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The In-Situ Upgrading (ISU) of bitumen and oil shale is a very challenging process to

model numerically because a large number of components need to be modelled using a

system of equations that are both highly non-linear and strongly coupled. In addition

to the transport of heat by conduction and convection, and the change of properties

with varying pressure and temperature, these processes involve transport of mass by

convection, evaporation, condensation and pyrolysis chemical reactions. The behaviours

of these systems are difficult to predict as relatively small changes in the material com-

position can significantly change the thermophysical properties. Accurate prediction is

further complicated by the fact that many of the inputs needed to describe these pro-

cesses are uncertain, e.g. the reaction constants and the temperature dependence of the

material properties.

The large number of components and chemical reactions involves a non-linear system

that is often too large for full field simulation using the Fully Implicit Method (FIM).

Operator splitting (OS) methods are one way of potentially improving computational

performance. Each numerical operator in a process is modelled separately, allowing

the best solution method to be used for the given numerical operator. A significant

drawback to the approach is that decoupling the governing equations introduces an ad-

ditional source of numerical error, known as splitting error. Obviously the best splitting

method for modelling a given process is the one that minimises the splitting error whilst

improving computational performance over that obtained from using a fully implicit

approach.

Although operator splitting has been widely used for the modelling of reactive-transport

problems, it has not yet been applied to models that involve the coupling of mass

transport, heat transfer and chemical reactions. One reason is that it is not clear which



operator splitting technique to use. Numerous such techniques are described in the

literature and each leads to a different splitting error, which depends significantly on

the relative importance of the mechanisms involved in the system. While this error has

been extensively analysed for linear operators for a wide range of methods, the results

observed cannot be extended to general non-linear systems. It is therefore not clear

which of these techniques is most appropriate for the modelling of ISU.

Analysis using dimensionless numbers can provide a useful insight into the relative im-

portance of different parameters and processes. Scaling reduces the number of parame-

ters in the problem statement and quantifies the relative importance of the various di-

mensional parameters such as permeability, thermal conduction and reaction constants.

Combined with Design of Experiments (DOE), which allows quantification of the impact

of the parameters with a minimal number of numerical experiments, dimensionless anal-

ysis enables experimental programmes to be focused on acquiring the relevant data with

the appropriate accuracy by ranking the different parameters controlling the process. It

can also help us design a better splitting method by identifying the couplings that need

to be conserved and the ones that can be relaxed.

This work has three main objectives: (1) to quantify the main interactions between the

heat conduction, the heat and mass convection and the chemical reactions, (2) to identify

the primary parameters for the efficiency of the process and (3) to design a numerical

method that reduces the CPU time of the simulations with limited loss in accuracy.

We first consider a simplified model of the ISU process in which a solid reactant de-

composes into non-reactive gas. This model allows us to draw a parallel between the

in-situ conversion of kerogen and the thermal decomposition of polymer composite when

used as heat-shield. The model is later extended to include a liquid phase and several

reactions.

We demonstrate that a ISU model with nf fluid components, ns solid components and

k chemical reactions depends on 9 + k(3 + nf + ns − 2) + 8nf + 2ns dimensionless

numbers. The sensitivity analysis shows that (1) the heat conduction is the primary

operator controlling the time scale of the process and (2) the chemical reactions control

the efficiency of the process through the extended Damköhler numbers, which quantify

the ratio of chemical rate to heat conduction rate at the heater temperature for each

reaction in the model. In the absence of heat loss and gravity effects, we show that

the ISU process is most efficient at a heater temperature for which the minimum of the

extended Damköhler numbers of all reactions included in the model was between 10 and

20.



For the numerical method, the standard Iterative Split Operator (ISO) does not perform

well due to many convergence failures, whereas the standard Sequential Split Operator

(SSO) and the Strang-Marchuk Split Operator (SMSO) give large discretization errors.

We develop a new method, called SSO-CKA, which has smaller discretization error.

This method simply applies SSO with three decoupled operators: the heat conduction

(operator C), the chemical reactions (operator K) and the heat and mass convection

(operator A), applied in this order. When we apply SSO-CKA with the second-order

trapezoidal rule (TR) for solving the chemical reaction operator, we obtain a method

which generally gives smaller discretization errors than FIM. We design an algorithm,

called SSO-CKA-TR-AIM, which is faster and generally more accurate than FIM for

simulations with a kinetic model including a large number of components that could be

regrouped into a small number of chemical classes for the advection and heat conduction

operator. SSO-CKA works best for ISU models with small reaction enthalpies and no

other reaction than pyrolysis reactions, but can give a large discretization method for

ISU models with non-equilibrium reactions.
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Chapter 1

Introduction

1.1 Background, context and literature review

Heavy oil and oil sands are important hydrocarbon resources that account for over 10

trillion barrels [61], nearly three times the conventional oil in place in the world. There

are huge, well-known resources of heavy oil, extra-heavy oil, and bitumen in Canada,

Venezuela, Russia, the USA and many other countries. The oil sands of Alberta alone

contain over two trillion barrels of oil. In Canada, approximately 20% of oil production

is from heavy oil and oil sand resources.

Thermal EOR (Enhanced Oil Recovery) techniques are generally applied to very viscous

heavy oil. These processes involve the introduction of external energy to the reservoir

by various methods such as steam injection or electrical heating. The heat produced

results in higher temperatures leading to a reduction in oil viscosity and an increase of

oil mobility.

In order to enhance extra heavy oil and tar sands recovery, the Steam Assisted Gravity

Drainage (SAGD) process has been widely used. In this process, steam is injected from a

horizontal well, and forms a steam saturated zone which is usually called steam chamber.

The steam flows to the perimeter of this steam chamber from the wells and condenses.

The heat is transferred by thermal conduction to the surrounding reservoir, the viscosity

of the oil is reduced and so it flows, driven by gravity, to a horizontal production well

below. SAGD was first introduced in the early 1980’s by Butler and co-workers [16]

and has been described and used in several pilots and commercial projects [14, 15, 81].

1
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However, such a process comes with some drawbacks essentially associated with water

management. Moreover, the resulting hydrocarbons are still extra heavy oil/bitumen.

Pipe transport of such viscous oil is challenging and refining on site is often required.

Heater

Producer

2-30 ft

Figure 1.1: Top view of well pattern for in-situ upgrading process, Mahogany Field
Experiment. The distance between a heater and a producer wells varies from 2 to 30

feets.

For these reasons, the process of In-Situ Upgrading (ISU) by subsurface pyrolysis has

been applied in various pilot projects and laboratory experiments [28, 49]. The ISU

process generally uses tightly spaced electrical heaters to slowly and uniformly heat the

formation by thermal conduction to the conversion temperature of about 350 0C. At

this temperature, the long chain oil molecules decompose through a series of chemical

reactions of pyrolysis and cracking. Figure 1.1 shows the well pattern for the Mahogany

Field Experiment, which is a part of the Shell’s Colorado field pilot [28]. For these

experiments, the distance between two wells varies from 2 ft (' 0.6m) to 30 ft (' 9 m)

There are various potential advantages of using an ISU process. Firstly, at the recovery

stage, there would be no requirement for a nearby water supply and water recycling

facilities. Secondly, since upgrading of the oil takes place in-situ, the heavy components

like coke will be left in the reservoir, and so the produced oil is lighter and of higher

commercial value [82]. As a result, using the ISU process could lead to a reduction in the

amount of required infrastructure and expenses on site for refining and pre-upgrading

before transport.
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To model the ISU process involves representing several physical and chemical phenom-

ena. In addition to the flow of fluids through porous media and the change of properties

with varying pressure and temperature, ISU involves transport of heat, evaporation,

condensation and several chemical reactions. The temperature scale goes from reservoir

temperature to several hundreds of degrees Celsius. As a result, thermodynamic and

petrophysical properties vary significantly within the reservoir.

Numerical simulation of the outcome of ISU is challenging because of the large number

of physical processes that need to be modelled, their varying time-scales and the non-

linearity of the equations describing these processes. Accurate prediction is further

complicated by the fact that many of the inputs needed to describe these processes are

uncertain, e.g. the reaction constants and the temperature dependence of the material

properties [30, 34].

Analysis using dimensionless numbers can provide a useful insight into the relative im-

portance of different parameters and processes, especially if combined with Design of

Experiments (DOE), which allows quantification of the impact of the parameters with

a minimal number of numerical experiments. Dimensionless numbers are often used

to scale laboratory results to the application length scale and conditions, and may be

developed using techniques such as dimensionless Analysis (DA) [74] and Inspectional

Analysis (IA) [78]. Ranking the different parameters controlling a given thermal decom-

position application enables experimental programmes to be focused on acquiring the

relevant data with the appropriate accuracy.

However, the main problem encountered when predicting the outcome of the ISU process

is the time required for the numerical simulations. For the simulation of conventional

reservoir processes such as water or solvent flooding, the fluid properties are generally

described with a compositional model that includes only a limited number of pseudo-

components (< 10). However, kinetic models describing heavy oil and kerogen decom-

position generally include more than 20 components [8, 12]. Solving the transport step

with such a large number of components is computationally expensive. Yet the chemical

operator on its own is described by a set of Ordinary Differential Equations (ODE) that

can be solved locally and represents a small computational effort in comparison with

the transport step. Decoupling techniques, or so-called operator splitting methods, pro-

vide a framework to deal separately with each operator. This way, a large number of
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components can be used to model accurately the chemical reactions but the transport

step could be solved with a lumped model including only a small number of pseudo-

components, potentially leading to large speed-ups with limited loss in accuracy.

However, decoupling the governing equations introduces an additional source of nu-

merical error, known as the splitting error. Finding the best decoupling strategy that

preserves the main interactions while splitting errors are limited is the challenge of this

work. The use of dimensionless analysis combined with DOE could help us identify these

main interactions and lead to the design of a more efficient splitting method.

In this chapter, we discuss the kinetic modelling of heavy oil cracking. The literature

review on the subject highlights the importance of using an accurate model to describe

the chemical reactions. We then discuss the use of fully coupled methods for the numer-

ical simulation of the ISU process. We introduce Operator Splitting (OS) methods as a

potential solution to reduce the computational time. These methods have been applied

to various reactive transport models [5, 6, 23, 25, 41, 68, 76, 91]. We then present the

aim and objectives of this work and provide a summary of the following chapters.

1.2 Heavy oil upgrading kinetic model

Oil and gas accumulations result from the evolution of petroleum systems over geologi-

cal time. Kerogen, an organic constituent of some sedimentary rocks (known as source

rocks) is a precursor to oil that forms during sediment diagenesis. Kerogen, which is

not soluble in water nor in common organic solvents, is progressively thermally cracked

and transformed into petroleum fluids during sediment burial. It first decomposes into

bitumen which is soluble in organic solvents. It is then subsequently cracked into hydro-

carbon rich oil, with further thermal maturation typically leading to light crude oil and

gas. These oil and gas products often migrate through adjacent rock layers until reach-

ing the surface or becoming trapped within a porous rock reservoir. In the reservoir, this

oil and gas products may be subject to alteration [86]. Nearly all the deposits of heavy

hydrocarbons are degraded products of accumulations of conventional oils. By heating

the reservoir to a temperature of above 300oC, the ISU process attempts to reproduce

the natural geological maturation of kerogen in order to obtain a lighter product, but

at a much faster rate.
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The ISU process can also be applied to oil shale reservoirs. Oil shale is the term used

to describe the fine textured rock of sedimentary origin that contains kerogen. The

kerogen of oil shale is not distinct from the kerogen of source rocks that transform to

petroleum fluids through geological time. However, the natural maturation process,

which would eventually lead to oil and gas, is at a very early stage and may still require

millions of years. This process can be accelerated through ISU. Unlike oil sands, oil

shale initially has a very low permeability, until kerogen breaks down through reactions

of pyrolysis, which opens up pores for flow. The fundamental aspects of kerogen pyrolysis

upon heating in industrial processes are similar to the ones of natural diagenesis [86].

Thermal ISU processes for producing hydrocarbons from oil shale have gained attention

recently, in part because of promising results reported by Shell [22].

Thermal cracking of extra-heavy oil and oil shale can be described by a compositional

kinetic model. The pyrolysis products from kerogen and bitumen are dominated by het-

eroatomic (N,S,O) compounds, of very high molecular weight. The NSOs are primary

products of kerogen decomposition and hydrocarbons are generated from secondary

cracking of these NSOs [7, 8, 86]. Depending on reservoir pressure, pyrolysis of kero-

gen and bitumen happens over a large range of temperature from 150oC to 800oC. In

the absence of oxygen, pyrolysis usually takes place at 250 − 300oC during which the

asphaltenes crack into saturates and aromatics. An accurate compositional model is a

pre-requisite to be able to predict the chemical reactions that occur in this process.

A first kinetic model of oil cracking has been proposed by Tissot and Espitalie [85].

Ungerer et al. [87] derived a more detailed model but still simple enough to be calibrated

on pyrolysis experiments of real oils. Braun and Burnham [12] reported a significant

deviation with the measured cracking rate when this model is used at temperature less

than 420o C. They proposed a more complex and rigorous model that accounts for this

discrepancy. Behar et al. [8] extended this model by focusing on the most unstable

chemical classes of oils: the C14+ saturates, aromatics and polar compounds NSOs.

The model can be extended to include thermal cracking of the C6 − C14 classes. A full

kinetic model is described by [49] and its reaction scheme is represented in figure 1.2.
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Figure 1.2: Kumar’s kinetic model reaction scheme (figure from [49])

1.3 Fully Coupled Numerical Methods for Thermal Reac-

tive Reservoir Simulation

Thermal reservoir processes are inherently highly non-linear. The mass transport, heat

transfer and phase behaviour of these thermal compositional systems, in which the

components partition across multiple fluid phases as a function of composition, pressure

and temperature, are difficult to model accurately. When solving the transport problem

in thermal reservoir simulation, the coupled non-linear conservation equations of mass

and energy are discretized using different techniques, for instance the Finite Volumes

Method (FVM) or the (mixed) Finite Elements Method (FEM). The resulting discrete

equations are generally solved using various methods based on Newton’s algorithm [63,

89].

The numerical simulation of thermal reactive transport processes brings up several chal-

lenges. The energy conservation equation leads to strongly coupled phenomena. A fully

implicit strategy is generally applied in order to preserve this coupling. In conventional
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reservoir simulation, chemistry and heat transfer do not play a key role in the transport

equations. Hence, the coupling between transport and thermodynamics is driven by

the pressure and a special strategy can be applied to the linear solver, that is known

to be the most time consuming computational kernel and the bottleneck for scalable

parallel simulation [17]. In the case of strong thermal coupling associated with chemical

reaction, the pressure is no longer the main driving variable.

In addition to that, the large number of components and chemical reactions involves a

non-linear system that is often too large for full field simulation. The IMPES (IMplicit

Pressure Explicit Saturation) method can potentially reduce the computational time

but sometimes requires unaffordable small time-steps to prevent instabilities [20]. The

Adaptive Implicit Method (AIM) [73] seeks a middle ground between the Fully Implicit

Method (FIM) time stepping, which allows large time-steps but is expensive in CPU

time and storage, and an IMPES-type method. With AIM, the expensive implicitness

is confined to the part of the simulation that requires it, allowing the rest of the compu-

tation to be done explicitly. AIM is widely used for thermal compositional simulations

with a large number of components and the stability analysis is well-known [20, 59].

However, accounting for chemical reactions is very challenging. They tend to be stiff

and very localized leading to very small time-steps. Accordingly, solving such a problem

is very expensive in terms of CPU time.

A detailed compositional simulation of the In-Situ Upgrading of oil shale is given by

[24]. A kinetic model for the thermal cracking of kerogen has been implemented in

the Stanford General Purpose Simulator (GPRS) using FIM and was used to simulate

the Mahogany Demonstration Project-South (MDP-S) conducted by Shell [28]. The

numerical experiments conducted in this study show that the time-steps required in ISU

simulation are much smaller than in compositional simulation without reactions.

1.4 Operator Splitting Methods

Operator splitting is a widely used method for solving reactive transport problems

[25, 41]. The basic idea is to split the original problem into a sequence of smaller

problems. Then, dedicated solvers can be applied to each operator. IMPES-based (or
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AIM) transport codes can be coupled with chemical reaction models. For example, ac-

curate ODE (ordinary differential equation) solvers can be employed to cope with the

sometimes stiff systems of equations describing the chemical reactions. In addition, dif-

ferent time stepping strategies can be applied to the different operators, and in the case

of ODE, local time steps may be used.

Operator splitting methods have been routinely employed in models to describe hydro-

geochemical transport [5, 6, 91], atmospheric systems [51], combustion-reaction prob-

lems [68], and multiphase flow problems in petroleum engineering applications [23, 76].

However, the challenge of applying them to ISU resides in the presence of multiphase

thermodynamics with stiff fronts coupled with chemical reactions. Choosing carefully

among the numerous operator splitting methods, i.e., achieving an acceptable compro-

mise between accuracy, computation resources and time, is essential.

OS methods offer two distinct approaches. In a Sequential Non-Iterative Approach

(SNIA), each operator is applied once sequentially [5]. The classical SNIA, also called

Sequential Split Operator (SSO) can be modified by using two time steps and alternating

the order of the operators, as it is done in the Strang-Marchuk Split Operator (SMSO),

also called the Alternating Split Operator (ASO) [51]. On the other hand, in the Se-

quential Iterative Approach (SIA), iterations are performed between each operator until

convergence is obtained for each time step [45]. The most common SIA is the Iterative

Split Operator (ISO), also called implicit-explicit iterative method.

However, a significant drawback of splitting technique is that they introduce an addi-

tional source of numerical error, known as the splitting error. Valocchi and Malmstead

[88] showed that for one-dimensional transport with first-order radioactive decay, SSO

generates a splitting error of order one. Kaluarachchi and Morshed [44] extended this

result to the one-dimensional advection-diffusion-reaction equation with first-order re-

action under steady-state flow. They showed that an order one error occurs for SSO

and an order two error for SMSO. This error can be decreased by reducing the time-step

size. Alternatively, ISO removes the splitting error through sequential iterations.

Convergence and stability of SSO, SMSO and ISO have been established for linear

reactive transport [26, 38, 40, 71] and observed in some particular cases of non-linear

reactive transport [29, 45], although this does not necessary apply for strongly non-

linear problems such as ISU. The applicability of SIA depends mainly on the stability
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requirements and the rate of convergence of the iterations [38] and can be challenging

to obtain because of the implicit-explicit treatment of the operators [42].

Even when stable and convergent, the use of OS methods generates additional com-

putation cost to obtain a precision equivalent to a fully coupled approach, either by

decreasing the time-step size or iterating through the splitting scheme. However, when

the splitting error is limited, the use of efficient dedicated solvers for each operator can

potentially generate large speed-ups.

1.5 Objectives and Summary of Chapters

The objective of this work is to evaluate the use of OS methods for the modelling of the

ISU process. Since the convergence and precision of these methods depend strongly on

the various couplings in the model, we first try to identify which physical parameters

have the most impact on the process. We use dimensionless groups to reduce the number

of parameters. The use of DOE allows quantification of the impact of the dimensionless

numbers on the energy efficiency of the system. This analysis provides the groundwork

to the development of a new splitting method that preserves the main interactions

so the splitting errors are limited. Dedicated solvers are then used to improve the

computational cost of the transport step and the precision of the chemical reaction step.

In Chapter 2, we define a simplified model where a solid reactant decomposes into

non-reactive gas. This model enabled us to draw a parallel between ISU and thermal

decomposition of polymer composite when used as heat-shielding for spacecraft re-entry.

This meant our numerical model could be validated by comparison with experimental

result obtained by Henderson and Wiecek [34], where a thin slab formed of polymer

composite material was subjected to a pure radiant heat flux. Our simplified model was

able to reproduce the coupling between heat propagation, chemical reaction and gas flow

with good agreement for this test case. Inspectional Analysis was used to determine the

minimum number of dimensionless groups that can be used to describe both processes.

Particular attention was given to the Damköhler numberDK , which describes the ratio of

chemical reaction rate to heat conduction rate at a hypothetical infinite temperature, and

the Arrhenius number Na, which quantifies the ratio of activation energy of the reaction

to potential energy. Our analysis highlights the importance of both numbers and allows
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us to identify a new dimensionless number, called the extended Damköhler number D̃K

which is a combination of DK and Na and quantifies the chemical reaction rate at the

heater temperature. The study of D̃K enabled us to define a reaction temperature for

the process.

Chapter 3 describes the use of DOE to identify primary parameters for both processes.

A two-level factorial design [2] with Response Surface Methodology (RSM) [65] is used

to examine the relationship between the response and the parameters of the experiment,

leading to a classification of the dimensionless numbers as primary parameters, secondary

parameters and insignificant parameters. The methodology is first applied to study the

energy efficiency of thermal decomposition of kerogen into gas. We focus the study

on the kinetic parameters of the decomposition. We observe that, when the extended

Damköhler number is small, the reaction is slow and the process is inefficient. However,

when the Damköhler number is very large, the reaction is very fast, but since the heat

conduction is the primary mechanism for the process, an important part of the energy

given to the system is simply used to heat up the rock. This analysis allows us to

identify an optimal heater temperature for the performance of the process. We then

use the same methodology to measure the performance of polymer thermal protection

systems. We observe that the most important numbers for this case are the reduced

volumetric heat capacity of the reactant Γ∗R and the reduced heat of decomposition

∆h∗r . Indeed, while the reactant is consumed, the temperature increases slowly as the

system requires enough energy for the decomposition. This analysis allows us to identify

a protection temperature and a protection time.

For both cases, we observe that the heat conduction was the primary mechanism con-

trolling the process, until the chemical reaction becomes important. Apparition of large

volume of gas generated by the chemical reactions results in an increase of pressure un-

til the flow becomes important. This observation can help us design a robust splitting

method for the numerical simulation of the process. The main interactions are conserved

in a decoupling method where the heat conduction is performed first, followed by the

chemical reaction and finally the heat and mass convection step.

Chapter 4 focuses on the numerical methods. We describe the most common OS methods

used in the literature. We observe that ISO failed to converge for our model. SSO and

SMSO provide converged solutions but generate a large discretization error. Based on
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the final observations of Chapter 3, we develop a novel splitting method, defined as SSO-

CKA, where the heat is transported by conduction first, followed by a chemical reaction

step, and finally the mass and heat convection is performed. SSO-CKA provides the best

results in term of precision and performance. However, the splitting error still needs to

be controlled to avoid large discretization errors and instability. We use DOE to study

the performance of the method when applied to a large panel of physical parameters. A

time-stepping strategy based on time truncation error of 0.01 is applied to both FIM and

SSO-CKA. We observe that the most important parameters for the precision of SSO-

CKA are the extended Damköhler number D̃K , the reduced volumetric heat capacity of

the reactant Γ∗R and the reduced heat of decomposition ∆h∗r . We show that a potential

way to ensure that the splitting error remains limited is to apply a time-step strategy

with a target time truncation error of 0.005 instead of 0.01.

The methodology is extended to a more complete mathematical model describing the

ISU of heavy oil and oil shale in Chapters 5 and 6. We use DOE to study the energy

performance of the process. We then study the impact of the Damköhler numbers DKi,

one for each reaction, on two test cases, one representing the ISU of bitumen, and one

representing the ISU of oil shale. We study the optimal temperature for the two test

cases and obtain a similar correlation as for the simplified model described in Chapter

3.

We then evaluate the use of OS methods for the ISU of heavy oil and oil shale. Again, we

observe that ISO does not perform well due to convergence failure and that SSO-CKA

gives the least discretization error of the four SNIA methods. We compare the error of

FIM and SSO-CKA when we apply a time-step strategy based on the time truncation

error. The discretization error is lower for SSO-CKA than for FIM when the reaction

enthalpies are neglected. When the reaction enthalpies are not neglected, the error is

larger than for FIM. This can be solved by dividing the target time truncation error by

a factor 2.0, but the computational cost is also increased by two.

