 2009, Carneiro et al., 2009, Maltz et al., 2002, Maltz et al., 

2007, Oliveira et al., 2006).  All five studies produced digital subtraction images 

from digitised conventional bitewing radiographs following density 

normalisation, and limited quantitative measurement to a specific ROI involving 

part of, or the whole carious lesion in its entirety, rather than the tooth as a 

whole as recommended by Eberhard et al. (2000).  

Carneiro et al. (2009) recruited patients with conventional radiographic evidence 

of proximal carious lesions extending into enamel which were subsequently 

managed with oral hygiene instruction, dietary interventions and 

remineralisation therapy on a weekly basis over 8 weeks which involved 

carrying out dental prophylaxis and conditioning of the lesion using 37% 

phosphoric acid gel and 0.05 M aluminium nitrate prior to the topical application 

of 1.23% acidulous phosphate fluoride gel.  Pre- and post-management 

radiographs were taken using the same X-ray tube vertical angulation and 

commercially available bitewing film holders with customised silicone bite blocks 

to standardise X-ray projection geometry.  Qualitative analysis revealed 10 

carious lesions were judged to have demineralised, 34 remained unchanged 

and 17 remineralised and the respective mean grey-scale values of the carious 

lesions in each group were 112.10, 127.29 and 137.47 which were significantly 

different (P<0.05) from one another. 

Four in-vivo studies reported the results of the same cohort of patients who 

underwent stepwise excavation to manage deep carious lesions in dentine over 

time; results at 6-7 months (Maltz et al., 2002), 14-18 months (Oliveira et al., 

2006), 36-45 months (Maltz et al., 2007) and 10 years (Alves et al., 2009).  

Radiographs were taken at baseline following first excavation and placement of 

the temporary restoration and after each time period before re-entering, using a 

commercially available bitewing film holder with customised self-cured acrylic 

resin bite block to standardise X-ray projection geometry.  Interestingly, after 

10-years due to changes in tooth position and distortion of the self-cure acrylic 

resin the customised bite blocks could not be used, so standard bite blocks 

were used instead.  Statistically significant differences (P<0.05) between the 

mean grey-scale value of the radiolucent zones immediately below the 

restorations compared to control zones in the adjacent dentine were identified 
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at each time period, with the radiolucent zone having a higher mean grey-scale 

value compared to the control zones.  Intra-examiner reproducibility of the 

quantitative measurement of the radiolucent zones of the carious lesions carried 

out using the digital subtraction images found increasing intraclass correlation 

coefficient values over time; 0.69 (6-7 months), 0.83 (14-18 months), 0.82 (36-

45 months) and 0.99 (10 years).   

The five in-vivo studies (Alves et al., 2009, Carneiro et al., 2009, Maltz et al., 

2002, Maltz et al., 2007, Oliveira et al., 2006) suggest that quantitative 

measurement of the mean grey-scale value of part of, or, a whole carious lesion 

confined to enamel or extending into dentine using DSR enables monitoring of 

further demineralisation, remineralisation or arrest over time, and that the intra-

examiner reproducibility for carrying out quantitative measurements is high.  

However, none of the studies reported inter-examiner reproducibility and the 

sample sizes were relatively small. 

1.8.2.2.2 In-vivo studies involving qualitative analysis 

Four in-vivo studies have investigated and compared the qualitative analysis of 

DSR with other conventional radiographic methods for assessing the 

progression of carious lesions in both enamel and dentine over time (Martignon 

et al., 2006, Martignon et al., 2012, Paris et al., 2010, Wenzel et al., 2000).  

Three of them (Martignon et al., 2006, Martignon et al., 2012, Paris et al., 2010) 

also compared the effect of various carious lesion management interventions 

including preventative strategies (incorporating oral hygiene instruction, dietary 

interventions and the application of topical fluoride), the placement of sealants 

and resin infiltration.  A summary of the individual study designs and their 

materials and methods is presented in Table 3.  The progression of carious 

lesions was not validated histologically in any of the four studies, however, its 

detection on digital subtraction images was compared to its detection using 

other conventional radiographic methods for the different carious lesion 

management interventions used in the studies carried out by Martignon et al., 

(2006 and 2012) and Paris et al. (2010).   

DSR detected that a higher proportion of carious lesions had progressed over 

time compared to conventional independent (Martignon et al., 2006), 

conventional pairwise (Martignon et al., 2006, Martignon et al., 2012) and 
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digitised pairwise (Paris et al., 2010) comparison of radiographs (Table 4).  

Unfortunately, as these three studies were primarily concerned with comparing 

different carious lesion management interventions, no statistical analysis was 

carried out to assess for any significant differences between the radiographic 

methods used for detecting carious lesion progression. 

DSR was also shown to have higher intra-examiner reproducibility for assessing 

carious lesion progression compared to conventional independent (Martignon et 

al., 2006) and conventional pairwise comparison of radiographs (Martignon et 

al., 2006, Martignon et al., 2012, Wenzel et al., 2000) (Table 5).  Inter-examiner 

reproducibility for assessing carious lesion progression was however shown to 

be higher than digitised independent and pairwise comparison of digitised 

radiographs in the study by Paris et al. (2010), but lower than pairwise 

comparison of conventional radiographs in the study by Wenzel et al. (2000), 

however this difference was not statistically significant (Table 5). 
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Table 3.  A summary of the study designs and materials and methods for the four in-vivo 

studies that investigated the qualitative analysis of DSR  

 

 

Study Wenzel et al. 
(2000) 

Martignon et al. 
(2006) 

Paris et al. 
(2010) 

Martignon et al. 
(2012) 

Number of 
participants 

49 82 22 22 

Power 
calculation 

No Yes Yes Yes 

Tooth surface Any surface Proximal Proximal Proximal 

Lesion type 

 

Enamel and 
dentine 

 

Enamel (outer 
1/2, inner 1/2) 
and dentine 
(outer 1/3) 

Enamel (inner 
1/2) and dentine 

(outer 1/3) 

At ADJ and 
dentine (outer 

1/3) 

Time period 1-2 years 18 months 18 months 1 year 

Treatment 
groups 

- Split mouth Split mouth Split mouth 

Management 
interventions 

 

 

 

- 

 

Prevention Prevention and 
resin infiltration 

Prevention and 
resin infiltration 

Prevention and 
sealing 

Prevention and 
placebo 

Prevention and 
sealing 

Prevention and 
placebo 

Randomised 
management 
allocation 

- Yes Yes Yes 

Standardised 
X-ray 
projection 
geometry 

Yes Yes Yes Yes 

Density 
normalisation 

Not mentioned Yes Not mentioned Not mentioned 

DSR compared 
to 

Conventional 
pairwise 

comparison 

Conventional 
pairwise 

comparison 

Digitised 
pairwise 

comparison 

Conventional 
pairwise 

comparison 

Conventional 
independent 

Number of 
examiners 

7 1 2 1 

Assessment of 
lesion change 

Qualitative Qualitative Qualitative Qualitative 
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Table 4.  A summary of the results of lesion progression (as indicated by %) for the four in-vivo 

studies that investigated the qualitative analysis of DSR  

Study Wenzel et al. 
(2000)** 

Martignon et al. 
(2006) 

Paris et al. 
(2010) 

Martignon et al. 
(2012) 

Lesion 
progression 
assessed by DSR 

 

(* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

(* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

(* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

Prevention (P)  84.5%*   37%* 63%*               
(P vs SP and    

P vs RP) 

Sealing and 
prevention (SP) 

 43.4%*  42%*               
(P vs SP) 

    

Resin infiltration 
and prevention 
(RP) 

  7%* 26%*               
(P vs RP) 

Lesion 
progression 
assessed by 
conventional 
independent 

 (* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

  

Prevention (P)  26.40%   

Sealing and 
prevention (SP) 

 9.7%   

Lesion 
progression 
assessed by 
conventional 
pairwise 

 (* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

 (* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

Prevention (P)  47.2%*  47%*               
(P vs RP) 

Sealing and 
prevention (SP) 

 22.2%*  29% 

Resin infiltration 
and prevention 
(RP) 

   16%*               
(P vs RP) 

Lesion 
progression 
assessed by 
digitised pairwise 

  (* denotes stat. 
sig. diff. P<0.05 
with McNemar 

test) 

 

Prevention (P)   22%  

Resin infiltration 
and prevention 
(RP) 

  4%  

**This study did not report lesion progression but for continuity has been included in Table 4 
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Table 5.  A summary of the intra- and inter-examiner reproducibility for the four in-vivo studies 

that investigated the qualitative analysis of DSR  

Study 

 

Wenzel et al. 
(2000) 

Martignon et 
al. (2006) 

Paris et al. 
(2010) 

Martignon et 
al. (2012) 

Intra-examiner 
reproducibility 

Kappa 

(* denotes stat. sig. 
diff. P<0.05 using 
Wilcoxons non-

parametric test for 
paired data) 

Kappa 

(% Agreement) 
(Stat. sig. diff. 
not tested for) 

Kappa 

Ranged from 
0.510 - 0.894 
(Stat. sig. diff. 
not tested for) 

Kappa 

(Stat. sig. diff. 
not tested for) 

DSR 0.875* 0.87 (92%)  0.78 

Conventional 
independent 

 0.84 (96%)   

Conventional 
pairwise 

0.758* 0.44 (68%)  0.74 

Inter-examiner 
reproducibility 

Kappa 

(* denotes stat. sig. 
diff. P<0.05 using 
Wilcoxons non-

parametric test for 
paired data) 

 Kappa 

(Stat. sig. diff. 
not tested for) 

 

DSR 0.678  0.809  

Digitised 
independent 

  0.585  

Conventional 
pairwise 

0.701    

Digitised 
pairwise 

  0.674  
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1.9 Conclusions 

With the change in philosophy in the management of carious lesions towards 

preventative, micro-invasive and restorative techniques that promote the arrest, 

and remineralisation of the lesion, there is a need to develop new methods of 

monitoring lesion behaviour over time.  If the carious biomass has been sealed 

within the tooth, using either a sealant, resin infiltration or a restoration, 

radiography is the only method available at present to monitor the lesion over 

time.  The use of digital subtraction images has been demonstrated to be more 

accurate and reproducible for detecting and monitoring carious lesion 

progression over time compared to pairwise comparison of conventional or 

digital radiographs.   

It is recognised that the use of a reproducible X-ray projection geometry 

improves the quality of the production of a digital subtraction image.  Although 

digital subtraction software can compensate for subject-film errors, no studies to 

date have investigated the effect that variations in X-ray source subject 

projection geometry have on the accuracy and reproducibility for detecting 

carious lesion progression.  Neither have any studies investigated the use of a 

grading system for assessing observed changes in the proximal relationships of 

teeth on paired digital radiographs that have been taken with variations in X-ray 

source subject projection geometry, and evaluated their suitability to undergo 

digital subtraction to detect carious lesion progression.   

It is essential to investigate these areas further to provide evidence to support 

rational decision making around whether DSR could be used in the clinical 

setting to accurately and reliably monitor carious lesion progression, as the X-

ray projection geometry cannot be standardised completely.  This information 

will also allow identification of gaps in knowledge and areas for future 

development of techniques to improve diagnosis of carious lesion behaviour. 
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2 Aims and objectives 

 

2.1 Research question 

Does alteration of X-ray source subject projection geometry have an impact on 

the accuracy and reproducibility of DSR for detecting demineralisation in 

artificially created occlusal cavities?   

 

2.2 Aim 1 

Part 1 of this research project involves in-vitro assessment of the accuracy and 

reproducibility of DSR for detecting demineralisation in occlusal cavities using 

digital radiographs taken with variations in X-ray source subject projection 

geometry after varying time periods of demineralisation. 

2.2.1 Objectives 

1. Evaluate the effect on accuracy for detecting demineralisation in 

occlusal cavities, that variations in the horizontal (by 7 and 15 degrees) 

and vertical (by 10 and 15 degrees) X-ray source subject projection 

geometry of digital radiographs used to produce digital subtraction 

images have, when compared to the use of digital radiographs with a 

reproducible 0 degree X-ray projection geometry; 

2. Determine whether there is any significant difference in the accuracy of 

DSR for detecting demineralisation in occlusal cavities using digital 

radiographs that have had a mesial, compared to a distal, 7 and 15 

degree horizontal angulation variation in X-ray source subject projection 

geometry; 

3. Determine whether there is any significant difference in the accuracy of 

DSR for detecting demineralisation in occlusal cavities using digital 

radiographs that have had a positive upward, compared to a negative 

downward, 10 and 15 degree vertical angulation variation in X-ray 

source subject projection geometry;  

4. Evaluate the effect that variations in the horizontal (by 7 and 15 

degrees) and vertical (by 10 and 15 degrees) X-ray source subject 

projection geometry of digital radiographs used to produce digital 
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subtraction images have on its intra-examiner reproducibility for 

detecting demineralisation in occlusal cavities; and  

5. Evaluate the effect that variations in the horizontal (by 7 and 15 

degrees) and vertical (by 10 and 15 degrees) X-ray source subject 

projection geometry of digital radiographs used to produce digital 

subtraction images have on its inter-examiner reproducibility for 

detecting demineralisation in occlusal cavities. 

 

2.3 Aim 2 

In light of the results arising from Aim 1 of this research project, which identified 

that the accuracy of DSR for detecting demineralisation in occlusal cavities 

decreased when digital radiographs were taken with increasing horizontal 

variations in X-ray source subject projection geometry, Part 2 of this research 

project investigated the discriminatory ability and evaluated the reproducibility of 

a grading system for assessing observed changes in the proximal relationships 

of teeth on paired digital radiographs that had been taken with horizontal 

variations in X-ray source subject projection geometry. 

2.3.1 Objectives 

1. Assess the median differences in scores for the proximal relationships 

of teeth on paired digital radiographs that have been taken with 7 and 

15 degree horizontal angulation variations in X-ray source subject 

projection geometry between them;   

2. Assess the intra-examiner reproducibility of a grading system for 

assessing the observed changes in the proximal relationships of teeth 

on paired digital radiographs that have been taken with 7 and 15 degree 

horizontal angulation variations in X-ray source subject projection 

geometry between them; and 

3. Assess the inter-examiner reproducibility of a grading system for 

assessing the observed changes in the proximal relationships of teeth 

on paired digital radiographs that have been taken with 7 and 15 degree 

horizontal angulation variations in X-ray source subject projection 

geometry between them. 
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3 Materials and methods 

 

Part 1: In-vitro the accuracy and reproducibility of DSR for detecting 

demineralisation in occlusal cavities using digital radiographs taken 

with variations in X-ray source subject projection geometry after 

varying time periods of demineralisation 

 

3.1 Introduction 

One-hundred and sixty digital radiographs were obtained to achieve Aim 1 of 

this research project.  These included 100 pre- and 60 post-demineralisation 

digital radiographs.  Eighty of these digital radiographs (20 pre- and 60 post-

demineralisation) taken with a reproducible X-ray projection geometry were 

used in the in-vitro study by Ricketts et al. (2007) which investigated the 

accuracy and reproducibility of conventional radiographic assessment and DSR 

for detecting occlusal demineralisation.  The additional 80 pre-demineralisation 

digital radiographs which were not used in the in-vitro study by Ricketts et al. 

(2007) were taken with variations in X-ray source subject projection geometry 

and have not been used to date.  Section 3.2 describes how the 160 digital 

radiographs were produced prior to me obtaining them for use in this research 

project, and therefore, part of it details the materials and methods already 

discussed in the in-vitro study published by Ricketts et al. (2007).  Section 3.3 

describes how the 160 digital radiographs that were obtained were used in this 

research project.  Figure 5 shows a flowchart summarising the materials and 

methods for this part of the research project. 

