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Abstract 

Glass is an inexpensive and readily available material making it an 

indispensable element in the many fields of science and technology. This 

thesis describes three methods of manipulating the optical and structural 

properties of glass and nanocomposite glass for varying applications. These 

are: thermal poling of glass, electric field assisted dissolution of glass 

embedded with silver nanoparticles and the irradiation of glass embedded 

with silver nanoparticles. Each method will be adapted to present novel and 

widely applicable approaches to the modification of glass. 

Thermal poling of glass will be used to create diffractive optical 

elements (DOEs) in soda-lime float glass. Thermal poling of glass results in 

a change to the glass structure, by using an electrode with a periodic pattern 

the glass was selectively restructured creating an effective DOE. The 

parameters of the process, namely applied voltage and temperature, were 

investigated for their part in the efficiency of the resultant DOE. 

A second method for the fabrication of DOEs will use electric field 

assisted dissolution (EFAD) of glass embedded with spherical silver 

nanoparticles. This process leads to the dissolution of silver nanoparticle 

into the surrounding glass. By selecting a mesh electrode with a periodic 

pattern an effective DOE was fabricated by selectively dissolving the silver 

nanoparticles in contact with the electrode. As with thermal poling, the 

voltage and temperature of the process will be investigated in order to 

produce more efficient DOEs.  
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Glass with embedded spherical silver nanoparticles was irradiated 

using a nanosecond (36 ns) pulsed laser at 532 nm. Laser irradiation led to 

the formation of a thin surface film containing uniformly distributed 

nanoparticles - with an increase in the overall average nanoparticle size. The 

influence of the applied number of laser pulses on the optical and structural 

properties of such a recipient nanocomposite was investigated. 
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Chapter 1: Introduction 

Glass as a material is used in a variety of products. In many cases, the properties of a 

glass product may be optimized; by changing the chemical composition of the glass 

by introducing other materials, and effects can also be achieved by changing the 

physical and optical structure of the glass. 

Altering the physical structure of the glass is widely desirable and has been 

achieved in a range of methods with varying degrees of accuracy. Thermal poling [1-

6] is perhaps one of the most well-known and reliable glass modification processes 

and involves high temperatures along with the application of a dc (direct current) 

electric field to alter the structure of the glass. 

The distinctive properties of metallic nanoparticles embedded within glass 

have sparked significant interest due to the unique linear and nonlinear optical 

properties that this composite material possesses. These properties are dominated by 

the strong surface plasmon resonances (SPRs) of the metal nanoparticles and it is 

possible to design the position of these SPRs within a wide spectral range by 

manipulation of size [7], shape [8], and spatial distribution [9] of the embedded 

particles, making modification of these particular materials of great interest.  

This thesis will present novel approaches to both thermal poling and the 

modification of glass embedded with silver nanoparticles. 



Chapter 1: Introduction 2 

1.1. Objectives of this work programme 

Firstly thermal poling will be used for the fabrication of effective diffractive 

elements from common soda-lime float glass. Diffractive elements are typically 

fragile and costly to fabricate to a large scale. However it will be shown that by 

using an applied dc electric field across the glass at reasonably elevated temperatures 

it is possible to create effective diffraction gratings that are both cost efficient and 

robust in a process that is simple and reproducible. The effect of using high 

temperature and applied electric field results in a restructuring of the glass matrix 

which alters the glass refractive index. By using a patterned electrode, the electric 

field is selectively applied to the glass and thus creates periodic variations in the 

refractive index, via redistribution of the alkali ions, throughout the final product. 

This periodic change in the refractive index of the glass is responsible for the 

diffraction patterns shown. The diffraction pattern is therefore dictated by the easily 

modified pattern of the electrode, allowing for this technique to be used for the cost 

effective production of complex, large-scale diffractive optical elements using a 

simplistic and reliable process. 

The second method will describe the use of thermal poling on glass with 

embedded silver nanoparticles; more commonly known as electric field assisted 

dissolution (EFAD) [10, 11]. By employing the EFAD process, with a patterned 

electrode, diffractive optical elements were fabricated in this stable and unique 

material. In this instance rather than restructuring the glass itself as with thermal 

poling, EFAD causes the selective dissolution of the silver nanoparticles into the 

surrounding glass providing an embedded grid of clear glass where there had been 

contact between the glass composite and the patterned electrode. This periodic 

pattern allows the material to function as a diffraction grating. Optimisation of the 
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process is presented demonstrating that higher voltage, or temperature, during the 

fabrication leads to more complete dissolution of the silver nanoparticles. It will be 

shown that this technique is suitable for the low-cost fabrication of efficient and 

robust diffractive optical elements.  

For the final technique described, glass with embedded silver nanoparticles 

was modified by use of nanosecond pulsed Nd:YVO4 laser irradiation. This resulted 

in the formation of a reflective surface film and an increase in the nanoparticle size 

following irradiation. By varying the number of pulses applied per spot it was 

discovered that with increasing number of pulses there is an increase in the average 

nanoparticle radius. The temperature rise during the irradiation process was 

calculated to be well above the glass softening temperature, implying that during 

irradiation the glass, and the silver embedded within it, are in the molten phase. This 

localized melting and reforming of the glass is tightly controlled and along with the 

simplicity and flexibility of the process leads to nanosecond pulsed laser irradiation 

being a suitable technique for the creation of complex, reproducible patterns of 

larger nanoparticles with smaller separation distances in glass embedded with silver 

nanoparticles. This allows for the tuning of the optical and structural properties of 

metal-glass nanocomposites, making this process suitable for the fabrication of 

complex optical elements, aesthetic products and sensing applications. 

1.2. Chapter outline 

Before describing the work involved, Chapter 2 serves as an introduction to the topic 

followed by an overview of glass embedded with metallic nanoparticles, and 

specifically silver nanoparticles. Chapter 3 is a description of the effective medium 

theory used to describe the electromagnetic properties of composite materials, in this 

case the Maxwell-Garnett theory. Subsequent chapters are devoted to each of the 
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methods described above: Chapter 4 will describe the thermal poling process 

involved in creating diffractive optical elements in soda-lime float glass; Chapter 5 

will then use a similar process employing glass embedded with silver nanoparticles 

to fabricate more efficient diffractive optical elements, and Chapter 6 provides an 

analysis of laser processing of glass embedded with silver nanoparticles. Chapter 7 

concludes the work and suggests possibilities for future research in this area. 

 



 

Chapter 2: Introduction to properties of glass 

embedded with metallic nanoparticles 

In this chapter the characteristics of metal nanoparticles are presented, focusing on 

their optical properties and how they react with light. This is followed by a brief 

history of their uses when embedded in dielectric media, namely glass, and the 

unique optical phenomena that result. This section will also include an introduction 

to glass embedded with silver nanoparticles which was used throughout this work. 

2.1. Metallic nanoparticles 

2.1.1. Introduction 

Nanoparticles are defined as being particles between 1 and 100 nanometres in size, a 

particle being a fragment of matter which acts as a whole unit with respect to its 

properties. Nanoparticles are of great interest as their nanoscale size allows them to 

exhibit pronounced phenomena including optical, structural and electronic effects 

not seen in the bulk form of the material. The unique properties of nanoparticles 

make them an area of intense interest due to a wide variety of potential applications 

not only across the field of physics [12, 13], but also in life sciences [14-17] and 

chemistry [18], contributing to an ever growing area of research. 

Metal nanoparticles have attracted much attention over the last decade owing 

to their unique properties as compared to their bulk metal equivalents. A vital aspect 

of their application potential is the ability to control the properties of nanoparticles 
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with particular respect to size, shape and spatial distribution where the nanoparticles 

are embedded within a host medium. Recent advances in controlling the shape and 

size of nanoparticles have opened the possibility to optimise the particle geometry 

for applications [7, 19, 20].  

Bearing in mind the advantages and many outstanding features of metal 

nanoparticles, it is hardly surprising that the number of publications which involve 

these materials has increased almost exponentially over the last few years (Fig. 1). 

Research efforts are expected to continue to increase as the benefits become 

increasingly apparent for applications across many fields. 

 

 

Fig. 1. (a) The growth of number of publications concerning metallic 

nanoparticles [21]. (b) Interest in specific elements in the preparation of 

nanoparticles [22]. 

A significant amount of research has been devoted to controlling the 

dimensions and spatial distributions of metallic nanoparticles embedded within glass 

and other dielectric media [23-26]. This is due specifically to the unique optical 

phenomena they present. These are directly related to the specific particle 

morphology (size and shape), metal dispersion, concentration and the electronic 
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properties of the metal within their host environment. Control of the size, shape and 

dispersion of embedded nanoparticles is the key to the selective and enhanced optical 

properties that can be achieved. 

2.1.2. Properties 

One of the characteristic features of metal materials is their ability to act as 

conducting media. As with all conducting materials this is achieved by the presence 

of free electric charges, which for metals are normally electrons, the motion of which 

constitutes a current. 

 The current per unit area, J, resulting from the application of an electric field, 

E , is related to the conductivity of the medium, σ, by Ohm’s Law, J E . For 

dielectric materials there are no free electric charges to carry the current so σ = 0. 

However, as metals have the presence of electric charge carriers in the form of 

conduction electrons σ is nonzero and constant. 

2.1.3. Interaction with light 

For the most part any interaction between light and metals takes place between the 

optical electric field and electrons in the conduction band (i.e. electrons have 

sufficient energy to move freely through the material). However, some of the light 

energy can be transferred to the bulk material when a collision takes place (energy in 

the form of heat). It is reasonable to characterise the optical properties of metals by 

use of two optical constants; the refractive index, n, and the extinction coefficient, κ. 

These result in the complex refractive index, n , where; 

n n i  , 1 
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n is defined as the ratio of the phase velocity of light in a vacuum to its phase 

velocity in a specified medium. κ indicates the amount of attenuation when the 

electromagnetic wave propagates through the material. Both these constants may 

vary with wavelength and temperature [27] and therefore the expression for an 

electromagnetic wave propagating in an absorbing medium contains both of these 

parameters. By relating the complex wave number k  to n  through 
02k n  , with 

λ0 being the vacuum wavelength; this can be inserted into the plane wave expression 

as; 

2 ( )
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, 2 

where E0 is the amplitude of the wave measured at the point x = 0 in the medium, 

E(x,t) is the instantaneous value of the electric vector measured at a distance x from 

the first point and at some time t, ω is the angular frequency of the source, k is the 

wave number, and λ0 is the wavelength in vacuum. 

The absorption coefficient, α, is related to the extinction coefficient by: 

0

4


 . 3 

The absorption coefficient can be used in order to obtain the light intensity, I, as it 

varies with depth, z, by employing Beer’s equation; 

0( ) zI z I e  , 4 

where I0 is the intensity of the incident light. Note that this equation assumes that 

both the incident intensity and the intensity measured at depth z are measured within 

the absorbing medium. Beer’s equation demonstrates that after the wave has 

propagated a distance of 1z   the intensity of the incident wave (the flux density) 

will drop by a fact of e
-1

, this is known as the penetration depth (or skin depth). The 
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penetration depth for transparent dielectrics is larger than the thickness of the 

material; however the penetration depth for metals is very small. For example, 

copper has a penetration depth of only 6 nm for light at 10 μm which drops to only 

0.6 nm for ultraviolet light at 100 nm [12]. 

The relationship between the flux density (light intensity) and the optical 

constants can be described by using the complex dielectric constant of the material. 