Another way of reducing the discretization error is to apply a higher order method to

the chemical reaction operator. We apply the second-order trapezoidal rule and the

third-order four stage explicit singly diagonal implicit Runge-Kutta method described

by Kvaerno [50]. These methods reduce the discretization error with none or limited
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additional computations. We then study the impact of equilibrium deviation on the

energy efficiency of the process and the performance of the numerical method.

Finally, we summarize our findings and conclusions in Chapter 7, and we give recom-

mendation for future work.



Chapter 2

Modelling thermal decomposition

of solid reactant into non-reactive

gas

This chapter treats a simplified form of the In-Situ Upgrading system: the thermal

decomposition of a solid reactant into non-reactive gas. This system used a simplified

description of the fluid by treating all reactants of the decomposition as solid and all

products as non-reactive gas. This allows us to initially focus the analysis on three

physical mechanisms: the thermal conduction, the heat and mass convection and the

chemical reaction. Later in Chapter 5, the model is extended to include a liquid phase

and several reactions between solid, liquid and gas components.

To quantify the relative importance of each mechanism is essential to understand the

behaviour of the system. For example, the temperature for which the chemical reaction

starts to be significant depends on the time scale of the whole process. If no heat is

injected in the domain, the time scale is simply the time taken to consume all reactant

at initial condition and the reaction is significant at initial temperature. Dimensionless

analysis provides a useful insight into the relative importance of different parameters

and mechanisms.

This chapter has three main objectives. First, we develop and validate a mathematical

model that describes the thermal decomposition of solid reactant into non-reactive gas.

We consider two applications: the thermal conversion of oil shale into non-reactive

13
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gas and the thermal decomposition of polymer composites when used as heat shielding

during spacecraft re-entry or for rocket nozzle protection. Secondly, we identify the set

of dimensionless numbers that fully represents the system. They depend on the choice

of a reference time scale for the process. Finally, we use these dimensionless numbers to

define the temperature for which the reaction becomes significant for the process, simply

called the reaction temperature.

2.1 Mathematical model

The first application we investigate is the thermal conversion of oil shale into non-

reactive gas. In this process, the reservoir is exposed to an external energy source

such as electrical heaters or gas burners. The ISU process generally uses tightly spaced

electrical heaters in boreholes to slowly and uniformly heat the formation by thermal

conduction to the conversion temperature of about 350 0C [28]. The gas created by the

decomposition of the oil shale flows into the bore hole of a producing well.

To model this application, we consider a one-dimensional oil shale reservoir (figure 2.1a).

The domain is bounded by a heater bore hole on the left end and the well producer on

the right end. To define the boundary conditions, we assume a constant temperature

TH around the heater. On the left end of the domain, we assume no mass flow. On

the right end of the domain, the well produces at constant pressure and, due to the

symmetry of the well pattern (figure 1.1), we assume no heat transfer by conduction

around the producer. The top and bottom boundaries are considered impervious to

both flow and heat transfer. Thus, heat loss is neglected here. This is generally a

good assumption for thermal decomposition of polymer since the composite thickness

is much less than its vertical length. However, this is not necessary the case for oil

shale and it has been demonstrated that heat loss to overburden and underburden could

have an impact on the efficiency of the process [24] depending on the ratio of formation

thickness to well spacing. The wider the well spacing and the thinner the formation

then the more important heat loss becomes. Here we chose to neglect them to focus on

the other mechanisms of the process.

A mathematical model for this application was developed by Fan et al. [24]. The

chemical reactions and the fluid and material behaviour can be described using the
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Figure 2.1: Model for thermal conversion of oil shale into non-reactive gas (a) and
thermal decomposition of polymer composite as represented in Henderson and Wiecek

experiment (b). The two models only differ in their boundary conditions.

same model as Henderson and Wiecek’s thermal decomposition of polymer composite

[34]. The two processes only differ in their geometry, boundary conditions and fluid

and material properties. Thus it is sensible to consider the two processes in the same

study as we can then validate our mathematical model with Henderson and Wiecek’s

experimental data.

Figure 2.1b shows Henderson and Wiecek’s [34] conceptual model, where the gas can

flow out of the lateral boundaries. Radiative heat flux causes the thermal decomposition

and is represented by the incident heat flux on the left end of the domain. The material

can exchange heat at both ends by radiation. The boundary pressure on both ends is

equal to the initial pressure P0.

For both models, the following assumptions are made:

1. The solid decomposes into a non-reactive gas with a single reaction mechanism

(following [34, 46]). Further primary pyrolysis reactions do occur but for simplicity

are ignored.
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2. The decomposition gas behaves ideally

3. Gas flows are described by Darcy’s law

4. The gas viscosity has a linear dependence on temperature

5. Porosity and permeability are linear functions of the solid fraction remaining as

the reaction progresses.

6. Local thermal equilibrium (LTE) exists between the solid and the decomposition

gas

7. Thermal expansion of the solid is negligible

8. Solid and gas heat capacities and thermal conductivities are constant

9. The thermal conductivities of the inert solid and the reactant solid are equal.

Assumptions 1-5 have been used previously by Kansa et al. [46] and Henderson and

Wiecek [34]. Florio et al. [27] used analytical methods to study the validity of assump-

tion 6 during the thermal decomposition of a particular glass-filled polymer composite.

They found that the gas and solid phases were not always in LTE but this affected

mainly the mechanical behaviour of the composite rather than the heat and mass trans-

fer. Puiroux et al. [70] also found that the main impact was on the maximum pressure

reached and hence the mechanical response of the material although they did observe

a small effect on the position of the pyrolysis front. Our study is focused primarily on

the scaling of heat and mass transport rather than the mechanical behaviour (hence

assumption 7) so assumption 6 simplifies our analysis without significantly affecting our

predictions. Assumptions 7 and 8 are discussed in the next section.

The domain is formed of an inert porous solid I. Initially, the pore-space is occupied

by a solid reactant and gas. Figure 2.2 shows a conceptual representation of the pore

space. The reactant R decomposes into gas G and charred solid residual C:

R −→ aGG+ aCC (2.1)

where aG and aC are the mass stoichiometric coefficients. The models are described by

the following equations. The rate of decomposition of total reactant mass mR follows
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Figure 2.2: Conceptual representation of the pore space.

an Arrhenius law of order n:

1

mR,0

∂mR

∂t
= −A

(
mR

mR,0

)n
exp

(
− Ea
RT

)
(2.2)

where the terms with subscript 0 are initial values. Note that we decided to use a more

common formulation for the rate of decomposition [30] than Henderson and Wiecek,

who used the initial mass of total solid in Equation 2.2 instead of the initial mass of

reactant:
1

ms,0

∂mR

∂t
= −AHW

(
mR

ms,0

)n
exp

(
− Ea
RT

)
(2.3)

The pre-exponential factor used in Equation (2.8) is obtained from AHW :

A = AHW

(
mR,0

ms,0

)n−1

(2.4)

We define ρI the density of the inert solid, ρR the density of the solid reactant and ρC

the density of charred residual C. The total density of the solid phase obeys the mixing

law:
1

ρs
=
ωR
ρR

+
ωC
ρC

(2.5)

where ωR and ωC are the mass fraction of components R and C in phase s, respectively.

Hence, the total mass of reactant can be written as:

mR = φωRρsSsV (2.6)
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where V is the volume of the domain, Ss is the saturation of solid phase. Initially, it is

formed exclusively of reactant so the initial mass of solid is equal to:

ms,0 = (1− φ) ρIV + φρs,0Ss,0V (2.7)

Substituting Equation 2.7 into Equation 2.2, we find:

∂

∂t
(ωRρsSs) = − A

(ρs,0Ss,0)n−1 (ωRρsSs)
n exp

(
− Ea
RT

)
(2.8)

The conservation of solid residual is given by:

∂

∂t
(φωCρsSs) = −aC

∂

∂t
(φωsρsSs) (2.9)

and the total mass conservation equation reads:

∂φρsSs
∂t

+
∂φρgSg
∂t

= −∂ρgvg
∂x

(2.10)

where Sg is the gas saturation in pores:

Sg = 1− Ss (2.11)

and vg the gas velocity. The gas density is given by the ideal gas law:

ρg =
mwGP

RT
(2.12)

where mwG is the molecular weight of the gas component.

In the initial state, a significant fraction of the pore-space is occupied by the solid phase.

Hence, the permeability of the material is often quite low. As the reactant decomposes,

the permeability increases significantly. Exponential [56] or power-law models [60] are

often used to describe this change. In this work, we use a simple exponential relationship:

K = K0 exp (−α (Ss − Ss,0)) (2.13)

The velocity of the gas is given by Darcy’s law:

vg = −K
µg

∂P

∂x
(2.14)
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The gas viscosity is assumed to have a linear dependency on temperature [27, 34] with

slope δµg:

µg = µg,0 + δµg (T − T0) (2.15)

Assuming LTE, the energy conservation equation is:

∂

∂t
((1− φ) ρIγI + φρsSshs + φρgSghg) = − ∂

∂x
(ρgvghg)−

∂q

∂x

−∆hr
∂

∂t
(φωRρsSs)

(2.16)

The term on the left hand side of Equation (2.16) is the rate of energy accumulation

in the domain; the first term on the right represents the rate of energy transferred by

convection; the second term represents the rate of energy transferred by conduction;

the last term accounts for energy consumption or generation by chemical reaction. As

defined here, the heat of decomposition is negative as the reaction is endothermic. The

specific enthalpies hs and hg are defined by:

hs = γs (T − T0)

γs = ωRγR + ωCγC

(2.17)

and

hg = γg (T − T0)

γg = γG

(2.18)

where γR, γC and γG are the specific heat capacity of the reactant, charred and gas

components, respectively. Equation (2.16) is modified by expanding the accumulation

and convection terms and then substituting into the mass conservation equation (2.10),

to give:

((1− φ) ρIγI + φρsSsγs + φρgSgγg)
∂T

∂t
= −ρgvgγg

∂T

∂x
− ∂q

∂x

− (∆hr + aG (hs − hg))
∂

∂t
(φωRρsSs)

(2.19)

Finally, the heat flow by conduction q is modelled using Fourier’s law:

q = − ((1− φ)κs + φκsSs + φκgSg)
∂T

∂x
(2.20)

In Equation 2.20, we have adopted for convenience a simple estimate of the effective

thermal conductivity which depends on the volume fraction of the solid and gas in the

material. This approximation has been previously used [9]. More complex expressions
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would not fundamentally change the analysis. Equations (2.8), (2.10), (2.14), (2.19) and

(2.20) form a set of coupled non-linear equations to be solved simultaneously for Ss, ωR,

P , T , vg and q.

For thermal conversion of oil shale, we applied constant temperature on the left end and

no heat transfer on the right end for the heat flow boundary conditions. The heating

temperature TH on the left side is equal to the temperature of the heater well bore. We

assumed no heat transfer on the right end because of the symmetry of the heater pattern

(figure 1.1). For the mass flow boundary conditions, we apply no mass flux on the left

end (near the heater) and constant pressure P0 on the right end (near the producer).

This gives:

at x = 0 ∀t

T = TH and vg = 0

at x = L ∀t

q = 0 and P = P0

(2.21)

For the thermal decomposition of polymer composite, we apply constant heat flow with

temperature dependent heat loss by radiation on the left end. The incident heat flow is

defined by the effective heating temperature TH . On the right end, we only have heat

loss by radiation. For the mass flow boundary condition, we apply constant pressure P0

on both ends. This gives:

at x = 0 ∀t

q = εsσ
(
T 4
H − T 4

)
or P = P0

at x = L ∀t

q = −εsσT 4 or P = P0

(2.22)

Finally, we apply the following initial conditions:

Ss = Ss,0

T = T0 at t = 0 ∀x

P = P0

(2.23)
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2.2 Numerical simulations

To solve the system of equations, we developed a C++ simulator called EXTEND (EX-

tended Thermal simulator for Evaluating new Numerical Discretization). The source

code of EXTEND is provided in the CD-ROM attached to this thesis. The numerical

methods used in the software are detailed in Appendix B.

We use the Finite Volume Method (FVM) with a fully implicit formulation for the

discretization. The resulting discretized non-linear equations are solved using Newton’s

method. Initially, we use a constant dimensionless time step ∆t = 10−3, but different

time-step strategies are discussed in Chapter 4.

For the two 1D simplified models represented in figure 2.1, we use a 50 × 1 × 1 grid

shown in figure 2.3. The heater well (or radiative source) is located on the left of the

grid and the producer well (or constant pressure boundary surface) on the right.

Figure 2.3: Finite Volume grid for the 1D simplified models represented in figure 2.1.
The heater well (or radiative source) is located on the left of the grid and the producer

well (or constant pressure boundary surface) on the right.
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2.3 Validation using Henderson and Wiecek’s experiment

for thermal decomposition of polymer composite

Experimental data for the In-Situ Upgrading of heavy oil are scarce in the literature.

We have knowledge of two papers that report experimental results for ISU of bitumen

[49] and oil shale [24]. Unfortunately, these experiments are too complicated to be

represented by such a simplified model with no liquid phase and only one reaction. In

Chapter 4, our model is extended to two-phase flow with two chemical reactions and is

able to describe Kumar’s experiment for the ISU of bitumen [49]. For now, we note that

our simple mathematical model describes both polymer degradation and ISU of oil shale,

the only difference between the two systems is in the boundary conditions. Therefore,

we can use experimental results for the first application to validate our model.

We first compare the model outputs with analytical solutions for the trivial cases of

very short time (heat conduction and no reaction) and very long times (after pyrolysis is

finished). Having obtained good agreement for these cases, we then compare its predic-

tions with the experimental data for the thermal decomposition of a polymer composite

obtained by Henderson and Wiecek [34]. Henderson and Wiecek also developed a math-

ematical model for one dimensional heat transfer in a polymer matrix composite during

pyrolysis and performed laboratory experiments to validate their model. The material

used in their experiments consisted of a basic phenolic resin and was chosen because

it displays typical decomposition/expansion behaviour for glass-filled composites and is

used in a large number of high-temperature thermal protection applications [27, 34].

The experimental study was conducted using a 3 cm thick slab subjected to a pure

radiant heat flux. The pressure at both ends, as well as the initial pressure, was 1× 105

Pa and the initial temperature was 297 K (24 oC). Two composite materials identified

as H41N and MXBE-350 were studied. The gas and material properties used in their

simulations were obtained after a careful literature review [34, 35, 36, 37].

In our study, we choose to neglect the thermal expansion of the solid (assumption 7). The

maximum solid elongation reported by Henderson and Wiecek [34] was less than 20%.

Therefore, we assume that solid expansion has little impact on the heat propagation, the

solid decomposition and the gas flow. In order to further simplify the model, the thermal

properties of the solid and gas (heat capacity, thermal conductivity and emissivity) are
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taken as constant and so do not change with temperature and the fraction of remaining

reactant (assumption 8). We note that Henderson and Wiecek [34] allowed the thermal

properties to change with temperature in their study; however, we choose constant values

for these thermal properties so that the solid temperature obtained in our simulations

and the solid temperature reported in Henderson and Wiecek [34] are similar. The solid

and gas properties, along with the initial and boundary conditions that we use in our

simulation are summarized in Table 2.1.

Table 2.1: Summary of parameters used in our model to simulate the Henderson and
Wiecek experiment [34].

Property Material
H41N MXBE-350

Length L (cm) 3.0 3.0
Porosity φ 0.274 0.231

Initial reactant saturation Ss,0 0.5876 0.6970
Initial permeability K (m2) 2.6 × 10−18 4.44 × 10−16

Permeability function parameter α 6.4 5.7
Total solid initial density 1810 1720

(1 − φ) ρI + φρs,0Ss0 (kg/m3)
Inert solid specific heat capacity 1500 1300

γI (J/(kgK))
Reactant specific heat capacity 2200 2500

γR (J/(kgK))
Solid thermal conductivity κs (W/(mK)) 1.2 0.9

Mass decomposition mf/m0 0.795 0.7
Activation energy Ea (kJ/kmol) 2.6 × 105 2.2 × 105

Pre-exponential factor AHW (1/s) 1.98 × 1029, m/m0 ≥ 0.91 2.48 × 1044, m/m0 ≥ 0.96
(see Equation 2.4) 8.17 × 1018, m/m0 ≤ 0.91 8.47 × 1016, m/m0 ≤ 0.96
Order of reaction n 17.33, m/m0 ≥ 0.91 50.64, m/m0 ≥ 0.96

6.3, m/m0 ≤ 0.91 4.2, m/m0 ≤ 0.96
Heat of decomposition ∆hr (kJ/kg) -234.0 -553.0

Gas molecular weight mwG (kg/kmol) 18.35 18.35
Gas initial viscosity µg,0 (Pa.s) 1.54 × 10−5 1.54 × 10−5

Gas viscosity derivative δµg (Pa.s/K) 2.5 × 10−8 2.5 × 10−8

Gas specific heat capacity 2880 2880
γG (J/(kgK))

Gas thermal conductivity κg (W/(mK)) 0.14 0.14
Initial pressure P0 (Pa) 105 105

Initial temperature T0 (0C) 24 24
Emissivity ε 0.85 0.9

Incident heat flux qi = σT 4
H (W/m2) 2.8 × 105 2.8 × 105

Figure 2.4 compares our simulated predictions of the temperature, pressure and solid

mass profiles with those obtained experimentally and numerically by Henderson and

Wiecek [34] using the composite material identified as H41N. In Henderson and Wiecek’s

numerical simulation, the solid elongation was not neglected. Thus, the control volume

widths were not constant and their spatial positions changed during the simulation. To

compare the numerical results with ours, we plot the temperature evolution at different

initial positions x0 (figure 2.4a). As discussed before, the values of the heat capacity
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and thermal conductivity of the solid and gas have been chosen so that the tempera-

ture profiles are similar. Nonetheless, we observe similar profiles for the dimensionless

pressure and the solid mass fraction (figures 2.4b and 2.4c). The relative error between

our results and the numerical results of Henderson and Wiecek is less than 5% while

the relative error for the temperature between the experimental result and our results is

less than 10%. We conclude that our simplified model was able to reproduce with good

agreement the coupling between heat propagation, chemical reaction and gas flow for

the test case and that our assumptions about the process are appropriate.
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Figure 2.4: Figure (a) shows the temperature evolution for various initial positions,
figure (b) shows pressure profile in the domain at various times and figure (c) shows the
solid mass fraction profile in the domain at various times. We observe good agreement
between our numerical results and Henderson and Wiecek’s experimental and numerical

simulation results.
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2.4 Identification of dimensionless numbers by

Inspectional Analysis (IA)

We used Inspectional Analysis (IA) to determine the set of dimensionless numbers that

fully describe our mathematical model. IA is a well-known scaling method first described

by Ruark [72]. It has previously been applied to various mathematical models including

immiscible water-flooding in oil reservoirs [78], miscible displacements in heterogeneous

permeable media [31] and miscible displacements in soil columns [79]. IA has not been

applied to a system with the boundary conditions implemented here, where the input is

not an injected velocity but a heat flux or a fixed temperature.

The procedure introduces two arbitrary scaling factors for each of the variables in the

equations. These scaling factors are linear (affine) transformations from dimensional to

dimensionless space. They are then grouped into dimensionless scaling groups. Finally,

the values of the scaling factors are selected to minimize the number of groups. The

details of the procedure are presented in Appendix A. As the IA method is based on the

existing differential equations and boundary conditions, the grouping and elimination

of translation factors is physically meaningful provided the equations are complete for

the process we are modelling. An important step in the method is the introduction of a

reference time scale τ , which is chosen here to be the time scale of the heat conduction

in the inert solid:

τ =
(1− φ) ρIγIL

2

κs
(2.24)

This implies that the dimensionless rate of heat transfer by conduction in the inert solid

is set to unity at initial conditions (see Equation A.19). We made this choice as there

is no natural time scale for mass flow in the systems of interest since there is zero flow

initially; moreover, both the thermal degradation and the ISU problems are controlled

by the rate of reaction, which in turn depends upon the temperature and thus the rate

of heat transfer. It is therefore natural to compare the efficiency of these processes by

comparing the time taken for heat to conduct at initial (low temperature) conditions.

By employing the method presented, we obtain a minimal form of the dimensionless

groups [78]. The groups are summarized in Table 2.2 and the values of the scaling

groups for Henderson and Wiecek experiment are given in Table 2.3. Since we have two

sets of values for the pre-exponential factor and the order of reaction depending on the
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degree of decomposition, we obtain two Damköhler numbers and two reaction orders for

each material.

Table 2.2: Summary of scaling groups.

Name Notation Definition Description

Damköhler number DK
A(1−φ)ρIγIL

2

κs

reaction rate at ∞ temp
heat diffusion rate

Arrhenius number Na
Ea
R∆T

activation energy
potential energy

Reduced reaction enthalpy ∆h∗r − ∆hr
γR∆T

energy consumed
energy stored

Reduced initial temperature T ∗0
T0
∆T

initial temperature
variation of temperature

Pressure Lewis number Le
φµg,0κs

K0P0(1−φ)ρIγI

heat diffusivity
pressure diffusivity

Reduced charred density ρ∗C
ρC
ρR

charred density
reactant density

Reduced gas density ρ∗G
mwGP0
ρRRT0

initial gas density
solid density

Reduced reactant volumetric Γ∗R
φρRγR

(1−φ)ρIγI

reactant volumetric heat capacity
inert solid heat capacity

heat capacity

Reduced charred specific heat capacity γ∗C
γC
γR

charred specific heat capacity
reactant specific heat capacity

Reduced gas specific heat capacity γ∗G
γG
γR

gas specific heat capacity
reactant specific heat capacity

Reduced gas viscosity variation δµ∗g
δµg∆T

µg,0

maximal variation of gas viscosity
initial gas viscosity

Gas heat conductivity reduction factor ∆κ∗g
φ(κg−κs)

κs

variation of total heat conductivity
solid heat conductivity

Reduced radiative heat loss ε∗ εsσ∆T3L
κs

radiative heat loss
heat flux by conduction

Reaction order n

Gas stoichiometric coefficients aG

Permeability function parameter α

Initial solid saturation Ss,0

Table 2.3: Values of dimensionless groups for Henderson and Wiecek’s experiment.

Groups Material Groups Material
H41N MXBE-350 H41N MXBE-350

DK1 1.85× 1021 4.30× 1021 n1 17.33 50.64
DK2 2.98× 1018 2.81× 1018 n2 6.3 4.2
Na 26.2 22.2 ∆h∗r 0.09 0.18
T ∗0 0.25 0.25 Le 9.0 0.05
ρ∗G 3.2× 10−4 2.3× 10−4 Γ∗R 0.64 1.18
ρ∗C 1 1 γ∗C 1 1
γ∗G 1.31 1.15 δµ∗g 1.94 1.94

∆κ∗g 0.24 0.19 ε∗ 2.0 2.9

α 6.4 5.7 Ss,0 0.5876 0.6970
aG 1 1

We applied the same analysis to the model for thermal conversion of kerogen. We

considered two sets of data (Table 2.4). The first used typical values from the Green

River Oil Shale Formation [24, 52, 53, 56]. The second is adapted from [93]. The

corresponding dimensionless numbers are reported in Table 2.5.
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Table 2.4: Summary of parameters for thermal conversion of kerogen (test cases 1
and 2).

