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Abstract: 

The embryonic stem cells have two hallmarks characters, the ability to reproduce self-renewal 

and generate other cell lineages. Despite the excessive advance in stem cell research, their 

clinical applications delay owing lack of an optimal culture condition in vitro. Combining 

biometrical scaffold with stem cells provides a promising way to cellular delivery and tissue 

transplant. In vitro 3D culture offers both a model to understand self-renewal and stem cell 

behaviour in vivo as a route to industrial production. We have used a variety of analytical tools 

including proteomics and quantitative RT-PCR to compare 3D (both static & dynamic) with 

2D cultures. We further show that 3D dynamic culture increases expression of the master gene 

regulators (Oct4, Nanog and Sox2). Consistent with this Rex1, an inner-cell mass (ICM) 

associated marker, is over-expressed in 3D dynamic culture whereas Fgf5, an epiblast 

transition marker is down-regulated. Using SILAC-based proteomics to compare 2D vs. 3D 

dynamic culture, we show that encapsulated stem cell are characterized by glycolytic pathways 

down-regulation and increased mitochondrial respiratory proteins. Additionally, ECM proteins 

expression (laminin, fibronectin, heparan sulfate (HS) proteoglycans, agrin, and nidogen-2) 

were up-regulated. Cells shortly after encapsulation in 3D constructs (both static &dynamic) 

showed high oxygen uptake rates compared to 2D culture. After 9 days of encapsulation 

glucose uptake increased in both static & dynamic 3D cultures and was combined with a 

pronounced increase in cell density and up-regulation of hypoxia induce-factors (HIf-1α and 

Hif-2α). This shift in metabolism toward anaerobic glycolysis is associated with high 

expression of hexokinas2 (Hk2) and increased lactate production. Despite extensive cell 

proliferation at day 18, where cell numbers reached up to 80k/ bead, cells in dynamic culture 

switched back from anaerobic to aerobic metabolism. This alteration in energy consumption 

was not associated with nutrient depletion since both glucose and glutamate were not depleted 

in the culture medium. By monitoring the oxygen consumption, hypoxia-induced factors 

expression as well as Oct4 levels at different time points, we demonstrate that the stem cells 

self-renewal status in 3D condition is regulated despite the metabolism transitions. We 

postulate that the 3D culture environment provides the niche required sensing and responding 

to external and internal stimuli different from recognised in vitro embryonic stem cell 

behaviour. 
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CHAPTER 1: Literature Review 

1. Introduction 
 

1.1. Stem Cells 

1.1.1. Stem Cells and Self-renewal 

       Stem cells are generally defined by two principal characteristics, namely: (i) self-renewal, 

the maintenance of an undifferentiated state following cell division, and (ii) potency, the 

capacity to differentiate into specialised sub-types. Stem cells are considered to be the key to 

understanding development and disease, possessing important prospects for regenerative 

medicine, and can be exploited as platforms for drug discovery and toxicology programmes 

(Ronaghi et al., 2010). 

       The origin of a stem cell defines its potency and associated use. Cells produced by the first 

few divisions of the fertilised egg are considered totipotent and can differentiate into embryonic 

and extraembryonic cell types (Fig.1, i). Embryonic stem cells (ESC) originate in the inner cell 

mass (ICM) of an embryo’s blastocyst. Following implantation in the uterus, the ICM divides 

into the hypoblast and epiblast, the former creating the yolk sac and the latter deriving the three 

primary germ layers (Fig.1 ii & iii): ectoderm, endoderm, and mesoderm. ESC are thus by 

definition pluripotent; able to expand into the majority of cellular lines within the body, but not 

having the capability of producing the extra-embryonic tissues, which originate in the 

trophoblast that surrounds the ICM (Rippon and Bishop, 2004).  
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Figure 1 Embryonic and epiblast stem cells characteristics 

i) Cells derived from the 4 - 8 cell embryo are totipotent; able to create all embryonic 

and extraembryonic tissue.  

ii) ESC are pluripotent stem cells derived from the inner cell mass of a blastocyst, an 

early-stage pre-implantation embryo.  

iv) EpiSCs are derived from the post-implantation, pre-gastrulation embryo. Both 

EpiSC and mESC and hESC can form teratomas, however, only mESC can form 

chimeric mice.  
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Murine ESC (mESC) were first isolated from the ICM in 1981 (Evans and Kaufman, 1981), 

(Martin, 1981). A number of assays, both in vitro and in vivo have been developed for 

establishing ESC functionality. 

         ESC have the capability to differentiate into derivatives of the three primary germ layers. 

In vitro, pluripotency is verified by means of an embryoid body (EB) formation assay, where 

culture in the absence of leukaemia inhibitory factor (LIF) results in three-dimensional 

aggregates termed EBs. EBs can be assessed for the expression of markers defining the three 

primary germ layers as markers of differentiation ability. Chimera formation (i.e. a single 

organism composed of genetically distinct cells) after blastocyst injection or morula 

aggregation is the principal functional assay of the developmental potential of mESC (Mintz 

and Illmensee, 1975). The teratoma assay represents an additional functional assay to 

demonstrate pluripotency. A standard mESC line will have the capacity to generate large 

tumours that contain all three germ layers (i.e. teratomas) when grafted to severe combined 

immunodeficient (SCID) mice (Bradley et al., 1984), (Nagy et al., 1993). 

       Murine experiments were followed up by derivation of ES cells from humans  (hESC) with 

great potential for therapy (Thomson, 1998). Similar to mESC, hESC were able to reproduce 

indefinitely and produce cells from all three germ layers. Pluripotency could be examined in 

vitro and in vivo with the aid of EB and teratoma assays respectively. However, ethical 

concerns limit the use of chimera and tetraploid complementation assays.  

       Comparisons of mouse and human ESC lines have shown numerous significant differences 

between the cell types, both in response to external growth factors and inherent cell surface 

marker expression. Characterisation of stem cell colonies is usually accomplished as a result 

of the assessment of intracellular and/or cell surface markers. Both, mESC and hESC 

commonly express the nuclear markers octamer-binding transcription factor (Oct) 3/4 and 
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Nanog (Andrews et al., 2005). Additionally, mESC can further be assessed for expression of 

the stage-specific embryonic antigen marker–1 (SSEA-1) and the lack of either SSEA-3 or -4. 

Contradictory to these findings, in hESC SSEA-3 or -4 expression is characteristic of 

undifferentiated cells and in SSEA-1 characteristic of differentiation. Others are perceived 

when investigating the culture conditions for mESC and hESC.  

         mESC are recognized as being rapidly proliferate with short cell cycle times of 11-16 

hours (Orford and Scadden, 2008). This is attributed to the persistent presence of cyclin E-

CDK2 during the course of the cell cycle that permits the conversion from the M to the late G 

phase. mESC can divide in an unlimited fashion for numerous passages whilst retaining 

pluripotency at the same time as preserving genomic stability (Smith, 2001). 

 

1.1.2 Epiblast stem cells 

       The differences in growth factors needed to promote pluripotency mouse and human ESC 

in vitro culture were thought to be species-specific (Pera et al., 2000). Subsequently, the finding 

of a discrete colony of pluripotent stem cells isolated from the post-implantation/pre-

gastrulation stage of mice blastocysts revealed the existence and confirmation of more than one 

pluripotent cell type (Brons et al., 2007),(Tesar et al., 2007). Epiblast stem cells (EpiSC) are 

pluripotent but primed to differentiate into certain lineages. In contrast to mESC, mEpiSC 

cannot exist as single cells but only in colonies (Nichols and Smith, 2009). Functionally, EpiSC 

as well as mESC and hESC can form teratomas, however, only mESC and hESC can form 

chimeric mice (Fig. 1, iv).  

        The lack of ability of EpiSC to give rise to chimeras provides a definite confirmation that 

different pluripotent cellular states are present, based on germline developmental capacity, 

dividing the ‘naive’ and ‘primed’ pluripotent cell types. Fundamentally, pluripotent stem cells 
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in ‘naive’ and ‘primed’ states are labelled as mESC and EpiSC respectively. mESC are 

primitive and demonstrate 2 activated X chromosomes (XaXa), while one of the X 

chromosomes is turned off upon transformation into EpiSC (XaXi). This differentiation can 

consequently be reserved by the insertion of Klf4 to revert mESC flip back to ‘naive’ state 

(Guo et al., 2009). Moreover, research suggests developmental preferences of EpiSC with 

respect to certain lineages. For instance, the presence of the Brachyury (as a mesendodermal 

marker) is adversely associated with EpiSC potential to return to the ‘naive’ pluripotent state 

(Bernemann et al., 2011).  

            In the mouse, the naive and primed states can be stabilized ex vivo, represented by 

embryonic stem cells (mESC) and epiblast stem cells (EpiSC), respectively. Culture conditions 

for the two types of cells differ, reflecting the use of different signalling pathways to maintain 

pluripotency and self-renewal (Fig. 2). mESC maintenance is dependent on LIF and BMP4, or 

combined inhibition of Gsk3 and the MAP kinase pathway (Fig. 2A) (Yang and Weinberg, 

2008). EpiSC maintenance requires both Activin and FGF2 (Fig. 2B) (Brons et al. 2007; Greber 

et al. 2010). In humans, ESC have been derived from blastocysts and, until recently, were 

regarded as the human equivalent of mESC. However, based on multiple characteristics such 

as flat morphology, dependence on growth factors, or X-chromosome inactivation, hESC (and 

human induced pluripotent stem cell [iPSC]) are closer to mouse EpiSC than to mESC and, as 

such, more likely correspond to the primed rather than the naïve state of pluripotency (Tesar et 

al. 2007; Stadtfeld and Hochedlinger 2010). 
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Figure 2 Essential growth factor to sustain pluripotency in vitro   

Culture conditions for mES cells differ from EpiSC or hES cells. mESC rely on LIF/STAT3 

signalling to maintain pluripotency (A), while both EpiSC and hESC depend on FGF2/Activin 

growth factors (B).  
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          Even though, there are differences in the functionality of mESC and hESC the cellular 

markers of pluripotency are the same in humans and mice. This includes the presence of the 

nuclear transcription factor Oct3/4 (POU domain, class 5, transcription factor 1-POU5F1) that 

is essential for pluripotency of the stem cells. Removal of Oct3/4 in mouse embryos led to the 

deficiency of an inner cell mass materialization indicative of its capacity for forming 

pluripotent cells (Nichols et al., 1998). Similarly, the Sox2 transcription factor is associated 

with maintaining pluripotency via Oct-Sox enhancers that regulate the expression of 

pluripotent stem cell-specific genes, such as Nanog, Oct3/4 and Sox2 itself. Interestingly, 

forced expression of Oct3/4 rescues the pluripotency of Sox2-null ESC (Masui et al., 2007). 

Also, Nanog knockout models of mice gave rise to mESCs that were capable of self-renewal 

but differentiated more rapidly (Chambers et al., 2007). Consequently, the interaction of 

Oct3/4, Nanog, and Sox2 were established as perform a basic role in sustaining pluripotency 

in ESC of humans (Boyer et al., 2005) and mice (Loh et al., 2006). 

        Biologists have employed many tools to identify the gene expression profile that is 

cardinal in the regulation of the pluripotent state. Comparative studies that examined the 

specific gene expression patterns in several pluripotent cells, or their differentiated progeny, 

identified specific growth and transcription factors that are cardinal for the maintenance of the 

pluripotency of the stem cells such as Oct 3/4, Nanog, and Sox2 (Bhattacharya et al., 2004), 

(Richards et al., 2004), (Mitsui et al., 2003). In a proof-of-principle experiment, Takahashi & 

Yamanaka selected 24 genes that had been associated with maintenance of pluripotency in ESC 

and transduced them into MEF. Subsequent to the creation of ESC-like colonies, each gene 

was removed from the transduction process to assess its significance.  
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Finally, the following four factors were found sufficient to induce reprogramming: Oct3-4, 

Sox2, c-Myc and Klf4 REF. The resulting cells, termed induced pluripotent stem cells (iPSC) 

exhibited ESC-like characteristics in the sense of morphology, proliferation and teratoma 

formation (Takahashi and Yamanaka, 2006). 

 

1.2. Stem Cell Culture 

1.2.1. mESC culture medium 

       Maintenance of the stem cells in an undifferentiated state without chromosomal 

aberrations is still a challenging task for stem cell scientists. ESC require extrinsic growth 

factors to maintain their pluripotency in culture. Early work in mESC culture employed a feeder 

coating of mouse embryonic fibroblasts (MEF) as cradle signalling for the maintenance of 

pluripotency (Fig. 3A) (Finch and Ephrussi, 1967), (Martin and Evans, 1975). Although MEFs 

were initially used for both mESC and hESC culture, the growth factors that maintain 

pluripotency in these two ESC types are fundamentally different. For instance, it was 

discovered that LIF, an interleukin-6 cytokine produced by MEF, inhibited differentiation in 

mESC by activating the JAK/STAT3 pathway (Mintz and Illmensee, 1975), (Evans and 

Kaufman, 1981) (Smith et al., 1988). Human LIF, while serving the same biological role, is 

unable to maintain the pluripotent state of hESC (Daheron et al., 2004). Typically, mESC 

pluripotency can be maintained by activating the LIF/STAT3 and BMP pathways, while hESC 

require TGF-β/Nodal and FGF/MEK activation (Fig. 4)(Guofeng Han et al., 2013).  
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Figure 3 In vitro culture of mESC toward defined pluripotent niche 

The conventional mESC culture protocol in vitro (A), compared to more recent approaches that 

aim to better define culture conditions using LIF (B), KOSR (C) and 2i medium (D).  
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         Given the disadvantages arising from the need for culture with feeder layers 

(contamination, costs, poorly-defined environment) a number of approaches have been 

developed to substitute the MEF (Ratcliffe et al., 2011). mESC could be cultured on a gelatin 

matrix with the addition of LIF and bone morphogenetic protein (BMP) (Fig. 3B) (Bertolotti 

et al. (2009), (Williams et al., 1988). 

 

Figure 4 Mouse Embryonic Stem Cell Self-Renewal Signalling Pathway  

External growth factors such as LIF bind to GP130/LIFR triggering JAK, which in turn leads 

to STAT3 phosphorylation. BMP4 sustains ESC self-renewal by inhibition of both 

extracellular receptor kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) 

signalling.  
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        Foetal bovine serum (FBS) represents the blood fraction remaining after the natural 

coagulation of blood, followed by centrifugation to remove any remaining red blood cells. FBS 

was used from early ESC cultures, as it contains nutrients, water carrier proteins, growth 

factors, hormones and attachment factors (Fig. 3B). However, FBS is not defined and can vary 

from batch to batch. In addition, serum contains growth factors that can promote spontaneous 

differentiation of mESC (Nagy et al., 1993). Defined serum, called knockout replacement 

serum (KOSR), provides an alternative to FBS to grow stem cells (Fig. 3C) (Klimanskaya et 

al., 2006). Similarly to FBS, however, KOSR can vary from batch to batch (Klimanskaya et 

al., 2007). Using bFGF and LIF, in a defined medium can be sufficient to avoid feeder or FBS, 

this medium is known as ESN2. However, mESC in ESN2 must be grown as suspension culture 

(Andrews et al., 2005),(Xu et al., 2002). Using ERK/MAPK and GSK3 inhibitors (2i medium) 

is sufficient to retain pluripotency, however mESC cultured in 2i (Fig. 3D, & Fig.5) media still 

respond to LIF, which enhances cloning efficiency and proliferation rates (Nichols et al., 2009).  
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Figure 5 External growth factor signalling in ESC culture 

There are different growth factor and chemical inhibitors use to maintain mESCs self-renewal 

in vitro such as CHIR that inhibit GSK3 signalling pathway or PD inhibitor which supress 

MEK pathway. 
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1.2.2. mESC culture matrix components 

 

          The use of individual single peptides or ECM proteins underestimates the complexity of 

the stem cell niche in vivo. The stem cell niche represents a dynamic space with constant 

interaction between external and internal environments during stem cell maturation and 

transition. For example, ECM protein degradation and turnover are in dynamic progression to 

facilitate ESC migration and differentiation. Thus, replicating the cell-cell interactions, 

transmembrane proteins, ECM, soluble factors and mechanical stimuli of the niche represents 

a difficult task (Joddar and Ito, 2013).  

        Native niche ECM found in the basement membrane (BM) is composed of several 

proteins, such as: Laminin (LN), Nidogen, collagen, fibronectin (FN) and perlecan (Gunwar et 

al., 1998, Kohfeldt et al., 1998). The distribution of BM components aids tissue specification 

and regulation of cellular behaviour (Noonan and Hassell, 1993). In-situ RT-PCR has shown 

that the three germ layers of the embryo produce these proteins (Gersdorff et al., 2005). 

       The interaction between different ECM matrix proteins is essential for scaffold 

organisation and their assembly role in cell fate decisions (Singh and Schwarzbauer, 2012). 

The composition of ECM is complicated thus difficult to modulate due to inherent ECM 

network complexity. Geoffrey et al show that mESC produce FN in order to adhere to gelatine 

and to retain self-renewal (Hunt et al., 2012). The maintenance of mESC ex vivo requires the 

presence of a feeder layer, which provides ESC with matrix rich in FN for attachment.  

 

        FN and LN are multi-domain ECM glycoproteins with various binding sites, such as 

proteoglycan, collagen and integrins. Their interaction in the ECM network enhances cell 
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adhesion and has a significant impact in cell development and differentiation. FN1 has been 

linked to a number of signalling pathways essential for mESCs self-renewal and proliferation. 

For example, FN1 phosphorylates Akt and activate PI3K/Akt signalling and group oncogene 

such as C-Myc, associated with self-renewal (Park et al., 2011). Subsequently, it promotes cell 

survival and proliferation through the activation of Rho-GTPase and caveolin-1 signalling. 

Furthermore, Kenneth et al showed a correlation between STAT3 activation and ES cells 

adherent to FN1 compared to non-adherent cells (Shain et al., 2009).  FN-deficient embryos 

are unable to develop into the mesoderm linage (George et al., 1993) while LN-null embryos 

have epiblast differentiation defects (Li et al., 2002). Culturing mESC in FN- and LN-coated 

surface leads to a decrease in AP activity, Nanog and SSEA1, and an increase in FGF5 a marker 

for primitive ectoderm (Hayashi et al., 2007). There is an increase in FN and LN expression 

during primitive endoderm development. This may justify their essential roles in ESC 

differentiation (Li et al., 2003, Pimton et al., 2011). 

           LN is one of the main BM structures present in the ICM, the origin of ESC. LN 

contributes to cellular migration, proliferation and differentiation unlike other ECM proteins 

strictly involved in structural support. LN is a glycoprotein made up of α- β- and -chains. A 

total of 15 different combinations have been identified in vivo. These different LN subunits are 

strongly associated with tissue specifications and functions. LN subunit alpha-1 (LAMA1) is 

found in early development of certain epithelium tissues and triggers differentiation toward 

primitive ectoderm (Li et al., 2004). In contrast, LN subunit alpha-5 (LAMA5) is found 

restrictively in the ICM of embryos and adult BM. Stem cells grown in LAMA5 coated 

matrices are able to retain pluripotency for 170 days in the absence of LIF whereas cells on 

LAMA1-coated surfaces fail to maintain self-renewal and proliferation (Hunt et al., 2012). It 

has been suggested that deletion of the Lamc1 protein result in cells that fail to process 

primitive endoderm cells and post-implantation development (Smyth et al., 1999).  
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       Perlecan, otherwise known as heparan sulphate proteoglycan core protein (Hspg2), is a 

BM-specific protein encoded by the Hspg2 gene. Perlecan is a negatively charged membrane 

bound protein that serves as extracellular protein (Pries et al., 2000) and is involved in 

metabolism, cell defence, wound healing and intracellular signalling (Bernfield et al., 1999). 

The specific role of Hspg2 in ECM is to bind and mediate fibroblast growth factor (FGF) 

signalling. For instance, the interaction between Hspg2 and FGF4 plays an active role in the 

early developmental stage and FGF2 at the late developmental stage. Similarly, Daniel et al 

found that ESC deficient in Hspg2 retained their undifferentiated status and failed to commit 

to any cell linage after LIF withdrawal. This may be due to the disruption of essential FGF2 

signalling that inhibits Nanog and promotes ESC lineage commitment (Kraushaar et al., 2010). 

In addition, Hspg2 can function as mechanosensor mediating cell differentiation in response to 

shear stress (Bernfield et al., 1999) (Nikmanesh et al., 2012). Hspg2 can also interact with F-

actin bundles and contribute to cell contraction and stabilisation. Lanner et al found that Hspg2 

knockouts induced self-renewal by up-regulating Nanog expression and reducing embryonic 

cell heterogeneity by decreasing the phosphorylation of ERK1/2 (Lanner et al., 2010). In 

contrast, Sasaki et al postulated that presence of Hspg2 is essential for embryonic development 

and maintenance of self-renewal owing to its role in regulating a number of signalling pathways 

such as LIF/STAT3 and Wnt/β-catenin (Sasaki et al., 2008). This is because of the present of 

Hspg2 in the early, two-cell stage, and embryo (French et al., 1999, Carson et al., 1993). 

Furthermore, Hspg2-deficient mice are unable to survive beyond day ten (Costell et al., 1999). 

In contrast, Forsberg suggest that Hspg2-deficent ESCs are able to differentiate to most 

mesoderm lineage cells apart from adipocytes (Forsberg et al., 1999). Consistent with Sasaki 

et al demonstrated that ESCs deficient in Hspg2 spontaneously differentiated to extra 

embryonic endoderm (Sasaki et al., 2008) whereas Johnson et al reported the lack of Hspg2 

leads to a neural lineage differentiation. The different impacts of reducing Hspg2 function 
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relate to differences in knockout targets. Such variation may be linked with the direct inhibition 

of N-sulfation or by indirect silencing of genes that encode the enzyme responsible for Hspg2 

post-translational modification (PTM) (Tamm et al., 2012). Hence the blocking of enzyme 

synthesis may be inefficient owing to the presence of several enzymes in the Golgi apparatus 

that may contribute to the PTM of Hspg2. 

         Collagen XVIII, also named endostatin, is one of three known proteoglycan family, 

deposited in BM alongside with Agrin and Perlecan. Collagen XVIII serves as a peripheral 

membrane protein or secreted ECM protein and is known to possess negatively charged 

polysaccharide side chains. At early stages of embryo implantation (day 5) collagen XVIII is 

expressed and in the maturation stage, it is localised specifically in endoderm and epithelium 

tissue (Gersdorff et al., 2005). Collagen XVIII and collagen IV exist at the same level and 

abundance as collagen IV in the BM. Nevertheless, collagen-deficient mice survive after day 

9, a possible indication that collagen is less essential in early development. Agrin is a member 

of proteoglycan family localized in the ECM of the synaptic cleft of neural and neuromuscular 

junctions and plays a vital role in cytoskeleton reformation, protein signalling activation and 

interaction with cytoskeleton protein such as Rac and PAK (Jogi et al., 2002). 

       Nidogen (NID), a member of the BM glycoprotein family contains three global domains 

with a potential role in connecting and assembling BM proteins. It cross-links both LN and 

collagen, which are the two main BM components. Two distinct Nidogen proteins NID2 and 

NID1 are known. NID2-null mice show no significant change in basement membrane 

organisation (Clapham, 2007). However, mice deficient both in NID1 and NID2 have disrupted 

BM organisation and matrix assembly (Hausmann et al., 2013). NID2 mRNA expression level 

in embryos is higher than in adults, whereas at protein level NID2 shows a lower level in adult 

tissue compared with NID1. Nevertheless, cells preferably bind and interact with NID2 rather 

than NID1 (Shoshan-Barmatz et al., 2006) . 
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      The amount of ECM proteins in the stem cells niche contributes to cell fate determination 

in similar manner to Oct4/Sox2/Nanog, where a balanced concentration ratio is required to 

retain pluripotency. In this respect, change in the relative amounts of ECM components may 

results in ES cells differentiation (Niwa et al., 2000). 

      With the above information, using single or multiple ECM proteins can successfully control 

stem cell fate. For example using FN and LN to direct neural cell lineage commitment, or 

collagen to promote osteogenic differentiation (Hosseinkhani et al., 2008, Goetz et al., 2006).  

 

1.2.2. mESC culture matrix architecture` 

        As mentioned above, the modification of the culture environment has a significant impact 

on the pluripotent state. Despite the considerable advances in mESC culture, the majority of 

protocols use a two-dimensional (2D) monolayer mode on a plastic (e.g. polystyrene) surface. 

The 2D culture method does not model the natural three-dimensional (3D) environment of 

cells. Cells adhered to an artificial surface are in contact with other cells only at their periphery, 

limiting inter-cellular contact and communication. Additionally, the lack of oxygen and 

nutrient gradients is non-physiological (Keung et al., 2011a) (Lund et al., 2009). Furthermore, 

in 2D culture models, cells are in contact with a horizontal plane on their basal side and with 

culture medium exposed on their apical side, which is different from in vivo stem cell niches 

that are 3D microenvironments. The use of glass and plastic substrates represents another 

weakness in 2D culture as it lacks the extracellular matrix (ECM) elements, biomechanical 

properties and growth factors of the natural environment (Lutolf et al., 2009). The stem cell 

niche consists of webs of ECM proteins and polysaccharides that encase the proliferating stem 

cells (Lutolf et al., 2009). For example, in the pre-implantation stages, the mouse embryo (i.e. 
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in vivo niche of PSCs) has a support of collagen IV and FN that also convey signals by means 

of cell-surface receptors (Kraehenbuehl et al., 2011).  

       A number of studies have examined the effects in cell culture in 2D and 3D environments. 

Migration rates of cells such as fibroblasts are affected by adhesion to the 2D substrate, while 

appropriate cell differentiation is observed in 3D matrices. Pampaloni et al cultured Mardin-

Darby canine kidney (MDCK) cells on 2-D uncoated plastic, 2-D collagen-coated plastic and 

in 3-D collagen gel using proteomics to examine differentially regulated proteins. 3D substrate 

culture led to the formation of elementary kidney sub-organ structures and polarisation in both 

apical and basolateral surfaces. In sharp constant, MDCK cells on 2D monolayers had partial 

polarisation. These changes were in line with proteomics showing differential expression of 

antioxidant proteins, actin-binding proteins and glycolytic enzymes (Pampaloni et al., 2010). 

Thus 2D cultures may not entirely reflect the activities of cancer cells in vivo, emphasizing the 

limitation of 2D cultures as in vitro models for progression of malignant disease.  

       Mesenchymal stem cell (MSCs) destiny was also shown to be dependent on matrix 

stiffness ranging from soft, (1 kPa), intermediate (10 kPa) to stiff (100 kPa) (Engler et al., 

2006). The decisive influences of the microenvironment was later exhibited in ESC as gene 

expression analysis emphasized many dissimilarities associated with ECM, cell growth, 

proliferation and differentiation in 3D vs. 2D cultured mESC (Liu et al., 2006). The impact of 

substrate stiffness and mechanosensing were further illustrated on mESC in culture utilising 

the variable rigidity of polydimethylsiloxane (PDMS) substrates.  

      The escalation in substrate rigidity resulted in an increased expression of genes involved 

with development of the primordial streak and growing mesendoderm. Furthermore, a shift 

towards osteogenicity (Evans et al., 2009) was also observed on stiffer substrates (Evans et al., 

2009). Kraehenbuehl et al and Lutolf et al have suggested the potential impact of the rigidity 
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of bioengineered materials on either the differentiated or undifferentiated expansion of PSCs. 

(Kraehenbuehl et al., 2011, Lutolf et al., 2009). 

 

       In an intriguing study by Wang et al, mESC were cultured on substrate stiffness of either 

0.6 kPa (similar to the cell) or by introducing small cyclic stresses of 17.5 Pa at frequency of 

0.3 Hz through magnetic bead directed distribution of the cells. The tractive forces bought 

about alterations in cellular shape directed pluripotent cells towards differentiation. 

Chowdhury et al showed that differentiated mESC cultured under the influences of comparable 

cyclic stresses of 17.5 Pa were less effective for cell spreading (Chowdhury et al., 2010f). 

Research utilising polyacrylamide gel based substrates with variable stiffness confirmed that 

soft gels (0.6 kPa) were able to retain the expression of Oct3/4 in mESC during the 5 day period 

of culture without LIF, while in rigid culture dishes cells differentiated spontaneously in the 

presence of LIF. Due to the scarcity of PSC culture consuming “non-TCP” substrates, there is 

scope for utilization and development of biomaterials that can facilitate or mimic 

physiologically similar microenvironments.  

 

Biomaterial science concerns the production of materials that can be seeded with cells.  

General characteristics that a biomaterial must fulfill include: 

(i) Biocompatibility,  

(ii) Biodegradation in an appropriate timeframe that permits sufficient cellular growth while 

not producing harmful degradation products. 
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(iii) Mechanical properties that coincide with cell growth (i.e. a significant amount of 3D 

support in the early stages without obstructing cellular ECM production in the later stages). 

 

       More specific biomaterial attributes relate to the aim of recreating the non-mechanical 

attributes of the ECM. These properties include mediation of cell adhesion (e.g. via integrins), 

as well pro-survival -proliferation signals (e.g. via cytokines attached to the ECM). It has also 

been increasingly recognized, as shown by the studies above, that biomaterials are involved in 

mechano-chemical transduction. 

      Materials thus far have been traditionally divided in two categories, namely: (i) naturally 

derived materials (e.g. collagen) and (ii) synthetic materials (e.g. polystyrene). Material 

obtained from biological origins has a distinct advantage of ready availability and ability to aid 

biological signalling while requiring extensive testing in order to avoid inter-batch variability. 

On the other hand, synthetic polymers can be created to meet specific biomechanical properties, 

rate of degradation and porosity (Kraehenbuehl et al., 2011). As already mentioned, the ECM 

carries out secondary roles beyond its mechanical properties. Synthetic scaffold materials can 

be modified to include properties such as cell adhesion and proliferation. Cell adhesion to 

scaffolds is dependent on the presentation of small peptide adhesion domains that bind to 

integrin receptors. Peptide sequences that have been added on synthetic materials to improve 

adhesion include Arg-Gly-Asp (RGD), Tyr-Ile- Gly-Ser-Arg (YIGSR) and Arg-Glu-Asp-Val 

(REDV). 

      Together, these results suggest that culturing PSCs on conventional tissue culture plastic 

may result in phenotypical alterations to their normal in vivo state, and the use of appropriate 

biomaterials may help with enhancing the stem cell culture conditions.  
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1.3. Alginate hydrogels 

      Hydrogels are frequently exploited for generating novel scaffolds in tissue engineering 

research. Hydrogels are porous substances that can house living cells, extending a 

microenvironment where cells can further proliferate and release growth factors and metabolic 

waste products. Amongst several other hydrogels, such as fibrin, gelatin and hyaluronic acid, 

alginate is widely used in tissue engineering due to its particular biocompatibility and non-

irritant properties. The cues faced by a cell are extremely different between soft substrate or 

plastic surface (2D) and a typical 3D ECM. The 3D culture provides cells with cell-cell and 

cell-matrix interaction. Also it overcomes the stiffness of plastic culture flask (Fig. 6). 