The dielectric constant is the ratio of the permittivity of a substance to the 

permittivity of free space. The complex dielectric constant, εi, is given by; 

' ''i i    , 5 

where ε’ and ε’’ denote the real and imaginary parts of the dielectric constant 

respectively. The real and imaginary dielectric constants are related to the previously 

mentioned optical constants, the refractive index and extinction coefficient, by;  

2 2' n   , 6 

'' 2n  . 7 

2.2. Glass embedded with metallic nanoparticles 

2.2.1. Introduction 

Glasses with embedded metallic nanoparticles are of particular interest due to the 

unique optical phenomena they present. These optical properties have been 

employed for centuries in order to provide a desired aesthetic effect, although not 

fully understood until much later. An example of this can be seen in the Lycurgus 

cup (Fig. 2 (a)), a 4
th

 century Roman glass cup made of dichroic glass which shows a 

different colour depending on whether or not light is passing through it; appearing 

green when illuminated from the front (Fig. 2 (a(i))) and red when lit from behind 
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(Fig. 2 (a(ii) )). This effect is due to nanoparticles of gold and silver which are 

present in the glass. When light is passing through the material the gold and silver 

nanoparticles absorb green and blue light making the cup appear red. It is likely that 

the glass makers knew little about this effect and that the addition of gold and silver 

nanoparticles may not have even been controlled and was probably discovered by 

accidental “contamination” with ground gold and silver particles produced by other 

work being carried out in the vicinity.  

 

Fig. 2. (a) The Lycurgus cup (4
th
 century) appears a different colour when 

illuminated (i) from the front and (ii) from behind due to the presence of 

gold and silver nanoparticles which are thought to have been added 

accidentally during the glass manufacturing process. (b) By the 19
th
 century 

bold colours were being proposedly achieved in stained glass panels, like 

those on display at Meaux Cathedral in France, by adding metallic oxide 

powders which were known to produce vivid colours. 

Some of the earliest known examples of purposefully adding metallic 

nanoparticles can be seen in stained glass windows, Fig. 2 (b). Growing in popularity 

during the medieval times, glass was coloured using metallic oxide powders with 

certain types of metals known for producing particular colours; copper producing 
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green, cobalt making blue, and gold providing a red or violet colour. Silver stain was 

introduced later and provided a much sought after strong yellow colour. 

More recently glasses with embedded silver nanoparticles have been of 

interest as the optical effects become better understood, enabling these materials to 

be used in many applications. 

2.2.2. Optical properties of glasses embedded with metallic nanoparticles 

The unique linear and nonlinear optical properties of glasses embedded with metallic 

nanoparticles are dominated by the strong surface plasmon resonances (SPRs) of the 

metal nanoparticles. 

Exposure of a metal nanoparticle to an electric field results in a shift of the 

free conduction electrons within the nanoparticle. The surface charges of opposite 

sign on the opposite surface elements of the particles (see Fig. 3) produce a restoring 

local field within the nanoparticle. The shifted electrons of the metal particle, 

together with the restoring field consequently represent an oscillation. The combined 

oscillation of many electrons constitutes surface plasmon resonance [12, 34]. 

 

Fig. 3. An illustration of an electromagnetic wave inducing the surface 

plasmon oscillation of metallic nanoparticles. 
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The spectral position and shape of SPRs can be designed within a wide 

spectral range throughout the visible and near-infrared spectrum by choice of metal 

[12], Fig. 4. (a), and host matrix [28], Fig. 4 (b). 

 

Fig. 4. (a) Extinction spectra of glass containing spherical silver, gold and 

copper nanoparticles [29]. (b) Extinction spectra of silver nanoparticles in 

different host media. 

The properties of the SPR are also heavily dependent on the size [7], shape 

[30], spatial distribution [31] and concentration (i.e. volume filling factor) [32] of the 

metal inclusions, these variables are all easily tailored making these composites a 

desirable material for many applications in the field of photonics. 

The Mie solution to Maxwell’s equations for the scattering and absorption of 

light by spheres provides an exact analytical theoretical description of surface 

plasmons of spherical metals nanoparticles [12, 33, 34]. For particles which are 

small compared to the local variations of the involved electromagnetic fields, the 

quasistatic approximation [12] is valid; this approximation assumes the exciting field 

is homogeneous and uniform over the particle’s volume. 

Under these assumptions, the results of electrostatics can be applied by using 

the corresponding frequency dependent dielectric function. In this case, the 
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polarizability, a, and induced dipole moment, p, of an embedded metallic sphere in a 

dielectric medium are: 
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where R is the radius of the nanoparticle, E0 the electric field strength of an incident 

electromagnetic wave, ε0 the electric permittivity of vacuum, and εi(ω) and εh are, 

respectively, the relative complex electric permittivity of metal and host matrix. 

The absorption cross section, ϛ(ω), of a spherical metal inclusion placed in a 

transparent dielectric matrix, where the imaginary part of the relative complex 

electric permittivity approaches zero ( Im[ ] 0h  ) is then given as: 
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where c is the speed of light εi’(ω) and εi’’(ω) are real and imaginary part of the 

electric permittivity of the metal and combined can be described by the Drude-

Sommerfeld formula: 

2
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Here, γ is a damping constant of the electron oscillations and εb is the complex 

electric permittivity associated with interband transitions of the core electrons in 

atom. The free electron plasma frequency, ωp, is given by: 

2

*

0

p

Ne

m



 , 12 
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where N is the density of the free electrons, e is the electron charge and m
*
 is the 

effective mass of the electron (the mass that the electron appears to have when 

responding to forces in a given medium). 

From Eqs. 8-10, Mie resonance occurs at the surface plasmon (SP) 

frequency, ωSP, under the following conditions [29]: 

2
' '' 2( ) 2 ( )i h i Minimum         . 13 

If the imaginary part of the electric permittivity of the metal is small in comparison 

with the real component, or has a small frequency dependency, then Eq. 13 can then 

be written as: 

'( ) 2i SP h    . 14 

If Eq. 14 holds true; the dipole moment and local electric field in the vicinity of the 

nanoparticle grow significantly and can overcome the field of the incident wave. 

This phenomenon is responsible for the SP enhanced nonlinearities of the metal 

composite material. 

Each of the noble metals has a specific surface plasmon absorption band. For 

instance, silver nanoparticles embedded in a glass matrix exhibit an SP band at about 

417 nm, as can be seen from the extinction spectra presented in Fig. 5. However, for 

Au and Cu nanoparticles embedded in glass the SP band is shifted towards the red 

spectral range and peaks at around 528 nm and 570 nm, respectively. The broad 

absorption bands below 500 nm for glasses containing either Au or Cu are associated 

with interband transitions, namely from d- to s-shell, due to the absorption of light at 

these energies. However, for silver the interband resonance is peaked at 310 nm (4 

eV) far away from the SP resonance [35]. 
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Fig. 5. The extinction spectra of glass which contains spherical silver, gold 

and copper nanoparticles. 

Using Eq. 14 and by substituting the real part of the metal electric 

permittivity from Eq. 11, the position of the SP resonance can be expressed as 

follows: 

 

2

2 2
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b h


 

 
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From Eq. 15, it can be gathered that the core electrons have a significant influence 

on the surface plasmon resonance and therefore define the position of the SP band in 

the extinction spectra (Fig. 5) for different noble metals. Eq. 15 also describes a 

dependence of the SP resonance on the dielectric properties of the host medium 

which the metal nanoparticles are incorporated within. An increase of dielectric 

constant (refractive index) evokes the shift of absorption peak towards long 

wavelengths [12, 36, 37] (as seen in Fig. 6).  
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Fig. 6. Halfwidth of the surface plasmon resonance of silver nanoparticles 

versus the respective peak energy shown for varying embedding media 

(vacuum, glass, and TiO2) and particle size (shown as markers on the 

curves, separation between particles is kept constant). This figure is adapted 

from [12]. 

The curves in Fig. 6 [12] represent the calculated spectral positions of surface 

plasmon resonances of silver nanoparticles contained within three different media: 

vacuum (εh = 1), glass (εh = 2.25), and TiO2 (εh = 6.25). These results indicate that the 

SPR peak is more red-shifted for nanocomposites where the embedding media has a 

higher dielectric constant. 

Fig. 6 also shows that the position of the SP resonance depends on the size of 

the embedded metallic nanoparticles. Although the position remains almost constant 

for nanoparticles with a radius smaller than 15 nm, the band halfwidth for these 

clusters differs by a factor of 4. This is often described as an intrinsic size effect [12, 

38, 39]. If the particle size is less than that of the mean free path of the electrons in 

the metal (≈10-15 nm) [40], the electron scattering at the particle surface causes an 

increase dielectric function, mostly in the imaginary component. For smaller 
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particles (> 1 nm) the spill-out of electrons from the particle surface should be taken 

into account, which results in an inhomogeneous dielectric function. As a result, very 

broad plasmon bands are observed for small nanoparticles (Fig. 6). 

On the other hand, for spherical nanoparticles with an increase in radius of 

greater than 15 nm there is a shift in the SP resonance towards longer wavelengths 

with simultaneous increase in the band halfwidth (Fig. 6 and Fig. 7). This larger 

nanoparticle effect is referred as the extrinsic size effect [12, 38, 41, 42]. Here, 

higher-order (such as quadrupolar) oscillations of conduction electrons become 

important. Additionally to the red shift and broadening of SP band, Fig. 7, for silver 

shows also the second peak in extinction spectra, which is the result of these 

quadrupole effects. 

 

Fig. 7. Calculated Mie extinction spectra of spherical nanoparticles of 

various metals. Parameter is the size 2R. εh = 1. The figure is adapted 

from [Error! Reference source not found.]. 

Fig. 5, Fig. 6 and Fig. 7 demonstrate the importance of the choice of 

embedded nanoparticle and nanoparticle size when using glasses embedded with 

metallic nanoparticles. Silver nanoparticles show a useful pronounced SPR peak due 
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to a lower peak absorption for interband transitions when compared to copper and 

gold nanoparticles. It is for this reason that glass embedded with silver nanoparticles 

will be used for the experimental portions of the presented work. It has also been 

shown that the nanoparticle size and concentration (or filling factor) plays an 

important role in the properties of the nanocomposite material and it is therefore 

desirable to control the nanoparticle properties either during the fabrication process 

or by post-manufacture processing. 

2.2.3. Production of glass embedded with silver nanoparticles 

All of the samples used in the experiments described were prepared from soda-lime 

float glass (72.5 SiO2, 14.4 Na2O, 0.7 K2O, 6.1 CaO, 4.0 MgO, 1.5 Al2O3, 0.1 Fe2O3, 

0.1 MnO, 0.4 SO3 in wt%) by Ag
+
-Na

+
 ion exchange. For the ion exchange process 

glass substrate is placed in a mixed melt of AgNO3 and KNO3 at 673 K [36]. The 

thickness of the glass substrate, time of the ion exchange process, and weight 

concentration of AgNO3 in the melt determine the concentration and distribution of 

Ag
+
 ions in the glass. Thermal annealing of the ion exchanged glass in H2 reduction 

atmosphere (typically at 673 – 723 K) results in the formation of spherical silver 

nanoparticles. Samples were characterised using a JASCO V-670 UV/VIS/NIR 

spectrophotometer, KEYENCE Digital Microscope VHX-1000, and a Hitachi S-

4700 field emission scanning electron microscope (SEM). 
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Fig. 8. (a) SEM image of glass with embedded spherical silver 

nanoparticles. The silver particles are ~30-40 nm mean diameter and are 

recognisable as white spots. The nanoparticle-containing layer is 20-30 nm 

beneath the surface of the glass. (b) A thin slice showing the cross-section of 

the nanoparticle-containing layer. The volume-filling factor of the layer 

reduces to zero within a few microns and has an exponential decay like 

profile [8] with the maximum just beneath the surface of the sample which 

is indicated by a red arrow. 

In order to visualize the depth profile of the silver particle-containing layer, one of 

the samples was cut and a thin slice was prepared. For this the sample was embedded 

in an epoxy resin (Specifix-20, Struers Limited) to prevent chipping of the glass and 

to make it physically manageable for grinding and polishing. The resin was allowed 

to cure at room temperature before the sample was polished on both sides. The 

resultant slice was ~ 30 μm thick and can be seen in Fig. 8. (b). 