Property Test case 1 Test case 2
Length L (m) 15.0 10.0

Porosity φ 0.2 0.1
Initial reactant saturation Ss,0 0.85 0.9
Initial Permeability K (mD) 2 7

Permeability function parameter α 6.28 7.6
Inert solid density ρI (kg/m3) 2000 2200
Kerogen density ρR (kg/m3) 1200 1200
Charred density ρC (kg/m3) 1380 1200

Inert solid specific heat capacity γI (J/(kgK)) 915 1335
Reactant solid specific heat capacity γR (J/(kgK)) 1000 1335

Charred specific heat capacity γC (kJ/(kgK)) 1000 1335
Solid thermal conductivity κs (W/(mK)) 2.0 1.2

Activation energy Ea (kJ/kmol) 1.62× 105 2.26× 105

Pre-exponential factor A (1/s) 4.33× 107 3.0× 1013

Order of reaction n 1 1
Charred residual stoichiometric coefficient aC 0.466 0.555

Heat of decomposition ∆hr (kJ/kg) 0.0 -50.0
Gas molecular weight mwG (kg/kmol) 30 44.1

Gas initial viscosity µg,0 (Pa.s) 1.94× 10−5 0.79× 10−5

Gas viscosity derivative δµg (Pa.s/K) 2.7× 10−8 1.2× 10−8

Gas specific heat capacity γG (J/(kgK)) 2000 2500
Initial pressure P0 (MPa) 0.69 10
Initial temperature T0 (K) 289.85 313.15

Heater temperature TH (KC) 623.15 573.15

Table 2.5: Value of dimensionless groups for thermal conversion of kerogen (Test cases
1 and 2).

Groups Test case 1 Test case 2 Groups Test case 1 Test case 2

DK 7.1× 1015 6.6× 1021 n 1 1
Na 58 104 ∆h∗r 0.0 0.14
T ∗0 0.87 1.2 Le 3.9× 10−3 5.2× 10−6

ρ∗G 7.2× 10−3 0.14 Γ∗R 0.16 0.06
ρ∗C 1.15 1 γ∗C 1.0 1.0
γ∗G 2 1.9 δµ∗g 0.46 0.39

∆κ∗g 0.0 0.0 ε∗ 0.0 0.0

α 6.28 7.6 Ss,0 0.85 0.9
aG 0.534 0.455

The Lewis number obtained through our analysis is actually a pressure Lewis number.

It represents the ratio of thermal diffusivity DT and pressure diffusivity DP [83].

Le =
DT

DP
=

φµg,0κs
K0P0 (1− φ) ρIγI

(2.25)
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The Lewis number can be used to calculate a Péclet heat transfer number [43] which is

defined here as:

Pe =
ρgvgγgL

κs
(2.26)

and describes the ratio of heat driven by convection to thermal diffusion. As no fluid

is injected, the fluid velocity is generated by the pressure gradients induced by heat-

ing. Hence, the Péclet number is local and varies with the dimensionless pressure and

temperature:

Pe =
ρ∗gΓ

∗
Rγ
∗
G

Le
ρgDvgDγgD (2.27)

The Damköhler number characterises the ratio of the reaction rate and the heat diffusion

rate at infinite temperature. The Damköhler number we define here is a variation of

Damköhler’s second number, representing the ratio of the reaction rate and the diffusion

rate [43]. Because of the Arrhenius law, the chemical reaction constant is defined by

DK , the Arrhenius number Na and the initial temperature T ∗0 . The Arrhenius number

represents an energy barrier to the chemical reaction.

2.5 Calculation of Reaction Temperature

The Arrhenius number quantifies the impact of temperature on the chemical reaction

rate but there is no obvious way of determining how hot the system needs to be before

the reaction becomes important. The temperature at which the reaction appears will

depend upon the time scale considered. This is a natural consequence of the exponential

nature of the Arrhenius law (Equation 2.8). Nonetheless it would be very useful to know

what this “reaction temperature” is for any given system.

One useful consequence of the choice of reference time scale for our dimensionless anal-

ysis is the possibility to define this “reaction temperature”. We chose the time scale

for thermal diffusion in the inert solid to be our reference time scale (Equation 2.24).

The dimensionless reaction rate can be defined in terms of the Damköhler number, the

Arrhenius number and the reduced initial temperature as

DK exp

(
−Na

(
1

TD + T ∗0

))
=

time scale thermal diffusion

time scale chemical reaction
(2.28)
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where the dimensionless temperature TD is defined as:

TD =
T

∆T

∆T = TH − T0

(2.29)

The Damköhler number represents the dimensionless reaction rate at infinite tempera-

ture and the exponential term represents an energy barrier to the reaction. This energy

barrier is associated with a barrier or threshold temperature defined as:

TB =
Ea
R

= Na∆T (2.30)

Thus the dimensionless reaction rate at the initial temperature T0 is defined by the

Damköhler number and the ratio of the threshold temperature to the initial temperature:

TB
T0

=
Na

T ∗0
(2.31)

Similarly the dimensionless reaction rate at the heater temperature TH is defined by the

Damköhler number (discussed above) and the ratio of the threshold temperature to the

heater temperature:
TB
TH

=
Na

1 + T ∗0
(2.32)

As noted in our discussion of dimensionless time, for both of the applications examined

here we are interested in evaluating how the reaction rate increases when the system

is heated, because the reaction rate is insignificant at initial conditions. As the tem-

perature increases in the domain, the reaction rate increases. The time scale of the

chemical reaction and heat diffusion are equivalent when the chemical reaction becomes

significant:

DK exp

(
− Na

TD + T ∗0

)
= 1 (2.33)

We can therefore calculate a reaction temperature from the Arrhenius and Damköhler

numbers as

TR1 = ∆T
Na

logDK
(2.34)

Applying this to Henderson and Wiecek’s experiment for the composite material de-

noted H41N , we obtain a reaction temperature TR1 = 638.15 K (365 oC). Figure 2.5a

shows the solid mass profile for Henderson and Wiecek’s experiment at different times.
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Figure 2.5: Comparison of reaction temperatures predicted by Equation 2.34 and
obtained by numerical simulation for Henderson and Wiecek’s experiment. Figure (a)
shows in plain line the solid mass fraction profile at various times and in dashed line the
position where the reaction appears. This position is then reported on (b) which shows
the temperature profile at various times and compares the results with the predicted
temperature TR1 = 638.15 K (365oC). We observe good agreement between Equation

2.34 and the numerical result.

The dashed lines indicate the position at which the reaction appears. We report these

positions on the temperature profiles (Figure 2.5b). Thus, the intersection between the

dashed lines and the temperature profiles shows the temperature at the position where

the chemical reaction appears. We observe that there is very good agreement between

the reaction temperature calculated (Equation 2.34) and the one observed, especially

near the heat source. The solid mass fraction starts decreasing significantly when the

temperature reaches TR1, for which the chemical reaction and heat diffusion have the

same rate. This validates the choice of the time scale of the heat conduction in the inert

solid as a reference time scale for the process.

Therefore, an important dimensionless quantity describing the process is the ratio of

chemical rate to heat conduction rate at the heater temperature, defined as the extended

Damköhler number:

D̃K = DK exp

(
− Na

1 + T ∗0

)
=
A (1− φ) ρIγIL

2

κs
exp

(
− Ea
RTH

)
(2.35)

In other words, it represents the maximum possible chemical reaction rate in the domain.

When D̃K < 1, one has TH < TR1 and the temperature in the reservoir never reaches

the reaction temperature defined previously. In this case, the chemical reactions are
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slow and the process is not very efficient. Thus, the extended Damköhler number could

be used as a simple measure of performance for the process.

2.6 Summary

In this chapter, we developed a simplified model where a solid reactant decomposes into

non-reactive gas. This model enabled us to draw a parallel between ISU and thermal

decomposition of polymer composite when used as heat-shielding for spacecraft re-entry.

We validated our numerical model by comparison with experimental result obtained by

Henderson and Wiecek [34], where a thin slab formed of polymer composite material

was subjected to a pure radiant heat flux. Our simplified model was able to reproduce

with good agreement the coupling between heat propagation, chemical reaction and gas

flow for this test case.

We then used Inspectional Analysis to determine the minimum number of dimensionless

groups that can be used to describe both processes. To define these numbers, we chose

the time scale of the heat conduction in the inert solid as a reference time scale for

the process. We showed that the processes can be described by seventeen dimensionless

groups. We then computed the values of this groups for the two test cases described

in Henderson and Wiecek’s experiment [34] and for two test cases describing thermal

conversion of kerogen [24, 93].

Finally, we showed that the dimensionless chemical rate at any temperature can be

calculated with the Damköhler number DK , which describes the ratio of chemical re-

action rate to heat conduction rate at infinite temperature, and the Arrhenius number

Na, which quantifies the ratio of activation energy of the reaction to potential energy.

We observed that the chemical reaction became significant at TR1, the temperature for

which this dimensionless chemical rate was equal to 1. This validated the choice of the

time scale of heat conduction in the inert solid as a reference time scale for the process.

This analysis allowed us to identify a new dimensionless number, called the extended

Damköhler number D̃K which is a combination ofDK andNa and quantifies the chemical

reaction rate at heater temperature. When D̃K < 1, the temperature in the reservoir

never reached TR1. In this case the chemical reaction was always slow compared to the
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heat conduction and the process was not very efficient. Therefore, D̃K could be used as

a simple measure of performance of the process.

However, since the model is extremely non-linear, we need to perform a sensitivity

analysis to study the process in more detail. In the next chapter, we use Design of

Experiment (DOE) to perform such an analysis.



Chapter 3

Sensitivity analysis using Design

of Experiment (DOE)

Some of the mechanisms that are involved in the model described in the previous chapter

can be influenced by several dimensionless groups. For example, the chemical reaction

rate is quantified by the Damköhler number, the Arrhenius number and the reduced

initial temperature. Moreover, one dimensionless number can impact several physical

mechanisms. For example, the reduced initial temperature influences the chemical re-

action and the radiative part of the boundary conditions, and the reduced gas specific

heat capacity impacts heat accumulation in the fluid and heat flow by convection. It

is therefore challenging to identify which dimensionless groups have a large impact on

the process applications using trial and error methods. Instead, a Design of Experiment

(DOE) technique can be used to identify primary factors in an efficient manner.

The main objective of this chapter is to identify the primary dimensionless numbers for

the performance of the two processes described in Chapter 2: the thermal conversion of

kerogen into non-reactive gas and the thermal decomposition of polymer composite when

used as heat-shielding for spacecraft re-entry and for rocket nozzle protection. We used

DOE to investigate the sensitivity of the two processes to the different dimensionless

numbers for different measure of performance in order to determine which ones are the

key dimensionless numbers in each case. We first describe a procedure which combines

the use of a two-level factorial design with a response surface methodology. We then

apply the procedure to the thermal conversion of kerogen. We define two measures of

33
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performance: the Energy Return On Investment (EROI) of the process, and the me-

chanical stress in the domain. This study is then used to identify an optimal heater

temperature, which can be defined using dimensionless numbers. We apply the same

procedure to the thermal decomposition of polymer composite. We choose the dimen-

sionless right-end temperature as a measure of performance for this process. This allows

us to predict the protection time of the material.

3.1 Two-level factorial design

Factorial designs are widely used in experiments involving a large number of factors

[64]. This class of design is characterized by the fact that the effect of changing one

variable can be assessed independently of the others. The factorial experiment where

all combinations of the levels of the factors are run is referred to as a full factorial

design. A two-level factorial design is a design where each of the k factors of interest has

only two levels (denoted as ”-1” and ”1”). For two levels, the full factorial design has

exactly 2k experimental trials or runs. The full factorial experiment with three factors

is represented in figure 3.1.

1

2

3

4

5

7

7

8
Factor levels

Trial A B C

1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

Figure 3.1: Three-factor two-level full factorial design

For experiments in which a large number of factors are being considered, a two-level full-

factorial design would result in an extremely large number of combinations to test. In

this case, a fractional factorial design where a carefully selected subset of the full design

is used can be applied. It can be generated from the full factorial design by choosing an

alias structure. The alias structure determines which effects are confounded with each

other. For example, for an experiment with three factors A, B and C, a 22 fractional

design can be generated by considering a full two factor experiment involving A and B
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and confounding the factor C with the two-factor interaction C = A ∗B. This design is

represented in figure 3.2.

2

3

1

4

Factor levels
Trial A B C

1 -1 -1 1
2 1 -1 -1
3 -1 1 -1
4 1 1 1

Figure 3.2: 22 fractional factorial design with three factors. This design is of resolution
III, since C and AB are confounded.

The resolution of a design describes how much the effects in a fractional factorial ex-

periment are aliased with other effects. A design is of resolution R if no p-factor effect

(0 < p < R) is aliased with another effect containing less than R − p factors. For

example, the design represented in figure 3.2 is of resolution III, since C and AB are

confounded. Resolution III, IV, and V designs are most common:

• Resolution III: No main effects are aliased with any other main effect, but main

effects are aliased with 2-factor interactions.

• Resolution IV: No main effects are aliased with any other main effect or 2-factor

interactions, but some 2-factor interactions are aliased with other 2-factor inter-

actions and main effects are aliased with 3-factor interactions.

• Resolution V: No main effects or 2-factor interactions are aliased with any other

main effect or 2-factor interactions, but 2-factor interactions are aliased with 3-

factor interactions and main effects are aliased with 4-factor interactions.

In this study, we will use fractional factorial designs of resolution V so that main and

interaction effects can be quantified without aliasing between each other. Algorithms to

generate a design of resolution V are described in Myers et al. [65]. The results of the

sensitivity analysis depend only on the resolution of the design and not on the choice

of the generators. Figure 3.3 shows the available factorial design resolutions for various

number of factors and number of runs.
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Run 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 Full III

8 Full IV III III III

16 Full V IV IV IV III III III III III III III

32 Full VI IV IV IV IV IV IV IV IV IV

64 Full VII V IV IV IV IV IV IV IV

128 Full VIII VI V V IV IV IV IV

256 Full IX VIII VI VI V V V

Factors

Figure 3.3: Available factorial design resolutions for various numbers of factors and
numbers of runs.

The results of a factorial experiment can be analysed using a tool called response surface

methodology, in which a model or ”surface” is fitted to the experimental results.

3.2 Response surface methodology

Response Surface Methodology (RSM) was introduced by Box and Wilson [11] to study

the relationship between the response of an experiment and its independent variables.

Hill and Hunter [39] studied the applications of RSM in different processing areas. The

evolution of RSM in experimental design has been reviewed by Myers et al. [65].

Fundamentally, the response surface problem centres around a response y which is a

function of k independent variables x1, x2,... xk, that is:

y = f(x1, x2, ..., xk) (3.1)

The form of the function f is unknown but it is assumed that it can be approximated

by a polynomial function of low order, for example a first-order model:

y = β0 +
∑

βjxj + ε (3.2)

or a first-order model with interaction

y = β0 +
∑

βjxj +
∑
i,j,i6=j

βijxixj + ε (3.3)
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Here, the coefficients β are constant. The βi terms are called main factor effects and the

βij terms the two-factors interaction effects. The error of the model is denoted as ε. We

define p as the number of factors taken into account in the model (p = k for first-order,

p = k(k + 1)/2 for first-order with interaction). Higher order models, for example a

second-order model

y = β0 +
∑

βjxj +
∑
i,j,i6=j

βijxixj +
∑
j

βjjx
2
j + ε (3.4)

can be applied but the estimation of the various effects β is only possible with higher

level factorial designs (for example three level for order 2). They are computed using

the least squares method.

3.2.1 Least squares estimator

Suppose that the function f in equation 3.1 is approximated by a first-order model

(equation 3.2). Suppose that n experimental runs are taken on various combinations of

the parameters x1, x2,... xk, n > k. For example, for a two-level full factorial design,

n = 2k. Then, if we defined y1, y2,... yn as the results of the n experimental runs, the

model can be written as:

yj = β0 +
∑

βjxji + εj (3.5)

where xji is the value of the parameter j for the run i. It is assumed that εj are

independent from run to run with zero mean and a variance σ2. The model can be

written in the form:

y = Xβ + ε (3.6)

where:

y =


y1

y2

...

yn

 , β =


β1

β2

...

βn

 and X =


1 x11 x21 . . . xk1

1 x12 x22 . . . xk2

...
...

...
...

...

1 x1n x2n . . . xkn

 (3.7)
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For a first-order model with interactions, the matrix X is given by:

X =


1 x11 x21 . . . xk1 x11x21 . . .

1 x12 x22 . . . xk2 x12x22 . . .
...

...
...

...
...

...
...

1 x1n x2n . . . xkn x1nx2n . . .

 (3.8)

We use the method of least squares [65] as an estimation procedure for the coefficient β.

This method gives a vector β̂ which results in a minimum value for the sum of squares

of the errors:

SSE =

n∑
i=1

ε2i (3.9)

Assuming that X ′X is non-singular (rank= p), we have the following least squares

estimator:

β̂ =
(
X ′X

)−1
X ′y (3.10)

Then, the sum of squares of the errors can be simplified as:

SSE =
(
y −Xβ̂

)′ (
y −Xβ̂

)
= y′y − 2β̂X ′y + β̂′X ′Xβ̂

= y′y − β̂X ′y

(3.11)

and the sum of squares of the regression model SSR can be obtained from the estimators

as:

SSR =
(
Xβ̂
)′ (

Xβ̂
)

= β̂′X ′X
(
X ′X

)−1
X ′y

= β̂′X ′y

(3.12)

The regression model has p degrees of freedom and the error n− p. The mean square of

the regression model and error are defined by:

MSR =
SSR
p

, MSE =
SSE
n− p

(3.13)

It can be shown [65] that:

E [SSE ] = σ2(n− p) (3.14)

Therefore, MSE is an unbiased estimator of σ2. Table 3.1 summarizes these results.
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Table 3.1: Sum of squares and degrees of freedom for regression model and error

Source
Sum of
squares

Degree of
freedom

Mean square

regression β̂′X ′y p β̂′X ′y/p

error y′y − β̂′X ′y n− p
(
y′y − β̂′X ′y

)
/(n− p)

total y′y n

We also observe that E
(
β̂
)

, the expectation of β̂, is equal to β. Indeed, equation 3.10

implies:

E
(
β̂
)

= E
[(
X ′X

)
X ′ (Xβ + ε)

]
= β + E

[(
X ′X

)
X ′ε
] (3.15)

Since E (ε) = 0,

E
[(
X ′X

)
X ′ε
]

= 0 (3.16)

and hence the desired result. Then, β̂ is an unbiased estimator of β. Moreover, the

variance-covariance of β̂ is given by:

cov
(
β̂
)

= E
[
β̂ − β

] [
β̂ − β

]′
= E

[(
X ′X

)−1
X ′y − β

] [(
X ′X

)−1
X ′y − β

]′
= E

[(
X ′X

)−1
X ′ (y −Xβ)

] [(
X ′X

)−1
X ′ (y −Xβ)

]′
=
[(
X ′X

)−1
X ′
]
E [y −Xβ] [y −Xβ]′

[(
X ′X

)−1
X ′
]′

=
[(
X ′X

)−1
X ′
]

cov (ε)
[(
X ′X

)−1
X ′
]′

= σ2
[(
X ′X

)−1
X ′
] [(

X ′X
)−1

X ′
]′

= σ2
(
X ′X

)−1

(3.17)

This implies that the variances of the estimators β̂ are given by the diagonal elements

of (X ′X)−1, each multiplied by σ2, the variance of y. These results are essential for

response surface methodology with DOE, where the estimators β are compared with the

variance of y.

3.2.2 Normal probability plot and Pareto chart

In the previous section, we assumed that the true error ε is normally distributed with a

mean of zero and a variance of σ2. Therefore, effects that follow a normal distribution
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with 0 mean and σ2/2k variance are not representative of the model because they cannot

be distinguished from random variability. On a normal probability plot, where the value

of the effect are plotted against the cumulative probability of the normal distribution,

these effects are expected to fall near a fitted line, with intercept 0 and slope σ/
√

2k,

called the near-zero line. Effect coefficients that show large deviations from the distribu-

tion will be significant since they do not come from this normal distribution. Figure 3.5

and 3.7 give examples of a half-normal plot, where the effects are converted to absolute

values and plotted on the positive half of the normal curve.

Significant effects can also be identified by comparing individual effect values to a thresh-

old value using the Pareto chart, which is useful for showing the relative size of effects.

It is plotted with the t-values of the effects, which are computed by simply dividing the

numerical effect by the associated standard error, which is obtained using the diago-

nal element of the variance-covariance matrix (equation 3.17). For a two-level factorial

experiment, the t-value of an effect is given by:

t-value =
Effect√

MSE
(

1
n+ + 1

n−

) (3.18)

where ”n+” is the number of trials with a value of ”1” for the effect and ”n−” the

number of trials with a value of ”-1”. For the threshold value, Lenth [55] uses the

critical value tν,d of a student t-distribution with d degrees of freedom and a confidence

limit 1−ν. Student distributions are generally used when estimating confidence intervals

for normally distributed statistics where the standard deviation is unknown [65]. The

t-distribution is similar to the normal distribution. Both of these distributions are

symmetric and centred on zero. However, the t-distribution has higher probability in

the tails. As the degrees of freedom d approach infinity, the t-distribution approaches

the standard normal distribution. Figure 3.4 shows the t-distribution for d = 5, 25 and

50.

The threshold defined by Lenth [55] is referred to as Lenth’s limit, or l-limit. For a

confidence of 95%, we obtain:

l-limit = t0.05,d (3.19)

A more conservative approach takes the number of estimated effects into account by

dividing it into the desired probability for the risk value ν [2]. We refer to this as the
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Figure 3.4: t-distribution for various degrees of freedom d. As d approaches infinity,
the t-distribution approaches the standard normal distribution

Bonferroni (its inventor) corrected t-limit, or simply the t-limit:

t-limit = t0.05/k,d (3.20)

Examples of Pareto charts are given in figures 3.6 and 3.8. This analysis allows us to

classify the dimensionless numbers into three categories:

• the primary numbers: these are the numbers which have their main effect or at

least one of their interaction effects greater than the t-limit.

• the secondary numbers: these are the numbers which have no main effect or any

interaction effect greater than the t-limit but their main effect or at least one of

their interaction effects is greater than the l-limit.

• the insignificant numbers: these are the numbers which have no main effect or

interaction effect greater than the l-limit.

The response can now be analysed as a function of the primary numbers. A better

approximation can be obtained in a more detailed study with both the primary and

secondary numbers. Next, this method is successively applied to the thermal conversion

of kerogen and the thermal protection system using polymer composite with various

measures of performance.
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3.3 Application to the performance of thermal conversion

of kerogen

As shown in Chapter 2, the thermal conversion of kerogen by electrical heating (Figure

2.1a) can be represented by the seventeen dimensionless groups defined in Table 2.2.

However, for this particular process, there is no incident heat flux and no heat loss by

radiation (ε∗ = 0). Moreover, we assume for consistency with previous work that the

order of the decomposition reaction is always one and we consider the thermal conduc-

tivity of the domain as constant (∆κ∗g = 0) [12, 24, 30, 52]. Thus, our model of thermal

conversion of kerogen depends upon fourteen dimensionless groups. Minimum and max-

imum values for each dimensionless number are obtained by combining minimum and

maximal values for each dimensional parameter. Table 3.2 gives the range for each pa-

rameter used in this study. They have been selected from a careful literature review. For

the rock and initial properties, we used papers describing numerical simulation of ISU of

oil shale [24, 52, 93]. For the chemical reaction properties, we reviewed Braun et al. [12]

and Phillips et al. [67]. Finally, we used Perry’s Handbook [66] for the thermodynamic

properties of the components.

Table 3.2: Range of values for the various dimensional parameters of the thermal
conversion of kerogen.