Furthermore, cells grown in alginate hydrogels are protected against immune regulation.  
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Figure 6 2D vs. 3D stem cell culture 

The ability of in vitro 3D culture to resemble the in vivo environment in terms of topographical, 

mechanical, adhesive and soluble cues obtain enhanced condition for stem cells. This figure is 

adapted from (Baker and Chen, 2012) 

 

 

         Water-soluble alginate is a polysaccharide composed of two types of glycan: guluronic 

acid and mannuronic acid. The guluronic acid content provides strength to the hydrogels 

(Wikström, 2013). Furthermore, association of alginate with divalent cations such as Ca+2 make 
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the gel firmer and more durable (Fig. 7) (Wikström, 2013); (Lee et al., 2012). At higher 

concentrations, Ca+2 results in more porous gels that can contribute to increased distension and 

outflow. This can influence the immunological isolation of the cells captured in the gel. 

Disadvantages of alginate-based hydrogels include the fact that they are not biodegradable in 

vivo and the level of manual dexterity needed in handling them, as they are very soft (Kuo et 

al., 2012).  

 

Figure 7 Alginate acid encapsulation using calcium chloride 

The process of encapsulating alginate chains using calcium ions. Adapted from (María 

Chávarri, 2012) 

          In recent times, the use of alginates in biomedical fields has played an important role in 

terms of tissue engineering or drug delivery. However, alginates lack adhesive properties due 
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to their hydrophilic nature and the negatively charged groups on the chains (Therese Andersen 

and Christensen, 2012). In spite of their poor adhesive properties, alginates are attractive 

biomaterials owing to their ease of fabrication using different coating surfaces or mechanical 

manipulations. The manipulation of variables such as mechanical stress has been shown to 

have a significant influence in stem cell fate determination (Fisher et al., 2009) by providing 

mechanical cues. For instances, MSCs grown at different substrate stiffness such as soft, mild 

or rigid can differentiate either to neuron, myoblast or osteoblast respectively (Engler et al., 

2006). Likewise, modifying the alginate surface by small molecule such as chemically 

modified PEG doped with phosphate groups enhances bone mineralisation of MSCs. (Benoit 

et al., 2008). 

 

1.4. Dynamic bioreactors 

        Static culture is typically dependent on the passive diffusion of the soluble factors in 

culture media (Placzek et al., 2009). Randers-Eichhorn et al examined O2 levels in the gas and 

liquid phases of murine hybridoma culture. They found that O2 transfer through the liquid under 

standard laboratory conditions was greater than that predicted by passive diffusion due to 

microscale mixing. However, over time O2 at the bottom of the flasks reached zero (Randers-

Eichhorn et al., 1996). This suggests that use of static vessels in culturing PSCs is not adequate, 

particularly in a 3D cultured system of rapidly growing cells. Nonetheless, low mass transport 

of nutrient and oxygen can facilitate heterogeneous cultures that may further induces cell 

differentiation or gain of an anomalous karyotype (Azarin and Palecek, 2010). Consequently, 

a substitute for management of cells at an industrial scale is by means of dynamic environments 

that can overcome the limitations of conventional culture. 
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       Numerous bioreactor designs have been presented for industrial PSC culture where the 

primary focus is on improving mass transport and reducing culture heterogeneities. The stirred 

suspension and rotating wall vessel (RWV) bioreactor configurations are the most widely used. 

In addition RWV bioreactors vessels have been successfully exploited for embryoid body 

formation; in vitro cultured PSC cells in 3D environment in hydrogels or as aggregates. Stirred 

suspension bioreactors are normally operated at 30-60 rpm, leading to a high amount of shear 

stress in the freely suspended PSCs ((Rodrigues et al., 2011), (Placzek et al., 2009)). 

Alternatively, RWV bioreactors that have high aspect ratio vessel (HARV) or slow turning 

lateral vessel (STLV) geometries result in PSC suspensions with minimal shear stress and free 

fall culture conditions ((Placzek et al., 2009), (Hwang et al., 2009)).  

       Kinney et al also examined the potential effects of different hydrodynamic and other 

bioreactor conditions on stem cell cultures (Kinney et al., 2011). Bioreactor hydrodynamics 

affect industrial scale culture of PSCs due to alteration in spheroid size, homogeneity of 

nutrient supply, kinetics of aggregation, and yield of spheroids. Due to these aforementioned 

factors PSCs cultures have shown variable rates of expansion, viability, and metabolic activity 

(Kinney et al., 2011). Additionally, the effect of shear stress due to rotation of culture vessels 

has been shown to differentiate hESC lines in to the IMR 90 phenotype when rotated at 100-

120 rpm. However, further research suggests, even after reduction in shear stress this did not 

affect spontaneous differentiation and it was later suggested that an altered distribution of 

soluble factors due to forceful movement of the culture vessel was affecting hPSC 

differentiation (Leung et al., 2011). 

       Additionally, global expression analysis by Roy et al further suggested that mESC 

differentiated along the hematopoietic lineage when cultured on polymeric scaffolding (Roy et 

al. 2011). Dynamic culture of stem cells also increased ECM production, cellular adhesion, and 

elevation in gene transcription when compared with a 3D static system. In addition, BMP-4 
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expression occurred exclusively in dynamic cultures, which further strengthens the above 

findings. All these results support the idea that the hydrodynamics of spinner flask cultures 

dynamically stimulate a microenvironment that induces a hematopoietic lineage differentiation 

(Liu et al., 2006). Additional investigation of mESC in bioreactors with distinctive 

hydrodynamic properties demonstrated an increase in Sca-1+ cells (markers of hematopoietic 

stem cells) suggestive of presence of stem and progenitor cell types while c-Kit+ endothelial 

cells were produced in rotator flask cultures consistent with the hypothesis that the 

hydrodynamics of a culture is capable of manipulating PSC fate (Fridley et al., 2010). 

 

1.5. Proteomics 

1.5.1. Genomic vs. Proteomic Characterisation of mESC 

 

          While analysis of the genome and transcriptome examine DNA and RNA expression 

respectively, they fail to elucidate the dynamics of cellular proteins such as quantity, stability, 

cellular localization, post-translational modifications (PTMs), and their communications 

(Stanton and Bakre, 2007). To complement the transcriptomics studies it is desirable to also 

perform a proteomics analysis. This is particularly pertinent as there is little association of 

transcriptional profiles with stem cells differentiation (Anderson and Seilhamer, 1997, Wei et 

al., 2005) (Unwin and Whetton, 2006, Cloonan et al., 2008). These investigations inferred that 

differential mRNA expression in stem cell progeny does not necessarily mirror the protein 

expression. Analysis of the proteome also allows the possibility to study the post translational 

modification of proteins (Unwin and Whetton, 2007);(Brill et al., 2009); (Smith and Workman, 

2009); (Guo et al., 2012, Williamson and Whetton, 2011). The term “Proteome” was coined 

by Marc Wilkins in 1994 where PROTE comes from word protein and OME from genomes 
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(Yu et al., 2007). Proteome is defined as an analysis of complete set of proteins in a cell, tissue, 

or organism (Baharvand et al., 2007a). Of the several questions to be answered in cell biology, 

proteomics has been used to study the self-renewal and differentiation of stem cells (Van Hoof 

et al., 2006); (Liu et al., 2010). Additionally, PTMs that regulate cellular destiny outcomes, 

either by means of phosphorylation or ubiquitination are of critical importance (Baharvand et 

al., 2007b).  

        Technological developments in protein fractionation and mass spectrometry (MS), have 

significantly improved the ability to investigate and abstract biological evidence from intricate 

cellular experiments. Identification of mESC proteomes has been made by utilising two-

dimensional-sodium dodecyl sulphate-polyacrylamide gel electrophoresis (2D-SDS-PAGE) 

approaches coupled with MS for protein identification (Gundry et al., 2010, Baharvand et al., 

2008). Nevertheless the identification of low abundance proteins is still a limiting factor. An 

alternative non-gel approach that could help would be Multidimensional Protein Identification 

Technology (MUDPIT), however, that would only provide qualitative data. Therefore the focus 

has been directed towards more quantitative proteomic methodologies (O'Brien et al., 2010, 

Graumann et al., 2008a).  
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Figure 8 Proteomics workflows Comparison of quantitative, qualitative or semi-quantitative 

proteomics workflow 

In the gel based strategy, gel bands (from 1D gel) or protein spots (from 2D gel) are obtained. 

This is followed by trypsin digestion and MS analysis of peptides. In contrast, in-solution 

digested (ISD) MS based strategy, the proteins are not fractioned using gel but partially 

separated followed by LC/LC-MS/MS for peptide separation and sequencing. Labelling points 

in each workflow exist whereby (Fig. 8, red circle) samples are isotopically labelled for LC-

MS analysis except in label-free quantification. In label-free quantification, samples are 

individually analysed and data compared using multiple approaches involving spectral 

counting and peak intensity. In contrast, metabolic labelling is associated with pre-isotopic 

labelling of proteins. Following that, prior to quantitative analysis samples are combined and 

processed simultaneously. Protein extracts in both isotopic and isobaric tags before labelling. 

However, isobaric tags LC-MS/MS analysis produce spectra of peptide fragment ion obtained 

in MS1 and the cleaved tag spectra produced in MS2. The MS2 spectra identify peptide and 

use to relative quantitation. Heavy peptide standard curves are used to speculate quantities of 

un-labelled samples for absolute quantitation. Metabolic labelling workflow has reduced 

experimental bias due to prior labelling of protein in vivo. On the other hand, label-free 

workflows increase this risk due to individually analysed samples. 

 

 

 

 

 



41 | P a g e  
© Imperial College 2015 

       There is an inverse relationship between protein quantified and identified in the sample. 

Sample complexity is a critical factor in peptide quantitation, as identification and 

quantification rates are inversely proportional to sample complexity (Fig. 9a). Methods such as 

affinity purification are often performed to remove high-abundance proteins and reduce sample 

complexity. In-line liquid chromatography (LC) is also a common pre-MS fractionation 

process to chemically separate peptides to further reduce sample complexity. Cells can also be 

grown in different stable isotope labelling amino acids (SILAC) media then obtained, 

combined and digested for LC-MS/MS analysis (Fig. 9b). Data are analysed using the Max-

Quant software, both protein identification and relative quantification obtained from the 

MS/MS spectra. The ratios of the SILAC pairs are used for relative quantification. 

       Quantitative analyses have also been carried for direct evaluation of the phosphoproteome 

to understand mESC self-renewal and differentiation (Li et al., 2011). Findings from research 

of Li et al advocated the dynamic status of the proteome in mESC. Together both genomic and 

proteomic research data that have been obtained on mESC up till now have uncovered and 

indicated role of several intracellular signalling pathways now consider to be fundamental to 

pluripotency.  

 

1.5.2. Mass Spectrometry of Proteins and Peptides 

       A standard MS peptide analysis proceeds in multiple phases. Firstly, it is by measuring the 

mass-to-charge ratios of unfractionated peptides. Following selection of specific peptides on 

the basis of comparative abundance in the first mass analyser (e.g. Quadruple 1) disintegration 

takes place in a collision cell (Quadruple 2). The mass-to-charge ratio (m/z), of each 

disintegrated ion is exposed to a second mass analyser to collect the time of flight, Linear Ion 
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Trap, Orbitrap, and Ion Cyclotron Resonance cell. This procedure is known as tandem MS, or 

MS/MS. 

 

 

Figure 9 Workflow of the stable isotope labelling amino acids (SILAC) media 

Relationship between protein identification and sample complexity (A), and the workflow of 

the SILAC 
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         Comprehensive examination of the product ion masses in the MS/MS spectrum delivers 

knowledge about the peptide sequence chosen for fragmentation and, by extrapolation, 

identification of the protein to which it correlates. Earlier types of MS instrumentation were 

not capable of performing these assays. Ionization was achieved through electron impact or 

chemical ionization and will result in increased in-source fragmentation of biomolecules. 

Therefore, advances in soft ionization techniques, for example matrix-assisted laser desorption 

ionization (MALDI) and electrospray ionization (ESI) transformed protein analysis (Fenn et 

al., 1989), (Whitehouse et al., 1985). MALDI and ESI are so called ‘soft techniques’ due to 

little in-source fragmentation occurring of the ionized protein species and this facilitates the 

quantification of mass of the complete biomolecule or protein. Additionally, ESI and MALDI 

may be easily coupled with MS. The most widely exploited hybrid instrument for proteomic 

experiments is a mass analyser that measures of time of flight (TOF) (Chernushevich et al., 

2001), (Roepstorff, 2000), quadruple (Q), ion trap (LIT) (Yost and Boyd, 1990), Fourier 

transform ion cyclotron resonance (FT-ICR) (Peterman et al., 2005), and Orbitrap (Gizzi et al., 

2005). Every one of these above mentioned analysers have advantages and disadvantages.  

 

1.5.3. Proteomic Analysis of Complex Mixtures  

       Developments in instrument scan speed mean that, MS analysers can identify a limited 

number of ions in any given time. To sort the elements of a sample chromatographic separation 

has been applied prior to MS initially by partition with a reversed phase (RP) column that 

separates on the basis of hydrophobicity. To further simplify samples a secondary separation 

method is often utilised following the RP using either strong cation exchange (SCX) or 1D-

SDS-PAGE (Bendall et al., 2009), (Fang et al., 2010). One discrete benefit of ESI is its 

compatibility with several on-line separation techniques that can be directly coupled to the MS 

analysis.  
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1.5.4. Peptide Identification from Mass Spectra  

        The MS principle relates to ionisation of chemical compounds to generate charged 

molecules or molecule fragments. Amino acids can then be identified by calculating the mass-

to-charge ratios (Domon and Aebersold, 2006). One of the most widely employed 

fragmentation techniques in MS is collision-induced dissociation (CID) (Hayes and Gross, 

1990), (Morris et al., 1996). In CID, peptide ions are accelerated into a collision course with 

inert gas molecules such as helium, nitrogen or argon. As well as CID, electron capture 

detection (ECD) and electron transfer dissociation (ETD) have been used in the current 

generation of mass spectrometers (Appella and Anderson, 2007), (Zubarev et al., 2000). This 

advance in instrumentation facilitates the generation of spectra through two complementary 

fragmentation techniques (Swaney et al., 2008).  

       Following fragmentation peptides were characterised either with the aid of the appropriate 

software or with standard search engines to compare the detected or observed and speculative 

or theoretical peptide spectra creating, an in silico assimilate of a sequenced databank (Forner 

et al., 2007). Search engines achieve peptide matches created on a range of metrics proposed 

to produce a score demonstrative of the quality of match amongst the detected and theoretical 

spectrum (Forner et al., 2007), (Johnson et al., 2005). Recent developments in software allow 

searching of peptide spectra in a databank of formerly obtained MS/MS experimental spectra 

(Lam et al., 2008). These in silico lead to both better sensitivity and speed. However, 

restrictions exist due to the subject matter of the spectrum databanks. Further substitution of 

the earlier methods involves de novo approaches that utilise electronic means to sequence the 

peptides straight from the MS/MS spectrum (Xu and Ma, 2006). In such de novo approaches 

information about the fragmentation methods used in the MS and fundamental search 

considerations that is provided by the researcher allows peptide chain reconstruction (Dancik 

et al., 1999), (Xu and Ma, 2006). De novo methods of sequencing possess a lot of promise due 
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to the potential for identification of formerly unidentified peptide sequences and PTMs. In spite 

of this, operating an amalgamation of several search engines has been effective in 

accomplishing optimal analysis (Boutilier et al., 2005), (Jones et al., 2009). 

 

1.5.6. Quantitative Proteomics and SILAC 

         With the technological advancement in proteomics, MS, and bioinformatics a very long 

list of protein candidates is generated that often challenges the biologist for delineating the 

specific biologic importance of particular proteins (Ahn et al., 2010). Therefore a quantitative 

approach can be exploited to abstract the most biologically relevant information from a vast 

proteomic data set. Quantitative proteomics is widely used to obtain biologically meaningful 

data when investigating cellular signalling during differentiation (Figure 6a). MS is semi-

quantitative therefore quantitative labelling is often used. However, with recent advances in 

technology label free approaches are also becoming popular ((Mueller et al., 2008), (Domon 

and Aebersold, 2010)).  

       In MS-based proteomics, quantitative approaches usually employ stable isotopes for 

production of ‘heavy’ and ‘light’ samples that maintain their chemical stability and can be 

distinguished and evaluated by MS assessment. Quantitative labelling can be applied either at 

protein or peptide level, before performing the MS analysis. For peptide level labelling it is 

generally primary amines that are marked for comprehensive sample analysis. Additionally, 

isobaric and tandem mass tags (TMT) for comparative and total quantification could only be 

achieved after protein digestion (Ross et al., 2004). Dimethyl labelling methodologies for 

peptide labelling have also been utilised effectively with minimal reagent consumption. 

Whereas chemical labelling approaches like ICAT have confirmed their applications, using 

metabolic labelling such as SILAC (Figure 9b) is preferable for cell culture (Ahn et al., 2010). 
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     Alternatively, metabolic insertion of isotopically labelled amino acids to tag peptides of 

interest is widely used. Of several isotopic labelling approaches, stable isotope labelling of 

amino acids in cell culture (SILAC) permits metabolic incorporation of 13C and 15N in amino 

acids into the cellular proteome (Fig. 9b) (Mann, 2006), (Ong et al., 2002). Supplementary 

techniques founded on the principle of metabolic assimilation of 15N have been commonly used 

(Krijgsveld et al., 2003). These approaches depend on the addition of isotopically marked 

amino acids, which are integrated into recently, produced proteins (Larance et al., 2011). There 

are number of advantages in using the comprehensive SILAC approach. These include 

minimisation of the variability introduced due to separate sample handling prior to SILAC; 

labelled samples (heavy and light) are pooled and processed together. The heavy amino acid 

has been shown to have no effect on cellular metabolism or phenotypic switch particularly in 

stem cells (Graumann et al., 2008a). Additionally, complete amino acid incorporation can only 

be achieved after 5 passages. 

       However, there are three major artefacts that could be introduced in the SILAC ratio 

calculation. These errors involved incomplete corporation of the isotopes, metabolic arginine 

to proline conversion, or errors introduced by mixing unequal amounts of protein in the two-

samples (Park et al., 2012). For instance, incomplete incorporation of heavy isotope can lead 

to the presence of additional light peptides whereas arginine to proline conversion leads to 

reduction of ions of the peptides in the heavy isotope labelled samples. It has been suggested 

that proline to arginine conversion can be reduced to a minimum if the culture is supplied with 

excess proline (Lossner et al., 2011). However, using 15% of KORS in ES cells cultures 

provides cells with 800mg/L of proline (Bendall et al., 2008). Coincidentally, KORS contains 

no free arginine or lysine making it compatible with SILAC application (Bendall et al., 2008). 

Hence, extended culture of the ES cells in the SILAC media (minimum of 14 days) results in 

maximum labelling of Arg and Lys residues (96%)(Bendall et al., 2008). 
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       In all the above stated metabolic methodologies, diversely labelled samples are blended in 

definitive proportions, and the comparative abundance of proteins can be related quantitatively 

on the basis of the respective intensities of the peptide in their mass spectrum. Therefore, 

isotopically labelled amino acids by means of any aforementioned methods allows observation 

and investigation of the minuscule alteration in cellular phases over time. 

 

1.6. Aims and hypothesis: 

     Pluripotent stem cell culture typically involves feeder layers, non-defined and variable 

culture media, 2D culture plates that are typically made of plastic. PSC in vivo exist within a 

physiological environment that is completely different both in terms of structure and 

components. There is strong aim for a more physiological microenvironment optimising cell-

to-cell, cell-to-ECM contact, mechanical and chemical stimuli. Appropriate 3D culture 

provides important ‘niche’ components and plays a role in determining stem cell fate. 3D 

culture represents a step of intermediate complexity between in vivo niche and in vitro 2D 

cultures. However, comprehensive characterisations of the effects of 3D culture conditions in 

vitro and their suitability as imitation of the in vivo environment are still not clear. Even the 

regulatory mechanisms underlying the self-renewal ability of SCs under standard protocols are 

poorly defined. Understanding pluripotency and differentiation mechanisms in the 3-D cultures 

might allow us to manipulate the fate of stem cells for production and therapeutic purposes.  

 

        Hydrogels, an example of materials used to form 3D structures, have been used as culture 

substrates to create more suitable microenvironments for SC culture (e.g. mESC encapsulation 

within alginate beads (Hwang et al., 2009). One of the main advantages of alginates it is their 

ability to maintain the cells in culture for prolonged periods of time without passaging or the 

use of feeder cells. However, using 3D cultures potentially leads to diffusion barriers that may 
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limit transport rates. The use of bioreactors that employ rotary or stirring may enhance transport 

rates (Hwang et al., 2009, Placzek et al., 2009, Rodrigues et al., 2011). The improvements in 

mass transport in bioreactors improve the reproducibility of process conditions as well as 

homogeneity of the cell population, compared with static cultures (Placzek et al., 2009). In 

addition, using bioreactors aids scale up of cell production. 

 

       Previous work using alginate beads found they could enable pluripotency maintenance for 

up to 250 days without cell passaging (Siti-Ismail et al., 2008). Additional work also showed 

the improved capacity of perfusion bioreactors to sustain a naïve mESC population over batch 

culture as a result of a decrease in metabolic stress through washing out waste metabolites with 

fresh medium (Yeo et al., 2013). However, studies directed at the large-scale analysis of cells 

in this micro-environment to determine the effects of 3D culture on the undifferentiated 

expansion of ESC’s, needs to be undertaken. 

 

      The aim of this work is to investigate the effect of 3D culture using alginate beads and 

bioreactors on ESC self-renewal, potency and differentiation. The mechanisms pertaining to 

control of self-renewal will also be investigated using proteomics. Critical to these studies will 

be the development of efficient methods for the extraction and analysis of proteins. 

Comprehensive protein analysis will be performed in ESC culture in 2D, 3D static and 3D 

dynamic (i.e. bioreactor) conditions. 

 

1.6.1. The work-flow used in this research is as follows: 

 

 Investigate the effect of 3D culture on cell viability, proliferation, and gene expression 

both at short exposure and prolonged adaptation. 
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 Development of efficient methods for the extraction of proteins from the 3-D 

environment. 

 Employ protein identification methods that use SILAC to facilitate the comparative 

analysis of mESC in 2D, 3D static and 3D dynamic conditions. 

 Interpretation of the behaviour of mESC in different culture environments in the light 

of the differential protein expression data. 

 Functional validation of the identified proteins at short (3 days) and long (18 days) 

culture time.  
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CHAPTER 2: Material and methods 
 

2.1. The mESCs Culture 
 

2.1.1. Preparation of cell maintenance media for culture of mouse embryonic stem cells 

(mESCs) 

       Dulbecco’s Modified Eagles Media (DMEM) without sodium pyruvate was supplemented 

with 10% (v/v) foetal bovine serum (FBS; Gibco) or 15% knockout replacement serum, 100 

units ml-1 penicillin, 100 μg ml-1 streptomycin, 2 mM L-glutamine (all supplied by Gibco, 

Invitrogen, UK), 0.1 mM β-Mercaptoethanol (Sigma-Aldrich, Poole, UK) and 1000 U ml-1 of 

Leukemia Inhibitory Factor (LIF; Millipore, U.K. Limited, UK). 

 

2.1.2. In vitro culture of mouse embryonic stem cells (mESC) culture 

       A commercially supplied mES cell lines (Catalogue No: CRL-1821) were obtained from 

American Type Culture Collection – ATCC). Cells were routinely cultured in tissue culture 

flask coated with 0.1% gelatin (Sigma-Aldrich, UK) in humidified cell culture incubators 

(Nuaire, Nu – 5510E, Triple Red Ltd.) at 37oC and 5% CO2. The cultures were substituted with 

fresh media daily, and passaged every 3 days at a seeding density of (2–4) ×104 cells/cm2. Prior 

to sub-culture, culture media was aspirated and washed with 1X PBS (without calcium and 

magnesium) (Gibco) followed by addition of 0.05% (v/v) trypsin-ethylene diamine tetraacetic 

acid (Trypsin-EDTA; Gibco) solution at 370C and 5% CO2 for 5 minutes. Cell suspensions 

were then re-suspended gently using a Gilson pipette for 1 minute to ensure completely 

dissociation and single cell suspension. Complete cell culture media was added to stop the 

dissociation reaction and washed with 1× PBS (phosphate buffered saline). Cell suspension 
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was then centrifuged at 360 g and cell supernatant was removed. Fresh cell culture media was 

added and cell pellet was suspended gently to ensure a single cell suspension.  

2.1.3. Alginate beads encapsulation 

       To aim for a 3 dimensional culture, the cells are cultured as explained in section above 

2.1.2. followed by an isolation of cell pellet. Cell pellet was then  re-suspended in 1.1% (w/v) 

alginic acid (Sigma, UK) and 0.1% (v/v) porcine gelatin (Sigma, UK) solution (both were 

dissolved in PBS, adjusted for pH 7.4 and filtered through a 0.2 mm filter) using a Model P-1 

(Amersham Biosciences, UK). This cell suspension was then dripped with an aid of 25-gauge 

needle into sterile alginate gelatin solution consisting of 100 mM CaCl2 (Sigma, UK), 10 mM 

HEPES (Sigma, UK), and 0.01% (v/v) Tween (Sigma, UK) at pH 7.4 with constant gentle 

stirring. Roughly, 25,000 cells were encapsulated in every alginate hydrogel batch solution. 

The hydrogels were maintained in CaCl2 solution with gentle stirring for 6–10 min followed 

by washing in excess of PBS. Cells were then replenished daily with the 2D cell culture media 

at 37°C in a 5% CO2 humidified incubator for 4 days. 

 

2.1.4. Rotating wall vessel high aspect ratio vessel (HARV) bioreactor culture 

      HARV bioreactor vessels (Cellon S.A (Bascharage, Luxembourg) with a volume of 50 ml 

were employed as a “well-mixed” fed batch cultures. These vessels have a large radius-to-

depth ratio offering high aspect ratio for gaseous exchange surface area to vessel depth by 

means of gas permeable membrane. Three single vessels were accompanied to a rotator base 

regulated by a peripheral control unit. These vessels were controlled between 18–22 RPM to 

maintain the 3D alginate beads in suspension form. The rotary wall mobility ensures a steady 

state of freefall, diminishing three-dimensional homogeneities at low degrees of shear stress 
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[0.5–2 dyn.cm-2 (Placzek et al., 2009)]. Around 500 beads (from 4 ml alginate/single mESC 

solution) were seeded with 50 ml of media to fill up the vessel. 

 

2.2. Viability and Cell Proliferation 

 

2.2.1. DNA quantification 

        DNA quantification is contemplated as a reliable technique for indirect estimation of 

mESC (Ng et al., 2005). Thus, a similar protocol as Randle et al was employed with minor 

adjustments (Randle et al., 2007). The mESCs were depolymerized and washed from the 

alginate bead cultures followed by the culture (as mentioned in section 2.6.5.) ahead of snap 

freezing and storage at -80oC. Subsequently, cell pellets were digested by proteinase K (Sigma-

Aldrich, Poole, UK) and centrifuged at 600 RCF. The digested cell supernatant was then mixed 

with PicoGreen® reagent (Invitrogen, Paisley, UK) and assessed at an excitation/emission 

wavelength of 365 nm /460 nm using a MFX micro-titer plate fluorometer (Dynex 

Technologies, West Sussex, UK).  

 

2.2.2. Live/dead staining 

     Viability analysis of mESCs in 3D hydrogel cultures was performed with an aid of in situ 

LIVE/DEAD viability staining (Invitrogen, UK). This kit utilizes a fluorescence dye, calcein 

AM [3', 6’-Di (O-acetyl)-2', 7’-bis [N, N-bisn (carboxymethyl) aminomethyl] fluorescein, 

tetraacetoxymethyl ester] to identify live cells, which is metabolized by cellular esterases to 

produce a green fluorescence within in the cytoplasm. While, another dye ethidium 

homodimer-1 (EthD-1) binds to nucleic acid of the cells and produce a red fluorescence that is 

indicative of the compromised integrity of cell membrane. In advance of staining, mESCs 
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beads were accumulated and washed twice using 1X PBS. A working solution of 4 mM EthD-

1 and 2 mM calcein AM solution was supplemented to the beads followed by incubation for 

30 minutes with gentle rocking in while protecting from light. Subsequent to the staining, the 

beads were washed thoroughly (3×) in excess of PBS to avoid nonspecific staining and 

visualized within the next half an hour on a BX51 fluorescence microscope (Olympus) and 

assessed using analysis^D software (Olympus). 

 

2.2.3. Cell Proliferation Assay (MTS Assay) 

       The viability potential of mESCs in different culture media was analysed indirectly through 

assessment of metabolic activity in a time dependent fashion by using a Cell Titre 96 Aqueous 

One Solution Reagent MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H tetrazolium] assay (Promega, UK) as per manufacturer’s guidelines. The 

experiment was performed in 24-well tissue culture polystyrene plates (VWR International 

Ltd.) coated with 0.1% gelatin (Sigma). 24-well plates were seeded with 3x104 cells/cm2 and 

cultured and incubated in each primary differentiation culture media for a time course of 1, 2, 

3, 4, and 5 days. The cells or beads were incubated with MTS solution for 3 hours at the end 

of each incubation period. 100 mL of the cell culture supernatant was isolated from  samples 

and transferred into a separate 96-well plate and read at 490 nm wavelength using an enzyme-

linked immunosorbent assay (ELISA) reader (ELx808, BIO-TEK, USA). 

 

2.3. Media analysis 

     Nutrient and metabolite concentrations were investigated in 1 ml of cell culture supernatants 

using the Bioprofile 400 Analyzer (Nova Biomedical, Flintshire, UK) at different time point’s 
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throughout the cultures. During the media sampling every 24 hours of the 3D cultures, the 

change in media was normalized to fresh media collected at the same time. 

2.4. Polymerase Chain Reaction (PCR) 

 

2.4.1. RNA extraction 

      Cell pellets were stored at -800C and subjected to mature mRNA (> 200 nucleotides) 

extraction utilizing the Resay kit (Qiagen, West Sussex, UK), according to the manufacturers 

protocol. Harvested cells were subjected to disruption in RLT buffer added with 1% β-

Mercaptoethanol and homogenized using a Qi shredder spin column, at the (1400 RPM) 

centrifugation 2 minutes. Further, equal amount of Ethanol was added to the cell lysates to aid 

the precipitation of RNA to the RNeasy membrane column. The membrane column was 

washed twice with RW1 buffer followed by washing with RPE buffer and removal of ethanol. 