As would be expected, size and distribution of Ag nanoparticles (NPs) in the 

depth of the glass sample depend strongly on temperature and time of Na-Ag ion 

exchange as well as on the annealing time. For the samples produced here the 

spherical Ag nanoparticles were 30-40 nm in mean diameter (Fig. 8. (a)) and were 

distributed in a thin surface layer of approximately 6 μm thickness (the total 
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thickness of the glass plate was 1 mm). The volume filling factor, f, of Ag NPs, 

defined as the volume of the inclusions per unit volume of the composite material; 

Ag

total

V
f

V
  16 

 

was highest just below the glass surface and decreased in an exponential decay like 

fashion to ~0 within a few microns [8]. This is visible in Fig. 8 (b) as the shade of 

the nanoparticle containing region is darkest at the surface and grows lighter in the 

direction of the bulk glass. 

The saturated extinction spectrum of this sample of glass embedded with 

silver nanoparticles is shown in Fig. 9. 

 

Fig. 9. The saturated measured extinction spectra of glass embedded with 

silver nanoparticles. 
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2.3. Maxwell-Garnett theory and optical properties of glass embedded 

with metallic nanoparticles 

There are many different effective medium theories used for modelling 

electromagnetic properties of composite materials. One of them is Maxwell-Garnett 

theory [43], renowned for being simple and convenient for modelling, it is widely 

applied to describe the optical properties of metal particles in dielectric matrices [28, 

34, 44]. Although it does not correctly take into account the multipolar interactions 

between nanoparticles considered in other works [45-47], Maxwell-Garnett theory 

will be used in this work as it adequately describes the position and shape of the SP 

resonance and its dependence on the metal filling factor, Eq. 16 [28]. 

This chapter aims to give a suitable description of Maxwell-Garnett theory 

and, in particular, show the application of this theory with respect to glass embedded 

with silver nanoparticles with varying volume filling factor, i.e. nanoparticle 

concentration. 

One of the most important parameters when selecting a glass embedded with 

silver nanoparticles is the nanoparticle content concentration; any changes in the 

fraction of metal nanoparticles within the dielectric medium can drastically affect the 

materials optical properties, Fig. 10. Increasing fraction of metal nanoparticles in a 

medium leads to the decrease of average particle distances.  
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Fig. 10 – The extinction spectra of glass embedded with varying filling 

factor of silver nanoparticles (a) according to Maxwell-Garnett theory and 

(b) experimentally measured glass embedded with silver NPs with an 

estimated filling factor of (i) 0.08, (ii) 0.02, and (iii) 0.006 [8]. 

According to Maxwell-Garnett theory the effective dielectric constant εeff(ω) 

of a composite material with spherical metal inclusions having a fill factor f  is given 

by the expression [9]; 
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here εi(ω) and εh are the complex dielectric constant of the metal and surrounding 

matrix, respectively and ω denoted the frequency. The complex index of refraction 

of a composite medium, Eq. 1, can be rewritten as; 

( ) ' '' ( )effn n in     . 18 

Hence, the absorption coefficient αext and refractive index n’ of the medium with 

dielectric constant εeff(ω) can be expressed as 

2
Im ( )ext eff

c


   , 19 
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'( ) Re ( )effn    , 20 

where c is the light velocity. Due to variations in the calculated spectra for the 

absorption and dispersion there is a resultant variation in the reflection properties as 

a function of filling factor which can be expressed using the complex refractive 

index: 
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The reflection spectra (Fig. 11) were calculated as a function of volume 

filling factor of metal clusters in the glass matrix using the following variables: εh = 

2.3, ωp = 9.2 eV, γ = 0.5 eV [47], εb = 4.2 [48]. 

 

Fig. 11. (a) – Absorption cross-section, (b) – dispersion and (c) 

reflection spectra of composite glass containing Ag nanoparticles 

calculated using Maxwell–Garnett theory. 
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The spectra in Fig. 11 (a) show that dipolar interactions between 

nanoparticles cause a broadening and red shift of the absorption band with increasing 

filling factor of silver inclusions in the glass matrix. From Fig. 11 (b) it is noted that 

at low levels of silver nanoparticle content within the glass (f = 0.001) the refractive 

index is actually identical to that of clear glass (n' = 1.52), however higher levels of 

fill factor results in significant modifications of dispersion dependences of the 

composite glass. For example; for f = 0.1, the refractive index varies between ~ 1.2 

and 2.1 on the different sides of the SP resonance. Finally from the spectra in Fig. 11 

(c) it can be seen that with an increase in volume filling factor there is an obvious 

increase in reflectivity of the composite material. 

2.4. Conclusion 

This chapter briefly covered the properties of metallic nanoparticles and dielectric 

materials embedded with metallic nanoparticles with a focus on glass embedded with 

silver nanoparticles. An overview of Maxwell-Garnett theory was also provided as 

this method of effective medium theory will form the basis of the spectral analysis 

performed throughout the proceeding work. 

This introduction to these materials is not intended to be comprehensive 

however aims to provide the necessary background for the proceeding chapters. 

More in depth reviews of the optical properties of nanostructured random media can 

be found in [12] and [28]. 

 



 

Chapter 3: On thermal poling of glass and glass 

embedded with silver nanoparticles 

3.1. An introduction to thermal poling 

Thermal poling has been extensively investigated as it has been shown to be a 

reliable and reproducible technique for inducing non-linear optical properties within 

glass [1-6]. Parallel plate thermal poling of glass involves sandwiching the glass 

between two electrodes and applying a dc electric field across the sample while at 

elevated temperatures. This forms subsurface layers that exhibit nonlinear optical 

properties (such as the generation of second harmonics) which are depleted of highly 

mobile positive ions, such as Na
+
. During poling the applied electric field forces the 

positive ions to move from the near-anode region into the bulk of the material, 

towards the cathode [49-51]. Due to the reduction in ionic content in these near-

surface layers there is a discrepancy in the refractive index of the glass where there 

has been contact with the anode. This variation in the refractive index has previously 

been exploited for the fabrication of waveguides [52, 53]. 

3.2. Thermal poling of pure glass 

In this section the results of performing thermal poling on a sample of soda 

lime float glass are presented. It will be shown that a combination of applied voltage 

across the glass while it is in a moderately elevated temperature environment results 

in the displacement of the positive ions within the glass matrix. Firstly, the method 
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used for thermal poling of soda-lime float glass will be described before analysis of 

the sample will show that the positively charged ions within the glass have been 

successfully displaced. 

Figure Fig. 12 shows a typical experimental arrangement for parallel plate 

thermal poling. For the poling of pure soda-lime float glass a sample was 

sandwiched between two pressed contact steel electrodes (rectangular, area of 100 

mm
2
). The sample was then placed inside the oven (Carbolite RWF) in air 

atmosphere before heating to a temperature of 553 K. Once the temperature had been 

allowed time to settle (~45 mins) a dc voltage of 0.1 kV was applied across the 

thickness of the samples using a high voltage source; F.u.G. Elektronik HCE 7-3500 

POS. This power supply can supply voltages up to 6500V at currents up to 5mA and 

has a built in USB controller. Using this controller it was possible to control and 

monitor the functions of the power supply through a connected PC, this also allowed 

for the recording, plotting and saving of the data. 

 

Fig. 12.Typical setup for the thermal poling of soda-lime float glass. 

Graphite is often inserted between the electrodes and the glass in order to 

provide a better contact between the materials and to accept any substances 

pushed out of the glass as a result of the poling procedure. 
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Once the current had been allowed to settle (~50 mins) the voltage was 

increased to 0.2 kV. The current was again allowed to settle before the applied 

voltage was increased to its maximum for this sample; 0.3 kV. The current was 

allowed to settle for a final time before the applied voltage was removed and the 

oven temperature allowed to decrease before the sample was withdrawn. The 

behaviour of the current over this period is illustrated in Fig. 13. 

Since soda-lime glasses possess high ionic conductivity [54], it is important 

to take care in order to avoid electric breakdown of the material [4]. Here this was 

achieved by applying the voltage in small amplitude steps; for this sample 0.1 kV up 

to a value of 0.3 kV. By applying the voltage in this way the current never exceeded 

30 μA throughout the period of the treatment, the total duration of which was ~150 

mins. By integrating the current over the total time of the applied voltage the total 

charge transfer is calculated as 3.62 mA·s·cm
-2

 for this sample. 

 
Fig. 13.  The current-time dynamics recorded during the poling of soda-lime 

float glass. An initial voltage of 0.1 kV was applied and the current allowed 

to drop before the voltage was increased to 0.2 kV. This was repeated until 

the voltage had reached 0.3 kV. This step-wise application of the voltage 

was employed as a means of avoiding electronic breakdown of the glass [4]. 
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In order to better understand the displacement of the positive ions by thermal 

poling the distribution of the key elements of the glass was measured by using X-ray 

element analysis, Fig. 14; this was performed using a Hitachi S-4700 field emission 

scanning electron microscope (SEM). The distribution of the pivotal elements; 

sodium, potassium and silicon, in a sample of pure soda-lime float glass was 

measured before and after thermal poling at 553 K to a maximum voltage of 0.3 kV 

(achieved in 0.1 kV steps).  

 

Fig. 14. The distributions of key elements (sodium, potassium and silicon) 

as a function of depth measured by local X-ray element analysis of vertical 

cross sections of pure soda-lime float glass (a) before and (b) after poling at 

a maximum applied voltage of 0.3 kV (applied in 0.1 kV steps). The red line 

indicates the surface of the glass. 

Seen in Fig. 14 (and as previously reported in the literature [55, 56]) after 

poling the sodium and potassium content close to the glass surface has decreased, 

however increases at a depth of around 6 μm. It is not possible to distinguish 

between atoms and ions using SEM however it can be deduced that due to the 

application and direction of the electric field the changes in the distribution of these 
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key elements would be due to a field-driven displacement of Na+ and K+ ions. With 

this in mind it is a reasonable assumption to take the depth at which the Na and K 

concentration begins to increase as the thickness of the poled region and would 

hence be approximately 6 μm. 

3.3. Thermal poling of glass embedded with silver nanoparticles 

This section will describe the results of thermal poling on glass embedded 

with silver nanoparticles, a process more commonly known as electric field assisted 

dissolution, EFAD. It will be shown that the application of an electric field at 

moderately elevated temperatures on this glass results in the dissolution of the silver 

nanoparticles into the bulk glass matrix. The method for this procedure will be 

described along with an analysis of the material post-poling. 

Silver embedded glass samples were prepared from soda-lime float glass 

(72.5 SiO2, 14.4 Na2O, 0.7 K2O, 6.1 CaO, 4.0 MgO, 1.5 Al2O3, 0.1 Fe2O3, 0.1 MnO, 

0.4 SO3 in wt%) by Ag
+
-Na

+
 ion exchange. For the ion exchange process the glass 

substrate was placed in a mixed melt of AgNO3 and KNO3 at 673 K [36]. Thermal 

annealing of the ion exchanged glass in H2 reduction atmosphere (typically at 673 – 

723 K) results in the formation of spherical silver nanoparticles. The samples used in 

this section contained spherical Ag nanoparticles, 30-40 nm in mean diameter, 

distributed in a thin surface layer approximately 6 μm thick on both sides of the glass 

(the total thickness of the glass plate was 1 mm). It was necessary for the experiment 

described that the samples have an embedded silver layer on only one surface of the 

glass. In order to achieve this, the silver layer was removed from one side of the 

glass samples by etching in 12% HF acid. 
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For the thermal poling of glass embedded with silver nanoparticles a similar 

setup is used as for that of pure glass mentioned in a previous section on thermal 

poling of pure glass. As before the sample was poled using the parallel plate thermal 

poling technique which required that the sample be placed in a sandwich 

configuration between two pressed contact steel electrodes (rectangular of area 100 

mm
2
), and inserted into an air atmosphere oven (Carbolite RWF). Unlike the thermal 

poling of pure glass, the configuration of the electrodes is important due to the 

presence of the nanoparticle containing layer. In order for dissolution of the silver 

nanoparticles to take place it is necessary that the silver containing layer faces 

towards the anode so that the current direction drives the silver ions into the bulk of 

the glass during the poling process, Fig. 15. 