Property min max Property min max
L (m) 10 15 φ 0.1 0.3

K0 (mD) 1 10 α 5 10
ρI (kg/m3) 2000 2200 γI (J/(kgK)) 900 1500
κs (W/(mK)) 1 3 Ss0 0.8 0.9
ρR (kg/m3) 1000 1500 γR (J/(kgK)) 1000 1500
ρC (kg/m3) 1000 1500 γC (J/(kgK)) 1000 1500
A (s−1) 4× 107 3× 1013 Ea(J/mol) 1.60× 105 2.3× 105

∆hr (J/kg) -1× 105 0 aG 0.4 0.6
mwG (kg/mol) 0.03 0.044 γG (J/(kgK)) 2000 2500
µg (Pa.s) 0.75× 10−5 2× 10−5 δµg (Pa.s/K) 10−8 3× 10−8

TH (0C) 300 400 T0 (0C) 10 40
P0 (Pa) 5× 105 1× 107

In reality, data for properties such as molecular mass, heat capacity and viscosity of the

gas or activation energy and pre-exponential factor are not independent, but here they

are assumed to be for the purpose of the sensitivity analysis. Dependencies between

parameters should be explored in future work as this may reduce the set of primary
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numbers obtained from the analysis. Assuming they are independent, we obtain a range

for our fourteen dimensionless groups (Table 3.3).

Table 3.3: Range of values obtained for the various scaling groups obtained for thermal
conversion of kerogen. We observe that several numbers, such as DK and Le, vary over

a large range, whereas other numbers, such as T ∗0 vary over a much smaller range.

Groups min max Groups min max

DK 1.7× 1015 2× 1022 Na 49.3 106.4
T ∗0 0.73 1.2 ∆h∗r 0.0 0.38
Le 2.6.× 10−6 0.029 ρ∗G 3.8× 10−3 0.19
ρ∗C 0.67 1.5 Γ∗R 0.04 0.54
γ∗C 0.67 1.5 γ∗G 1.33 2.5
δµ∗g 0.13 1.56 α 5 10

Ss0 0.8 0.9 aG 0.4 0.6

3.3.1 Study of EROI

In reservoir engineering, the performance of heavy oil recovery processes are generally

measured by the EROI ratio, which is defined by the ratio of the energy content of the

produced hydrocarbons and the energy supplied to the reservoir. If we define Ec as the

energy content of 1 kg of gas, the recovered energy ER is given by:

ER = f ×mG × Ec (3.21)

where mG = aGmR,0 is the mass of gas generated by reactant decomposition and f is the

fraction of gas recovered. The invested energy EI is equal to the sum of the energy used

to heat up the system plus the energy consumed by the decomposition. We approximate

it by:

EI = (1− φ) ρIγIV∆T + γRmR,0∆T − (∆hr + (γR − aGγG − aCγC) ∆T )mR,0 (3.22)

We express the EROI ratio in terms of our dimensionless groups and variables using

Inspectional Analysis (see Appendix A). This gives:

EROI = f
aGSs,0Γ∗RE

∗
c

1 +
(
aGγ∗G + acγ∗C −∆h∗r

)
Γ∗RSs,0

(3.23)
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where E∗c is the reduced energy content of the gas:

E∗c =
Ec

γR∆T
(3.24)

Note that our definition of EROI only takes into account the energy invested in the

recovery process, deliberately omitting the energy spend in the transport and additional

refining of the product. Also, the heater efficiency can have a large impact on the overall

EROI of the production processs.

Equation 3.23 shows that the EROI can be expressed as the product of the fraction of

recovered gas f and a well-defined function of the dimensionless groups aG, aC Ss,0, Γ∗R,

γ∗G, γ∗C , ∆h∗r and E∗c . The fraction of recovered gas depends on the 14 dimensionless

numbers present in Table 3.3 and on the production time.

In order to produce all the kerogen in the shortest time possible, the domain has to

be brought to a high temperature, generally close to the heater temperature. The

analytical solution for the temperature of a sealed system heated by a source at a

constant temperature shows that the heater will take approximately twice the time

scale of the heat conduction in the domain τ (Equation 2.24) to provide 90% of the heat

energy needed to completely heat the domain at the heater temperature. Therefore, we

consider a production time:

tprod = 2× τ (3.25)

Some of the dimensionless numbers can have a large impact on f while others will

have an insignificant impact. A priori, DK should have a large impact as it described

the rate of chemical reaction while the impact of δµ∗g should be small since the flow

is monophasic. In order to verify these assumptions and identify which are the most

important parameters for the energy efficiency of the process, we use DOE with f as a

measure of performance.

We use a two-level fractional factorial design of resolution V (section 3.1) and a first-order

model with interaction. The response f for the corresponding values of the dimensionless

numbers (Table 3.3) is obtained by numerical simulation, using the method described

in Chapter 2 (section 2.2) and detailed in Appendix B. In particular, we use a constant

dimensionless time-step ∆t = 10−3 and a 50× 1× 1 grid (figure 2.3).
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Figure 3.5 shows the half-normal plot of effects. We observe that six effects show a large

deviation from the half-normal distribution. Figure 3.6 shows a Pareto chart including

the ten most important effects.
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Figure 3.5: Half-normal plot of the effects for the fraction of gas recovered during
thermal conversion of kerogen. We observe that six effects show a large deviation from

the half-normal distribution.
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Figure 3.6: Pareto chart of the effects for the fraction of gas recovered during thermal
conversion of kerogen. The t-values are computed with the residual obtained with the
model formed of the six selected effects defined by Figure 3.5. Primary effects are

represented in black, secondary in grey and insignificant effect in white.

The t-values are computed with the residual obtained with the model formed of the

six selected effects (Figure 3.5). Therefore, we obtain the following classification of the

dimensionless groups:

• primary numbers: Na, DK , T ∗0

• secondary numbers: Γ∗R
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• insignificant numbers: γ∗G, γ∗C , Ss,0, aG, ∆h∗r , ρ
∗
G, ρ∗C , α, Le and δµ∗g

The Arrhenius number Na is the most important parameter for the EROI of the process.

It represents an energy barrier to the chemical reactions. A small number implies fast

decomposition therefore more hydrocarbons produced. The Damköhler number DK and

the initial temperature T ∗0 also have an impact on the decomposition rate, although less

important than the Arrhenius number.

As mentioned previously, the activation energy Ea and the pre-exponential factor A

are not independent since they describe the same chemical reaction. Therefore the

Arrhenius and Damköhler numbers are not independent in reality. To better represent

this dependency, we replace DK in our sensitivity analysis by the extended Damköhler

number D̃K defined by Equation 2.35. Our literature review [12, 24, 52, 93] defined the

following range for D̃K :

0.1 < D̃K < 10000 (3.26)

Figure 3.7 shows the half-normal plot in this case. We observe that only one effect

shows a large deviation from the half-normal distribution. Figure 3.8 shows a Pareto

chart including the ten most important effects and we observe the following classification:

• primary number: D̃K

• secondary numbers: Γ∗R

• insignificant numbers: Na, T
∗
0 , γ∗G, γ∗C , Ss,0, aG, ∆h∗r , ρ

∗
G, ρ∗C , α, Le and ∆µ∗g

The extended Damköhler number D̃K is the most important parameter, while the Arrhe-

nius number Na and the reduced initial temperature T ∗0 are now insignificant numbers.

This shows that the impact of the chemical reaction rate on the fraction of gas recovered

can be described using only D̃K . A plot of f after t = 2× τ as a function of D̃K is given

in Figure 3.9.

We observe that for D̃K << 10, the fraction of recovered gas is small and the process

is not efficient. In this case, the chemical reaction is slow and only a small part of the

reactant has been converted after tprod = 2 × τ . For D̃K ' 20, 98% of the gas has

been produced and the process is efficient. Therefore, when D̃K ≥ 20, the fraction of
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Figure 3.7: Half-normal plot of the effects for the fraction of gas recovered during
thermal conversion of kerogen with extended Damköhler number. We observe that only
one effect shows a large deviation from the half-normal distribution (the effect of D̃K).

0

25

50

75

100

125

Main factors and interactions

t−
va

lu
e 

of
 e

ffe
ct

Bonferroni t−limit
Lenth’s margin of error

aG.Ss,0 D̃K .T∗0

D̃K

D̃K .Γ∗R Γ∗R Γ∗R.ρ
∗
G ∆h∗r Na Na.D̃K Γ∗R.∆h

∗
r

Figure 3.8: Pareto chart of the effects for the fraction of gas recovered during thermal
conversion of kerogen with extended Damköhler number. The t-values are computed
with the residual obtained with the model formed of the one most important effect
defined by Figure 3.7. Primary effects are represented in black, secondary in grey and

insignificant in white.

recovered gas is not much improved but more energy has been given to the domain to

bring it to a larger temperature.

Figure 3.10 shows the temperature and solid saturation for test case 1 (Table 2.4) after

tprod = 2 × τ for different values of D̃K . We observe that for D̃K=0.2 and 2, the

chemical reaction is too slow and only a small amount of reactant has been converted.

For D̃K = 20, most of the reactant has been converted. The reaction front reaches

the producer well at the same time as the temperature reaches a minimum of 0.95TD

in the whole domain. For D̃K = 200, all reactant has been converted but the energy
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Figure 3.9: Fraction of recovered gas after tprod = 2 × τ as a function of D̃K . We

observe that 98% of the gas has been produced when D̃K ' 20.

invested in the process is significantly larger. The reaction front is not much faster as

it needs to wait for the heat conduction to propagate in the domain. During that time,

an important part of the heating is used only to heat-up the rock. Thus, the optimal

heater temperature of the process should be close to the one for which D̃K = 20:

Topt ≈ TR20 =
TB

logDK − log(20)
(3.27)
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Figure 3.10: Temperature and solid saturation for test case 1 (Table 2.4) after tprod =

2 × τ for different values of D̃K . We observe that for D̃K=0.2 and 2, the chemical
reaction is too slow and only a small amount of reactant has been converted. For
D̃K = 20, most of the reactant has been converted. For D̃K = 200, all reactant has

been converted but the energy invested in the process is significantly larger.
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Figure 3.11 shows the EROI as a function of the heater temperature for test cases 1 and

2 (Table 2.4). The optimal heater temperature given by equation 3.27 is 306 oC for test

case 1 and 302 oC for test case 2. We observe good agreement between the results and

the predictions.
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Figure 3.11: EROI as a function of the heater temperature for test cases 1 and 2(Table
2.4). The optimal heater temperature given by equation 3.27 is 320 oC for test case 1
and 305 oC for test case 2. We observe good agreement between the results and the

predictions.

Equations 3.25 and 3.27 give a relationship between the production time tprod, the

distance between a heater and a producer L and the heater temperature TH in order

to maximize the EROI. Consider that we would like to have a production time of 10

years. This means that τ = 5 years. For test case 1, this gives us a distance L = 14.67

m. In this case the Damköhler number has a value DK = 6.83 × 1015 and the optimal

heater temperature TR20 = 310 oC. Alternatively, we consider a production scenario

where the heater temperature is limited by TH = 350 oC. To maximize the EROI while

minimizing the production time, we define the distance L such as DK = 20 exp
(
TB
TH

)
.

For test case 1, we obtain DK = 7.0 × 1014 and L = 4.71 m. The production time is

then equal to 0.52 years.

In reality, kerogen decomposition is modelled by a set of parallel reactions with interme-

diate liquid and gas components. The decomposition of these intermediate components

generally happens at temperature higher than 300 oC. In Chapter 5, we consider such

a model with three reactions and observe that the same results apply when considering

the minimum of the Damköhler numbers for the three reactions.
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3.3.2 Level of mechanical stress

Another important response of the process is the level of mechanical stress in the do-

main. In our simplified model, the variation of the permeability of the rock generated

by kerogen decomposition is simply modelled by an exponential function, which only

depends on the saturation of the solid phase in the pore-space. In reality, the creation

of large volumes of gas and liquid generates important mechanical stresses that could

deform the rock or even lead to the formation of fractures [48]. The stress tensor σ can

be related to the fluid pressure by:

σ = σ0 − nB (P − P0) I (3.28)

where σ0 is the initial stress tensor, nB the Biot’s constant [10] and I the identity tensor.

We define S the level of pressure mechanical forces in the domain by:

S = max
0≤x≤L

(
P (x)− P0

P0

)
(3.29)

To study the impact of the 14 dimensionless groups on the function S, we perform

a sensitivity analysis using DOE. Again, we use a two-level fractional factorial design

of resolution V (section 3.1) and a first-order model with interaction. The response

S for the corresponding values of the dimensionless numbers (Table 3.3) is obtained

by numerical simulation, using the method described in Chapter 2 (section 2.2). In

particular, we use a constant dimensionless time-step ∆t = 10−3 and a 50 × 1 × 1 grid

(figure 2.3).

Figure 3.12 shows the half-normal plot of effects for the sensitivity of function S. We

observe that this model has more deviation from the half-normal distribution than the

previous one. Fourteen effects have a large deviation from the normal distribution.

Figure 3.13 shows the Pareto chart in this case. The t-values are computed with the

residual obtained with the model formed of the fourteen most important effects defined

by Figure 3.12.

We obtain the following classification:

• primary numbers: Le, ρ
∗
G, D̃K , Na, and T ∗0
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Figure 3.12: Half-normal plot for level of pressure mechanical forces of thermal con-
version of kerogen. We observe fourteen effects that have a large deviation from the

normal distribution.
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Figure 3.13: Pareto chart for level of pressure mechanical forces of thermal conversion
of kerogen. The t-values are computed with the residual obtained with the model formed

of the fourteen most important effects defined by Figure 3.12.

• secondary number: Γ∗R

• insignificant numbers: γ∗G, γ∗C , Ss,0, aG, ∆h∗r , ρ
∗
C , α and δµ∗g

The Lewis number Le is the most important number controlling the level of mechanical

stress in the domain. The higher it is, the smaller the fluid mobilities and the higher

the mechanical stress. The reduced gas density ρ∗g and the extended Damköhler number

quantify the volume of gas generated by the chemical reactions. Small ρ∗g means a large

volume of gas generated so large mechanical stress. We would like to define an upper-

bound for the mechanical stress using Le and ρ∗G. For this, we perform 200 numerical

experiments, with values for the dimensionless numbers randomly chosen in the range
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defined by Table 3.3. Figure 3.14 shows the distribution of S as a function of the ratio

Le/ρ
∗
G.
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Figure 3.14: Distribution of mechanical stress S as a function of the ratio Le/ρ
∗
G for

200 runs with random values for the dimensionless numbers. We observe that S can be
bounded by a logarithmic function.

The envelope of the experimental data points suggests an upper bound by a logarithmic

function. We observe that:

S ≤ ln

(
1 + 2

Le
ρ∗G

)
(3.30)

Equation 3.30 can be used to define an upper bound on the mechanical stress in the

domain. This bound tends to overestimate the pressure mechanical forces. To obtain

a better estimate, one should include in the bound function the next primary numbers,

namely D̃K , Na and T ∗0 .

3.4 Application to the performance of a thermal protec-

tion system using polymer composite

We consider a thin slab of polymer material used as a thermal protection system for

space-shuttle and rocket nozzles. The model is identical to the one defined by Hender-

son and Wiecek [34] and represented in figure 2.1b, except that the right boundary is

insulated [77] (no heat loss by radiation). The performance of the thermal protection

system is defined by the temperature in the protected area, on the right end of the

domain. We define the thermal protection level as one minus the dimensionless right
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end temperature after a dimensionless time equal to one:

TP = 1− TD (xD = 1, tD = 1) (3.31)

As shown in Chapter 2, the process of thermal decomposition of polymer composite

submitted to a radiative incident heat flux can be represented by the seventeen dimen-

sionless groups defined in Table 2.2. However, we assume for consistency with previous

work that the mass stoichiometric coefficient aG = 1 [27, 34]. Thus, ρ∗c and γ∗C have no

impact on the system and the model depends on 14 dimensionless groups. Minimum

and maximum values for each dimensionless number are obtained by combining mini-

mum and maximal values for each dimensional parameter. Table 3.4 gives the range for

each parameter for this study. These were obtained from an extensive literature study

[27, 34, 77, 94].

Table 3.4: Range of values for the various dimensional parameters of thermal decom-
position of polymer composite submitted to a radiative incident heat flux.

Property min max Property min max
L (m) 0.02 0.04 φ 0.2 0.3
K0 (m2) 2× 10−18 5× 10−16 α 5 10
ρI (kg/m3) 1500 2000 γI (J/(kgK)) 1300 1600
κs (W/(mK)) 0.9 1.2 Ss0 0.5 0.7
ρR (kg/m3) 2200 3200 γR (J/(kgK)) 2200 2600
A (s−1) 1.5× 1015 3× 1018 Ea(J/mol) 2.2× 105 2.6× 105

∆hr (J/kg) -2× 106 -2× 105 n 1 50
ε 0.8 0.9 κg (W/(mK)) 0.13 0.15

mwG (kg/mol) 0.01835 0.03 γG (J/(kgK)) 2600 3000
µg (Pa.s) 1.4× 10−5 1.6× 10−5 δµg (Pa.s/K) 2.3× 10−8 2.6× 10−8

TH (K) 1400 1500 T0 (K) 283.15 313.15
P0 (Pa) 1× 105 5× 105

As for thermal conversion of kerogen, data for properties such as molecular mass, heat

capacity and viscosity of the gas or activation energy and pre-exponential factor are

not independent in reality, but again they are assumed to be for the purpose of the

sensitivity analysis. Table 3.5 gives the resulting ranges for the fourteen dimensionless

groups.

To study the impact of the 14 dimensionless groups on the function TP , we perform

a sensitivity analysis using DOE. Again, we use a two-level fractional factorial design

of resolution V (section 3.1) and a first-order model with interaction. The response

TP for the corresponding values of the dimensionless numbers (Table 3.5) is obtained
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Table 3.5: Range of values obtained for the various scaling groups obtained for thermal
decomposition of polymer composite submitted to a radiative incident heat flux. We
observe that several numbers, such as DK and Le, vary over a large range, whereas

other numbers, such as T ∗0 vary over a much smaller range.

Groups min max Groups min max

DK 6.8× 1017 1.4× 1022 Na 21.7 28.8
T ∗0 0.23 0.29 ∆h∗r 0.06 0.84
n 1 50 ε∗ 1 4
Le 3.9× 10−3 21.1 ρ∗G 2× 10−4 3× 10−3

Γ∗R 0.38 1.83 γ∗G 1. 1.36
δµ∗g 1.6 2.3 α 5 10

Ss0 0.5 0.7 ∆κ∗g 0.17 0.27

by numerical simulation, using the method described in Chapter 2 (section 2.2). In

particular, we use a constant dimensionless time-step ∆t = 10−3 and a 50 × 1 × 1 grid

(figure 2.3).

Figure 3.15 shows the half-normal plot of effects for the sensitivity of thermal protection

level. We observe eleven effects that show a large deviation from the half-normal distri-

bution. Figure 3.16 shows a Pareto chart including the twenty most important effects

and we observe the following classification:

• primary numbers: Γ∗R, ∆h∗r , ε
∗, Ss,0, γ∗G, Na and DK

• secondary number: T ∗0

• insignificant numbers: n, κ∗g, ρ
∗
G, α, Le and ∆µ∗g

The primary numbers influence the heat conduction, the radiative flux or the chemical

reaction. In particular, we observe that the reduced reaction enthalpy ∆h∗r is a pri-

mary parameter. Figure 3.17 compares the temperature and solid saturation for the

decomposition of material H41N (Table 2.1) after t = 0.2τ for different reduced reaction

enthalpies.

We observe that for ∆h∗r = 0.06, the temperature profile is very similar to the one when

the chemical reaction is ignored. In this case, the reaction has little impact on the heat

propagation. However, for ∆h∗r = 0.84, the temperature is significantly reduced through

the domain. Near the reaction front (two peaks since two different values for DK), a

significant part of energy is consumed by the decomposition. Therefore, the temperature

is reduced only when the chemical reaction is important. Before the chemical reaction
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Figure 3.15: Half-normal plot of the effects for the thermal protection level of polymer
composite. We observe eleven effects that show a large deviation from the half-normal

distribution.
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Figure 3.16: Pareto chart of the effects for the level of thermal protection of polymer
composite. The t-values are computed with the residual obtained with the model
formed of the eleven most important effects defined by Figure 3.15. Primary effects

are represented in black, secondary in grey and insignificant in white.

becomes significant, the temperature increases in the domain simply by heat conduction

in the rock and pores and the right end reaches a temperature T < TR1, when TR1 is

the reaction temperature defined by Equation 2.34, after the approximate time:

t = tcond (T ) = TD (1 + Γ∗RSs,0) τ < τ (3.32)
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Figure 3.17: Temperature and saturation for decomposition of material H41N (Table
2.1) after t = 0.2τ with different value of reaction enthalpy. We observe that large ∆h∗r

delays the heat propagation in the domain.

where τ is the time scale of heat conduction in the domain (Equation 2.24). Therefore,

the level of thermal protection satisfies:

TP < 1− TR1,D =
TH − TR1

∆T
(3.33)

So the system is inefficient when protecting from temperature smaller than TR1. How-

ever, when the domain reaches a temperature higher than TR1, the chemical reaction

acts as a barrier for the heat conduction. As the reactant is consumed, the temperature

increases slowly as the system requires energy for the decomposition. Thus, T remains

smaller than TR100, defined as the temperature for which the dimensionless reaction rate

is equal to 100:

TR100 =
TB

ln (DK)− ln(100)
(3.34)

For T > TR100, the chemical reaction is almost instantaneous and the energy barrier

is overcome. Thus, the time for which T < TR100 can be approximated by the sum of

tcond (TR100) and t∆H (TR100), where t∆H is the time necessary for the system to receive

from the radiative source enough energy to consume all reactant:

t∆H (T ) =
Γ∗rSs,0
ε∗

(−∆h∗r + (γ∗G − 1)TD) τ (3.35)

To verify this approximation, we perform 200 numerical experiments, with values for

the dimensionless numbers randomly chosen in the range defined by Table 3.5. Figure
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3.18 shows the distribution of t (T < TR100) as a function of tcond (TR100) + t∆H (TR100).

We observe good agreement between the two, so:

tT<TR100
≈ tcond (TR100) + t∆H (TR100) (3.36)
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Figure 3.18: Distribution of protection time tT<TR100
as a function of the sum of

tcond (TR100) and t∆H (TR100) for 200 runs with random values for the dimensionless
numbers .

For the material denoted H41N (Table 2.1), a thickness of 3 cm gives temperatures

T 1
R100 = 431 oC and T 2

R100 = 550 oC and a protection time t (T < 550oC) of ≈ 18.1 min.

For the material denoted MXBE-350 (Table 2.1), a thickness of 3 cm gives T 1
R100 =

312 oC and T 2
R100 = 425 oC and a protection time t (T < 425oC) of ≈ 17.9 min.

Therefore, MXBE-350 gives a more efficient thermal protection than H41N with a very

similar protection time.

3.5 Summary

In this chapter, we used DOE to identify the primary parameters for two processes

of interest: the thermal conversion of kerogen into non-reactive gas, and the thermal

decomposition of polymer composite when used as heat-shielding for space-craft re-entry.

We used a two-level factorial design [2] combined with Response Surface Methodology

(RSM) [65] to classify the dimensionless numbers into primary parameters, secondary

parameters and insignificant parameters.
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The methodology was first applied to study the energy efficiency of thermal conversion

of kerogen into gas. The extended Damköhler number D̃K was found to be the most

important parameter of the process. When D̃K was small, the reaction was slow and

the process was inefficient. However, when D̃K was very large, the reaction was very

fast, but since the heat conduction was the primary mechanism defining the time scale

of the process, a significant part of the energy given to the system was simply used to

heat the rock. This analysis allowed us to identify an optimal heater temperature for

the performance of the process (Equation 3.27).