 



50 
 

 

 

Figure 5.  Flowchart summarising the materials and methods for Part 1 of this research project 

Forty extracted molar teeth with unrestored occlusal surfaces ranging from non-carious to 
cavitated and 20 extracted premolar teeth collected (section 3.2.1) 

Two molar teeth and one premolar tooth selected using a random selection process and 
mounted in anatomical relationship in plaster blocks using pink dental modelling wax to 
mimic the gingival soft tissues to create 20 posterior dental arch sextants (section 3.2.2) 

Tooth tissue removed from occlusal fissures in each molar tooth using a diamond bur to 
expose either non-carious or carious dentine (section 3.2.2) 

Five pre-demineralisation digital radiographs produced of each posterior dental arch 
sextant altering the angulation of the X-ray source subject projection geometry by 0, 7 and 

15 degrees to the horizontal and by 15 and 10 degrees to the vertical (section 3.2.3) 

Demineralising solution placed and continually replenished in the occlusal cavities of 19 
molar teeth selected using a random selection process over 24 hours (section 3.2.4) 

Three post-demineralisation digital radiographs produced of each posterior dental arch 
sextant with a 0 degree horizontal angulation X-ray source subject projection geometry 

after 12, 18 and 24 hours (section 3.2.4) 

Image processing carried out to produce 600 digital subtraction images of each molar 
tooth at each angulation and length of demineralisation (section 3.3) 

The 12 examiners independently scored the 600 digital subtraction images as to their level 
of certainty that occlusal demineralisation of the indicated cavity in the molar tooth was 

present using a five-point certitude scale (section 3.6.2) 

The 600 digital subtraction images were inserted into a Microsoft PowerPoint (Microsoft 
Office PowerPoint 2007) presentation in a randomly generated order (section 3.4) 

Twelve independent examiners recruited to participate in part 1 of the research project 
(section 3.5) 

One-hundred of the previous 600 digital subtraction images were selected using a random 
selection process and inserted into a new Microsoft PowerPoint (Microsoft Office 

PowerPoint 2007) presentation in a randomly generated order and scored by the 12 
examiners 1 month after they had completed scoring the previous 600 digital subtraction 

images (section 3.7) 

Statistical analysis carried out to assess the accuracy and reproducibility of using DSR to 
detect occlusal demineralisation within the cavities of the molar teeth (section 3.8) 
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3.2 Production of digital radiographs obtained for use in this 

research project 

3.2.1 Collection of extracted teeth 

Forty extracted molar teeth with unrestored occlusal surfaces ranging from non-

carious to cavitated and 20 premolar teeth were selected from a bank of 

extracted teeth retained at Dundee Dental Hospital and School for teaching and 

research purposes.  The teeth were cleaned and stored in saline containing 

thymol crystals to inhibit bacterial growth. 

3.2.1.1 Ethical approval 

The teeth were collected prior to the implementation of the Human Tissue 

(Scotland) Act 2006 and used in accordance with accepted standards at the 

time. 

3.2.2 Set up of extracted teeth and preparation of occlusal cavities 

Two molar teeth and one premolar tooth were selected using a random 

selection process to create twenty posterior dental arch sextants.  The extracted 

teeth were mounted in anatomical relationship in plaster blocks reaching up to 

3-4mm short of the ACJ.  Pink dental modelling wax was placed over the plaster 

up to the ACJ and moulded to mimic the gingival soft tissues (Figure 6). 

 

 

 

Figure 6.  Posterior dental arch sextant 
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Five notional heads were created each comprising an upper right, upper left, 

lower left and lower right posterior dental arch sextant.  A numerical code was 

applied to each of the forty molar teeth and used as a tooth identifier.  The 

plaster blocks were trimmed to allow close approximation of PSP plates to the 

palatal/lingual surfaces of the teeth.  This also allowed the PSP plates to be 

aligned parallel to the line of the sextant.  Enamel was removed from the 

occlusal fissures in each molar tooth using a diamond bur to expose either the 

non-carious or carious dentine below.  In the non-carious teeth the occlusal 

cavities were cut 2-3mm wide in the bucco-lingual direction.  In the carious 

teeth, the enamel was removed to expose the carious dentine underneath 

(Figure 7).   

 

 

 

Figure 7.  Occlusal cavities cut in the molar teeth 

 

3.2.3 Production of pre-demineralisation digital radiographs 

Pre-demineralisation digital radiographs were obtained using an alignment 

system which allowed control over the X-ray projection geometry.  A laminated 

board was placed on a horizontally level dental surgery cabinet.  Two adjacent 

parallel rectangles were marked to enable accurate positioning of the plaster 

block containing the teeth and a 10mm thick perspex block which was used as 

a soft tissue equivalent.  PSP plates (DenOptix™ PSP digital imaging system), 

within their light protective sleeves, were attached to the palatal/lingual surface 

of the plaster blocks, parallel to the teeth.  The plaster blocks were positioned 

with the buccal surface of the teeth next to the perspex block, facing the X-ray 

tube (Figure 8). 
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Figure 8.  Aerial (A) and horizontal (B) view of the set-up for production of the digital 

radiographs 

 

Digital radiographs were taken using a Gendex 765DC X-ray source (65kV, 7 

mA, exposure time 0.16s, source-to-detector distance 250mm).  The PSP 

plates were read using a DenOptix scanner and VixWin software and the digital 

images stored as .tif images (dimensions 865x576 pixels, 300 dpi, bit depth 24, 

compression LZW, resolution unit 2).   

Five pre-demineralisation digital radiographs were taken of each posterior 

dental arch sextant.  The 0 degree angulation pre-demineralisation digital 

radiograph was taken with the vertical angulation of the long axis of the X-ray 

tube parallel to the horizontal plane (Figure 9 D) and the end of the X-ray tube 

perpendicular to and flat against the surface of the perspex block (Figure 9 A).  

The X-ray beam passed tangentially through the inter-proximal space and/or 

contact points of the molar and premolar teeth (Figure 8).  The perspex block, 

plaster block and PSP plate were positioned parallel to each other (Figure 8).  

Four further pre-demineralisation digital radiographs were taken following 

alteration of the X-ray source subject projection geometry compared to the 0 

degree angulation pre-demineralisation digital radiograph.  The horizontal 

angulation of the end of the X-ray tube was rotated by 7 degrees (Figure 9 B) 

A 

B 
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and 15 degrees (Figure 9 C) anti-clockwise (as viewed from the aerial 

perspective), and the vertical angulation of the long axis of the X-ray tube 

altered by 15 degrees (upward direction) (Figure 10 A) and 10 degrees 

(downward direction) (Figure 10 B).  The perspex block, plaster block and PSP 

plates’ geometric relationship remained constant, therefore, changes were only 

made to the X-ray source subject projection geometry.  Five pre-

demineralisation digital radiographs were therefore produced for each posterior 

arch dental sextant with varying X-ray source subject projection geometry. 

Each of the 20 posterior dental arch sextants was positioned with the buccal 

surface of the teeth towards the X-ray beam and on the base of the plaster 

block.  Alteration of the horizontal angulation of the long axis of the end of the 

X-ray tube by 7 degrees and 15 degrees anti-clockwise, to a line drawn 

perpendicular from the surface of the perspex block as viewed from the aerial 

perspective for the production of the 7 degree and 15 degree horizontal 

angulation pre-demineralisation digital radiographs, resulted in a distal shift of 

the X-ray beam for the lower left and upper right posterior dental arch sextants 

and mesial shift of the X-ray beam for the lower right and upper left posterior 

dental arch sextants.  Alteration of the vertical angulation of the long axis of the 

X-ray tube by 15 degrees (upward direction), for the production of the 15 degree 

vertical angulation pre-demineralisation digital radiograph, resulted in a 15 

degree upward direction shift of the X-ray beam for the lower posterior dental 

arch sextants and a 15 degree downward direction shift of the X-ray beam for 

the upper posterior dental arch sextants.  Alteration of the vertical angulation of 

the long axis of the X-ray tube by 10 degrees (downward direction) for the 

production of the 10 degree vertical angulation pre-demineralisation digital 

radiograph resulted in a 10 degree downward direction shift of the X-ray beam 

for the lower posterior dental arch sextants and a 10 degree upward direction 

shift of the X-ray beam for the upper posterior dental arch sextants.   
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Figure 9.  Aerial (A,B,C) and horizontal (D) views of the X-ray projection geometry set-up for 

production of the 0 degree angulation (A&D), 7 degree horizontal angulation (B&D) and 15 

degree horizontal angulation (C&D) pre-demineralisation digital radiographs 

 

A 

B 

C 

D 



56 
 
 

                

     

 

                      

 

Figure 10.  Horizontal (A,B) and aerial (C) views of the X-ray projection geometry set-up for 

production of the 15 degree vertical angulation (A&C) and 10 degree vertical angulation (B&C) 

pre-demineralisation digital radiographs 

 

3.2.4 Demineralisation of occlusal cavities and production of post-

demineralisation digital radiographs 

Nineteen of the 40 molar teeth were randomly selected for demineralisation.  A 

demineralising solution (ph=1; Surgipath Decalcifier II) was dropped with a 

pipette into the occlusal cavities in these 19 molar teeth and continually 

replenished over a 24-hour period.  The demineralising solution was rinsed out 

of the occlusal cavities after 12, 18 and 24 hours and post-demineralisation 

A 

B 

C 
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digital radiographs taken of all 20 posterior dental arch sextants at these time 

intervals.  Zero degree post-demineralisation digital radiographs were taken 

using the same X-ray projection geometry that was used to take the 0 degree 

angulation pre-demineralisation digital radiographs (Figure 9 A&D) that is, with 

the vertical angulation of the long axis of the X-ray tube parallel to the horizontal 

plane and the end of the X-ray tube perpendicular to and flat against the surface 

of the perspex block.  

The following digital radiographs were therefore obtained for each of the 20 

posterior dental arch sextants: 

 Five pre-demineralisation digital radiographs taken with 0 degree, 7 

degree horizontal, 15 degree horizontal, 10 degree vertical and 15 

degree vertical angulation changes in X-ray source subject projection 

geometry; and 

 Three 0 degree angulation post-demineralisation digital radiographs 

taken after 12, 18 and 24 hours demineralisation. 

The resulting 160 digital radiographs were saved as .tif files with file names to 

enable identification of: 

1. Which posterior dental arch sextant was used; 

2. Which X-ray source subject projection geometry was used; and 

3. If the digital radiograph was taken pre-demineralisation or after 12, 18 

or 24 hours post-demineralisation. 

 

3.3 Production of digital subtraction images 

3.3.1 Investigator and examiner blinding 

The resulting 160 digital radiographs were obtained by the principle researcher 

Samuel Rollings (SR), however, the identity of the 19 demineralised molar teeth 

was only made available once the digital subtraction images had been 

produced and scored by all of the examiners. 

3.3.2 Image processing prior to digital subtraction 

Each of the 160 digital radiographs underwent image processing using Corel 

PaintShop Photo Pro X3 prior to digital subtraction.  The following image 
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processing modifications were applied to each digital radiograph in the following 

order: 

1. The digital radiographic image was rotated to the correct anatomical 

orientation. 

2. The digital radiographic image was converted into a 256 grey scale 

image. 

3. The ‘blur more’ image processing tool was applied to the digital 

radiographic image. 

4. The digital radiographic image was resized to 860x570 pixels. 

5. The digital radiographic image was saved with the same identifying file 

name as a .bmp file. 

 

3.3.3 Digital subtraction 

Digital subtraction images were produced using Compare Software (Dental 

Health Unit, University of Manchester, UK) which runs as a plug-in to Image 

Tool (version 1.23, University of San Antonio, Texas).  Fifteen digital subtraction 

images were produced for each molar tooth by subtracting each of the three 0 

degree angulation post-demineralisation digital radiographs taken after 12, 18 

and 24 hours from each of the five pre-demineralisation digital radiographs 

taken with 0 degree, 7 degree horizontal, 15 degree horizontal, 10 degree 

vertical and 15 degree vertical angulation changes in X-ray source subject 

projection geometry.  Six-hundred digital subtraction images were produced as 

each molar tooth was considered separately.     

Each digital subtraction image was produced using the process described 

below which is modified from the guidance provided with the software.  To aid 

understanding, and for illustration purposes, Figure 11 presents the series of 

screenshots that were taken from the program during the production of a 0 

degree angulation 24 hour digital subtraction image for the lower left second 

molar tooth in head three. 

3.3.3.1 Digital subtraction image processing protocol 

1. The appropriate pre-demineralisation and post-demineralisation digital 

radiograph files were opened within the Image Tool program (Figure 11 

A). 
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2. The Compare command was selected and the pre-demineralisation 

digital radiograph file selected as the ‘1st Image’ (Figure 11 B) and the 

post-demineralisation digital radiograph file selected as the ‘2nd image’ 

(Figure 11 C).   

3. OK was selected which opened up a new dialogue box titled ‘Compare’ 

(Figure 11 D). 

4. Preliminary alignment of the two digital radiographic images was carried 

out by selecting two corresponding points on both the before and after 

images.  This was done by selecting ‘Select set of points #1’ from the 

‘Compare’ dialogue box (Figure 11 D) and selecting the mesial and 

distal ACJ on the molar tooth being processed on the ‘Before image’ 

(Figure 11 E).  This was carried out for the ‘After image’ by selecting 

‘Select set of points #2’ from the ‘Compare’ dialogue box (Figure 11 

D) and selecting the corresponding mesial and distal ACJ on the molar 

tooth being processed on the ‘After image’ (Figure 11 F).   

5. ‘Preliminary Warp’ was then selected from the ‘Compare’ dialogue box 

(Figure 11 G).  

6. The Add button for ‘Im.1’ was selected from the ‘Compare’ dialogue 

box (Figure 11 H) and a polygon drawn around the crown of the molar 

tooth being analysed to select areas common to both digital 

radiographic images that were likely to have remained unchanged 

(Figure 11 I).  The Exclude button for ‘Im.1’ was selected from the 

‘Compare’ dialogue box (Figure 11 H) and a polygon drawn around any 

areas within the previously selected area that were not likely to be 

common to both digital radiographic images and may have changed, 

such as the occlusal cavity in this research project (Figure 11 J).  The 

areas were selected on the ‘Before image’, but are displayed on both 

the ‘Before image’ and ‘After image’.  Warp was then selected from the 

‘Compare’ dialogue box (Figure 11 H).  

7. The ‘Difference pixel jump’ value within the ‘Warp parameters’ dialogue 

box (Figure 11 K) was changed from the default setting of ‘20’ to ‘5’.  

The default settings for ‘Rotation + Translation’ and ‘Affine’ were left 

unchanged.   

8. Density Normalise was selected from the ‘Compare’ dialogue box and 

the Non parametric equalisation box selected from the ‘Density 
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Normalisation’ dialogue box (Figure 11 L).  All other default settings 

within the ‘Density Normalisation’ dialogue box remained unchanged.  

OK was then selected. 

9. The ‘Difference image’ was selected (Figure 11 M) and the 

Contrast/Brightness button selected from the Quick access toolbar.  

The contrast slider bar (Figure 11 N) was adjusted as required until a 

satisfactory ‘Difference Image’ was produced (Figure 11 O). 

10. The ‘Difference image’ was selected and saved (Figure 11 P) as a .bmp 

image (860x570 pixels, bit depth 8) with file names to enable 

identification of: 

I. Which molar tooth was used to produce the digital subtraction 

image; 

II. Which X-ray source subject projection geometry was used to 

produce the pre-demineralisation digital radiograph; and  

III. After which length of time the post-demineralisation digital 

radiograph was taken. 

