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Abstract  

WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream 

targets (the SPAK/OSR1 kinases and the cation-Cl- cotransporters [CCCs]), comprise a 

signaling cascade essential for ion homeostasis in the kidney and nervous system. 

Recent work has furthered our understanding of the WNKs in epithelial transport, cell 

volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in 

immune cell function and cell proliferation.  
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Introduction  

Homeostasis of the intracellular ionic milieu is essential for the proper functioning of all 

cells and a diverse group of cellular processes. The mechanisms responsible for the 

homeostasis of the intracellular Cl- concentration [Cl-]i, for example, significantly impacts 

the rate of fluid secretion or absorption across epithelia; how red blood cells counteract 

potentially damaging osmotic-induced cell swelling or shrinkage; and whether the GABA 

neurotransmitter excites or inhibits post-synaptic neurons. Accordingly, [Cl-]i is highly 

regulated by signaling molecules that sense changes in intracellular [Cl-]i and transduce 

these signals to the cell membrane to modulate the transport of Cl- transporters and 

channels (Hoffmann and Dunham, 1995). While the mediators of ion transport are well 

known, the signaling pathways that dynamically regulate their activities to maintain 

homeostasis have been relatively unexplored.  

Molecular genetics can pinpoint essential genes in complex regulatory pathways, paving 

the way for novel and unanticipated physiological insights. Over the last 15 years, studies 

have uncovered a critical role of the with-no-lysine [K] (WNK) serine-threonine kinases, 

along with their upstream regulators (CUL3/KLHL3) and downstream targets (the 

SPAK/OSR1 serine-threonine kinases and the SLC12A family of electroneutral cation-Cl- 

cotransporters [CCCs]), in human physiology and disease. Since their identification as 

disease-causing genes of a Mendelian form of NaCl-sensitive hypertension (i.e., high 

blood pressure), the WNKs have become recognized as “master regulators” of the CCCs, 

including the Na+-coupled Cl- importers (NCC, NKCC1, and NKCC2) and the K+-coupled 

Cl- exporters (KCC1-KCC4).  
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Here we briefly review the recent molecular genetics, biochemical, and physiological 

findings involving the WNK signaling pathway as they relate to human physiology and 

disease. We will focus on the established roles of the WNK-SPAK-CCC pathway in 1) 

renal epithelial transport, 2) cell volume homeostasis, and 3) GABA signaling, which have 

implications for diverse diseases such as essential hypertension, cerebral edema, and 

neuropathic pain. We will also cover emerging roles for the WNKs in immune function 

and cell migration, which have relevance for autoimmune diseases and several types of 

cancer.  

Renal epithelial transport 

The WNK kinases, first cloned in rat, comprise a serine-threonine kinase subfamily 

characterized by the lack of a highly-conserved lysine in β strand 3 of kinase subdomain 

II that usually mediates ATP-binding and the catalysis of phosphoryl transfer in most other 

kinases (Xu et al., 2000). However, in the WNK kinases, the catalytic activation loop is 

structured such that a lysine (Lys-233 in WNK1) in β strand 2 executes this function (Min 

et al., 2004). Mutations in two members of the WNK kinase family, PRKWNK1 (Chr 12) 

and PRKWNK4 (Chr 17), encoding WNK1 and WNK4, respectively, were shown to cause 

a human monogenic disease, familial hyperkalemic hypertension (FHHt; also known as 

pseudohypoaldosteronism type 2 or Gordon syndrome) (Wilson et al., 2001). As the 

disease phenotype involved disordered homeostasis of renal Na+, Cl-, and K+ transport, 

the discovery of the WNKs led to the identification of a previously-unknown signaling 

pathway that modulates renal solute transport and arterial pressure; this pathway has 

subsequently been termed “a molecular switch” that regulates the balance between renal 

NaCl reabsorption and K+ secretion (Alessi et al., 2014; Welling et al., 2010).   
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At the time of their identification, little was known about WNK kinase function other than 

that autophosphorylation was increased in response to hypertonic stimuli like NaCl or 

mannitol (Xu et al., 2000). The FHHt phenotype can often be corrected with thiazide 

diuretics, drugs that act along the distal convoluted tubule (DCT), suggesting that WNKs 

modulate NaCl transport along this segment (Mayan et al., 2002). WNK4 is expressed by 

cells from the thick ascending limb to the collecting duct (McCormick et al., 2014; Ohno 

et al., 2011). Although WNKs can modulate several transport proteins along these 

segments, the thiazide-sensitive NaCl cotransporter (NCC, encoded by SLC12A3), a 

member of the SLC12A family of cation-Cl- cotransporters, is a primary target.  Both work 

using heterologous expression (Wilson et al., 2003; Yang et al., 2003) and animal models 

of FHHt (Lalioti et al., 2006; Yang et al., 2007) suggests that the primary defect in FHHt 

is excess transcellular NaCl reabsorption via NCC. While WNK4 expression in 

heterologous systems typically inhibits NCC activity (Chávez-Canales et al., 2014; Wilson 

et al., 2003; Yang et al., 2007c), likely by associating with protein phosphatases (Gagnon 

et al., 2007), WNK4’s dominant effect in vivo is to activate NCC (Ohta et al., 2009; 

Piechotta et al., 2002; San-Cristobal et al., 2009; Vitari et al., 2005; Yang et al., 2007a). 

WNKs activate NCC by phosphorylating and activating two homologous kinases, SPAK 

(serine/threonine protein kinase 39, encoded by STK39) and OSR1 (oxidative stress-

responsive 1; encoded by OxSR1) (Moriguchi et al., 2005); these, in turn, directly 

phosphorylate NCC along its amino terminal cytoplasmic domain (other CCCs are also 

targets).  For NCC, and for the bumetanide-sensitive Na+, K+, Cl- transporters (NKCC1 & 

2; SLC12A2 and A1), these phosphorylation events activate the transport protein, leading 
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to increased solute transport, in part by stabilization in the plasma membrane (Figure 1) 

(Rosenbaek et al., 2014).  

Changes in osmolality and Cl- concentration activate WNK kinases (Xu et al., 2000).  

When the WNKs are expressed in heterologous systems with NCC, exposure to 

hypotonic low Cl- medium therefore increases the abundance of phosphorylated NCC and 

NCC activity because WNKs activate endogenous SPAK or OSR1 (Pacheco-Alvarez et 

al., 2006). Chloride binds to the WNK1 catalytic domain, thereby inhibiting 

autophosphorylation and kinase activity (Piala et al., 2014), effects that are assumed to 

mediate the sensitivity to chloride. Yet, the physiological relevance of this effect in 

mammals was unclear, because DCT cells in the renal cortex are typically bathed in 

extracellular fluid of nearly constant [Cl-] and the luminal membrane is nearly water 

impermeable.  