Also, contamination of the DNA was removed with the aid of the DNase elution of RNA was 

carried out in a 1.5 ml collection tube using RNase-free water. RNA quantification was 

accomplished on a UV spectrometer and the A260 / A280 ratio of > 1.70 was selected as a 

threshold to ensure purity of RNA sample. The RNA samples were then modified to achieve a 

working concentration of 10 μg/ml for eventual two-step polymerase chain reaction (PCR). 

This addition did not result in more than 2% volume change therefore seemed insignificant. 

2.4.2. Polymerase chain reaction (PCR) amplification 

      1µg RNA in a final volume of 20µl was reverse-transcribed into cDNA using the Thermo 

script reverse transcription-polymerase chain reaction (RT-PCR) system (Invitrogen Ltd., 

Paisley UK). Oligo (dt) 20 was then utilised for prime RT reactions that facilitated the 

corresponding cDNA to be amplified in PCR with different sites of gene specific primers. RNA 

template and primer was denatured by incubating at 650C for 5 minutes followed by positioning 

on ice during the addition of master mix. Master Mix was composed of 4µl of 5 X cDNA 
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synthesis buffers (250 mM Tris acetate pH 8.4, 375 mM potassium acetate, 40 mM magnesium 

acetate, stabilizer), 1 µl of 0.1 M dithiothreitol (DTT; a reducing agent for the RT), 40U RNase 

Out (an RNase inhibitor), 1 µl RNase free water, 2 µl of 10 mM dNTP mix and 15U/ µl Thermo 

Script RT. The reaction mixtures were then transferred into a thermal 96 cycler (Perkin Elmer 

Gene Amp PCR System 2400; AB Applied Biosystems, Warrington, UK) and incubated at 

500C for 30 min afterwards 85oC for 5 min. cDNA samples were stored at -20°C prior to use. 

Each reaction confined of 50 µl mix. In the 50 µl PCR reaction mix, the final concentration of 

MgCl2 and dNTP (Promega, UK) were 3 mM and 10 mM, respectively. Eppendorf Thermal 

Cycler (Eppendorf AG, Hamburg, Germany) was used for the DNA amplification. DNA 

denaturation and the commencement of Taq DNA Polymerase (Fermentas, Life Sciences, UK 

) was conducted at 94oC for 10 min, subsequent to 40 cycles of template denaturation at 94oC 

(5 seconds) and primer annealing at 56oC and primer extension at 72oC (30sec). Total RNA 

was obtained employing the RNeasy Mini Kit (QIAGEN) as per manufacturer’s guidelines. 

Also, First-Strand cDNA was produced with random hexamers as primers, using Super-Script 

First-Strand Synthesis System according to the manufacturer’s procedure (Promega). Each 

sample was progressed with SYBR Green supermix (BIOLINE) in triplicates. PCR conditions 

comprised of an initial denaturation step of 2 minutes at 95°C, subsequent to the 40 cycles of 

PCR consisting of 15 seconds at 95°C and finally 20 seconds at 60°C. Average of triplicate Ct 

values of gene of interest (GOI) and b-actin were then divided to normalise the obtained data. 

Fold change of GOI transcript levels between sample A and sample B = 2– Δ ΔCt, where Δ Ct 

= Ct (GOI) – Ct (GAPDH) and Δ Ct = Δ Ct (A) Δ Ct (B). 
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Table 1: Primer Sequence List 

Oligo sequence (5' to 3') Oligo name 

GGGTCATGGCTAACGTGC F:Twist 

CAGCTTGCCATCTTGGAGTC R:Twist 

ATGATCGCCTGCTTATTCACG F:HK2 

CGCCTAGAAATCTCCAGAAGGG R:HK2 

CTCTAATGTCCTCCCTTGTTGCC F:Brachury 

TGCAGATTGTCTTTGGCTACTTTG R:Brachury 

GTGACGTTGACATCCGTAAAGA F:β-actin  

GCCGGACTCATCGTACTCC R:β-actin  

CTCCAACGGGCATCTTCATTAT F:N-cadherin  

CAAGTGAAACCGGGCTATCAG R:N-cadherin  

AGAGTCAGATCGCTCAGATCC F:nestin 

GCAGAGTCCTGTATGTAGCCAC R:nestin 

GATGACGGCGACATGGTTTAC F:HIF-1α  

CTCACTGGGCCATTTCTGTGT R:HIF-1α  

TGGTCAAGAAACATTTCAACGCC F:slug 

GGTGAGGATCTCTGGTTTTGGTA R:slug 

CAAGAGCTTGTCAGAATCAGG F:N-cadherin  

CATTTGGATCATCCGCATC R:N-cadherin  

TGGAGCCCGAATACAGGAAGA F:Hspg2 

AGATCCGTCCGCATTCCCT R:Hspg2 

GCTCAGCAAATCGTGCAGC F:Fn1 

CCATAGCAGGTACAAACCAGG R:Fn1 

CAGTTCCGAGGTCTACACCTT F:Cdh1 

TGAATCGGGAGTCTTCCGAAAA R:Cdh1 

TGCCTTTCTTTACCGACGAGT F:FGF4 

GCGTAGGATTCGTAGGCGTT R:FGF4 

GAACATGTGTAAGCTGCGG F:Oct4 

CAGACTCCACCTCACACG R:Oct4 

GCTCCTGCACACAGAAGAAA F:Rex1 

GTCTTAGCTGCTTCCTTCTTGA R:Rex1 

TCTTCCTGGTCCCCACAGTTT F:Nanog 

GCAAGAATAGTTCTCGGGATGAA R:Nanog 

AATATTTGCTGTGTCTCAGG F:FGF5 

TAAATTTGGCACTTGCATGG R:FGF5 

TTGATACCTGAGACCGGGAAG F:BMP4 

ACATCTGTAGAAGTGTCGCCTC R:BMP4 

CACACGCTGCCTTGTGTCT F:Snai1 

GGTCAGCAAAAGCACGGTT R:Snai1 

GCGGAGTGGAAACTTTTGTCC F:Sox2 

CGGGAAGCGTGTACTTATCCTT R:Sox2 
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2.4.3. Agarose gel electrophoresis 

       PCR products were seceded on 2% (w/v) agarose gel [made up in 1X TAE buffer (Tris 

Acetate EDTA; Sigma Aldrich, UK)] containing 0.4 M Tris acetate, 10 mM EDTA (ethylene 

diamine tetra acetic acid), pH 8 and pictured by ethidium bromide fluorescence (Sigma Aldrich, 

UK) method. Size of products estimated by means of 50bp and 100bp ladders (Fermentas, Life 

Sciences, UK). Further, digital images of ethidium bromide-stained gels were attained using 

the Bio-Rad (Hemel Hempstead, UK) Fluor-S Multi imager system. 

 

2.5. Fixed samples immunocytochemistry 

      Cells at undifferentiated phases were confirmed by immunostaining for pluripotency 

marker POU5F1/Oct4 (octamer-binding transcription factor 4) and SSEA-1 (stage-specific 

embryonic antigen 1) correspondingly. Cells were fixed with 4% paraformaldehyde (Sigma) 

for 10 min and washed in excess of PBS. Fixed cells were incubated with 0.2% Triton X-100 

to aid permeability (Sigma) then blocked with 10% (v/v) goat serum (Sigma) to avoid 

nonspecific binding. The primary antibodies, rabbit anti-Oct4 [(diluted 1:80 in bovine serum 

albumin (BSA) / azide solution; Santa Cruz Biotechnology, UK)], were incubated on an 

overnight at 4°C followed by washing with PBS. Fluorescein isothiocyanate (FITC)-

conjugated rabbit anti-goat immunoglobulin G (IgG) secondary antibody either from Jackson 

Immunoresearch Laboratory, USA or Santa Cruz Biotechnology antibodies were added at RT 

for 1 hour at a dilution of 104. Cell nucleus were also counterstained with DAPI (4', 6-

diamidino-2-phenylindole; Sigma) and observed under epifluorescence on a BX-60 

microscope (Olympus, Japan). Images were seized using a Zeiss Axiocam digital camera and 

were analysed using KS-300 software (Imaging Associates, Thame, UK). 
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Table 2: List of Antibodies for Immunocytochemistry Staining 

Antigen Primary Secondary Blocking Serum 

Oct-4 1:80 Rabbit polyclonal 

(Santa Cruz Biotech) 

1:80 goat anti-rabbit 

FITC (Santa Cruz 

Biotech) 

3% Normal goat serum 

(Santa Cruz Biotech) 

SSEA-1 1:200 Mouse 

monoclonal (Santa 

Cruz Biotech) 

1:200 Goat anti-mouse 

Texas red (Santa Cruz 

Biotech) 

3% Normal goat serum 

(Santa Cruz Biotech) 

 

2.6. Proteomics 

2.6.1. One Dimensional protein separation 

15-20 µg protein were amalgamated with 3 µl of NuPAGE LDS sample buffer (4X), 1 µl of 

NuPAGE reducing agent (10X) and deionised water up to 20 µl. Samples were subsequently 

boiled at 700C for 10 minutes on a heat block preceding to execute SDS poly acrylamide gel 

electrophoresis.  

 

2.6.2. Two Dimensional gel electrophoresis 

       2-D gel electrophoresis was executed with 11-cm IPG strips with a nonlinear gradient of 

pH ranging from 3–11 followed by overnight passive rehydration with 200 μl of rehydration 

solution [2 M thiourea, 7 M urea, 4% (w/v) CHAPS, 1% (w/v) ASB14, 0.3% (w/v) DTT, 0.5% 

(v/v) IPG buffer pH 3–10 NL)]. Protein samples were loaded exercising a cup-loading 

application and determined as follows: (1) 500 V, 1 s, gradient; (2) 500 V, 4 h, step and hold; 

(3) 1,000 V, 1 h, gradient; (4)1,000 V, 1 h, step and hold; (5) 3,500 V, 4 h, step and hold; (6) 
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8,000 V, 5 h, step and hold for a total of 70 kVh. Before commencement of second dimension 

separation, the focused strips were equilibrated for 15 minute in the equilibration buffer [50 

mM Tris-HCl pH 8.8, 6 M urea, 30% (v/v) glycerin, 2% (w/v) SDS, 20 mM DTT, 0.01% 

bromophenol blue; Sigma]. Subsequently, equilibrated strips were overlaid on to the Bis-Tris 

4–12% (w/v) polyacrylamide gel (Bio-Rad, UK) and run at 40 V for 10 min then at 150 V for 

50 min until the bromophenol blue dye reached to the bottom of the gels. Protein distribution 

was confirmed by staining the gels with a colloid coomassie blue (Instant Blue, Expedeon).  

 

2.6.3. Sypro-ruby stain 

      Sypro-ruby stain was performed for identification of protein. Gels were fixed overnight in 

50% methanol and 10% acetic acid followed by staining with Sypro Ruby staining (SYPRO 

RUBY Gel Satin, Invitrogen). Gels were de-stained in 10% methanol and 7% acetic acid for 

30 min on the shaker at RT. 

 

2.6.4. Difference gel electrophoresis (DIGE) 

      The pH of the samples were adjusted to pH 8.5 followed by labelling with Cy-dyes (CyDye 

DIGE Fluor, minimal labelling kit, 25−8010−65; GE Healthcare, UK) as per manufacturer’s 

guidelines. 50 μg of protein from each batch of mESCs culture in 2 dimension flask and mESCs 

encapsulated in alginate hydrogel protein samples were labelled with 400 pmol of Cy3 or Cy5 

dyes correspondingly in a mutual manner. The internal standards were pooled from the aliquots 

of all the samples were labelled with Cy2. This labelling reaction was performed on ice for 30 

minute and extinguished by the addition of 10 nmol of lysine. Subsequently, an equal volume 

of 2X sample buffer (2% w/v DTT, 2% v/v IPG buffer pH 3−10 NL) was further added to each 
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sample. Samples labelled with Cy2, Cy3 and Cy5 were pooled and harnessed by rehydrating 

overnight with 18 cm strip. 

Table 3: DIGE Experimental Design 

Culture Type Brief Description Experimental Group 

2D Protein extract labelled with 

Cy3(Red) 

Extract from cells grow in flat plastic 

culture flasks 

3D(static) Protein extract labelled 

withCy5(green) 

Extract from cells encapsulated in 

alginate hydrogel beads grown in static 

culture 

2D+3D(static) Internal Standard label with 

Cy2(yellow) 

Equal mixture of proteins from the 2D 

and 3D(static) cultures 

 

 

2.6.5. Alginate dissociation buffer 

       Media was removed and 500 beads were suspended in 30 ml buffer containing 15 mM 

Tris-HCl (pH 7.5), 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, and 250 mM sucrose. That result 

in to the floating of the beads. 10 ml of 200 mM citrate was supplemented to the buffer with 

through mixing for approximately 15 minutes or till beads starts dissolving. This mixture was 

then centrifuged for 10 min at 600 G and washed twice with PBS, This obtained cell pellet was 

then snap froze in liquid nitrogen and stored at - 80 for further analysis. 

2.6.6. Stable isotope labelling with amino acids in cell culture (SILAC) labelling of the 

cells 

      Mouse embryonic stem cells were cultured in Dulbecco/Vogt modified Eagle's minimal 

essential media [(DMEM); Thermo Fisher 88207)] supplemented with 15% knockout 

replacement serum (Invitrogen 10828-028) and 5% penicillin streptomycin antibiotics 

(Invitrogen 15140-122), 5% glutmax (Invitrogen 3505-038) and 5% MEM non-essential amino 

acids solution (Invitrogen 11140-050) for SILAC labelling. Isotopes of either light (Arg0, 
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Sigma, A5006; Lys0, Sigma, L5501) or heavy (Arg10, Cambridge Isotope Laboratories, 

CNLM-539; Lys8, Cambridge Isotope Laboratories CNLM-291) arginine and lysine were 

added in to achieve a concentration of 28 µg/ml for arginine and 49 µg/ml. For lysine 

(Arg0/Lys0: arginine and lysine with normal “light” carbon (12C) and nitrogen (14N); 

Arg10/Lys8: arginine and lysine derivatives with “heavy” carbons (13C) and nitrogen (15N).  

Table 4: SILAC experiment design (adaptive phase for 5 passages in mESCs 2D cultures) 

Adaptive Phase 

Culture 

Type 

SILAC label Adaption Experimental 

group 

Group 

Abbreviation 

2D 

 

Heavy Lys8/Arg10 Cells 

adapted 2D 

culture 

coated with 

1.1% 

gelatin in 

Heavy 

SILAC 

labelled for 

5 passages 

3 days in 2D 

1.1% gelatin 

coated flask 

2D 

0.798 mM L-

Lysine 2HCl  

(13C6, 15N2) 

CNLM-291 

0.398 mM L-

Arginine HCl  

(13C6, 15N4) 

CNLM-539 

Cell 

encapsulated in 

alginate hydrogel 

static culture 

3Ds 

Cells 

encapsulated in 

alginate HARV 

bioreactor 

3Dd 

2D  Light Lys0/Arg0 Cells 

adapted 2D 

culture 

coated with 

1.1% 

gelatin 

Light 

SILAC 

labelled for 

5 passages 

3 days in 2D 

1.1% gelatin 

coated flask 

2D 

0.798 mM L-

Lysine 

(Sigma, L5501) 

0.398mM L-

Arginine (Sigma, 

A5006) Cell 

encapsulated in 

alginate hydrogel 

static culture 

3Ds 

Cells 

encapsulated in 

alginate HARV 

bioreactor 

3Dd 

 

 

http://www.isotope.com/cil/products/displayproduct.cfm?prod_id=5096
http://www.isotope.com/cil/products/displayproduct.cfm?prod_id=5197
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Cells were established for full integration of the labels after five passages. Cell dissociation 

buffer (Invitrogen 13151-014) was applied for to avoid trace contamination of any amino acid. 

The cell culture media in either 2D or 3D was replaced every day with fresh media containing 

LIF (Table 4 and 5).   

 

Table 5: SILAC experiment design (experimental phase) 

Experimental phase 

LC/MSMS 

protein 

identification 

Group 

symbol 

Experimental 

group 

Brief Description 

First LC/MSMS 

group separated 

in 1D gel and 5 

gel slice 

digested 

2D/3Ds Equal mixture 

of SILAC 

labelled cells 

2D(heavy):3Ds(

Light) 

15% KOSR+1000units/ml LIF+SILAC media 

2D grow for 3 days on SILAC 

heavy labelled Arg10 and 

Lys8 in 1.1% coated gelatine 

culture flask 

3D (Static)  grow 

for 3 days in 

unlabelled 

SILAC Arg0 and 

Ly0 Media 

Second 

LC/MSMS 

group separated 

in 1D gel and 5 

gel slice 

digested 

3Ds/3Dd Equal mixture 

of SILAC 

labelled cells 

3D Static 

(heavy):3D 

dynamic (Light) 

15% KOSR+1000units/ml LIF+SILAC media 

3D (Static) grow for 3 days 

in SILAC heavy labelled 

Arg10 and Lys8 media 

3D (Dynamic) 

grow for 3 days in 

HARV bioreactor 

in SILAC 

unlabelled Arg0 

and Ly0 media 

Third 

LC/MSMS 

group separated 

in 1D gel and 5 

gel slice 

digested 

3Ds/2D Equal mixture 

of SILAC 

labelled cells 

3Dd (heavy):2D 

(Light) 

15% KOSR+1000units/ml LIF+SILAC media 

3D (Dynamic) grow for 3 

days in HARV bioreactor in 

SILAC heavy labelled Arg10 

and Lys8 media 

2D grow in 1.1% 

alginate coated 

flask in SILAC 

unlabelled Arg0 

and Ly0  media 
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2.6.7. Protein Extraction 

     Embryonic Stem cells were mixed with equal amount of heavy and light arginine and lysine 

derivatives to achieve a cell pellet of roughly 2 million cells. Cell pellets were then re-

suspended in cold RIPA lysis buffer (Sigma, R0278) followed by sonication at 20% amplitude 

for 3 second each for 1.5 min with 5 second interval and incubated on ice for 10 min. The 

lysates were then centrifuged for removal of debris. Protein quantification was then performed 

using BCA protein assay kit (Thermo Fisher). 25mg of protein of each sample were then 

subjected to 4–12% NuPage Novex Bis-Tris gel (Invitrogen, NP0321) in three separate lanes. 

Gels were stained using the colloidal coomassie blue staining (Invitrogen, LC6025) as per the 

manufacturer’s guidelines. The gels were sliced into 5 slices containing roughly the same 

protein amount followed by in-gel digestion was executed. 

 

2.6.8. BCA protein assay 

    Pierce TM BCA protein Assay was performed as pre-manufacturer instructions.   

 

2.6.9. Western blot 

     Cell lysis was performed and incubated on ice for 30 min followed by centrifugation at 

16000 g for 10 min at 4°C. The supernatant was isolated, and the colorimetric protein 

quantification was performed with BCA assay kit. 10 µg of protein were subjected to 10% SDS 

PAGE followed by electrophoretic transfer on to a polyvinylidene difluoride (PVDF) 

membrane. PVDF membranes were then probed with UCP2 Antibody (C-20; Santa Cruz) 

antibody at a dilution of 1:1000. A mouse anti goat IgG secondary antibody (Santa Cruz) 

conjugated with horseradish peroxidase (HRP) were used as dilution of 1:5000. The differential 
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expression of protein was visualized with using an electrochemiluminescence (ECL) detection 

system (Pierce, Rockford, IL, USA) (Table 6).  

Table 6: Western Blot Antibodies 

Primary Antibody Secondary Antibody Blocking Serum 

UCP2 antibody, goat polyclonal 

IgG 1:1000 (C-20 Santa Cruz) 

Mouse anti-goat IgG-HRP 

1:5000(SC-2354) 

5% Milk 

Akt antibody, rabbit 

monoclonal 1:1000 

(CellSignalling) 

Goat anti-rabbit IgG-HRP 

1:5000 

5% Milk 

 

 

2.7. Mass Spectrometry 

      The protein identification by mass spectrometry was performed by Dr. Benjamin Thomas 

and Dr. Svenja Hester, in the Central Proteomics Facility (CPF), Dunn School of Pathology, 

University of Oxford. 

2.7.1. Trypsin digestion 

    Solutions required: Solution B: 0.04 g ammonium bicarbonate (ammonium hydrogen 

carbonate) in 10 mL Milli-Q grade water and 10 mL HPLC grade acetonitrile. 25 mM 

ammonium bicarbonate: 0.04 g in 20 mL Milli-Q grade water. 10 mM DTT: 0.031 g in 20 mL 

of 25 mM ammonium bicarbonate solution. 55 mM Iodoacetamide: 0.2 g in 20 mL of 25 mM 

ammonium bicarbonate solution. Promega Sequencing Grade Modified Trypsin (catalogue 

number: V5111) was reconstituted in 1 vial trypsin to 100 µL Promega re-suspension buffer. 

5 µL aliquots were stored at -200C for further use that was activated by supplementing with 95 

µL of 25 mM ammonium bicarbonate. Extraction buffer was composed of 10 mL of Milli-Q 

grade water, 10 mL of acetonitrile and 20 µl of formic acid. 
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     Gel were cut with a clean scalpel on a clean surface and added into a tube with 1mm dice. 

Bands were washed with 100 µl of solution B two times for 30 minutes and supernatant was 

discarded. Gels were washed repeatedly until the blue colour disappeared. Afterwards, gels 

were washed in 100 µL of 100% acetonitrile for 10 minutes that will lead to the dehydration of 

gel pieces turning white. These dehydrated gels were then dried either in Speed Vac or at bench 

top for 10 minutes (all acetonitrile should have evaporated). 100 µL of 10 mM DTT was for 

30 minutes at 370C and supernatant was discarded followed by washing twice with 25 mM 

ammonium bicarbonate solution, and then in acetonitrile. Gels were then incubated in dark 

with 100 µL of 55 mM Iodoacetamide for 60 minutes and supernatant were discarded followed 

by two times washing with 100 µL of solution B for 10 minutes.  Gels were washed again in 

100 µL of 100% acetonitrile until turned white and dried either in Speed Vac or bench top for 

10 minutes. 20 µL of added to each tube and digested over-night at 370C. 1 µL of formic acid 

was added to inhibit the digestion with subsequent removal of peptides and transferred in to a 

clean tube. Each gel piece was incubated with 50 uL of extraction buffer and incubated for 30 

minutes. Finally, all the supernatants were removed and pooled for further analysis.  

 

2.7.2. Mass Spec Method –Q Exactive – 50cm EASY-spray 

      Samples were investigated on an Ultimate 3000 RSLCnano HPLC (Dionex, Camberley, 

UK) system connected to a Q Exactive Orbitrap mass spectrometer (Thermo Electron, Hemel 

Hempstead, UK). Samples were determined on EASY-Spray column with a 50 cm X 75 

micrometre diameter (Thermo, Hemel Hempstead) paired to a µ-Guard column of 1 mm long 

and with 300 micrometre inner diameter saturated with C18 PepMap phase (Thermo, Hemel 

Hempstead). Peptides were inserted in the guard column while maintaining the flow rate of 10 

µl min-1 and desalted for on the trap for 300 seconds. Subsequently, trap was substituted in-

line with the analytical column and the peptides were resolved for 120 minute at a gradient 
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flow-rate of 300nL min-1. Mass spectrometry was performed in a “Top 10” data dependent 

acquiring mode. Precursor scans were executed in the Orbitrap with resolving power of 60,000 

at m/z 200 followed by the identification of ten most intense precursor ions with an aid of 

quadruple which were then fragmented by HCD at a 30% of normalised collision energy 3 m/z 

were set as a threshold for quadruple isolation. Ions at Charge state of ≥+1 were excluded from 

selection for fragmentation analyses. Dynamic exclusion was permitted for 40s.  

 

2.7.3. Computational Interpretation of Peptide Mass Spectra 

       Spectra were searched against the protein sequence and decoy databases described above 

using S MASCOT (Proteome Discoverer 1.3, Thermo Scientific). Fully tryptic peptides with 

up to 2 missed cleavages were considered. Mass tolerance filters of 5 ppm (MS1) and 0.5 Da 

(MS2) were applied. Static cysteine modifications of either carbamidomethylation (IAM-

alkylation, +57.0215 Da) or ethanolyl (IE-alkylation, +44.0262 Da) were included on the basis 

of which modifying reagent was used. Oxidation of methionine (+15.9949 Da) was allowed as 

a dynamic modification. PSMs were filtered using Percolator (implemented in Proteome 

Discoverer) to control false discovery rates (FDR) to <1% as determined using a reverse 

sequence decoy database. Based on our experimental design, three-separated MS files were 

generated from each group of comparison. First MS files contained protein SILAC ratio of 2D 

cells labelled with heavy isotopes to 3D static labelled with lights arginine and lysine. The 

second MS files provided proteins identification ration of 3D dynamic (heavy) to 2D culture 

(light) and the final data set belongs to SILAC ratio difference between 3D static (light Arg, 

Lys) compared to 3D dynamic(heavy Arg, Lys). Filtering the data based on the number of 

observed peptides provided a list of 1986 proteins that passed the detection threshold. This 

conservative setting with a minimum of three unique peptides per protein was used for 

identification. Further, annotation of proteins from the cellular components Gene Ontology 
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category was done using the ProteinCentre website (ProteinCenter software available from 

Thermo SCIENTIFIC). 

 

2.7.4. Annotation 

The combined set of hits from the 2D vs 3D methods was used to perform functional 

enrichment analysis in DAVID (Database for functional annotation analysis; 

www.david.abcc.ncifcrf.gov last updated 17/08/2014), 

 

2.8. Transmission electron microscopy (TEM) 

       Either cell suspensions or beads were subjected to washing in buffer containing 0.1 M 

phosphate and 0.1 M sucrose and cleansed twice in PBS. Samples were then fixed in 3% (v/v) 

glutaraldehyde in cacodylate buffer at pH 7.2 for half an hour. Further, cell samples were 

subjected to fixation in 1% (v/v) of osmium tetroxide made up in 0.1M cacodylate buffer and 

removed to 50% (v/v) ethanol. Cell samples were then centrifuged and the subsequent cell 

pellets were sheathed in molten agar. These agar blocks were then dehydrated and insinuated 

with Araldite epoxy resin (Taab Laboratories Ltd, Reading, UK) and implanted in moulds. The 

resin was then polymerized at 60oC for one day. Sectioning of polymerised resin either as 

semi-thin (1µm) or ultra-thin (60-80 nm) were implemented with a Reichert-Jung Ultracut E 

ultra-microtome (Leica Microsystems Nussloch GmbH Wetzlar, Germany). These semi-thin 

sections of selected areas of interest were visualised on light microscope, and stained with 

toluidine blue [0.8% (v/v) Agar Scientific, Stansted, UK] in borax91  (0.8% (w/v)) with 

pyronin Y [0.16% (w/v)]. While, the ultra-thin sections were stained in uranyl acetate made in 

ethanol (50% (v/v)), and then in Reynold's lead citrate. Philips CM10 transmission electron 

microscope (Amsterdam, The Netherlands) was used for the visualization of ultrathin sections. 
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2.9. Seahorse 

       Cells were plated in cell culture grade plastics and switched to non-buffered DMEM 

supplemented with metabolic substrates such as glucose, glutamine and fatty acids. Respiration 

was then measured with under basal control conditions and after the addition of oligomycin 

(ATP synthase inhibitor), FCCP for assessment of maximal respiratory capacity, and 

subsequently in Rotenone / Antimycin A (abates mitochondrial respiration completely). These 

experiments were conducted using a XF cell Mito stress test kit (XF24 Extracellular Flux 

Analyzer Seahorse Bioscience). 

 

2.9.1. Mitochondrial respiration assay 

      XF24 extracellular flux analyser (Seahorse Bioscience) were utilised for oxygen 

consumption rates (OCR) and extracellular acidifications rates (ECAR). Cells were briefly 

plated into XF24 cell culture microplate. Depending on cell titration experiments cells were 

sustained for 4 hours. OCR plates were stabilised in the absence of CO2 prior to the experiment 

for 1 h in non-buffered XF assay media added with glucose (25 mM), glutaMAX (2 mM), 1X 

nonessential amino acids, sodium pyruvate (1 mM), and  FBS (1%). ECAR plates were 

stabilised in non-buffered DMEM added with NaCl (143 mM), phenol red (3 mg/l), and L-

glutamine (2 mM). Glycolytic activities were cross-examined by consecutive addition of 10 

mM glucose , 0.5 µg/ml oligomycin, and 100 mM 2-deoxy-D-glucose for estimation of basal 

glycolytic rate, glycolytic capacity (in the presence of oligomycin), and glycolytic reserve. 

Glycolytic reserve was calculated by subtracting the basal rate by glycolytic capacity. 

Mitochondrial activities were probed thorough subsequent addition of 0.5 μg ml-1 oligomycin, 

1 μM of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and 0.5 μM of 
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rotenone for estimation of rates of basal respiration, oxidative capacity (respiration in presence 

of FCCP), and oxidative reserve (i.e. oxidative capacity subtracted with basal respiration). 

 

2.10. Statistical analysis 

      Quantitative analysis measured in triplicate and error bars on graphs is standard deviation 

(SD) of the mean. The comparison between groups was made using analysis of variance 

(ANOVA). The significant level is p<0.05. 
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CHAPTER 3: Effect of 3D Culture on Gene Expression 
 

3. Introduction 
 

      Most of our understanding of biological stem cell processes has been largely obtained from 

monolayer cultures on (2D) plates with >1 GPa elastic modulus polystyrene. Cells in vivo exist 

embedded in a complex environment that involves ECM, mechanical cues, combinations of 

growth factors and cytokines. The plastic surface of tissue culture lacks the structural, 

mechanical and biochemical cues that provide ESCs with some resemblance of their in vivo 

environment (Keung et al., 2011b). Using various natural or synthetic biomaterials, or 

encapsulating 3D constructs, not only help avoid extrinsic factors supplement, it may mimic as 

well an environment similar to that in vivo ((Chowdhury et al., 2010a) (Randle et al., 2007); 

(Hwang et al., 2009).  