 

The procedure detailed above was repeated to produce 600 digital subtraction 

images for every combination of X-ray source subject projection geometry and 

length of demineralisation for each of the 40 molar teeth. 
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Figure 11.  Screenshots taken from the Compare Software demonstrating the protocol for 

processing the 0 degree angulation 24 hour digital subtraction image for the lower left second 

molar tooth in head three.  A Pre-demineralisation and post-demineralisation digital radiographs 

opened within the Image Tool program, B  Selection of pre-demineralisation digital radiograph 

as ‘1st image’, C Selection of post-demineralisation digital radiograph as ‘2nd image’, D 

‘Compare’ dialogue box, E Selection of the mesial and distal ACJ on the ‘Before image’ 

A 

B C 

D E 
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Figure 11. (continued)  F Selection of the mesial and distal ACJ on the ‘After image’, G 

Selection of ‘Preliminary Warp’ from the ‘Compare’ dialogue box, H Selection of ‘Add’ and 

‘Exclude’ for ‘Im.1’ from the ‘Compare’ dialogue box and selection of ‘Warp’, I Polygon drawn 

around crown of molar tooth on ‘Before image’ to select and add areas common to both digital 

radiographic images that are likely to have remained unchanged, J Polygon drawn around 

crown of molar tooth on ‘Before image’ to select and exclude areas that are not likely to be 

common to both digital radiographic images that are likely to have changed 

F 

H I 

J 

G 
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Figure 11. (continued)  K ‘Warp parameters’ dialogue box, L ‘Density Normalisation’ dialogue 

box, M Selection of the ‘Difference image’, N Contrast slider bar, O Adjustment of contrast slider 

bar to produce satisfactory ‘Difference image’, P ‘Difference image’ saved as a .bmp file 
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O 
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3.4 Randomisation and presentation of the digital subtraction 

images 

The 600 digital subtraction .bmp files were numbered from 1 to 600.  A random 

sequence generator (www.random.org) was used to create a random sequence 

of whole numbers from 1 to 600.  The digital subtraction .bmp files were 

inserted into a Microsoft PowerPoint (Microsoft® Office PowerPoint® 2007) 

presentation in the order produced by the random sequence generator.  The 

background colour of each slide was set to black and one digital subtraction file 

inserted in the centre of each slide.  The properties of the digital subtraction 

images were not altered other than cropping the image as required.  The molar 

tooth used to produce each digital subtraction image was written at the top of 

each slide (Figure 12). 

 

 

 

Figure 12.  Microsoft PowerPoint slide number 323 for 24 hour 0 degree angulation digital 

subtraction image of the lower left second molar tooth in head three  

 

3.5 Examiner inclusion criteria and calibration 

3.5.1 Examiner inclusion criteria 

The examiner inclusion criteria stipulated that an examiner had to: 

1. be a qualified dentist; 
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2. be registered (as required) to practice dentistry within their country of 

work; 

3. have experience interpreting digital radiographs as part of the clinical 

practice of dentistry or in-vitro or in-vivo research; and 

4. be able to score the digital subtraction images within the time allocation 

required to enable completion of the research project. 

A Participant Information Sheet was sent to all prospective examiners informing 

them what their participation in the research project would involve (Appendix I).  

Twelve examiners were recruited, to score the digital subtraction images and 

each examiner completed an online Participant Questionnaire (Appendix II).  

The examiners were chosen to represent a breadth of experience regarding the 

number of years they have been qualified as a dentist, their experience in 

interpreting digital radiographs and/or digital subtraction images, their primary 

area or speciality of dentistry that they work in and the proportion of their time 

that they spend providing clinical care to patients.   

3.5.2 Calibration of examiners 

An Introduction to Subtraction Radiography Information Sheet (Appendix III) 

was provided to each examiner.  This provided information regarding the 

background of DSR, the materials and methods used in this research project 

and guidance on how to interpret the digital subtraction images produced in this 

research project.  No formal training regarding the interpretation of digital 

subtraction images or calibration of examiners regarding the detection of 

demineralisation within the occlusal cavities in the teeth used in this research 

project was carried out.     

 

3.6 Standardisation and scoring of the digital subtraction 

images 

3.6.1 Standardisation 

Examiners were instructed to sit in a comfortable position with the computer 

monitor at the correct height and distance from their eyes to prevent strain and 

that to prevent fatigue, not to look at the digital subtraction images for any 

longer than 30 minutes in each individual session.  There was no 



66 
 
standardisation for type of computer monitor used, screen settings, or 

surrounding ambient environment as the examiners lived in a variety of 

countries worldwide.   

3.6.2 Scoring the digital subtraction images 

Each examiner independently scored each digital subtraction image as to their 

level of certainty that occlusal demineralisation of the indicated molar tooth had 

taken place.  A five-point certitude scale was used: 

1. Definitely no demineralisation 

2. Likely no demineralisation 

3. Do not know 

4. Likely demineralisation 

5. Definite demineralisation 

The scores were recorded on a Microsoft Word document (Microsoft® Word 

2007) ‘Data collection sheet – 600 images’ (Appendix IV) along with the 

examiners name and date of completion and e-mailed to the principle 

researcher, SR.   

 

3.7 Assessment of reproducibility 

One-hundred digital subtraction files were selected from the original 600 .bmp 

digital subtraction files using a random sequence generator (www.random.org) 

to enable assessment of intra-examiner reproducibility.  The 100 digital 

subtraction .bmp files were inserted into a new Microsoft PowerPoint 

(Microsoft® Office PowerPoint® 2007) presentation in an order produced by a 

random sequence generator (www.random.org) in exactly the same format as 

the original whole sample and viewed in exactly the same manner.  

Each examiner scored the 100 digital subtraction images independently one 

month after they had completed scoring the previous 600 digital subtraction 

images using the same five-point certitude scale.  The scores were recorded on 

a Microsoft Word document (Microsoft® Word 2007) ‘Data collection sheet – 

Reproducibility’ (Appendix V) along with the examiners name and date of 

completion and e-mailed to the principle researcher, SR.   
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3.8 Statistical analysis 

3.8.1 Accuracy of detection of demineralisation in occlusal cavities 

ROC analysis was carried out for each examiner for each angulation and length 

of demineralisation using IBM SPSS Statistics Version 20.  Univariate analysis 

of variance of the mean AuROC curve for all 12 examiners at each angulation 

and length of demineralisation was carried out, in addition to one-way analysis 

of variance of the mean AuROC curve for all 12 examiners at each angulation 

after 12, 18 and 24 hours demineralisation.  Post-hoc tests for multiple 

comparisons of the effect that each variation in angulation had on the mean 

AuROC curve for all 12 examiners after 12, 18 and 24 hours demineralisation 

using a Bonferroni correction was carried out.  Parametric paired samples t-test 

was used to test for statistically significant differences between the mean 

AuROC curve for all 12 examiners comparing a distal shift with a mesial shift in 

X-ray source following a 7 degree and 15 degree horizontal angulation variation 

in X-ray source subject projection geometry after 12, 18 and 24 hours 

demineralisation.  Parametric paired samples t-test was used to test for 

statistically significant differences between the mean AuROC curve for all 12 

examiners combined comparing a positive upward shift with a negative 

downward shift in X-ray source following a 10 degree and 15 degree vertical 

angulation variation in X-ray source subject projection geometry after 12, 18 

and 24 hours of demineralisation.   

3.8.2 Reproducibility of detection of demineralisation in occlusal 

cavities 

Intra- and inter-examiner reproducibility was calculated using weighted kappa 

and percentage agreement.     
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Part 2: The discriminatory ability and reproducibility of a grading 

system for assessing observed changes in the proximal 

relationships of teeth on paired digital radiographs taken with 

horizontal variations in the X-ray source subject projection 

geometry 

 

3.9 Introduction 

The grading system was designed to allow recording of the size of the inter-

proximal space or degree of overlap of contact points between teeth on bitewing 

radiographs that would be useable in a clinical setting as well as being used in 

the study.  Sixty of the initial 160 digital radiographs were used for Part 2 of this 

research project.  The 60 digital radiographs comprised three sets of 

radiographs for the 20 posterior dental arch sextants discussed in Part 1 as 

follows: 

 the 20, 0 degree angulation 12 hour post-demineralisation digital 

radiographs, 

 the 20, 7 degree horizontal angulation pre-demineralisation digital 

radiographs; and 

 the 20, 15 degree horizontal angulation pre-demineralisation digital 

radiographs. 

Section 3.2 described the materials and methods used to produce these 60 

digital radiographs and section 3.3.2 described the image processing that was 

carried out to produce the .bmp files prior to digital subtraction.  

A flowchart summarising the materials and methods for Part 2 of this research 

project is illustrated in Figure 13.  
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Figure 13.  Flowchart summarising the materials and methods for Part 2 of this research 

project 

 

3.10 Randomisation and presentation of the digital radiographs 

The 60 digital radiographic .bmp files were numbered from 1 to 60.  A random 

sequence generator (www.random.org) was used to create a random sequence 

of whole numbers from 1 to 60.  The 60 digital radiographic .bmp files were 

inserted into a Microsoft PowerPoint (Microsoft® Office PowerPoint® 2007) 

presentation in the order produced by the random sequence generator.  The 

background colour of each slide was set to black and one digital radiographic 

.bmp file inserted in the centre of each slide.  The properties of the digital 

radiographs were not altered.  The slides were numbered from 1 to 60 and this 

was written at the top of each slide (Figure 14). 

Sixty of the digital radiographs obtained for use in Part 1 of this research project were 
selected for use in Part 2 and comprised the 0 degree 12 hour post-demineralisation, 7 
degree horizontal angulation pre-demineralisation and 15 degree horizontal angulation 

pre-demineralisation digital radiographs (section 3.9)   

The 13 examiners independently scored the size of the inter-proximal space or degree of 
overlap of contact points between the 1st molar tooth and 2nd molar tooth (6/7) and 

between the premolar tooth and 1st molar tooth (5/6) using a grading system for each 
digital radiograph (section 3.12) 

The 60 digital radiographic .bmp files were inserted into a Microsoft PowerPoint  
(Microsoft Office PowerPoint 2007) presentation in a randomly generated order     

(section 3.10) 

Thirteen independent examiners recruited to participate in Part 2 of the research project 
(section 3.11) 

All of the previous 60 digital radiographic .bmp files were selected and inserted into a 
new Microsoft PowerPoint (Microsoft Office PowerPoint 2007) presentation in a 

randomly generated order and scored by the 13 examiners 2 weeks after  they had 
completed scoring the previous 60 digital radiographs (section 3.13) 

 Statistical analysis to assess the median differences in score for the proximal 
relationships of teeth comparing digital radiographs taken with a 7 degree and 
15 degree horizontal change in angulation compared to 0 degree angulation  

 Statistical analysis of the reproducibility of the grading system was also carried 
out (section 3.14) 
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Figure 14.  Microsoft PowerPoint slide number 34 presenting the 12 hour 0 degree post-

demineralisation digital radiograph for the lower left posterior dental arch sextant in head three 

 

3.11 Examiner inclusion criteria and calibration 

3.11.1 Examiner inclusion criteria 

The examiners were purposively sampled to represent a range of: 

 years qualified as a dentist; 

 experience in interpreting digital radiographs; 

 primary area or speciality of dentistry; and 

 the proportion of time spent providing clinical care to patients.   

The examiner inclusion criteria were identical to that in Part 1 of this study (see 

section 3.5.1), with the exception of an amendment to number 4 which read ‘be 

able to score the digital radiographs within the time allocation required to enable 

completion of the research project’.  A Participant Information Sheet was sent to 

all prospective examiners informing them of what participation would involve 

(Appendix VI).  Out of 13 examiners invited to participate, all 13 agreed.  These 

13 examiners scored the digital radiographs and completed an online 

Participant Questionnaire (Appendix II) if they had not participated in Part 1 of 

the project.  
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3.11.2 Calibration of examiners 

The Participant Information Sheet (Appendix VI) informed examiners that they 

would have to score the size of inter-proximal space or degree of overlap of 

contact points between teeth on digital radiographs using a grading system.  An 

explanation of the grading system criteria was provided to each examiner on the 

front page of the data collection sheets, Microsoft Word document (Microsoft® 

Word 2007) ‘Overlap assessment – Initial 60’ (Appendix VII) and Microsoft 

Word document (Microsoft® Word 2007) ‘Overlap assessment - Reproducibility’ 

(Appendix VIII) sent to each examiner. 

To allow assessment of the usability of the grading system without training or 

calibration (as is likely to happen in the clinical setting), there was no formal 

training or calibration of examiners in its use. 

     

3.12 Standardisation and scoring of the digital radiographs 

3.12.1 Standardisation 

Examiners were instructed to sit in a comfortable position with the computer 

monitor at the correct height and distance from their eyes to prevent strain and 

fatigue.  There was no standardisation for type of computer monitor used, 

screen settings, or surrounding ambient environment as the examiners lived in 

a variety of countries worldwide. 

3.12.2 Scoring the digital radiographs 

Each examiner independently scored the size of the inter-proximal space or 

degree of overlap of contact points between the 6/7 and between the 5/6 using 

the grading system described in Figure 15. 
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Figure 15.  Grading system to assess the proximal relationship of teeth to 

one another 

 

The scores were recorded on a Microsoft Word document (Microsoft® Word 

2007) ‘Overlap assessment – Initial 60’ (Appendix VII) along with the examiners 

name and date of completion and e-mailed to the principal researcher, SR.   

 

3.13 Assessment of reproducibility 

The 60 digital radiographs were re-examined to enable assessment of intra- 

examiner reproducibility.  A random sequence generator (www.random.org) 

was used to create a new random sequence of whole numbers from 1 to 60 and 

the digital radiographic .bmp files were handled, viewed and scored in exactly 

the same manner as for the first examination.  The scores were recorded on a 
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Microsoft Word document (Microsoft® Word 2007) ‘Overlap assessment – 

Reproducibility’ (Appendix VIII) along with the examiners name and date of 

completion and e-mailed to the principal researcher, SR. 

 

3.14 Statistical analysis 

The median differences in scores recorded for the proximal relationships 

between the 6/7, and between the 5/6 were calculated for each examiner, and 

for all 13 examiners comparing digital radiographs taken with a 7 degree and 15 

degree horizontal angulation variation compared to 0 degree angulation.  Intra- 

and inter-examiner reproducibility was calculated using weighted kappa and 

percentage agreement.       
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4 Results 

 

Part 1: In-vitro the accuracy and reproducibility of DSR for detecting 

demineralisation in occlusal cavities using digital radiographs taken 

with variations in X-ray source subject projection geometry after 

varying time periods of demineralisation 

 

4.1 Diagnostic quality of the digital subtraction images 

Out of the 600 digital subtraction images produced, 12 images were not of 

diagnostic quality.  These were due to a random positioning error associated 

with the PSP plate for the 15 degree horizontal angulation pre-demineralisation 

digital radiograph for one of the posterior dental arch sextants and a random 

digital processing error associated with the 0 degree angulation pre-

demineralisation digital radiograph for another posterior dental arch sextant 

resulting in the production of a double image. 

This resulted in 588 digital subtraction images for use in Part 1 of this research 

project. 

