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ABSTRACT 

     The polyketide MPBD (4-methyl-5-pentylbenzene-1, 3-diol) is produced by 

the polyketide synthase SteelyA (StlA) in Dictyostelium discoideum. MPBD is 

required for appropriate expression of cAMP signalling genes involved in cell 

aggregation and additionally induces the spore maturation at the fruiting body 

stage. The MPBD signalling pathway for regulation of cell aggregation is 

unknown, but MPBD effects on sporulation were reported to be mediated by the 

G-protein coupled receptor CrlA in D. discoideum KAx3. In this study, we deleted 

the crlA gene from the same parental strain (Ax2) that was used to generate the 

MPBD-less mutant. We found that unlike the MPBD-less mutant, Ax2-derived 

crlA- mutants exhibited normal cell aggregation, indicating that in Ax2 MPBD 

effects on early development do not require CrlA. We also found that the 

Ax2/crlA- mutant formed normal spores in fruiting bodies. When transformed with 

PkaC, both Ax2 and Ax2/crlA- similarly responded to MPBD in vitro with spore 

encapsulation. Our data make it doubtful that CrlA acts as the receptor for MPBD 

signalling during the development of D. discoideum Ax2. 
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INTRODUCTION 

     Dictyostelium discoideum is a eukaryotic microorganism that inhabits the 

soil as single cell amoebae. When their bacterial food is exhausted, starving 

cells aggregate by means of chemotaxis to secreted cAMP and form 

multicellular mounds, which after a migratory slug stage, transform into fruiting 

bodies, consisting of a stalk, spore mass and basal disc. The spore cells 

become encapsulated and enter a dormant state (Konijn et al., 1967, Loomis, 

1975, Kessin, 2001, Kay & Thompson, 2009). 

     Polyketides, synthesised by polyketide synthases (PKSs), are secondary 

metabolites of various organism, which display a range of biological activities 

(Rideout et al., 1979, Funa et al., 2006, Schindler & Nowrousian, 2014). The D. 

discoideum genome has more than 40 genes encoding PKSs (Eichinger et al., 

2005, Zucko et al., 2007) and some polyketide compounds have been identified. 

DIF-1 (Differentiation Inducing Factor-1) is the best studied polyketide in D. 

discoideum; its backbone is synthesised by the polyketide synthase SteelyB and 

then modified by the halogenase ChlA and the methyltransferase DmtA to 

produce DIF-1 (Thompson & Kay, 2000, Austin et al., 2006, Neumann et al., 

2010). DIF-1 induces the basal disc and lower cup of the fruiting body, but also 

modulates chemotaxis to cAMP (Saito et al., 2008, Kuwayama & Kubohara, 

2009). Dictyoquinone is a polyketide, which has prespore cell inducing activity in 

D. discoideum and triggers the aggregation process in another Dictyostelid 
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Polysphondylium violaceum (Oohata et al., 2009, Takaya et al., 2014). 

     MPBD (4-methyl-5-pentylbenzene-1, 3-diol) is produced by the PKS 

SteelyA. MPBD was originally identified as a stalk cell inducing factor and was 

also shown to have spore inducing activity in vitro (Saito et al., 2006, Narita et al., 

2011). In addition, MPBD induces spore maturation in fruiting bodies (Sato et al., 

2013, Narita et al., 2014). Previous studies suggest that MPBD is a component 

of the SDF-1 (Spore Differentiation Factor-1) signalling cascade (Anjard et al., 

2011). SDF-1 is a phospho-peptide, which induces spore encapsulation in 

sporogenous cells that overexpress PkaC. Furthermore, SDF-1 can induce stalk 

cell differentiation in D. discoideum strain V12M2 cells in vitro (Anjard et al., 

1998). In the SDF-1 pathway, MPBD is proposed to bind to the G-protein 

coupled receptor CrlA (Raisley et al., 2004), coupled to Gα1 (Pupillo et al., 1989), 

which then blocks the inhibitory effect of glycogen synthase kinase GskA 

(Harwood et al., 1995) on release of the SDF-1 precursor.  