One potential resolution to this conundrum is that WNK Cl--responsiveness mediates the 

DCT’s ability to sense extracellular [K+] (Terker et al., 2015a; Wade et al., 2015). NCC 

activity is extraordinarily sensitive to small changes in plasma [K+] (Terker et al., 2015b).  

WNK kinases appear to be essential for this effect, with WNK4 likely playing a primary 

role (Terker et al., 2015a, 2015c; Wade et al., 2015). According to this model, small 

changes in plasma [K+] affect NCC because they alter intracellular [Cl-], thereby 

modulating WNK and SPAK/OSR1 (Terker et al., 2015c). The unique role of WNK kinases 

in balancing sodium and potassium excretion stems from the fact that electroneutral NaCl 

reabsorption (NCC) takes place in the DCT, upstream from the aldosterone-sensitive 

segments that secrete potassium. WNK activity is low when plasma [K+] is high and 

aldosterone is secreted, thus NCC is suppressed, whereas the epithelial Na+ channel, 
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ENaC, is stimulated (by aldosterone). Na+ reabsorption therefore occurs primarily along 

the aldosterone-sensitive distal nephron, not along the DCT, and therefore Na+ is 

exchanged for K+, which is excreted (Figure 2.). This effect may be enhanced when 

dietary K+ is ingested with organic anions, as the resulting bicarbonate load is delivered 

to the distal nephron, favoring electrogenic over electroneutral Na+ reabsorption. The 

opposite events occur when plasma [K+] is low (Kamel et al., 2014). 

Although WNK1 can also phosphorylate and activate SPAK/OSR1 in vitro, its 

physiological action along the mammalian distal nephron has been more difficult to 

resolve; WNK1 deletion is embryonic lethal, owing to defects in heart and vascular 

development (Xie et al., 2009), and complete deletion of WNK1 in kidney has not been 

reported.  In fact, the predominant WNK1 isoform in the distal nephron, at least at the 

mRNA level, lacks a kinase domain (O’Reilly, 2003); it is called kidney-specific WNK1 

(KS-WNK1), because its pattern of expression is so highly restricted and is driven by an 

alternate promoter (Delaloy et al., 2003). KS-WNK1 cannot phosphorylate substrates, 

and instead interacts with, and modulates, the actions of other WNKs, via a carboxyl 

terminal HQ domain (Chávez-Canales et al., 2014; Yang et al., 2007a). WNK1-associated 

FHHt, which results from a large deletion within intron 1, leads to ‘ectopic’ expression of 

the full length WNK1 isoform in the DCT (Vidal-petiot et al., 2013), thus introducing a 

kinase-active WNK1 isoform in a segment that normally exhibits little WNK1 kinase 

activity (Chávez-Canales et al., 2014). As WNK4 deletion nearly abrogates NCC activity 

(Castaneda-Bueno et al., 2012; Takahashi et al., 2014), the physiological role of renal 

WNK1 remains uncertain.  
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The discovery that mutations in two other genes, cullin 3 (CUL3) and kelch-like 3 (KLHL3) 

also cause FHHt (Boyden et al., 2012; Louis-Dit-Picard et al., 2012) has broadened 

understanding of the WNK kinase network. These proteins target WNKs for degradation 

by the proteasome, by attaching ubiquitin moieties to them. For ubiquitination to occur, 

an adaptor protein, such as KLHL3, must bring the WNK into association with Cullin 3, 

part of an E3 ligase that mediates ubiquitination.  Disease-causing mutations in KLHL3 

impair either KLHL3 binding to WNK1/4 or KLHL3 binding to Cullin 3 (Ohta et al., 2013).  

When WNKs cannot associate with Cullin 3 and be ubiquitinated, they are no longer 

degraded, accumulate in cells, and enhance NCC activity (Figure 3.) (Susa et al., 2014).  

Interestingly, disease-causing mutations within the acidic domain of WNK4 also disrupt 

its ability to bind KLHL3 (Ohta et al., 2013), suggesting that the fundamental mechanisms 

for disease caused by WNK4 and KLHL3 mutations are similar. Mouse models that 

introduce these mutations in WNK4 or KLHL3 exhibit high NCC activity and increased 

WNK abundance (Shibata et al., 2013; Wakabayashi et al., 2013).   

The mechanism by which Cullin 3 mutations cause FHHt is not as clear. Disease-

mimicking CUL3 mutations (all known mutations delete exon 9) increase WNK4, WNK1, 

and NCC abundance when introduced into mice (Schumacher et al., 2015), but the 

mutant protein does not appear to exhibit complete loss of function because deletion of 

Cullin 3 is embryonic lethal (Singer et al., 1999). Instead, these mutations appear to 

generate substrate-specific dysfunction (Ibeawuchi et al., 2015; McCormick et al., 2014; 

Schumacher et al., 2015). The precise nature of these properties, and the reasons for the 

kidney-specific phenotype, are subjects of active investigation. 

Cell volume maintenance 
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Regulation of cell volume is critical for multiple essential cellular functions and organismal 

survival. Lacking a rigid cell wall, animal cells combat cell swelling or shrinkage, induced 

by perturbations in intracellular ion content or extracellular osmolality, by triggering 

concerted homeostatic counter-responses termed regulatory volume decrease (RVD) or 

regulatory volume increase (RVI), respectively (Hoffmann, and Dunham, 1995; Hoffmann 

et al., 2009; Kregenow, 1971, 1981; Lauf and Adragna, 2000). The related NKCC1 and 

KCC3 cation-Cl- cotransporters, the Na+/H+ exchangers (e.g., NHE1), the Na+/K+ pump, 

and volume-regulated anion channels (VRACs), are important plasmalemmal mediators 

of ion transport in RVI and RVD (Hoffmann and Dunham, 1995; Hoffmann et al., 2009; 

Lauf and Adragna, 2012). 

The bumetanide-sensitive NKCC1 cotransporter is a relative of NCC in the SLC12A family 

that is ubiquitously expressed, with particularly high expression in secretory epithelia 

(Haas et al., 2000). SPAK has been shown to physically interact with NKCC1 (and the 

KCCs – see below) via a specific conserved carboxyl-terminal (CCT) domain (Piechotta 

et al., 2002; Thastrup et al., 2012; Vitari et al., 2006; Zhang et al., 2015). An Arg-Phe-

Xaa-Val/Ile (RFXV/I) domain in the cytoplasmic amino terminal tails of NKCCs and the 

KCCs, as well as the WNKs, recognizes the CCT motif of SPAK. This CCT-mediated 

“tethering” function of SPAK to both the upstream WNKs and downstream NKCC1 is 

necessary for cotransporter activity in both isotonic conditions and hyperosmotic (cell 

shrinkage) conditions (Thastrup et al., 2012; Vitari et al., 2006). The binding of WNKs to 

SPAK facilitates its phosphorylation of residues located within the T-loop of the SPAK 

catalytic domain (including Thr233) (Thastrup et al., 2012; Vitari et al., 2006). This event 

is essential for SPAK’s activation in response to hypertonicity and cell shrinkage, as well 
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as its ability to physically interact with and phosphorylate NKCC1 at Thr199, Thr201, and 

Thr206. In turn, NKCC1's activation by SPAK in the context of hypertonicity is an essential 

component of RVI (Figure 3.). 