 

4.2 Demographics of the 12 examiners 

The 12 examiners had a mean age of 41.5 years (range 27 to 56) with a mean 

of 18.5 years (range 5 to 31) as a qualified dentist.  Only one was a specialist in 

Dental and Maxillofacial Radiology, however all were confident in viewing and 

interpreting intra-oral radiographs for detecting and monitoring carious lesions, 

and half had also had previous experience of and felt confident in the 

interpretation of subtraction radiography.  The demographics of the 12 

independent examiners are displayed in Table 6.   
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Table 6.  Demographics of the 12 examiners who participated in Part 1 

 

Age (years)  

Median 42.5  

Mean 41.5  

Range 27 - 56  

Sex  

Male : Female 6(50%) : 6(50%) 

Years qualified as a dentist 

Median 17.5  

Mean 18.5  

Range 5 - 31  

Registered specialist in Dental and Maxillofacial Radiology 

Yes : No 1(8%) : 11(92%)  

Number of intra-oral radiographs viewed per week (clinical and research) 

Median 20  

Mean 21.7  

Range 0 - 50  

Percentage of intra-oral radiographs viewed that involve the detection and/or 
monitoring of carious lesions (clinical and research) 

Median 90%  

Mean 68%  

Range 0% - 100%  

Confidence interpreting intra-oral radiographs (0 = not at all confident, 10 = very 
confident) 

Median 8  

Mean 8.1  

Range 7 - 10  

Confidence using intra-oral radiographs for detecting and/or monitoring carious 
lesions (0 = not at all confident, 10 = very confident) 

Median 8  

Mean 7.5  

Range 5 - 9  

Previous experience using DSR (clinical and research) 

Yes : No 6(50%) : 6(50%)  

Previous experience using DSR for detecting and/or monitoring carious lesions 
(clinical and research) 

Yes : No 6(50%) : 6(50%)  

Confidence interpreting digital subtraction images (0 = not at all confident, 10 = very 
confident) 

Median 6.5  

Mean 6.4  

Range 4 - 9  

Confidence using DSR for detecting and/or monitoring carious lesions (0 = not at all 
confident, 10 = very confident) 

Median 6.5  

Mean 6.5  

Range 4 - 9  
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4.3 Assessment of accuracy for detecting demineralisation in 

occlusal cavities 

Each independent examiner graded their level of certainty as to the presence of 

demineralisation in the occlusal cavity of each molar tooth using the five-point 

certitude scale.  The scores were analysed and validated against the true 

presence of demineralisation, which was the placement of demineralising 

solution into the occlusal cavities.  This data was used to produce ROC curves 

using IBM SPSS Statistics Version 20 for each examiner at each angulation and 

length of demineralisation, and the AuROC curves for each of the 12 examiners 

are shown in Table 7.   

The mean AuROC curve was calculated for all 12 examiners at each angulation 

and length of demineralisation and is shown in Table 8 along with the standard 

deviation, standard error, 95% confidence intervals and, minimum and 

maximum values.   
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Table 7.  AuROC curve for each examiner at each angulation and length of demineralisation 

 
Angulation Length of demineralisation AuROC curve 

    Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 Ex 9 Ex 10 Ex 11 Ex 12 

0 degrees 12 hours 0.940 0.828 0.821 0.889 0.882 0.805 0.856 0.812 0.849 0.889 0.873 0.857 

7 degrees horizontal 12 hours 0.900 0.835 0.865 0.841 0.793 0.845 0.816 0.801 0.910 0.662 0.852 0.792 

15 degrees horizontal 12 hours 0.750 0.614 0.639 0.658 0.697 0.574 0.642 0.583 0.751 0.578 0.601 0.614 

15 degrees vertical 12 hours 0.768 0.684 0.697 0.752 0.664 0.719 0.634 0.640 0.609 0.719 0.624 0.650 

10 degrees vertical 12 hours 0.764 0.697 0.649 0.777 0.663 0.684 0.729 0.665 0.721 0.613 0.583 0.708 

0 degrees 18 hours 1.000 0.888 0.904 0.881 0.931 0.914 0.946 0.988 0.953 0.970 0.875 0.839 

7 degrees horizontal 18 hours 0.881 0.709 0.777 0.793 0.771 0.846 0.741 0.796 0.786 0.806 0.762 0.768 

15 degrees horizontal 18 hours 0.800 0.649 0.665 0.758 0.686 0.681 0.647 0.779 0.760 0.660 0.642 0.661 

15 degrees vertical 18 hours 0.752 0.565 0.704 0.719 0.610 0.575 0.672 0.613 0.749 0.580 0.689 0.669 

10 degrees vertical 18 hours 0.806 0.738 0.663 0.781 0.727 0.668 0.816 0.789 0.739 0.761 0.679 0.828 

0 degrees 24 hours 0.972 0.947 0.921 0.947 0.934 0.968 0.877 1.000 0.877 0.997 0.931 0.981 

7 degrees horizontal 24 hours 0.996 0.845 0.843 0.893 0.934 0.916 0.807 0.950 0.965 0.826 0.921 0.950 

15 degrees horizontal 24 hours 0.794 0.594 0.606 0.918 0.804 0.785 0.775 0.775 0.876 0.610 0.714 0.721 

15 degrees vertical 24 hours 0.766 0.658 0.699 0.846 0.723 0.614 0.712 0.718 0.654 0.678 0.689 0.771 

10 degrees vertical 24 hours 0.873 0.707 0.746 0.863 0.746 0.842 0.843 0.784 0.831 0.851 0.762 0.847 
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Table 8.  Mean AuROC curve and descriptive statistics for the 12 examiners at each angulation and length of demineralisation  

 

 

 

 

 

Angulation 
 
 

Length of demineralisation Mean 
AuROC 
curve 

Standard 
deviation 

Standard 
error 

95% Confidence interval for 
mean 

Minimum 
 

Maximum 
 

  Lower bound Upper bound   

0 degrees 12 hours 0.858 0.039 0.011 0.834 0.883 0.805 0.940 

7 degrees horizontal 12 hours 0.826 0.064 0.019 0.785 0.867 0.662 0.910 

15 degrees horizontal 12 hours 0.642 0.062 0.018 0.602 0.681 0.574 0.751 

15 degrees vertical 12 hours 0.680 0.052 0.015 0.647 0.713 0.609 0.768 

10 degrees vertical 12 hours 0.688 0.057 0.017 0.651 0.724 0.583 0.777 

0 degrees 18 hours 0.924 0.049 0.014 0.893 0.955 0.839 1.000 

7 degrees horizontal 18 hours 0.786 0.045 0.013 0.758 0.815 0.709 0.881 

15 degrees horizontal 18 hours 0.699 0.058 0.017 0.662 0.736 0.642 0.800 

15 degrees vertical 18 hours 0.658 0.068 0.019 0.615 0.701 0.565 0.752 

10 degrees vertical 18 hours 0.750 0.057 0.017 0.713 0.786 0.663 0.828 

0 degrees 24 hours 0.946 0.041 0.012 0.920 0.972 0.877 1.000 

7 degrees horizontal 24 hours 0.904 0.061 0.018 0.865 0.942 0.807 0.996 

15 degrees horizontal 24 hours 0.748 0.104 0.030 0.682 0.814 0.594 0.918 

15 degrees vertical 24 hours 0.711 0.062 0.018 0.671 0.750 0.614 0.846 

10 degrees vertical 24 hours 0.808 0.056 0.016 0.773 0.843 0.707 0.873 
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4.3.3 Effect of variations in X-ray source subject projection geometry 

on the accuracy for detecting demineralisation in occlusal cavities  

Univariate analysis of variance of the mean AuROC curve for all 12 examiners 

identified that there was a statistically significant interaction between variations 

in angulation and length of demineralisation (F=2.778, P<0.01).   

One-way analysis of variance of the mean AuROC curve for all 12 examiners 

found that variations in angulation resulted in statistically significant differences 

after 12 hours (F=36.319, P<0.001), 18 hours (F=40.000, P<0.001) and 24 

hours (F=26.156, P<0.001) demineralisation.   

Post-hoc tests for multiple comparisons of the effect each variation in angulation 

had on the mean AuROC curve for all 12 examiners after 12 hours, 18 hours 

and 24 hours demineralisation using a Bonferroni correction was carried out.  

After 12 hours and 24 hours demineralisation, comparing 7 degrees horizontal 

angulation to 0 degrees angulation, there were no statistically significant 

differences (P=1.000) in the mean AuROC curve for all 12 examiners.  

However, there were statistically significant differences (P<0.001) when 

comparing 15 degrees horizontal, 15 degrees vertical and 10 degrees vertical 

angulation to 0 degrees angulation.     

After 18 hours, there were statistically significant differences (P<0.001) 

comparing 7 degrees horizontal, 15 degrees horizontal, 15 degrees vertical and 

10 degrees vertical angulation to 0 degrees angulation.   

4.3.4 Effect of mesial compared to distal variation in horizontal X-ray 

source subject projection geometry on the accuracy for detecting 

demineralisation in occlusal cavities 

The mean AuROC curve for each examiner and all 12 examiners was 

calculated for the upper right and lower left posterior dental arch sextants 

(which represented a distal shift in the horizontal angulation of the X-ray source) 

and the upper left and lower right posterior dental arch sextants (which 

represented a mesial shift in the horizontal angulation of the X-ray source) for a 

7 degree horizontal and 15 degree horizontal angulation variation in X-ray 

source subject projection geometry compared to 0 degree angulation after 12, 

18 and 24 hours demineralisation (Table 9). 
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Paired samples t-test was used to test for statistically significant differences 

between the mean AuROC curve for all 12 examiners comparing a distal shift in 

the horizontal angulation of the X-ray source to a mesial shift in the horizontal 

angulation of the X-ray source for both a 7 degree and 15 degree angulation 

variation in X-ray source subject projection geometry compared to 0 degree 

angulation after 12, 18 and 24 hours of demineralisation.  No statistically 

significant differences (P≥0.05) were identified comparing a distal shift to a 

mesial shift in the horizontal angulation of the X-ray source for a 7 degree 

variation compared to 0 degree angulation after 12, 18 and 24 hours 

demineralisation and for a 15 degree variation compared to 0 degree angulation 

after 18 hours demineralisation.  A statistically significant difference (P<0.01) 

was however identified favouring a distal shift in horizontal angulation of the X-

ray source for a 15 degree angulation variation compared to 0 degree 

angulation after 12 and 24 hours demineralisation. 
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Table 9.  Mean AuROC curve following a mesial and distal shift in the horizontal angulation of the X-ray source for a 7 degree horizontal and 15 degree 

horizontal angulation variation in X-ray source subject projection geometry compared to 0 degree angulation after 12, 18 and 24 hours demineralisation (n=12 

examiners) 

Sextant Angulation Length Mean AuROC curve   

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11 Ex12 All 12 
examiners 

 

UR + LL 
7 degrees 

horizontal - distal 
12 hours 1.000 0.828 0.874 0.874 0.904 0.081 0.904 0.904 0.894 0.657 0.854 0.798 0.798 

UL + LR 
7 degrees 

horizontal - mesial 
12 hours 0.770 0.845 0.855 0.810 0.064 0.895 0.740 0.695 0.920 0.650 0.850 0.785 0.740 

UR + LL 
7 degrees 

horizontal - distal 
18 hours 0.990 0.682 0.773 0.939 0.803 0.833 0.798 0.848 0.712 0.869 0.717 0.803 0.814 

UL + LR 
7 degrees 

horizontal - mesial 
18 hours 0.790 0.730 0.770 0.670 0.735 0.860 0.685 0.760 0.885 0.780 0.815 0.735 0.768 

UR + LL 
7 degrees 

horizontal - distal 
24 hours 1.000 0.889 0.884 0.934 0.944 0.955 0.904 0.934 0.970 0.803 0.970 0.985 0.931 

UL + LR 
7 degrees 

horizontal - mesial 
24 hours 0.990 0.800 0.800 0.850 0.925 0.885 0.695 0.975 0.970 0.910 0.885 0.910 0.883 

UR + LL 
15 degrees 

horizontal - distal 
12 hours 0.825 0.700 0.700 0.750 0.763 0.563 0.725 0.569 0.719 0.638 0.600 0.788 0.695 

UL + LR 
15 degrees 

horizontal - mesial 
12 hours 0.660 0.530 0.580 0.560 0.620 0.570 0.555 0.600 0.775 0.515 0.575 0.430 0.581 

UR + LL 
15 degrees 

horizontal - distal 
18 hours 0.750 0.650 0.650 0.994 0.794 0.663 0.737 0.838 0.719 0.656 0.813 0.706 0.748 

UL + LR 
15 degrees 

horizontal - mesial 
18 hours 0.850 0.645 0.670 0.510 0.535 0.700 0.560 0.725 0.800 0.660 0.470 0.590 0.643 

UR + LL 
15 degrees 

horizontal - distal 
24 hours 0.806 0.576 0.688 1.000 0.919 0.881 0.888 0.869 0.906 0.575 0.687 0.812 0.801 

UL + LR 
15 degrees 

horizontal - mesial 
24 hours 0.720 0.610 0.540 0.820 0.700 0.700 0.685 0.665 0.850 0.675 0.740 0.620 0.694 
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4.3.5 Effect of positive upward compared to negative downward 

variation in vertical X-ray source subject projection geometry on the 

accuracy for detecting demineralisation in occlusal cavities 

The mean AuROC curve for each examiner and all 12 examiners was 

calculated for the upper right and upper left posterior dental arch sextants when 

the 15 degree vertical angulation pre-demineralisation digital radiographs were 

used (which represented a negative downwards 15 degree vertical shift in X-ray 

source subject projection geometry) and the lower right and lower left posterior 

dental arch sextants when the 15 degree vertical angulation pre-

demineralisation digital radiographs were used (which represented a positive 

upwards 15 degree vertical shift in X-ray source subject projection geometry) 

(Table 10).   