Then, we studied the level of mechanical stress in the domain. The two most important

dimensionless groups for this case were the pressure Lewis number Le, which quantifies

the ratio of heat diffusivity to pressure diffusivity, and the reduced initial gas density ρ∗g,

which is equal to the ratio of initial gas density to solid density. Our analysis led to an

estimation of the maximum pressure in the domain during the process (Equation 3.30).

Finally, we used DOE to measure the performance of polymer thermal protection sys-

tems. We observed that the most important numbers for this case are the reduced

volumetric heat capacity of the reactant Γ∗R and the reduced heat of decomposition

∆h∗r . The temperature increased slowly when the chemical reaction was important as

the system required enough energy for the decomposition. This analysis allowed us

to identify a protection temperature (Equation 3.34) and a protection time (Equation

3.36).

We conclude that for both processes, the main interactions are the ones between the heat

conduction and the chemical reaction and the ones between the chemical reaction and

the mass convection. The heat conduction induced the chemical reaction which induced

the mass convection. The other interactions are secondary or insignificant compared

to those. In the next chapter, we evaluate the use of decoupling methods, or so-called

Operator Splitting for solving numerically the equations. The challenge is to identify

a method that is computationally attractive but preserve the main interaction between

operators to limit the discretization error. Our dimensionless analysis showed that the

main interactions would be conserved for a decoupling method where the heat conduction

is performed first, followed by the chemical reaction and finally the heat and mass

convection step. This method is presented in the next chapter and compared with the

most common Operator Splitting methods from the literature.



Chapter 4

Evaluation of Operator Splitting

(OS) methods for the thermal

decomposition of solid reactant

into non-reactive gas

Operator Splitting (OS) methods have been previously applied to a wide range of prob-

lems, including groundwater transport simulations [6], air pollution modelling [51] and

combustion-reaction problems [68]. They provide a framework to deal separately with

the transport and the chemical reaction steps and therefore simplify the numerical simu-

lation of the system. However, decoupling the equations introduces an additional source

of error [88]. The convergence and precision of OS methods have been extensively studied

for linear or quasi-linear operators [26, 88].

The objective of this chapter is to identify the best splitting technique for a highly

non-linear system: the thermal decomposition of solid reactant into non-reactive gas.

We describe the most common methods from the literature and evaluate their precision

and performance on two test cases describing kerogen decomposition (Table 2.4). To

simplify the notation, we describe the various splitting methods on a Cauchy problem

of the form: 
∂u

∂t
= A.u+K.u, t ∈ (0, T ] .

u(0) = u0

(4.1)

59
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where A represents the advection and thermal conduction operator and K the chemical

reaction operator. In the general case, A and K are non-linear operators. A splitting

method is said to be k-order accurate or to have a splitting error of order k if:

u
(
tn+1

)
− un+1 = O (∆tn)k (4.2)

where u is the exact solution of Equation 4.1 and ∆tn the time-step of the splitting

betwenn tn and tn+1.

4.1 Operator splitting methods

Operator splitting methods offer two distinct approaches. In a Sequential Non-Iterative

Approach (SNIA), each operator is applied once sequentially. In this section, we describe

two of these methods, namely the Sequential Split Operator (SSO) [18] and the Strang-

Marchuk Split Operator (SMSO). The second category of operator splitting methods

is the Sequential Iterative Approach (SIA), which attempts to eliminate or control the

splitting error through an iterative process. Details of the implementation of the methods

are given in Appendix B.

4.1.1 Sequential Non Iterative Approach

The simplest and most common of SNIA methods is the Sequential Split Operator (SSO)

[18], which is a sequence of one transport step followed by one chemical step:


∂u∗

∂t
= A.u∗, t ∈

[
tn, tn+1

]
, u∗(tn) = u(tn)

∂un+1

∂t
= K.un+1, t ∈

[
tn, tn+1

]
, un+1(tn) = u∗(tn+1)

(4.3)

which will be denoted SSO-AK to indicate the sequence of operator used. SSO can be

done the opposite way with one chemical step followed by one transport step (SSO-KA):


∂u∗

∂t
= K.u∗, t ∈

[
tn, tn+1

]
, u∗(tn) = u(tn)

∂un+1

∂t
= A.un+1, t ∈

[
tn, tn+1

]
, un+1(tn) = u∗(tn+1)

(4.4)
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For SSO-AK and SSO-KA, the splitting error arising from decoupling the governing

equations is of order 1 [88]. For linear operators, this error can be related to the asym-

metry of the decoupling. The classical SSO can be modified by using two time-steps

and alternating the operators in an effort to cancel the splitting error of order 1, as is

done in the Strang-Marchuk Split Operator (SMSO) (sometimes called the Alternate

Split Operator (ASO)) [18, 44, 84]:

∂u∗

∂t
= A.u∗, t ∈

[
tn, tn+1/2

]
, u∗(tn) = u(tn)

∂u∗∗

∂t
= K.u∗∗, t ∈

[
tn, tn+1

]
, u∗∗(tn) = u∗(tn+1/2)

∂un+1

∂t
= A.un+1, t ∈

[
tn+1/2, tn+1

]
, un+1(tn) = u∗∗(tn+1)

(4.5)

For linear operators, SMSO cancels the splitting error of order 1 [88] and so is of order 2.

However, these findings do not necessarily apply to systems where the coupling between

transport and chemical reactions is strongly non-linear.

4.1.2 A New Splitting Method: SSO-CKA

When the operator K is performed before A, as in SSO-KA and in a half step of SMSO,

the chemical reactions are computed with the temperature calculated at the previous

time-step. In Chapter 3, we observed that thermal conduction is the primary mechanism

controlling the thermal decomposition of solid reactant into non-reactive gas. Therefore,

we try to reduce the discretization error of SSO by using a splitting scheme where the

thermal conduction is performed first (operator C), followed by a chemical reaction step

(operator K) and finally the advection part with no thermal conduction (operator A′).

This method is defined as SSO-CKA:

∂u∗

∂t
= C.u∗, t ∈

[
tn, tn+1

]
, u∗(tn) = u(tn)

∂u∗∗

∂t
= K.u∗∗, t ∈

[
tn, tn+1

]
, u∗∗(tn) = u∗(tn+1)

∂un+1

∂t
= A′.un+1, t ∈

[
tn, tn+1

]
, un+1(tn) = u∗∗(tn+1)

(4.6)

SSO-CKA tries to take advantage of the fact that most of the effect of advection-diffusion

on the chemical reaction comes from heat conduction if (1) reactants are transported

slowly in the domain and (2) reaction enthalpies are small. Condition (1) implies that

the heat and mass advection operator A′ has only a small effect on the operator K.
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It is true if only a small proportion of the reactant exists in the gas phase. For our

simplified model of the thermal decomposition of kerogen, all reactant is in the solid

phase. Condition (2) implies that K has a small effect on C. Reaction enthalpies are

generally neglected in the modelling of In-Situ Upgrading of oil shale [24, 52]. However,

we noted in Chapter 3 that they could have a large impact on the processes and we will

see in this chapter how it can affect the precision of SSO-CKA.

4.1.3 Sequential Iterative Approach

Unlike SNIA, each sub-step of an iterative scheme solves an approximation to the fully

coupled PDE system. The simplest of these methods is the Iterative Split Operator

(ISO) [26]:
∂u∗2i+1

∂t
= A.u∗2i+1 +K.u∗2i t ∈

[
tn, tn+1

]
.

u∗2i+1(tn) = un(tn)

∂u∗2i+2

∂t
= A.u∗2i+1 +K.u∗2i+2 t ∈

[
tn, tn+1

]
.

u∗2i+2(tn) = un(tn)

(4.7)

for i = 0, 1, ...,m or until convergence. The function u∗0 is an arbitrarily chosen initial

guess on the interval [tn, tn+1] and

un+1(t) = u∗2m+1(t) t ∈
[
tn, tn+1

]
. (4.8)

ISO is stable and converges for linear operators [26]. Note that each of the sub-steps

is not necessarily stable. For example, if the chemical constants in K are larger than

1, the first step is obviously unstable. It is the iterations over the splitting scheme and

the alternating between implicit and explicit treatment for each operators that stabilise

the method in linear systems. However, we do not have such a result for non-linear

operators.

4.2 Numerical simulations

The various methods presented have been developed inside EXTEND (EXtended Ther-

mal simulator for Evaluating new Numerical Discretization). The source code of EX-

TEND is provided in the CD-ROM attached to this thesis. We use the Finite Volume
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Method (FVM) for the discretization with an overall molar composition formulation.

The resulting discretized non-linear equations are solved using Newton’s method. The

numerical methods used in the software are detailed in Appendix B.

We consider the 1D simplified model describing the thermal conversion of kerogen rep-

resented in figure 2.1a. We use the 50× 1× 1 grid shown in figure 2.3. The heater well

is located on the left of the grid and the producer well on the right. The focus of this

work is entirely on the time integration so we always consider the same grid.

Initially, we use a constant dimensionless time step ∆t. In section 4.3, we compare the

precision of FIM and SNIA methods for test cases 1 and 2 (Table 2.4) for different values

of ∆t between 0.001 and 0.01 . Then, in section 4.4, we compare the convergence of

FIM and ISO for test cases 1 and 2 (Table 2.4) for ∆t = 0.01. Finally, in section 4.5,

we compared the precision of FIM and SSO-CKA for a time-step strategy based on the

time truncation error and perform a sensitivity analysis.

4.3 Comparison of FIM and SNIA

We compare the precision of FIM, SSO-AK, SSO-KA, SMSO and SSO-CKA on two

test cases describing thermal conversion of kerogen (Table 2.4). For each test case,

we define a reference solution by solving the full system of equations with FIM with a

dimensionless time-step ∆tD = 10−4 and a 50 × 1 × 1 mesh. The reference solution is

denoted by P for pressure, T for temperature, Sp for saturations.

We then study the evolution of the relative error with the reference solution for FIM,

SSO-AK, SSO-KA, SMSO and SSO-CKA as a function of the time-step for a 50× 1× 1

mesh. We use the following definitions for the normalized error L1 for each variable:

eP = max
n

 1

nd

∑
xj

|P (tn, xj)− P (tn, xj)|
P0

 ,

eT = max
n

 1

nd

∑
xj

|T (tn, xj)− T (tn, xj)|
∆T


eS = max

p
max
n

 1

nd

∑
xj

|Sp(tn, xj)− Sp(tn, xj)|


(4.9)
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and the total L1 error is defined as:

eL1 =
eP + eT + eS

3
(4.10)

Note than all numerical simulation are done with the same grid size. Grid refinement

study should be done in the future especially as the size of the grid could impact greatly

the chemical reactions.

For SMSO, we use two time-steps to solve the chemical reactions. This way, the four

methods perform the same number of transport steps and the same number of chemical

reaction steps. For SSO-CKA, we perform one additional heat conduction step. How-

ever, since the heat conduction has been extracted from the operator A, the temperature

can be treated explicitly in the transport step [59]. This way, the computational effort

is roughly the same for the four SNIA methods.

Figure 4.1 shows the evolution of the normalized errors with time-step for test case 1

(Table 2.4). The time-steps represented in the x-axis are ∆tD for SSO and ∆tD/2 for

SMSO, so that the four SNIA methods perform the same number of transport steps and

the same number of chemical reaction steps. We observe that SSO-AK gives a large

pressure error. The pressure rises during the chemical reaction step and could reach

non-physical values if not relaxed by a transport step afterwards. However, we obtain a

small saturation error. On the other hand, SSO-KA has a limited pressure error but the

saturation and composition errors are large. SMSO gives a compromise between the two

methods but the pressure and saturation errors are still too large. Figure 4.3a compares

the L1 error for FIM, SSO-KA and SSO-CKA. Since SSO-AK and SMSO have a very

large pressure error, their errors L1 are also very large and are not shown here. We

observe that SSO-CKA gives the lowest error of the four SNIA methods.

For test case 2 (Figure 4.2), we also observe a large pressure error for SSO-AK. SSO-KA

gives a large saturation error and SMSO gives a compromise between the two but still

has a larger saturation error than SSO-CKA. Figure 4.3b compares the L1 error for

FIM, SSO-KA, SMSO and SSO-CKA. Again, SSO-AK is not shown here since it has a

very large pressure error, but we observe that SMSO is more precise than SSO-KA in

this case. However, SSO-CKA still gives the lowest error of the four SNIA methods.
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Figure 4.1: Evolution of the normalized errors of FIM, SSO-AK, SSOKA, SMSO and
SSO-CKA with time-step for test case 1 (Table 2.4). We observe a very large pressure

error for SSO-AK and SMSO, and a large saturation error for SSO-KA.

4.4 Convergence of ISO

Since the mathematical model for thermal decomposition of kerogen is non-linear, we

do not have any analytical results concerning the stability and convergence of ISO. To

assess its applicability, we compare the convergence behaviour with that obtained from

FIM for test cases 1 and 2. Figure 4.4 shows the number of non-linear iterations used

to solve the transport step for each case with a dimensionless time-step ∆tD = 0.01,

using FIM and ISO. Details of our implementation of ISO are given in Appendix B. In

particular, the initial guess for time-step n+ 1 was chosen as u∗0 = un.

For test case 1, ISO performs nearly five times as many non-linear iterations than FIM.

This is because the stability error arising from the explicit treatment of each of the oper-

ators in each sub-step is too large and is not cancelled by alternating and iterating over
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Figure 4.2: Evolution of the normalized errors of FIM and SSO-AK, SSO-KA, SMSO
and SSO-CKA with time-step for test case 2 (Table 2.4). We observe a very large
pressure error for SSO-AK and a large saturation error for SSO-AK. SMSO gives a

compromise between the two but still has larger saturation error than SSO-CKA.

the splitting scheme. The difference is even larger for test case 2, with ISO performing

nearly 20 times as many non-linear iterations than FIM.

It should be noted that the choice of the initial guess u∗0 can have a large impact on

the performance of the method. However, we were unable to find a better choice that

u∗0 = un. Finding the right guess that ensures the stability of the splitting iteration could

potentially make ISO applicable for the numerical simulation of the thermal processes

considered here.
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Figure 4.3: Evolution of normalized L1 error of FIM and SSO-AK, SSO-KA, SMSO
and SSO-CKA for (a) test case 1 and (b) test case 2. For test case 1, SSO-AK and
SMSO gives very large L1 error and are not represented here. The same is true for
SSO-AK for test case 2. We observe that in both cases SSO-CKA gives the lowest error

of the four SNIA methods.
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Figure 4.4: Number of non-linear transport iterations for (a) test case 1 and (b) test
case 2 with a dimensionless time-step ∆tD = 0.01 for both FIM and ISO. We observe a
large difference between the two methods, which is due to convergence failures for ISO.

4.5 Time-step strategy comparison for FIM and SSO-CKA

In section 4.3, we compared the precision of FIM and the four SNIA methods for two test

cases and we showed that in both cases SSO-CKA gives the lowest discretization error

of the four SNIA methods. However, this comparison was done for simulations with

a constant time-step. In reservoir simulation, we generally use an adaptive time-step

strategy to accelerate convergence and minimise CPU time. In this section, we present a

time-step strategy based on maximum time truncation error and change in the variables
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over the time. We then perform a sensitivity analysis to compare the performance of

FIM and SSO-CKA using this time-step strategy for different values of the dimensionless

numbers.

4.5.1 Time truncation error

The local truncation error is an a-posteriori error estimator for the solution of a PDE.

Consider that we have a numerical solution of our PDE for time tk, 0 ≤ k ≤ n with

variable time-step ∆tk. An estimation ˜yn+1 of the solution yn+1 for the next time-step

∆tn+1 can be obtained by:

˜yn+1 = yn + δy
∆tn+1

∆tn
(4.11)

where δy = yn − yn−1. Thus, the local time truncation error is defined by

tte = yn+1 − ˜yn+1 (4.12)

To limit the discretization error and the chances of convergence failure, an efficient time-

stepping strategy consists of controlling the time truncation error and the maximum

variable change with the evolving time-step:

∆tn+1 = ∆tn min

(
Θ,

η

max tte
,

η′

max δy

)
(4.13)

where Θ is the maximum time-step increase factor, η is the target time truncation error

and η′ the target maximum variable change. In this work, we initially choose Θ = 2 and

η = η′ = 0.01, which are typical values for reactive flow and are suggested by Fan et al.

[24]. We verified that for test cases 1 and 2, this gives us a L1 error of 10−3 for FIM

and SSO-CKA. This shows that the splitting error of SSO-CKA is limited for both test

cases. However, parameters such as the reaction enthalpy and specific heat capacities

can have a large impact on its precision. To study this error, we perform a sensitivity

analysis using DOE.

4.5.2 Sensitivity analysis

In this section, we investigate the dependency of the splitting error of SSO-CKA with the

physical parameters of the problem using the dimensionless numbers defined in Chapter
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2 (Table 2.2). The range of each number is given in Table 3.3 and we used the extended

Damköhler number D̃K (Equation 2.35) instead of the standard Damköhler number DK

with the range defined by Equation 3.26. We study the ratio of L1 error:

r =
eL1 (SSO-CKA)

eL1 (FIM)
(4.14)

We use a first order model with interaction (Chapter 3, Equation 3.3). The results are

interpreted using a half-normal plot and a Pareto chart (Figures 4.5 and 4.6, see Chapter

3, section 3.2.2). We observe twelve effects that have a large deviation from the normal

distribution. The Pareto chart is then constructed with the residual obtained from the

model including these twelve effects.
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Figure 4.5: Half-normal plot of the effects for the ratio of L1 error between FIM and
SSO-CKA methods. We observe twelve effects that have a large deviation with the

normal distribution.

We obtain the following classification:

• primary numbers: D̃K , Γ∗R, ∆h∗r , γ
∗
G and aG

• secondary numbers: Le and ρ∗G

• insignificant numbers: Na, T
∗
0 , γ∗C , Ss,0, ρ∗C , η, and δµ∗g

We observe that the primary numbers define the chemical rate, the heat capacities ratio

and the heat of decomposition. This is not surprising, since an important part of the

splitting error arises from the decoupling between heat conduction and chemical reaction.
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Figure 4.6: Pareto chart of the effects for the ratio of L1 error between FIM and SSO-
CKA. The t-values are computed with the residual obtained with the model formed of
the twelve selected effects defined by Figure 4.5. Primary effects are represented in

black, secondary in grey and insignificant effect in white.

This coupling is described by the heat of decomposition. Therefore, we define the total

dimensionless heat of decomposition ∆H (see Equation A.10, Appendix A) by:

∆H = Γ∗R (−∆h∗r + aG (γ∗G − 1)) (4.15)

and we study the evolution of the splitting error with ∆H for test cases 1 and 2 by arbi-

trarily increasing ∆h∗r . We first use a time-step strategy with a target time truncation

error and a target maximum variable change η = η′ = 0.01. We observe that for small

∆H, the L1 error of SSO-CKA is only slightly larger than the one for FIM. However,

for large ∆H, the ratio between the two errors can reach 2 for test case 1 and 4 for test

case 2. To limit this error, we decrease η and η′ to 0.05 for SSO-CKA. We observe that

in both cases, the L1 errors for SSO-CKA and FIM are now equivalent. SSO-CKA is

particularly accurate for cases with small ∆H.

In conclusion, SSO-CKA generates a splitting error that is limited but in the general case,

we need to reduce the target maximum time truncation error to obtain a discretization

error of the same order as the one obtained for FIM, for example from 0.01 to 0.005.
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Figure 4.7: Evolution of L1 error with total dimensionless heat of decomposition ∆H
for (a) test case 1 and (b) test case 2 using FIM and SSO-CKA methods. We observe
that the L1 error for SSO-CKA is larger than the one for FIM, with a factor between
2 and 4. We then decreased η and η′ from 0.01 to 0.005 for SSO-CKA and we obtain

a L1 error of the same order.

4.6 Summary

In this chapter, we evaluated the use of Operator Splitting (OS) method for the numerical

simulation of a highly non-linear system: the thermal decomposition of solid reactant

into non-reactive gas. We described the most common OS methods used in the literature

and compared their convergence and precision for two test cases describing the conversion

of kerogen. We observed that the Iterative Split Operator (ISO) failed to converge. The

standard Sequential Split Operator (SSO) applied with first the advection operator

followed by the chemical reaction (SSO-AK) provided a converged solution but gave a

large pressure error. In the other direction (SSO-KA), it gave a large saturation error.

The Strang-Marchuk Split Operator (SMSO) did not improve the result significantly.

To limit the splitting error of SSO, we developed a method that conserved the main

interactions. First, the heat was transported by conduction (operator C). Then, the

chemical reaction was solved (operator K). Finally the mass and heat convection were

performed (operator A’). This method, defined as SSO-CKA, provided a converged

solution for both test cases and generated less discretization error than the standard

SSO and the SMSO method. However, the splitting error still needed to be controlled

to avoid large discretization errors and instability.
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We used DOE to study the precision of the method when applied to a large range

of physical parameters. A time-stepping strategy based on time truncation error was

applied to both FIM and SSO-CKA. We observed that the most important parameters

for the precision of SSO-CKA were the extended Damköhler number D̃K , the reduced

volumetric heat capacity of the reactant Γ∗R and the reduced heat of decomposition ∆h∗r .

We defined the total dimensionless heat of decomposition ∆H (Equation 4.15) and we

observed that for ∆H > 0.5, the discretization error obtained with SSO-CKA could be

four time larger than the discretization error obtained with FIM. To reduce the splitting

error, we could divide the target time truncation error by a factor 2.0, but this strategy

involved roughly twice as much computation.

The results of this chapter were obtained for a 1D model with one reaction where a solid

reactant decomposes into gas. In Chapter 5, we develop a more complete mathematical

model for the ISU of heavy oil and oil shale, and in Chapter 6, we verify that SSO-CKA

is still the best splitting strategy for this model. We then explore the use of Runge-Kutta

methods to reduce the discretization error without major additional computation.



Chapter 5

Scaling analysis of In-Situ

Upgrading of bitumen and oil

shale

This chapter investigates the In-Situ Upgrading of bitumen and oil shale by dimension-

less analysis. The results of Chapters 2, 3 and 4 have been obtained for a simplified

model where one solid component decomposes into non-reactive gas. However, kinetic

models describing kerogen or bitumen decomposition can include a large number of reac-

tions and a large number of components. These components can partition between solid,

liquid and gas phases. Behar et al. [8] describes such a model for the heavy components

of Safanya heavy oil (Saudi Arabia) and Al Darouich et al. [1] gives a similar model

for the decomposition of the light components of the same oil. Regrouped together, we

obtain a full kinetic model with 28 reactions and 26 components. For the decomposition

of oil shale, Braun and Burnham [12] developed a model containing 83 species and 100

reactions.

This chapter has four objectives. First, we extend the model developed in Chapter 2

to a more complete mathematical model describing the ISU of heavy oil. The model

is adapted from Fan et al. [24] and can describe ISU of both bitumen and oil shale.

Secondly, we identify the full set of dimensionless numbers required to represent the

process and compute their values for two test cases. Test case 1 describes the ISU of

Athabasca bitumen and test case 2 describes the ISU of Green River oil shale. Thirdly,

73
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we establish a range of values for each dimensionless group by first identifying a range of

values for each dimensional parameter of the process from a thorough literature review.

Finally, we use DOE to determine their effect on the energy efficiency of the process and

extend the optimal heater temperature correlation obtained in Chapter 3 to the more

complete mathematical model.