Despite their physiological importance, the biochemical mechanism of KCC (in)activation 

had been a mystery until recently, though serine-threonine kinases/phosphatases had 

long been known to play an essential role (Jennings and al, 1990). Phosphorylation 

inhibits the KCCs, while dephosphorylation has the opposite effect (Adragna et al., 2004; 

Altamirano et al., 1988; Dunham et al., 1980; Haas et al., 2000; Jennings and Schulz, 

1991; Lytle and Forbush, 1992). KCC1, KCC3, and KCC4 are inactive in isotonic 

conditions but briskly activated in response to hypotonic or low Cl- cell-swelling conditions 

(Adragna et al., 2004; Haas et al., 2000; Strange et al., 2006). KCC3 activation by 

hypotonic cell swelling is prevented by calyculin A, an inhibitor of protein phosphatase 1A 

(PP1) and PP2 (Lauf and Adragna, 2000). Recognition of these phenomenona led to a 

“2-state mechanism” of KCC3 transport regulation in which KCC3 exists in either in 

dephosphorylated (active) or phosphorylated (inactive) state (Figure 4). The kinetics of 

hypotonicity-induced KCC3 activation suggest cell swelling inactivates critical regulatory 

kinases, tipping the balance towards protein dephosphorylation and transporter activation 

(Jennings and al, 1990).  

While the nature of the phosphatase, PP1, was inferred from early inhibitor studies 

(Jennings and Schulz, 1991), it took almost two decades for the identity of the regulatory 

kinases and their major phosphorylation sites in the KCCs to be identified. Lifton and 

colleagues, using titanium dioxide-based phosphopeptide enrichment and techniques 

allowing for the quantitative assessment of changes in KCC phosphorylation, identified 



11 
 

two phospho-Thr residues in human KCC3, Thr991, and Thr1048, that mediate its 

inactivation in response to hypertonic cell shrinkage in both epithelial cells and in human 

red blood cells (Rinehart et al., 2009). These sites are phosphorylated in isotonic 

(inhibitory) conditions. Homologous sites to KCC3 Thr991 and Thr1048 are 

phosphorylated in all human KCCs (i.e., “site 1” and “site 2”), including KCC2 (Thr906 

and Thr1007, respectively) (de Los Heros et al., 2014). Ala substitution at these Thr 

residues prevent phosphorylation and result in constitutively-active KCC2 and KCC3 (de 

Los Heros et al., 2014; Rinehart et al., 2009). SPAK, shown previously to regulate KCC 

activity in oocytes (Gagnon et al., 2006; Kahle et al., 2005), directly phosphorylates site 

2 of the KCCs (de Los Heros et al., 2014).  

However, the kinase that directly phosphorylates site 1 in the KCCs is unknown (Rinehart 

et al., 2009). However, a recent functional kinomics study that incorporated a kinome-

wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a 

kinase trapping-Orbitrap MS screen revealed the WNK3-SPAK kinase complex to be 

essential regulator of both KCC3 Thr991 and Thr1048 phosphorylation in vitro and in vivo 

(Zhang et al., 2016). Genetic or pharmacological antagonism of WNK3-SPAK facilitates 

cellular Cl- extrusion by simultaneously decreasing NKCC1 Thr203/Thr207/Thr212 

phosphorylation and KCC3 Thr991/Thr1048 phosphorylation. Interestingly, WNK3-SPAK 

inhibition prevents acute cell swelling in response to osmotic stress, and ameliorates brain 

swelling after ischemic stroke by simultaneously decreasing the stimulatory 

phosphorylation of NKCC1 and the inhibitory phosphorylation of KCC3 (Begum et al., 

2015; Zhang et al., 2016a; Zhao et al., 2016). These data provide evidence that WNK3-

SPAK is an integral component of the long-sought “Cl-/volume-sensitive kinase” of the 
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CCCs, and functions as a molecular rheostat of cell volume (Zhang et al., 2016a) (Figure 

4). 

Interestingly, a human patient was recently discovered to carry a de novo gain-of-function 

mutation that substitutes an Ala at KCC3-Thr991, thereby disrupting phosphorylation and 

regulation of the transporter (Kahle et al., 2016a). Work performed using the patient’s 

fibroblasts and with fibroblasts isolated from a mouse model reproducing this mutation 

confirmed constitutive KCC3 activity in normal isotonic conditions. The patient suffers 

from a CMT2 (Charcot-Marie-Tooth 2)-like neuropathy, characterized by an axonal, non-

demyelinating, peripheral neuropathy leading to distal muscle weakness and atrophy, 

mild sensory loss, and normal-near normal nerve conduction velocities (Kahle et al., 

2016a). Notably, loss-of-function mutations in KCC3 cause peripheral neuropathy 

associated with agenesis of the corpus callosum (ACCPN; OMIM# #218000), an 

autosomal recessive severe sensorimotor neuropathy associated with mental retardation, 

dysmorphic features and complete or partial agenesis of the corpus callosum (Boettger 

et al., 2003; Howard et al., 2002; Uyanik et al., 2006). In this case, however, with the 

exception of one missense mutation (R207C), all other SLC12A6 mutations lead to 

truncation of KCC3, thereby affecting KCC3 expression and/or function at the plasma 

membrane. Interestingly, these patients also suffer from a severe, early onset neuropathy 

with sensory and motor deficits. KCC3 knockout mice recapitulate the locomotion and 

neuropathy phenotypes (Ding and Delpire, 2014; Howard et al., 2002; Shekarabi et al., 

2012) and demonstrate axonal swelling (Byun and Delpire, 2007). Together, these results 

suggest that the function of the peripheral nervous system depends on finely-tuned, 
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kinase-regulated KCC3 activity and implicate abnormal cell volume homeostasis as a 

previously unreported mechanism of axonal degeneration.  