The mean AuROC curve for each examiner and all 12 examiners was also 

calculated for the upper right and upper left posterior dental arch sextants when 

the 10 degree vertical angulation pre-demineralisation digital radiographs were 

used (which represented a positive upwards 10 degree vertical shift in X-ray 

source subject variation) and the lower right and lower left posterior dental arch 

sextants when the 10 degree vertical angulation pre-demineralisation digital 

radiographs were used (which represented a negative downwards 10 degree 

vertical shift in X-ray source subject variation) (Table 10). 
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Table 10.  Mean AuROC curve following a positive upwards shift and negative downwards shift in the vertical angulation of the X-ray source for a 10 

degree vertical and 15 degree vertical angulation variation in X-ray source subject projection geometry compared to 0 degree angulation after 12, 18 and 

24 hours demineralisation (n=12 examiners) 

 

 

Sextant 
 
 

Angulation 
 
 

Length 
 
 

Mean AuROC curve  

Ex1 
 

Ex2 
 

Ex3 
 

Ex4 
 

Ex5 
 

Ex6 
 

Ex7 
 

Ex8 
 

Ex9 
 

Ex10 
 

Ex11 
 

Ex12 
 

All 12 
examiners 

UL + UR 
-15 degrees 

vertical 
12 

hours 
0.727 0.677 0.662 0.667 0.591 0.717 0.687 0.732 0.419 0.747 0.692 0.682 0.667 

LL + LR 
+15 degrees 

vertical 
12 

hours 
0.810 0.670 0.690 0.840 0.745 0.710 0.620 0.545 0.790 0.710 0.555 0.620 0.692 

UL + UR 
-15 degrees 

vertical 
18 

hours 
0.652 0.379 0.606 0.783 0.485 0.581 0.490 0.753 0.753 0.540 0.712 0.732 0.622 

LL + LR 
+15 degrees 

vertical 
18 

hours 
0.840 0.750 0.800 0.665 0.695 0.570 0.810 0.495 0.745 0.605 0.670 0.610 0.688 

UL + UR 
-15 degrees 

vertical 
24 

hours 
0.732 0.525 0.631 0.808 0.672 0.652 0.601 0.727 0.682 0.662 0.641 0.768 0.675 

LL + LR 
+15 degrees 

vertical 
24 

hours 
0.795 0.800 0.750 0.870 0.770 0.590 0.845 0.725 0.630 0.700 0.730 0.740 0.745 

UL + UR 
+10 degrees 

vertical 
12 

hours 
0.692 0.828 0.747 0.768 0.631 0.687 0.697 0.717 0.702 0.571 0.702 0.747 0.707 

LL + LR 
-10 degrees 

vertical 
12 

hours 
0.815 0.580 0.550 0.785 0.670 0.660 0.760 0.625 0.735 0.645 0.470 0.660 0.663 

UL + UR 
+10 degrees 

vertical 
18 

hours 
0.793 0.707 0.854 0.768 0.707 0.722 0.833 0.717 0.712 0.823 0.646 0.793 0.756 

LL + LR 
-10 degrees 

vertical 
18 

hours 
0.820 0.760 0.460 0.785 0.735 0.660 0.800 0.880 0.745 0.710 0.705 0.850 0.743 

UL + UR 
+10 degrees 

vertical 
24 

hours 
0.838 0.763 0.864 0.889 0.808 0.793 0.838 0.793 0.818 0.793 0.753 0.843 0.816 

LL + LR 
-10 degrees 

vertical 
24 

hours 
0.885 0.650 0.640 0.830 0.685 0.890 0.840 0.765 0.850 0.905 0.740 0.840 0.793 
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Paired samples t-test was used to test for statistically significant differences 

between the mean AuROC curve for all 12 examiners comparing a positive 

upward shift in the vertical angulation of the X-ray source to a negative 

downward shift in the vertical angulation of the X-ray source for both a 10 

degree and 15 degree angulation variation in X-ray source subject projection 

geometry compared to 0 degree angulation after 12, 18 and 24 hours of 

demineralisation.  No statistically significant differences (P≥0.05) were identified 

comparing a negative downward shift in the vertical angulation of the X-ray 

source compared to a positive upward shift in the vertical angulation of the X-

ray source for a 10 degree variation compared to 0 degree angulation after 12, 

18 and 24 hours demineralisation and for a 15 degree variation compared to 0 

degree angulation after 12 and 18 hours demineralisation.  A statistically 

significant difference (P<0.05) was however identified favouring a positive 

upward shift compared to a negative downwards shift in vertical angulation of 

the X-ray source for a 15 degree angulation variation compared to 0 degree 

baseline after 24 hours demineralisation. 

 

4.4 Assessment of intra-examiner reproducibility for the 

detection of demineralisation in occlusal cavities 

One-hundred digital subtraction images were selected at random from the 

original 588 digital subtraction images.  These were re-scored by the examiners 

one month later using the same five-point certitude scale as to their level of 

certainly that demineralisation was present in the occlusal cavity of each molar 

tooth.   Weighted kappa values and percentage agreement were calculated to 

assess the intra-examiner reproducibility for each of the 12 examiners for 

detecting occlusal demineralisation (Table 11).   
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Table 11.  Weighted kappa values and percentage agreement for intra-examiner reproducibility (n=12 

examiners).  The weighted kappa values have been colour coded according to their suggested interpretation 

as described by Landis and Koch (1977); <0 = Poor agreement, 0.01 - 0.20 = Slight agreement, 0.21 – 0.40 = 

Fair agreement, 0.41 – 0.60 = Moderate agreement, 0.61 – 0.80 = Substantial agreement, 0.81 – 1.00 = 

Almost perfect agreement 

 

Examiner 1 2 3 4 5 6 7 8 9 10 11 12 

Weighted 
Kappa 

0.70 0.46 0.49 0.69 0.58 0.68 0.35 0.59 0.65 0.88 0.51 0.51 

Percentage 
Agreement 

91% 84% 85% 86% 84% 89% 76% 84% 89% 96% 87% 85% 

 

For all 12 examiners, the median intra-examiner weighted kappa value was 

0.585, range 0.35-0.88, interquartile range (IQR) 0.17, first quartile (Q1) 0.51 

and third quartile (Q3) 0.68.  For all 12 examiners, the median percentage 

agreement was 86%, range 76%-96%, IQR 5%, Q1 84% and Q3 89%.     

 

4.5 Assessment of inter-examiner reproducibility for the 

detection of demineralisation in occlusal cavities 

The weighted kappa values and percentage agreement for all angulations are 

presented in Table 12, for 7 degree horizontal and 0 degree angulation in Table 

13 and for 0 degree angulation in Table 14.   
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Table 12.  Weighted kappa values (upper value) and percentage agreement (lower value) 

for inter-examiner reproducibility at all angulations (n=12 examiners). The weighted 

kappa values have been colour coded according to their suggested interpretation as 

described by Landis and Koch (1977); <0 = Poor agreement, 0.01 - 0.20 = Slight 

agreement, 0.21 – 0.40 = Fair agreement, 0.41 – 0.60 = Moderate agreement, 0.61 – 

0.80 = Substantial agreement, 0.81 – 1.00 = Almost perfect agreement 

 

 

The median inter-examiner weighted kappa value for all examiners at all 

angulations was 0.38, range 0.08-0.81, IQR 0.24, Q1 0.24 and Q3 0.48.  The 

median inter-examiner percentage agreement for all examiners at all 

angulations was 77%, range 57%-95%, IQR 11%, Q1 69% and Q3 80%.   

 

 

 

 

 

 

Examiner 2 3 4 5 6 7 8 9 10 11 12 

1 
 

0.18 
62% 

0.18 
62% 

0.50 
79% 

0.49 
81% 

0.57 
85% 

0.39 
76% 

0.53 
82% 

0.55 
85% 

0.50 
82% 

0.46 
83% 

0.51 
83% 

2 
 

  0.81 0.24 0.21 0.14 0.29 0.23 0.15 0.17 0.08 0.22 

  95% 63% 65% 57% 73% 67% 59% 65% 59% 69% 

3 
 

    0.25 0.21 0.14 0.28 0.24 0.15 0.19 0.08 0.23 

    63% 65% 57% 73% 68% 60% 65% 60% 70% 

4 
 

      0.49 0.46 0.38 0.43 0.41 0.42 0.30 0.40 

      78% 77% 72% 75% 75% 75% 71% 74% 

5 
 

        0.48 0.40 0.47 0.43 0.45 0.35 0.45 

        80% 76% 79% 79% 79% 77% 80% 

6 
 

          0.34 0.49 0.49 0.48 0.37 0.38 

          73% 81% 83% 81% 80% 78% 

7 
 

            0.41 0.32 0.35 0.20 0.38 

            77% 73% 75% 71% 77% 

8 
 

              0.48 0.53 0.36 0.48 

              80% 82% 78% 81% 

9 
 

                0.46 0.34 0.40 

                80% 79% 79% 

10 
 

                  0.37 0.48 

                  79% 82% 

11 
 

                    0.37 

                    80% 
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Table 13.  Weighted kappa values (upper value) and percentage agreement (lower value) 

for inter-examiner reproducibility at 7 degree horizontal and 0 degree angulation (n=12 

examiners). The weighted kappa values have been colour coded according to their 

suggested interpretation as described by Landis and Koch (1977); <0 = Poor agreement, 

0.01 - 0.20 = Slight agreement, 0.21 – 0.40 = Fair agreement, 0.41 – 0.60 = Moderate 

agreement, 0.61 – 0.80 = Substantial agreement, 0.81 – 1.00 = Almost perfect agreement 

 

Examiner  2 3 4 5 6 7 8 9 10 11 12 

1 0.36 0.36 0.63 0.63 0.65 0.53 0.66 0.59 0.61 0.52 0.60 

  69% 69% 83% 84% 85% 78% 85% 82% 82% 81% 83% 

2   0.89 0.39 0.28 0.28 0.38 0.35 0.26 0.26 0.18 0.31 

    96% 70% 64% 65% 74% 69% 63% 66% 63% 70% 

3     0.39 0.28 0.27 0.39 0.34 0.27 0.28 0.17 0.32 

      70% 64% 65% 74% 69% 63% 67% 63% 70% 

4       0.61 0.59 0.52 0.55 0.50 0.53 0.40 0.49 

        82% 81% 77% 78% 76% 78% 72% 76% 

5         0.65 0.47 0.58 0.52 0.56 0.48 0.55 

          85% 75% 81% 79% 80% 79% 80% 

6           0.48 0.62 0.56 0.56 0.47 0.53 

            76% 83% 81% 80% 79% 80% 

7             0.49 0.41 0.44 0.31 0.45 

              77% 73% 74% 71% 76% 

8               0.60 0.62 0.47 0.54 

                82% 83% 78% 80% 

9                 0.53 0.43 0.47 

                  79% 77% 77% 

10                   0.48 0.56 

                    79% 81% 

11                     0.48 

                      81% 

 

The median inter-examiner weighted kappa value for all examiners at 7 degree 

horizontal and 0 degree angulation was 0.48, range 0.17-0.89, IQR 0.19, Q1 

0.37 and Q3 0.56.  The median inter-examiner percentage agreement for all 

examiners at 7 degree horizontal and 0 degree angulation was 78%, range 

63%-96%, IQR 11%, Q1 70% and Q3 81%.   
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Table 14.  Weighted kappa values (upper value) and percentage agreement (lower value) for 

inter-examiner reproducibility at 0 degree angulation (n=12 examiners). The weighted kappa 

values have been colour coded according to their suggested interpretation as described by 

Landis and Koch (1977); <0 = Poor agreement, 0.01 - 0.20 = Slight agreement, 0.21 – 0.40 = 

Fair agreement, 0.41 – 0.60 = Moderate agreement, 0.61 – 0.80 = Substantial agreement, 

0.81 – 1.00 = Almost perfect agreement 

 

Examiner  2 3 4 5 6 7 8 9 10 11 12 

1 0.45 0.44 0.71 0.71 0.71 0.65 0.79 0.65 0.76 0.55 0.64 

  73% 73% 86% 86% 86% 83% 90% 83% 88% 79% 83% 

2   0.91 0.43 0.34 0.31 0.38 0.38 0.36 0.37 0.22 0.37 

    96% 72% 65% 65% 72% 68% 68% 69% 63% 70% 

3     0.43 0.32 0.30 0.38 0.38 0.34 0.36 0.22 0.36 

      72% 64% 64% 72% 68% 67% 69% 63% 70% 

4       0.64 0.66 0.52 0.67 0.60 0.68 0.45 0.56 

        83% 84% 77% 84% 81% 84% 74% 79% 

5         0.71 0.51 0.70 0.63 0.69 0.48 0.59 

          86% 76% 86% 82% 85% 77% 81% 

6           0.51 0.73 0.62 0.63 0.48 0.58 

            77% 87% 82% 83% 78% 81% 

7             0.60 0.48 0.54 0.40 0.51 

              80% 75% 78% 73% 77% 

8               0.70 0.72 0.52 0.58 

                86% 87% 78% 80% 

9                 0.65 0.46 0.52 

                  83% 76% 78% 

10                   0.56 0.64 

                    80% 83% 

11                     0.52 

                      80% 

 

The median inter-examiner weighted kappa value for all examiners for 0 degree 

angulation was 0.53, range 0.22-0.91, IQR 0.24, Q1 0.41 and Q3 0.65.  The 

median inter-examiner percentage agreement for all examiners for 0 degree 

angulation was 79%, range 63%-96%, IQR 11%, Q1 72% and Q3 83%.   
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Part 2: The discriminatory ability and reproducibility of a grading 

system for assessing observed changes in the proximal 

relationships of teeth on paired digital radiographs taken with 

horizontal variations in the X-ray source subject projection 

geometry 

 

4.6 Diagnostic quality of the digital radiographs  

Sixty of the 160 digital radiographs obtained for Part 1 of this research project 

were used for Part 2.  The 20, 0 degree angulation 12 hour post-

demineralisation digital radiographs, 20, 7 degree horizontal angulation pre-

demineralisation digital radiographs and 20, 15 degree horizontal angulation 

pre-demineralisation digital radiographs were selected.  A random positioning 

error associated with the PSP plate for the 15 degree horizontal angulation pre-

demineralisation digital radiograph for one of the posterior dental arch sextants 

resulted in the crowns of the teeth not being entirely visible so was therefore not 

of diagnostic quality.  Fifty-nine digital radiographs were of adequate diagnostic 

quality for use in Part 2 of this research project. 

 

4.7 Demographics of the 13 examiners    

The demographics of the 13 independent examiners are displayed in Table 15.  

Nine of the examiners from Part 1 participated in Part 2 of this research project, 

in addition to 4 additional examiners who were recruited for Part 2 only. 
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Table 15.  Demographics of the 13 examiners who participated in Part 2 

 

 

 

 

 

 

Age (years) 

Median 40 

Mean 38.4 

Range 25 - 56 

Sex 

Male : Female 6(46%) : 7(54%) 

Years qualified as a dentist 

Median 15 

Mean 15.1 

Range 2 - 31 

Registered specialist in Dental and Maxillofacial Radiology 

Yes : No 0 : 13 

Number of intra-oral radiographs viewed per week (clinical and research) 

Median 20 

Mean 17.8 

Range 0 - 50 

Percentage of intra-oral radiographs viewed that involve the detection and/or monitoring 
of carious lesions (clinical and research) 

Median 90% 

Mean 76% 

Range 0% - 100% 

Confidence interpreting intra-oral radiographs (0 = not at all confident, 10 = very 
confident) 

Median 8 

Mean 7.8 

Range 7 - 9 

Confidence using intra-oral radiographs for detecting and/or monitoring carious lesions 
(0 = not at all confident, 10 = very confident) 

Median 8 

Mean 7.5 

Range 5 - 9 
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4.8 Median differences in score for the proximal relationships of 

teeth on paired digital radiographs following 7 and 15 degree 

horizontal angulation variations in X-ray source subject projection 

geometry compared to 0 degree angulation 

Table 16 shows the examiners’ median differences in scores for the proximal 

relationship between the 6/7 and between the 5/6 (n=13 examiners), comparing 

the digital radiographs taken with a 7 degree and 15 degree horizontal 

angulation to the 0 degree angulation digital radiograph.  The combined score 

when the proximal relationships between all three teeth (5/6/7) are added 

together is also displayed. 
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Table 16.  Median differences in score for each examiner (n=13) for the proximal relationship between the 6/7 and between the 5/6, in addition to the combined 

score for 5/6/7, comparing the digital radiographs taken with a 7 degree and 15 degree horizontal angulation to the 0 degree angulation digital radiograph

Examiner 
 
 
 
 

Median differences 
in score for 5/6 
contact for 7 

degree horizontal 
angulation change 

Median differences 
in score for 6/7 
contact for 7 

degree horizontal 
angulation change 

Median differences 
in score for 5/6/7 

contacts for 7 
degree horizontal 
angulation change 

Median differences 
in score for 5/6 
contact for 15 

degree horizontal 
angulation change 

Median differences 
in score for 6/7 
contact for 15 

degree horizontal 
angulation change 

Median differences 
in score for 5/6/7 
contacts for 15 

degree horizontal 
angulation change 

1 0 0.5 0 2 1 2 

2 0 1 0 2 1 1.5 

3 1 0.5 1 2 1 1 

4 1 0 1 2 1 2 

5 0.5 1 1 2 1 2 

6 0 0.5 0 1 1 1 

7 0 1 0 2 1 2 

8 0 0 0 2 1 2 

9 0 0 0 1 1 1 

10 0.5 0.5 0.5 2 1 2 

11 1 1 1 2 1 2 

12 0 0.5 0 2 1 1.5 

13 0 1 0 2 1 1.5 

All 13 
examiners 

0 1 0 2 1 2 



93 
 

4.9 Assessment of intra-examiner reproducibility of the grading 

system 

The weighted kappa values and percentage agreement are presented in Table 

17.  The median intra-examiner weighted kappa value was 0.86, range 0.79-

0.94, IQR 0.06, Q1 0.84 and Q3 0.90.  The median percentage agreement was 

97%, range 95%-99%, IQR 2%, Q1 96% and Q3 98%.   