 

Fig. 15. Typical experimental arrangement for the thermal poling of glass 

embedded with silver nanoparticles or ‘Electric Field Assisted Dissolution’ 

(EFAD). Note the arrangement of the glass sample here; the silver 

containing layer faces toward the anode. 

Once in the oven the sample was heated to 573 K and allowed time for the 

temperature to settle (~45 mins). A dc voltage of 1.0 kV was then applied across the 

sample using a high voltage source (F.u.G. Elektronik HCE 7-3500 POS). Due to the 

presence of silver nanoparticles; electronic breakdown of the material is less likely to 

occur and so there is no need to introduce a voltage in a step amplitude fashion as 
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was the case with the pure glass. Once the voltage had been applied the setup was 

allowed 25 hrs for the current to drop. This was in an attempt to completely remove 

any silver nanoparticles from the poled area. Fig. 16 (a) shows the current-time 

dynamics recorded during the poling procedure. 

 

Fig. 16. (a) Current-time dynamics recorded for thermal poling of glass 

embedded with silver nanoparticles. This sample was poled in an oven 

temperature of 573 K using an applied electric potential of 1.0 kV. (b) The 

measured extinction spectra for this sample shown for before (‘Unaltered’) 

and after poling (‘Poled’).  

The extinction spectra pre- and post-poling were measured and are compared 

in Fig. 16 (b). As can be seen from these results the poling has caused a perceived 

narrowing of the SPR band. Although on a saturated plot this could indicate an 

actual narrowing of the SPR or a decrease in the peak height both would be in 

agreement with Maxwell-Garnett theory [8, 28, 57-58] which predicts that a 

narrowing of the SPR band or a reduction in the SPR peak height is due to a 

reduction in the filling factor of the metal inclusions [8, 58]. Here this is owing to the 

dissolution of the nanoparticles into the glass matrix caused by the combined action 

of the applied electric field and increased local temperature [10, 11]. 



Chapter 3: On thermal poling of glass and glass embedded with silver nanoparticles 32 

The result of thermal poling can be clearly seen with the naked eye; before 

dissolution the glass is a highly reflective yellow-brown colour due to the presence 

the silver nanoparticles, after thermal poling these nanoparticles have been dissolved 

into the glass matrix and therefore the glass loses some of its dense colour and is 

clearer, more like the original soda-lime float glass. This can be seen in Fig. 17. 

 

Fig. 17. Photograph taken of silver nanoparticle embedded glass after 

thermal poling (EFAD). The area which was in contact with the electrode 

during the experiment is easily recognisable as a rectangular transparent 

region in the centre of the opaque untouched glass. This is due to the 

dissolution of the silver nanoparticles within the glass matrix which takes 

place during poling and results in the processed area becoming clearer and 

less yellow than the original sample. 

3.4. Analysis of the conductivity of poled glass and poled glass 

embedded with silver nanoparticles 

In order to get a better understanding of the effects of thermal poling on glass 

(both pure and embedded with silver nanoparticles) the conductivity of the glass was 

measured before and after poling. This would give insight into how the ionic content 

(i.e. charge carriers) was altered by the poling process. 
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In total four samples were prepared for the conductivity measurements; a 

sample of pure soda-lime float glass unaltered, a sample of glass embedded with 

silver nanoparticles also unaltered and a sample of each type of glass after poling. 

For the pure glass the poled sample was treated in an oven at 553 K using a 

maximum applied voltage of 0.3 kV (achieved in 0.1 kV steps) for ~250 mins. The 

silver embedded glass was thermally poled in an oven at 573 K using a constant 

voltage of 1.0 kV over 25 hours. This was done in an attempt to completely eradicate 

the poled area of any silver content. 

Two gold electrodes in a gap-cell configuration (Fig. 18, width w = 0.2 cm, 

length l = 0.7 cm, separation s = 0.1 cm) were deposited on the surface of each 

sample using a thermal evaporation unit (Edwards model 307) operating at a base 

pressure of around 4 x10
-5

 mbar. 

 
Fig. 18. Photographs showing deposited gold electrodes on (a) a sample of 

unaltered soda-lime float glass and (b) an unaltered sample of glass 

embedded with silver nanoparticles. Due to some slight damage (visible in 

photographs) these were not the electrodes used for the measurements; 

however electrodes deposited in the same manner were used and these 

images serve to show how these appeared on the glass samples. 
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The electrical resistance (R) of the samples was then determined by 

performing current-voltage measurements using a source-measurement unit 

(Keithley Model 236). Resistance data was obtained for temperatures (T) ranging 

from 335 K to 455 K by attaching samples to a ceramic heating element in a sealed 

air enclosure. The gap-cell current response over this temperature range exhibited 

excellent Ohmic behaviour for applied voltages up to 100 V which allowed for the 

associated conductivity (σ) for samples of thickness d = 1 cm to be calculated as; 

1 d

R wl


 
  

 
. 22 

Conductivity data were generally recorded as the sample temperature was reduced 

following an initial short annealing period at 455 K to remove any surface 

contamination such as water-vapour. Good reproducibility of σ(T) sample data was 

observed following this procedure. 

The conductivity, calculated according to Eq. 22, for each sample is plotted 

in Fig. 19 from which it is observed that over the experimentally accessible 

temperature range σ exhibits Arrhenius behaviour according to; 

0 exp
B

E

k T
 

 
  

 
. 23 

In Eq. 23; kB is the Boltzmann constant and σ0 and ΔE respectively represent a pre-

exponential conductivity factor and activation energy that are characteristic of the 

ionic transport mechanism within the glass. 
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Fig. 19. Comparison of the conductivity of unaltered soda-lime float glass 

(“Unaltered”) and a sample post poling (“Poled”). The post poling sample 

was thermally poled in an oven at 553 K using a maximum applied voltage 

of 0.5 kV (achieved in 0.1 kV steps). 

Fig. 19 shows a comparison of the unaltered and poled samples of pure glass. 

From this image it is evident that poling results in a decrease in the conductivity of 

the glass compared to its original state. This reduction in conductivity is 

accompanied by a systematic increase in the associated activation energy of the 

glass, from 0.89 eV to 1.03 eV, meaning that the energy required for conductivity 

has increased. 

After poling the deficit of positive charge caused by the displacement of the 

positive ions by the poling process is compensated by hydronium ions (H3O
+
) which 

are formed on the surface from the ambient air [59, 60]. The mobility of H3O
+
 ions is 

much lower than the alkali ions (sodium, potassium) from the glass and as the 

conductivity of the glass is proportional to the mobility of positive ions it is 

subsequently reduced post-poling. 
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Fig. 20. Plot showing the difference in conductivity of unaltered glass 

embedded with silver nanoparticles (“Unaltered - Ag”) and a sample after 

thermal poling (“Poled - Ag”) at 553 K using a maximum applied voltage of 

0.5 kV (achieved in 0.1 kV steps). 

Similarly, there is a notable decrease in the conductivity of glass embedded 

with silver nanoparticles after thermal poling. However in this instance the decrease 

in the conductivity is due to the dissolution of silver particles with the glass. The 

silver nanoparticles, now in their ionic state, are no longer able to act as positive 

charge carriers and thus accounts for this decrease in conductivity. Again, lowered 

conductivity is accompanied by an increase in the associated activation energy of the 

glass, from 0.89 eV to 0.93 eV. 

3.5. Summary 

This chapter aimed to give an insight into the thermal poling of glass (both 

pure and embedded with silver nanoparticles) which will be essential for the 

proceeding chapters. To begin an overview of the process of thermal poling was 
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described; detailing how an applied electric field and moderately elevated 

temperatures causes displacement of positive ions within glass. 

The thermal poling process was then demonstrated using ‘pure’ soda-lime 

float glass. Using the relatively simple technique described it was shown using X-ray 

element analysis that after thermal poling the distribution of positive ions (mainly 

sodium and potassium) had decreased close to the surface of the glass. 

The next section investigated how thermal poling in glass embedded with 

silver nanoparticles differs to that of the pure glass. It was described how this 

process, more commonly known as EFAD, although similar in procedure to thermal 

poling varies fundamentally in that it does not involve the displacement of positive 

ions from the glass matrix but instead relies upon the dissolution of silver 

nanoparticles. 

The EFAD process was then illustrated with a sample of glass embedded 

with silver nanoparticles. Immediately after poling of the silver-doped glass the 

dissolution is visible by eye. The dissolution is backed up by Maxwell-Garnett 

theory which states that a narrowing of the SPR band is indicative of a decrease in 

the metal filling factor of such a composite material. 

To further analyse the effect poling has on both the pure glass and the glass 

embedded with silver nanoparticles the conductivity of the glasses was measured 

before and after poling. The results showed that post-poling both types of glasses 

had a significant decrease in conductivity owing to the decrease in available positive 

charge carriers (sodium and potassium for the pure glass and silver for the metal 

embedded glass). 
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Utilising what was shown in this chapter, the following two chapters will use 

the relatively simple thermal poling process in order to fabricate functional 

diffraction gratings. 



 

Chapter 4: Imprinting of pure glass 

4.1. Introduction 

This chapter will describe the process for fabricating a diffractive optical element, 

DOE, in soda-lime float glass using the thermal poling process. Just as described in 

the previous chapter the glass is sandwiched between two electrodes; a flat metal 

cathode as before, however in order to create the structuring necessary for the DOE a 

metallic mesh is used as the anode. We will discuss how applying a direct current, 

while at a moderately elevated temperature of 553 K, induces thermal poling of the 

glass but most notably the result that the structured pattern of the anode is imprinted 

within the glass as the electric field causes ion depleted regions where there is 

contact between the glass and electrode. 

The current-time dynamics of the structuring process, conductivity 

measurements, optical analysis, atomic force microscopy and resultant diffraction 

patterns of samples from this fabrication process are presented. 

4.2. Experimental 

Soda-lime float glass (72.2 SiO2, 14.2 Na2O, 0.71 K2O, 6.5 CaO, 4.42 MgO, 1.49 

Al2O3, 0.13 Fe2O3, 0.4 SO3, in wt.-%) was employed for the fabrication of the DOEs.  

As in Fig. 21, 1 mm thick samples of this glass were sandwiched between two 

metallic electrodes. 
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Fig. 21. A schematic illustration the setup used for the structured thermal 

poling of soda-lime float glass. A metallic mesh acts as the anode, 

imprinting a pattern of ion depleted regions which mirror the pattern of the 

mesh. 

The notable exception for these experiments compared to the plain poling 

described in the preceding chapter is that the flat metallic plate previously used as 

the anode has been replaced with a periodically structured silicon electrode with a 

lattice constant of 2 μm, Fig. 22. 

The structured electrode, fabricated by the Max Planck Institute for 

Microstructure Physics at Halle, Germany [9]85; was grown in a 

photoelectrochemical etching process of lithographically prestructured <100>-

oriented n-type silicon wafers. In each case, the front side of the wafer was in contact 

with hydrofluoric acid (HF; cHF = 5 wt.-%; T = 10 °C) whereas the backside was 

illuminated generating electron–hole pairs. An external anodic bias then consumed 

the electrons, and the electrons/holes diffused through the whole wafer to the silicon 

electrolyte interface, promoting the silicon dissolution there. The pores with very flat 

surfaces and high aspect ratios grew straight along the (001) direction of the silicon 

single crystal [61, 62]. The macroporous silicon samples had a lattice constant of 2 

µm and before use were sputtered with 10 nm chromium film to avoid anodic 

bonding during the experiments [63, 64]. 