Neuronal GABA signaling 

GABA is the major inhibitory neurotransmitter of the mature central nervous system 

(CNS). The GABAA receptor (GABAAR), which mediates fast synaptic hyperpolarization, 

is a ligand-gated [Cl-] channel. In most mature neurons, intraneuronal [Cl-]i is low, and 

opening of the GABAAR channel results in flow of Cl- ions into the cell and membrane 

hyperpolarization, decreasing the propensity for the neuron to fire and thereby 

establishing GABA as the major inhibitory neurotransmitter of the mature CNS. However, 

in immature neurons and certain pathologic states, [Cl-]i is elevated, reducing or reversing 

Cl- inflow when GABAAR is activated and attenuating or inverting the hyperpolarization of 

the post-synaptic membrane. Dynamic neuronal regulation of [Cl-]i enables tuning of the 

response to GABA, and consequently, neuronal excitability. Indeed, a developmentally-

regulated decrease in [Cl-]i drives the “switch” of GABA from an excitatory to inhibitory 

neurotransmitter, a highly-conserved feature of mammalian neurodevelopment (Figure 

5.) (Ben-Ari, 2002).  

Similar to other cells, intraneuronal [Cl-]i is modulated by the regulated activities of the 

CCCs. Early in development, Cl- is imported via NKCC1. Conversely, Cl- is exported via 

KCC2, a transporter related to KCC3 that is expressed exclusively in neurons (Gagnon 

and Delpire, 2013). KCC2 displays a developmentally-regulated increase in activity 

coinciding with depletion of neuronal [Cl-]i and the establishment of the normal 

hyperpolarizing response to GABA (Rivera et al., 1999). As WNK kinases reciprocally 

regulate the activities of NKCC1 and KCCs via phosphorylation in other tissues (see 
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above), WNKs have been compelling candidates for regulators of CCC-dependent 

GABAergic neurotransmission. Certain WNK isoforms exhibit specificity in their 

expression to the CNS (Shekarabi et al., 2013), and mutations in WNK1/HSN2, an 

isoform of WNK1 largely restricted to the central nervous system (including dorsal horn 

spinal cord neurons) cause hereditary sensory neuropathy type II (HSN2), a severe 

autosomal recessive disease in humans characterized by congenital pain insensitivity 

[(OMIM #201300;(Shekarabi et al., 2008)], suggesting an important role for WNK kinases 

in the human CNS.  

Direct evidence for WNK regulation of neuronal Cl- homeostasis via the CCCs has only 

recently emerged. Inoue and colleagues demonstrated that overexpression of WNK1 in 

embryonic rat cortices resulted in KCC2 phosphorylation at Thr906 and Thr1007, causing 

KCC2 inhibition (Inoue et al., 2012). Note that these sites in KCC2 are homologous to 

those in KCC3 regulated by the WNKs in the context of cell swelling and shrinkage in 

RBCs. Friedel and colleagues recently extended these results by showing that WNK1 

forms a physical complex with KCC2 in the developing mouse brain, and is required for 

normal inhibitory phosphorylation of KCC2 at Thr906 and Thr1007 (Friedel et al., 2015). 

In immature neurons, phosphorylation at these sites suppresses KCC2-mediated Cl- 

efflux and maintains elevated [Cl-]i early in development – suggesting that WNK 

regulation of KCC2 may play a role in the GABA developmental switch secondary to 

changes in high to low [Cl-]i (Friedel et al., 2015). Interestingly, Kahle et al. determined 

that WNK1/HSN2 contributes to a maladaptive decrease in KCC2 activity via inhibitory 

phosphorylation at Thr906/Thr1007; this elevates [Cl-]i  in dorsal horn neurons, disrupts 

GABA-mediated inhibition, and contributes to neuropathic pain in the spared nerve injury 
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(SNI) model (Kahle et al., 2016b). Although WNK1 kinase activity is required for KCC2 

phosphorylation at these residues, WNK1 itself does not directly phosphorylate KCC2; 

instead, it phosphorylates SPAK, which phosphorylates KCC2 at Thr1007, and signals 

via a yet unknown kinase to phosphorylate KCC2 Thr906 (Friedel et al., 2015) (Figure 3). 

In addition to providing mechanistic insights into the normal ontogenesis of GABA 

inhibition in the nervous system, these data also suggest WNK kinases may be promising 

therapeutic targets for disorders featuring neuronal hyperexcitability due to genetically-

encoded or secondary maladaptive “GABAergic disinhibition.” These disorders, such as 

neuropathic pain (Kahle et al., 2014), neonatal seizures (Khanna et al., 2013), temporal 

lobe epilepsy (Cohen and Navarro, 2002), tumor-associated seizures (Campbell et al., 

2015), motor spasticity (Boulenguez et al., 2010), morphine-induced hyperalgesia (Ferrini 

et al., 2013), some forms of autism spectrum disorders (Cellot and Cherubini, 2014), and 

schizophrenia (Hyde et al., 2011), are phenotypically diverse but share a common 

pathologic signature that involves elevated  [Cl–]i in distinct neuronal populations, and 

accordingly, impaired inhibition. In such pathological settings, WNK inhibition might be 

expected to decrease Cl- influx via NKCC1 and simultaneously stimulate Cl- efflux via 

KCC2, thereby promoting a therapeutic Cl- extrusion. Early preclinical work has 

corroborated this hypothesis; for example, genetic deletion or pharmacologic inhibition of 

WNK1 prevents the development of neuropathic pain following peripheral nerve injury in 

mice (Kahle et al., 2016b). Further work into the development of WNK inhibitors for use 

in humans is underway (Yamada et al., 2016). 

Non-renal epithelial transport 
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The WNK-SPAK pathway has only recently been explored in the regulation of ion 

transport across secretory epithelia in tissues other than the kidney, such as the skin, 

pancreas, and intestine. This investigation has stemmed in part from the original 

observations that, outside the kidney, WNK1 and WNK4 predominantly localized to 

polarized epithelia, including those lining the lumen of the hepatic biliary ducts, pancreatic 

ducts, sweat ducts, and colonic crypts (Choate et al., 2003; Kahle et al., 2004). Epithelia 

in these tissues express channels and transporters that are responsible for transcellular 

Cl- and/or HCO3- ion movement from the blood, across the epithelial cell basolateral and 

apical membranes, and into the tissue lumen (e.g., sweat duct, pancreatic duct, or 

intestinal lumen). In doing so, these secretory epithelial cells therefore produce and 

maintain the homeostasis of sweat, pancreatic juice, intestinal mucus, and other bodily 

fluids. So far, the primary transport molecules in these tissues identified as targets of the 

WNKs-SPAK pathway include the Na+/HCO3- transporter NBCe1 (electrogenic sodium 

bicarbonate cotransporter 1); the Cl-/HCO3- exchanger family SLC26A; and the Cl- 

channel CFTR (cystic fibrosis transmembrane conductance regulator) (Hong et al., 2014, 

2013; Mendes et al., 2011; Yang et al., 2007, 2011).  