What a 3D substrate provides to cells that distinguishes it from 2D sitting always simplified 

as a matter of dimensional difference, ignoring crucial factors such as diffusion. For instance, 

MDCK cells, which phosphorylate ERK by hepatocyte growth factor (HGF), respond 

differentially to soluble HGF in a micro-scale gel compared with mm-scale gel confirming 

sensitivity of cells to diffusion rate or concentration gradients (Baker and Chen, 2012). Mass 

transport is a limiting factor for 3D culture in a static condition. This limitation is reduced when 

encapsulated cells are seeded into a dynamic bioreactor with a ‘well mixed’ motion ((Randle 

et al., 2007) (Hwang et al., 2009). For instance, a rotary wall vessel (RWV) bioreactor provides 

alginate hydrogel with a constant fall motion. This bioreactor is an example of a dynamic 

motion culture that aids mass transfer with minimal shear stress. Using a high aspect ratio 

vessel (HARV) increases passive diffusion transport by 100 times in comparison with RWV, 

and it improves cell densities to approximately three million cells/ml, due to an absence of 

shear stress and improved passive mass transport (Randle et al., 2007). 
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Previously in our group, a 3D culture-enabled expansion of ESCs for 200 days in the 

absence of feeder cells and without sub-passaging. In addition, it was shown that hydrogel 

beads encapsulated murine embryonic stem cells (mESCs) grown in a dynamic bioreactor-

enhanced LIF/STAT3 signaling by up-regulating LIF receptor expression (LIFR), which 

promotes proliferation and self-renewal, compared with a similar configuration in a static 

culture (Yeo et al., 2013). In this chapter, we will discuss the effects of 3D culture either static 

or dynamic on mESC self-renewal, proliferation, viability and metabolic parameters with or 

without serum conditions. 

 

3.1. Aim 
 

     The aim of this chapter is to assess the effects of 3D mESCs culture on cell viability, 

proliferation, metabolic profiles, self-renewal, differentiation and morphology.  

 

3.1.1. Objectives 

 

1. Optimise a suitable 3D environment to maintain mESCs.  

2. Assess the effects of different feeding regimes, serum or no serum, on cell proliferation and 

metabolic profiles 

3. Determine the effects of 3D static/dynamic condition on the growth kinetics, pluripotency 

level, and metabolic parameters. 
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3.1.2. Experimental methods 

 

       The mESCs were transferred from adherent 2D cells to alginate beads and the effect of 3D 

culture on self-renewal was compared to 2D culture (Fig. 10). The mESCs in 3D hydrogel were 

maintained either using a dynamic bioreactor or in static culture up to 18 days. The medium 

was collected every 24 hours in order to analyse metabolic parameters. In addition, the number 

of viable cells was indirectly estimated at different time points based on pre-measured relative 

cell number using standard curves for both MTS(colorimetric assay) and DNA quantification 

assays (fluorescence units). (For standard curve please refer to appendix figure number 48 and 

49). 
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Figure 10 Summery of Experimental plan for Comparison of Serum, Serum Free (Both Static 

and Dynamic) 

Culture period time is 3 days for 2D culture, 18 days for 3D static (both with serum and without 

serum) and dynamic (without serum). Sample collected at Day 3 for ICC, Q-PCR, and light 

microscopic micrograph to compared 2D culture with 3D static and dynamic without serum. 

In addition, Q-PCR comparison between 3D static and dynamic culture was done at day 9 and 

18. Daily sample obtained for metabolic analysis (glucose, lactate, glutamate, ammonia) for 

3D static (with or without serum) and dynamic culture. Growth kinetics comparison between 

3D static with and without serum was made at day 5, 7, and 11 respectively.  
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3.2. Results 
 

3.2.1. Examining the effect of absence of serum on cell viability 

 

       In order to assess the effect of presence/absence of serum on mESCs behaviour, the cells 

were encapsulated in 3D hydrogel and maintained in a static culture in media with FBS (Foetal 

bovine serum) or without using knockout replacement serum (KOSR). The growth kinetics 

were shown to be similar between serum containing and not containing 3D static cultures until 

day 7, where declining kinetics observed in serum culture compared with the ability to maintain 

maximal cell numbers reach to 40,000 per bead in serum-free by day 11 (Fig. 11, i , iii & iii).  
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Figure 11 Growth kinetics comparison of static without serum (blue), static with serum (blue) 

is made at different days of the culture 

i) Growth Kinetics using DNA quantification. 

ii) Micrographic images of both cultures from day 1 to 5 (static with or without serum). 

iii)  Illustrate difference in cell viability and growth improvement in particulate from 

day 9 to 11. 
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      Analysing the accumulated metabolites in the culture medium may reveal factors that were 

likely to cause these differences in cell proliferation between 3D static with or without serum. 

The metabolic parameters of the culture media were analysed every 24 hours to assess the 

effect of the absence of serum on cell viability (Fig. 13). 

 

Figure 12 3D static with and without Serum Metabolic Profile 

 Analysis of i) glucose, ii) lactate, iii) glutamate, and iv) ammonia. The values are means ± 

SD for N=3 (*p<0.01). 
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       The glucose (main nutrient) in serum or serum free media was supplied at 25 mM in 

DMEM whereas glutamine was 5 mM concentration. The glucose and glutamine consumption 

showed no significant difference between the two sets (Fig. 12, i, iii). The glucose metabolism 

product is primarily lactate whereas glutamate consumption produces ammonia. The ammonia 

concentration showed no difference between the serum and the serum free media (Fig. 12, iv). 

The level of ammonia did not reach 4 mM until day 11 in both cultures where 6 mM is reported 

to be toxic for mESCs (Chaudhry et al., 2009).   

       In contrast, lactate was observed in high accumulations in 3D static cultures in the presence 

of serum compared with serum-free medium (Fig. 12, ii). The lactate level was significantly 

higher, reaching to 25 mM in 3D static culture in the presence of serum at day 15 compared to 

cells maintained in the absence of serum.  

      It is established that a lactate level above 16 mM leads to a decrease in mESCs growth of 

more than three-fold (Ouyang et al., 2007). Unlike ammonia, which showed no differences 

between the two sets, the lactate accumulation can likely be destructive to proliferation in 

serum culture. Hence, reducing the glucose supplement by half leads to an increase in cell 

viability by 40 % due to a reduction in lactate accumulation (Chen et al., 2010).  

 

3.2.2. Effect of an immediate transfer of encapsulated cells to a HARV bioreactor on cell 

proliferation /viability  

 

       Proliferation, viability and metabolic parameters were measured at different time points to 

compare cells growing on 3D dynamic to cells in 3D static condition. Cell viability was 

measured using MTS assay, where viable cells convert tetrazolium salts to a formazan in 

metabolically active cells. After four hours, the first MTS measurements showed about double 

the number of cells in both condition from the initial seeding densities until after 24 hours of 
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encapsulation when the viability declined to the level of the initial seeding in dynamic culture 

(Fig.13, i).  

 

Figure 13 Cells viability of mESCs grown in 3D dynamic culture 

i) Cells viability measure using MTS assay at different time point. The values are 

means ± SD for N=3 (*p<0.01). 

ii) Micrograph of beads at different time point and the last image showed confocal 

graph of beads at day 18 where green color detect cell viability using Live/Dead 

assay. 
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        The mESCs were rapidly divided in averages of four to five hours (Wang et al., 2011). In 

addition, the frequency of cell division can be size-dependent, as rounded small cells enter the 

cell cycle frequently (Tzur et al., 2009). The micrograph shows encapsulated cells are small 

and rounded in structure compared to dish-adherent cells (Fig. 13, ii). This may contribute to 

the increment of cell division and proliferation. However after 72 hours, cell viability decreased 

in both 3D static and dynamic (Fig. 14, i). Our growth curves’ kinetics share a similar pattern 

with the number of alginate-encapsulated SC studies that show an immediate drop in cell 

growth followed by viability recovery (Bertolotti et al., 2009, Wang et al., 2009d, Chayosumrit 

et al., 2010, Penolazzi et al., 2010). This decline in cell viability suggests the immediate 

response of SCs to changes in the surrounding environments is by triggering cell death.   

 

      Combining live/dead assays and confocal microscopy enabled the acquisition of in-depth 

images of cell viability in the different layers of the beads: top, middle and bottom. The cells 

in the middle of the alginate beads showed a higher prevalence of cell death. This may be 

associated with the decrease in the cells’ oxygenation. Recently, O2 measurements of the 

scaffold core have reached to 0% or 3% when fresh media were supplied to the cells. However, 

the oxygen level was almost zero at day 7. In addition, hepatocytes maintained in alginate beads 

showed signs of necrosis at the middle of the scaffolds, compared to viable cells near the 

surface (Yu et al., 2014). Similar to this, the live/dead assays showed higher cell death in the 

middle of hydrogel compared to cells on the outside, where viability is higher. The decrease in 

oxygenation in 3D constructs was associated mostly with static culture. However, even in 

dynamic cultures with enhanced mass transfer, cell viability was low. Similarly, the number of 

cells using DNA quantification assays increased significantly from Day 3 of the culture (Fig.14, 

i), suggesting an adaptive response to changes in the surrounding environments. 
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Figure 14 Growth Kinetics and Cell Viability of 3D without Serum Dynamic and Static  

i) Growth kinetics, ii) live/dead assay at day 3 both static and dynamic were number of dead 

cells (red) increased similar like growth kinetics .In iv and v) showed viability at top, middle 

and bottom of the beads at day 9 for both culture.  
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      Metabolic analysis of glucose, lactate, glutamate, ammonium, growth kinetics and 

live/dead assays at day 3, both static and dynamic, showed the number of dead cells (red) 

increase similarly like growth kinetics (Fig. 14, ii-iii). In 3D dynamic and static, viability was 

shown at the top, middle and bottom of the beads at day 9 for both cultures. (See Fig. 14, iv-v 

for a micrographic of dynamic and static culture). 

        The growth kinetics was also assisted using glucose consumption and lactate production 

measurements. Neither glucose nor glutamine was totally exhausted from the maintenance 

medium throughout the culture period because daily feeding was provided (Fig. 15 i-iii-iv). 

Lactate accumulated above 15 mM at Day 15, whereas at earlier times the lactate was almost 

undetectable, and this may be due to the low sensitivity of instruments used for this assay (Fig. 

15, ii). However, accumulation of lactate as 16 mM has a significant effect on mESC self-

renewal and expansion (Ouyang et al., 2007). In spite of Ouyang and colleagues’ result, their 

culture media was replenished every three days, exposing the mESCs to continuous lactate-

inhibitory effects, whereas in this study the media was changed daily. 
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Figure 15 Metabolic profile of 3D static and dynamic culture 

Analysis of i) glucose, ii) lactate, iii) glutamate, and iv) ammonia. The values are means ± SD 

for N=3 (*p<0.01). 

 

3.2.3. Self-renewal or differentiation? 

 

       The use of immunocytochemistry (ICC) confirmed the presence of Oct-4 (nuclear) and 

SSEA1 (cell surface-marker) positive colonies in the three cultures (Fig. 16, b-d). However, 

ICC is a qualitative assay and both markers used may be associated as well with early 

differentiation, such as primed stem cells and PGCs, which both possess SSEA1+/Oct-4+ 
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colonies (Ouyang et al., 2007). Therefore, relative quantification of gene expression was done 

to assess the differences between different cultures. As shown in Fig. 16a, the Oct-4, Nanog 

and c-Myc expressions were significantly down-regulated on 3D static culture compared with 

2D or 3D dynamic respectively. Consequently, FGF4 and UTF1, which are downstream targets 

for Oct-4, showed an increase in expression on 3D dynamic culture. Consistency with that 

Rex1, associated with ICM (Zfp42), was expressed to a higher extent in 3D dynamic cultures. 

The Rex1 down-regulation is an early marker of ESCs differentiation. Rex1 deletion contributes 

to impaired embryo phenotypes (Chen et al., 2010) and the addition of Rex1 to reprogramming 

cocktails has significantly improved the efficiency of induced pluripotent cells (Wang et al., 

2011).  
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Figure 16 Day 3 mRNA Expression of Differentiation and Pluripotency Markers of 3D (both 

static and dynamic) versus 2Dcultures 

a) Relative gene expression analysis of pluripotency associated genes (c-Myc, Oct4, 

Rex1, Nanog, Sox2, Utf1, FGF4, E-cadherin) and lineage early differentiation 

markers(FGF5, Nestin, N-cadherin, T (Brachyury)) for dynamic and static cultures. 

Relative gene expression for both 3D static and dynamic culture is normalized against 

2D cultures and β-actin gene expression. Values are means ± SD, N=3 (*: p<0.05) 

b) Immunocytochemistry of Oct4 (green), SSEA1 (red), and nucleus (blue) for b) 2D 

culture, c) 3D static, and d) 3D dynamic.   
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       In contrast to dynamic culture, gene profiles of 3D static culture suggest a decrease in self-

renewal. Yet, there was no pronounced differentiation towards either mesoderm (Brachyury) 

or ectoderm linages (Nestin). However, FGF5, an early-stage differentiation marker, showed 

a distinct down-regulation on 3D dynamic culture compared to either 2D or 3D static culture. 

FGF5 can also be considered an epiblast marker, and its expression indicates transition of ESCs 

from naive to primed state (Yu et al., 2014) (Vallier et al., 2009). FGF5 in 3D dynamic culture 

was correlated with high Rex1 expression. This may suggest a capability of dynamic culture in 

retaining the naive state of ESCs. In contrast, Toh and Voldman showed that dynamic 

bioreactors enhance FGF5 expression, compared with self-renewing static culture (Toh and 

Voldman, 2011). This variation may be due to lower shear stress in the HARV bioreactor we 

used in this study compared to that used in their work. 

 

      Other self-renewal markers, which showed differences in expression between modes of 

culture, were BMP4 and Nodal. Both BMP4 and Nodal ligands cooperate to support self-

renewal in ESCs, while BMP4 and Nodal activation on epiblast stem cells (EpiSC) induce cell 

differentiation (Vallier et al., 2009, Galvin et al., 2010). However, a lower-level of BMP4 

expression in dynamic culture (Fig.17, c) had no distinct role with the up-regulation of 

pluripotency markers, owing to BMP4’s role in promoting lineage commitment rather than 

self-renewal (Fei et al., 2010, Zhang et al., 2010).  

 

       In contrast, Nodal responsible for neuroectodermal inhibition was highly expressed in 3D 

dynamic culture. However, if the activation of Nodal induces Smad2/3 activation, as a 

downstream target, ESCs will transit to EpiSCs (Greber et al., 2010). Both Smad2 and Smad3 

have shown no significant change in the three culture modes (Fig. 17, c).  
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      Consistent with pluripotency gene profile, differentiation markers such as Brachyury (T), a 

mesoderm early differentiation marker, showed significant up-regulation in 2D culture, 

whereas there was no pronounced expression of the early neuroectodermal gene Nestin in all 

three culture modes. Consequently, Sox2, a self-renewal and early neuroectodermal progenitor 

marker, showed no difference between the three culture conditions. 

 

 

Figure 17 TGFβ signalling of mESCs and mRNA Expression 

c) Relative gene expression of Bmp4, Nodal, and Smad2/3. Data of 3D static and 

dynamic culture were normalised to 2D and β-actin expression. Values are means ± 

SD, N=3 (*: p<0.05).  

d) Schematic illustrate Nodal regulation of mESCs fate. 
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3.2.4. The epithelial mesenchymal transition 

 

       Changes in cell morphology from epithelial-flattened adherent cells to more mesenchymal 

phenotypes with rounded shapes are associated with 3D constructs and cancer spheroid 

formation (Chu et al., 2009, Kuo et al., 2012, Kolind et al., 2012). This effect is known as the 

epithelial mesenchymal transition (EMT), and their plasticity is defined as the ability to switch 

to reverse mesenchymal epithelial transition (MET). EMT occurs in early development, and 

also in cancer metastasis, and is characterised by the loss of epithelial phenotype, E-cadherin 

suppression, increasing the expression of the mesenchymal markers Snail, Twist, Slug and N-

cadherin (Zhang et al., 2010).  

 

     Alteration in cellular morphology may be introduced due to the transfer of cells from 2D 

plastic plates to 3D soft matrices (Fig. 18, c). Monitoring EMT gene expression markers 

showed no significant change in Twist and Slug (Snai2) markers in both 3D cultures (dynamic 

and static) at day 3 of encapsulation (Fig. 18, a). Slug (Snai2) expression varies in metastasis 

or in normal EMT cell physiology during development (Chu et al., 2009). Conversely, the up-

regulation of Twist in 2D culture can be linked as well to mesoderm development in relation to 

highly expressed Brachyury (Kolind et al., 2012). 

 

      In addition, Snail (Snai1) showed high expression in 3D dynamic culture without a 

repressive effect on E-cadherin (Cdh1) or the stimulation of N-cadherin (Cdh2). The up-

regulation of Cdh1 and down-regulation of Cdh2 mRNA expression suggested a distinct role 

of Snail in this context (Fig. 18, b). Therefore, Snail’s high expression in 3D dynamic culture 

may enhance cell survival later on the culture period owing to Snail’s role in programmed cell 

death resistance (Zhou et al., 2014). 
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Figure 18 Epithelial-Mesenchymal Transition Progression from Monolayer to 3D Constructs 

a) Relative gene expression of mesoderm markers (n-cadherin, twist, slug (snai2) and 

Brachyury) normalised to 2D culture and β-actin expression.  

b) Snail expression showed 2 fold increases in dynamic culture. 

c) Schematic illustrate change in cell morphology during transferring mESCs from 

adherent monolayer culture (2D) to encapsulated alginate beads. 

 

       Consistent with this observation, the Snail expression at day 9 showed up-regulation in 

both 3D static (1.5-fold) and dynamic culture (1-fold) in correlation with increases in cell 

proliferation (Fig. 19, b). Both Cdh2 and Cdh1 (direct Snai1 target) were up-regulated in 3D 

static culture at Day 9 (Fig. 19, a). In contrast, in 3D dynamic culture, Cdh2 was down-

regulated while Cdh1 was up-regulated two-fold (Fig. 19, a). Cdh1 plays an essential role in 

ESCs self-renewal and their survival (Chowdhury et al., 2010a). The cells in dynamic condition 
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favour Cdh1 and this may be due to its role in cell-ECM interactions and mechanosensors 

(Moledina et al., 2012a).  

 

Figure 19  Snail Reciprocal Regulation of N-cadherin and E-cadherin 

a) Loss of E-cadherin and up-regulation of N-cadherin expression is significance for EMT 

process. EMT regulate by Snail.  Relative gene expression of Snail, N-cadherin, and E-

cadherin at day 1, and 3 and 9 of both static and dynamic culture normalised against 

2D culture and β-actin expression.  

b) Steady increase of Snail expression from first day of encapsulation throughout the 

culture period for both 3D static and dynamic cultures. 
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 At an adherent junction, Cdh1 is found to promote interaction between apical and basal 

cytoskeleton (Chowdhury et al., 2010a). The E-cadherin can also direct cells’ morphology 

towards fluid flow (durotaxis), or ‘directed cell movement via mechanical cues’ (Chang et al., 

2010b).  

 

       Snail shows a steady increase in expression in 3D dynamic culture and this may be 

associated with the increase in cell number. However, Snail shows a more-than-ten-fold 

increase in 3D static culture at Day 18. Recently (Fig. 19, b), Snail has been suggested to 

promote Oct-4 expression, and its silencing leads to down-regulation of the self-renewal 

marker (Zhou et al., 2014). This finding may contribute to the increment of Oct-4 expression 

in both 3D cultures now discussed in Section 3.2.5. 

 

3.2.5. The effect of prolonged adaption on Oct-4 expression 

 

     The expression of Oct-4 was monitored at different points of cell adaption in 3D culture. 

Interestingly, the Oct-4 expression at different days (Day 3, Day 9 and Day 18) and culture 

modes (static or dynamic) was significantly changed (Fig. 20). As early as three days in 3D 

culture, the cells in 3D static culture had reduced Oct-4 expression, whereas 3D dynamic 

cultures showed Oct-4 up-regulation in comparison to 2D cultures. At long adaption times (18 

days), the expression of Oct-4 was four-fold higher in dynamic compared to 3D static culture. 

There was steady increase on Oct-4 expression during the culture period in both 3D conditions 

suggesting enhancement of self-renewal. 
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Figure 20 Prolonged 3D Culture Adaption Effect on Oct-4 Expression 

Relative gene expression of Oct-4 at prolonged adaption of 3D static and dynamic culture 

normalised against 2D culture and β-actin expression. Values are means ± SD, N=3 (*: p<0.05). 
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3.3. Discussion 
 

       The interactions of stem cells with their environment in terms of external stimuli that are 

determinates for cell fate are little understood. The metabolic parameter measurement reveals 

that both glucose and glutamine were not depleted from the culture, while lactate and ammonia 

were in concentrations that affect mESCs viability in serum contained medium . For instance, 

lactate accumulation beyond 16 mM can have an inhibitory effect on both cell proliferation 

and pluripotency (Ouyang et al., 2007). Similarly, the correlation between lactate accumulation 

and self-renewal exit has been established by previous work in our group. Yeo et al. (2013) 

have shown that encapsulated mESCs in static conditions are unable to expand as viable or 

pluripotent cells. These findings suggest that accumulation of lactate above 25 mM induces 

cell differentiation in alginate-encapsulated mESCs (Yeo et al., 2013). In contrast, our results 

show the capability of alginate beads in the absence of serum in both dynamic and static 

condition to expand pluripotent and viable stem cells. This could be due to avoiding serum in 

our encapsulated mESCs. By using replacement serum (KORS), lactate accumulation 

effectively reduces to 14 mM compared with 25 mM in serum-based 3D culture. Furthermore, 

KORS in our work enables self-renewal given to high Oct-4 expression and enhanced cells 

viability. This may involve a difference in growth factor ingredients as serum with LIF is found 

to promote spontaneous mESCs differentiation.  

 

        However, during the early days of culture, Rex1, a sensitive marker for pluripotency, was 

highly expressed in 3D dynamic, compared to 2D or 3D static cultures. This data suggests 

enhancement of self-renewal in dynamic culture. Rex1 recognises as highly specific inner cell 

mass (blastocyst stage). Positively expressed, Rex1 is highly associated with self-renewal of 

mESCs, and its knockouts result in loss of pluripotency (Son et al., 2013). In addition to Rex1, 

other self-renewal markers, such as Nanog and Oct-4, are up-regulated, whereas an early 
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differentiation marker, FGF5, was down-regulated. Oct-4 is a master transcriptional regulator 

for the maintenance of naive pluripotency and has an essential role in embryonic development. 

The expression of Oct-4 is detected in the early stages of embryo development, including 

oocytes, blastomeres, inner cell mass (ICM) and also during post-implantation of the epiblast 

stage and in germ cells. The Oct-4 knockout is lethal for pre-implantation in mouse embryos 

due to the failure of pluripotent ICM formation. Moreover, inhibition of Oct-4 leads to the loss 

of ESC self-renewal as well as its overexpression (Wilson et al., 2014).  

       Interestingly, Oct-4 expression was found to be at integrin-mediated focal adhesions. 

Therefore, growing mESCs on rigid surfaces inhibits Oct-4 expression despite the presence of 

LIF (Moledina et al., 2012b). In contrast, using soft substrates withstands self-renewal for more 

than five days without LIF supplements (Chowdhury et al., 2010a). However, arguing that the 

hydrogel soft substrate contributes to self-renewal can be disputed by the failure of 3D static 

culture to promote Oct-4 expression in a similar manner to dynamic sitting. Therefore, the 

presence of hydrodynamic flow could be the enhancer. Recently, Oct-4 expression has been 

reported to be enhanced two-fold by fluid flow in a microchip independent of shear stress. 

Thus, up-regulation of pluripotency master genes may be due to the presence of the freefall 

environment in the HARV bioreactor. Simulated microgravity is found to be sufficient to 

sustain mESCs pluripotency in the absence of LIF (Kawahara et al., 2009). This is further 

supported by a recently published paper that showed that 3D dynamic encapsulation helps 

fibroblast reprogramming and the acquisition of ‘stemness’ without transcription factors 

transition (Han et al., 2013). 

 

       After extending encapsulated cells growing on 3D cultures without passaging, the Oct-4 

high expression was still sustained, despite an increase in cell density. The Oct-4 expression is 

found to be regulated by Rho/ROCK (Rho-associated kinase) signalling that promotes self-



94 | P a g e  
© Imperial College 2015 

renewal in a cell-density dependent manner. Limiting the Rho/ROCK pathway by reducing 

cell-cell interaction (contact inhibition ROCK1 and ROCK2) enhances sensitivity to LIF 

signalling at low cell density (Chang et al., 2010a). In contrast to this finding, high cell density 

in static and dynamic 3D cultures promotes higher Oct-4 expression, compared to the early 

days of the culture where cell density is low. This may be due to differences in cell growth 

dimensions and morphology. In conventional monolayer culture, the cells are grown in the 

horizontal plane, not in a vertical dimension. Thus, LIF diffuses freely in the monolayer of cells 

and may rapidly equilibrate, whereas the presence of 3D substrate and deposition of ECM 

slows down diffusion. Using a dynamic bioreactor was found to enhance LIF delivery to the 

cells and overcome the inheritance problem of cell density (Moledina et al., 2012b). Similarly, 

measurement of LIF receptor expression shows up-regulation in dynamic culture that enhances 

LIF/STAT3 phosphorylation activity to promote self-renewal. 

      

        In conclusion, the 3D system combined alginate beads and HARV bioreactor enabled the 

expansion of viable pluripotent mESCs using serum-free media. Investigating signalling 

pathways that underlie self-renewal enhancement in next chapters will expand our view in in-

vitro pluripotency.  
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CHAPTER4: Different Proteomics Approaches to Extract &Identify 

Proteins from 3D cultures 
 

4.  Introduction 
 

      The plastic surface of tissue culture lacks the structural, mechanical and biochemical cues 

that provide ESC with some resemblance to their in vivo environment (Lund et al., 2009). The 

use of natural or synthetic 3D constructs may mimic an environment similar to that in vivo 

((Chowdhury et al., 2010a), (Randle et al., 2007), (Hwang et al., 2009)).  

 

    However, switching culture conditions from 2D to 3D has been associated with dramatic 

molecular alterations. There has been a lack of proteomics studies focusing on molecular 

changes arising from the transition of adherent ESC to suspension culture (Konze et al., 2014). 

Conversely, often studies examining the mechanisms of 2D versus 3D culture rely on gene 

expression analyses either using transcription profile or arrays (Boutilier et al., 2005, Bradley 

et al., 1984). The instability of mRNA, differential translational rates of expressed genes, and 

protein degradation limit transcription profiling. Additionally, expression of some proteins and 

their respective mRNA level has been poorly correlated. Undeniably, proteomic analysis can 

obtain coverage of various translated proteins and provide critical information about the post-

translational modifications and protein localisation. Thus, detailed characterisation with 

techniques such as 2D gel electrophoresis is required to identify the signals that led to these 

molecular changes. Proteomics remain as a crucial technique to reveal and gain insight in 

developmental biology (Patterson and Aebersold, 2003).  
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4.1. Overall Aim 

 

In this chapter I will focus on the optimisation of protocols for extraction and solubilisation of 

proteins from alginate hydrogel beads utilising different approaches. These comprise 

precipitation, desalting, 1D and 2-D gel electrophoresis and mass spectrometry (MS).  

 

4.1.1. Specific Objectives 

 

1. Comparison of different extraction protocol. 

2. Determination of the most efficient 3D culture sample preparation workflows based 

on protein yields and purity. 

4.2.  Results 
 

4.2.1. In situ extraction 

4.2.1.1. 16-BAC PAGE electrophoresis  

          The cationic detergent 16-benzyldimethyl-n-hexadacylammonium chloride (16-BAC) 

solubilises and positively charges proteins (Hartinger et al., 1996). Based on this assumption 

protein complexes should enter the gel towards the cathode whereas polysaccharides will 

migrate to the opposite direction separating it from negatively charged alginate. Cells without 

beads were used as negative control whereas non-capsulated cells were used as positive control. 

Cells with alginate were extracted using 16-BAC extraction buffer. The solution was 

completely homogenised using sonication avoiding the heating due to the presence of urea in 

the extraction buffer. Homogenised samples along with positive controls and alginate alone 

run in the gel towards cathode. The negative control containing no cells was not stained for 

protein or glycoprotein demonstrating failure of either alginate or gelatine to migrate into the 



97 | P a g e  
© Imperial College 2015 

gel (Fig. 21, i). The positive control cells without alginate showed well separated protein bands 

along the gel suggesting that there were no technical issues in the procedure (Fig. 21, ii). 

Despite the diffusion of protein from the cells with beads in the gel, protein was caught up in 

the stacking layer and could not travel further down (Fig. 21, iii). This may be due to protein 

aggregation and crosslinking leading to sizeable polymers. Furthermore, addition of DTT did 

not improve the protein migration in the gel. This might be either due to altered pH or due to 

gel overloading. In addition, determination of relative protein concentration was hindered by 

high salt contamination in the sample. Difficulties in estimation of the protein concentration 

and protein mobility problems led to discontinuation of this approach (Ralf J. Braun, 2009).  

 

Figure 21 In Situ Extraction 16-BAC/SDS-PAGE  

mESCs encapsulated in alginate beads dissolved in 16-BAC extraction buffer and loaded in 

16-BAC/first dimensional gel. (i) Cell-free alginate was loaded as negative control for the run 

whereas positive control (cell pellet obtained from 2D culture) can be seen in (ii). In (iii) in situ 

extraction of proteins from encapsulated cells using 16-BAC gels was demonstrated; it was 

obvious that proteins failed to migrate to resolving gel suggesting protein aggregation in stack 

gel. 
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4.2.1.1. RNeasy Plant extraction kit: 

         In order to overcome the aforementioned issues with extraction, a RNeasy plant mini kit 

from Qiagen was employed following a protocol from Wang et al (Wang et al., 2009a). Wang 

et al suggested that the cells grown in alginate beads can be treated as a plant cell rich in 

carbohydrate. Therefore, a more stringent cell lysis by powdering beads using liquid nitrogen 

and grinding in pestle and mortar was followed as per manufacturer guidelines. QIA shredder 

spin columns to filters were used for separating RNA from the lysate before washing with 

ethanol. The lysates containing protein and alginate were collected and were then separated by 

Sevag’s solution (n-butanol /chloroform, 3:1). After frequent vortexing the aqueous phase was 

discarded and the interphase containing protein was carefully isolated in a separate tube (Fig. 

22, A). Carbohydrates and proteins have a different polarity, which helped in proper phase 

separation. Subsequently, proteins were precipitated using acetone and then separated on a 

SDS-PAGE gel. However, the protein recovery was low as shown by staining with coomassie 

blue after precipitation. Proteins at both high and low molecular weight were absent (Fig. 22, 

B). In addition, RNA quality was also confirmed using denatured-formaldehyde agarose gel 

electrophoresis (Fig. 22, C). The gels were stained with ethidium bromide to increased 

sensitivity to detect S18 and S28 bands, the total RNA band was shown low purity of sample 

(Sharma et al., 2003), (Wang et al., 2008), (Wang et al., 2009a).   
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Figure 22 Alginate Beads Treatment like Plant Polysaccharide-Rich Wall 

Low protein yield using RNeasy Plant extraction kit. (A)This diagram illustrated steps of 

proteins extraction follow the protocol published in (Wang et al., 2008),(Wang et al., 2009a). 

In (B) protein recovered after precipitation was stained with coomassie blue; proteins at both 

high and low molecular weight were absent. In contrast, in (C) FA gel shows positive 28S and 

18S bands. Figure A modified from (Wang et al., 2008) 
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4.3.1.3. Mechanical disrupters 

        Encapsulated cell proteins were extracted using different mechanical disruption methods. 