 

Table 17.  Weighted kappa values and percentage agreement for intra-examiner reproducibility (n=13 

examiners).  The weighted kappa values have been colour coded according to their suggested 

interpretation as described by Landis and Koch (1977); <0 = Poor agreement, 0.01 - 0.20 = Slight 

agreement, 0.21 – 0.40 = Fair agreement, 0.41 – 0.60 = Moderate agreement, 0.61 – 0.80 = Substantial 

agreement, 0.81 – 1.00 = Almost perfect agreement 

 

Examiner 1 2 3 4 5 6 7 8 9 10 11 12 13 

Weighted 
Kappa 

0.94 0.83 0.82 0.90 0.86 0.86 0.84 0.91 0.87 0.91 0.85 0.90 0.79 

Percentage 
Agreement 

99% 96% 96% 98% 96% 97% 97% 98% 97% 98% 96% 98% 95% 

 

 

4.10 Assessment of inter-examiner reproducibility of the grading 

system 

The weighted kappa values and percentage agreement are presented in Table 

18.  The median inter-examiner weighted kappa value was 0.83, range 0.71-

0.93, IQR 0.07, Q1 0.80 and Q3 0.87.  The median percentage agreement was 

96%, range 93%-98%, IQR 2%, Q1 95% and Q3 97%.     
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Table 18.  Weighted kappa values (upper value) and percentage agreement (lower value) for inter-examiner 

reproducibility (n=13 examiners).  The weighted kappa values have been colour coded according to their 

suggested interpretation as described by Landis and Koch (1977); <0 = Poor agreement, 0.01 - 0.20 = Slight 

agreement, 0.21 – 0.40 = Fair agreement, 0.41 – 0.60 = Moderate agreement, 0.61 – 0.80 = Substantial 

agreement, 0.81 – 1.00 = Almost perfect agreement 

 

Examiner 2 3 4 5 6 7 8 9 10 11 12 13 

1 0.80 0.82 0.85 0.89 0.83 0.91 0.93 0.88 0.85 0.80 0.86 0.87 

  95% 96% 97% 97% 96% 98% 98% 97% 97% 95% 97% 97% 

2   0.71 0.74 0.81 0.84 0.76 0.78 0.72 0.71 0.75 0.82 0.76 

    93% 94% 95% 96% 94% 95% 94% 93% 94% 96% 95% 

3     0.90 0.78 0.80 0.87 0.84 0.87 0.87 0.81 0.80 0.82 

      98% 95% 95% 97% 96% 97% 97% 95% 95% 96% 

4       0.80 0.78 0.90 0.87 0.85 0.89 0.81 0.84 0.83 

        95% 95% 98% 97% 97% 98% 95% 96% 96% 

5         0.85 0.85 0.86 0.79 0.77 0.80 0.88 0.84 

          97% 97% 97% 95% 95% 95% 97% 97% 

6           0.84 0.80 0.77 0.76 0.73 0.83 0.82 

            96% 95% 95% 95% 94% 96% 96% 

7             0.89 0.87 0.88 0.82 0.87 0.85 

              98% 97% 97% 96% 97% 97% 

8               0.89 0.84 0.82 0.87 0.85 

                98% 96% 95% 97% 97% 

9                 0.86 0.81 0.81 0.87 

                  97% 95% 96% 97% 

10                   0.82 0.81 0.84 

                    95% 95% 96% 

11                     0.82 0.78 

                      95% 95% 

12                       0.80 

                        96% 
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5 Discussion 

 

This thesis was carried out in two parts.  Part 1 assessed in-vitro the accuracy 

and reproducibility of DSR for detecting demineralisation in occlusal cavities 

using digital radiographs taken with variations in X-ray source subject projection 

geometry after varying time periods of demineralisation.  It found that the 

highest accuracy was achieved when digital subtraction images were produced 

using digital radiographs that had been taken with a reproducible 0 degree X-

ray projection geometry after the longest period of demineralisation, 24 hours.  

If a 7 degree horizontal angulation variation in X-ray source subject projection 

geometry existed between the digital radiographs used to produce the digital 

subtraction images, no statistically significant reduction in accuracy was 

detected following 12 and 24 hours demineralisation.  The intra- and inter-

examiner reproducibility of DSR for detecting demineralisation in occlusal 

cavities under these circumstances was moderate.   

Part 2 investigated the discriminatory ability and evaluated the reproducibility of 

a grading system for assessing observed changes in the proximal relationships 

of teeth on paired digital radiographs that had been taken with horizontal 

variations in X-ray source subject projection geometry.  It found that when a 7 

degree horizontal angulation variation in X-ray source subject projection 

geometry existed between paired digital radiographs, the majority of differences 

in scores were less than 1.  In the majority of cases this represented observed 

differences in the size of inter-proximal spacing or proximal overlapping 

between teeth less than half the width of enamel.  However, when a 15 degree 

horizontal angulation variation in X-ray source subject projection geometry 

existed between paired digital radiographs, the majority of differences in scores 

were 1 or more.  Irrespective of the size of horizontal angulation variation in X-

ray source subject projection geometry that existed between paired digital 

radiographs, the intra- and inter-examiner reproducibility of the grading system 

was almost perfect.  The ability of the grading system to identify the extent of 

horizontal angulation variations in X-ray source subject projection geometry that 

may exist between paired digital radiographs provides useful information to 

indicate their suitability to undergo digital subtraction and produce images that 

have a high diagnostic accuracy.   
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Part 1: In-vitro assessment of the accuracy and reproducibility of 

DSR for detecting demineralisation in occlusal cavities using digital 

radiographs taken with variations in X-ray source subject projection 

geometry after varying time periods of demineralisation 

 

5.1  Limitations associated with the methodology 

The 160 digital radiographs used in Part 1 of this research project were 

originally produced for a different research project with 80 used in the study by 

Ricketts et al. (2007).  The sample size of 40 molar teeth, variations in X-ray 

source subject projection geometry and length of demineralisation were pre-

established and could not be altered.   

No power calculation was carried out for the study by Ricketts et al. (2007) to 

identify the sample size.  Instead a convenience sample of 40 molar teeth was 

used, which demonstrated that after 12 hours demineralisation or longer, DSR 

was statistically significantly more accurate and reproducible (P<0.01) 

compared to viewing paired digital radiographic images side by side for 

identifying demineralisation in occlusal cavities when a reproducible X-ray 

projection geometry was used at 0 degree angulation (Ricketts et al., 2007).  

For these reasons, no power calculation was carried out (nor was it possible) in 

this research project, and only the digital radiographs obtained after 12, 18 and 

24 hours demineralisation were used.   

To reduce the number of digital radiographs to be taken, the ones 

demonstrating variations in X-ray source subject projection geometry (7 and 15 

degree horizontal angulation, 10 and 15 degree vertical angulation) compared 

to 0 degree angulation were taken prior to demineralisation, rather than at each 

time period following demineralisation.  This had no effect on the resulting 

digital subtraction images.  

The digital radiographs of the upper posterior dental arch sextants were taken 

with the plaster block positioned on the laminated board to ensure reproducible 

positioning and control of the X-ray projection geometry.  To avoid the teeth 

being oriented upside down compared to the normal clinical orientation, the 
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image was rotated to the correct anatomical orientation during image 

processing.      

The 0 degree angulation digital radiograph was taken with the X-ray beam 

passing tangentially through the inter-proximal space and/or contact points of 

the molar and premolar teeth, parallel to the occlusal plane of the teeth.  The 

perspex block, plaster block and PSP plate were positioned parallel to each 

other and perpendicular to the X-ray beam.  As this X-ray projection geometry 

produces the ‘perfect’ radiographic image which is the standard that bitewing 

radiographs taken in the clinical setting attempt to reproduce, any variations in 

X-ray source subject projection geometry used this as their reference.      

Although the digital subtraction images were produced by the principal 

researcher, SR, as the process involved human decision making, small 

variations in image processing could have occurred during their production.  

The process for producing the digital subtraction images was therefore 

standardised as far as possible to reduce the likelihood of variations occurring 

that could affect their relative diagnostic quality.   

Importing the digital subtraction images into Microsoft PowerPoint presentations 

may have degraded the images in some way, for example by compressing the 

image size.  The digital subtraction images were however acceptable for 

diagnostic purposes and subjectively no differences were detectable between 

the Microsoft PowerPoint images and the original .bmp files.  The monitors and 

viewing conditions were also not standardised between examiners, however, 

the conditions used by each examiner reflected their clinical practice and were 

acceptable.  Any differences would represent the variability that would be 

representative of that found in the clinical setting.   

Twelve of the 600 digital subtraction images were not of diagnostic quality to 

enable assessment of demineralisation in the occlusal cavities, so only 588 

digital subtraction images were available for use in Part 1.  Although this 

reduced the number of available digital subtraction images, in particular the 

proportion of digital subtraction images produced with a 15 degree horizontal 

angulation variation in X-ray source subject projection geometry, it will have had 

negligible effect on the overall results which were statistically significant. 
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Although there was a random selection process used in producing the viewing 

order of the initial 588 and repeat 100 digital subtraction images, they were the 

same for all 12 examiners.  Growing examiner experience and confidence could 

have favoured image interpretation towards the later parts of the presentations.  

Examiner fatigue could have however resulted in the opposite effect occurring, 

favouring the interpretation of the digital subtraction images towards the earlier 

parts of the presentation.  To reduce fatigue, the examiners were advised to 

only view 100 digital subtraction images at a time, taking around 30 minutes, 

over 6 sessions.  These possible systematic effects or errors could have been 

reduced if the order of the subtraction images had been randomised for each 

individual examiner.   

For intra-examiner reproducibility, 100 of the initial 588 digital subtraction 

images, were randomly selected for independent re-examination by the 12 

examiners, who were kept blind to previous results.  Although no statistical 

analysis was carried out to assess if this sample size would provide a 

representative sample to enable accurate assessment of intra-examiner 

reproducibility, it was similar to the proportion used in the study by Ricketts et 

al. (2007).  The images were viewed one month after their first viewing to 

ensure adequate washout time, preventing the examiners from recognising 

them and remembering their previous score.  It could be argued that the 

examiners would have gained greater experience, and possible confidence 

having viewed and scored the initial 588 digital subtraction images prior to 

viewing and scoring the repeat 100 digital subtraction images which could have 

favoured the interpretation of the repeat 100 digital subtraction images.  The 

extent of this effect or error could have been reduced if the 100 randomly 

selected repeat images were inserted into the original Microsoft PowerPoint 

presentations of the initial 588 images.  However, in this situation there could be 

an increased chance that the examiners may recognise repeat images and the 

score allocated.   

Although a random selection process was used to assess intra-examiner 

reproducibility, it did not ensure that an equal proportion of digital subtraction 

images were selected to represent each variation in X-ray projection geometry 

and length of demineralisation.  To include stratification and ensure that equal 

proportions were represented in the repeat scorings, there would have to have 
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been a much larger number of images to re-score, possibly resulting in 

increased subject fatigue and participant dropout.  The reproducibility values 

obtained therefore reflected the overall intra-examiner reproducibility when 

interpreting digital subtraction images.    

 

5.2  Interpretation of the results – Accuracy of DSR for detecting 

demineralisation in occlusal cavities 

5.2.1 Interaction between variations in X-ray source subject projection 

geometry and length of demineralisation 

Univariate analysis of variance demonstrated a statistically significant 

interaction (F=2.778, P<0.01) between variations in X-ray source subject 

projection geometry and length of demineralisation regarding the accuracy of 

DSR for detecting demineralisation in occlusal cavities.  For this reason, the 

effect that variations in X-ray source subject projection geometry had on the 

accuracy of DSR for detecting demineralisation in occlusal cavities were 

analysed at each specific length of demineralisation. 

5.2.2 Variation in X-ray source subject projection geometry 

One-way analysis of variance demonstrated that variations in X-ray source 

subject projection geometry had a statistically significant effect (P<0.001) on the 

accuracy of DSR for detecting demineralisation in occlusal cavities after 12 

hours, 18 hours and 24 hours demineralisation.  This finding agrees with the 

literature where reliable DSR requires the two digital radiographic images used 

to produce the subtraction image to be taken with reproducible X-ray projection 

geometry (Christgau et al., 1998, Dove and McDavid, 1992, Eberhard et al., 

2000, Haiter-Neto et al., 2005, Janssen and van Aken, 1989, Rudolph et al., 

1987, Ruttimann et al., 1981, van der Stelt, 1993, van der Stelt, 2008, Wenzel, 

2002, Wenzel et al., 1993, Hausmann et al., 1991).   

Post-hoc tests for multiple comparisons using a Bonferroni correction to reduce 

the chance of obtaining a type I error identified that after 12 and 24 hours 

demineralisation, there was no statistically significant reduction (P=1.000) in the 

accuracy of DSR for detecting demineralisation in occlusal cavities using digital 

radiographs that had a 7 degree horizontal angulation variation in X-ray source 
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subject projection geometry between them, compared to the use of a 

reproducible 0 degree X-ray projection geometry.  However, this pattern was 

not identified after 18 hours demineralisation as a statistically significant 

reduction (P<0.001) in accuracy was detected.  The reason for this anomaly is 

not clear but it could have been a spurious finding.  At all extents of 

demineralisation, any vertical angulation variation or 15 degree horizontal 

angulation variation in X-ray source subject projection geometry between digital 

radiographs resulted in a statistically significant reduction (P<0.001) in the 

accuracy of DSR for detecting demineralisation in occlusal cavities compared to 

the use of a reproducible 0 degree X-ray projection geometry. 

Clinically, it is important to identify demineralisation in occlusal cavities as early 

as possible so that additional preventative measures can be put in place to 

reduce the extent of tooth tissue destruction.  This research project 

demonstrates that after 12 hours artificial demineralisation, although the highest 

accuracy with DSR was obtained using digital radiographs that had been taken 

with a reproducible 0 degree angulation X-ray projection geometry (AuROC 

curve = 0.858), no statistically significant reduction (P=1.000) in accuracy was 

detected if digital radiographs have a 7 degree horizontal angulation variation 

between them (AuROC curve = 0.826).  Paired samples t-test also 

demonstrated that after all extents of demineralisation, although there was a 

trend for higher accuracy favouring a distal shift in X-ray source, no statistically 

significant difference (P≥0.05) in accuracy was detected if the 7 degree 

horizontal angulation variation was either in a mesial or distal direction. 

A 7 degree horizontal angulation variation in X-ray source subject projection 

geometry between digital radiographs is greater than the 3 degrees of variation 

which can be controlled for, over a 6 month period, using customised bite 

blocks with commercially available devices (Duckworth et al., 1983, Rudolph 

and White, 1988).  However, further research is needed to assess if a 5 degree 

vertical angulation variation in X-ray source subject projection geometry 

between digital radiographs compared to the use of a reproducible 0 degree 

angulation X-ray projection geometry for the production of a digital subtraction 

image would statistically significantly reduce its accuracy for detecting 

demineralisation in occlusal cavities.  This is required as a 5 degree vertical 

angulation variation in X-ray source subject projection geometry between digital 
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radiographs is the extent of variation which can be controlled for, over a 6 

month period, using customised bite blocks with commercially available devices 

(Duckworth et al., 1983, Rudolph and White, 1988).  This research project 

demonstrated that if digital radiographs with either a 10 or 15 degree vertical 

angulation variation in X-ray source subject projection geometry between them 

were used to produce a digital subtraction image, that its accuracy for detecting 

demineralisation in occlusal cavities was statistically significantly reduced 

(P<0.001) compared to the use of digital radiographs with a reproducible 0 

degree X-ray projection geometry.    