Chapter 4: Imprinting of pure glass 41 

The cathode was a flat piece of stainless steel (rectangular, area = 1 cm
2
). In 

order to improve the contact between the glass and the electrode a piece of graphite 

sheet was inserted between the sample and the cathode, similarly between the 

positive electrode and the metallic mesh. An added advantage of having graphite at 

the negative electrode is that the substances coming out of the glass do not pollute 

the electrodes. Additionally, graphite forms a non-blocking cathode since it accepts 

alkali ions. 

 

Fig. 22. (a) Microscope image and (b) an SEM image taken of the surface of 

the periodically structured silicon used as the anode in the imprinting of 

soda-lime float glass. The lattice constant of the structured silicon is 2 µm 

with the hole having a width of approximately 1 µm. 

The samples were then placed in an air atmosphere oven (Carbolite RWF) 

and the electrodes were connected to a high-voltage power supply (F.u.G. Elektronik 

HCE 7-3500 POS). For all samples the oven temperature was kept constant at 553 K 

(an hour at this temperature was allowed before applying the dc voltage in order to 

ensure the temperature had settled) while the effect of using a different peak voltage 

was investigated by changing the peak applied dc voltage for each sample. For all 

samples the voltage was applied in small amplitude steps, either 0.2 kV or 0.1 kV, in 
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a way that during each step the current never exceeded a few hundred microamperes, 

typically <150 µA. This was done in order to avoid electric breakdown of the 

material. 

The characterizations of the samples were performed using a KEYENCE 

Digital Microscope VHX-1000, JEOL JSM-7400F scanning electron microscope and 

a He-Ne laser. 

4.3. Results and Discussions 

In order to determine what parameters produced more efficient diffraction gratings; 

four samples were thermally poled to different maximum voltages however still 

using the same step-up voltage technique described earlier in order to avoid 

electronic breakdown of the material. 

Post poling all samples exhibited clear structured patterns with a lattice 

constant of 2 m when viewed under the microscope, images taken can be seen in Fig. 

23. This is in agreement with the lattice constant and pattern of the structured 

electrode used as the anode (Fig. 23 (i)) implying that the pattern of the anode has 

been imprinted onto the surface of the glass. 

 

Fig. 23. Microscope image taken of (i) the surface of the structured 

electrode and the glass sample surfaces post poling at a maximum voltage of 

(ii) 1.0kV (in 0.2 kV steps), (ii) 0.8 kV (in 0.2 kV steps), (iii) 0.6 kV (in 0.2 

kV steps) and (v) 0.3 kV (in 0.1 kV steps). 
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Described in the chapter on thermal poling; the structures shown in the 

microscope images are formed due to the migration of highly mobile positive ions 

(namely Na
+
 and K

+
). These ions are mobile at the elevated temperature used during 

the experiment and are driven away from the positive electrode by the electric field. 

As before some of these positive ions are pushed into the bulk of the material 

however in this case due to the structure of the electrode they may also be directed 

into the relief areas where the glass is not in contact with the electrode (Fig. 24 

illustrates the displacement of the ions). It is these areas of relief which appear as 

squares in the microscope images and form the structures seen in Fig. 23. The grid 

structure, i.e. depletion regions, are a few micrometres thick [65] and, due to the 

reduced ionic content, have a lower refractive index that the ‘relief’ structures. 

 

Fig. 24. (a) Schematic illustrating a sample of pure soda-lime float 

glass during thermal poling with a structured electrode. Positive ions 

are shown being driven into the bulk glass and relief regions (areas 

not in contact with the electrode) by the electric field. (Note: the 

electric field lines are essentially parallel over the relatively small 
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depth of the ion depletion region.) (b) Post thermal poling there are 

now areas of increased ionic content in the relief regions of the glass 

and ion depleted regions where there had been contact with the 

electrode.  

Investigation of the ion displacement was performed by measuring the 

surface conductivity of structured thermally poled glass and comparing to those for 

the unaltered sample and the thermally poled sample produced using the plain 

electrode from chapter 3. The aim of this is to show that thermal poling using the 

structured electrode will provide displacement of the cations only where there is 

contact between the glass surface and the electrode and thus not provide the 

maximum poling available from full contact as in the sample poled using the plain 

electrode.  

The conductivity was calculated following the same method described in 

chapter 3 and Fig. 25 shows the conductivity of the sample poled with the structured 

electrode (“Grid Structured”) alongside that of the unaltered soda-lime glass 

(“Unaltered”) and the thermally poled sample using the plain electrode (“Plain 

Poled”). 
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Fig. 25. A comparison of the conductivity of the grid-structured thermally 

poled glass (“Grid Structured”) to that of the unaltered soda-lime glass 

(“Unaltered”) and the plain electrode thermally poled sample from the 

previous chapter (“Plain Poled”). Both of the modified samples were poled 

under the same conditions (air atmosphere oven at 553 K with a maximum 

voltage of 0.3 kV achieved in steps of 0.1 kV). The solid lines on the plot 

show the best fit of Eq. 23 to the data points shown, the values calculated 

for ΔE for each sample are given in the key. 

The activation energy was lowest for the unaltered glass sample, 0.89 eV, 

and increased post poling; this is because the activation energy is indirectly 

proportional to ion mobility and as the positive ions from the glass are replaced with 

lower mobility H3O
+
 ions the activation energy increases. After grid structured 

poling the absence of high mobility charge carriers can be seen as the activation 

energy increases to 0.98 eV and when the maximum number of these highly mobile 

positive ions has been driven into the bulk glass, during plain electrode poling, the 

activation energy has increased further to 1.03 eV. As grid structured poling only 

selectively displaces the positive ions within the glass, some high mobility ions still 
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remain, while a maximum number of these ions have been replaced by using the 

plain electrode and hence this procedure produces the lowest conductivity. 

The current-time dynamics were recorded for the durations of the 

experiments on all four samples and are shown in Fig. 26. The first sample was 

poled to a maximum voltage of 1.0 kV (Fig. 26 (a)) by initially applying a voltage of 

0.2 kV causing a current peak of ~60 μA which decreases, following an exponential-

type curve, below ~20 μA within 40 min, A second voltage step was then applied 

inducing a current peak of ~105 μA which was again allowed to drop to ~30 μA 

following a similar exponential-like curve, before the third voltage step was applied. 

The voltage was increased following this pattern of allowing the current to drop 

before applying an additional 0.1 kV. The current reached a maximum of ~115 μA 

after each increase and followed a similar decreasing curve to a minimum of 

approximately 30 μA. 

 

Fig. 26. The current time dynamics recorded during the structured thermal 

poling of ‘pure’ soda-lime float glass. The maximum applied electric 

potential; (i) 1.0 kV (in 0.2 kV steps), (ii) 0.8 kV (in 0.2 kV steps), (iii) 0.6 

kV (in 0.2 kV steps) and (iv) 0.3 kV (in 0.1 kV steps). 
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The total charge transfer for the procedure was calculated by integrating the 

current over the total time the voltage was applied for and gives a total charge 

transfer of 0.18 A·s·cm
-2

 for the sample poled with a maximum voltage of 1.0 kV. 

As can be seen for Fig. 26 (ii), (iii) and (iv) the current-time dynamics for the 

other samples followed a similar trajectory; with the first current peak being 

significantly lower than those for the proceeding voltage increase steps. 

The total charge transfer for each sample decreased with decreasing 

maximum voltage as would be expected. The total charge transfer for the modified 

samples is documented in Table 1. 

Table 1. Details of the modified soda-lime float glass samples. All samples 

were thermally poled in an air atmosphere oven at 553 K. 

Maximum voltage used 

during poling (kV) 

Voltage step 

increase (kV) 

Sample area 

(cm
2
) 

Total charge transfer 

(A·s·cm
2
) 

1.0 0.2 3.04 0.18 

0.8 0.2 1.65 0.12 

0.6 0.2 1.76 0.09 

0.3 0.1 1.54 0.04 

All four samples functioned, with varying degrees of efficiency, as diffractive 

optical elements; the diffraction pattern for each sample can be seen in Fig. 27. 

Comparing these patterns for the different samples shows a variation in the intensity 

of the diffraction patterns and in the number of orders that are clearly visible, the 

first and second orders were certainly visible for all four samples. 



Chapter 4: Imprinting of pure glass 48 

 

Fig. 27. The diffraction patterns (in transmission) of the samples thermally 

poled using a structured electrode to a maximum voltage of; (i) 1.0 kV (in 

0.2 kV steps), (ii) 0.8 kV (in 0.2 kV steps), (iii) 0.6 kV (in 0.2 kV steps) and 

(iv) 0.3 kV (in 0.1 kV steps). In order to take clearer images the intensity of 

the zero order was reduced by using a small piece of black felt. 

The variation in intensity of the diffraction patterns was investigated by 

calculating the diffraction efficiency of each of the samples using Eq. 24; 

0

P
P

  , 24 

 where P0 is the incident optical power and P is the power of the diffracted light. The 

calculated diffraction efficiencies are plotted in Fig. 28. 
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Fig. 28. Log plot displaying the values of diffraction efficiency (η) for the 

four structured thermally poled samples. The diffraction efficiency values 

are shown for the three most visible orders; zero, first and second, and were 

determined by using a 632 nm He-Ne laser. The key relates to the maximum 

applied voltage used (all voltages were applied in 0.2 kV steps bar the 0.3 

kV sample for which the maximum voltage was achieved in 0.1 kV steps). 

From these results it was determined that the sample with the lowest 

diffraction efficiency was produced using a maximum voltage of 1.0 kV, while the 

sample with the highest diffraction efficiency was fabricated using the lowest 

maximum applied voltage; 0.3 kV. 

The height of the structures was subsequently investigated using atomic force 

microscopy (AFM) by tracing the surface profile; the results of which are shown in 

Fig. 29. The highest measured value for surface relief height was ~30 nm for the 

sample poled at a maximum voltage of 0.6 kV while the smallest structures were 

recorded as ~7 nm and produced when the maximum voltage was 0.3 kV. The relief 

height is proportional to the exposure time which was the longest for the sample 

poled at a maximum voltage of 1.0 kV and shortest for the sample poled at a 
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maximum voltage of 0.3 kV indicating that exposure time is not the only factor 

determining the height of the relief structures. 

 

Fig. 29. Surface relief height of samples post structured thermal poling to a 

maximum voltage of; (i) 1.0 kV (in 0.2 kV steps), (ii) 0.8 kV (in 0.2 kV), 

(iii) 0.6 kV (in 0.2 kV steps), and (iv) 0.3 kV (in 0.1 kV steps). 

 Higher voltage increases the electric field strength between the two plates 

and at the edge of the areas of glass in contact with the electrode. With increased 

electric field strength the mobility of the hydronium ions increases resulting in 

increase in the depth profile of the structures and a smearing of the lateral surface 

profile [60]. The smearing of the surface profile results in a decrease in the phase 

modulation index and therefore with increased voltage the diffraction efficiency 

decreases. It is worth mentioning that the formation of surface reliefs and their 

heights as a result of thermal poling would also influence the diffraction efficiency. 

The total poling time also affects the depth of the depleted region of positive 

ions within the glass [3]. As the poling time was dictated by the maximum voltage 

used, samples with a higher maximum voltage were poled for a longer time and 

therefore will have thicker depleted layers.  
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Using the parameters used to achieve the highest diffraction efficiency, 0.3 

kV in 0.1 kV steps, a more complex pattern was attempted. In order to achieve this a 

sample of the same soda-lime float glass was thermally poled at 553 K applying the 

voltage in 0.1 kV steps to a maximum voltage of 0.3 kV using the grid structured 

electrode used earlier (Fig. 23 (i)). The experiment was then repeated exactly 

however this time placing the structured electrode at a 45° angle to its position in the 

original poling. By repeating the poling at different angles a star-like diffraction 

pattern was successfully produced and can be seen in Fig. 30. 

 

Fig. 30. The diffraction pattern of a sample of soda-lime float glass poled 

twice using a structured electrode at a different angle for each exposure; the 

effect is the star-like diffraction pattern seen. (The intensity of the zero order 

has been reduced for the photograph by using a piece of black felt). 
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4.4. Summary 

Four samples of “pure” soda-lime float glass were poled to different maximum 

voltages using a grid structured electrode. The result was the fabrication of effective 

diffraction gratings with varying degrees of diffraction efficiency. 