Cell extracts were homogenised in urea buffer and then mechanically processed using a QIA-

shredder, Ultrasonic Sonicator, or cell disrupter. Proteins yields were then compared using 4-

12% SDS-PAGE, which suggested that there were no significant differences among different 

extraction procedures (Fig. 23, i). Protein extracts were then precipitated using different 

precipitation methods and re-suspended in 2-DE buffer. 

 

      However, 2DE gel showed no protein spots. The sample precipitated at the cup during the 

first dimension, although complete solubilisation had been achieved using a high amount of 

urea in the sample buffer (8mM). This precipitation may be due to high salt and extract 

impurities (Fig. 23, ii). 

 

     Therefore, buffer exchange and dialysis was preformed prior to 2DE gel buffer addition to 

remove detergent and divalent cations using CHAPS and mixed bed resin followed by desalting 

using a commercial clean up kit from GE healthcare. However, the proteins were precipitated 

at acidic pH during the second gel dimension and the protein diffusion suggested that protein 

degradation had occurred (Fig. 23, iii). In addition, the incompatibility of 2DE gel non-ionic 

detergent buffer and high salt contamination further reduced the solubility of protein. 
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Figure 23 Gel-Based Optimisation of Alginate Beads Dissociation Protocol  

i)  Shows using different instruments to in situ protein extraction of 3D cultures. 

Sonication was method of choice.  

ii) There were no protein spots in 2DE gels.  

iii) Sample precipitate on the protein loading cup due to impurity of the sample. Protein 

aggregate at the acidic end of the IPG strip after using different precipitation to desalt 

the sample.  
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4.3.2. Ex situ extraction 

        In order to improve protein extraction from alginate beads a number of steps should be 

considered. For instance, using a consistent and short period of dissociation, and limiting the 

time between cell collection and addition of extraction buffer.  

       To develop an efficient protocol, high citrate concentrations were used to bind calcium 

(used in alginate beads gelation) in presence of a sucrose buffer (0.25 mM, pH 7). The sucrose 

acts as cushion to reduce the effect of osmotic pressure and protect the cell membrane. 

Immediately following alginate harvesting, the cell pellet was washed twice with PBS and 

protein was extracted using RIPA buffer combined with 3 minutes of sonication. The quality 

of protein yield was comparable to 2D control cells. This is implied by the presence of low 

molecular weight proteins bands, improvement of protein yields and reduced salt or alginate 

contamination (Fig. 24, a). In the 1D gel glycoprotein stain was used to check the removal of 

alginate from protein extract (Fig. 24, b). The cell pellet contained no glycoprotein, while the 

supernatant was positive. In concordance, the negative control including alginate without cells 

showed a similar positive stain. Extract from 3D culture run on 2DE gel to validate the 

efficiency of the developed protocol. The gel showed smears and low resolution due to the 

sensitivity of 2D gel to salt on the sample (Fig. 25, i). After using clean up-kit, there was 

significant improvement on the gel resolution (Fig. 25, ii).  
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Figure 24 Developed Protocol to Dissociate Alginate Beads for Protein Extracts 

a) Final protocol used to extract cells from alginate hydrogel (refer to methods and material 

chapter) contains sucrose and high concentrations of citrate.  

b) It can be seen in the 1D gel, using glycoprotein stains to check the removal of alginate from 

protein extract. The cell pellet contained no glycoprotein, while the supernatant was positive. 

In concordance, the negative control including alginate without cells showed a similar positive 

stain  
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Figure 25 2DE gel of protein Extract before and after clean-up sample Using Developed 

Protocol  

i) It is clear that beads dissociation improve proteins separation and migration in 2DE 

gel. However,  

ii) First gel show smears that improved by using commercial available clean up kit as 

shown in the second gel.  
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4.3.2. Gel based proteomics 

4.3.2.1. Comparative study of 2D versus 3D culture using 2-DE gel 

      Attempts to address the difference between 2D and 3D cell culture were performed by 

assisting different markers of pluripotency and early germ-layer. mESC were plated either in 

2D culture (Fig. 26, A) or encapsulated in alginate beads (Fig. 26, B) for 3 days prior to 

analysis. RNA was extracted and RT-PCR was performed for a number of markers. 

Pluripotency markers Oct4 and Rex1 were both expressed in 2D and 3D culture. Oct4 was 

more strongly expressed in 3D compared with 2D. In contrast, the intensity of Rex1 was same 

in both 2D and 3D cultures. There was no expression for specific-linage marker AFP 

(endoderm-derived marker) and Nestin (ectoderm-derived marker), with the exception of slight 

expression of Brachyury (mesoderm-derived marker) (Fig. 26, C).  

 

    Establishing a protocol that yields high protein concentration with minimum degradation, 

has aided in preparing the 2-DE gel. In order to evaluate protein expression, extracts were 

processed with protocol mentioned on 4.3.2. 2DE electrophoresis of proteins extracted from 

cells cultured in 2D (Fig. 26, D) and 3D (Fig. 26, E) culture was successfully performed using 

the newly developed protocol. The gel showed clear differences between protein spots. 
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Figure 26 Comparison of 3D culture versus 2D culture  

mESC were plated either in 2D culture (A) or encapsulated in alginate beads (B) for 3 days 

prior to analysis. RNA was extracted and RT-PCR was performed for a number of markers.  In 

(C) gene expression was assessed for 2D and 3D conditions using RT-PCR. Oct4 and Rex1 

were both pluripotency marker were expressed in 2D and 3D culture. Oct4 was more strongly 

expressed in 3D compared with 2D. In contrast, the intensity of Rex1 was same in both 2D and 

3D cultures. There was no expression for specific-linage marker AFP (endoderm-derived 

marker) and Nestin (ectoderm-derived marker), with the exception of slight expression of 

Brachyury (mesoderm-derived marker). 2DE electrophoresis of proteins extracted from cells 

cultured in 2D (D) and 3D (E) culture was successfully performed using the newly developed 

protocol. 
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4.3.2.1. Semi-quantitative comparison between 2D and 3D cultures using DIGE 

 

     Using 2-DE gel electrophoresis illustrated the difference between two groups proteome. To 

validate that the results were not introduced due to technical issues, 2D-Differential In-Gel 

Electrophoresis (DIGE) technique was used to compare 2D versus 3D culture. 2D cells and 3D 

cells were lysed and labelled with Cy3 and Cy5, respectively. As internal standard, equal 

amount of 2D and 3D cell lysates were mixed and labelled with Cy2 (for experiment design 

please refer to Table 3 on chapter 2). In Fig. 27, green and red spots corresponded to protein 

that overexpressed on 2D and 3D cells. By contrast, yellow spots represented protein spots that 

were equally expressed in both conditions. DIGE has been widely used for semi-quantitative 

assessment of changes in proteins expression between two samples. Additionally, DIGE 

overcomes some of the limitations of 2-DE gels such as a poor quantitation and low 

reproducibility. This work was done in collaboration with DeltaDot Ltd. 
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Figure 27 2D-Differential In-Gel Electrophoresis (DIGE) of 2D versus 3D Culture.  

2DE-DIGE image for proteins extracted from 2D and 3D. The experiment was done using 18-

cm strips 3-10 pH running on the tower gel system from GE healthcare. 

 

4.3.2.2. The 2-DE gel lake of reproducibility 

     Extracts derived by dissociating cells encapsulated in alginate (two separate biological 

replicates) were spotted on the second dimension and stained by Sypro Ruby (Fig. 28, i-iv). 

Each 3D sample was represented by two technical replicates for each sample (Fig. 28, (i, ii 

replicates) and iii & iv (iii, iv replicates)) prepared on the 2-DE gels.  
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Figure 28 SameSpot Analysis of Four Gels Replicates from two Independent Experiments of 

Protein extracted from Alginate Encapsulated Cells  

Proteins extracted for four gels from cells that were encapsulated in alginate beads i) & ii) are 

technical replicates for the first biological sample. Whereas iii) and iv) are the technical 

replicates for the second biological replicate. These gels were visualized by Sypro-Ruby. There 

were similarities and differences between the four gels. SameSpot analysis of the four gels or 

two technical replicates on the small box inside the gel figure represented the protein spots 

difference either in quantity or appearance despite similar protein load.   
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      The purpose of this experiment was to evaluate the performance of the extraction protocol 

of alginate embedded cells and reproducibility of 2DE gels. The difference between the two 

biological and two technical replicate gels was estimated using SameSpot software from 

Totallab® (last updated 16.09.2014, http://www.totallab.com/products/samespots/overview/). 

The difference not only involved biological replicates but there was low reproducibility 

between the two technical gels. A number of images were picked to reflect the appearance, 

disappearance or changes in intensity of protein spots (Fig. 28 boxes inside the gels). 

 

4.3. Discussion 

      This chapter addresses the use of different sample preparation workflows to reduce 

contamination and loss during protein extraction from encapsulated mESC. To identify the 

appropriate approach for protein extraction, in-situ extraction was compared to a control 

sample from monolayer cells. The reason behind attempting in situ extraction was to avoid 

protein loss and confirmation that might occur during alginate dissolution. A broad range of 

conventional extraction methods was evaluated, including 16 BAC-PAGE electrophoresis, 

RNeasy Plant extraction kit, different mechanical extractions, precipitation and desalting 

techniques. These resulted in inefficient protein recovery. Furthermore, the use of these 

techniques has led to protein degradation, with Coomassie staining revealing absence of lower 

weight proteins in the in situ extraction of alginate samples. The presence of high salt 

concentrations used to facilitate cross-linking of alginates, was incompatible with 

solubilisation buffers such as SDS.  

 

       Isolating the cells from the beads improved the protein yield and minimised exogenous 

contamination. Therefore, there was an absolute necessity to optimise the protocol to enable 

alginate dissociation to extract proteins. Using high citrate concentrations and sucrose reduces 

http://www.totallab.com/products/samespots/overview/
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metabolic change introduced to the cell during extraction by stabilising proteins and preventing 

aggregation. Additionally, the duration of exposure to dissociation buffer was shorten to avoid 

protein degradation. The efficiency of this protocol was confirmed by proteins yields, presence 

of low molecular weight proteins, and reduced contamination. Together, this approach was 

fruitful to overcome the obstacles of in-situ extraction.  

 

     Subsequently, a profile of protein comparison was made using 2-DE electrophoresis. 

However, heterogeneity found between the technical and biological replicates introduces 

critical variations in protein profiling preventing useful biological interpretation. This lacked 

in reproducibility between gels is due to confounding factors of 2-DE gel in sample preparation 

procedures, protein spot picking and identification may have masked the any biologically 

meaningful differences. Additionally, given that protein expression was expected to alter in 3D 

versus 2D culture, might involve deposition of extracellular matrix (ECM) and synthesis of 

cell membrane proteins. These proteins were however difficult to visualise using 2DE gel due 

to their high hydrophobicity. In addition, 2-DE gel possessed other shortcomings that confound 

identification of several classes of proteins including low abundance proteins, large or small 

proteins, and proteins with extreme isoelectric points. Although, conventional 2-DE based 

proteomics is a common method of choice for most proteomic experiments, it under represents 

hydrophobic and low molecular weight proteins. In addition, it has a lack of reproducibility 

due to the multiple steps involved in its workflow (Brewis and Brennan, 2010). 

      In addition, protein extraction from 3D constructs employs additional multistep sample 

preparation workflow. This is due to the presence of the alginate that could lead to 

contamination and loss of protein. In proteomics, sample preparation is a critical step due to 

the impact it can have on accuracy and sensitivity in the data obtained and its subsequent data 

analysis. However, the development of highly sensitive mass spectrometry presents an 
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alternative in comprehensive proteome identification approach especially when combined with 

SILAC which we will discuss in upcoming chapter. 
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CHAPTER 5: Effect Of 3D Culture on mESCs Global Proteome 

  

5. Introduction 
 

The stem cell niche microenvironment is a fundamental regulator of ESC behaviour. 

Besides cell-to-cell and cell-to-extracellular matrix (ECM) contact, the stem cell niche 

microenvironment alters cellular morphology, survival, apoptosis, proliferation, and 

differentiation (Tibbitt and Anseth, 2009). Cell culture methodologies that mimic the 

biochemical and architectural characteristics of the in vivo micro-environment will improve 

ESC culture.  

Current three-dimensional (3D) culture methodologies have aimed to mimic ECM 

micro-architecture. Interestingly, ESC behaviour in vivo and under 3D culture conditions 

exhibit a strong overlap, since they better mimic the characteristics of the in vivo ESC 

environment. For example, the use of a 3D chitosan-alginate scaffold, allowed cellular 

proliferation and functionality for 21 days and also maintained pluripotency in an 

immunodeficient mouse model and teratoma formation. The use of encapsulated human ESCs 

(hESCs) in calcium alginate microcapsules allowed pluripotency and differentiation to 

mesendoderm, definitive endoderm, and primitive gut tube. Human ESCs encapsulated in 3D 

hyaluronic acid capsules maintained their undifferentiated state, preserved their normal 

karyotype, and maintained their full differentiation capacity as indicated by embryoid body 

formation  (Azarin et al., 2012b). 

A number of studies have examined ESC behaviour down to the transcriptome level, 

as well as the ESC chromatin state. However, such approaches ignore translational and post-

translational modifications that affect both quantity and function (Mikkelsen et al., 2007). Mass 

spectrometry (MS) proteomics allows the systematic quantitative and qualitative exploration 
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the entire proteome, overcoming these issues. Extensive studies into the mouse ESC (mESCs) 

proteome have identified 1,790 and 1,775 peptides. Additionally peptide quantitation has only 

been performed using peptide counting but a quantitative study of all proteins expression is yet 

to be performed. The use of metabolic labelling methodologies such as Stable Isotope Labelling 

by Amino Acids in Cell Culture (SILAC) allows accurate quantitation. SILAC eliminates error-

prone parallel steps present in protein purification protocols. While metabolic labelling 

methods have been used on transformed cell lines, labelling of ESCs, a cell type that is difficult 

to culture, has not yet been demonstrated (Graumann et al., 2008c).  

In this chapter, we hypothesized that 3D culture conditions offer a distinct advantage 

to produce healthier mESCs than standard 2D culture. In order to gain further insight in the 

biological differences between 2D and 3D culture, we analysed and compared the protein 

expression profiles using SILAC of mESCs cultured in traditional 2D culture, 3D alginate 

beads in static and dynamic culture conditions. The identification of differential protein 

expression across these three distinct cell culture methodologies will aid in identifying the 

factors contributing to pluripotency.  

6.1. Overall Aim 
 

 Interpretation of the behaviour of mESCs in different culture environments in the light 

of the differential protein expression data. 

 

 Use the data obtained from large-scale analysis, to determine the reason why 3D 

dynamic culture enhanced undifferentiated expansion of mESCs inferred to gene 

profiles at days 3 of culture. 
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6.2. Experiment design 
 

        Following the Bendall protocol, our cells were adapted for 5 passages in 2D culture to 

achieve the complete incorporation. SILAC maintained media depend on controlled amino acid 

content in order to accomplish maximum labelling product. Therefore, dialyzed FBS was 

replaced with the conventional serum to reduce amino acid availability in cell culture. 

Supplementation of SILAC media with 15% KOSR was extended for SILAC procedure to stem 

cells. Coincidently, using KOSR provides mESCs with 800 mg/ml of proline in addition to 

KOSR lack of arginine and lysine (Bendall et al., 2008).  

       Following labelling, MS based proteomics were used to identify proteins in complex 

mixture. Once the cells achieved 96 % efficient labelling (checked using MS), protein extracted 

from the similar cell number and pooled together. We had three groups, the mixture of 2D cells 

labelled with heavy mixed with 3D static labelled with light isotopes, 3D static (heavy) 

combined with the same cell number from 3D dynamic (labelled with light), and last cell 

mixture was 3D dynamic (heavy) with 2D (light). The three protein extracts was quantified and 

fractionated by 1-D gel electrophoresis and stained with Colloidal Coomassie Blue. To reduce 

complexity, samples were separated by 1D gel electrophoresis and fractioned prior to analysis. 

In gel digestion additionally aid protein purification and contaminant removal such as high salt 

contamination from Ca+2 encapsulated beads. Using gel to separate proteins helped in 

identification of membrane proteins while in solution digestion approach is method of choice 

for specifically soluble proteins (Gundry et al., 2009). 

     Next the gel cut into 5 slices and the slices subjected to in gel trypsin digestion (for 

experiment design and further information please refer to chapter 2, section 2.6.6. and Fig. 29). 

The digests are then analysed by tandem mass spectrometry and the ratio of intensities of the 

corresponding heavy and light peaks calculated using ProteomeDiscovere software.  
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Figure 29 Diagram illustrated the SILAC experiment design 

The mESCs were adapted in SILAC media both heavy and light arginine and lysine. After 5 

passages cells transfer to either 3D static or 3D dynamic for three days. Mixture of cell pallets 

from each group obtained to give three proteins extracts samples. First sample is 2D (heavy) 

mixed with similar cell number from 3D static (light). Second sample resembles equal mixture 

of 3D static (heavy) and 3D dynamic (light) labelled cells. Third sample is equal cell number 

obtained from 3D dynamic (heavy) and 2D culture (light) isotope labelled. Equal protein 

concentration separate on 1D SDS/PAGE. Then 5 bands were subjected to LC-MSMS 

separation.  

 

 

5.3. Results 

5.3.1. In-depth proteomics approach using combination of SILAC and LC/MSMS 
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Figure 30 Venn Diagram of Number of Proteins Identified on Each Group 

 Proteins share between the three mass spectrometry files out of 4379 proteins, only 3291 

proteins present in all groups 2D (heavy SILAC) vs. static (Light SILAC) or dynamic (heavy 

SILAC) vs. 2D (light SILAC).  

 

      ES cells cultured under 3D and 2D conditions display different biological characteristics. 

However, a global differential analysis between encapsulated mESCs and monolayer cultured 

cells at the protein level combined SILAC and MS has not yet been performed to our 
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knowledge. A total of 4379 high-confidence non-redundant proteins were identified using 

QExcutive mass spectrometry. Out of these proteins, only 3219 hits were identified on the three 

MS files (Fig. 30). We analysed the L/H ratio for all proteins, and 1968 proteins were quantified 

and shared between comparison groups. In order to consider a protein to be differentially 

expressed, we applied the conditions that at least three high-confidence (≥95%) unique peptides 

were identified, and that the peptides exhibited a fold change ≥2. Testing for multiple 

comparisons from the quantitative information eventually led to 527 differentially expressed 

proteins. Among them, compared with 2D models, a total of 120 proteins were up-regulated in 

3D dynamic culture and 182 were down-regulated in 3D static models 

       Self-renewal proteins were identified, indicating sensitivity of our sub-fraction to detect 

low abundance transcriptional factors. Twenty proteins associated with self-renewal were 

identified with no significant difference between the three groups (Appendix Table.  7). For 

example, Pou5f1 (Oct4), Sox2, CD9 and Dppa5a, proteins known for their roles in self-renewal 

signalling networks were expressed at comparable levels on 2D/3D statics, 2D/3D dynamics 

and 3D statics/3D dynamics cultures. We analysed the list of all observed proteins through 

Gene Ontology enrichment analysis using DAVID website to enable interpretation of the 

enriched functional categories as indicative of cellular status (Fig. 31 and Fig. 32). 

       Over 233 genes relating to glycolysis and transmembrane proteins were significantly 

enriched. We also found mitochondrial proteins categories significantly enriched. Expression 

of extracellular matrix (ECM) proteins and cell surface membrane proteins increased in both 

3D cultures vs 2D culture (Appendix Table. 20). Consistent with this, 41 vacuole proteins were 

also increased in both 3D cultures which have a role in protein secretion. Furthermore, 

mitochondrial proteins were elevated in both 3D cultures, suggesting a need to cope with 

possible higher energy demands in encapsulated cells to secret ECM. Dynamic culture showed 

a decrease in 45 out of 126 ER proteins identified and 66 out of 830 nucleus proteins.  
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Figure 31 GO Annotation of Cellular Components 
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Figure 32 GO Annotation of Molecular Function 
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      In accordance, molecular function (Fig. 32) annotation showed a rise in cell proliferation 

proteins (2%) in 3D dynamic culture. Proteins related to defence mechanisms (2%) showed an 

elevation in 3D dynamic compared to other cultures suggesting an increase in cellular stress 

response. Furthermore, proteins that participate in cellular motion increased in dynamic 

cultures suggesting a cellular response to HARV bioreactor. On the next results section we will 

discuss significant proteins changes on each groups based on their molecular function. 

 

5.3.2. Proteins differentially expressed in 2D vs. 3D static culture 

 

       From 1968 proteins identified, less than 1% of proteins were up-regulated in 2D culture 

labelled with heavy SILAC compared to 13% of proteins that showed changes in 3D static 

cultures labelled with light isotopes. Of these proteins changed in 2D culture ~ 40% was 

responsible for self-renewal while the rest were involved in metabolism. For instance, a Lin28a 

was down-regulated in 3D statics compared with 2D culture. This suggests a decrease in 

pluripotency in static culture. Although Lin28a is not a transcriptional factor, it is involved in 

efficient re-programming of somatic cells to stem cells due to its role in “maternal-embryonic 

transition” and nucleolus maturation (Vogt et al., 2012).  

         In contrast, in static culture, 3% of the up-regulated proteins was apoptosis related (Table. 

8). However, ~5% of these proteins were involved in differentiation, which is consistent with 

Lin28a down-regulation. Additionally, in 3D static culture 7% of the proteins were up-

regulated and associated with the cytoskeleton and cell morphology (Appendix Table. 9). This 

may account for the differences in morphology seen in cell growing in 3D static cultures.  

 

5.3.3. Proteins differentially expressed in 3D dynamic culture vs. 2D or 3D static culture 
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         In cells maintained in 3D dynamic culture vs 2D cultures, 11% proteins were up-regulated 

and 3% proteins were down-regulated. Translation (31% of proteins), metabolism (25%), 

cytoskeleton (15%), and cell-survival (7%) were the major functional sub-categories with up-

regulated proteins, whereas, down-regulated proteins belonged to glycolysis (30%) and 

apoptosis (13%). For example, in 3D dynamic culture, the expression of Aldow, Eno1, Pkm, 

was down regulated vs 2D, and 6-phosphfructokinase l (Pfkl), lactate dehydrogenase A (Ldha), 

phosphoglycerate kinase1 (Pgk1) and triosephosphate isomerarise (Tpi) expression was down-

regulated in comparison with both 2D and 3D static cultures (Appendix Table. 10 appendix ). 

However, proteins associated with electron transfer chain (ETC) complex III, IV and V were 

up-regulated on 3D dynamic culture along with multiple mitochondrial respiration associated 

proteins, such as complex II (Ndufc2, Ndufb4), complex III (Cyb5b, Uqcrh, Uqcrq, Uqcrfs1), 

complex VI (Cox4i, Cox7c), and complex V (Atp5j2, Atp5l, Atp5i) respectively (Appendix 

Table. 11). These observations indicate a decrease in glycolytic flux (Fig. 50 appendix) in 3D 

dynamic cultures and a simultaneous increase in mitochondrial respiration (Fig. 51 appendix) 

likely due to the dynamic bioreactor improving oxygen delivery and nutrition availability to 

the cells.  

     Apparently, up-regulation of mitochondrial proteins suggested non-glucose carbon source 

feed to ETC. In 3D dynamic culture compared with 2D 3 of 4 known glycine cleavage enzymes 

were up-regulated. These involved glycine dehydrogenases (decarboxylation) (Gldc), 

dihydrolipoyl dehydrogenase (Dld) and glycine cleavage system H (Gcsh) (Appendix Table. 

12). This system breaks down glycine to a final product that either enters purine biosynthesis 

or produce acetyl CoA that feeds the TCA cycle. In addition, glutamate dehydrogenase 

(Glud1), glutamate mitochondrial carrier protein (Slc25a13), and Idh3β enzyme were also up-

regulated on 3D dynamic culture compared with 2D condition. These observations suggest a 

reduced external glucose uptake and the cells might rely on another carbon source such as 
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amino acids (glutamine and glycine). This is due to increase energy demand beyond glycolysis 

that leads to down-regulation of glycolytic flux in order to balance ATP synthesis via oxidative 

phosphorylation. 

          Altered mitochondrial metabolism is intimately connected to stem cells’ fate. Metabolic 

status and oxygen tension determine whether cells differentiate, proliferate or activate pro-

death signalling. Thus, we analysed expression of differentiation related proteins to address 

how metabolic change in dynamic culture affects self-renewal of mESCs. Crabp1 (protein 

epithelial inducer) Hectd1 (required for mesenchyme and neural crest development), and 

Nedd4 (responsible for neural development) were down-regulated in 3D dynamic culture 

compared to either 2D or 3D static culture. This protein enhances cell response to retinoic acid 

signalling and therefore cause mESCs differentiation (Uhrig et al., 2008). Moreover, Dpsyl2, 

Hectd1, Pafah1b3 and Gmpr2, a set of proteins involved in mESCs differentiation toward the 

neuroectoderm were down-regulated in 3D dynamic culture (summarised on Table. 13 

appendix). These observations indicated blocking of the neuroectoderm differentiation in 3D 

dynamic culture that spontaneously induced in mESCs LIF/serum maintenance condition. 

Thus, change on metabolic proteins had adverse effect on self-renewal by down-regulating the 

expression of differentiation associated proteins. 

 

5.3.4. Proteins differentially expressed in 3D static vs. 3D dynamic culture 

 

      Overall, 5% of proteins were down-regulated in dynamic culture. The down-regulated 

proteins involved 27% related to protein synthesis (Table. 14 appendix), 12% related to cell 

cycle (Table. 15 appendix), 12% related to DNA damage (Table. 18 appendix), 12% related to 

epigenetic modification (Table. 16 appendix), and 7% of proteins were up-regulated in static 

vs. dynamic condition responsible for cell differentiation to primordial germ cell (Table. 17 
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appendix). The expression of majority DNA damage proteins was altered in static condition. 

For instance, DNA damage sensors ATR and ATM and the Cdk2ap1 protein were u-regulated 

in 3D static vs 3D dynamic culture. The downstream target proteins of ATR/ATM such as 

Tp53bp1, Rad50, cell cycle kinases (Cdk4, Cdk7, Cdk2ap1) and Cyclin-A2, that mediate cell 

cycle inhibition (Nagaria et al., 2013) were up-regulated in 3D static culture. Consequently, 

the transducer proteins Msh3, ATRX, Top2b, Asfia and Kntc1 were also u-regulated 

(summarised on Table. 18 appendix), suggesting an increase in DNA-repair mechanism in 3D 

static condition. These proteins also aid chromatin segregation, DNA repair and re-joining. 

Furthermore, they act as a checkpoint before cells proceed to mitosis (Koledova et al., 2010). 

The down-regulation of DNA damage related proteins on 3D dynamic vs static condition may 

be attributed to the presence of alginate scaffold in the latter sitting but in a poor diffusion 

environment. Cells at the centre position of 3D static scaffolds tend to prolong mitosis from 24 

to 48 hours that will result in DNA damage due to nutrient and oxygen depletion (Laurent et 

al., 2013).  

 

5.3.5. Proteins differentially expressed in both 3D static and 3D dynamic versus 2D 

culture 

 

      Notably, 91 proteins were up-regulated in both 3D cultures vs 2D (Table. 19 appendix), of 

which 12 were components of ECM (Table. 20 appendix , Fig. 34); such as Fibronectin 1 (Fn1; 

up-regulated 23-fold in 3D dynamic and 100-fold in 3D static culture), Laminin subunit alpha-

5 (LAMA5, 100-fold up-regulated in 3D dynamic and 29-fold in static cultures vs 2D), Collagen 

type XVIII (Col18a1; up-regulated in encapsulated cells 10-fold in static and 27-fold in 

dynamic versus 2D culture), Agrin (Agr up-regulated 25- and 53 fold in 3D static and dynamic 

respectively vs 2D culture), Entactin or Nidogen Nid-2 (BM glycoprotein family member, 

contains three global domains, up-regulated in both 3D cultures), and, Hepran sulphate 
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proteoglycan (Hspg2; 11-fold and 16-fold changes in 3D static and dynamic cell cultures). This 

increase in ECM components in both 3D cultures may help anchoring and adhering cells to 

secreted ECM proteins, replacing inherited poorly adhesive alginate nature. The different 

classes of up-regulated ECM proteins in 3D cultures play different roles e.g. trimers a mixture 

of lamnin and collagen strengthen the cells, whilst cell-binding domains like fibronectin helps 

cell anchoring and negatively charged GAGs (Hspg2, Agrin, and Nid2) provide a hydrated 

structure. Thus, the presence of these proteins may provide further protection for the cells in 

alginate from external hydrodynamic stress. 

        Other proteins up-regulated in both 3D cultures compared with their counterparts in 2D 

culture were linked to cell cycle arrest (Table. 21 appendix), as for instance, Gtse1 (53 fold), 

Cdc23 (6 fold) and Ckap2 (3.5 fold) proteins involved in G2/M cell cycle arrest. These proteins 

play crucial roles in chromosome segregation ensuring the copying of high fidelity DNA from 

parent to newly synthesized cells. However, high expression of these proteins may contribute 

to G2/M phase delay. Human ESCs grown in 3D possess longer G2/M phase compared with 

2D culture (Azarin et al., 2012a).  

       Slc25a20 Carrier protein was also up-regulated in both 3D cultures compared with 2D 

culture. This protein facilitates translocation of acylcarnitine through the mitochondrial inner 

membrane to be later transfer to acyl-CoA thioesters to undergo beta oxidation in the 

mitochondrial matrix. Consistent with that, fatty acid oxidation (FAO) proteins Acad9 and 

Acaa2 were up regulated in both 3D static and dynamic culture compared with 2D. However, 

both Etfα and Etfβ enzymes showed no difference between three different cultures condition 

suggesting that basal expression of these 2 proteins is sufficient to cope with the extra FADH2 

generated by up-regulation of Acad9 (Fig. 33). Activation of FAO in both 3D cultures can be 

also associated with higher energy demands as FAO yields twice the ATP as glycolysis 

(Carracedo et al., 2013).  
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Figure 33 Schematic Up-regulation of Fatty Oxidation in Both 3D Cultures versus 2D Culture 

a) Up-regulation of Slc25A20 carrier protein facilitates translocation of acylcarnitine 

through the mitochondrial inner membrane. Red square indicate up > 2.00-fold, the 

green for down < 0.5, and white no change 0.5 <Ratio> 2.00 for 2D/3D static, 3D 

static/3D dynamic, and 3D dynamic/2D SILAC ratio. 
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5.3.5.1. Validation of ECM results using qPCR 
 

      To validate proteomic changes in ECM components, relative mRNA expression levels of 

Fn1 and Hspg2 was measured. Both genes showed significant differences in expression in 2D 

vs. 3D cultures and 3D static vs. dynamic culture. For instance, Hspg2 expression increased 2-

fold in 3D dynamic compared to 3D static culture (Fig. 34                                                                                                                                                                 

) confirming SILAC data. Both Fn1 and Hspg2 are mechano-sensors. Thus, the fluid motion 

of dynamic bioreactor may enhance their expression compared to static condition and mediate 

the production of extracellular matrix to provide physical and chemical barriers for cell 

protection.  