5.1 Mathematical model

The model contains an inert rock (I), with the pore-space occupied by n hydrocarbon

components regrouped into three phases: gas (g), liquid (l) and solid (s). The solid

phase is formed of kerogen and/or coke. We assume that the model contains k thermally

unstable chemical entities which decompose with first-order kinetics. The decomposition

of an entity Xi, i = 1...k, can be accounted for by one chemical reaction with one

reactant:

Xi
ri−→ ai,1X1 + . . .+ ai,hXh + . . .+ ai,nXn (5.1)

where ri is the rate of reaction i and ai,j the mass stoichiometric coefficient for component

j as a product (ai,j > 0) or a reactant (ai,j < 0). The rate of reaction is described using

an Arrhenius law of order 1 [30]:

ri = Ai exp

(
−Eai
RT

)
Ci (5.2)

where Ai and Eai are the frequency factor and the activation energy of reaction i, R

is the universal gas constant and Ci is the mass concentration of the reactant Xi of

reaction i.

The mass-balance equation for compositional simulation for each hydrocarbon compo-

nent j = 1...n can be expressed as follows [89]:

∂

∂t

(
φ
∑
p

ωp,jρpSp

)
= −∇

(∑
p

ωp,jρpvp

)
+
∑
i

ai,jri (5.3)

where φ is the rock porosity, Sp, ρp and vp the saturation, mass density and velocity

of phase p, ωp,j the mass fraction of component j in phase p. The porosity of the rock
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change with pressure due to compressibility:

φ = φ0 (1 + cpv (P − P0)) (5.4)

where φ0 is the initial rock porosity and cpv the pore volume compressibility. The density

of the gas phase is given by the ideal gas law (Equation 2.12) with the total gas molecular

weight:

mwg =
∑
j

ωg,jmwj (5.5)

The density of the liquid phase is given by:

1

ρo
=
∑
j

ωo,j
ρo,j

ρo,j = ρo,j,0 (1 + cj (P − P0)) (1− ej (T − T0))

(5.6)

where ρo,j,0, cj and ej are the component initial density, compressibility and thermal

expansion in the liquid phase, respectively. We neglect the solid phase compressibility

and thermal expansion, so that the solid density only depends on the phase composition:

1

ρs
=
∑
j

ωs,j
ρs,j

(5.7)

where ρs,j is the component density in the solid phase. The velocity of phase p is given

by Darcy’s law:

vp = −Kkrp
µp
∇ (P − ρpgD) (5.8)

where P is the pressure, g the gravitational constant, D the depth, K the rock per-

meability and kr,p and µp are the relative permeability and viscosity of phase p. The

solid phase is immobile (krs = 0) and the gas-oil relative permeability is described by

a Corey-type correlation [21] with a critical gas saturation of Sgc = 0.05, a residual oil

saturation of Sor = 0.2 and Corey exponents equal to 2 for both oil and gas phases.

kro =

(
So − Sor

1− Sor − Sgc

)2

krg =

(
Sg − Sgc

1− Sor − Sgc

)2
(5.9)
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The impact of the solid saturation (Ss = 1− Sg − So) on the permeability is given by a

simple exponential relationship:

K = K0 exp (−α (Ss − Ss,0)) (5.10)

where K0 is the initial permeability. The coefficient α determines how strongly the

permeability varies with a change in solid saturation. Typically, α has a value between

5 and 10 [56]. Phase equilibrium is modelled using Wilson K-values [90]:

ξg,j = Kj (P, T ) ξo,j

Kj (P, T ) = exp

(
5.373 (1 +Acj)

(
1− Tcj

T

))
Pcj
P

(5.11)

where ξp,j is the molar fraction of component j in phase p, Acj , Pcj and Tcj are the

component acentric factor, critical pressure and critical temperature, respectively. Heat

transfer is accounted for in the overall energy balance equation [63]:

∂

∂t

(
(1− φ) ρIuI + φ

∑
p

ρpupSp

)
= ∇ (κ∇T )−∇

(∑
p

ρpvphp

)
+
∑
i

∆hriri (5.12)

where ρI and uI are the rock density and internal energy, up and hp are the phase

internal energy and enthalpy, κ is the thermal conductivity of the system and ∆hri is

the enthalpy of reaction i.

5.2 Test cases

We consider two test cases, one representing the ISU of Athabasca tar-sand (test case

1), and one representing the ISU of Green River oil shale (test case 2). These test cases

are similar in the sense that they describe the decomposition of one primary reactant

R (bitumen compound NSO for test case 1 and kerogen K for test case 2) into heavy,

medium and light hydrocarbon components, with secondary decomposition for the heavy

and medium components. Apart from different values for the reaction parameters, the

main difference is in the initial phase saturations. For tar-sand, the pore-space is initially

filled with very viscous liquid. The rock permeability is high but the initial mobility

of the fluid is low. However, when the temperature increases, the viscosity decreases

rapidly leading to a small oil production rate. For oil shale, the pore-space is initially
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85% filled with a solid phase and remains like this until the chemical reactions become

important. There is no initial oil production. The initial permeability is very low and

most of the hydrocarbon is immobile. Therefore, these two test cases have similar kinetic

models but very different flow behaviour.

For both test cases, we consider a 3D reservoir represented by a cube with a simplified

heater pattern formed by four heaters, one on each vertical side of the cube, and one

producer well at the centre (Fig. 5.1). Each side of the cube is 10 m long. The

heaters operate at a constant temperature of 350oC and the producer at a constant

Bottom Hole Pressure (BHP) equal to the initial pressure of the reservoir. To solve

the system of equations, we developed a C++ simulator called EXTEND (EXtended

Thermal simulator for Evaluating new Numerical Discretization). The source code of

EXTEND is provided in the CD-ROM attached to this thesis. The numerical methods

used in the software are detailed in Appendix B. In this chapter, we use the Fully Implicit

method with a 11× 11× 1 grid.

Figure 5.1: Reservoir geometries and wells

5.2.1 Athabasca bitumen test case

For this case, the pore space is initially filled with very viscous bitumen. The rock and

initial properties are summarized in Table 5.1. The porosity and permeability are high

(0.36 and 4158 mD respectively) but the initial viscosity of the liquid phase is also large

(150000 cp). As the temperature increases inside the reservoir, the viscosity of the oil

decreases following the correlation [3]:

ln (lnµo) = −3.5912 lnT + 22.976 (5.13)
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where µo is the oil viscosity in centipoise (cp). For the viscosity of the gas, we use the

same simple correlation as the one used in CMG STARS [19]:

µg = 0.0136 + 3.8× 10−5 (T − 273.15) (5.14)

where µg is in cp, and T is in K. The bitumen decomposition is modelled using a kinetic

scheme adapted from Behar et al. [8] and Al Darouich et al. [1]. The reactions and

components are lumped into a model with k = 3 reactions and n = 6 components.

The reaction enthalpies have been neglected here. The thermodynamic properties of the

components are summarized in Table 5.3

Test case 1

Initial Porosity 0.36

Initial Permeability 4158 mD

Coefficient α 6.28

Initial reactant saturation 0.9

Rock volumetric heat capacity 1800 kJ/m3/K

Heat conductivity 1.7 W/(mK)

Rock compressibility 5× 10−3 1/MPa

Initial pressure 1.5 MPa

Initial temperature 28 oC

Table 5.1: Rock and initial properties for test case 1. These data are adapted from
[49].

Reaction A Ea ∆hr
(s−1) (kJ/mol) (kJ/kg)

NSO −→ 0.170 C14+ + 0.105 C6−13 7.82× 1012 209.2 0
+ 0.079 C1-C4+0.051 H2S-CO2

+ 0.595 PreChar

C14+ −→ 0.48 C6−13 + 0.248 C1-C4 3.85× 1016 259.4 0
+0.272 PreChar

C6−13 −→ 0.767 C1-C4 +0.233 PreChar 3.85× 1016 276.1 0

Table 5.2: Chemical reactions for test case 1. These data are adapted from [8].

5.2.2 Green river oil shale test case

For this case, the pore space is initially filled with solid kerogen (Ss=0.85) and CO2

gas (Sg=0.15). The rock properties are summarized in Table 5.4. The rock porosity is

equal to 0.2 but as the solid is immobile, the apparent porosity for the fluid is equal to
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NSO C14+ C6−13 C1-C4 H2S-CO2 PreChar

Molecular weight 515 500 160.0 40 80 12.72
(kg/kmol)

Critical pressure (MPa) 0.6 0.6 2.1 4.2 4.0 NA

Critical temperature (K) 1200 950 670 370 350 NA

Acentric factor (no unit) 1.6 1.5 0.53 0.151 0.1 NA

Liquid density at standard 1070 940 800 400 400 NA
condition (kg/m3)

Liquid compressibility 5.4 5.4 5.4 5.4 5.4 NA
(1/MPa× 10−3)

Liquid thermal expansion 6.3 6.3 6.3 6.3 6.3 NA
(1/K × 10−4)

Solid density (kg/m3) NA NA NA NA NA 1200

Specific heat capacity 1.5 1.5 2.0 2.5 2.5 1.0
(kJ/kg/K)

Initial mass composition 0.57 0.41 0.02 0 0 0

Table 5.3: Component thermodynamic properties for test case 1.

0.2× (1− 0.85) = 0.03. The initial permeability is also very low (2 mD). The viscosity

of the gas is given by Equation 5.14 and the viscosity of the liquid phase is given by [62]:

log10 µo (T ) =
4.1228(

1 + T−303.15
303.15

)3.564 − 0.002 (5.15)

where µo is in cp and T in K. As the temperature increases, the kerogen decomposes

into liquid and gas products and the apparent porosity and permeability increase. We

used a simplified kinetic model adapted from Braun and Burnham [12] and described

in Fan et al. [24]. This model includes k = 3 reactions and n = 6 components. The

thermodynamic properties of the components are summarized in Table 5.6.

Test case 1

Initial Porosity 0.2

Initial Permeability 2 mD

Coefficient α 6.28

Initial solid saturation 0.85

Rock volumetric heat capacity 1800 kJ/m3/K

Heat conductivity 2 W/(mK)

Rock compressibility 4.35× 10−4 1/MPa

Initial pressure 0.69 MPa

Initial temperature 16.7 oC

Table 5.4: Rock and initial properties for test case 2. These data are adapted from
[24] and [56].
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Reaction A Ea ∆hr
(s−1) (kJ/mol) (kJ/kg)

K −→ 0.280 IC37 + 0.200 IC13 4.33× 107 161.6 0
+ 0.090 IC20.015 CO2 +
+ 0.415 PreChar

IC37 −→ 0.090 IC13 + 0.170 IC2 7.23× 1011 206.0 0
+0.740 PreChar

IC13 −→ 0.200 IC2 +0.800 PreChar 1.14× 1012 219.3 0

Table 5.5: Chemical reactions for test case 2. These data are adapted from [24].

IC37 IC13 IC2 CO2 K Prechar

Molecular weight 465.83 169.52 30.07 44.01 15 12.72
(kg/kmol)

Critical pressure (MPa) 0.94 2.4 4.6 7.4 NA NA

Critical temperature (K) 962.28 715.36 288.74 298.53 NA NA

Acentric factor (no unit) 0.818 0.365 0.008 0.239 NA NA

Liquid density at standard 1013 760 400 400 NA NA
condition (kg/m3)

Liquid compressibility 5.4 5.4 5.4 5.4 NA NA
(1/MPa× 10−3)

Liquid thermal expansion 6.3 6.3 6.3 6.3 NA NA
(1/K × 10−4)

Solid density (kg/m3) NA NA NA NA 1200 1200

Specific heat capacity 1.5 2.0 2.5 2.5 1.0 1.0
(kJ/kg/K)

Initial mass composition 0 0 0 0.001 0.999 0

Table 5.6: Component thermodynamic properties for test case 2.

5.3 Dimensionless Analysis

5.3.1 Identification of the dimensionless numbers

We use Inspectional Analysis to identify the set of dimensionless numbers that fully

represent our mathematical model. This technique is described in Appendix A and has

been applied to a simplified model describing the thermal decomposition of solid reactant

into non-reactive gas in Chapter 2. As for the simplified model, the reference time scale

of the process is the time scale of heat conduction in the rock τ (Equation 2.24).

Table 5.7 shows the numbers describing the heat and mass flow. The pressure Lewis

number Le, the reduced volumetric capacity of the primary reactant Γ∗R, the reduced

initial temperature T ∗0 , the initial saturation of reactant SR,0, the permeability function
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parameter α and the reduced gas viscosity variation have been defined in Chapter 2

(Table 2.2) for a simplified model with no liquid phase.

Table 5.7: General heat and mass flow scaling groups for ISU.

Name Notation Definition Description

Pressure Lewis number Le
φ0µg,0κs

K0P0(1−φ0)ρIγI

heat diffusivity
pressure diffusivity

Oil gas viscosity ratio M µo
µg

oil viscosity
gas viscosity

Reduced primary reactant Γ∗R
φ0ρR,0γR

(1−φ0)ρIγI

R volumetric heat capacity
inert solid heat capacity

volumetric heat capacity

Reduced initial temperature T ∗0
T0
∆T

initial temperature
variation of temperature

Initial saturation of SR,0
reactant (solid or liquid)

Permeability function α
parameter

Reduced gas viscosity variation δµ∗g
δµg∆T
µg,0

variation of gas viscosity
initial gas viscosity

Reduced pore volume c∗pv cpvP0

compressibility

Le quantifies the ratio of heat diffusivity to pressure diffusivity in the gas phase. The

ratio of heat diffusivity to pressure diffusivity in the oil phase is described by the quantity

MLe, where M is the oil gas viscosity ratio. Since M varies with temperature, we define

M0 the initial viscosity ratio and MH the viscosity ratio at heater temperature. The last

number is the reduced pore volume compressibility c∗pv which describes the pore volume

variation with change of pressure. Table 5.8 gives the values of these numbers for test

cases 1 and 2.

Table 5.8: Values of general heat and mass flow scaling groups for test cases 1 and 2.

Test case 1 Test case 2

Le 1.3× 10−6 2.9× 10−3

ΓR 0.5 0.17
M0 107 4.8× 106

MH 89 77
T ∗0 0.94 0.87
SR,0 0.9 0.85
α 6.28 6.28
δµ∗g 0.83 0.89

c∗pv 7.5× 10−3 3× 10−4

Each reaction i = 1...k is described by three dimensionless numbers: the extended

Damköhler number D̃Ki, the Arrhenius number Nai and the reduced reaction enthalpy
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∆h∗ri, plus n stoichiometric coefficients (Table 5.9). These numbers have been de-

scribed in Chapter 2 (Table 2.2 and Equation 2.35) for a model with one reaction.

The Damköhler number DK quantifies the ratio of chemical rate to heat conduction

rate at infinite temperature. However, we observed in Chapter 2 that the process is

better represented by the extended Damköhler numbers D̃K which considers the rate

at the heater temperature. For each reaction, the Arrhenius numbers Nai describes the

energy barrier to the reaction and the reduced reaction enthalpy ∆h∗ri quantifies the

ratio of heat consumed by that chemical reaction to heat stored in the reactant. Table

5.10 gives the values of these numbers for test cases 1 and 2.

Table 5.9: Chemical reaction scaling groups for each reaction i = 1..k.

Name Notation Definition Description

Extended Damköhler number D̃Ki Ai exp
(
−Eai
RTH

)
τ reaction rate at ∞ temp

heat diffusion rate

Arrhenius number Nai
Eai
R∆T

activation energy
potential energy

Reduced reaction enthalpy ∆h∗ri − ∆hri
γR∆T

energy consumed
energy stored

Stoichiometric coefficients ai,1...ai,n

Table 5.10: Values of chemical reaction scaling groups for test cases 1 and 2.

Test case 1 Test case 2

Reaction 1 2 3 1 2 3

D̃Ki 1540 470 19 90 280 34.0
Nai 78.1 96.9 103.13 58.3 74.3 79.1

∆h∗ri 0 0 0 0 0 0

Finally, for each component j = 1...n, the thermodynamic properties are described by

eight dimensionless numbers for liquid and gas components and two for solid components.

They are presented in Tables 5.11 and 5.12, and their values for test cases 1 and 2 are

given in Tables 5.13 and 5.14, respectively

5.3.2 Range of values for the dimensionless numbers

To establish the range of values for the dimensionless numbers, we first need to establish

the range of values for the various parameters of the ISU process. They have been

selected from a thorough literature review. For the rock and initial properties, we

used papers describing numerical simulation of oil shale or bitumen recovery process

[24, 49, 52, 57]. For the chemical reaction properties, we reviewed Braun et al. [12],
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Table 5.11: Thermodynamic properties scaling groups for each fluid component j =
1..nf .

Name Notation Definition

Reduced gas density ρ∗g,j
mwjP0

RT0ρR,0

Reduced oil density ρ∗o,j
ρo,j
ρR,0

Reduced compressibility c∗j cjP0

Reduced thermal expansion e∗j ej∆T

Acentric factor Acj

Reduced critical pressure P ∗cj
Pcj
P0

Reduced critical temperature T ∗cj
Tcj
T0

Reduced specific heat capacity γ∗j
γj
γR

Table 5.12: Thermodynamic properties scaling groups for each solid component j =
1..ns.

Name Notation Definition

Reduced solid density ρ∗s,j
ρs,j
ρR,0

Reduced specific heat capacity γ∗j
γj
γR

Table 5.13: Values of thermodynamic properties scaling groups for each component
for test case 1.

NSO C14+ C6−13 C1-C4 H2S-CO2 PreChar

ρ∗g,j 0.29 0.28 0.09 0.02 0.04 NA

ρ∗o,j 1 0.88 0.75 0.37 0.37 NA

c∗j 0.008 0.008 0.008 0.008 0.008 NA

e∗j 0.20 0.20 0.20 0.20 0.20 NA

ρ∗s,j NA NA NA NA NA 1.12

γ∗j 1 1 1.33 1.67 1.67 0.67

Acj 1.6 1.5 0.53 0.151 0.1 NA

P ∗cj 0.4 0.4 1.4 2.8 2.67 NA

T ∗cj 3.98 3.15 2.22 1.23 1.16 NA

Behar et al. [8] and Phillips et al. [67]. Finally, we used Perry’s Handbook [66] for the

thermodynamic properties of the components. Table 5.15 shows the range obtained for

each parameter.

In reality, data for component or chemical reaction properties are not independent,

but here they are assumed to be in order to define the range of dimensionless groups.

Dependencies between parameters should be explored in future work as this may reduce

the set of primary numbers obtained from the analysis. Assuming they are independent,

we obtain a range of values for each dimensionless group. They are given in Table 5.16.
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Table 5.14: Values of thermodynamic properties scaling groups for each component
for test case 2.

IC37 IC13 IC2 CO2 K PreChar

ρ∗g,j 0.111 0.040 0.007 0.011 NA NA

ρ∗o,j 0.84 0.63 0.33 0.33 NA NA

c∗j 0.004 0.004 0.004 0.004 NA NA

e∗j 0.21 0.21 0.21 0.21 0.21 NA

ρ∗s,j NA NA NA NA 1 1

γ∗j 1.5 2 2.5 2.5 1 1

Acj 0.818 0.365 0.008 0.239 NA NA

P ∗cj 1.36 3.48 6.67 10.7 NA NA

T ∗cj 3.32 2.47 1.0 1.03 NA NA

Table 5.15: Range of values for the various parameters of the ISU process.

Property min max Property min max

L (m) 10 15 φ 0.1 0.4
K0 (mD) 1 5000 α 5 10
ρI (kg/m3) 2000 2200 γI (J/(kgK)) 900 1500

mwg (kg/mol) 0.03 0.3 mwo (kg/mol) 0.1 0.515
κs (W/(mK)) 1 3 SR,0 0.8 0.9
ri(TH) (s−1) 10−9 3× 10−5 Eai(J/mol) 1.60× 105 2.8× 105

∆hri (J/kg) 0 1× 106 aij 0 0.8
ρR (kg/m3) 1000 1500 γR (J/(kgK)) 1000 1500
ρo,j (kg/m3) 400 1070 ρs,j (kg/m3) 1000 1500
cj (1/Pa) 10−9 6× 10−9 ej (1/K) 4× 10−4 10−3

γj (J/(kgK)) 1000 2500 Acj 0.008 1.6
Pcj (Pa) 6× 105 8× 106 Tcj (K) 280 1200
µg,0 (Pa.s) 1× 10−5 2× 10−5 δµg (Pa.s/K) 2× 10−8 3× 10−8

µo,0 (Pa.s) 10 1000 µo,H (Pa.s) 2× 10−3 3× 10−3

TH (0C) 300 400 T0 (0C) 10 40
P0 (Pa) 5× 105 5× 106 cpv (1/Pa) 4× 10−10 5× 10−9

The extended Damköhler numbers and the pressure Lewis number are the numbers

that vary the most, over a range of five order of magnitude. For small D̃Ki ≈ 0.04,

the chemical reaction is very slow everywhere in the reservoir, which suggests that the

heater temperature is too small. For large D̃Ki ≈ 2.0×104, the reaction is very fast when

the temperature gets near the heater temperature, which suggests that TH could have

been set to a lower value. For the pressure Lewis number, small values Le ≈ 1.4× 10−8

correspond to domain with large porosity (tar-sand) and large values Le ≈ 4.5 × 10−2

correspond to domain with a low porosity (oil shale).
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Table 5.16: Range of values for the dimensionless numbers of the ISU process.

Group min max Group min max

Le 1.4× 10−8 4.5× 10−2 Γ∗R 0.03 0.83
M0 5× 105 1× 108 MH 67 197
T ∗0 0.73 1.2 SR,0 0.8 0.9
δµ∗g 0.26 1.17 α 5 10

cpv 2× 10−4 2.5× 10−2 D̃Ki 0.04 2.0× 104

Nai 50 130 ∆h∗ri 0 4.0
aij 0 0.8 ρ∗g,j 4× 10−3 0.64

ρ∗o,j 0.27 1.1 c∗j 5× 10−4 0.03

e∗j 0.1 0.4 ρ∗s,j 0.67 1.5

γ∗j 0.67 2.5 Ac 0.008 1.6

P ∗c 0.12 16 T ∗cj 0.89 4.2

5.4 Sensitivity analysis

In order to identify the most important parameters for the energy efficiency of the

process, we perform a sensitivity analysis using DOE. The number of dimensionless

groups increases rapidly with the numbers of reactions and components. For a model

including k reactions, nf fluid components and ns solid components, each reaction gives

3 additional groups plus nf + ns stoichiometric coefficients (Table 5.9). Since ai,i = −1

and
∑

j aij = 0, the number of independent stoichiometric coefficients for each reaction is

nf +ns−2. Each fluid components gives 8 additional groups (Table 5.11) and each solid

component gives 2 additional groups (Table 5.12). The model also depends on 9 general

heat and mass flow numbers (Table 5.7). Therefore, the total number of dimensionless

number is equal to 9 + k(3 + nf + ns − 2) + 8nf + 2ns.

For test case 1 which includes three reactions, five fluid components and one solid com-

ponent, this amounts to 72 dimensionless numbers. For test case 2 which includes three

reactions, four fluid components and two solid components, this amounts to 66 dimen-

sionless numbers. A sensitivity analysis with DOE for such a large number of parameters

would result in an impractical amount of computation.

To conduct this sensitivity analysis, we first restrict ourselves to a model with one

reaction and four components. Then, we study the evolution of the production profile

for test cases 1 and 2 when changing the Damköhler numbers, and finally we identify the

optimal heater temperature for the process as a function of these Damköhler numbers.
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5.4.1 DOE

We consider a simplified model with one reaction:

K −→ O +G+ C (5.16)

where K is the kerogen, O an oil component, G a gas component and C the solid charred

residual. This chemical reaction gives five dimensionless groups (D̃K , Na, ∆h∗r , aG and

ao). To simplify further the problem, we assume that the oil and gas components are

immiscible. In this case, the component O gives four groups (ρ∗O, c∗O, e∗O and γ∗O) and

the component G gives two groups (ρ∗G and γ∗G). The kerogen and solid residual each

give two groups (ρ∗s,j and γ∗j ) but since K is the primary reactant, ρ∗s,K = 1 and γ∗K = 1.