By comparison of the conductivity measurements of the grid structured 

sample to those of the unaltered and the plain poled samples of the previous chapter 

it was shown that the fabrication method results in the re-structuring of the glass 

itself and therefore its refractive index. However in this instance the presence of the 

structured electrode allows for the selective re-structuring of the glass and hence the 

refractive index varies periodically throughout the modified sample. It is believed 

that this variation in refractive index or the change in the surface profile due to the 

thermal poling process or indeed a combination of the two is responsible for the 

resultant diffraction pattern shown. As this process alters the structure of the glass 

itself and is not a coating or etching of the surface this process makes for much more 

robust and resilient diffractive optical elements. 

The effectiveness of the diffraction gratings was then assessed by calculating 

the diffraction efficiencies of the fabricated samples. The results showed that the 

sample modified at a maximum voltage of 0.3 kV produced the most effective DOE 

and it was therefore these parameters that were used in order to produce a more 

complex pattern by double poling at different angles. This demonstrates that the 

diffraction pattern produced is governed by the electrode used and so complex, 

large-scale patterns can be easily fabricated using this process. 

 

  



 

Chapter 5: Imprinting of glass embedded with 

silver nanoparticles 

5.1. Introduction 

In this chapter the knowledge from the two previous chapters will be combined in 

order to fabricate effective diffractive optical elements, DOEs, in glass embedded 

with silver nanoparticles. This will be done using the electric field assisted 

dissolution process described in chapter 4 however the anode will be replaced, as in 

the previous chapter, with a grid structured electrode of macroporous silicon. 

The importance of the process parameters, the applied voltage and 

temperature, are investigated by analysis of the current-time dynamics of the 

structuring process, conductivity measurements before and after modification of the 

samples, SEM images of the structures produced, optical analysis of the fabricated 

samples and of course the resultant diffraction patterns of samples from this 

fabrication process are presented. 

5.2. Experimental 

Three pieces of 1 mm thick soda-lime float glass embedded with spherical silver 

nanoparticles were used in the experiments. The silver nanoparticles were of a mean 

diameter of 30-40 nm in a thin surface layer of ~6 μm on one side of the glass 

(prepared in the same manner as discussed on page 29), Fig. 31. 
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Fig. 31. (a) SEM image of the glass embedded with silver nanoparticles 

(seen as white spots) before EFAD along with (b) an image of a thin slice of 

the sample showing a cross section of the nanoparticle containing layer (the 

red arrow indicates the surface of the glass). As can be seen the volume 

filling factor of the layer reduces to zero within a few microns. 

Each sample was placed in a sandwich-like configuration between two 

metallic electrodes in such a way that the remaining silver containing layer was 

facing the anode. The cathode was a piece of flat stainless steel (rectangular, area = 1 

cm
2
). The anode used was the same piece of structured macroporous silicon 

discussed in the previous chapter (page 40).  

Graphite was used between the electrodes and the samples; acting as a non-

blocking cathode protecting the electrode from the pollutants expelled by the glass 

during the experiment and providing a better contact between the glass and the 

electrodes. A schematic illustrating the configuration of the setup can be seen in Fig. 

32. 
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Fig. 32. An illustration of the setup used in order to fabricate effective 

DOEs in glass embedded with silver nanoparticles. Note the silver 

containing layer facing the structured electrode. 

The samples were then placed in an air atmosphere oven and the electrodes 

were connected to a high-voltage power supply (F.u.G. Elektronik HCE 7-3500 

POS). The exposure time for the samples was kept constant at 30 mins however the 

three samples were treated to three different conditions: (i) 0.6 kV at 473 K, (ii) 0.4 

kV at 473 K and (iii) 0.4 kV at 573 K in order to investigate the effect of temperature 

and applied voltage on the effectiveness of the DOEs produced. 

5.3. Results and Discussions 

The characterizations of the sample were performed using a JASCO V-670 

UV/VIS/NIR Spectrophotometer, KEYENCE Digital Microscope VHX-1000, JEOL 

JSM-7400F scanning electron microscope and a He-Ne laser. 

From the digital microscope images shown in Fig. 33; it can be seen that the 

experiments produced structuring with varying degrees of effectiveness. There is a 

visible variance in the colouring of the samples under microscope; this is due to 

uneven contact between the anode and the glass creating structures of varying height 

which causes a discrepancy in the colour observed at this level. Certainly these 
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images show structures within the glass with a measurable lattice constant of 2 μm 

which is in accordance with the grid pattern of the structured electrode used and 

indicates that successful imprinting of the electrode pattern has taken place. 

 

Fig. 33. Digital microscope images taken of the glass composite samples 

post-structuring at (a) (0.4 kV, 573 K), (b) (0.4 kV, 473 K), and (c) (0.6 kV, 

473 K). The colour shift across the samples is due to different degrees of 

contact between the glass surface and the electrode which causes a variation 

in the height of the glass structures produced during poling. Each sample 

has a lattice constant of 2 µm matching that of the structured electrode used. 

The structures are formed by the selective dissolution of silver nanoparticles 

within the glass. As described earlier the electric field assisted dissolution technique 

causes the breakdown of the silver nanoparticles, however, as the experiments 

described here use a structured electrode with a periodic pattern (unlike that of the 

plain electrode used earlier) where there is no contact between the glass and the 

electrode dissolution cannot take place leaving a grid pattern of structures consisting 

of unaltered silver nanoparticles surrounded by areas of dissolution which were in 

contact with the electrode. 

In order to further analyse the effect of this selective dissolution of the 

nanoparticles the extinction spectra of the original sample of glass embedded with 
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silver nanoparticles was compared to that of the post EFAD samples, both the plain 

and the grid structured, Fig. 34. 

 

Fig. 34. Measured extinction spectra of the original sample of glass 

embedded with silver nanoparticles (black line) and samples after EFAD 

using a grid patterned structured electrode. Shown for reference; the 

extinction spectra for a sample after EFAD using a plain electrode (pink 

line) where a high level of dissolution had been achieved. 

From this spectra it can be seen that the original sample of silver doped 

nanocomposite glass shows a strong and broad SPR band corresponding to the high 

volume filling factor of the embedded silver nanoparticles. For saturated spectra, an 

apparently narrower SPR band post EFAD could indicate either a truly narrower 

band, or a reduction in the SPR peak height that makes the SPR band appear 

narrower, or both effects could occur simultaneously. A simultaneous reduction is 

predicted by Maxwell-Garnett effective medium theory [8, 28, 57-58]. The theory 

predicts that a narrowing of the SPR band or a reduction in the peak height would be 
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indicative of a reduction in the volume filling factor of the inclusions [8, 66]. The 

reduction in filling factor is in accordance with the theory of EFAD which predicts 

the dissolution of the nanoparticles in the glass matrix owing to the combined action 

of the applied electric field and elevated temperature. The measured extinction 

spectra for the EFAD sample using the plain electrode has a more obvious narrowing 

of the SPR band for this reason; the greater electrode surface area in contact with the 

glass has initiated a greater dissolution of silver nanoparticles and thus a greater 

decrease in the volume filling factor of the inclusions than that of the structured 

samples. 

Fig. 34 also shows that the structured samples at (0.4 kV, 573 K) and (0.6 

kV, 473 K) are approximately the same in terms of the effect of the SPR band shape 

and position compared to that of the original sample whereas the sample produced at 

(0.4 kV, 473 K) does not have as notable an effect indicating that these parameters 

resulted in less dissolution of the silver nanoparticles. 

Current as a function of time during the dissolution processes and its effect 

on the structuring are shown in Fig. 35. As can be seen from Fig. 35 (a), for the 

sample modified at (0.4 kV, 573 K), the current starts at ~ 3500 μA and then reduces 

exponentially below 100 A within 10 min and then falls to zero within 30 min. 

Integrating the current over time gives a total charge transfer of ~ 0.13 Ascm
-2

. This 

resulted in the formation of the structures shown in Fig. 36 (a) illustrated by SEM. 

The structures are ~500 nm high and formed some 500 nm beneath the surface of the 

glass.  
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Fig. 35. The current-time dynamics of the samples structured at (a) (0.4 kV, 

573 K), (b) (0.4 kV, 473 K) and (0.6 kV, 473 K). 

The current-time dynamics in Fig. 35 (a) (b) are in stark contrast to that 

observed for the samples structured at (0.4 kV, 473 K) and (0.6 kV, 473 K) – Fig. 35 

(b) . For instance, in the latter case (0.6 kV at 473 K), the current first rose to ~140 

μA and then slowly decreased to below ~20 μA within 30 min with a resultant total 

charge transfer of ~0.08 Ascm
-2

; this process resulted in the formation of the 

structures shown in Fig. 36 (b). Here the structures are just beneath the glass surface 

and the imprinted “scalloped” profile of the remaining “un-dissolved” nanoparticles 

is indicates a slow process which arises from the orthogonal electric field 

distribution. 
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Fig. 36. SEM images of cross sections of samples modified at (a) (0.4 kV, 

573 K) and (b) (0.6 kV, 473 K). Here the white colour is indicative of silver 

and black represents the dielectric matrix allowing the physical effect of 

structuring to be visible. Modification of the sample at (0.4 kV, 473 K) led 

to the formation of similar structures as seen in (b). Red arrows indicate 

surfaces. 

Modification of the sample at (0.4 kV, 473 K) produced a total charge 

transfer of ~0.12 Ascm
-2

 and led to the formation of similar “scalloped” structures 

to those in Fig. 36 (b) indicating that this too was a slow structuring process. 

It is worth pointing out that, looking back at Fig. 34, one could see that the 

amount of dissolved silver nanoparticles is the same for the samples structured at 

(0.4 kV, 573 K) - green line, and (0.6 kV, 473 K) – red line. In both cases, the SPR 

bands are narrowed down and blue shifted approximately by the same amount as 

compared to the original sample (Fig. 34 - black line). This is consistent with the 

very similar total charge transfer values for each of these processes. However, the 

results of the structuring (Fig. 36 (a) and (b)) are very different in terms of their size 

depth profile and shape. 
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From the graph presented in Fig. 35 (a) and the imprinted “castellated” shape 

of the cross-section in Fig. 36 (a) , one can conclude that in this case (0.4 kV, 573 K) 

a fast process initiated the observed space-selective dissolution process. As can be 

seen in Fig. 35 (b)  reducing the temperature by 100 K results in a very different 

current-time dynamic behaviour. 

The samples used for these experiments have a high filling factor of silver 

nanoparticles in the very near surface layer. Therefore, the potential barrier between 

two neighbouring metal clusters is low enough to make the thermally activated 

tunneling process possible [11]. This triggers the process and leads to the observed 

large current in Fig. 35. Further contribution to the process comes from the fact that 

at the applied temperature (573 K) more cations are available and contribute to the 

conduction mechanism. The cations in the glass, mainly Na
+
, K

+
, Ca

2+
, become 

highly mobile (sodium in particularly) at elevated temperatures [54]. 

The applied dc electric field also leads to an ionic current flow and depletion 

of alkali and alkaline ions under the anode (beneath the nanoparticle-containing 

layer). This results in a space-charge region with a strong electric field falling across 

the nanoparticle-containing layer. The process leads to an electronic current from the 

nanoparticles towards anode where there is a contact with the structured anode. This 

makes the nanoparticles unstable and results in their selective dissolution in to glass 

matrix [10, 11, 57].  

At the reduced temperature (473 K) - structuring processes presented in Fig. 