     The poor alginate adhesion environment may be responsible for increases in the above 

combination of ECM proteins in both 3D dynamic and static cultures despite the presence of 

1.1% gelatin (attachment enhancer) in our alginate mixture. Conversely, the presence of similar 

concentration of 1.1% gelatin use to coat 2D culture plates did not result in ECM secretion. It 

may be either the mechanical properties of the beads surfaces, the change in cell morphology 

or the cell-cell contacts that are responsible for differences in ECM production between 2D 

and 3D cultures. 
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Figure 34 Up-regulation Of Extracellular Matrix Proteins  

a) Panel a shows relative gene expression of fibronectin (Fn1) and heparan sulphate 

proteoglycan 2(Hspg2) of 3D static and 3D dynamic cultures normalised against 2D 

culture and β-actin. Values are means ± SD, N=3 (*: p<0.05). 

b)  Panel b shows Log2 ratio of ECM identified by MS showed no difference in expression 

between 3D static/dynamic ratio (red) compared with other two groups were significant 

difference toward 2D cultures compared to any 3D groups.  For gene symbol full names 

please refer to Table 20 (appendix).  
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5.3.6. Change in mitochondrial proteins 

 

      From the SILAC results, it was shown that both 3D static and dynamic culture had up 

regulated March5 when compared to 2D culture. March5 is involved in controlling 

mitochondrial morphology. Similarly, Letm1, required for maintenance of mitochondrial 

tubular networks, crista organization and assembly of ETC, was up regulated in both 3D 

cultures versus 2D condition. 3D cultures also up-regulated VDAC (VDAC1, VDAC2 and 

VDAC3) proteins compared to 2D culture, which act as channels that transfer metabolites from 

the cytoplasm to the mitochondrial matrix and vice versa. In addition, other membrane carrier 

proteins such as OGC (malate/αKG) and AGC1 (Glutamate/ Aspartate) were also up-regulated 

on 3D condition (Fig. 35). These results demonstrate changes in the permeability of the 

mitochondrial membrane, possibly suggesting a change in mitochondrial structure. The 

nuclear/mitochondrial contact, cytosol/mitochondrial transport, and mitochondrial 

permeability were found to  affect mitochondrial biogenesis (Folmes et al., 2012c). This change 

in mitochondrial structure in 3D culture may contribute in the change in metabolic status. 
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Figure 35 Up-regulation of Mitochondrial Carrie Protein  

There were significant increase in voltage dependent anion channel (VDAC1, 2, and 3) locate 

in outer mitochondrial membrane. The rectangle resemble from left to right first square 2D/3D 

static SILAC ratio, the middle one (white) is 3D static/ 3D dynamic, and the last is 3D dynamic/ 

2D culture. The red colour indicate up-regulation and green down-regulation. aKG; 

ketoglutarate, Glu; glutamate, Cit; citrate, OAA; oxaloacetate, Mal; malate, Asp; aspartate, 

Pyr; pyruvate, PCX; pyruvate carboxylase, AcCoA; acetyl-CoA. 
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5.4. Discussion 
 

      We used SILAC-based proteomics as an approach to understand differential protein 

expression in 2D culture, 3D static, and 3D dynamic cultures. Analysing the results by gene 

ontology illustrated that membrane and extracellular proteins (ECM) comprised 3% of the 

expression changes; whereas, 30% of proteins altered were related to metabolism. This is 

consistent with other comparative proteome analyses of monolayer with 3D culture that 

showed altered metabolic pathways (Bhattacharya et al., 2004, Pruksakorn et al., 2010, 

Gaedtke et al., 2007). For instance, glycolysis and stress related proteins were up-regulated in 

spheroids vs. flat cells (Bhattacharya et al., 2004).  

       Up-regulation of 12 secreted ECM proteins in both types of 3D culture compared to 2D 

indicates that absence of adhesive in alginate beads increases their production. For instance, 

Lama5 showed almost 100 fold increases in 3D dynamic condition compared with monolayer 

gelatin coated cultures. An enriched matrix containing both Lama5 and E-cadherin has recently 

been used to maintain and prolong self-renewing hESCs without feeder cells in serum-free 

environment (Rodin et al., 2014). Interestingly, single or multiple ECM proteins successfully 

control stem cells fate, as for example, fibronectin and Laminin direct neural cell lineage 

commitment, and collagen promotes osteogenic differentiation (Hosseinkhani et al., 2008, 

Goetz et al., 2006). Their approach however, using single or combination of two ECM 

underestimates the complexity of the in-vivo stem cell niche, which is dynamic and constantly 

interacts with external and internal environments during maturation and transition. Using 

decellularized 3D scaffolds of mESCs encapsulated for three days was sufficient to 

successfully reprogramming of MEFs to express pluripotency markers (Han et al., 2013). The 

up-regulation of these groups of ECM on our 3D condition may contribute to sustain mESCs 

self-renewal on alginate beads.   
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       In addition to ECM components, expression of proteins associated with metabolic status 

was significantly enriched in 3D cultures vs 2D culture. The down-regulation of glycolytic 

enzymes in a 3D rotary wall dynamic bioreactor may link to decreased external glucose uptake 

or reliance on a different carbon source. Thus, there were up-regulation of FAO and amino-

acid metabolism related proteins. The 3D dynamic cultures showed possible shift to amino-

acid consumption such as glutamate and glycine. Recent findings demonstrate that highly 

proliferated cells are not necessarily relied on glucose conversion to lactate, alternatively, 

artificial expression of GLDC (which was up-regulated as well in our 3D dynamic culture) was 

sufficient to trigger self-renewal genes (Locasale, 2013). Thus, reliance on amino acids in 3D 

dynamic culture may contribute to self-renewal enhancement. However, comprehensive 

inhibition of glycolysis in mESCs can lead to differentiation (Pereira et al., 2013) while 

blocking of the respiratory chain reinforces pluripotent stem cells’ ability to commit to any cell 

lineage. Therefore the mESCs mitochondrion is ‘bivalent’ and enables a metabolic switch 

based on cellular energy demand, whereas preferential use of glucose as the sole carbon source 

is essential for hESCs and adult stem cells’ self-renewal but not mESCs,(Zhang et al., 2011). 

Murine ESCs found to be threonine reliant where threonine withdrawal induces cell death 

(Wang et al., 2009d). Interestingly, glycine cleavage system enzymes up-regulated in 3D 

dynamic is also a substrate of threonine metabolic pathway. Therefore, switch in metabolism 

toward amino-acid instead of glucose could help mESCs pluripotency. 

        There were also up-regulation of FAO enzymes in 3D both static and dynamic cultures. 

Silencing of FAO enzymes in mESCs results in ATP exhaustion and loss of resistance to 

nutrient depletion identifying the role of lipid as a primary energy source in stem cells (Zhang 

et al., 2012). In addition, FAO inhibition in HSCs induces differentiation (Ito et al., 2012). Our 

proteomics data suggests a tight regulation of FAO and anaerobic glycolysis to sustain self-

renewal on 3D dynamic environment. However, the exact mechanism of how glycolysis-FAO 
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metabolic switch has not been elucidated (Ito et al., 2012). The switch toward fatty acid or 

amino-acids as sources of nutrients on 3D dynamic cultures sustains mESCs self-renewal. 

More precisely, the improvement of various nutrient delivery to cells on the 3D dynamic 

culture reduce the demands on glucose alone. Thus, TCA cycle and ETC proteins may be up-

regulated by nonglucose carbon flux such as glutamate, glycine or FAO metabolism.  

     Finally, both 3D cultures showed 50 fold up-regulation of Gtse1. This protein is involved 

in p53 signalling that mediate M phase cell cycle-arrest. This is consistent with a number of 

3D culture studies that demonstrated lengthening of the M phase or activating cycle-arrest 

when transferring cells from 2D to 3D culture. Likewise, hESCs grown in static 3D constructs 

show a relatively longer G1 phase compared to the 2D cultures (Azarin et al., 2012, Calder et 

al., 2013). This suggests the possibility of cytoskeleton disorganisation in 3D cultures owing 

to absence of spindle assemble and centromere positioning especially early on the culture. 

These factors are essential for chromosome segregation and their absence contribute to cell 

cycle delay at G2/M phase resulting in transit mitosis-arrest in mESCs (Wang et al., 2011). 

Embryonic development in simulated zero gravity (which is comparable to our HARV sitting) 

showed a disorganised cytoskeleton owing to gravity-dependent cytoskeleton anchor to 

assemble microtubule and localize centromere (Wakayama et al., 2009, Crawford-Young, 

2006, Wang et al., 2011). In addition, the presence of free-fall environment may affect 

microtubule spindle assembly during M phase given to gravity dependence of anchorage and 

cytoskeleton assembly (Wang et al., 2011). 

        In conclusion, quantitative global proteomics comparison of monolayer vs alginate 

encapsulated mESCs using SILAC labelling demonstrated that the cells in 3D culture interact 

with environment by up-regulating cell cycle arrest and switching the metabolism to alternate 

ATP sources such as amino acids and fatty acids and express ECM proteins. However, these 
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changes have no consequence on self-renewal as proteins associated with pluripotency showed 

no difference on their SILAC ratios. 

       In conclusion, the results described in this chapter showed the capability of SILAC based 

proteomics to measure alterations in protein expression for thousands proteins primarily 

involved ECM and membrane related proteins. This confirms, the advantage of SILAC-based 

proteomics used in this study over conventional 2-DE gel approach. Usage of SILAC showed 

no effect on self-renewal phenotypes. In addition, protocol were developed and optimised for 

protein extractions show efficiency and reproducibility among comparison groups given to 

similarities of over 3290 proteins in different mass spectrometry files. The next chapter will 

discuss the functional validation of metabolic profiles change in response to switch from 

monolayer culture to 3D construct both dynamic and static. 
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CHAPTER 6: Effect of 3D Culture on mESCs Metabolic Profiles at 

Prolonged Adaption 

  

6. Introduction 
 

         Metabolic status and oxygen tension determine cell-fate decisions such as differentiation, 

proliferation and apoptosis. The in vitro culture environment commonly uses a 16% oxygen 

atmosphere that subjects cells to high oxygen tension. This is in sharp contrast to in vivo 

conditions where the oxygen tension can be as low as 2% in stem cell niches such as the bone 

marrow (BM) (Folmes et al., 2012a, Mohyeldin et al., 2010). Oxygen measurements in the 

embryo have shown that development occurs under conditions of low oxygen (3-5%), leading 

to a reconsideration of the importance of oxygen for embryonic stem cells (ESCs) in vitro. 

      Low oxygen availability recognises by oxygen sensors known as hypoxia inducible factors 

(HIFs). The oxygen-regulator family consists of HIF-1α, HIF-2α and HIF-3α (Mathieu et al., 

2014).  HIF1α regulates cell signalling under low oxygen tension and plays a significant role 

in anaerobic glycolysis control. HIF transcriptionally activates pyruvate dehydrogenase 1 

(PDK1), and inactivates PDH, thus preventing pyruvate fuelling to TCA cycle, and hence 

reduces mitochondrial oxygen consumption. Furthermore, HIF mediates pyruvate to lactate 

conversion (Lu et al., 2014). The HIF-2α heterodimer has been found to translocate from 

cytoplasm to nucleus under extended hypoxic exposure leading to activation of Oct4, Sox2, 

and Nanog thus enhancing self-renewal (Forristal et al., 2013). Similarly, HIF-2α binds the 

Oct4 promoter in mESCs under hypoxic conditions leading to its activation (Covello et al., 

2006).  

     Stimulation of glycolysis in pluripotent stem cells, through hypoxia promotes stemness 

while inhibition of glycolysis halts proliferation and precipitates cell death (Folmes et al., 
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2012a). Although anaerobic glycolysis only yields 2 ATP/mole of glucose compared with 

oxidative phosphorylation that produces 36-38 molecules of ATP, the high proliferation rate 

of stem cells is glycolysis-dependent as it yields a faster rate of ATP production. Thus, hypoxic 

conditions enable stem cells to reproduce 100-fold faster than in high oxygen environments. 

Therefore, there is a strong correlation between anaerobic metabolism and self-renewal (Fig. 

36A). Conversely, up-regulation of TCA cycle proteins, down-regulation of glycolytic 

enzymes and increases in mitochondrial DNA (mtDNA) are associated with ES cells 

differentiation (Fig. 36 B) (Shyh-Chang et al., 2013).  Murine ESCs show no difference in self-

renewal under hypoxic (5% O2) or normoxic conditions (20% O2), but there was significant 

clonogenic improvement in 5% O2 hypoxic conditions (Fernandes et al., 2010). On the other 

hand, higher oxygen 38% or lower as 0.9% has been shown to lead to stem cell differentiation 

(Powers et al., 2008). In addition, the transition of naïve mESCs (LIF/STAT3 dependent) to 

prime-like EpiSCs was primarily mediated by low oxygen exposure suggesting the role of 

hypoxia in LIF/STAT3 inhibition (Takehara et al., 2012).  
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Figure 36 Metabolic Switch from Glycolysis to Oxidative Phosphorylation during ESC 

Differentiation 

The above schematic illustrates the importance of metabolic balance in determining murine 

stem cell fate. Pluripotency is associated with a high glucose flux to lactate, and low 

mitochondrial DNA (mtDNA). Switch to differentiation is associated with increase in pyruvate 

oxidation, mitochondrial respiration and higher mtDNA. 
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     However, cell proliferation is not only ATP dependent; also requiring fatty acids, amino 

acids, and nucleotides. Glucose metabolites from glycolysis enter a number of biosynthetic 

pathways. For instance, glucose-6-phosphate, fructose-6-phosphate, and glyceraldehyde-3-

phosphate are shunted to the nucleotide synthesis pathway, whereas pyruvate generates 

nonessential amino acids via the pentose phosphate pathway (PPP) and importantly NADPH 

for lipid and other biosynthetic pathways. Therefore, avoiding mitochondrial respiration and 

elevation of glycolysis in stem cells offers sufficient precursor metabolites to support a higher 

proliferation rate and reduce ROS production (Kamarajugadda et al., 2012). 

     Based on the previous chapter, the significant enriched categorise included mitochondrial 

proteins. Owing to tight correlation between self-renewal and metabolism, we thought to 

examine the metabolic cell profiles between different culture conditions during short and long 

adaptation. 3D dynamic culture mRNA expression demonstrated up-regulation of Oct4, Rex1, 

Nanog, Cdh1 (all self-renewal markers), on the other hand, proteomics profiling showed up-

regulation of mitochondrial respiration in 3D dynamic compared to 3D static and 2D culture. 

To further understand the link between culture conditions, metabolic profile and self-renewal, 

we measured oxygen consumption rate (OCR), HIF1α, HIF2α, and HKII gene expression. 

 

6.1. Overall Aim 

      Based on the SILAC results (chapter 5), basic metabolic profiles enzymes were different 

between 3D culture static, or dynamic, compared to 2D cultures. The aim of this chapter is to 

validate SILAC data via functional metabolic assays. In addition, to find the link between the 

different metabolic profiles and pluripotency gene expression (chapter 3, section 3.2.3).  
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6.2. Results: 

6.2.1 Comparison of proteomics data with oxygen consumption and gene expression 

measurement 

 

        To validate the SILAC results discussed in the previous chapter that shown increase in 

mitochondrial and TCA cycle proteins on 3D cultures compared to 2D, we measured OCR of 

mESCs mitochondria at same time point. The OCR was significantly increased in both 3D 

compared to 2D culture. We measured oxygen consumption rates (OCR) at different time 

points using a XP Seahorse instrument. Three mitochondrial inhibitors: oligomycin, FCCP and 

rotenone were used sequentially. For 2D-cultures the cells adhered to the wells, while for the 

3D cultures the cells were decapsulated and allowed to adhere for 4 hours, prior to the 

measurement. This procedure was followed as the beads with encapsulated cells were too large 

for the instrument. Cells grown in dynamic culture showed the highest OCR whereas those 

from static cultures were lowers (Fig. 37, iv). In comparison, 2D cells showed the lowest rate. 

The increase in OCR on both 3D static and dynamic culture was consistent with SILAC data 

that showed up-regulation of TCA and mitochondrial respiration proteins (discussed on section 

5.3.3. Chapter 5).  

     To further investigate the differences in OCR, both oxygen sensors HIF1α and HIF2α 

relative gene expression was checked at same time point as the SILAC experiment (day 3).  

Only HIF1α gene expression was significantly higher in 2D culture compared to 3D (both static 

and dynamic) (Fig. 37, i). This results agreed with the increase of oxygen availability role (as 

suggested by OCR results) to supress HIF. To validate more, Hexokinase isoform-2 (HKII) 

mRNA level, the first enzyme in glycolysis pathway, was measured to investigate further if 

switch to anaerobic glycolysis was occurred on 3D cultures (Fig. 37, ii). The HKII is abundant 
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in rapidly proliferating cells given to its ability to bind newly synthesized ATP via the ATP 

synthase complex (Amoedo et al., 2013). HKII had no significant change between the three 

modes of cultures. The mRNA data of both HIF and HKII showed consistency with OCR data 

by suggesting an increase in mitochondrial respiration in both 3D culture. 

      Finally, using western blots, UCP2 protein expression was assessed. UCP2 was expressed 

in both 3D static and 2D culture whereas it disappeared in 3D dynamic condition at day 3 of 

the culture (Fig. 37, iii). These results confirmed both SILAC and OCR measurements at that 

time points, suggesting a higher mitochondrial respiration rate only in dynamic culture given 

to the role of UCP2 to shunt pyruvate away from TCA cycle. However, the UCP2 expression 

on static culture was varying from both high OCR, up-regulation of TCA proteins and its role 

on regulating anaerobic glycolysis, by uncoupling pyruvate from mitochondrial oxidation. This 

dispute may relate to different role of UCP2 on 3D culture compare to data obtained from 

monolayer condition on the literatures.  
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Figure 37 Correlation of UCP2 and Mitochondrial Oxygen Consumption Rate 

i) Relative gene expression of HIF1α and HIF2α at day3 of both 3D static and 

dynamic normalised to 2D culture and β-actin expression. Only HIF1α gene 

expression was significantly higher in 2D culture compared to 3D (both static and 

dynamic); Values are means ± SD, N=3 (*: p<0.05). 

ii) Relative gene expression of HKII. 

iii) UCP2 day 3 and Akt loading control. UCP2 was expressed in both 3D static culture 

and 2D culture whereas it disappeared in 3D dynamic culture,  

iv)  Day 3 OCR measured using Seahorse XF24 analyser. Three mitochondrial 

inhibitors: oligomycin, FCCP and rotenone were used sequentially. Cells grown in 

dynamic culture showed the highest OCR whereas those from static cultures were 

lower. In comparison, 2D cells showed the lowest rate. 
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6.2.2. Prolonged adaption effect in encapsulated mESCs metabolism 

 

     After 9 days of adaptation in alginate beads, the protein expression of UCP2 was restored 

in both 3D dynamic and static culture (Fig. 38, iii). The role of UCP2 in anaerobic glycolysis 

regulation was consistent with increase of HIF2α and HIF1α expression (Fig. 38, i). HIF1α 

binds to a number of glycolytic enzymes and promotes their expression. Thus, HKII was highly 

expressed at day 9 for both 3D static and dynamic cultures (Fig. 38, i). In agreement with the 

increase in HIF1α, HIF2α and HKII, OCR for both 3D static and dynamic cells at day 9 were 

lower than 2D cells (Fig. 38, ii). This suggested switch of cells on alginate beads to hypoxic 

condition. Furthermore, lactate concentration was high at 8 mM as shown in chapter 3 section 

3.2.2, suggesting increased flux of glucose to lactate. It has been suggested that increases in 

cell density are associated with decreases in oxygen diffusion and cells preferably consume 

glucose anaerobically (Volkmer et al., 2012). Similarly, the DNA quantification results shown 

in chapter 3 section 3.2.2, showed improvement on cells proliferation. 

 

 

 

 



143 | P a g e  
© Imperial College 2015 

 

Figure 38 Glycolytic Up-regulation during Long Adaptation  

i) Relative mRNA expression of HKII, HIF1α, and HIF2α at 3D culture at day 9, for 

3D static and 3D dynamic culture. Results suggest a significant increase in glycolytic 

reliance later than day 9 of culture; Values are means ± SD, N=3 (*: p<0.05). 

ii) Day 9 OCR showed a reduction in both 3D (light blue (static) dark blue (dynamic)) 

compared to 2D (yellow).  

iii) Western blot of UCP2 day 9 and Akt loading control. UCP2 were expressed in both 

3D static and 3D dynamic culture. 
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       At day 18, cells in both 3D static and dynamic cultures was still retained a higher level of 

HIF2α and HIF1α mRNA expression (Fig. 39, i). This was consistent with the decrease in OCR 

(Fig. 39, ii) and continued UCP2 protein expression (Fig. 39, iii) in 3D static culture. However, 

this had no adverse effect on OCR which was increased in dynamic culture with no detectable 

UCP2 (Fig. 39, ii & iii). This suggested a metabolic switch to mitochondrial respiration in 3D 

dynamic culture. The detected mRNA level of HIF2α with a 2-fold increase compared with 

day 9 and HIF1α with not significantly changed in dynamic condition did not conflict with 

OCR result. As the mRNA level of HIF α subunits does not always correlate with protein 

amount due to post-translational modifications. The degradation of HIF1α and HIF2α in the 

presence of oxygen occurs via hydroxylation of proline residues by prolyl hydroxylases (Fig. 

44 in next chapter) (PHDs) (Zhou et al., 2012a). Therefore, change in OCR measurement and 

UCP2 might suggest an increase of O2 availability in 3D dynamic culture as TCA cycle 

regulation is subject to availability of oxidation factor.  
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Figure 39 Switch in Metabolism n Dynamic Culture toward Oxidative Phosphorylation 

i) Relative mRNA expression of HIF1α and HIF2α at 3D culture at day 18, for 3D 

static and 3D dynamic culture. Results suggest a significant increase in glycolytic 

reliance later than day 9 of culture; Values are means ± SD, N=3 (*: p<0.05). 

ii) Day 18 OCR showed an increase in 3D dynamic (yellow) decrease in 3D static (light 

blue) compared to 2D (dark blue).  

iii) Western blot of UCP2 day 18 and Akt loading control. UCP2 were disappeared gain 

in dynamic while retained expressed on 3D culture. 
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6.2.3. Metabolic switch enhances cell survival 

 

     The cell viability enhancement after prolonged adaptation of encapsulated cells could be 

related to switch to hypoxic conditions in our 3D culture (inferred from up-regulation of HIF 

expression). Both c-Myc and Snail, widely regarded as survival genes, were increased in 3D 

vs. 2D cultures (Fig. 40). HIF acts with c-Myc (proliferation gene) in metabolic regulation and 

cell survival.  

      The c-Myc mRNA showed up-regulation in both 3D cultures at day 9 with more than a 3 

fold increase when DNA quantification results showed improvement of cell proliferation. 

However, by day 18 its expression dropped significantly in 3D static culture in accordance with 

DNA quantification (which shows decrease as well) whereas in 3D dynamic culture there was 

no significant difference (Fig. 40). This may correlate with a decrease in cell viability in 3D 

static culture (please refer to section 3.2.2). The c-Myc overexpression in both 3D cultures, 

besides its role in cell survival, may link to activation of genes that encode a number of 

glycolytic enzymes. Addition of c-Myc to the reprogramming cocktail of somatic cells was 

found to enhance self-renewal by inducing a metabolic switch to glycolysis (Zhang et al., 

2012). 

       Further support to this hypothesis can be obtained from Snail expression at day 9 (survival 

enhancement gene), which was higher in both 3D cultures. Interestingly, this increase in 

expression is sustained up to day 18 with a 12-fold difference in 3D static culture compared 

with day 9, and 5-fold higher in dynamic culture (Fig. 40). The overexpression of Snail was 

irrelevant to its central role in the EMT, as discussed in chapter 3 section 3.2.4, but instead it 

may work together with HIF to inhibit mitochondrial respiration. Snail1 is regulated by HIF2α 

via its promoter; two hypoxia response elements (HREs). It was found as well that Snail helps 
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detached cells to migrate towards new targets and enable apoptosis resistance (Barrallo-

Gimeno and Nieto, 2005). 

 

Figure 40: Schematic Illustration of HIF1α on Cell-Survival Regulator 

Relative cell-survival gene expression of-Myc and Snail day3, day 9, and day 18 of both 3D 

static and dynamic normalised to 2D culture and β-actin expression. Values are means ± SD, 

N=3 (*: p<0.05). The C-Myc expression was up-regulated at day 9 and down-regulated at day 

18. This suggests HIF1α protein degradation despite high gene expression. 
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6.2.4. Prolonged adaptation effects on self-renewal of encapsulated cells 

 

        Despite cell survival, high expression of HIF1α in cells in both 3D static and dynamic 

culture can suggest mESCs differentiation as it has been reported that increase in HIF1α 

induces transition of naïve mESCs to primed ESCs (Zhou et al., 2012c). Monitoring 

pluripotency marker Rex1, mRNA expression showed up-regulation up to day 18 in 3D 

dynamic cultures, and from day 3 onwards in 3D static cultures (Fig. 41, ii). Despite the switch 

in metabolism in encapsulated cells Rex1 expression was 8-fold higher at day 18 than day 3 of 

culture suggesting that self-renewal capacity is retained. Rex1 is recognised as a highly specific 

inner cell mass marker both at the mRNA and protein level (Climent et al., 2013). Consistent 

with that, Oct4 showed increase on expression through the culture as discussed on chapter 3 

(Fig. 41, i). 



149 | P a g e  
© Imperial College 2015 

 

Figure 41: 3D Prolonged Adaption Effect on Self-Renewal 

i) Relative gene expression of Oct4 at Day 1, Day 3, Day 9, and Day18. 

ii) Relative gene expression of Rex1 day 1, day3, day 9, and day 18 of both 3D static and 

dynamic normalised to 2D culture and β-actin expression. Values are means ± SD, N=3 

(*: p<0.05). There is steady increase in its expression. 
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6.2.5. Change in mitochondrion morphology in 3D dynamic 

 

        Transmission electron microscopy was used to examine morphological changes in 3D 

dynamic culture at day 9 where the switch to glycolytic metabolism occurred. The image 

showed rounded, damaged crista due to hyperoxia (high oxygenation) in dynamic culture. This 

can lead to cell toxicity, and increased mitochondrial permeability (Fig. 42, a-d). This switch 

may also be due to mtDNA mutation (mtDNA encode for 13 proteins, 22 tRNAs and 2 rRNA). 

ESC mitochondria are characterised by a punctate, perinuclear arrangement and immature 

cristae. Morphological modifications towards an electron-dense matrix and developed cristae 

occur during ESC differentiation and are accompanied by a shift from a glycolytic-based 

metabolism towards oxidative phosphorylation. Although ESCs favour glycolysis over 

oxidative phosphorylation, mitochondria in ESCs possess functional respiratory complexes. 

Conversely, an opposite change for most of these features is observed during the 

reprogramming of somatic cells. However, regulation of the metabolism in self-renewal is still 

unclear despite the clear UCP2 role  (Zhang et al., 2011) in shunting pyruvate away from 

mitochondria leading to high HKII and low PDH expression (Varum et al., 2011).  
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Figure 42: Mitochondrial Morphology Change and Effect on Metabolic Function 

Electron micrograph of 3D dynamic culture at day 9. a) Peri-nuclear mitochondrial distribution 

with relatively large nucleus: cytoplasm ratio. b) Mitochondrial fusion mechanism suggesting 

cellular activity. c, d) mitochondrial crista degradation  
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6.3. Discussion 

      Our data suggested higher mitochondrial respiration in both 3D conditions at day 3 inferred 

by SILAC data, and OCR. However, UCP2 protein uncoupled mitochondrial activity was 

expressed on static and not in dynamic culture at day 3. The abundance of uncoupling protein-

2 (UCP2) in the cytoplasm serves to shunt pyruvate away from mitochondrial respiration (Ito 

and Suda, 2014). Absence of UCP2 protein in dynamic culture was tightly a correlate with it 

is role in mitochondrial regulation, since metabolic profile showed a switch to oxidative 

phosphorylation. However, expression of UCP2 protein in 3D static culture had no effect in 

decrease mitochondrial activity (as it up-regulated). These results can be also contradicted to 

the literature that suggesting UCP2 role in slef-renewal control. The 3D dynamic culture 

showed significant high expression of Rex1, self-renewal marker wheile presence of UCP2 

protein in static condition unable promoting the pluripotency. Rupprecht et al modulated mESC 

neuronal differentiation and comprehensively checked the UCP subfamily expression. Only 

UCP2 protein was expressed at early stages prior to loss of OCT4 expression. Their results 

confirm tight connection between UCP2 and self-renewal (Rupprecht et al., 2014). Down-

regulation of UCP2 occur during mESCs differentiation to cardiomyocyte. Additionally, 

ectopic expression of UCP2 was found to impair ESC differentiation. Therefore, UCP2 has 

been regarded as an ESC self-renewal marker, the loss of expression indicates loss of self-

renewal (Zhang et al., 2011). However Our results may suggest a distinct role of UCP2 in 

metabolic regulation not previously examined. As, the precise UCP2 mechanism that prevents 

pyruvate oxidation via mitochondrial respiration is still undetermined (for our hypothesis and 

further discussion please refer to section 7.3 in next chapter).  

         At day 9, 3D dynamic culture restore UCP2 protein expression, while 3D static UCP2 

protein band remain expressed. There were switch occurred in both 3D cultures to hypoxic 

condition inferred by low OCR. Despite this switch, cells remained pluripotent inferred with 
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both Oct4 and Rex1 mRNA expression in dynamic, and likewise 3D static culture also retrieved 

pluripotent genes expression. In addition both, HIF1α and HIF2α expression increased on both 

3D conditions. Ectopic expression of HIF1α has been shown to promote the transition of naive 

ESC to primed EpiSCs (Zhou et al., 2012c). Consistent with Zhou, Jeong et al revealed an 

association of HIF1α with LIF receptor (LIFR) protein inhibition at 5% O2 leading to a decrease 

in LIF/STAT3 signalling and therefore differentiation of mESCs (Jeong et al., 2007). However, 

association of HIF and mESCs differentiation is controversial. For instance, Ying et al support 

our findings of pluripotency by showing that hypoxia and HIF promote mESCs self-renewal. 