Therefore, this simplified model has 22 dimensionless groups. They are summarized in

Table 5.17 with their minimum and maximum values extracted from Table 5.16.

Table 5.17: Range of values for the dimensionless numbers for the DOE.

Group min max Group min max

Le 1.4× 10−8 4.5× 10−2 Γ∗R 0.03 0.83
M0 5× 105 1× 108 MH 67 197
T ∗0 0.73 1.2 SR,0 0.8 0.9
δµ∗g 0.26 1.17 α 5 10

cpv 2× 10−4 2.5× 10−2 D̃K 0.04 2.0× 104

Na 50 130 ∆h∗r 0 4.0
aO 0.3 0.5 aG 0.1 0.3
ρ∗g,j 4× 10−3 0.64 ρ∗o 0.27 1.1

c∗O 5× 10−4 0.03 e∗O 0.1 0.4
ρ∗C 0.67 1.5 γ∗G 1.33 2.5
γ∗O 0.67 1.5 γ∗C 0.67 1.5

We consider the EROI after 2τ (Equation 2.24) as a response describing the energy

efficiency of the process. We use a first-order model with interactions and a two-level

fractional factorial design of resolution V [65]. This design has been described in Chapter

3. Figure 5.2 shows the half-normal plot of effects. We observe that nine effects show

a large deviation from the half-normal distribution. Figure 5.3 shows a Pareto chart

including the twenty most important effects.

The t-values are computed with the residual obtained with the model formed of the nine

selected effects defined by Figure 5.2. The effects are compared with the Bonferroni
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Figure 5.2: Half-normal plot of the effects for the EROI of the ISU process. We
observe that nine effects show a large deviation from the half-normal distribution.
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Figure 5.3: Pareto chart of the effects for the EROI of the ISU process. The t-values
are computed with the residual obtained with the model formed of the nine selected
effects defined by Figure 5.2. The effect are compared with the Bonferroni t-limit and
the Lenth’s margin of error. Primary effects are represented in black, secondary in grey

and insignificant effect in white.

t-limit and the Lenth’s margin of error (see Chapter 3, Equations 3.19 and 3.20). We

obtain the following classification of the dimensionless groups:

• primary numbers: D̃K , Γ∗R, aG and ∆h∗r

• secondary numbers: T ∗0 , γ∗G, ρ∗G, Le and M0

• insignificant numbers: Na, aO, α, c∗pv, M1, SR,0, ρ∗O, c∗O, e∗O, γ∗O, ρ∗C , γ∗C and δµ∗g

We observe many similarities with the results of the analysis conducted in Chapter 3,

section 3.3.1. The most important numbers are the extended Damköhler number D̃K ,
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the reduce volumetric heat capacity of the reactant Γ∗R, the gas stoichiometric coefficient

aG and the reduced reaction enthalpies ∆h∗r . Therefore, it is essential to define these

parameters accurately.

D̃K depends on the pre-exponential factor A and the activation energy Ea. For test case

1, the decomposition of NSO has a pre-exponential factor A1 = 7.82× 1012 s−1, an ac-

tivation energy Ea1 = 209.2 kJ/mol, and an extended Damköhler number ˜DK1 = 1540.

Increasing the pre-exponential factor by 1% increases ˜DK1 by 1%. However, because of

the exponential form of Arrhenius law (Equation 5.2), increasing the activation energy

by 1% decreases ˜DK1 by 33%. So a special effort should be made in the laboratory to

measure the activation energies accurately.

Also, the reaction enthalpies have been neglected in test cases 1 and 2, but ∆h∗r is an

important parameter for the energy efficiency of the process. Therefore, the reaction

enthalpies can only be neglected if ∆h∗r << 1, which correspond roughly to ∆hr . 10

kJ/kg. Phillips et al. [67] obtained values from 25 to 2500 kJ/kg. We conclude that

∆h∗r should not be neglected.

5.4.2 Variability of production profile with Damköhler numbers

For test cases 1 and 2, we have three Damköhler numbers, one for each reaction. We

now study the evolution of the production profile for test cases 1 and 2 when successively

changing the Damköhler numbers. Figures 5.4 and 5.5 show the reservoir temperature

and saturation distribution after 800 days for test case 1 and 2, respectively. At this

time, nearly half of the primary reactant has been converted. Near the heaters, the

temperature is very large and light oil and gas products appear. They are transported

toward the production well in the centre. We observe for Athabasca bitumen (test case

1) four zones where the gas saturation is very low. They correspond to areas of the

domain where the temperature and the velocity are both small. The bitumen liquid

phase is immobile in these zones and the gas does not flow through them. For Green

River oil shale (test case 2), the primary reactant is solid, and liquid and gas components

are products of the reaction. Their viscosity is relatively small compared to the viscosity

of bitumen. Therefore, the gas saturation mostly depends on temperature and we do

not observe those four low gas saturation zones.
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Figure 5.4: Top view of reservoir temperature and saturation distribution for test
case 1 after 800 days. The isosurfaces are represented in dotted line. The arrows on the
temperature map represent the heat conduction field and the ones on the gas saturation
map represent the total velocity field. Near the heaters, the temperature is very high
and light oil and gas products appear. They flow toward the producer well. Four low
gas saturation zone appear where the temperature and the velocity are both small.
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Figure 5.5: Top view of reservoir temperature and saturation distribution for test
case 2 after 800 days. The isosurfaces are represented in dotted line. The arrows on the
temperature map represent the heat conduction field and the ones on the gas saturation
map represent the total velocity field. Near the heaters, the temperature is very high

and light oil and gas products appear. They flow toward the producer well

For test case 1, the values of the extended Damköhler numbers for the three reactions

were initially ˜DK1 = 1540, ˜DK2 = 470 and ˜DK3 = 19 (Table 5.10). Figure 5.6 shows

the hydrocarbon production profile. Initially, we produce essentially liquid oil with low

APIo. As the temperature increases, the chemical reactions become important, the APIo

increases and we start producing gas. Since light oil and gas are more valuable products,

the EROI of the process increases significantly (Figure 5.6d).

For test case 2, the values for the three reactions were initially ˜DK1 = 90, ˜DK2 = 280 and

˜DK3 = 34 (Table 5.10). Figure 5.7 shows the hydrocarbon production profiles. Initially,

there is almost no production. As the temperature increases, the chemical reactions

become significant and light components appear. The lighter components travel rapidly
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Figure 5.6: Variation of hydrocarbon production profile with Damköhler numbers for
test case 1.

to the producer well, so we start producing gas and light oil with APIo≈ 45 (Figure

5.7c). Later, some of the heavier hydrocarbon components reaches the well and the

APIo decreases rapidly. Finally, as the last reaction appears, medium oil is converted to

gas and the APIo increases again. Since light oil and gas are more valuable products,

the EROI of the process increases significantly. (Figure 5.7d).

We then change successively the values of the extended Damköhler numbers. Since the

values of the DKi for test cases 1 and 2 are in the upper part of the range defined in

Table 5.16, we divide the pre-exponential factors Ai by 100. This gives low values for

D̃Ki but still inside the range defined in Table 5.16.

For test case 1, we observe that reducing ˜DK1 delays the production of light oil and gas.

However, when the second and third reactions appear, the production of oil and gas and

the API o of the produced oil increase rapidly. Thus, reducing ˜DK1 from 1540 to 15.4
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Figure 5.7: Variation of hydrocarbon production profile with Damköhler numbers for
test case 2.

has a moderate impact on EROI for test case 1 (Figure 5.6d). Changing ˜DK2 does not

affect the first half of the production profile, but changes significantly the second half.

Since a lesser quantity of light component is created, the production of gas is reduced.

Also, the oil production and the API o of the produced oil are lower. Changing ˜DK3

only changes the very last part of the production profile, with less production of gas and

light oil.

On the contrary, the final EROI is significantly reduced when changing ˜DK1 from 90

to 0.9 for test case 2 (Figure 5.7d). In this case, the pyrolysis of kerogen is too slow

and only a small amount has decomposed after 2τ . The API o remains high as heavy

components created near the heaters do not have the time to reach the producer well.

Changing ˜DK2 impacts significantly the oil production in the second half of the profile.

We produce less light components and more heavy components. The production of gas
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is also reduced. Changing ˜DK3 affects significantly the gas production in the second

half of the profile.

To summarize, we observe that to obtain the best EROI, we need a large ˜DK1, at least

larger than 10. We will see later that the optimal is obtained when the minimum of the

three D̃Ki is larger than 10. Therefore, the minimum heater temperature required for

efficient production verifies:

TH ≥ TR10,1 =
Ea1

R log(DK1/10)
(5.17)

However, the extended Damköhler number are not independent as they describe chemical

reactions of the same kinetic model and they all depend on the temperature of the

heaters. Generally, ˜DK3 is smaller than ˜DK1 and ˜DK2 as it describes the decomposition

of a lighter component. In the next section, we show the existence of an optimal heater

temperature for both test cases 1 and 2.

5.4.3 Identification of optimal heater temperature

In this section we study the impact of the heater temperature on the EROI of the process

after 2τ . We perform numerical simulations with the heater temperature varying from

250oC to 400oC for test cases 1 and 2. Figure 5.8 shows the evolution of the EROI for

both cases.

When the heater temperature is low, the chemical reactions are too slow for the process to

be efficient. When the heater temperature is very large, the decomposition is completed

before the domain reaches the maximum temperature and a significant part of the energy

invested is used to simply heat up the rock.

Figure 5.8a shows a maximum EROI for a temperature of 344.5oC and Figure 5.8b shows

a maximum EROI for a temperature of 338oC. At these temperatures, the Damköhler

numbers are ˜DK1 = 1075, ˜DK2 = 300 and ˜DK3 = 11.5 for test case 1 and ˜DK1 = 48,

˜DK2 = 128 and ˜DK3 = 14.7 for test case 2. We observe that for both test cases, the

optimal energy efficiency is obtained when the lowest of the Damköhler numbers of the

set of reactions included in the model is between 10 and 20. This is in accordance

with an optimal temperature obtained at TR20 for the simplified model in Chapter 3
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Figure 5.8: Evolution of EROI with heater temperature for (a) test case 1 and (b)
test case 2. When the heater temperature is low, the chemical reactions are too slow
and the process is not efficient. When the temperature is very large, the decomposition
is completed before the domain reaches the maximum temperature and an important
part of the energy invested is used to simply heat up the rock. The optimal temperature

is obtain at T = 344.5oC for test case 1 and T = 338oC for test case 2.

(Equation 3.27). We conclude that the optimal temperature of the process for a model

with k reactions lies within the range:

max
1≤i≤k

TR10,i ≤ Topt ≤ max
1≤i≤k

TR20,i (5.18)

Equation 5.18 has been obtained for a cubic geometry with four heaters, one on each

vertical side of the cube. However, since the heater pattern mainly impacts the time

taken to bring the formation to a large temperature, the result should held as long as

the characteristic length L of the domain is correctly defined.

This correlation can be used to reduce the number of numerical experiments neces-

sary to identify the optimal production scheme. For test case 1, TR10 = 343oC and

TR20 = 351oC. Therefore, we know before performing any numerical simulation that

the optimal temperature is somewhere in the interval [343oC 351oC]. For test case 2,

the corresponding interval is [332oC 342oC].

Now, if the heater temperature is fixed, for example to 350oC, Equation 5.18 gives a

characteristic length interval. For test case 1, TR10 = 350oC correspond to L = 7.3m

and TR20 = 350oC correspond to L = 10.4m, so the optimal characteristic length is

somewhere in the interval [7.3m 10.4m]. For test case 1, TR10 = 350oC correspond to
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L = 5.4m and TR20 = 350oC correspond to L = 7.6m, so the optimal characteristic

length is somewhere in the interval [5.4m 7.6m].

5.5 Summary and conclusions

In this chapter, we developed a more complete mathematical model to describe the In-

Situ Upgrading of heavy oil and oil shale. We used Inspectional Analysis to identify the

dimensionless numbers that fully described the model. For a case with k reactions, nf

fluid components and ns solid components, the process was described by 9 + k(3 +nf +

ns − 2) + 8nf + 2ns dimensionless groups.

Next, we computed a range of values for each dimensionless group. This range was

obtained by first establishing a range of values for each dimensional parameter of the

ISU of bitumen and oil shale from a thorough literature review, then computing the

minimum and maximum values of the dimensionless groups.

We demonstrated that the extended Damköhler number describing the ratio of chemical

rate to heat conduction rate at the heater temperature was the most important number.

For this, we used DOE to identify the primary parameters for the energy efficiency of

the process for a simplified model with one reaction and four components. We observed

that the most important numbers were the extended Damköhler number, the reduced

reactant volumetric capacity, the gas stoichiometric coefficient and the reduced reaction

enthalpy. We showed that special effort should be made to measure accurately the

activation energy of the reaction, and that the reaction enthalpy should not be neglected.

We obtained a correlation for finding the optimal heater temperature for the energy

efficiency of the process. For test cases 1 and 2, which both included three reactions, we

had three Damköhler numbers, one for each reaction. We studied the evolution of the

production profile when successively changing them for test cases 1 and 2. We observed

that the extended Damköhler number for the reaction describing the decomposition of

primary reactant (K or NSO) needed to be at least 10 for the process to be efficient.

Finally we observed that test cases 1 and 2 were giving the best energy efficiency for

a heater temperature of 344.5oC and 338oC, respectively. In both cases, this optimal
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heater temperature was obtained when the minimum of the extended Damköhler num-

bers for all reactions included in the model was between 10 and 20. This result is

in accordance with the one obtained in Chapter 3 (Equation 3.27) for a model with

one reaction and no liquid phase, and can be used to reduce the number of numerical

experiments necessary to identify the optimal production scheme.





Chapter 6

Numerical simulation of In-Situ

Upgrading using Operator

Splitting, Adaptive Implicit and

Runge-Kutta methods

The objective of this chapter is to develop an algorithm for the numerical simulation of

the ISU process that is generally more precise than the Fully Implicit Method (FIM) and

potentially leads to large speed-ups. First, we evaluate the various OS methods defined

in Chapter 4 on the two test cases defined in Chapter 5. We use different time-stepping

strategies based on a target time truncation error and a target maximum variable change

and we compare the discretization error obtained with a splitting method with the one

obtained with FIM.

Numerical simulations of the ISU process are often very slow. To model accurately the

chemical reactions, we generally need to use small time-steps and a large compositional

model, often with more than 20 components. Solving the transport steps with such a

large number of variables is computationally expensive. However, the chemical reaction

operator on its own is described by a set of Ordinary Differential Equations (ODE) that

can be solved locally and represents a small computational effort in comparison with

the transport step. One of the advantage of Operator Splitting (OS) methods is the

possibility of applying two different compositional models, an original one with a large

97
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number of components for the chemical reaction operator, and a lumped one with only

a small number of pseudo-components for the transport step. Such a method could

potentially lead to large speed-ups with limited loss in accuracy.

Another advantage of OS methods is the possibility of applying dedicated solvers to

each operator. In reservoir simulation, the transport step is generally solved using fully

implicit backward Euler integration. This method is first-order accurate and can be

accelerated by Adaptive Implicit Method (AIM) [20]. The chemical operator can be

easily solved using higher order methods such as Runge-Kutta (RK) methods [58] in

order to obtain a more accurate solution. This could reduce the overall discretization

error of the method and potentially compensate for the additional error generated by

the splitting.

In this work, we evaluate the use of the second-order trapezoidal rule and the third-

order Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method described by

Kvaerno [50]. We demonstrate how we can reduce the CPU time by (1) regrouping

the components into lumped pseudo-components after the chemical reaction step and

(2) applying Adaptive Implicit Method (AIM) to the transport step. We evaluate the

speed-ups obtained for a test case with a full kinetic model including 26 components

that can be regrouped into 6 lumped pseudo-components for the heat conduction and

the heat and mass convection operators.

The algorithm described is faster and more precise than FIM for the ISU process, for

which the chemical reactions depend primarily on the temperature. However, if the

model includes chemical reactions of a different nature than pyrolysis, the splitting

error could be more important. For example, if the phase exchange between oil and

gas are slow, the system may not be at thermodynamic equilibrium. In this case, the

equilibrium deviation is modelled by a non-equilibrium (or transient) reaction. The

rate of the equilibrium deviation reaction mostly depends on the phase compositions.

We demonstrate that for large deviation rates, the splitting method could introduce an

error that cannot be compensated for by applying a higher order method to the chemical

operator.
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6.1 Evaluation of Operator Splitting Methods

The splitting methods considered here have been described in Chapter 4 where they were

evaluated on a simplified model where a solid reactant decomposes into non-reactive

gas. We observed that ISO did not perform well due to many convergence failures.

The standard Sequential Split Operator (SSO) applied with first the advection operator

followed by the chemical reaction (SSO-AK) provided a converged solution but gave a

large pressure error. In the other direction (SSO-KA), it gave a large saturation error.

The Strang-Marchuk Split Operator (SMSO) did not improve the result significantly.

To limit the splitting error of SSO, we developed a method that conserved the main

interactions. First, the heat was transported by conduction (operator C). Then, the

chemical reaction was solved (operator K). Finally the mass and heat convection were

performed (operator A with no conduction). This method, defined as SSO-CKA, pro-

vided a converged solution and generated fewer discretization errors than the standard

SSO and the SMSO method. We now investigate whether these observations are also

true for the ISU mathematical model defined in Chapter 5.

6.1.1 Comparison of FIM and SNIA

We evaluate the precision of FIM, SSO-AK, SSO-KA, SMSO and SSO-CKA for the ISU

of Athabasca bitumen (Chapter 5, test case 1) and the ISU of Green River oil shale

(Chapter 5, test case 2). For each test case, we define a reference solution by solving

the full system of equations with FIM with a dimensionless time-step ∆tD = 10−4. The

reference solution is denoted by P for pressure, T for temperature and zj for overall

compositions.

We then study the evolution of the relative error with the reference solution for FIM,

SSO-AK, SSO-KA, SMSO and SSO-CKA as a function of the time-step. We use the
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following definitions for the normalized error L1 for each variable:

eP = max
n

(
1

nd

∑
xi,yi

|P (tn, xi, yi)− P (tn, xi, yi)|
P0

)
,

eT = max
n

(
1

nd

∑
xi,yi

|T (tn, xi, yi)− T (tn, xi, yi)|
∆T

)

ez = max
j

max
n

(
1

nd

∑
xi,yi

|zj(tn, xi, yi)− zj(tn, xi, yi)|

) (6.1)

and the total L1 error is defined as:

eL1 =
eP + eT + ez

3
(6.2)

Here, the normalized overall composition error replaces the normalized saturation error

used in Chapter 4. This is because, unlike for the simplified model, several components

are mixed in the gas and oil phases, so that the overall compositions characterize the

system more accurately than saturations.

For SMSO, we use two time-steps to solve the chemical reactions. This way, the four

methods perform the same number of transport steps and the same number of chemical

reaction steps. It has been demonstrated in Chapter 4 that the computational effort is

roughly the same for the four SNIA methods.

Figures 6.1 and 6.2 show the evolution of the normalized errors with time-step for test

cases 1 and 2, respectively. The time-steps shown on the x-axis are ∆tD for SSO and

∆tD/2 for SMSO, so that the four SNIA methods perform the same number of transport

steps and the same number of chemical reaction steps.

We observe that SSO-AK gives a large pressure error and SSO-KA a large composition

error. SMSO does not significantly improve the result. In both cases, SSO-CKA gives

the lowest discretization error of the four SNIA methods.

6.1.2 Convergence of ISO

The internal iterations of ISO converge in the case of linear operators [26] but not

necessarily for non-linear operators [42]. We observed in Chapter 4 that ISO had a

lot of convergence failures for the simplified model describing thermal decomposition of
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Figure 6.1: Evolution of the normalized errors of FIM, SSO-AK, SSO-KA, SMSO and
SSO-CKA with time-step for ISU of Athabasca bitumen (test case 1). We observe a
large pressure error for SSO-AK, and a large composition error for SMSO and SSO-KA.

SSO-CKA gives the lowest discretization error of the four SNIA methods.

solid reactant into non-reactive gas. Now, we compare the convergence behaviour of

FIM and ISO for the ISU of Athabasca bitumen (Chapter 5, test case 1) and the ISU

of Green River oil shale (Chapter 5, test case 2). Details of our implementation of ISO

are given in Appendix B.

Figure 6.3 shows the number of non-linear iterations used to solve the transport step

for each case, using FIM and ISO with a dimensionless time-step ∆tD = 0.01. For both

test cases, ISO performs a lot more iterations because of convergence failures. As for

the simplified model, the stability error arising from the explicit treatment of one of the

operators in each sub-step is too large and is not cancelled by alternating and iterating

over the splitting scheme.

As for the simplified model, it should be noted that the choice of the initial guess u∗0 can
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Figure 6.2: Evolution of the normalized errors of FIM, SSO-AK, SSO-KA, SMSO and
SSO-CKA with time-step for ISU of Green River oil shale (test case 2). We observe a
large pressure error for SSO-AK and SMSO, and a large composition error for SSO-KA.

SSO-CKA gives the lowest discretization error of the four SNIA methods.

have a large impact on the performance of the method. However, we were unable to find

a better choice that u∗0 = un. Finding the right guess that ensures the stability of the

splitting iteration could potentially make ISO applicable for the numerical simulation of

ISU.

6.2 Time-step selection

The results shown in Figures 6.1 and 6.2 were obtained for constant time-steps. We now

compare the precision of FIM and SSO-CKA for the evolving time-step strategy based

on time truncation error described in Chapter 4 (Equation 4.13).
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Figure 6.3: Number of non-linear transport iterations for (a) the ISU of Athabasca
bitumen (test case 1) and (b) the ISU of Green River oil shale (test case 2) for both
FIM and ISO. We observe a large difference between the two methods, which is due to

convergence failures for ISO.

6.2.1 Comparison of precision with no reaction enthalpies

For test cases 1 and 2, the reaction enthalpies are initially neglected. Figure 6.4 shows

the evolution of the normalized L1 error with dimensionless time. We observe that the

error has two peaks. The first one corresponds to a large pressure error generated by the

thermal expansion of the reactants and the creation of large volumes of gas. The second

peak corresponds to a large composition error induced by the coupling between reactions

and flow in the liquid and gas phase. Table 6.1 shows the comparison of maximum and

average error for both test cases. We observe that the error of FIM and SSO-CKA are

of the same order.

Test case 1 Test case 2
∆h∗r = 0 ∆h∗r = 0

Max Mean Max Mean

FIM 1.8× 10−3 6.3× 10−4 8× 10−3 2× 10−3

η = η′ = 0.01

SSO-CKA 1.8× 10−3 6.3× 10−4 8× 10−3 2× 10−3

η = η′ = 0.01

Table 6.1: Comparison of maximum and mean errors of FIM and SSO-CKA using an
evolving time-stepping strategy for ISU of Athabasca bitumen (test case 1) and ISU of
Green River oil shale (test case 2). We observe that for both cases, the errors of FIM

and SSO-CKA are of the same order.
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Figure 6.4: Comparison of discretization errors between FIM and SSO-CKA using
an evolving time-stepping strategy for (a) ISU of Athabasca bitumen (test case 1) and
(b) ISU of Green River oil shale (test case 2). We observe that for both cases, the error

of FIM and SSO-CKA are of the same order.