This research project also found that, for occlusal cavities, as the size of the 

angulation variation of the X-ray source subject projection geometry between 

digital radiographs to produce a digital subtraction image increased, both 

horizontally and vertically, then the corresponding accuracy for detecting 

demineralisation decreased for all extents of demineralisation.  This inversely 

proportional relationship between the increasing size of angulation variation, 

and, its reduced accuracy agrees with other findings (Davis et al., 1994, 

Grondahl et al., 1984, Rudolph et al., 1987, Wenzel, 1989).     

5.2.3 Length of demineralisation  

As the extent of demineralisation increased, so did the accuracy of DSR for 

detecting demineralisation in occlusal cavities using a reproducible 0 degree X-

ray projection geometry.  However, following a 7 degree horizontal angulation 

variation in X-ray source subject projection geometry between the digital 

radiographs used to produce a digital subtraction image, although the accuracy 

following 24 hours demineralisation was higher than that after 12 hours, the 

accuracy after 18 hours was lower than that after 12 hours.  There is no obvious 

reason for this anomaly.  When a reproducible 0 degree X-ray projection 

geometry was used, this research project reported slightly lower mean AuROC 

curves for all 12 examiners (mean AuROC curve after 12 hours 

demineralisation = 0.858, mean AuROC curve after 18 hours demineralisation = 

0.924, mean AuROC curve after 24 hours demineralisation = 0.946) compared 

to those calculated for all 5 examiners in the study by Ricketts et al. (2007) 

(mean AuROC curve after 12 hours demineralisation = 0.952, mean AuROC 

curve after 18 hours demineralisation = 0.976, mean AuROC curve after 24 

hours demineralisation = 0.956).  Although this project and the Ricketts et al. 
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(2007) study used the same digital radiographs, different individuals 

manipulated them to produce the digital subtraction images.  Small procedural 

variations related to human decision making during the production of the 

images could explain this, however, the most likely explanation for why this 

study’s reported accuracy was slightly lower than Ricketts et al. (2007) would be 

examiner experience and confidence interpreting digital subtraction images as 4 

out of the 5 examiners (80%) in the 2007 study had experience of viewing 

digital subtraction images, however, in this research project, only six out of the 

twelve examiners (50%) had any experience of DSR.      

5.2.4 Comparison with other studies  

Two in-vitro studies investigated the accuracy of DSR for detecting acid induced 

demineralisation at proximal enamel surfaces of teeth (Haiter-Neto et al., 2005, 

Ferreira et al., 2006).  Both used a reproducible X-ray projection geometry to 

produce logarithmically contrast enhanced digital subtraction images, and the 

AuROC curve for the detection of demineralisation within the proximal surfaces 

of enamel was reported as 0.98 in both studies.  It is difficult to directly compare 

these results with this research project and Ricketts et al. (2007), as each used 

a different demineralising protocol and the degree of demineralisation may very 

well vary, even under strictly controlled timeframes.  However, the results of 

Ferreira et al. (2006) and Haiter-Neto et al. (2005) appear to suggest that DSR 

is more accurate for detecting acid induced demineralisation in proximal enamel 

surfaces compared to occlusal surfaces when a reproducible X-ray projection 

geometry has been used.  This would be logical considering the anatomy at 

both sites and the different amount of sound buccal and lingual enamel and 

dentine which would attenuate the X-ray beam.   

However, the accuracy for detecting demineralisation in proximal sites using 

DSR may be significantly reduced if digital radiographs are used that have 

variations in horizontal angulation of the X-ray source subject projection 

geometry resulting in superimposition of the proximal surfaces of the teeth.  It 

has been demonstrated that even when Rinn loops No.2 ® and Kwik-Bite 

filmholders ® are used to obtain bitewing radiographs of unrestored permanent 

teeth that have proximal contact points, that only 19% of the surfaces show no 

overlapping (Sewerin, 1981a).  It has also been long known that variations in 

horizontal X-ray source subject project geometry can cause artifactual 
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radiographic changes on conventional radiographs regarding the apparent 

depth of proximal radiolucencies associated with carious lesions (Haugejorden, 

1974, Benn and Watson, 1989, van der Stelt et al., 1989, Sewerin, 1981b) and 

as the size of angulation of variation of the X-ray source increases, so does the 

apparent depth (Chadwick et al., 1999).     

 

5.3 Interpretation of the results – Reproducibility of DSR for 

detecting demineralisation in occlusal cavities 

5.3.1 Intra-examiner reproducibility 

Although the median percentage agreement for intra-examiner reproducibility 

for the 12 examiners was high at 86%, percentage agreement does not take 

into account agreement occurring by chance.  Kappa calculations were carried 

out as these take into account the amount of agreement that would be expected 

by chance, and by assigning weights, also, the degree and importance of 

disagreements.  The median weighted kappa value for the 12 examiners was 

0.585, which using the interpretation published by Landis and Koch (1977) 

represents moderate agreement.  In this research project linear weights were 

used, which by definition were proportional to the five-point certitude scale.       

The study by Ricketts et al. (2007), using the same digital radiographs as this 

research project taken with a reproducible 0 degree angulation X-ray source 

subject projection geometry, calculated the mean intra-examiner reproducibility 

kappa value for the five examiners at each length of demineralisation.  

However, due to a small sample size no kappa value was calculable for 12 

hours.  The mean intra-examiner reproducibility kappa value for the five 

examiners in the Ricketts et al. (2007) study after 18 hours demineralisation 

was 0.52 and after 24 hours demineralisation was 0.61, which using the 

interpretation published by Landis and Koch (1977) represents moderate 

agreement, the same as was identified in this research project.  This research 

project involved variations in X-ray source subject projection geometry which 

the Ricketts et al. (2007) study did not.  This suggests that the use of DSR for 

detecting demineralisation in occlusal cavities has moderate intra-examiner 

reproducibility, even when digital subtraction images are produced with 

variations in X-ray source subject projection geometry. 
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Four in-vivo studies by Martignon et al. (2006), Martignon et al. (2012), Paris et 

al. (2010) and Wenzel et al. (2000) (discussed in the literature review), 

investigated and compared the qualitative analysis of DSR with other 

conventional radiographic methods for assessing the progression of carious 

lesions in both enamel and dentine.  Three reported intra-examiner kappa 

values for DSR when a reproducible X-ray projection geometry had been used.  

The study by Wenzel et al. (2000) investigated lesions on all surfaces and 

reported an intra-examiner reproducibility kappa value for DSR of 0.875.  The 

studies by Martignon et al. in 2006 and 2012 investigated proximal surfaces 

only and reported intra-examiner reproducibility kappa values for DSR of 0.87 

and 0.78 respectively.  These three studies all reported higher intra-examiner 

reproducibility kappa values than this research project found, however, this 

could be explained by the scoring systems used to assess carious lesion 

behaviour and the way intra-examiner reproducibility was calculated (Martignon 

et al., 2006, Martignon et al., 2012, Wenzel et al., 2000).  In this project a five-

point certitude scale was used, and all five codes were used when calculating 

intra-examiner reproducibility.  However, in the study by Wenzel et al. (2000), 

although the scoring system comprised of five codes, when these codes were 

used to assess reproducibility, they were grouped to create dichotomous data 

as either ‘no change’ or ‘change’ in surface appearance of the carious lesion.  In 

the study by Martignon et al. (2006) the scoring system had three codes that 

were used to assess reproducibility, either ‘progression’, ‘no changes’ or 

‘regression’, and in the other study by Martignon et al. (2012) the scoring 

system had two codes that were used to assess reproducibility, either 

‘stabilised’ or ‘progressed’.  The use of fewer codes in the scoring systems and 

dichotomisation of data in these studies is likely to have resulted in higher intra-

examiner kappa values.  This effect was demonstrated by Ricketts et al. (2007) 

who used the same five-point certitude scale that was used in this research 

project.  They showed that if intra-examiner reproducibility kappa values were 

calculated by grouping the scores into two groups, no demineralisation (score 1, 

2 and 3) and demineralisation (score 4 and 5), that this resulted in higher kappa 

values as the mean intra-examiner reproducibility kappa score after 12, 18 and 

24 hours demineralisation combined was 0.94, rather than 0.52 and 0.61 after 

18 and 24 hours demineralisation respectively, if all five codes were used. 
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Whilst comparisons have been made in the aforementioned text, it has however 

been suggested that it is not appropriate to compare kappa values for 

reproducibility from different studies investigating carious lesion diagnosis, as 

differences between study design, examiners’ experience and the number of 

codes in the scoring systems used all influence the outcome (Poulsen et al., 

1980, Mileman et al., 1983, Pliskin et al., 1984, Espelid and Tveit, 1986, Naitoh 

et al., 1998).  Indeed, these variables may also account for, or contribute to, the 

differences cited above between studies.   

5.3.2 Inter-examiner reproducibility 

Inter-examiner reproducibility was calculated for digital subtraction images that 

had been produced using all variations in X-ray source subject projection 

geometry combined.  It was also calculated for 0 degree angulation only as this 

angulation resulted in the highest accuracy for detecting demineralisation in 

occlusal cavities using DSR and also enabled comparison with the results from 

the study by Ricketts et al. (2007).  Further calculations were also carried out 

combining 0 degree and 7 degree horizontal angulations as this research 

project demonstrated that a 7 degree horizontal angulation variation in X-ray 

source subject projection geometry compared to 0 degrees resulted in no 

statistically significant reduction in accuracy for detecting demineralisation in 

occlusal cavities using DSR after 12 and 24 hours demineralisation. 

The median inter-examiner weighted kappa value for the 12 examiners for 0 

degree angulation only was 0.53, which using the Landis and Koch (1977) 

interpretation, represents moderate agreement.  This value is slightly higher 

than the mean inter-examiner reproducibility kappa values reported for the five 

examiners in the Ricketts et al. (2007) study, using the same digital radiographs 

as this research project, taken with 0 degree angulation after 12 hours (mean 

kappa value = 0.473), 18 hours (mean kappa value = 0.471) and 24 hours 

(mean kappa value = 0.484) demineralisation.  Despite this small difference, 

both this research project and the study by Ricketts et al. (2007) demonstrated 

that DSR had moderate inter-examiner reproducibility for detecting 

demineralisation in occlusal cavities when a reproducible X-ray projection 

geometry has been used with 0 degree angulation digital radiographs. 
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Two in-vivo studies previously mentioned also reported inter-examiner 

reproducibility when a reproducible X-ray projection geometry had been used 

(Paris et al., 2010, Wenzel et al., 2000).  Wenzel et al. (2000) investigated 

lesions on all surfaces and reported an inter-examiner reproducibility kappa 

value for DSR of 0.678.  The study by Paris et al. (2010) investigated proximal 

surfaces only and reported an inter-examiner reproducibility kappa value for 

DSR of 0.809.  The scoring system in the Paris et al. (2010) study used three 

codes to assess carious lesion behaviour as either ‘progression’, ‘regression’ or 

‘stable lesion’.  Both studies reported higher inter-examiner reproducibility 

kappa values than identified in this research project, however, this is likely to be 

due to reasons previously alluded to regarding the scoring systems that were 

used to assess carious lesion behaviour and the way inter-examiner 

reproducibility was calculated by grouping codes together (Paris et al., 2010, 

Wenzel et al., 2000).  The heterogeneity between the studies also makes direct 

meaningful comparisons difficult, if not impossible (Poulsen et al., 1980, 

Mileman et al., 1983, Pliskin et al., 1984, Espelid and Tveit, 1986, Naitoh et al., 

1998). 

When 0 degree and 7 degree horizontal angulation were combined, this 

research project demonstrated that the median inter-examiner weighted kappa 

value for all 12 examiners was 0.48, which although slightly lower than that 

reported for 0 degree angulation only, still represents moderate agreement 

using the interpretation published by Landis and Koch (1977).  A notable 

reduction in inter-examiner reproducibility was however identified when all 

variations in X-ray source subject projection geometry were combined as the 

median weighted kappa value for all 12 examiners was 0.38, representing only 

a fair agreement (Landis and Koch, 1977).  However, this is irrelevant as this 

research project demonstrated a statistically significant reduction in accuracy for 

detecting demineralisation in occlusal cavities using DSR when 15 degree 

horizontal, 10 degree vertical and 15 degree vertical variations in X-ray source 

subject projection geometry existed between digital radiographs compared to a 

0 degree angulation reproducible X-ray projection geometry.   
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Part 2: The discriminatory ability and reproducibility of a grading 

system for assessing observed changes in the proximal 

relationships of teeth on paired digital radiographs taken with 

horizontal variations in the X-ray source subject projection 

geometry 

 

5.4 Limitations associated with the methodology 

The 60 digital radiographs used in Part 2 of this research project were produced 

by a group of researchers, 20 of which were used in the study by Ricketts et al. 

(2007).  The sample size of 20 premolar teeth and 40 molar teeth, and the 

anatomical relationship between the one premolar tooth and two molar teeth in 

each of the 20 posterior dental arch sextants was therefore pre-determined.  

Although there was a range in the size of inter-proximal spacing between teeth, 

none of the posterior dental arch sextants simulated crowding which can be 

present in the clinical setting.  The 7 degree and 15 degree horizontal 

angulation variations in X-ray source subject projection geometry compared to 0 

degree used to produce the digital radiographs were also pre-determined as 

previously mentioned in section 5.1.   

Due to a random positioning error associated with the PSP plate for the 15 

degree horizontal angulation digital radiograph for one of the posterior dental 

arch sextants, only 59 digital radiographs, rather than 60, were of adequate 

diagnostic quality for use in Part 2 of this research project.  Although this 

reduced the proportion of digital radiographs demonstrating a 15 degree 

horizontal angulation, it will have had minimal or negligible effect on the overall 

results. 

Following a literature search, the principal researcher (SR) was unable to 

identify an existing ordinal categorical grading system designed to assess the 

observed changes in the proximal relationships of teeth on paired (digital) 

radiographic images that correlates with variations in horizontal angulation X-

ray source subject projection geometry.  The grading system used in this 

research project was therefore designed for the needs of the project and has 

not been described or validated.  Although a number of studies have 

investigated the degree of proximal overlapping on radiographs, very few 
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specify exactly what criteria have been used to assess it (Pitts, 1984).  

However, the section of the grading system used to assess the degree of 

proximal overlap is very similar to criteria described by Sewerin (1981a), 

McDonald (1983) and Pitts (1984).  One limitation associated with the grading 

system is that the scores are based on the ‘width of enamel’ as a reference for 

measuring both the extent of interproximal spacing and proximal overlapping.  

The width of enamel varies between teeth, and is not easily assessed if teeth 

have proximal restorations in place.   

Although the order of the digital radiographs for the initial 60 and reproducibility 

presentations was randomly selected for the two Microsoft PowerPoint 

presentations, they were the same for all 13 examiners.  Examiner fatigue could 

have favoured the scoring of the digital radiographic images towards the earlier 

parts of the presentation.  The extent that this systematic effect or error could 

have had might have been reduced if the order of the digital radiographic 

images had been individually determined by a random selection process for 

each of the 13 examiners’ presentations.   