In addition, exposure of non-stem cell populations (such as glioblastoma cells) to hypoxic 

conditions could activate the stem cell genotype such as Oct4, Nanog, and c-Myc (Varum et 

al., 2011). Under severe hypoxic condition, HIF1α in the cytoplasm translocate to the nucleus, 

and stabilises the expression of self-renewal proteins (Oct4, Nanog, and Sox2), while HIF2α 

binds to the Oct4 promoter and enhances its expression. Switching from oxidative 

phosphorylation to glycolysis and pluripotency activation is associated with successful somatic 

cell reprogramming to iPSC (Zhou et al., 2012a). Based on these studies, we could say that 

increase in hypoxic condition and HIF1α promote self-renewal on 3D cultures.  

     In addition, higher mRNA level of HIF1α can be linked as well to the increase on Snail and 

c-Myc expression during day 9 as their regulation is under its immediate control. Both act as 

well with HIF in metabolic regulation (Zhang et al., 2012). For instance Snail1 mediates a shift 

in metabolism toward anaerobic glycolysis. Three subunits of cytochrome C oxidase (COX), a 

part of complex IV of the ETC complex, such as COX7a, have been identified as direct target 

of Snai1. Cox7a inhibition is leading to repression of mitochondrial respiration. Furthermore, 

Snail1 was found to bind fructose-1, 6-biphosphatase1 (FBP1) and represses its expression. 

FBP1 is the rate-limiting enzyme that regulates glucose uptake and oxygen consumption. It is 

suppressed by Snail to shunt glucose from mitochondrial oxidation (Lu et al., 2014). 
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       In addition to self-renewal enhancement and switch to anaerobic glycolysis at day 9, 

hypoxic conditions introduced later in the culture were responsible for cell viability and 

proliferation enhancement. As HIF is directly link to cell-survival genes such as C-Myc and 

Snail which both up-regulated on 3D condition. For instance, extreme reductions of O2 (to 

0.5%) in mESCs for 48 hours is found to enhance secretion of vascular endothelial growth 

factor (VEGF) that mediates cell-survival pathways (Brusselmans et al., 2005). Consistent with 

that, at low O2 (1.5%) viability was shown to improve by 50% in comparison to ambient oxygen 

tension via Wnt/β-catenin signalling (Mazumdar et al., 2010). 

        On day 18 OCR was increased in 3D dynamic culture, UCP2 disappeared and Rex1 was 

6 fold up-regulated, whereas in static condition OCR was very low, UCP2 and Rex1 sustained 

their expression. Positively expressed Rex1 is highly associated with mESCs self-renewal and 

Rex1 knockouts result in loss of pluripotency (Masui et al., 2008). The ability to sustain 

pluripotency throughout the culture period time was irrespective to the metabolic switch and 

temporal fluctuations in the expression of UCP2. So that, the low correlation between 

mitochondrial respiration and self-renewal in our results early or later on the culture, suggesting 

importance of functional mitochondria in stem cells at least on 3D dynamic sitting. Uses of 

carbonyl cyanide m-chlorophenylhydrazone (CCCP, a protonophore depolarising the inner 

mitochondrial membrane, resulting in uncoupled oxidative phosphorylation) in uncoupling 

oxidative phosphorylation result in a reduced mESCs proliferation rate suggesting a role of 

mitochondria in ESC energy production (Mandal et al., 2011). Further supporting to our results, 

when ESCs were treated with antimycin A (i.e. molecule blocking the electron flow in the 

complex III) there was an increased expression of NANOG not OCT4 with mRNA levels 

remaining unchanged. The ESCs under these conditions were able to form teratomas and 

repress differentiation genes. This work suggested that ROS production from complex III as a 

result of antimycin a treatment was responsible for the up-regulation of NANOG expression. 
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This result implies the role of mitochondrial respiration products in controlling pluripotency 

and differentiation (Varum et al., 2009). 

       Our result might suggest different metabolic regulator on 3D culture compared to exist 

data in literature obtained from monolayer culture. For instance, in-vivo energy production in 

early embryo development is reliant on glucose oxidation and acceleration of metabolic activity 

occurs after the 4- or 8-cell stage. This is associated with segregation of TE and ICM stage 

results in up-regulation of Glut1, HK, and PFK1 (Ito and Suda, 2014). This switch to anaerobic 

glycolysis is aimed at avoiding ROS release in order to protect the genome of primordial germ 

cells (PGCs) developed at this critical stage (Zhang et al., 2015). Thus, our 3D sitting is more 

relevant to embryo metabolic development compare to in-vitro culture. For instance, lower 

OCR was suggested for hepatocyte cells grown in hollow fibre bioreactors and this was 

explained by the fact that cell density in 3D constructs mimics intracellular organisation leading 

cells to be less stressed and show a basal oxygen demand (Patzer, 2004). In addition, mESCs 

mitochondria is ’’bivalent’’ having the ability to switch from glycolysis to oxidative 

phosphorylation based on energy demands (Zhang et al., 2011). In conclusion, flexibility of 

mitochondrial in dynamic culture suggest different energetic behaviour of mESCs from what 

known on the literature which need further investigation.  
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CHAPTER 7: General Conclusion and Further Work Suggestion 

 

7.1. Summary and major finding of the thesis 
 

       For therapeutic transplant and tissue engineering, an appropriate cell number, xeno-free 

culture environment, and single cell population are required; however it remains inefficient to 

obtain good quality scale-up cells from current culture methods. Therefore, integration of tissue 

engineering and stem cells can successfully and efficiently induced appropriate SC population 

without propagate extrinsic factors (as discussed in literature review). Such a source of cells 

might be advantageous, because chemical inhibitors (inhibitors 2i, and 3i), gene mutation (due 

to frequent cell passaging,) and exogenous undefined growth factor treatment (FBS, MEF’s 

feeder) are not required to achieve naïve state with also sufficient cell number. 

     A major new finding of the present study is that 3D with or without bioreactor can regulate 

murine ESCs’ self-renewal. This can be due to deposition of ECM, and change in cell 

morphology. However, using dynamic culture can be more beneficial for prolong adaption and 

to obtain higher cell number. This may be associated with improvement of mass transfer and 

reduced metabolites waste accumulation. 

     The ability of 3D cultures to sustain cell viability, proliferation, and expression of self-

renewal markers makes them an interesting model for in vitro processing as well important in 

large scale production of stem cells for therapeutic application. In working towards the 

objectives described in chapter 1 of this thesis, we first developed a protocol for the efficient 

extraction of mESCs from alginate beads that was able to overcome loss of cells (during the 

dissociation process). Application of these extraction methods facilitated the subsequent 

proteomic experimentation of the encapsulated mESCs. This thesis demonstrates that mESCs 

can be maintained in medium containing isotopically labelled arginine and lysine in conditions 
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compatible with SILAC protocol for the characterisation of mESC protein expression changes 

in 2D, 3D culture (both static and dynamic) settings (Chapter 5). From the SILAC proteomics 

screen, 1967 proteins were expressed in the three different culture modes of these proteins, 527 

exhibited differentially expressed. Functional validation of metabolic differences identified on 

the basis of the SILAC experiments, was used to determine their effect on pluripotency in 

prolonged adaption of mESCs. Measuring oxygen consumption rates at different time points 

showed fluctuations from high values (at day 3) to lower ones (at day 9) on 3D conditions. 

Analysis of the expression of hypoxia-related gene 1 & 2 α subunits was carried out and 

additionally a combination of approaches includes measurement of glucose/lactate 

concentrations, and UCP2 protein expression elucidated the behaviour of mESCs in prolonged 

3D culture affect (both static & dynamic). Our data suggest low correlation between 

metabolism and self-renewal on 3D culture unlike what is suggested on the literatures. Taken 

together, the 3D culture analysis (including gene expression), and detailed proteins profiling of 

mESCs’ behaviour in 3D culture provide an effective toolbox for obtaining a more 

comprehensive understanding of how encapsulated mESCs are regulated in vitro.  

 

7.2. General conclusions and thoughts 

 

     It was initially observed using DNA quantification that a decrease in cell viability occurred 

(almost 50%) from initial seeding and retrieves after 4 days in both 3D static and dynamic 

culture. The use of SILAC combined with mass spectrometry showed up-regulation of ECM, 

TCA cycle enzymes, cell cycle arrest and apoptosis proteins in both 3D cultures compared with 

2D culture. The surviving cells escaped the stress of environmental change by firstly inducing 

cell-cycle arrest in order to reduce the energy demands required for metabolite precursor 

synthesis. Secondly, encapsulated cells activate fatty acid oxidation to cope with ATP demand 
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to enable ECM synthesis and their deposition to occur. Therefore, the number of ECM proteins 

was up-regulated. However, hyperoxia (high oxygenation) in dynamic culture can lead to cell 

toxicity, and increased mitochondrial permeability. Our SILAC data showed up-regulation of 

mitochondrial carrier proteins. Therefore, cells in dynamic culture reduce glucose flux through 

TCA via down-regulation of glycolytic enzymes to minimise the load on mitochondria. Thus, 

cells switch to glycine catabolism that occurs in cytosol. In contrast 3D static conditions, which 

broadly have lower mass transfer rates, showed up-regulation of pyruvate dehydrogenase 

suggesting an increase in pyruvate flux through the TCA cycle.  

        DNA damage as inferred from up-regulation of ATR and ATM proteins in 3D static 

culture. Activation of DNA single strand damage repair system (as inferred from up-regulation 

of ATR and ATM proteins) in 3D static culture, suggests cell differentiation due to the absence 

of this mechanism in ESCs. The absence of this mechanism is to prevent inheritance of 

mutation to daughter cells. Therefore, pluripotency gene profile showed variation with high 

Rex1, Nanog, and Oct4 expression in dynamic over static culture at day3 of encapsulation in 

spite of similarities shown between cells in the profile of pluripotency proteins. This is 

associated with either the low correlation between gene transcript level and protein 

concentration due to effect of post-translation regulation, or transitory differentiation stage. 

However, our SILAC combined with MS was not able to detect this low abundance proteins 

contribute to self-renewal transcription factors regulation. 
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 Figure 43 3D Dynamic Culture Metabolic Switch Effect on Self-Renewal   

High mitochondrial activity was associated with down-regulation of glycolytic enzymes, up-

regulation of GLDC and pyruvate carboxylase at day 3. Then at day 9 metabolic switch occur 

to anaerobic glycolysis with increase of pyruvate flux to lactate. However, at day 18 cells retain 

to OXPHO as suggested by increase on oxygen consumption rate. 

 

      The switch towards hypoxic conditions later in the prolonged adaption (day 9) was 

irrespective of unchanged atmospheric (20%) oxygen. It is known that in static culture 

conditions, there are low external and internal mass transfer rates. However switch to hypoxic 

in present of dynamic condition, which supposed to enhance diffusion, may be further 

attenuated by increases of cell density or ECM deposition. However after prolonged culture 
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(day 18), dynamic cultures switch to higher oxygen consumption, this may a sequence of an 

increase in breakdown of alginate beads (Fig. 43). This does not dispute with HIF1α mRNA 

expression at day 18 due to sensitivity of the protein to oxygen availability. Checking HIF1α 

protein stability at day 18 will illustrate the efficiency of its mRNA expression (Fig. 44).  

 

Figure 44: HIF1α Degradation Process in Presence of Oxygen 

HIF1α protein has low stability and it regulate via oxygen, citrate and succinate concentration.  

 

        Previous work in our group (unpublished) showed that reducing ambient O2 to 5% 

decrease cell proliferation and coincides with a negative effect on pluripotency gene profile. In 

contrast, hypoxic condition acquired in our culture by up-regulation of an inducible hypoxia 

genes along with low oxygen consumption rates, contrariwise enhance cell proliferation and 

yet pluripotency. Similar finding of lower OCR were previously suggested for hepatocyte cells 

grown in hollow fibre bioreactors and it was argued the cells’ density in 3D constructs mimics 

intracellular organisation, leading cells to be less stressed and so reduce demand for the basal 
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oxygen (Patzer, 2004). This result suggests a possible role of the ECM niche, formed during 

prolonged adaption, in controlling nutrient and oxygen diffusion to the cells rather than ambient 

oxygen tension. 

 

7.3. UCP2 distinct role in 3D culture from 2D culture 

 

       UCP2 protein expression is detected at the pluripotency stage while it disappears upon 

embryoid body differentiation. In addition, UCP2 ectopic overexpression reduces the ability of 

cells to commit to any cell lineages (Zhang et al., 2011). This suggests that UCP2 plays a 

central role in the regulation of self-renewal genes. However, the exact mechanism of how 

UCP2 regulates self-renewal not identified yet (Hsu and Qu, 2013). Our results obtained from 

3D cultures suggest distinct role from those already established in 2D culture. These 

differences come from the expression of UCP2 in differentiated 3D static culture with active 

mitochondrial at day 3. On the other hand, UCP2 disappear in pluripotent 3D dynamic cultures. 

UCP2 decreases glycolytic flux to the TCA cycle (Zhang et al., 2011). We hypothesised that 

TCA intermediates flux from nonglucose carbon impose the need for UCP2 expression. 

Convection of dynamic bioreactor enhances internal and external diffusion. Therefore, 

uncoupled mitochondrial from glucose oxidation by UCP2 was not necessary. Availability of 

different carbon source glutamine or fatty acids in 3D dynamic replenishing critical 

intermediates to TCA cycle. Thus, UCP2 is highly conserved to pyruvate oxidation uncoupling 

from mitochondria. Increased UCP2 expression in 3D static condition was to shift from the 

pyruvate oxidation due to reduced metabolites availability. The presence of cells either on 3D 

or 2D in static condition increase the demand for UCP2 as differentiation resistance. It is role 
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in static to control diffusion of bulk glucose from surface to intracellular in order to decrease 

oxidative stress (Fig. 45).  

 

Figure 45 Effect of Metabolic Profile in Cell Pluripotency 

a) The increase in glycolytic flux and de novo synthesis in 2D culture may suggest cell 

pluripotency.   

b) There was increased in both glycolytic enzymes and fatty acid oxidation associated 

proteins in 3D static culture. Down-regulation of oxidative phosphorylation is inferred 

by up-regulation of UCP2. It may associate with priming ESCs. 

c) There was no UCP2 expression, low de novo fatty synthesis and glycolytic enzymes 

and increase in fatty acid oxidation. This may contribute on naïve mESCs in 3D 

dynamic culture. The green arrows suggest low flux whereas red one propose high flux. 
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Our diagram at Fig. 45 explain suggestive possible role of UCP2 at day 3 of mESCs 

pluripotency expansion culture. The necessity of UCP2 to mESCs phenotype suggested in the 

literature (based on 2D culture model) is a defence mechanism and self-renewal exit control. 

This is because low diffusion rate for other metabolites, reliance on glucose as solely carbon 

source, and accumulation of metabolic by-product. In our 3D static culture, cells experience 

nutrient depletion as suggested by Glut1 up-regulation, thus UCP2 expression act to increase 

ATP production rate via avoiding mitochondrial respiration. This is to overcome the glucose 

oxidant stress that will leads to cell differentiation (Fig. 46). Furthermore, low correlation 

between self-renewal gene expression profiles and UCP2 expression may be associated with a 

decrease in mitochondria-nuclear crosstalk in encapsulated cells or suggest further regulation 

mechanism.  

 

Figure 46: Model of UCP2 Role in Regulation of Electron Transport Chain 

i) Electron carbon source of 3D dynamic culture in absence of UCP2 protein expression 

was from FA. This switch has no effect on cell pluripotency due to improve of diffusion 

rate. 

ii) Blocked of NADH2/FADH2 electron transport via UCP2 action induces mESCs 

differentiation due to low mass transfer on static condition. 
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Finally our SILAC results suggest down-regulation of glycolysis and switch to FAO in 3D 

dynamic culture, this data suggest a tight regulation of these two metabolism for pluripotency. 

We are suggesting possible role of this switch to regulate pluripotency on 3D dynamic. As 

SILAC results, showed increase on FAO enzymes and down-regulation of glycolytic proteins. 

However, the mechanism of how fatty acid regulates self-renewal is remain to be study. To 

conclude, improvement of diffusion rate in dynamic culture provides variety of competed 

carbon source to encapsulated cells. In comparison, accumulation of bulk glucose in static in 

2D or 3D leads to glucose-related oxidant stress.  

 

Figure 47 illustration of carbon metabolism regulate cell pluripotency. 

Model of pluripotency regulation in 3D dynamic culture at day 3 via switch in carbon 

source from glucose to fatty acid (FA).  
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7.4. Suggestion for further work 

 

        Our assumption of naïve pluripotency in dynamic culture was made by the observation of 

high expression levels of the Rex1 and Oct4 genes and simultaneous low expression of the 

differentiation marker FGF5. Alternatively, stem cells functional assays such as chimera 

generation in vivo or embryoid body formation in vitro can establish the certainty of self-

renewal.  

       One of the limitations of the work described in this thesis is that the population-average 

gene expression levels can mask intra-population heterogeneities. In relation to alginate 

entrapped mESCs, it is uncertain whether the gene expression levels are uniform throughout 

the entire population of the cells. Characterizing individual cells using FACS will sort into sub-

populations and define the homogeneity of the sample.  

      Differential protein expression highlighted the role of oxidative stress and further work 

could be carried out by measuring ROS, glutathione and ATP at day three of the experiment to 

illustrate the effect of hyperoxia on cell self-renewal in dynamic conditions. This can be done 

in presence or absence of 2-Deoxy-D-glucose that will inhibit glucose uptake and reduce the 

flux through glycolysis and so investigate significance of 3D dynamic culture based on cell 

viability assays. If cells survive with high ATP production (measured by firefly luciferase), this 

will confirm using alternative carbon source such as glycine or fatty acids as suggested by the 

SILAC results. This switch toward amino acid or fatty acid catabolism will be an escape 

mechanism from oxidative stress, which could be confirmed using ROS assays. This finding 

will be consistent with the recent assumption of the importance of glycine and fatty acid 

catabolism in cancer proliferation and metastasis (Locasale, 2013). Further the result will shed 

light on presence of these alternative survival pathways in ESCs to avoid oxidative stress and 

sustain self-renewal with ability to adapt traumatic environment.  
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        Down-regulation of cellular retinoic acid-binding protein 1 (Crabp1) in 3D dynamic 

culture (day3) compared with both 2D and 3D static suggest inhibition epidermal 

differentiation. This protein is regulated by RA treatment or Notch activation and negatively 

regulated by Wnt/β-catenin signalling. In addition to number of proteins discussed in chapter 

5, section 5.6.7 and low expression of Nestin genes. Blocking spontaneous differentiation to 

ectoderm in ESCs culture is beneficial and promotes naïve cell population. The possible 

recognisable of neuroectodermal proteins down-regulation in 3D dynamic culture is oxidative 

stress. This link can be obtained from sensitivity of neural progenitor stem cells to oxidative 

stress which cause their damage and leads to a numerous of neurodegenerative disease. The 

Crabp1 proteins role in blocking ectoderm lineage and promote naïve ESCs is not clear yet. 

Identifying the pathway and functionality using both knockout and overexpression study may 

suggest new pluripotency master regulator. 

        Finally, this work can be beneficial for stem cell bioprocessing system enhancement. For 

instance, reducing oxidative stress at initial days will improve cell viability. This can be done 

for example using mitochondrial respiration inhibitors or decrease fluid motion rate. Another 

root direction is finding the link between hypo-methylation proteins and stress response 

signalling. In conclusion, this thesis can show in-depth effect of environment change in stem 

cells behaviour in vitro and display different corner view of stem cell characteristic.  
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Appendices 
 

 

Figure 48 MTS standard Curve 

 

 

 

Figure 49 DNA quantification standard curve 
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Table 7: Self-renewal proteins 

Description Gene Σ# Unique 

peptide 

2D/3S 3S/3D 3D/2D 

Telomere-associated protein RIF1   Rif1 44 0.7 1.2 1.4 

Catenin alpha-1  Ctnna1 27 1.1 0.9 1.0 

Alkaline phosphatase, tissue-nonspecific isozymes Alpl 18 0.2 1.3 1.4 

Undifferentiated embryonic cell transcription factor 1  Utf1 17 0.8 1.1 2.0 

Cbx3 protein   Cbx3 14 0.9 1.1 1.1 

Developmental pluripotency-associated protein 5A s  Dpaga 11 0.9 0.8 1.0 

Cadherin-1   Cdh1 9 1.0 0.9 1.7 

Basal cell adhesion molecule   Bcam 8 2.0 0.7 1.0 

Beta-catenin-like protein 1   Ctnnbl1 6 0.9 1.0 1.4 

POU domain, class 5, transcription factor 1   Pouf5f1 6 1.0 1.4 0.6 

Transcription factor SOX-2  Sox2 5 1.2 1.5 0.8 

GTPase Eras Eras 5 2.0 1.3 0.5 

CD9 antigen  Cd9 4 0.7 0.8 1.7 

E3 ubiquitin-protein ligase RING2   Rnf2 4 1.3 1.2 0.6 

Isoform Stat3B of Signal transducer and activator of transcription 3  Stat3 4 1.1 1.0 1.0 

Isoform 2 of Glycerol-3-phosphate dehydrogenase 1 Gpdl1 2 1.0 1.1 0.6 

 

 

Table 8: Apoptosis 

Description Gene Σ# Uniq pept 3S/2D 3S/3D 3D/2D 

Cytochrome c oxidase subunit 7A2, mitochondrial  Cox7a2 2 1.85 7.11 1.10 

DNA mismatch repair protein Msh3  Msh3 3 100.00 100.00 0.51 

DNA repair protein RAD50  Rad50 10 100.00 0.94 1.11 

Heat shock 70 kDa protein 1A  Hspa1a 10 2.58 0.30 3.91 

Histone chaperone ASF1A  Asf1a 4 3.58 7.03 0.68 

Isoform Mt-VDAC1 of Voltage-dependent anion-

selective channel protein 1  

Vdac1 16 2.06 0.84 3.07 

Kinetochore-associated protein 1  Kntc1 7 4.19 6.44 0.59 

Membrane-associated progesterone receptor component 

2  

Pgrmc2 5 15.36 1.15 2.21 
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Programmed cell death protein 5  Pdcd5 9 0.61 0.89 0.43 

Thioredoxin-related transmembrane protein 1  Tmx1 6 3.86 1.17 10.83 

Thioredoxin-related transmembrane protein 2  Tmx2 6 1.85 5.94 2.55 

Tumor suppressor p53-binding protein 1  Tp53bp1 6 1.20 20.33 1.05 

DNA mismatch repair protein Msh3  Msh3 3 100.00 100.00 0.51 

DNA topoisomerase 2-beta  Top2b 6 100.00 2.66 0.56 

Histone chaperone ASF1A  Asf1a 4 3.58 7.03 0.68 

Kinetochore-associated protein 1  Kntc1 7 4.19 6.44 0.59 

Protein FAM162A  32.26 5 2.07 7.40 1.66 

Lysine-specific demethylase 3A  9.30 9 5.06 1.27 0.87 

Presenilins-associated rhomboid-like protein, 

mitochondrial 

parl 3 21.80 1.68 1.67 

Vesicle transport through interaction with t-SNAREs 

homolog 1B  

vit1b 4 5.23 0.86 1.15 
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Table 9: Cell Cytoskeleton  

Description Gene Σ# Unique peptide 3S/2D 3S/3D 3D/2D 

Protein Fat1 fat1 28 18.87 1.04 1.95 

Moesin Msn 25 0.60 0.73 0.49 

A-kinase anchor protein 12 Akap12 24 0.77 1.17 0.48 

Protein Kif13b kif13b 16 10.64 1.08 0.92 

Rho GDP-dissociation inhibitor 1 Arhgdia 16 0.63 0.94 0.48 

LIM domain and actin-binding protein 1 lima1 13 100.00 0.92 1.12 

LIM and SH3 domain protein 1 lasp1 12 100.00 0.73 0.83 

Laminin subunit gamma-1 lamc1 11 2.05 1.00 1.75 

Serine/threonine-protein phosphatase 2A catalytic 

subunit alpha isoform 

ppp2ca 9 15.38 1.02 0.66 

Capping protein (Actin filament), gelsolin-like Capg 7 100.00 0.79 1.70 

Isoform 2 of Twinfilin-2 twf2 7 4.31 1.49 0.51 

Cofilin-2 Cfl2 7 0.77 1.07 0.05 

Nucleoporin NDC1 Tmem48 6 100.00 1.26 1.97 

Protein Gm2904 Esd 6 6.49 0.84 1.34 

Actin, alpha cardiac muscle 1 Actc1 6 0.82 6.37 0.87 

Transgelin Tagln 6 0.59 1.06 0.48 

Isoform 2 of Transmembrane emp24 domain-

containing protein 1 

tmed1 4 5.62 0.99 1.59 

Rho-related GTP-binding protein RhoC Rhoc 4 0.84 1.54 0.34 

Phosphoserine phosphatase   Psph  3 0.84 0.96 0.47 

 

Table 10: Glycolysis Enzyme Down-Regulated In both 2D and 3D static vs.3D dynamic 

Description Gene Σ# Unique 

peptide 

2D/3S 3D/3S 3D/2D 

Phosphoglycerate kinase 1  Pgk1 32 1.4 0.5 0.5 

L-lactate dehydrogenase A chain  Ldha 20 1.8 0.4 0.3 

Triosephosphate isomerase  Tpi1 14 0.8 0.4 0.3 

6-phosphofructokinase, liver type Pfkl 26 1.3 0.4 0.5 
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Table 11: Oxidative Phosphorylation 

Description Gene Σ# Uniq pept 3S/2D 3S/3D 3D/2D 

Cytochrome c oxidase subunit 7C, mitochondrial  Cox7c 3 1.452 1.227 41.760 

NADH dehydrogenase [ubiquinone] 1 subunit C2  Ndufc2 8 1.757 0.848 9.587 

Dehydrogenase/reductase SDR family member 1  Dhrs1 4 0.739 0.891 8.791 

ATP synthase subunit g, mitochondrial  Atp5l 10 1.276 0.912 7.910 

CDGSH iron-sulfur domain-containing protein 1  Cisd1 7 1.667 0.985 6.583 

Cytochrome b-c1 complex subunit 6, mitochondrial  Uqcrh 7 1.185 1.038 6.014 

cAMP-dependent protein kinase type I-alpha regulatory subunit Prkar1a 5 0.756 0.816 5.686 

Isocitrate dehydrogenase 3 (NAD+) beta  Idh3b 6 1.101 0.962 5.516 

Isoform 2 of Estradiol 17-beta-dehydrogenase 11  Hsd17b11 6 1.285 1.173 5.179 

Reactive oxygen species modulator 1  Romo1 4 1.182 0.945 4.734 

Amine oxidase [flavin-containing] A OS=Mus musculus 

GN=Maoa PE=1 SV=3 - [AOFA_MOUSE] 

Maoa 9 1.002 1.253 2.758 

Mitochondrial import inner membrane translocase subunit 

Tim10  

Tim10 5 1.117 0.832 2.251 

ATP synthase subunit e, mitochondrial  Atp5i 13 1.278 0.903 2.234 

Cytochrome b5 type B  Cyb5b 6 1.146 1.005 2.209 

ATP synthase subunit f, mitochondrial  Atp5j2 8 1.361 0.900 2.192 

Cytochrome c oxidase subunit 4 isoform 1, mitochondrial  Cox4i 21 1.493 1.143 2.179 

Cytochrome b-c1 complex subunit Rieske, mitochondrial Uqcrfs1 11 1.367 1.351 2.142 

Cytochrome b-c1 complex subunit 8  Uqcrq 9 1.278 0.866 2.129 

Aspartate--tRNA ligase, mitochondrial  Dars2 5 1.026 1.203 2.122 

Isoform 2 of Cytochrome c1, heme protein, mitochondrial  Cyc1 11 1.389 0.812 2.116 

Mitochondrial Rho GTPase 1  Rhot1 4 1.433 0.933 2.114 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 

4 

Ndufb4 6 1.466 1.165 2.077 

Pyruvate carboxylase  Pcx 25 1.672 1.161 2.012 

 

 

Table 12: Glycine Cleavage System  

Description Gene Σ# Uniq 

pept 

3S/2D 3S/3D 3D/2D 

Dihydrolipoyl dehydrogenase, mitochondrial  Dld 18 1.265 0.865 2.002 

Glycine cleavage system H protein, mitochondrial  Gcsh 3 1.106 0.990 2.092 

Glycine dehydrogenase [decarboxylating], mitochondrial  Gldc 20 1.677 0.752 2.323 
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Table 13: Differentiation protein on 3D static condition 

Description Gene Σ# Uniq 

pept 

3S/2D 3S/3D 3D/2D 

E3 ubiquitin-protein ligase HECTD1  Hectd1 16 0.904 1.201 0.019 

E3 ubiquitin-protein ligase NEDD4  Nedd4 26 0.495 1.193 0.488 

Protein Zfml  Zfml 8 5.983 1.285 1.084 

Targeting protein for Xklp2  Tpx2 10 100.000 1.119 1.672 

AFG3-like protein 2 Afg3l2 6 6.624 1.111 1.379 

Dihydropyrimidinase-related protein 2 Dpsyl2 6 0.623 0.845 0.258 

GMP reductase 2  Gmpr2 3 0.747 0.600 0.452 

H1 histone family, member X H1fx 6 0.241 1.925 0.913 

Lysine-specific demethylase 3A  kdm3a 9 5.064 1.268 0.875 
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Table 14: Protein Synthesis 

Description Gene Σ# Uniq pept 3S/2D 3S/3D 3D/2D 

Thiosulfate sulfurtransferase  Tst 8 5.13 2.28 1.21 

Ubiquitin-conjugating enzyme E2 O Ube2o 7 0.71 100.00 0.75 

Isoform 4 of Coatomer subunit gamma-2  Copg2 6 5.96 8.01 0.93 

28S ribosomal protein S26, mitochondrial  Mrps26 5 0.87 6.13 48.41 

Cathepsin B  Ctsb 4 100.00 100.00 9.36 

Protein RER1  Rer1 4 100.00 100.00 12.44 

39S ribosomal protein L28, mitochondrial  Mrpl28 4 0.95 6.63 0.98 

60S ribosomal export protein NMD3  Nmd3 4 0.90 5.06 0.82 

Golgi reassembly stacking protein 2 Gorasp2 4 100.00 2.20 0.97 

Interferon-induced transmembrane protein 2  Ifitm2 3 0.77 100.00 1.80 

39S ribosomal protein L41, mitochondrial  Mrpl41 3 0.74 6.65 1.00 

DnaJ homolog subfamily C member 3  Dnajc3 3 100.00 5.74 0.73 

Interferon-stimulated 20 kDa exonuclease-like 2  Isg2012 2 5.07 7.99 1.81 

 

Table 15: Cell Cycle 

 