For example, the exocrine gland of the pancreas secretes a pancreatic juice rich in Cl- 

and HCO3- that also contains enzymes to digest dietary carbohydrates, proteins, and fats. 

WNK1-SPAK phosphorylation of NBCe1 and CFTR significantly inhibits ductal 

HCO3- secretion by reducing the plasma membrane expression of both NBCe1 and CFTR 

(Yang et al., 2009, 2011). Consistent with this, knock-down of several different WNK 

kinases in pancreatic ducts increases NBCe1 and CFTR-dependent ductal secretion. 

Interestingly, the NBCe1-B/CFTR activator inositol-1,4,5-trisphosphate (IP(3)) receptor-
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binding protein released with IP(3) (IRBIT) antagonizes the effects of the WNKs and 

SPAK on NBCe1 and CFTR by recruiting PP1 to the complex to dephosphorylate CFTR 

and NBCe1-B and stimulate their activities (Yang et al., 2011). Given that the regulatory 

modalities in a conserved domain of NBCe1 may be present in CFTR and other 

transporters like the Slc26a6 sulfate transporter (Hong et al., 2013), and multiple ion 

transport proteins in secretory epithelia are regulated by PP1 and/or calcineurin, the 

WNK-SPAK and IRBIT-PP1 regulatory pathways of Cl- and HCO3- transport may serve to 

precisely tune the rate of epithelial secretion in response to physiological demands or 

pathological stimuli in numerous epithelia (Hong et al., 2014). The relevance of this 

pathway for human physiology and disease was recently demonstrated in a large scale 

human genetic study. CFTR variants that disrupt the WNK1-SPAK activation are 

associated with a selective, HCO3- defect in CFTR channel function and in turn affects 

organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas), but do not cause 

typical CF (LaRusch et al., 2014; Park et al., 2010). 

The colonic epithelium secretes mucus that is also rich in HCO3- and Cl-. Inflammatory 

bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized 

by impaired immune regulation and epithelial barrier disruption. The mechanisms of the 

WNK-SPAK pathway in the regulation of colonic transport are less well characterized than 

in the pancreas. Targeted expression of SPAK has been shown to increase colonic 

epithelial permeability, and proinflammatory cytokines, which are elevated in induced 

experimental colitis, exacerbate this effect (Yan et al., 2007, 2011). In contrast, SPAK 

knockout mice exhibit higher intestinal barrier function and lower cytokine production in 

induced experimental colitis (Zhang et al., 2013). The correlated expression of SPAK with 
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colon osmolality and the production of proinflammatory cytokines has been linked to SP1 

and NF-kB binding sites in the SPAK promoter (Yan et al., 2008). These studies highlight 

the shared mechanisms and roles of the WNKs in regulating ion homeostasis in different 

tissues, and have implications for our understanding of CF and IBD, both of which are 

associated with abnormal epithelial transport.  

The WNK-SPAK pathway was also implicated in the regulation of glucose reabsorption 

by sodium-glucose cotransporters (SGLTs) in the small intestine (mainly by SGLT1). 

Current findings suggest that SPAK mitigates SGLT1 activity when co-expressed in 

oocytes by lowering its plasma membrane insertion (Elvira et al., 2014). In addition, 

insulin was shown to enhance the WNK-SPAK-NCC pathway in a leptin signaling 

deficient mouse model of hyperinsulinemic metabolic syndrome by a mechanism 

involving the PKA (protein kinase A)/PKC (protein kinase C)-mediated phosphorylation of 

NCC (Fujita, 2014; Nishida et al., 2012). Insulin stimulates NCC activity by PKA-mediated 

phosphorylation and inactivation of KLH3, which leads to a decrease in WNK4 

degradation (Shibata et al., 2014; Yoshizaki et al., 2015). In addition, the insulin mediated 

phosphorylation of SGLT2 links glucose reabsorption with the WNK-SPAK-NCC pathway 

(Shojaiefard et al., 2007), and insulin mediates the phosphorylation of WNK1 by the 

PI3K/Akt/PKB pathway (Jiang et al., 2005; Sale et al., 2006). In addition to inhibition of 

SGLTs by gliflozins such as canagliflozin, this data suggests mechanisms by which a new 

class of drugs could be developed that specifically targets the WNK4-mediated activation 

of NCC.  

Immune function and cell migration 
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The role of the WNK pathway in the regulation of cellular functions not classically 

associated with ion transport has recently emerged. However, even in these processes, 

such as immune function and cell proliferation and migration, WNK-dependent 

modulation of ion transport is being shown as a common mechanism (Figure 6). For 

example, previous work had demonstrated that WNK1 is strongly expressed in the 

thymus and spleen of newborn and adult mice (Shekarabi, et al., 2013). Köchl at al. 

utilized an RNAi screen to identify WNK1 as a regulator of both integrin-mediated 

adhesion and T cell migration (Köchl et al., 2016). WNK1 decreases activated T-cell 

adhesion to endothelial cells and stimulates the migration of Jurkat T cells in vitro and 

primary CD4+ T-cells in lymph nodes and spleen during T-cells recirculation (Köchl et al., 

2016). When WNK1-deficient primary T-cells are activated by the chemokine receptor 

CXCR4 or TCRs (T cell antigen receptor), they are significantly more adherent to ICAM1 

(intercellular adhesion molecule 1), a ligand for LFA-1 (lymphocyte function-associated 

antigen 1, an integrin adhesion molecule on T-cells, α1β2) and to endothelial cell 

monolayers. Furthermore, the NKCC1 inhibitor bumetanide decreased the chemotaxis 

effect of CCL21, a chemokine, in WT T-cells. These results are reminiscent of how WNKs 

modulate glioma cell migration through the regulation of focal adhesion dynamics, cell 

contractility, and cell volume via NKCC1-dependent changes in ion transport across the 

leading edge of cells (Algharabil, et al. 2012; Garzon-Muvdi et al., 2012; Haas and 

Sontheimer, 2010; Haas et al., 2011; Zhu et al., 2014). These findings are significant, 

since leukocytes utilize this migratory mechanism to exit from the vessel lumen and 

transmigrate between endothelial cells into the subendothelial matrix. Collectively, this 

work demonstrated a novel link between the WNKs-SPAK-CCCs pathway and T-cell and 
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endothelial and adhesion-mediated cytoskeleton reorganization. These mechanisms of 

adhesion and migration likely have to do with changes in cell shape and volume, and may 

be examples of how the same transport system can be utilized for different though 

partially overlapping cellular processes depending on cell type and physiological need. 