     We recently found that in addition to its role in sporulation, MPBD is also 

essential for early development, where it induces competence for aggregation of 

starved cells by upregulating the expression of key genes involved in 

chemotactic cAMP signalling (Narita et al., 2014). The mode of action of MPBD 

on induction of aggregation competence in early development has not been 

investigated. However, the genes required for SDF-1 signalling (stlA, crlA, gpaA 

and gskA) are present in early development (Rot et al., 2009) and CrlA may 

therefore also mediate the effects of MPBD at this stage. To validate this 
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supposition, we deleted the crlA gene in D. discoideum Ax2, the parent of the 

MPBD-less stlA- mutant, because the earlier crlA knock-out was generated in a 

different genetic background (KAx3) (Raisley et al., 2004).  

     However, we found no effect of CrlA deletion on MPBD effects on early 

development and upon further study also no effects on MPBD induction of 

sporulation. It therefore appears that CrlA does not mediate the effect of MPBD 

in strain Ax2. 

 

MATERIALS AND METHODS 

 

Strains, cell culture and development 

     Dictyostelium discoideum Ax2 and KAx3 strain were grown in an axenic 

medium (HL-5) at 22oC (Watts & Ashworth, 1970). The stlA- strain was described 

previously (Austin et al., 2006) and the crlA- strain (Strain ID: DBS0235627, 

KAx3-derivative) was obtained from Dicty Stock Center (Raisley et al., 2004). 

Both strains were cultured in HL-5, supplemented with 10 μg/ml blasticidin S. To 

create pkaC-overexpressing strains, cells were transformed with the pK-Neo 

vector (Anjard et al., 1992) by electroporation and the transformants were 

selected at 20 μg/ml G418. For multicellular development, cells cultured shaking 

in HL-5 were harvested in log phase, washed twice with phosphate buffer (PB) 

(2.7 mM Na2HPO4/10.7 mM K2HPO4, pH 6.2), plated at 106 cells/cm2 on PB agar 

plates (1.5o/o agar in PB) or on nitrocellulose filters, supported by agar, and 
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incubated at 22oC. For submerged development, axenically grown cells were 

washed twice with PB, and then incubated in 1 ml PB at 2 × 105 cells/cm2 in 

6-well tissue culture plates. 

 

Gene disruption of CrlA in Ax2 strain 

     For crlA gene disruption in D. discoideum Ax2, two DNA fragments of 688 

bp and 972 bp were amplified from Ax2 genomic DNA by PCR using primer pairs 

CrlA Frag1 F/CrlA Frag1 R and CrlA Frag2 F/CrlA Frag2 R (Table. S1) and LA 

Taq polymerase (Takara) or Q5 Hot Start High-Fidelity DNA Polymerase (New 

England BioLabs), and then subcloned into vector pCR4-TOPO (Invitrogen). 

The fragments were excised from the vectors using KpnI/HindIII for the 688 bp 

fragment 1 and PstI/BamHI for the 972 bp fragment 2 (Fig. S1) and both 

fragments were inserted into vector pLPBLP to generate the knockout vector 

pCrlA-KO. Ax2 cells were transformed with the KpnI/BamHI-digested pCrlA-KO 

vector by electroporation. After selection at 10 μg/ml blasticidin S, the knockout 

of crlA gene by homologous recombination was diagnosed by PCR of genomic 

DNA of transformed clones and by reverse transcription PCR of isolated RNA 

(Fig. S1). 

 

Sporulation and spore viability assays 

  Cells were developed at 106 cells/cm2 on a qualitative filter paper 

(ADVANTEC) cut into 1.5 cm square or a quarter of nitrocellulose filter (0.45 μm 
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pore size, Black gridded, 47 mm diameter, Millipore) placed on PB agar plates. 

When using KAx3 strains, agar plates with 4-fold concentrated PB were used, 

because KAx3 slugs migrated away from the filters on normal PB agar. After 2 

days, when fruiting bodies had formed, the filters were transferred to 1 ml PB 

and shaken vigorously. Spores were both directly stained with 0.001o/o calcofluor 

and counted using a fluorescence microscope, and treated with 0.5o/o Triton 

X-100 for 10 min and then stained and counted. Detergent-resistant spores were 

calculated as the ratio of the number of post-detergent treatment spores to 

pre-detergent treatment spores. 