As previously mentioned in section 5.1, the digital radiographs of the upper 

posterior dental arch sextants were taken with the plaster block positioned on 

the laminated board to ensure reproducible positioning and control of the X-ray 

projection geometry.  To avoid the teeth being oriented upside down compared 

to the normal clinical orientation the image was rotated to the correct anatomical 

orientation during image processing.  Importing the digital radiographic images 

into Microsoft PowerPoint presentations may have also degraded the images in 

some way, for example by compressing the image size.  The digital 

radiographic images were however acceptable for diagnostic purposes and 

subjectively no differences could be identified comparing the images in the 

Microsoft PowerPoint presentations to the images saved as .bmp files.  The 

monitors and viewing conditions were also not standardised between 

examiners, however, the conditions used by each examiner reflected their 

clinical practice and were acceptable.  Any differences would represent the 

variability that would be representative of that found in the clinical setting.   
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5.5  Interpretation of the results  

5.5.1 Assessment of the median differences in score for the proximal 

relationships of teeth on paired digital radiographs following 7 and 15 

degree horizontal angulation variations in X-ray source subject projection 

geometry compared to 0 degree angulation 

Following a 7 degree horizontal angulation variation in X-ray source subject 

projection geometry between paired digital radiographs, the majority of 

examiners reported median differences in score for the proximal relationships 

between teeth of less than 1.  In the majority of cases this represented 

observed differences in the size of inter-proximal spacing or proximal 

overlapping between teeth less than half the width of enamel.  However, 

following a 15 degree horizontal angulation variation in X-ray source subject 

projection geometry, the majority of examiners reported median differences in 

score of 1 or more.  Part 1 of this research project demonstrated that the 

accuracy for detecting demineralisation in occlusal cavities was not statistically 

significantly reduced following a 7 degree horizontal angulation variation in X-

ray source subject projection geometry compared to the use of a reproducible 0 

degree X-ray projection geometry, however, it was following a 15 degree 

horizontal angulation variation.  The grading system could therefore be used to 

assess the paired digital radiographs used in this research project, and aid 

identification of the extent of horizontal angulation variations in X-ray source 

subject projection geometry that existed between them.  This useful information 

would then enable a decision to be made as to their suitability to undergo digital 

subtraction and the resulting accuracy of the digital subtraction image for 

detecting demineralisation in occlusal cavities. 

Following a 7 degree horizontal angulation variation in X-ray source subject 

projection geometry, the largest median differences in score were identified for 

the proximal relationship between the 6/7 contact, rather than the 5/6 contact, 

however, the opposite was identified following a 15 degree horizontal angulation 

variation.  Clinically, as the width of the contact points between teeth are usually 

wider in the buccal-lingual/palatal direction for the 6/7 contact compared to the 

5/6 contact, you would expect to see greater proximal overlapping, and 

therefore a greater difference in scores for the 6/7 contact.  The conflicting 

findings in this in-vitro research project are likely related to the positioning of the 



110 
 
teeth within the plaster blocks, their anatomical relationship to one another and 

that the extracted teeth came from different individuals. 

To enable identification of the range of horizontal angulation variations in X-ray 

source subject projection geometry that produce specific scores, further 

research using the grading system would be required.  This may however 

demonstrate that the grading system used in this research project lacks the 

discriminatory power to identify smaller differences in horizontal angulation 

variation, especially increments of 1 degree.  It is likely that this would only be 

achievable using a quantitative continuous grading system, as it has already 

been demonstrated that a linear relationship exists between the size of variation 

of X-ray source subject projection geometry and the change in width of proximal 

overlap observed on paired radiographs (McDonald, 1983).  If a 0.1mm 

increase in width of proximal overlap is detected between paired radiographs, 

then 95% of the deviations in X-ray source subject projection geometry are less 

than 2.5 degrees (McDonald, 1983).   

5.5.2 Reproducibility of the grading system  

5.5.2.1 Intra-examiner reproducibility 

The grading system used in this research project had excellent intra-examiner 

reproducibility, as the median weighted kappa value for intra-examiner 

reproducibility for the 13 examiners was 0.86, which using the interpretation 

published by Landis and Koch (1977) represents almost perfect agreement.  

Only one examiner did not demonstrate almost perfect agreement, however, 

their weighted kappa value was only 0.02 lower than the threshold value for 

classifying almost perfect agreement (Landis and Koch, 1977).   

As the grading system used in this research project has not been used in any 

other studies, direct comparisons cannot be made.  However, aspects of the 

grading system used to assess the degree of proximal overlap are very similar 

and mirror aspects of criteria that have been described in studies by Sewerin 

(1981a) and McDonald (1983).  Unfortunately the study by Sewerin (1981a) did 

not report intra-examiner reproducibility, however, the study by McDonald 

(1983) demonstrated 92% concordance of the overlap scores which is similar, 

albeit slightly lower than the 98% median percentage agreement identified in 

this research project.   
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5.5.2.2 Inter-examiner reproducibility 

The grading system used in this research project had excellent inter-examiner 

reproducibility as the median weighted kappa value for inter-examiner 

reproducibility for the 13 examiners was 0.83, which represents almost perfect 

agreement (Landis and Koch, 1977).  Unfortunately only one examiner 

assessed the degree of proximal overlap in the studies by Sewerin (1981a) and 

McDonald (1983) so it is not possible to compare the inter-examiner 

reproducibility reported in this research project with these studies.   

 

5.6 Limitations of the in-vitro model used in this research 

project compared to the clinical environment 

In this research project, the position of the individual teeth in the plaster blocks, 

and therefore, their relationship to one another remained static to ensure strict 

control over all possible variables.  This differs from the clinical situation, as 

over time the individual position and relationship of teeth to one another can 

alter, especially in the developing dentition.  This would have implications on the 

ability to standardise X-ray projection geometry between digital radiographs and 

affect the quality of any digital subtraction images produced, which has to be 

respected if the results of this research project are to be applied to the clinical 

environment.  The DSR software can however account for some tooth 

movement through patch minimisation processes as previously described.   

The application of the demineralising solution to the mechanically prepared and 

modified occlusal cavities of the extracted molar teeth resulted in 

demineralisation of the dental tissues.  However, this is an artificial process 

compared to the natural disease process where there is a continual process of 

demineralisation and remineralisation over a much longer period of time 

involving cariogenic bacteria, various ions that are present in saliva and 

possibly topical fluoride.  It is also not known what net or percentage loss of 

tooth tissue occurred in this research project following 12, 18 and 24 hours 

application of the demineralising solution, and how this would correlate to the 

changes seen over time in a naturally progressing carious lesion.  The 

standardisation of the demineralisation process used in this study was however 

necessary to ensure strict control over all possible variables. 
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In the clinical environment, other changes to coronal tooth tissue may occur 

over time not just as a result of demineralisation of the cavity in question, but 

due to the development of other carious lesions at other sites on the same 

tooth, toothwear, trauma and restorative intervention.  The results of this 

research study therefore have to be taken in context when applied to occlusal 

cavities that have been restored, received micro-invasive treatment or been 

subjected to preventative strategies involving the application of topical fluoride 

as all of these will have altered the tooth tissue between subsequent digital 

radiographs used to produce a digital subtraction image over time.   

Also in the clinical environment, additional information is available that may 

influence the decision as to whether or not a previously identified carious lesion 

has demineralised further when looking at a digital subtraction image.  

Examples would include the identification of new carious lesions in other sites, 

poor plaque control, confirmation of a highly cariogenic diet, lack of use of 

topical fluoride and a reduction in the quantity or buffering capacity of saliva.   

The reproducible X-ray projection geometry used in this research project 

involved the 0 degree angulation digital radiograph being taken with the X-ray 

beam passing tangentially through the contact points of the teeth, parallel to the 

occlusal plane and perpendicular to the X-ray film, as this X-ray projection 

geometry produces the ‘perfect’ radiographic image which is the standard that 

bitewing radiographs taken in the clinical setting attempt to reproduce.  All 

variations in X-ray source subject projection geometry used to produce other 

digital radiographs were applied with respect to this.  It is important to 

appreciate this relationship if the results of this research project are to be 

applied to the production of digital subtraction images using digital radiographs 

taken in the clinical setting.  Although the ideal X-ray projection geometry is 

aspired to, it is not always possible, and it has been reported that proximal 

overlapping in bitewing radiography of permanent teeth that have proximal 

contact points, occurs in 81% of sites (Sewerin, 1981a).   
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6 Conclusions 

 

6.1 Research question 

This research project demonstrated that alteration of X-ray source subject 

projection geometry impacted the accuracy and reproducibility of DSR for 

detecting demineralisation in artificially created occlusal cavities.   

 

6.2 Part 1 

6.2.1 Objective 1 

DSR had the highest accuracy for detecting demineralisation in occlusal cavities 

when a reproducible 0 degree X-ray projection geometry was used, that is with 

the X-ray beam passing tangentially through the contact points of the teeth, 

parallel to the occlusal plane and perpendicular to the X-ray film to produce the 

digital radiographic images.  If a 7 degree horizontal angulation variation in X-

ray source subject projection geometry existed between digital radiographs 

used to produce a digital subtraction image, it did not statistically significantly 

reduce its accuracy compared to the use of a reproducible 0 degree X-ray 

projection geometry after 12 and 24 hours demineralisation.  However, 15 

degree horizontal, 10 degree vertical and 15 degree vertical angulation 

variations in X-ray source subject projection geometry between digital 

radiographs did statistically significantly reduce the accuracy of DSR compared 

to the use of a reproducible 0 degree X-ray projection geometry after 12, 18 and 

24 hours demineralisation. 

6.2.2 Objective 2 

No statistically significant difference in accuracy for detecting demineralisation 

in occlusal cavities using DSR was identified comparing a mesial with a distal 

shift in X-ray source, following a 7 degree horizontal angulation variation in X-

ray source subject projection geometry after 12, 18 and 24 hours 

demineralisation.  Following a 15 degree horizontal angulation variation in X-ray 

source subject projection geometry, a statistically significantly higher accuracy 

was identified following a distal shift, compared to a mesial shift in X-ray source 

after 12 and 24 hours demineralisation.  However, this finding is not relevant 
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due to the statistically significant reduction in accuracy associated with a 15 

degree horizontal angulation variation in X-ray source subject projection 

geometry compared to a reproducible 0 degree X-ray projection geometry. 

6.2.3 Objective 3 

No statistically significant differences in accuracy for detecting demineralisation 

in occlusal cavities using DSR was identified comparing a positive upward with 

a negative downward shift in X-ray source, following a 10 degree vertical 

angulation variation in X-ray source subject projection geometry after 12, 18 or 

24 hours demineralisation.  The same was found for 15 degree vertical 

angulation variation in X-ray source subject projection geometry after 12 and 18 

hours demineralisation.  Following a 15 degree vertical angulation variation in 

X-ray source subject projection geometry, a statistically significantly higher 

accuracy was identified following a positive upward shift, compared to a 

negative downward shift in X-ray source after 24 hours demineralisation.  

However, the findings related to vertical angulation variations in X-ray source 

subject projection geometry are not relevant due to the statistically significant 

reduction in accuracy associated with vertical angulation variations in X-ray 

source subject projection geometry compared to a reproducible 0 degree X-ray 

projection geometry.  

6.2.4 Objective 4 

DSR had moderate intra-examiner reproducibility for detecting demineralisation 

in occlusal cavities, irrespective of whether or not the subtraction images were 

produced using a reproducible 0 degree X-ray projection geometry or 7 degree 

horizontal, 15 degree horizontal, 10 degree vertical or 15 degree vertical 

angulation variations. 

6.2.5 Objective 5 

The use of DSR for detecting demineralisation in occlusal cavities had 

moderate inter-examiner reproducibility when digital radiographs were used to 

produce the digital subtraction images that had been taken with either a 

reproducible 0 degree X-ray projection geometry or 7 degree horizontal 

angulation variation.  However, when digital subtraction images were produced 

using digital radiographs that had been taken with either a 0 degree 

reproducible X-ray projection geometry or following 7 degree horizontal, 15 
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degree horizontal, 10 degree vertical or 15 degree vertical angulation variations 

in X-ray source subject projection geometry, inter-examiner reproducibility 

reduced and was only fair.   

 

6.3 Part 2 

6.3.1 Objective 1 

When the grading system was used to score the proximal relationships of teeth 

on paired digital radiographs taken with a 7 degree horizontal angulation 

variation in X-ray source subject projection geometry between them, the 

majority of the differences in scores were less than 1.  In the majority of cases 

this represented observed differences in the size of inter-proximal spacing or 

proximal overlapping between teeth less than half the width of enamel.  

However, when it was used to score the proximal relationships of teeth on 

paired digital radiographs taken with a 15 degree horizontal angulation variation 

in the X-ray source subject projection geometry between them, the majority of 

the differences in scores were 1 or more.  The scores generated by the grading 

system could therefore be used to aid identification of the extent of horizontal 

angulation variations in X-ray source subject projection geometry that existed 

between the paired digital radiographs used in this research project.     

6.3.2 Objective 2 

The intra-examiner reproducibility of the grading system for assessing observed 

changes in the proximal relationships of teeth on paired digital radiographs 

taken with 7 and 15 degree horizontal angulation variations in the X-ray source 

subject projection geometry between them was almost perfect. 

6.3.3 Objective 3 

The inter-examiner reproducibility of the grading system for assessing observed 

changes in the proximal relationships of teeth on paired digital radiographs 

taken with 7 and 15 degree horizontal angulation variations in the X-ray source 

subject projection geometry between them was almost perfect.   
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7 Future research 

 

This research project identified that a 7 degree horizontal angulation variation in 

X-ray source subject projection geometry between digital radiographs does not 

statistically significantly reduce the accuracy of DSR for detecting 

demineralisation in occlusal cavities compared to a reproducible 0 degree X-ray 

projection geometry.  Further in-vitro research is required to identify to what 

extent vertical angulation variations in X-ray source subject projection geometry 

can be tolerated without statistically significantly reducing the accuracy of DSR 

for detecting demineralisation in occlusal cavities compared to the use of a 

reproducible 0 degree X-ray projection geometry.  Once this has been 

identified, these horizontal and vertical angulation limits in variation of X-ray 

source subject projection geometry should be investigated regarding the 

accuracy of DSR for detecting demineralisation in proximal sites.  This will 

ascertain the range of horizontal and vertical angulation variations in X-ray 

source subject projection geometry that can be tolerated between digital 

radiographs for producing digital subtraction images that have a high accuracy 

for detecting demineralisation in occlusal and proximal sites. 

Further research will then be required to continue to develop a grading system 

that has the discriminatory power to identify the size of variations in vertical and 

horizontal X-ray source subject projection geometry that may exist between 

paired digital radiographs.  This should take into account the tolerances that 

have been identified as being acceptable for the production of highly accurate 

digital subtraction images for the detection of demineralisation in occlusal and 

proximal sites.   

In-vivo research should then be carried out using paired digital radiographs that 

have been obtained in the clinical environment for investigating the use of DSR 

for detecting demineralisation in occlusal and proximal sites.  This should also 

include the monitoring of carious lesions that have been managed using resin 

infiltration, sealants and the placement of restorations, in addition to those 

managed with prevention alone.  Comparisons should be made to other 

methods of monitoring carious lesions such as the pairwise comparison of 

digital radiographs.  The use of currently available commercially produced intra-
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oral devices for standardising X-ray projection geometry will require further 

research in the clinical environment to confirm whether or not they can control 

vertical and horizontal angulation variations in X-ray source subject projection 

geometry within the range of tolerance required to produce highly accurate 

digital subtraction images as identified in the in-vitro studies.     
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