Downstream targets of the WNK family have also been implicated in immune system 

function. A high NaCl diet has been linked to higher SGK1 (serum- and glucocorticoid - 

induced kinase 1) expression and generation of pathogenic TH-17 cells ([interleukin-17 

(IL-17)-producing helper T cells] in vitro and in vivo (Kleinewietfeld et al., 2013). 

Pathogenic TH-17 cell activation is critical for the development of experimental 

autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, and genetic 

risk factors associated with MS are related to TH-17 cell activation. SGK1 has a critical 

role in regulating IL-23 receptor expression and stabilizing the TH-17 cell phenotype, 

suggesting a role for this kinase in both autoimmune and inflammatory disorders (Wu et 

al., 2013). SGK1 is a key regulator of ENaCs and other NaCl transport systems, and is 

activated by WNK1 and WNK4 in a kinase-independent fashion (Heise et al., 2010; Xu et 

al., 2005a, 2005b). SGK1 and AKT1 also phosphorylate WNK1 and WNK4 to inhibit 

ROMK (renal outer medullary K+ channel) (Cheng and Huang, 2011). The expression of 

the N-termini of all four WNKs results in modest to strong activation of SGK1. These 

findings suggest the WNK-SGK pathway may maladaptively induce TH-17 cell activation 

to promote autoimmunity in specific disease contexts via increases in dietary NaCl intake. 

This is fascinating, since increased dietary NaCl impacts blood pressure through the 

same WNK-regulated pathway in the distal nephron. 

Potential therapeutic strategies targeting the WNK pathway  
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In addition to providing insight into the basic physiological mechanisms of ionic 

and volume homeostasis, the body of work reviewed herein also points to novel 

therapeutic strategies for a diverse array of human disorders by targeting the WNK-

SPAK-CCC cascade. Indeed, some of these nodes have already begun to be tested. For 

example, WNK-SPAK inhibition would be expected to potently increase natriuresis, cause 

diuresis, and consequently lower systolic blood pressure. This approach may have 

several potential advantages over the use of thiazides, which are usually insufficient as 

monotherapy and have multiple off-target side effects such as impaired glucose 

tolerance, photosensitivity, or hyperuricemia. WNK-SPAK inhibition may be more potent 

antihypertensives than thiazides (or loop diuretics) alone, as they target multiple 

transporters, including NCC and NKCC2, simultaneously, and would avoid the off-target 

effects of thiazides. The natriuretic and antihypertensive effects of WNK inhibition were 

recently demonstrated in rodents, affirming the candidacy of WNK inhibition as a diuretic 

antihypertensive (Yamada, et al., 2016). 

In the nervous system, regulation of [Cl–]i and the postsynaptic response to GABA 

by the WNK-SPAK-CCC pathway has exciting implications for the numerous neurological 

disorders characterized by pathologically elevated [Cl–]i resulting in so-called “GABAergic 

disinhibition.” For these conditions, which include neuropathic pain, neonatal seizures, 

certain forms of epilepsy, motor spasticity, and even psychiatric disorders such as some 

forms of autism and schizophrenia, inhibition of WNK-SPAK signaling may attenuate the 

pathologic elevations of [Cl–]i via simultaneous activation of KCCs and inhibition of NKCC. 

Preclinical work has supported this hypothesis; for example, treatment of spinal cord 

slices from mice with neuropathic pain from sciatic nerve injury with the WNK-SPAK 
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inhibitor STOCK1S-50699 normalizes [Cl–]i and restores the GABA-induced current 

(Kahle et al., 2016b). Thus, WNK-SPAK inhibitors may be novel, non-addictive analgesics 

in neuropathic pain. They may also be useful in the myriad other neurologic disorders of 

GABAergic disinhibition. 

WNK-SPAK-CCC regulation of cellular ionic homeostasis also modulates cell 

volume, and is implicated in disorders of cell volume such as sickling of erythrocytes in 

sickle cell disease (Rinehart et al., 2009) and cerebral edema in ischemic stroke or 

hyponatremia (Kahle et al., 2015). For example, in ischemic cerebral edema, energetic 

failure results in pathologic increase in [Na+]i and [Cl–]i, causing cytotoxic cell swelling. 

Inhibition of the WNK-SPAK-CCC cascade in this setting would be expected to 

simultaneously inhibit ionic import via NKCC and stimulate ionic export by KCCs to 

alleviate cellular osmotic stress. Zhang and colleagues recently demonstrated this effect 

in mice by showing that WNK3-knockout mice exhibited less cytotoxic edema after middle 

cerebral artery occlusion (Zhao et al., 2016). 

Finally, emerging roles of WNK-SPAK signaling in autoimmunity, certain cancers, 

inflammatory bowel disease, and other disorders discussed here point to additional 

possible applications of WNK-SPAK modulation in human disease. The development of 

WNK-SPAK inhibitors with favorable pharmacokinetics for clinical use is underway. 

Exploiting the unique structure of WNK kinases to enhance kinase specificity is a 

promising strategy (Yamada et al., 2016b; Zhang et al., 2016b). 
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Conclusions  

The WNK-SPAK-CCC pathway is essential for normal ion homeostasis in multiple 

tissues, and genetic mutations in several of its members cause human diseases 

characterized by impaired ion transport in the kidney and nervous system. The 

established roles of the WNK-SPAK-CCC pathway in epithelial transport, cell volume 

homeostasis, and GABA signaling have implications for diverse diseases such as 

essential hypertension, cerebral edema, and neuropathic pain. Exciting emerging roles 

for the WNKs in immune cell function and cell migration are also related their major 

function of ion transport homeostasis, and have relevance for autoimmune diseases and 

types of cancer, including glioma (Table 1). The importance of the WNK-SPAK-CCC 

pathway for human physiology, coupled with unique structural and biochemical 

characteristics of its signaling mechanisms (Yamada, et al., 2016a; Yamada et al., 

2016b), suggest an improved understanding of this pathway may yield novel opportunities 

to manipulate cellular ion gradients for therapeutic benefit. 
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Figure 1. WNKs regulate NCC and NKCC2 through the kinases SPAK and OSR1 to 
achieve blood pressure and K+ homeostasis in humans. WNK1 and WNK4 are 
abundant in the kidney. Inhibition of WNKs in the kidney is predicted to elicit a K+-sparing, 
antihypertensive effect by reducing the reabsorption of NaCl by NCC in the distal 
collecting and connecting tubules (DCT/CNT) and by NKCC2 in the thick ascending limb 
(TAL). Red asterisks depict nodes in the signaling pathway where inhibition would be 
expected to decrease blood pressure. The green asterisk depicts a node where 
stimulation would be expected to decrease blood pressure. Mendelian diseases labeled 
in blue are those resulting from mutation of the indicated gene in humans. STOCK1S-
50699, a recently developed WNK-SPAK/OSR1 inhibitor. 
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Figure 2. Role of the Distal Convoluted Tubule in Na+ reabsorption and in sensing 
plasma K+. 