35 (b)  - the much lower current is due to the much-reduced mobility of the cations at 

this lower temperature. Here, the ionic nature of the observed current with no sign of 

a sudden rise due to electronic current is pronounced. This leads to a much slower 

dissolution process [57].  
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Fig. 37 represents a diffraction pattern of the structured sample whose cross-

section was shown in Fig. 31 (b) . This is a typical “clean” diffraction pattern 

showing the ability of this technique to fabricate diffractive optical elements in glass 

with embedded metallic nanoparticles. The zero, first and second diffraction orders 

can easily be recognized. Similar diffraction patterns were observed from the 

samples structured at (0.4 kV, 473 K) and (0.4 kV, 573 K). Importantly for their 

application to optical elements, because the fabricated structures are beneath a thin 

glass layer, they are considered as robust and environmentally stable as the glass 

itself.  

 

Fig. 37. Diffraction pattern (in transmission) of a sample of glass embedded 

with silver nanoparticles structured at (0.4 kV, 473 K, 30 min) upon He-Ne 

laser illumination. A similar diffraction pattern was observed from the 

sample structured at (0.6 kV, 473 K). 

5.4. Summary 

In summary, a diffractive optical element has been fabricated in a medium that has 

proven to be stable over centuries – glass containing metallic nanoparticles. The 
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fabrication technique was based on the dc electric field-assisted dissolution of the 

metallic nanoparticles in glass.    

The experiments presented here offer the results for the most optimized 

structuring conditions: performing the experiment at higher voltages or temperatures 

leads to the full dissolution of the nanoparticles.  



 

Chapter 6: Nanosecond puled laser interaction 

with glass embedded with silver nanoparticles 

6.1. Introduction 

Control of the size and shape of the metallic nanoparticles which are embedded in 

glass embedded with silver nanoparticles is crucial as this allows for the calculated 

modification of optical and structural properties of nanocomposites. 

It has previously been shown that modification of embedded metallic 

nanoparticles can be achieved with the use of intense ultrashort laser pulses [67-69]. 

Femtosecond irradiation of glass embedded with silver nanoparticles has been shown 

to permanently modify the shape of the nanoparticle content; in particular it was 

discovered that spherical silver nanoparticles embedded in soda-lime float glass are 

permanently transformed into an ellipsoidal shape when irradiated with intense fs 

laser pulses at a wavelength near to the surface plasmon resonance [67-70]. Two 

methods of irradiation, multi-shot mode and single-shot regime, have been identified 

which result in different shapes. Multi-shot mode employs relatively low intensity 

pulses at a high rate on one spot resulting in the transformation of the initial 

nanospheres to prolate spheroids [70]. The single-shot regime uses higher intensity 

singular pulses which produce oblate spheroids [71]. The axis of symmetry of the 

embedded particles for both methods is orientated along the polarisation vector of 

the laser light. For both cases the modification of the nanoparticles is reversible by 
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silver nanoparticles 

heating the irradiated samples above the glass transition temperature (~873 K for 

soda-lime float glass). 

After fs irradiation there are significant changes to the SPR band position and 

shape, Fig. 38. Post irradiation, for both methods, the SPR band splits into two 

polarisation dependent bands. Multi-shot irradiation produces bands on different side 

of the original SPR band; for polarisation parallel to that of the laser (p-polarised), 

the peak position is shifted to longer wavelengths (red-shift), while for perpendicular 

polarisation (s-polarised) the band is observed at a shorter wavelength (blue-shift). 

This can be explained on the nanoscale by prolate silver spheroids with their 

symmetry axes orientated along the direction of the laser polarisation, inset Fig. 

38(a). 

 

Fig. 38. Polarised extinction spectra of samples before and after fs 

irradiation; (a) multi-shot mode (1000 pulses per spot, peak pulse intensity 

Ip = 0.6 TW/cm
2
), (b) single-shot regime ( Ip = 3 TW/cm

2
). The red line and 

solid black likes respectively indicate s- and p-polarisation of the extinction 

spectra. 

For the single-shot regime the s-polarised band has a larger red shift than that 

of the p-polarised band. Additionally both bands are shifted in this case. These 
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silver nanoparticles 

spectra are due to oblate Ag particles, inset Fig. 38 (b), again with their symmetry 

axes orientated along the laser polarisation (horizontal).  

However, there are no reports on the interaction of nanosecond laser pulses 

with glass embedded with metallic nanoparticles. In this chapter, we will investigate 

the optical and structural changes induced in silver-doped nanocomposite glass after 

nanosecond pulsed laser irradiation. We also examine the effect, dependency and 

importance of the number of pulses per spot fired into the nanocomposite, on the 

laser’s ability to manipulate the size and spatial distribution of the nanoparticles in a 

single step. 

6.2. Experimental 

Samples of silver-doped glass (produced using the method described on 

pages 39-40) were irradiated using a Nd:YVO4 laser, at λ = 532 nm and pulse length 

of τ = 36 ns, in standard atmospheric environment (room temperature and normal 

pressure). The laser beam had a Gaussian intensity profile (M
2
 < 1.3) and was 

focused onto the target surface using a flat-field scanning lens system. The diameter 

of the focused spot, between the points where the intensity had fallen to 1/e
2
 of the 

central value, was ϕ ≈ 60 µm. This resulted in a Rayleigh range of ~ 4.8 mm, greater 

than four times the thickness of the sample, leading to a negligible change of the 

beam spot size on the target and providing a uniform beam trace throughout the 

experiments. The important parameters of the laser used are summarised in Table 2. 
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silver nanoparticles 

Table 2. The details of the laser systems used which are significant to this work. 

Laser system GREEN-LASE 10W 

Wavelength 532nm 

Max mean output power 10 W± 5% 

Emission type Q-Switched 

Max Pulse energy 350 μJ at 20kHz 

Min Pulse duration 12 ns 

Working frequency range 20kHz ~ 100kHz 

Beam diameter, D3 
3.5 mm (at 4× beam 

expander output) 

Beam divergence on the 

lens, θ2 
0.7 mrad 

Focal of lens 160 mm 

Real divergence after lens, 

θ3 
19.6 mrad 

Nominal diameter of the 

focal spot, 2W0 ( ~ 2ω0) 
60 μm 

 

A hatch distance of 60 µm was used in order to match the diameter of the 

beam. The repetition rate was kept constant, at ƒ = 50 kHz, allowing for all 

experiments to be carried out using an average laser energy fluence of ~ 1.5 J/cm
2
. 
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silver nanoparticles 

 

Fig. 39. An illustration of the optical path of the Nd:YVO4 laser. D1, D2 and 

D3 are the beam diameter at critical points; ϴ1, ϴ2 and ϴ3 indicate the beam 

divergences; F1 and F2 make up the beam expander; F3 is an F-theta lens 

and finally W0 shows the waist of the output beam. This figure has been 

adapted from [72]. 

The sample was characterised using a JASCO V-670 UV/VIS/NIR 

spectrophotometer, KEYENCE Digital Microscope VHX-1000, and a Hitachi S-

4700 field emission scanning electron microscope (SEM). 

6.3. Results and Discussions 

Six areas, all 16 mm
2
 in size, were irradiated at six different scanning speeds, 

Fig. 40. By selecting the appropriate scanning speeds, it was possible to vary the 

number of pulses being fired per spot, N, from 100 to 600 (in steps of 100 pulses per 

spot).  
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Fig. 40. Photograph of all six exposed areas, which were irradiated at (a) 

100, (b) 200, (c) 300, (d) 400, (e) 500 and (f) 600 pulses per spot. In these 

images the silver film at the surface can be clearly seen against the 

background of silver nanoparticle embedded glass, which appears yellow in 

colour (indicated by the red arrows).  

The conductivity of the glass before and after irradiation was measured in 

order to gain a better understating of how the irradiation affects the structure of the 

glass; the results of which can be seen in Fig. 41. (Please refer to chapter 3 for a 

detailed description of how the conductivity of such samples is measured and 

presented.) 
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silver nanoparticles 

 

Fig. 41. Conductivity measurements for a sample of glass embedded with 

silver nanoparticles before (“Unaltered”) and after (“Irradiated”) irradiation 

at a constant fluence of ~ 1.5 J/cm
2
 with

 
300 pulses per spot. For the 

conductivity measurements a larger irradiated area was required in order to 

accommodate the gap cells (Fig. 20)Fig. 18. Photographs showing deposited 

gold electrodes on (a) a sample of unaltered soda-lime float glass and (b) an 

unaltered sample of glass embedded with silver nanoparticles. Due to some 

slight damage (visible in photographs) these were not the electrodes used for 

the measurements; however electrodes deposited in the same manner were 

used and these images serve to show how these appeared on the glass 

samples.  and so an exposed area of 1.76 cm
2
 was produced at 300 pulses 

per spot (chosen as this was mid-range of the number of pulses being 

investigated). The key shows the activation energy of both samples. 

The results indicated that post irradiation the conductivity of the glass had increased 

this would suggest either an increase in the concentration or the mobility of charge 
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carriers in the glass after exposure. The activation energy of the irradiated area had 

decreased to 0.80 eV (from 0.84 eV for the unaltered sample). 

 

Fig. 42. Measured extinction spectra of glass embedded with silver 

nanoparticles before irradiation (black line) and the six areas after 

irradiation, at a constant fluence of ~ 1.5 J/cm
2
, with varying number of 

pulses from 100 to 600 pulses per spot (indicated in the key). 

Extinction spectra were taken on six irradiated areas and compared with the 

original pre-irradiated sample in Fig. 42. of all six irradiated areas were taken and 

compared to the original sample area. The extinction spectrum for the original 

sample (black line) is clearly saturated, indicating very strong absorption relative to 

the subsequent spectra taken after laser irradiation. These peaks are progressively 

reduced in height with increasing number of laser pulses per spot. However there is 

no evidence for a corresponding reduction in peak width. Maxwell-Garnett theory 

predicts a reduction in both peak height and width if the average radius of silver 

inclusions in the glass matrix increases and the volume filling factor decreases [8, 
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28, 71]. It can also be seen that, with increasing the number of pulses per spot there 

is a noticeable decrease in the peak of the SPR band. This is seen in Fig. 10 (b) and 

indicates that with increasing number of pulses per spot the volume filling factor of 

metal inclusions decreases. 

The spectra also show an increase in the optical density at longer 

wavelengths. This is due to the formation and subsequent increase of the thickness of 

the produced surface films after irradiation [73]. This surface film can clearly be 

seen in the images of the irradiated areas after irradiation (Fig. 40). 

The particle size of the silver inclusions for each irradiated area was 

investigated with the use of SEM imaging; Fig. 43. 

 

Fig. 43. SEM images of glass embedded with silver nanoparticles after 

irradiation at (a) 100, (b) 200, (c) 300, (d) 400, (e) 500 and (f) 600 pulses 

per spot. 

The average particle sizes in each of the six irradiated areas were then measured 

from the images taken and the results were plotted; Fig. 44. 
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Fig. 44. Plot displaying the average particle size before and after irradiation. 

Post irradiation the particle size has increased and continues to do so with 

increasing number of pulses per spot. 

From this plot it is clearly visible that irradiation of glass embedded with silver 

nanoparticles results in an increase in the average particle size. It is also evident that 

a greater number of pulses per spot further increased the particle size. 

A rough estimate of the approximate values of temperature reached during 

the irradiation will provide an insight into the process. The change in temperature, as 

a result of irradiation, was calculated in terms of the optical properties of the glass 

used. As can be seen in Fig. 8 (b), the concentration of silver nanoparticles, and 

hence the absorption coefficient, α, varies with depth, z. This variation in the 

absorption coefficient can be described in terms of an exponential function; 

0
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where α0 is the absorption coefficient at the glass surface (i.e. the maximum 

absorption coefficient) and l is the thickness of the nanoparticle containing layer. 