     For examining spore viability, 50 detergent treated spores were plated on a 

1/5th SM agar plate with Klebsiella aerogenes, and the number of plaques 

appearing after 3 to 4 days was scored. Spore viability was calculated as the 

ratio of the number of plaques to the initial number of spores plated on plates.  

 

In vitro sporulation assay 

     The in vitro sporulation assay using sporogenous pkaC-overexpressing 

strains was performed as described previously (Kay, 1987, Anjard et al., 1998) 

with a few modifications. Axenically grown cells in shaking culture were 

harvested in the log phase, washed twice in KK2 buffer (16.5 mM KH2PO4 and 

3.9 mM K2HPO4, pH 6.1), and then resuspended at 105 cells/ml in spore salts 

(10 mM MES; pH 6.2, 20 mM NaCl, 20 mM KCl, 1 mM CaCl2, 1 mM MgSO4, 100 

units penicillin and 100 μg/ml streptomycin) with 5 mM cAMP. Two ml aliquots of 
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cell suspension were dispensed into 35 mm diameter dishes, yielding 2 × 103 

cells/cm2. After incubation at 22oC for 24 hours, MPBD was added and spores 

and amoeboid cells were scored 2 hours later by microscopy. At least 200 cells 

were counted and each assay was performed in duplicate. 

 

RESULTS 

 

Creation of Ax2-derived crlA mutant 

     To examine the relationship between MPBD and CrlA in the same genetic 

background, we disrupted the crlA gene to delete transmembrane domains four 

to six of CrlA in D. discoideum strain Ax2, which is also the parental strain of the 

MPBD-less stlA- mutant. Three independent knockout clones were used in this 

study (Fig. S1).  

     Firstly, we checked cell growth of Ax2/crlA- mutants, because in KAx3, CrlA 

acts as a negative regulator of cell growth (Raisley et al., 2004). In KAx3/crlA- 

mutants have a shorter doubling time and achieve a two times higher cell density 

in stationary phase than wild-type KAx3. Figure 1 shows that the Ax2/crlA- 

mutants showed similar cell growth as Ax2. The doubling time of Ax2 cells was 

9.3 ± 0.3 hours during the exponential phase, while that of three Ax2/crlA- 

mutants were 9.3 ± 0.7, 9.1 ± 0.1, and 9.6 ± 0.3 hours, respectively. The three 

clones also reached the same stationary phase cell densities as Ax2, indicating 

that CrlA is not a negative regulator of cell growth in Ax2.  
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Ax2-derived crlA- cells exhibit normal cell aggregation 

     To assess whether CrlA mediates MPBD signalling during early 

development, Ax2, Ax2/crlA- and stlA- cells were developed under submerged 

conditions and on nitrocellulose filters, and aggregation timing and morphology 

were observed. When submerged, Ax2/crlA- cells aggregated as rapidly as Ax2 

cells and formed similar large streaming aggregates, while aggregation of stlA- 

cells was about 3 hours delayed, with much reduced streaming and smaller 

aggregation territories (Fig. 2A). When developed on nitrocellulose filters, 

Ax2/crlA- and Ax2 aggregates were again of similar size, while stlA- aggregates 

were much smaller (Fig. 2B). These observations were confirmed when cells 

were developed directly on PB agar plates (data not shown). Thus, unlike the 

MPBD-less stlA- mutant, the Ax2/crlA- mutant shows no obvious defects during 

early development. These results make it unlikely that CrlA acts as a receptor for 

MPBD during early development.  