Na+ is reabsorbed in distal nephron through the Na-Cl cotransporter - NCC (DCT) and 
the epithelial Na+ Channel - ENaC (CNT). The driving force for Na+ reabsorption is 
provided by the basolateral Na+/K+-ATPase (NKA). NCC function is activated by a 
cascade of protein kinases, WNK4 and SPAK. A decrease of plasma K+ will results in a 
decrease in intracellular Cl- (linked by Membrane potential Vm in Goldman Equation). 

Decrease in intracellular Cl- stimulates WNK4 which phosphorylates and activates SPAK, 
which phosphorylates and activates NCC. Decrease in plasma K+ results in increase Na+ 
reabsorption and thus decrease Na+ delivery to downstream CNT/CD segments leading 
to conservation of K+. Note that the same basolateral transporters exist in CNT and CD 
segments but are not shown for clarity.  

DCT = Distal Convoluted Tubule; CNT = Connecting Tubule; CD = Collecting duct. 
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Figure 3. The WNK-SPAK-CCC signaling pathway (adapted from (Alessi et al., 
2014)).  Domains and sites important for regulation of and signaling through the WNK-
SPAK/OSR1 pathway. Proteins with slashes indicate that multiple isoforms have the 
same properties. For SPAK/OSR1, the residue numbering above the protein represents 
SPAK, and the residue numbering below represents OSR1. Kinase X refers to a yet 
unidentified kinase that is regulated by WNKs and mediates the direct phosphorylation 
and inhibition of Site-1 on the KCCs. Rbx and Nedd8 are part of the ubiquitin ligase 
complex. E1 and E2 represent the two enzymes involved in transfer of ubiquitin (Ub) 
onto itself to form polyubiquitin chains. STOCK1S-50699 is a small-molecule inhibitor 
that blocks the interaction between SPAK/OSR1 and WNK by binding to the CCT 
domain. 
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Figure 4. Models depicting the cell volume regulation by the WNK and SPAK 
kinases and their effectors NKCC1 and KCC3; a molecular rheostat of cell volume 
[adapted from (Zhang et al., 2016a)]. (A) Cell volume is tightly controlled by WNK-SPAK 
regulation of NKCC and KCC through a system that senses changes in cell volume and 
transduces these signals to affect ionic transport at the cell membrane. Water moves 
across the membrane according to resulting changes in osmotic gradients. Cell shrinkage 
(1) is detected via a yet unknown mechanism, and results in activation of the WNK 
kinases (2). Hyperosmolar stress increases WNK autophosphorylation. 
Autophosphorylation at a specific serine residue within the WNK activation loop (Ser382 
in Wnk1) is required for WNK activation. Autophosphorylation at another serine residue 
(Ser378 in Wnk1) increases activity. WNK is likely further phosphorylated by other 
kinase(s) on other sites. (3) Activated WNK binds to and phosphorylates SPAK at 
residues located within the T-loop of the SPAK catalytic domain. (4) Phosphorylation 
activates SPAK and results in phosphorylation of multiple residues on both NKCC and 
KCC. Phosphorylation has opposite effects on NKCC and KCC; while NKCC is activated 
by phosphorylation, KCC is inhibited. Thus, phosphorylation of both NKCC and KCC 
results in net Na+, K+, and Cl– influx into the cell via activated NKCC. Obligatory water 
influx increases cell volume (5), resulting in “regulatory volume increase (RVI)”. (B) Cell 
swelling (1) is detected via a yet unknown mechanism and inhibits WNK activation. (2) 
Autophosphorylation is decreased, and protein phosphatases dephosphorylate WNKs to 

A 

B 

C 

D 
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reduce activating phosphorylation. (3) SPAK is not phosphorylated and remains inactive. 
(4) NKCC and KCC are not phosphorylated by SPAK, and protein phosphatases (such 
as PP1 and PP2A) dephosphorylate NKCC and KCC. Dephosphorylation decreases the 
activity of NKCC and reciprocally activates KCC. Thus, dephosphorylation of both NKCC 
and KCC results in net K+, and Cl– efflux out of the cell via activated KCC. Obligatory 
water exit decreases cell volume (5), resulting in “regulatory volume decrease (RVD)”. 
(C) A proposed phosphorylation motif in SLC12A family NKCC1 and the KCC 
cotransporters, including KCC3, is shown in a segment of the human KCC1-4 C terminus 
aligned with a segment of the NKCC1, NCC and NKCC2 N-terminus from human (h) 
[Revised from (Rinehart et al., 2009)]. The threonine (T) highlighted in yellow indicates a 
single phosphorylation site that is common to all the transporters. With nearby shared 
tyrosine (Y) and arginine (R) residues separated by any amino acid residue (X), a 
candidate SLC12A family regulatory phosphorylation motif is suggested. In KCC3, the 
highlighted Thr in yellow is Thr991. Phosphorylation at Thr212 in human NKCC1 (Thr184 
in shark) by WNK1-SPAK kinase signaling is a key event (along with Thr203 and Thr207) 
required for NKCC1 activation in conditions that simultaneously promote the inhibitory 
phosphorylation of KCC3 Thr991 (Darman and Forbush, 2002; Dowd and Forbush, 2003; 
Vitari et al., 2005). KCC3 Thr991 (and homologous sites in other KCCs) and NKCC1 
Thr212 may be part of a phospho-motif “YXRT” that is important for the coordinated 
control of NKCCs and the KCCs by the WNK3-SPAK kinase complex (as in D). (D) 
Coupling of the WNK3-SPAK kinase complex to NKCC1 and KCC3 could comprise a 
“molecular rheostat” of cell volume regulation. The WNK3-SPAK kinases may have dual 
functions as sensors of both cell volume and [Cl-]i, as well as transducers that 
communicate changes of these parameters to plasmalemmal ion transport proteins. 
NKCC1 (“in-flow”) is activated and KCC3 (“out-flow”) is inhibited by WNK3-SPAK-
dependent phosphorylation at the indicated sites, leading to regulatory volume increase 
(RVI, in blue to left of rheostat) that mediates net accumulation of intracellular solute – as 
would occur in response to prior cell shrinkage. In the opposite scenario, NKCC1 is 
inhibited and KCC3 is activated by WNK3-SPAK inhibition and by activation of protein 
phosphatases, leading to decreased NKCC1/KCC3 phosphorylation. The resulting 
regulatory volume decrease (RVD, in red to right of rheostat) and regulatory volume 
decrease (RVI, in blue to left of rheostat) mediates net reduction of intracellular solute – 
as would occur in response to cell swelling. Therefore, the WNK3-SPAK complex might 
function as a “sensor-transducer” of cell volume perturbations that, via a physical and 
functional coupling to NKCC1 and KCC3, comprises a molecular rheostat of cell volume.  
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Figure 5. A strategy to facilitate neuronal Cl− extrusion by inhibiting the WNK-
SPAK/OSR1 pathway. Top shows the switch in the abundance of NKCC and KCC2 that occurs 
during postnatal development. This switch converts the GABAergic signal from depolarizing to 
hyperpolarizing. Left middle shows that in developing neurons and in some diseased neurons, 
[Cl−]i (blue fill) is increased due to high NKCC1 activity, low KCC2 activity, or both. Activation of 
GABAAR results in Cl− efflux, depolarization, and excitation. Left lower shows neuronal 
depolarization in response to GABA activation of GABAAR. Right middle shows that in healthy 
mature neurons, [Cl−]i is low because KCC2 activity predominates and GABAAR activation 
results in Cl− influx and hyperpolarization. Right lower shows neuronal hyperpolarization in 
response to GABA activation of GABAAR. 
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Figure 6. Contribution of the WNK-SPAK pathway and CCCs to cell adhesion and 
motility. A model illustrates asymmetrical chloride extrusion (efflux) in the tailing edge 
and chloride entry (influx) in the leading edge of a cell by KCCs and NKCC1, respectively, 
which leads to water influx and increase in volume of the leading edge. Lower [Cl-]i 
initiates a cascade involving the WNK-SPAK kinases which activates NKCC1 to influx 
more Cl-. Higher [Cl-]i in the leading edge mitigates the WNKs activity but also enhances 
RAP1 (Ras-related protein 1) GTPase activity on RAC1 and Cdc42 Rho GTPases to 
facilitate actin polymerization and induces the formation of protrusions. This also 
increases integrins adhesion to the extracelluar matrix (here) or to another cell. In addition 
to chloride, increase in proton efflux by Na+/H- exchanger 1 (NHE1) in the leading edge, 
engages ERM (ezrin/radixin/moesin) proteins and stabilizes actin and its binding to the 
plasma membrane creating a tension required for moving forward. Higher proton 
concentrations also facilitates integrins activation and binding to the extracellular matrix. 
(Garzon-Muvdi et al., 2012; Haas et al., 2011; Köchl et al., 2016; Schwab et al., 2012)     
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The WNK pathway Tissue/Cells Contribution References 