Description Gene Σ# Uniq 

pept 

3S/2D 3S/3D 3D/2D 

Cytoskeleton-associated protein 4  Ckap4 25 2.82 1.04 2.57 

Ataxia telangiectasia mutated homolog  Atm 22 0.72 8.25 0.72 

G2 and S phase-expressed protein 1  Gtse1 14 3.85 0.77 53.91 

Bromodomain adjacent to zinc finger domain protein 2A  Baz2a 13 9.43 1.57 7.38 

Histone deacetylase 6 (Fragment)  Hdac6 10 100.00 1.04 1.01 

Centromere protein V  cenpv 10 5.71 1.68 1.34 

Cytoskeleton-associated protein 2 Cap2 9 100.00 0.76 3.59 

Isoform 1 of Core histone macro-H2A.1 H2afy 9 2.17 1.29 1.60 

Isoform 2 of Cell division cycle protein 23 homolog Cdc23 8 100.00 0.77 6.00 

Cullin-1 (Fragment)  Cul1 8 0.64 6.78 0.87 

Sister chromatid cohesion protein PDS5 homolog A  Pds5a 7 5.35 1.32 1.24 

Mitotic spindle assembly checkpoint protein MAD1 Mad1 7 5.05 1.60 2.30 

Kinetochore-associated protein 1  Kntc1 7 4.18 6.44 0.59 

Isoform 3 of Histone acetyltransferase KAT7  Kat 7 1.38 1.33 2.44 
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Cell division cycle protein 20 homolog Cdc20 6 100.00 1.00 1.26 

DNA topoisomerase 2-beta Top2b 6 100.00 2.66 0.56 

Isoform 2 of Basigin  Bsg 6 0.97 100.00 1.03 

Dynactin subunit 2  Dctn2 6 0.85 1.63 0.07 

Dynactin subunit 3 Dctn3 6 0.34 1.42 0.62 

Isoform 2 of Inner centromere protein Incenp 5 100.00 100.00 2.69 

Cyclin-dependent kinase 7  Cdk7 5 1.03 2.08 1.07 

Cyclin-dependent kinase 4 (Fragment) Cdk4 5 0.51 6.51 0.53 

Histone chaperone ASF1A  Asf1a 4 3.58 7.03 0.69 

Cyclin-dependent kinase 2-associated protein 1  Cdk2ap1 4 0.82 5.79 0.94 

Cyclin-A2 Ccna2 3 100.00 1.11 0.86 

Histone H2A  H2afy2 3 5.92 1.36 1.82 

Histone H1.0  H1f0 2 1.57 2.32 1.62 

 

Table 16: Histone and DNA Modification Proteins (Epigenetic Related Proteins) 

Description Gene Σ# 

Uniq 

pept 

3S/2D 3S/3D 3D/2D 

Protein Bptf  Bbtf 22 1.53 32.02 1.24 

Lamin-B2  lmnb2 20 4.03 0.98 1.94 

Paraspeckle component 1 pspc1 13 2.27 1.17 1.14 

Structural maintenance of chromosomes flexible hinge domain-containing protein 1  Smchd1 12 0.91 3.23 0.97 

Isoform 2 of Methyl-CpG-binding domain protein 3  mbd3 12 18.11 1.08 1.34 

Isoform 2 of DNA (cytosine-5)-methyltransferase 3A  Dnmt3a 12 0.49 2.05 0.77 

Histone deacetylase 6 (Fragment)  Hdac6 10 100.00 1.04 1.01 

Methionine aminopeptidase 2  merap2 10 100.00 1.06 0.60 

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin 

subfamily E member 1  

Smarce1 10 7.37 1.14 1.21 

Elongator complex protein 3 Elp3 9 1.13 6.51 0.66 

Isoform 1 of Core histone macro-H2A.1  H2afy 9 2.17 1.29 1.60 

Lysine-specific demethylase 3A  kdm3a 9 5.06 1.27 0.87 

Bifunctional protein NCOAT  Mgea5 8 0.96 100.00 0.66 

Parafibromin  cdc73 8 21.48 1.02 1.00 

Transcriptional regulator ATRX  Atrx 7 20.50 6.27 0.82 
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Protein dpy-30 homolog  Dpy30 5 0.88 4.17 0.99 

MCG11326, isoform CRA_b  Hnrnph3 5 2.35 1.01 1.25 

Heterogeneous nuclear ribonucleoprotein H2 Hnrnph2 4 3.47 1.49 1.08 

Isoform 2 of Mortality factor 4-like protein 1  morf4l1 4 5.11 1.07 1.54 

Histone chaperone ASF1A  Asf1a 4 3.58 7.03 0.68 

Isoform 2 of Methionine adenosyltransferase 2 subunit beta  mat2b 4 6.14 0.91 0.81 

RNA polymerase II-associated protein 1  rpap1 3 7.81 1.04 1.06 

 

Table 17: Spermatogenesis 

Description Gene # Unique 

peptide 

3S/2D 3S/3D 3D/2D 

NADPH:adrenodoxin oxidoreductase Fdxr 7 100.0 0.9 1.8 

V-type proton ATPase subunit C 1  atp6v1c1 3 6.9 1.0 1.0 

60S ribosomal protein L10-like  Rpl10l 4 6.6 1.0 0.6 

RIKEN cDNA 1110033J19  Rps4y2 7 5.5 2.5 1.2 

Lysine-specific demethylase 3A kdm3a 9 5.1 1.3 0.9 

Paraspeckle component 1  pspc1 13 2.3 1.2 1.1 

Hematological and neurological expressed 1-like protein Hn1l 3 1.5 5.7 0.6 

Cellular retinoic acid-binding protein 1  Crabp1 6 1.4 10.6 0.3 

Isoform 2 of Basigin  Bsg 6 1.0 100.0 1.0 

 

Table 18: DNA Repair Mechanism Proteins on 3D static 

Description Gene Σ# 

Unique 

peptide 

3S/2D 3S/3D 3D/2D 

DNA repair protein RAD50  Rad50 10 100.0 0.9 1.1 

Histone deacetylase 6 (Fragment) Hdac6 10 100.0 1.0 1.0 

DNA topoisomerase 2-beta  Top2b 6 100.0 2.7 0.6 

Isoform 2 of Inner centromere protein Incenp 5 100.0 100.0 2.7 

DNA mismatch repair protein Msh3  Msh3 3 100.0 100.0 0.5 

DNA repair protein RAD50 Rad50 10 100.0 0.9 1.1 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 plod3 5 6.1 0.8 1.8 

Histone H2A  H2afy2 3 5.9 1.4 1.8 

TIP41-like protein tiprl 3 5.0 1.0 0.9 
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DNA-directed RNA polymerase II subunit RPB7  Porl2g 4 4.2 0.9 1.0 

Target of EGR1 protein 1 toe1 3 3.8 0.9 0.8 

Histone chaperone ASF1A  Asf1a 4 3.6 7.0 0.7 

Heterogeneous nuclear ribonucleoprotein H2  Hnrnph2 4 3.5 1.5 1.1 

Isoform 1 of Core histone macro-H2A.1 H2afy 9 2.2 1.3 1.6 

Serine/threonine-protein kinase ATR Atr 14 1.9 39.5 0.6 

Isoform 2 of Uncharacterized protein C9orf114 homolog ] D2wsu81e 6 1.7 6.6 1.7 

DNA ligase  Lig3 6 1.4 2.5 10.1 

H/ACA ribonucleoprotein complex subunit 4  Dkc1 20 1.2 1.0 2.2 

Tumor suppressor p53-binding protein 1 TP53b 6 1.2 20.3 1.0 

H/ACA ribonucleoprotein complex subunit 1 Gar1 4 1.1 1.1 2.5 

COP9 signalosome complex subunit 7b  Cops7b 3 1.1 7.3 0.6 

Structural maintenance of chromosomes flexible hinge domain-containing protein 1  Smchd1 12 0.9 3.2 1.0 

E3 ubiquitin-protein ligase RBX1 Rbx1 3 0.7 100.0 0.9 

Ataxia telangiectasia mutated homolog (Human) Atm 22 0.7 8.3 0.7 

DNA polymerase delta subunit 2 Pold2 5 0.7 2.2 0.5 

Isoform 2 of DNA (cytosine-5)-methyltransferase 3A  Dnmt3a 12 0.5 2.0 0.8 

H1 histone family, member X  H1Fx 6 0.2 1.9 0.9 

 

 

 

 

 

 

 

 

 

 

 

Table 19: Proteins differentially expressed in both 3D cultures compared to 2D  
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Description Gene # Unique 

peptide 

3S/2D 3S/3D 3D/2D 

ATP-binding cassette sub-family B member 7, mitochondrial  Abcb7 3 100.00 0.93 2.15 

3-ketoacyl-CoA thiolase, mitochondrial  Acaa2 10 3.83 0.75 3.71 

Acyl-CoA dehydrogenase family member 9, mitochondrial  Acad9 13 100.00 0.95 2.20 

Isoform 3 of ADP-dependent glucokinase  Adpgk 8 11.24 1.18 2.18 

Adenylate kinase isoenzyme 4, mitochondrial  Ak4 7 10.11 1.05 4.49 

V-type proton ATPase subunit d 1  Atp6v0d1 7 2.00 0.97 2.73 

Bromodomain adjacent to zinc finger domain protein 2A  Baz2a 13 9.41 1.57 7.38 

CD 81 antigen, isoform CRA_c  Cd81 3 2.02 1.19 100.00 

Isoform 2 of Cell division cycle protein 23 homolog Cdc23 8 100.00 0.77 6.00 

CDP-diacylglycerol--inositol 3-phosphatidyltransferase  Cdipt 4 2.01 0.83 3.07 

Cytoskeleton-associated protein 2  Ckap2 9 100.00 0.76 3.59 

Cytoskeleton-associated protein 4  Ckap4 25 2.81 1.04 2.57 

Catechol O-methyltransferase domain-containing protein 1 Comtd1 3 3.27 0.61 2.59 

Cathepsin D  Ctsd 8 2.02 0.80 3.36 

Dolichol-phosphate (Beta-D) mannosyltransferase 1 Dpm1 4 100.00 1.12 2.67 

Dipeptidyl peptidase 2  Dpp7 4 100.00 0.92 14.61 

Isoform 2 of Protein ECT2  Ect2 5 5.83 1.12 100.00 

Isoform 2 of ER membrane protein complex subunit 1  Emc1 8 4.40 0.99 2.29 

Erlin-2  Erlin2 15 19.97 1.06 2.86 

ERO1-like protein alpha  Ero1l 7 100.00 1.70 2.85 

Endoplasmic reticulum resident protein 44 Erp44 4 2.09 1.19 2.37 

Protein Fam38a  Fam38a 15 6.75 1.33 2.15 

Lysosomal alpha-glucosidase  Gaa 11 20.25 0.88 2.28 

Golgi apparatus protein 1 (Fragment)  Glg1 22 2.07 1.19 2.19 

Uncharacterized protein  Gm17386 7 100.00 0.63 2.52 

Glutathione S-transferase omega-1  Gsto1 3 5.22 0.63 8.74 

G2 and S phase-expressed protein 1 Gtse1 14 3.84 0.77 53.91 

3-hydroxyisobutyrate dehydrogenase, mitochondrial  Hibadh 6 3.48 1.19 2.18 

Isoform 2 of Intercellular adhesion molecule 1  Icam1 5 100.00 0.90 100.00 

Isochorismatase domain-containing protein 2A, mitochondrial  Isoc2a 7 3.17 0.74 2.69 

Kinesin-like protein KIF22  Kif22 11 3.60 1.45 8.91 

Protein Kifc5b  Kifc5b 11 4.44 0.86 2.63 

Ragulator complex protein LAMTOR2  Lamator2 5 100.00 1.38 59.07 
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Lysosome-associated membrane glycoprotein 1  Lamp1 3 100.00 1.13 2.19 

LETM1 and EF-hand domain-containing protein 1, mitochondrial  Letm1 6 5.49 0.86 11.98 

Alpha-2-macroglobulin receptor-associated protein  Lrpap1 22 100.00 0.74 2.87 

Mitotic spindle assembly checkpoint protein MAD1  Mad1l 7 5.05 1.60 2.30 

E3 ubiquitin-protein ligase MARCH5  March.5 9 100.00 1.16 16.44 

LDLR chaperone MESD  Mesdc2 5 2.23 1.14 2.34 

Melanoregulin  Mreg 4 7.12 0.93 100.00 

Isoform 2 of Metastasis-associated protein MTA3  Mta3 6 9.13 1.10 100.00 

Isoform 2 of Mitochondrial carrier homolog 1  Mtch1 5 100.00 0.87 4.31 

Protein LYRIC  Mtdh 6 17.98 1.50 24.85 

Myeloid-associated differentiation marker  Myadm 4 100.00 1.06 2.32 

Myoferlin Myof 32 28.55 0.89 100.00 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, 

mitochondria 

Ndufb8 5 5.87 1.07 2.28 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, 

mitochondrial  

Ndufs6 5 22.23 1.13 9.16 

NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial  Ndufv1 9 100.00 1.51 2.17 

E3 ubiquitin-protein ligase NEDD4  Nedd4 26 0.49 1.19 0.49 

Nipsnap homolog 3A (C. elegans)  Nipsnap3

b 

6 2.10 1.03 2.85 

Nodal modulator 1  Nomo1 13 21.42 1.00 2.45 

Protein Nup153  Nup153 14 5.75 0.89 2.16 

Prenylcysteine oxidase-like  Pcyox1l 6 10.73 1.02 4.56 

Membrane-associated progesterone receptor component 2 Pgrmc2 5 15.36 1.15 2.21 

Inorganic pyrophosphatase 2, mitochondrial  Ppa2 5 5.40 1.19 9.28 

DNA-directed RNA polymerase I subunit RPA49 (Fragment)  Pplr1e 3 100.00 1.86 7.12 

Phosphoribosyl pyrophosphate synthase-associated protein 2 Prpsap2 6 22.29 0.91 7.13 

Sulfated glycoprotein 1  Psap 9 2.25 0.88 100.00 

Ras-related protein Rap-2b  Rap2b 3 2.11 0.87 100.00 

mRNA cap guanine-N7 methyltransferase  Rnmt 11 2.13 1.39 9.78 

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit 2  

Rpn2 14 2.19 1.10 2.50 

Protein S100-A6  S100a6 5 2.05 0.60 2.64 

U4/U6.U5 tri-snRNP-associated protein 1  Sart1 6 6.26 1.17 8.04 

Signal peptidase complex catalytic subunit SEC11A Sec11a 8 2.50 0.96 2.69 

Sphingosine-1-phosphate lyase 1  Sgpl1 12 100.00 1.06 3.35 

Solute carrier family 12 member 7  Slc12a7 5 100.00 1.12 100.00 
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Mitochondrial 2-oxoglutarate/malate carrier protein  Slc25a11 9 100.00 0.98 2.26 

Calcium-binding mitochondrial carrier protein Aralar1  Slc25a12 3 5.06 1.91 3.55 

Mitochondrial carnitine/acylcarnitine carrier protein  Slc25a20 9 4.31 0.72 10.18 

Beta-2-syntrophin  Sntb 8 100.00 1.42 2.05 

Serum response factor-binding protein 1  Srfbp 5 100.00 0.90 2.21 

Serine/arginine repetitive matrix 1  Srrm1 7 6.98 1.04 100.00 

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit STT3A  

Stt3a 17 2.03 1.04 2.07 

ATP-dependent RNA helicase SUPV3L1, mitochondrial  Supv3l1 5 2.23 0.74 9.60 

Transmembrane and coiled-coil domain-containing protein 1  Tmco1 6 6.88 1.02 3.13 

Transmembrane protein 43  Tmm43 5 100.00 1.27 100.00 

Thioredoxin-related transmembrane protein 1  Tmx1 6 3.86 1.17 10.83 

UDP-glucose:glycoprotein glucosyltransferase 1  Uggt1 21 2.05 0.99 2.53 

Isoform Mt-VDAC1 of Voltage-dependent anion-selective channel 
protein 1 

Vdac1 16 2.06 0.84 3.07 

Voltage-dependent anion-selective channel protein 2 (Fragment) Vdac1 12 2.10 0.88 2.62 

Voltage-dependent anion-selective channel protein 3  Vdac3 10 2.54 1.00 2.07 

 

Table 20: ECM proteins 

Description Gene Σ# 
Unique 

peptides 

3S/2D 3S/3D 3D/2D 

Anastellin  Fn1 38 100.0 1.1 24.0 

Nidogen-2 Nid2 6 100.0 0.9 17.4 

Laminin subunit alpha-5 Lama5 18 29.4 0.8 100.0 

Myoferlin  Myof 32 28.6 0.9 100.0 

Isoform 3 of Agrin  Agr 10 25.6 1.0 53.2 

Basement membrane-specific heparan sulfate proteoglycan Hspg2 54 11.0 1.0 16.6 

Isoform 3 of Collagen alpha-1(XVIII) chain col18a1 6 9.8 1.1 27.9 

Lamin-B2 Lmnb2 20 4.0 1.0 1.9 

Pinin  Pin 11 3.4 1.1 2.4 

Apolipoprotein E  Apoe 18 2.4 0.9 5.4 

Sulfated glycoprotein 1  Psap 9 2.3 0.9 100.0 

Laminin subunit gamma-1 Lamc1 11 2.1 1.0 1.8 
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Table 21: Cell Cycle Arrest Proteins on both 3D Cultures 

Description Gene Σ# Uniq pept 2D/3Ds: H/L 3Ds/3Dd: H/L 3Dd/2D:H/L 

G2 and S phase-expressed protein 1  Gtse1 14 3.846154 0.771 53.907 

Bromodomain adjacent to zinc finger domain 
protein 2A  

Baz2a 13 9.433962 1.57 7.376 

Isoform 2 of Cell division cycle protein 23 
homolog 

Cdc23 8 100 0.768 6.002 

Cytoskeleton-associated protein 2 Cap2 9 100 0.759 3.588 

Isoform 2 of Inner centromere protein Incenp 5 100 100 2.689 

Cytoskeleton-associated protein 4  Ckap4 25 2.816901 1.04 2.573 
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Figure 50: Oxidative Phosphorylation Up-regulation in 3D dynamic vs. 2D culture 
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Figure 51: Glycolysis Down-regulation in 2D vs. 3D dynamic 
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Table 22: List of Abberviation 

Abbreviation Definition 

EB Embryoid Bodies  

EC Embryonic Carcinoma  

µL Micro letter 

1D gel 1-dimensional gel electrophoresis 

2D Monolayer Plastic Culture Flask 

2-DE Two-dimensional gel electrophoresis  

3D Alginate encapsulated 3D culture 

Acca2 Thiolase  

ASC Adult Stem Cells  

ATCC American Type Culture Collection  

ATP Adenosine triphosphate 

Ba2+ Barium 

BAC Benzyldimethyl-n-hexadacylammonium chloride  

BM Basement membrane 

BMP Bone Morphogenic Protein 

BSA Bovine serum albumin  

Ca+2 Calcium Ion 

CaCl2 Calcium chloride 

CDK2 Cyclin-dependent kinase 2 

CDK4 Cyclin-dependent kinase 4 

CHAPS Zwitterionic detergent 

CID Collision induced dissociation  

CSCs Cancer stem cell  

Ctnnb1 Catenin (cadherin-associated protein), beta 1 

Cyb5b Cytochrome b5 type B 

DIGE Difference gel electrophoresis  

DIGE 2-D Fluorescence Difference Gel Electrophoresis 

DMEM Dulbecco’s Modified Eagles Media  

DNA Deoxyribonucleic acid 

DNMTs DNA methyltransferase 

DRB Damage repair  break 

DSB Double strand break 

DTT Dithiothreitol 

ECAR Extracellular acidifications rates  

ECD Electron capture detection  

ECL Electro chemi luminescence  

ECM Extracellular Matrix 

ECM Extracellular cellular matrix  

ECM Extracellular matrix 

ECM Extracellular matrix  

EDTA Ethylene diamine tetra acetic 

Eif5b Translation initiation proteins  

ELISA Enzyme-linked immunosorbent assay  



184 | P a g e  
© Imperial College 2015 

EMT Epithelial mesenchymal transition 

EpiSCs Epiblast Stem Cells  

ER Endoplasmic Reticulum 

ERAD Endoplasmic-reticulum-associated protein degradation 

ERK Extracellular-signal-regulated kinase  

ERK1/2 mitogen-activated protein kinase  

ESCs Embryonic stem cells 

ESI Electrospray ionization  

ESN2 
DMEM/F12 supplemented with N2 ( transferrin, insulin, progesterone, putrecine and 
 selenite 9), LIF and basic FGF 

ETC Electron transport chain  

ETD Electron transfer dissociation  

EthD-1 Ethidium homodimer-1 

FASP filter-aided sample preparation  

FBS Fetal bovine serum  

FBS Foetal bovine serum  

FCCP p-triflouromethoxyphenylhydrazone 

FGF Fibroblast Growth Factor 

FGF4 fibroblast growth factor-4  

FITC Fluorescein isothiocyanate  

FN Fibronectin  

FSCs Foetal Stem Cells 

FT-ICR Fourier transform ion cyclotron resonance  

GAGs Glycosaminoglycans ECM protein 

GO Gene ontology  

GOI Gene of interest 

GP Grade plastic 

GSK3 Glycogen synthase kinase 3  

H2O2 Hydrogen peroxide 
H4, H3, H2A and 
H2b Major families of histones 

HARV high aspect ratio vessel  

HCD Higher-energy C-trap dissociation 

HECTD1 HECT domain containing E3 ubiquitin protein ligase 1 

hESC’s Human embryonic stem cells 

hiPSCs Human Induced Pluripotent stem cells  

HO Hydroxyl radicals  

HRP Horseradish peroxidase  

HSC Haematopoietic Stem Cell 

HSP Heat shock proteins  

HSPG2 Heparan sulphate proteoglycan core protein  

Hsps Heat shocks proteins  

ICC Immunocytochemistry 

ICM Inner Cell MAss 

IgG Immunoglobulin G  

ISD In-solution digested 

KORS Knockout replacement serum  
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KSR Knockout serum replacement  

kPa kilopascal 

LC Liquid chromatography  

LC/MSMS Liquid chromatography–mass spectrometry 

LIF Leukemic Inhibitor Factor  

LIT Ion trap  

LN Laminin 

MALDI Matrix-assisted laser desorption ionization  

MAPK Mitogen-activated protein kinase  

MDCK Madin-Darby canine kidney  

MEFs Mouse embryonic fibroblast cells  

mEpiSCs Mouse epiblast stem cells 

MESC’s Mouse embryonic stem cells 

MET Mesenchymal–epithelial transition 

MF Mouse Feeder 

MGF2 Fibroblast Growth Factor 2 

mRNA Messenger RNA 

MS Mass Spectrometry 

MS Mass spectrometry  

MSC Mesnchymal stem cells  

MSCs Mesenchymal stem cell  

MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] 

Myh9 Cytoskeleton myosin 9  

NAD+ nicotinamide adenine dinucleotide 

O2. - Superoxide anion  

OCR Oxygen consumption rates  

OMM Outer membrane  

PBS Phosphate buffered saline 

PCR Polymerase chain reaction  

Pcyox1l Cysteine oxidase  

PDMS Polydimethylsiloxane  

PE Primitive endoderm  

PGCs Primordial germ cell  

PPP Pentose phosphate pathway  

Prdx2 Peroxiredoxin-2  

PSCs Pluripotent Stem Cells 

Psmb1 and Psmb3 Psmb1 and Psmb3 

Psmg1, Psmg3 Proteasomes  

PTM Post-translational modifications  

PVDF Polyvinylidene difluoride  

rBM Reconstituted basement membrane 

RIPA Radio-Immunoprecipitation Assay 

RLT Lysis of cells and tissues before RNA isolation 

ROS Reactive oxygen species  

RP Reversed phase  

RPM revolutions per minute 
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RT-PCR Reverse transcription-polymerase chain reaction  

RWV Rotating wall vessel  

SC Stem Cells 

Sca-1+ Cell surface antigen used in the isolation of hematopoietic stem cells 

SCX Strong cation exchange  

SDS Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SILAC Stable isotope labelling of amino acids in cell culture  

SSEA Specific surface antigens  embryonic antigens 

STLV Slow turning lateral vessel  

Tcf3 Transcription factor 3 

TE Trophectoderm  

TEM Transmission electron microscopy  

TMT Tandem mass tags  

TOF Time of flight  

UPR Unfolded-protein repair mechanism  

VDAC Voltage-dependent anion channel  

XF Extracellular Flux Analyzers 

qPCR Quantitative PCR  

RT-PCR Real-time polymerase chain reaction  
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Table 23: List of Protein Abberviation 

Abbreviation Definition 

 NADH  Nicotinamide adenine dinucleotide  

OCt4/POU5F1 octamer-binding transcription factor 4  

Aldoa Fructose-bisphosphate aldolase A 

Asf1a Histone chaperone  

ATF6 Activating transcription factor 6 

Atp5i ATP synthase subunit e 

Atp5j2 ATP synthase subunit f 

Atp5l ATP synthase subunit g 

ATRX Transcriptional regulator ATRX 

Bcl2 B-cell lymphoma 2 

CD9 Surface antigen marker 

Cdc23  Isoform 2 of Cell division cycle protein 23 homolog 

Cdk2ap1  Cyclin-dependent kinase 2-associated protein 1  

Cdk4 Cyclin-dependent kinase 4  

Cdk7 Cyclin-dependent kinase 7 

Ckap2 Cytoskeleton-associated protein 2 

Cox4i Cytochrome c oxidase subunit 4 isoform 1 

Cox7c Cytochrome c oxidase subunit 7C 

Cyb5b Cytochrome b5 type B 

Dnaj groups of chaperone DnaJ 

DNMT1  DNA (cytosine-5)-methyltransferase 1 

DNMT3A  Isoform 2 of DNA (cytosine-5)-methyltransferase 3A 

DNMT3b Isoform 3 of DNA (cytosine-5)-methyltransferase 3B 

Dppa5a Developmental pluripotency-associated protein 5A 

Dpsyl2 Dihydropyrimidinase-related protein 2 

DSB  Double Strnad Break 

ECM Extracellular Matrix Protein 

Eif Eukaryotic initiation facto 

Eif2b5 Translation initiation factor eIF-2B subunit epsilon 

Eif4a2 Eukaryotic initiation factor 4A-II  

Eif5b Eukaryotic translation initiation factor 5B  

Eif2a Eukaryotic translation initiation factor 2A 

EMT Epithelial-Mesencymal transition 

Eno1 Alpha-enolase 

ER Endoplasmic Reticulum 

ERAD ER-associated degradation 

ERK1/2  extracellular-signal-regulated kinases 

Ero1a   ERO1-like protein alpha 

ETC Elctron Transfer Chain 

FGF2 Fibroblast Growth Factor 2 

FGF4 Fibroblast Growth Factor 4 

FGF5 Fibroblast Growth Factor 5 

FN Fibronectin 
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G1 phase Growth1 or Gap 1 Phasae 

Gmpr2 GMP reductase 2 

Gsto1 Glutathione S-transferase omega-1 

HECTD1 E3 ubiquitin-protein ligase HECTD1 

Hsp70 Heat shock Protein 70 

HSPG2 Basement membrane-specific heparan sulfate proteoglycan core protein 

IP3Rs 1,4,5-trisphosphate receptors  

iPSC Induced Pluripotent Stem Cells 

IRE1 ser/thr protein kinase 

kdm3a Lysine-specific demethylase 3A 

Kif11  Kinesin-like protein 

Kifc1 Kinesin-like protein 

Kntc1  Kinetochore-associated protein 1 

LDA L-lactate dehydrogenase A 

LIN28a  Protein lin-28 homolog A 

LN Laminin 

Lys9 Lysine 9 

MET Mesnchymal-Epithelial transition 

Morc3 MORC family CW-type zinc finger protein 3 

Msh3 DNA mismatch repair protein 

Mta3 Isoform 2 of Metastasis-associated protein 

Myh9 Myosin-9 

NAD + NADH dehydrogenase  

Nanog Homeobox transcription factor protein  

NCPI  National Center for Biotechnology Information 

Ndufb4 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4 

Ndufc2 NADH dehydrogenase [ubiquinone] 1 subunit C2 

Nup214  Nuclear pore complex protein 

OMM outer mitochondrial membrane 

Orc1 Origin recognition complex subunit 1 

P21 cyclin-dependent kinase inhibitor 1 

Pafah1b3 Platelet-activating factor acetylhydrolase IB subunit gamma 

Pcyox1l Prenylcysteine oxidase-like 

Pdcd5 Programmed cell death protein 5 

PERK protein kinase RNA-like endoplasmic reticulum kinase 

Pfkl 6-phosphofructokinase, liver type 

Pgk1 Phosphoglycerate kinase 1 

Pkm Isoform M1 of Pyruvate kinase isozymes M1/M2 

Pnn Pinin  

PPP phosphoprotein phosphatase  

PQC Protein Quality Control 

Prdx2 Peroxiredoxin-2  

PRM1 protamine 1 

Psma2 Proteasome subunit alpha type-2 

Psmb1 Proteasome subunit beta type-1  

Psmb3 Proteasome subunit beta type-3  
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Psmg1 Proteasome assembly chaperone 1 

Psmg3 Proteasome assembly chaperone 3 

Rbx1 E3 ubiquitin-protein ligase  

Rnmt  mRNA cap guanine-N7 methyltransferase 

Romo1 Reactive oxygen species modulator 1 

Rps4y2 Ribosomal protein S4, Y-linked 2 

Rtn3  Isoform 3 of Reticulon-3 

Rtn4 Reticulon-4 

Slc25a3 Phosphate carrier protein 

Smchd1 
Structural maintenance of chromosomes flexible hinge domain-containing 
protein 1 

Snai1 Zinc finger protein  

Sod2 Superoxide dismutase 

Ssr4 Translocon-associated protein subunit delta 

SSEA1 stage-specific embryonic antigen-1 

Ssr3 Isoform 2 of Translocon-associated protein subunit gamma 

Thrap3 Thyroid hormone receptor-associated protein 3 

Tmx1 Thioredoxin-related transmembrane protein 1 

Tmx2 Thioredoxin-related transmembrane protein 2 

Tpr Nuclear pore complex-associated intranuclear coiled-coil protein 

Ube2k Ubiquitin-conjugating enzyme E2 K 

Ube4b Ubiquitin conjugation factor E4 B 

Uhrf1  E3 ubiquitin-protein ligase 

UPR Unfolded protein response  

Uqcrfs1 Cytochrome b-c1 complex subunit Rieske 

Uqcrh Cytochrome b-c1 complex subunit 6 

Uqcrq Cytochrome b-c1 complex subunit 8 

VDAC  Voltage-dependent anion-selective channel protein 

Vdac1  Voltage-dependent anion-selective channel protein 1 

Vdac2  Voltage-dependent anion-selective channel protein 2 

Vdac3  Voltage-dependent anion-selective channel protein 3 

XBP1 X-box binding protein 1 

X-linked  located in X chromosome 

Y-linked region located in Y chromosome 
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