 

CrlA is not required for spore formation in Ax2 strain   

     Spore formation was previously reported to be impaired in the KAx3/crlA- 

mutant as well as the stlA- mutant, with both the percentage of 

detergent-resistant spores and spore viability being reduced in both mutants, 

suggesting that CrlA is the receptor of MPBD (Anjard et al., 2011). To validate 

these findings for Ax2, we examined the spore formation in our Ax2/crlA- mutants. 
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While the stlA- mutant makes fruiting bodies with transparent (glassy) spore 

heads, the Ax2/crlA- mutants form fruiting bodies which have normal “milky” 

spore heads, similar to Ax2 (Fig. 3A). Both Ax2 and Ax2/crlA- spore heads 

almost completely consist of calcofluor-positive elliptical spores, while the stlA- 

spore heads contain many calcofluor-negative spores and amoebas (Fig. 3B). 

The percentage of detergent-resistant spores and the percentage of spores that 

produced viable offspring were reduced to 59 ± 2.0o/o and 49 ± 11o/o, respectively, 

in the stlA- mutant. However, there were no significant differences in detergent 

resistance and spore viability between Ax2 and Ax2/crlA- mutants (Fig. 3C, 3D). 

These results indicate that unlike stlA- mutant, the Ax2/crlA- mutants formed 

normal encapsulated and viable spores. This implies that also MPBD induction 

of sporulation is not mediated by CrlA. 

     Although the Ax2/crlA- mutants were able to form normal spores, the 

KAx3/crlA- mutant was reported to show deficient spore formation and to be 

insensitive to MPBD (Anjard et al., 2011). To evaluate whether the different 

phenotypes of the crlA knock-outs in the Ax2 and KAx3 backgrounds are due to 

variations in laboratory procedures, we compared formation of encapsulated and 

detergent resistant spores in fruiting bodies of Ax2, stlA-, Ax2/crlA-, KAx3, and 

KAx3/crlA- strains. Figure 4A shows that unlike the Ax2/crlA- mutant, the 

sporulation efficiency was significantly reduced in the KAx3/crlA- mutant as well 

as the stlA- mutant, which meant both strains made less spores in the fruiting 

bodies. However, there was a difference between stlA- and KAx3/crlA- spores; 
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the stlA- spores were also less detergent resistant, while the KAx3/crlA- spores 

showed almost normal detergent resistance (Fig. 4B). These results indicate that 

effects of CrlA inactivation on sporulation is strain-dependent.  

 

Cells lacking CrlA in Ax2 strain can respond to MPBD   

     Unlike MPBD-less stlA- mutants, Ax2/crlA- mutants show normal 

sporulation and spore viability, suggesting that CrlA is not required for MPBD 

induction of sporulation. To validate this further we tested whether cells lacking 

CrlA respond to MPBD in a sporulation bioassay. According to the standard 

procedure to generate sporogenous strains (Anjard et al., 1992), we transformed 

the pK-Neo vector into Ax2 or Ax2/crlA- cells to create Ax2/K and Ax2-crlA-/K, 

respectively. We next used these PkaC overexpressing strains to test whether 

MPBD induced sporulation in vitro. Without MPBD, approximately 10o/o of Ax2/K 

cells differentiated into spore cells. MPBD was ineffective at a 1 nM, but 

increased spore differentiation of Ax2/K cells to 20-25o/o at 10-200 nM MPBD 

(Fig. 5A). Ax2-crlA-/K cells showed similar induction of sporulation as Ax2/K cells 

by 10 nM or 100 nM MPBD. This indicates that Ax2 cells that lack CrlA still 

respond to MPBD for spore differentiation (Fig. 5B). CrlA therefore either does 

not mediate MPBD induction of sporulation, or acts redundantly with another 

receptor in Ax2.  

 

DISCUSSION 
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     Studies of a crlA- mutant in D. discoideum strain KAx3 indicated that CrlA 

acts as receptor for MPBD and component of the SDF-1 signalling cascade that 

triggers terminal differentiation (Anjard et al., 2011). We initially aimed to 

investigate involvement of CrlA in effects of MPBD on early development and 

generated a second crlA- mutant in strain Ax2, which was also the parent of the 

MPBD-less mutant stlA-. The Ax2/crlA- mutant did not show the defects in early 

development that we found earlier in stlA-. Unlike stlA- mutants, the Ax2/crlA- 

mutants sporulated normally in fruiting bodies and also responded normally to 

MPBD in an in vitro sporulation assay. It is therefore doubtful that CrlA acts as 

the receptor for MPBD signalling during early or late development of D. 

discoideum Ax2. 