Kidney 

WNK1/3/4-SPAK-NCC 
 
 
 
 
WNK1/3/4-SPAK-NKCCs 
 
 
 
WNK1/4-SGK1-ROMK 
 
WNK1/4-SGK1-BKCa 
 
WNK1/4-SGK1-ENaC 
 
WNK3/4-TRPV4/5/6 
 

DCT, CNT 
 
 
 
 
TAL2 
 
 
 
CNT, CCD 
 
CNT, CCD 
 
CNT, CCD, DCT2 
 
DTL, ATL, DCT 
 

Na+ reabsorption 
 
 
 
 
Na+ reabsorption 
 
 
 
K+ secretion  
 
K+ secretion 
 
Na+ reabsorption 
 
Ca2+ absorption 

Chavez-Canales et al., 2014; Grimm et al., 2012; 
*Moriguchi etal., 2005; Ohta et al., 2009; 
*Rinehart et al., 2005; *Yang et al., 2003; *Wilson 
et al., 2003; Takahashi et al., 2014; *Yang et al., 
2007; Zhang et al. 2015. 
*Anselmo et al., 2006; *Gagnon et al., 2006; 
McCormick et al., 2011; *Moriguchi etal., 2005; 
Richardson et al., 2011; *Rinehart et al., 2005;  
Zhang et al. 2015. 
*Cheng and Huang, 2011; Lazrak et al., 2006; 
*Ring et al., 2007b; *Kahle et al., 2003.  
Webb et al., 2016; Yue et al., 2013. 
 
Ring et al., 2007a; Ring et al., 2007b; Xu et al., 
2005a; Xu et al., 2005b. 
*Fu et al., 2006; *Zhang et al., 2008; *Jiang et al. 
2007. 

Nervous system 

WNK3-SPAK-NKCC1 
 
WNK3-SPAK-NKCC1 
 
WNK1-SPAK-KCC2 
 
WNK1-SPAK-NKCC1 
 

cortex 
 
astrocytes, 
endothelial cells 
cortical neurons, 
spinal cord 
spinal cord 

cerebral edema 
 
cell volume control 
 
GABA function 
  
GABA function 

Begum et al., 2015; Zhao et al., 2016. 
 
Zhang et al., 2016b. 
 
Friedel et al., 2015; Inoue et al., 2012; Kahle et 
al., 2016b. 
Friedel et al., 2015; Kahle et al., 2016b. 

Non-renal epithelial 

WNK1-SPAK-NBCe1/ 
CFTR 
WNK3-TRPV6 
 
SPAK-SGLT1 

secretory epithelial 
 
small intestine* 
 
small intestine 

HCO3- ductal secretion 
 
intestinal Ca2+ 
absorption 
glucose reabsorption 

*Hong et al., 2013; *Yang et al., 2007; Yang et al., 
2011. 
*Zhang et al., 2008. 
 
*Elvira et al., 2014. 

Non epithelial 

WNK1/SPAK/KCC3 
 
WNK1/SPAK/NKCC1 
 
WNK1/SPAK/NKCC1 
 
WNK3/SPAK/NKCC1 
 
WNK1/SPAK 

fibroblast 
 
HEK293 
 
T-cells, cell lines 
 
cell lines, tumor cells 
 
cell lines 

cell volume control 
 
cell volume control 
 
T-cell and cell lines 
migration 
cell migration, tumors 
invasion 
autophagy 

Kahle et al., 2016a. 
 
Vitari et al., 2006. 
 
Garzon-Muvdi et al., 2012; Haas et al., 2011; 
Kochl et al., 2016; Zhu et al., 2014. 
Haas et al., 2011. 
 
*Gallolu Kankanamalage et al., 2016 

Table 1. A summary of the functional contribution of the WNK pathway in different tissues and cells 
based on the current findings. DCT: distal convoluted tubule; CNT: connecting tubules; TAL: thick 
ascending limb of Henle’s loop; CCD: cortical collecting duct; Large Conductance Ca2+-Dependent 
K+; ROMK: renal outer medullary K+ channel; DTL: descending thin limbs and ATL: ascending thin 
limbs of Henle's loops. * indicates that the pathway was tested in vitro .  
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