Using this equation and the Beer-Lambert law, the following expression can be 

obtained for the change in transmittance, T, with depth; 

0
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where I0 and I(z) are the intensity of the incident light and the intensity as it varies 

with depth, respectively. This expression clearly shows that if the depth is much 

greater than the thickness of the nanoparticle containing layer (i.e. z >> l), which is 

true as α(z) → 0, then T(z) reduces to a constant, which is the total transmittance, T; 

0( ) exp
2

l
T z T
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 27 

Using the spectrophotometer, the transmittance, Tm, and reflectivity, Rm, of the glass 

used was measured. The relationship between the measured transmittance and the 

total transmittance is as follows; 

(1 )(1 )m Ag GT R R T    28 

where RAg is the pure reflectance at the silver containing layer surface and RG is the 

reflectivity at the glass-air interface, and is measured to be 4%. The relationship 

between these values and the measured reflectance is given by;  

2 2(1 )m Ag G AgR R R R T    29 

Using the measured values, and their corresponding equations, it is therefore 

possible to calculate the maximum absorption coefficient by rearranging Eq. 27; 

 0

2 2
ln( ) ln(1 ) ln 1 ln( )Ag G mT R R T

l l
           30 
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Going back to the Beer-Lambert law, the change in intensity for a varying absorption 

coefficient is defined as; 

0( ) ( )dI z z I dz   31 

Solving this equation and substituting for α(z) (Eq. 25), the intensity, as it varies with 

depth, can be expressed as; 

0
0 0

2
( ) ( ) exp exp 1

2

l z
I z T z I I

l

   
     

   
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This gives the intensity with depth only. On the surface of the glass (i.e. the (x,y) 

plane) the intensity (I(x,y,t)) is governed by a Gaussian distribution and so the 

intensity on the glass surface (with time) can be defined as; 

2 2

0 2 2

0 0

2 2
( , , , ) ( )exp ( )

x y
I x y z t I t T z

 

  
  

 
 33 

where ω0 is the beam radius. If we assume that the incident heat is kept in the same 

position, then the change in temperature distribution, ΔT (not to be confused with 

transmittance, T), can be calculated in terms of the change in the absorption 

coefficient with depth and the variation in intensity with (x,y,z). The change in 

temperature distribution, ΔT, after one pulse, may therefore be expressed as [74]; 

( ) ( )
( , , ) ( , , , ) ( , ) ( )

p p

z z
T x y z I x y z t dt F x y T z

C C

 

 
    34 

where ρ is the density, taken as 2.47 g/cm
3
 [75] (this value, taken from the literature, 

is for silver ion exchange glass but should provide a reasonable estimate for surface 

temperature in our case) and Cp is the specific heat capacity taken as 0.84 J/gK (the 

value for glass) [75]. The surface fluence, F(x,y), is governed by a Gaussian 

distribution and thus may be defined as following: 
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 2 2

0 2 2

0 0

2 2
( , ) exp

x y
F x y F

 

 
  
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Substituting for a(z) (Eq. 25) and I(x,y,z) (Eqs. 26 and 33) gives; 

 0
0

2exp 2
( , , ) (1 ) ( , )exp exp 1

2
Ag

p

z
l zlT x y z R F x y

C l

 




   

      
   
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Here, the (1-RAg) term is to compensate for energy that is lost due to reflection at the 

silver nanoparticle containing layer surface. The greatest increase in temperature will 

occur at the origin (ΔT(0,0,0)), therefore from Eq. 36 the maximum resultant 

temperature change after one pulse is ~873 K. This rise in temperature is above the 

glass softening temperature for the glass used in these experiments which is around 

800 K. This assessment is reasonable since we observed some melting of the glass 

surface in our experiments. In fact for pulse durations (typically > 0.1 ns), exceeding 

the time for heating of the medium, the heat is being absorbed and delivered in the 

surroundings simultaneously. In these cases, typically occurring during nanosecond 

pulse laser irradiation of nanoparticles, the heating duration simply equals the pulse 

duration [76]. This, in combination with the fact that pulsed (as compared to 

continuous wave) irradiation in the vicinity of the SPR band makes it possible to 

further confine the temperature increase to the vicinity of the nanoparticles, justifies 

the temperature estimate here to be considered as a model for the laser heating and 

melting. 

Hence, it is plausible that irradiation results in the glass, and therefore the 

silver embedded within it, to be in a molten phase. As two immiscible liquids the 

glass and silver then undergo coalescence with creaming, leading to the well-known 

phenomenon of Ostwald ripening [77]. At irradiances well above the melt threshold 
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uniform melting occurs. This results in the excitation of convective fluxes within the 

liquid layer due to lateral variations of the melt temperature. The surface tension of 

melt decreases with temperature, and liquid tends to be pulled away from hotter 

towards cooler regions, with silver drawn out to the edges of the melt meniscus. 

Therefore the formation of a thin film of silver particles is observed. This migration 

also increases the probability of coalescence and Ostwald ripening as it decreases the 

separation distance between the silver particles. In order to better understand the 

results seen here additional experiments are required to show effects of varying other 

parameters besides the number of pulses per spot (such as volume filling factor). 

More advanced modelling, perhaps building on the work presented in [78, 79], is 

also needed to show precisely how the temperature difference changes with number 

of pulses per spot. 

6.4. Summary 

The modification of glass with embedded silver nanoparticles upon 

nanosecond (36 ns) pulsed Nd:YVO4 laser irradiation at 532 nm was demonstrated. 

Using a laser energy fluence of ~ 1.5 J/cm
2
 it was possible to form a silver 

nanoparticle containing film on the surface of the glass. Increasing the applied 

number of pulses to the sample resulted in the increase of the average size of the 

nanoparticles from 15 nm to 35 – 80 nm in radius. It was shown that the increase in 

size is a result of the thermal interaction of the pulses and therefore a higher number 

of pulses per spot produced a greater increase in particle size. Irradiation of the glass 

composite promoted the formation of a surface film of larger nanoparticles. 

The controlled modification of the nanoparticles described in this process 

allows for the tuning of optical and structural properties of metal-glass 
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nanocomposites, making this process suitable for the production of complex optical 

elements and for aesthetic applications an example of which is shown in Fig. 45 - 

where by varying the number of pulses per spot different ‘shades’ were produced to 

form a visual effect. 

 

Fig. 45. (a) and (b) Two samples of glass embedded with silver 

nanoparticles which have been irradiated for the purpose of visual effect. 

The different ‘shades’ are produced by varying the laser energy fluence 

which creates these aesthetically pleasing designs. 

A thermal model was used to estimate the temperature rise due to the 

irradiation process and showed that the change in temperature was above that of the 

glass softening temperature. This suggests that during irradiation the glass, and silver 

nanoparticles embedded within in it are in a molten phase. This controlled localized 

melting and reforming of the silver nanoparticles is a fundamentally different 

process to the size and shape modification of metallic nanoparticles by ultrashort 

laser pulses with the longer timeframe enabling an emulsive interaction between the 

molten phases of the nanoparticle and host matrix. 
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The simplicity and flexibility of the nanosecond pulsed laser irradiation 

technique allows for the creation of complex, reproducible patterns of larger 

nanoparticles with smaller separation distances within glass embedded with silver 

nanoparticles. This allows for tuning the optical and structural properties of the 

nanocomposite. These can then serve as substrates for sensing and surface enhanced 

Raman spectroscopy (SERS) applications. 

 



 

 

Chapter 7: Conclusions and Future Outlook 

The modification of glass and glass embedded with silver nanoparticles has been 

carried out in a number of different ways. These materials have optical and aesthetic 

applications, with wider implications across the field of physics and beyond. 

The first process, thermal poling of ‘pure’ soda-lime float glass demonstrated 

the modification of the glass structure by re-distribution of positive ions, which was 

analysed using X-ray element analysis. 

A variation of the thermal poling process, EFAD, was then applied to glass 

embedded with silver nanoparticles. This resulted not in a restructuring of the glass 

itself but rather in a dissolution of the silver nanoparticles within the glass matrix; an 

effect visible to the naked eye as the area of glass which had been in contact with the 

electrode became more transparent and of a lighter colouring than the original 

sample area post process. This difference in volume fill factor of the processed glass 

compared to that of the unaltered silver-embedded glass was shown to be in 

agreement with the signs of reduced volume fill factor using Maxwell-Garnett 

theory. 

To further analyse the effect poling has on both the pure glass and the glass 

embedded with silver nanoparticles the conductivity of the glasses was measured 

before and after poling. The results showed that post-poling both types of glasses 

had a significant decrease in conductivity owing to the decrease in available positive 

charge carriers (sodium and potassium for the pure glass and silver for the metal 

embedded glass). 
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The thermal poling procedure was then developed by utilising more complex 

methods of poling; this was achieved by introducing patterned electrodes. Samples 

of “pure” soda-lime float glass were poled this way enabling effective diffraction 

gratings with varying degrees of diffraction efficiency to be fabricated, allowing for 

the establishment of optimal structuring conditions. 

By comparison of the conductivity measurements of the grid structured 

sample of pure glass to those of the unaltered and the plain poled samples it was 

shown that as with the plain electrode poling the fabrication method results in the re-

structuring of the glass itself and therefore causes a variation in the refractive index. 

However in this instance the presence of the structured electrode allows for the 

selective re-structuring of the glass and hence the refractive index varied periodically 

throughout the modified sample and was responsible for the diffraction pattern 

produced. As this process alters the structure of the glass itself and is not a coating or 

etching of the surface the process makes for much more robust and resilient 

diffractive optical elements. 

The effectiveness of the diffraction gratings was then assessed by calculating 

the diffraction efficiencies of the fabricated samples. The results showed that the 

sample modified at a maximum voltage of 0.3 kV produced the most effective DOE 

and it was therefore these parameters that were used in order to produce a more 

complex pattern by repeating the poling process at a different angle. This 

demonstrated that the diffraction pattern itself is governed completely by the 

electrode used and so by altering the pattern of the electrode more complex 

diffraction patterns could be achieved and replicated. 

EFAD of glass embedded with silver nanoparticles was also successfully 

performed using the patterned electrodes. The experiments presented offered the 
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results for the most optimized structuring conditions: performing the experiment at 

higher voltage or temperature led to more complete dissolution of the nanoparticles. 

As glass embedded with silver nanoparticles is such a resilient glass known to be 

stable over many centuries, meaning these diffraction gratings are not only effective 

but also more robust and cost effective in comparison to the rival gratings in use. 

The modification of glass with embedded silver nanoparticles upon 

nanosecond (36 ns) pulsed Nd:YVO4 laser irradiation at 532 nm was the last to be 

demonstrated. Using a laser energy fluence of ~1.5 J/cm
2
 created a silver 

nanoparticle containing film on the surface of the glass. Increasing the applied 

number of pulses to the sample increased both the average size of the nanoparticles, 

from 15 nm to 35 – 80 nm in radius, and the thickness of the surface film. 

By employing a thermal model the temperature rise due to the irradiation 

process was estimated and showed that the change in temperature of the glass under 

irradiation was well above that of the glass softening temperature. This indicates that 

during nanosecond irradiation of glass embedded with silver nanoparticles the glass, 

and therefore the silver embedded within, are in a molten phase.  

This nanosecond pulsed laser irradiation technique while very simple allows 

for the creation of complex, reproducible patterns of larger nanoparticles with 

smaller separation distances within glass embedded with silver nanoparticles, with 

the limiting factor on the pattern produced being the program used to control the 

laser. This allows for precise modification of the nanoparticles and therefore offers 

detailed tuning of the optical and structural properties of the nanocomposite material. 

With these options available glass embedded with silver nanoparticles may be 

adapted to serve as substrates for sensing and surface enhanced Raman spectroscopy 

(SERS) applications. 
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In the future the applications of this work may be realised from the field of 

optics to the creative industry. More robust diffractive optical elements are needed as 

the diffraction gratings currently available are both fragile and expensive; it is 

therefore desirable to have a cost effective, viable alternative. Laser irradiation of 

glass embedded with silver nanoparticles has a great deal of potential not only 

because of the unique visual effects that may be produced but also because the fine 

tuning of the optical and structural properties of the nanocomposite make it a 

promising material as they can serve as substrates for sensing and SERS 

applications. 
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