     We propose that the discrepancy with the earlier results using a KAx3/crlA- 

strain are caused by the genetic difference between Ax2 and KAx3 strains. Both 

strains are derived from the D. discoideum NC4 wild-type, but were chemically 

mutagenized to allow growth in axenic media. The KAx3 genome contains a 

large duplication in chromosome 2 that both NC4 and Ax2 lack. In addition,  

small duplications or deletions on some chromosomes have appeared over time 

in different laboratory stocks of the same strain (Bloomfield et al., 2008). 

Because the Ax2 genome could also have accumulated mutations, it could 

contain mutations that act epistatically with crlA or genes in the CrlA pathway. 

Thus, these subtle different genotypes might lead to different phenotypes of 

knockout mutants in Ax2 and KAx3. In fact, gskA knockout mutants in Ax2 or 
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Ax3 parents also show major differences in phenotype (Harwood et al., 1995, 

Schilde et al., 2004). GskA is described as the downstream component of CrlA in 

SDF-1 signalling cascade (Anjard et al., 2011) and its involvement therefore also 

requires further study.  

     Our results also indicate differences in the regulation of Dictyostelium cell 

growth and/or development between Ax2 and KAx3. Earlier data show increased 

doubling time and stationary phase cell densities in the KAx3/crlA- mutant, 

indicating that CrlA is a negative regulator of cell growth in axenic medium. The 

growth “defect” is cell-autonomous, suggesting that the KAx3/crlA- mutant 

cannot  sense a secreted signal that regulates cell proliferation (Raisley et al., 

2004). Ax2/crlA- mutants, however, exhibit similar cell growth as wild type Ax2 

(Fig. 1), indicating that such a signal is unnecessary for growth regulation in Ax2.  

     CrlA has an additional cell-autonomous role in prestalk differentiation in 

KAx3 because when developed in chimeras with KAx3 cells, KAx3/crlA- cells will 

sort out to the prespore region of slugs (Raisley et al., 2004). We performed a 

similar experiment with GFP-labelled Ax2/crlA- and Ax2 cells, but found that 

Ax2/crlA- cells were evenly distributed in the chimeric slug (data not shown). 

Furthermore, the KAx3/crlA- strain was reported to form larger aggregates with 

delayed tip formation compared to the wild type KAx3 (Raisley et al., 2004). 

These phenomena, however, were not observed when comparing Ax2/crlA- to 

the Ax2 parent. In short, all reported phenotypic consequences of crlA knock-out 

in KAx3 are not found in Ax2. One explanation, other than the difference of 
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genotypes, could be redundancy of CrlA function with another receptor in Ax2 

that is missing in KAx3. Although we did not detect a crlA-like mRNA in the 

Ax2/crlA- mutant (Fig. S1), it is possible that there is redundancy between CrlA 

and more distantly related receptor. Also, different constructs used for creating 

the mutants might lead to phenotypic differences in Ax2 and KAx3 backgrounds. 

The construct used in KAx3 was designed to disrupt the crlA by insertion of the 

blasticidin resistance (Bsr) cassette at a unique site (Raisley et al., 2004), while 

our construct replaces part of crlA with the Bsr cassette (Fig. S1). This difference 

in gene targeting could also affect phenotypes in each mutant. 

     Although our results make it doubtful that CrlA acts as the main receptor 

for MPBD signalling in Ax2, we cannot exclude that CrlA is the MPBD receptor in 

KAx3. In our experiments the sporulation defective phenotype of KAx3/crlA- is 

different from the MPBD-less phenotype (Fig. 4), suggesting that the sporulation 

defect of the KAx3/crlA- acts in parallel to the MPBD pathway.  

     In conclusion, we show that unlike in KAx3, CrlA does not act as the sole 

receptor for MPBD in Ax2. In future research, we aim to identify the missing 

MPBD receptor in Ax2.  
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Figure 1. Axenic growth of Ax2/crlA- and Ax2 cells.  

Cells were shaken at 200 rpm at 22oC at an initial starting density of 105 cells/ml 

in HL-5 and counted using a haemocytometer at the indicated times. Means and 

SD of three independent experiments are presented. 
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Figure 2. Early development of Ax2/crlA- and MPBD-less mutants.  

(A) Cells were plated at 2 × 105 cells/cm2, submerged in PB, and photographed 

at the indicated time points. Bars: 500 μm. (B) Cells were developed on 

nitrocellulose filters, supported by PB agar at 1 × 106 cells/cm2. Aggregates were 

photographed at the moment that each strain had completed aggregation. Three 

clones of the Ax2/crlA- mutant showed the same aggregate size. Bars: 500 μm. 
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Figure 3. Fruiting body and spore formation in Ax2/crlA- mutants. 

(A) Cells were developed on PB agar plates at 106 cells/cm2. After completing 

fruiting body formation, fruiting bodies (top panels) and spore heads (bottom 

panels) of each strain were photographed. Bars: 500 μm (top panels) and 200 

μm (bottom panels). (B) Spores were collected from mature fruiting bodies and 

stained by 0.001o/o calcofluor. The spores were observed under phase contrast 

(top panels) and UV illumination (bottom panels). The same phenomena were 

observed for each clone of Ax2/crlA- mutants. Bars: 50 μm. (C) The percentage 

of detergent-resistant spores. Spores were collected from sori after 2 days from 

starvation and counted, excluding unencapsulated amoeba-like cells. Spores 

were next treated with 0.5o/o Triton X-100 and counted once more. 

Detergent-resistant spores were calculated as the percentage of post-treatment 
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spores to pre-treatment spores. Bars represent means and SD of three 

experiments, performed in duplicate. (D) Spore viability. After detergent 

treatment, 50 spores were plated on 1/5th SM agar plates with K. aerogenes and 

emerging plaques were counted. Spore viability was calculated as the ratio 

between emerging plaques and plated spores and this value was expressed as 

percentage of the ratio obtained for Ax2. Bars represent means and SD of five 

independent experiments. **p < 0.01, ***p < 0.001 (two tailed t-test). 
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Figure 4. Comparison of spore formation in Ax2/crlA- and KAx3/crlA- 

strain. 

Fixed cell numbers were developed into fruiting bodies on nitrocellulose filters 

supported by well-buffered agar. The spores were collected and counted after 2 

days, then ‘sporulation efficiency’ (A) and ‘detergent-resistant spores’ (B) were 

calculated. Sporulation efficiency was calculated by dividing the number of 

spores before detergent treatment by the total number of cells plated initially. 

The ratio of detergent-resistant spores was calculated as described before (see 

legend of Fig. 3). Bars represent means and SD of 3 experiments, performed in 

duplicate. *p < 0.05, ***p < 0.001 (two tailed t-test, vs Ax2).  
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Figure 5. Response to MPBD by Ax2 and Ax2/crlA- strains using 

sporogenous assay. 

(A) Concentration dependence of MPBD induction of spore maturation. Ax2 cells 

overexpressing pkaC (Ax2/K) were incubated in spore salts with 5 mM cAMP at 

2 × 103 cells/cm2. Various concentrations of MPBD indicated were added to the 

cells after 24 hours, and then spores were counted 2 hours later under the 
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microscope. Each experiment was performed in duplicate and repeated three 

times. Bars indicate SD of the three experiments (n=3). **p < 0.01 (two tailed 

t-test, vs control; 0 nM MPBD). (B) Spore induction by MPBD in Ax2/K and 

Ax2-crlA-/K cells. MPBD was added to the developed cells at concentrations of 

10 nM or 100 nM. Spores were scored 2 hours after MPBD addition. Each 

experiment was performed in duplicate and repeated three times. Bars indicate 

SD of the three experiments (n=3). *p < 0.05 (two tailed t-test, vs Ax2 without 

MPBD). 

 