6.2.2 Comparison of precision with reaction enthalpies

SSO-CKA works best when the reaction enthalpies are small so most of the effect of

advection-diffusion on the chemical reactions comes from the heat conduction. The

reaction enthalpies have been neglected in test cases 1 and 2, but we demonstrated in

Chapter 5 that they can have an important impact on the energy efficiency of the process

and should not be neglected. To assess the impact of reaction enthalpies on the precision

of SSO-CKA, we modify test cases 1 and 2 with the values of reaction enthalpies defined

in Table 6.2. These were obtained from Phillips et al. [67].

Table 6.2: Values of modified reaction enthalpies for test cases 1 and 2.

Test case 1 Test case 2

Reaction 1 2 3 1 2 3
∆hri (kJ/kg) 271 169 821 32 169 821

∆h∗ri 0.56 0.35 1.7 0.10 0.51 2.5

We now compare the precision of FIM and SSO-CKA using an evolving time-step strat-

egy for test cases 1 and 2 with the modified reaction enthalpies. Figure 6.5 shows the

evolution of the normalized L1 error with dimensionless time for both test cases and

Table 6.3 shows the comparison of maximum and average errors for both test cases.

We observe that SSO-CKA gives a larger error than FIM for the same target time

truncation error and maximum variable change. To reduce the discretization error, we

can reduce the target time truncation error and the target maximum variable change
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(η = η′ = 0.005). We obtain smaller maximum and mean errors for SSO-CKA with this

time-step strategy than for FIM with η = η′ = 0.01. However, this strategy involves

roughly twice as much computation. Another possibility is to try to compensate this er-

ror by decreasing the error inside the chemical operator. Indeed, the total discretization

error can be seen as the sum of the error of each operator plus the splitting error. All

these errors are of order 1, so by applying a method of order 2 or more to the chemical

operator, we could cancel the effect of the splitting error.
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Figure 6.5: Comparison of discretization errors between FIM and SSO-CKA using an
evolving time-stepping strategy for (a) ISU of Athabasca bitumen (test case 1) and (b)
ISU of Green River oil shale (test case 2) with modified reaction enthalpies (Table 6.2).
We observe that SSO-CKA gives a larger discretization error than FIM for a target

time truncation error of 0.01. This error can be reduced by using η = η′ = 0.005.

Test case 1 Test case 2
∆h∗r in Table 6.2 ∆h∗r in Table 6.2

Max Mean Max Mean

FIM 1.7× 10−3 4.7× 10−4 7.1× 10−3 1.8× 10−3

η = η′ = 0.01

SSO-CKA 1.9× 10−3 6.4× 10−4 8.3× 10−3 2.2× 10−3

η = η′ = 0.01

SSO-CKA 8.1× 10−4 2.7× 10−4 4.3× 10−3 1.2× 10−3

η = η′ = 0.005

Table 6.3: Comparison of maximum and mean errors of FIM and SSO-CKA using an
evolving time-stepping strategy for ISU of Athabasca bitumen (test case 1) and ISU of
Green River oil shale (test case 2) with modified reaction enthalpies (Table 6.2). We
observe that SSO-CKA gives a larger discretization error than FIM for a target time

truncation error of 0.01. This error can be reduced by using η = η′ = 0.005.
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6.3 Runge-Kutta methods for the chemical reaction oper-

ator

In this section, we consider two methods, the second-order trapezoidal rule and the

third-order ESDIRK method [50]. Both methods can be seen as s-stage RK methods,

which will be briefly explained here using a simple illustrative ODE:

∂u

∂t
= f (t, u) (6.3)

An s-stage RK method is defined by:

U1 = un +∆tn
s∑
j=1

a1jf
(
tn + cj∆t

n, U j
)

...
...

...

U s = un +∆tn
s∑
j=1

asjf
(
tn + cj∆t

n, U j
)

un+1 = un +∆tn
s∑
i=1

bif
(
tn + ci∆t

n, U i
)

(6.4)

where U i denotes the solution at the i-th integration stage and ∆tn the time-step length.

These methods are often described by a table called the Butcher tableau (named after

John C. Butcher [13]):

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

=
c A

bT
(6.5)

RK methods are called stiffly accurate if bj = asj , ∀j = 1, 2, ..., s. Stiffly accurate

methods avoid the order reduction phenomenon observed for stiff ODEs [69].
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6.3.1 Trapezoidal Rule

The Trapezoidal Rule (TR) is an integration method of order 2 [58], which can be defined

as a two-stage RK method with Butcher tableau:

0 0 0

1 1
2

1
2

1
2

1
2

(6.6)

It can also be seen as a one-step θ-method:

un+1 − un

∆tn
= θf

(
tn+1, un+1

)
+ (1− θ) f (tn, un) (6.7)

with

θ =
1

2
(6.8)

This method is second-order accurate and unconditionally stable, although less robust

than FIM for large time-steps. It requires that one linear system is solved for each

non-linear iteration so has roughly the same complexity as FIM.

6.3.2 Third-order ESDIRK method

Explicit RK methods, for which the matrix A is strictly lower triangular, are computa-

tionally fast as all internal stages of Equation 6.4 can be calculated explicitly. However,

they suffer from stability limits [33]. Implicit Runge-Kutta methods are more stable

but each time-integration step requires the solution of m× s equations, where m is the

number of independent variables. For Diagonally Implicit Runge-Kutta (DIRK) meth-

ods, the matrix A is lower triangular. If all diagonal elements of a DIRK method are

identical, the method is said to be Singly Diagonal Implicit (SDIRK). If the first stage

of an SDIRK method is explicit, it is said to be Explicit Singly Diagonally Implicit

(ESDIRK).

ESDIRK methods are attractive as they can be constructed such that they are stable

and stiffly accurate [32]. Also, the diagonal structure of the Butcher tableau allows

sequential evaluation of the internal stages. Hence, the computational cost is lower than

for general implicit RK methods. Kvaerno et al. [50] described a four-stage third-order
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ESDIRK method (ESDIRK3) defined by the Butcher tableau:

0 0 0 0 0

2γ γ γ 0 0

1 −4γ2+6γ−1
4γ

−2γ+1
4γ γ 0

1 6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3 γ

1 6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3 γ

(6.9)

with:

γ = 0.4358665215 (6.10)

6.3.3 Comparison of precision with evolving time-step strategy

We compare the precision of FIM and SSO-CKA for different chemical solvers. First,

we use the standard backward Euler method (SSO-CKA). Then we solve the chemical

reactions with the trapezoidal rule (SSO-CKA-TR) and with the third-order ESDIRK

method (SSO-CKA-ESDIRK3).

First, we consider the case of no reaction enthalpies. Figure 6.6 shows the evolution of

the normalized error L1 with dimensionless time for ISU of Athabasca bitumen (test case

1) and ISU of oil shale (test case 2) and Table 6.4 shows the comparison of maximum and

average errors for both test cases. The time-stepping strategy used is the one defined

in Chapter 4 (Equation 4.13). We observe that applying the trapezoidal rule to the

chemical operator (SSO-CKA-TR) improves significantly the precision of the method.

Applying the third-order ESDIRK method (SSO-CKA-ESDIRK3) does not decreases

the error further.

Next, we consider the case with reaction enthalpies given in Table 6.2. Figure 6.7 shows

the evolution of the normalized error L1 with dimensionless time for ISU of Athabasca

bitumen (test case 1) and ISU of oil shale (test case 2) and Table 6.5 shows the compari-

son of maximum and average error for both test cases. We observe that SSO-CKA gives

a larger error than FIM, but this error can be compensated by applying the trapezoidal

rule to the chemical operator (SSO-CKA-TR). Again, the precision of the method is not

improved by the third-order ESDIRK method (SSO-CKA-ESDIRK3). To summarize,

SSO-CKA-TR gives generally a more precise result than FIM. SSO-CKA-ESDIRK3 does

not improve the result further.
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Figure 6.6: Comparison of discretization errors between FIM and SSO-CKA using
an evolving time-stepping strategy (η = η′ = 0.01) for (a) ISU of Athabasca bitumen
(test case 1) and (b) ISU of Green River oil shale (test case 2) using different chemical
solvers. We observe that applying the trapezoidal rule to the chemical operator (SSO-
CKA-TR) improves significantly the precision of the method. Applying the third-order

ESDIRK method (SSO-CKA-ESDIRK3) does not decreases the error further.

Test case 1 Test case 2
∆h∗r = 0 ∆h∗r = 0

Max Mean Max Mean

FIM 1.8× 10−3 6.3× 10−4 8× 10−3 2× 10−3

SSO-CKA 1.8× 10−3 6.3× 10−4 8× 10−3 2× 10−3

SSO-CKA-TR 1.6× 10−3 5.7× 10−4 7.2× 10−3 1.6× 10−3

SSO-CKA-ESDIRK3 1.6× 10−3 5.7× 10−4 7.2× 10−3 1.6× 10−3

Table 6.4: Comparison of maximum and mean errors of FIM and SSO-CKA using
an evolving time-stepping strategy (η = η′ = 0.01) for ISU of Athabasca bitumen (test
case 1) and ISU of Green River oil shale (test case 2) using different chemical solvers.
We observe that applying the trapezoidal rule to the chemical operator (SSO-CKA-TR)
improves significantly the precision of the method. Applying the third-order ESDIRK

method (SSO-CKA-ESDIRK3) does not decreases the errors further

6.4 Efficient algorithm for large compositional model

6.4.1 Full kinetic model

In the previous chapter, test cases 1 and 2 were simulated with simplified kinetic models

including three reactions and 6 components. To simulate accurately the chemical reac-

tions, ISU kinetic models generally include a large number of components [12]. Behar

et al [8] describe such a model for the heavy components NSO and C14+ of Safanya oil

(Saudi Arabia). Al Darouich et al. [1] gives a similar model for the decomposition of

C6−14. Table 6.6 describes the full kinetic model. This model includes 26 components.
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Figure 6.7: Comparison of discretization errors between FIM and SSO-CKA using
an evolving time-stepping strategy (η = η′ = 0.01) for (a) ISU of Athabasca bitumen
(test case 1) and (b) ISU of Green River oil shale (test case 2) with modified reaction
enthalpies (Table 6.2) using different chemical solvers. We observe that SSO-CKA gives
a larger error than FIM, but this error can be compensated by applying the trapezoidal
rule to the chemical operator (SSO-CKA-TR). Again, the precision of the method is

not improved by the third-order ESDIRK method (SSO-CKA-ESDIRK3).

Test case 1 Test case 2
∆h∗r in Table 6.2 ∆h∗r in Table 6.2

Max Mean Max Mean

FIM 1.7× 10−3 4.7× 10−4 7.1× 10−3 1.8× 10−3

SSO-CKA 1.9× 10−3 6.4× 10−4 8.3× 10−3 2.2× 10−3

SSO-CKA-TR 1.6× 10−3 4.5× 10−4 6.6× 10−3 1.4× 10−3

SSO-CKA-ESDIRK3 1.6× 10−3 4.5× 10−4 6.6× 10−3 1.4× 10−3

Table 6.5: Comparison of maximum and mean error of FIM and SSO-CKA using an
evolving time-stepping strategy (η = η′ = 0.01) for ISU of Athabasca bitumen (test
case 1) and ISU of Green River oil shale (test case 2) with modified reaction enthalpies
(Table 6.2) using different chemical solvers. We observe that SSO-CKA gives a larger
error than FIM, but this error can be compensated by applying the trapezoidal rule
to the chemical operator (SSO-CKA-TR). Again, the precision of the method is not

improved by the third-order ESDIRK method (SSO-CKA-ESDIRK3).

Solving the transport step fully implicitly with such a large number of components is

computationally expensive. However, when we apply SSO-CKA, we can use AIM with

a simplified lumped compositional model for the transport step with no loss in accuracy

by regrouping the components that have the same thermodynamic properties.

6.4.2 The SSO-CKA-AIM-TR algorithm

The Adaptive Implicit Method (AIM) is routinely used to accelerate FIM for isothermal

reservoir simulations with a large number of components [20]. AIM reduces the size of
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the system to be solved by identifying variables that can be treated explicitly with a

switching criteria (Appendix B). However, applying AIM to the ISU of heavy oil presents

several challenges. First of all, the stability criteria for temperature is generally very

restrictive due to thermal conduction [59]. Secondly, large changes in solid saturation

during one time-step can induce large changes in permeability. The stability criteria

for saturation must take this into account. Finally, the creation of large volume of gas

by chemical reaction could violate the quasi-incompressibility hypothesis necessary to

obtain the CFL criteria [20].

However, AIM can be easily applied to the heat and mass convection operator in SSO-

CKA. Since the heat conduction is not included in this operator, the temperature can be

treated like any other variable. Also, we have no chemical reaction so the solid saturation

is constant and the quasi-incompressibility hypothesis holds.

The size of the system can be reduced further by regrouping components into lumped

pseudo-components. Several of the component defined in table 6.6 only differ by the

activation energy and the stoichiometric coefficients of their decomposition. They can

be regrouped into 6 lumped components, called chemical classes, for the heat conduction

and the heat and mass convection operators without any loss of accuracy. These chemical

classes are NSO, C14+, C6−14, C1−4, H2S and solid residual. Since the components

lumped into one chemical class have the same thermodynamic properties, the relative

composition inside the class are constant during the transport steps.

To summarize, we define the algorithm SSO-CKA-TR-AIM with the following steps:

1. Compute the new time-step using the target time truncation error and the target

maximum variable change

2. Solve the heat conduction operator with FIM

3. Solve the chemical reaction operator with TR

4. Compute the composition of each lumped component

5. Compute and save the relative compositions inside each lumped component

6. Compute the stability criteria

7. Solve the heat and mass convection operator with AIM
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8. Compute the composition of each component in the full kinetic model using the

composition of the lumped components and the relative compositions saved in step

5

9. Advance time-step and go back to step 1

6.4.3 Comparison of CPU time

In this section, we compare the performance of FIM and SSO-CKA-TR-AIM for the

ISU of Athabasca bitumen (test case 1) with the full kinetic model described in Table

6.6. Figure 6.8 shows the evolution of the CPU time with dimensionless time for both

methods. SSO-CKA-TR-AIM is roughly seven times faster than FIM.
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Figure 6.8: Comparison of CPU time for FIM and SSO-CKA method for ISU of
Athabasca bitumen (test case 1) with the full kinetic model described in Table 6.6.

This speed-up has been obtained without any parallel computing or other code optimiza-

tion. It is important to note that since the solving of the linear system for each non-linear

iteration for the transport step is the bottleneck of the simulation, the complexity of

SSO-CKA-TR-AIM is smaller than the one for FIM since the number of variable have

been reduced. The speed-up can be improved by optimising the chemical reaction and

conduction steps. Optimization for the transport step could improve the performance

of both FIM and SSO-CKA-TR-AIM.
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6.5 Impact of equilibrium deviation

So far, the results of this chapter have been obtained with a model that assumes equilib-

rium between the gas and liquid phases, modelled by Wilson K-values (Equation 5.11).

Phase equilibrium is generally assumed in reservoir simulation since the time constant

of the phase transfer is small compared to the time constant of the transport. However,

for ISU, the phase exchanges are in competition with chemical reactions that are very

fast when the temperature reaches a high value. In this case, equilibrium deviation can

have a significant impact on the process.

6.5.1 Modelling equilibrium deviation with a non-equilibrium reaction

To demonstrate the potential impact of equilibrium deviation, we consider a simplified

version of test case 1, with NSO and C14+ only present in the liquid phase and C1−4

and CO2 only present in the gas phase. C6−14 is described by two components: C6−14(o)

for the liquid phase and C6−14(g) for the gas phase. Phase exchange is modelled by a

non-equilibrium reaction:

C6−14(o)
re−→ C6−14(g) (6.11)

The equilibrium deviation reaction rate re is given by:

re = AeρoSo

(
ξo,C6−14 −

ξg,C6−14

KC6−14

)
(6.12)

where Ae is the frequency factor of the equilibrium deviation, ξp,C6−14 is the molar

fraction of C6−14 in phase p and KC6−14 the Wilson K-value of C6−14 (Equation 5.11).

In terms of dimensionless number, the reaction rate is described by the Damköhler

number of the equilibrium deviation:

De
K = Aeτ (6.13)

For foamy oil, Ae ranges from 10−4 to 103 1/day [75]. This gives a Damköhler range

between 0.01 to 107.

Figure 6.9 shows the variation of the production profile for different values of De
K . We

observe that for De
K = 100 and De

K = 104, the profile hardly changes from the profile

for De
K =∞ (equilibrium). The reaction is fast enough to be considered instantaneous.
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For De
K ≤ 0.1, the profile is almost identical to the one for De

K = 0. The reaction is too

slow and the phase exchange can be ignored.
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Figure 6.9: Variation of hydrocarbon production profile with De
K for test case 1 with

one equilibrium deviation.

To summarize, we can identify three regimes for the equilibrium:

• Regime 1: De
K ≥ 100, instantaneous equilibrium

• Regime 2: De
K ≤ 0.1, no phase exchange

• Regime 3: 0.1 < De
K < 100, phase transfer with a transient reaction

6.5.2 Application of SSO-CKA

Figure 6.4 shows that SSO-CKA, combined with the trapezoidal rule, gives less error

than FIM for a model with instantaneous equilibrium (Regime 1). In this section, we
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study the precision of the method when applied to test case 1 with equilibrium in Regime

2 and Regime 3.

Figure 6.10 shows the evolution of the normalized error L1 for De
K = 0 (Regime 2)

and for De
K = 10 (Regime 3). We observe that SSO-CKA gives less discretization error

than FIM for Regime 2. In this case, the equilibrium reaction rate is zero, and the

chemical operator depends mostly on the temperature. The order of the operators in

SSO-CKA conserves most of the couplings. However, for Regime 3, we obtain a large

discretization error for SSO-CKA toward the end of the simulation. This error is not

properly cancelled by applying TR or ESDIRK3 to the chemical operator.
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Figure 6.10: Comparison of discretization error between FIM and SSO-CKA using
an evolving time-stepping strategy for ISU of Athabasca bitumen (test case 1) with
equilibrium deviation. Figure (a) shows the result for De

K = 0 and figure (b) for
De

K = 10).

It can be seen that SSO-CKA has limitations when applied to a case with phase trans-

fer modelled by non-equilibrium reaction. These reactions do not depend strongly on

temperature and are better handled by a numerical method based on Strang splitting

[4]

6.6 Summary and conclusions

This chapter has focused on numerical methods for the ISU of bitumen and oil shale.

We evaluated the various Operator Splitting methods described in Chapter 4. Again, we

observed that the Iterative Split-Operator (ISO) did not perform well due to convergence

failures and that the Strang-Marchuk Split-Operator (SMSO) gave large discretization
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errors. The Sequential Split-Operator (SSO) gave the smallest discretization error when

we split the heat conduction operator C, the kinetic operator K and the heat and mass

convection operator A in this order (SSO-CKA).

We also evaluated the use of SSO-CKA with an evolving time-stepping strategy based

on a target time truncation error and a target maximum variable change of 0.01. For

test cases 1 and 2, for which the reaction enthalpies have been neglected, SSO-CKA and

FIM gave similar discretization error. However, we demonstrated in Chapter 4 that SSO-

CKA worked best when the reaction enthalpies were small. To test the limitations of

the method, we modified test cases 1 and 2 so that they included the reaction enthalpies

defined in Phillips et al. [67]. In this case, we observed that SSO-CKA gave a larger

discretization error than FIM. This error could be cancelled by dividing the target time

truncation error and the target maximum variable change by two. However, this strategy

involved roughly twice as much computation.

To reduce the splitting error without significantly increasing the computational cost,

we applied the second-order trapezoidal rule and the third-order four stage ESDIRK

method described in [50] to the chemical operator. The trapezoidal rule reduced the

discretization error so that SSO-CKA-TR gave smaller errors than FIM for test cases

1 and 2 with no reaction enthalpies and gave errors of the same order as FIM for test

cases 1 and 2 with the reaction enthalpies given in Phillips et al. [67]. The third-order

ESDIRK method did not reduce the error further.

Finally, we demonstrated how we could reduce the CPU time in the transport step. We

used the Adaptive Implicit Method and reduced the number of variables by regrouping

components with the same thermodynamic properties into a small number of lumped

chemical classes. The full splitting algorithm was presented and denoted SSO-CKA-TR-

AIM. We compared the CPU time of SSO-CKA-TR-AIM with FIM for a test case with a

kinetic model including 26 components that could be regrouped into 6 lumped chemical

classes for the transport step. For this test case, SSO-CKA-TR-AIM ran roughly 7 times

faster than FIM.

Our investigations demonstrated that SSO-CKA-TR-AIM was the best method for the

ISU of bitumen and oil shale when all reactions are pyrolysis reactions, for which the

reaction rates depend mostly on temperature. However, it might not be suitable if the

model includes reactions of a different nature. To demonstrate this, we considered the
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case of equilibrium deviation modelled by a non-equilibrium reaction. We identified three

regimes for the equilibrium: instantaneous equilibrium, no phase exchange and phase

exchange with transient reactions. SSO-CKA was performing well for the regimes of

instantaneous equilibrium and no phase exchange, but in the case of transient reactions,

the discretization error was large and the increased accuracy of using the trapezoidal

rule in the reaction step did not improve this. In this case, another numerical method

should be applied. Since SMSO has been applied successfully for groundwater transport

models with non-equilibrium reactions [4], a method which combines SMSO and SSO-

CKA could improve the result for ISU with non-equilibrium reactions.



Chapter 7

Conclusion, recommendations

and further work

This research focused on the numerical modelling of the In-Situ upgrading process and

had three main objectives: (1) to quantify the main interactions between the heat con-

duction, the heat and mass convection and the chemical reactions, (2) to identify the

primary parameters for the efficiency of the process and (3) to design a robust numerical

method that reduces the CPU time of the simulations with limited loss in accuracy. We

used dimensionless analysis to answer objectives (1) and (2), and Operator Splitting

Methods for (3).

The methods were first used on a simplified model where one solid reactant decomposes

into non-reactive gas. In the absence of ISU experimental data to match, the model was

validated using Henderson and Wiecek’s experiment [34] describing the thermal decom-

position of polymer composite when used as heat-shielding during spacecraft re-entry or

for rocket nozzle protection. Our model and Henderson and Wiecek’s only differed by

the boundary conditions and the description of solid and gas thermal properties, which

were taken as functions of temperature for Henderson and Wiecek’s instead of constant

for our model. Later, the model was extended to include more reactions and a liquid

phase, so it described the ISU process more realistically.
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7.1 Key findings

We summarize our key findings as follows:

• For a ISU model with nf fluid components, ns solid components and k chemical

reactions, our model depends on 9 + k(3 + nf + ns − 2) + 8nf + 2ns dimensionless

numbers

• Heat conduction is the primary operator controlling the time scale of the process

• The primary parameters controlling the efficiency of the process were the extended

Damköhler numbers describing the ratio of chemical rate to heat conduction rate

at the heater temperature for each reaction in the model

• In the absence of heat loss and gravity effects, the ISU process was most efficient at

a heater temperature for which the minimum of the extended Damköhler numbers

of all reactions included in the model was between 10 and 20

• For the numerical method, the standard Iterative Split Operator (ISO) did not

perform well due to many convergence failures, whereas the standard Sequential

Split Operator (SSO) and the Strang-Marchuk Split Operator (SMSO) gave large

discretization errors.

• We have developed a new method, called SSO-CKA, which as smaller discretiza-

tion error. It simply applies SSO with three decoupled operators: the heat con-

duction (operator C), the chemical reactions (operator K) and the heat and mass

convection (operator A), applied in this order.

• When we applied SSO-CKA with the second-order trapezoidal rule (TR) for solv-

ing the chemical reaction operator, we obtained a method which gave smaller

discretization errors than FIM for two test cases with no reaction enthalpies and

gave discretization errors of the same order as FIM for two test cases with reaction

enthalpies < 1000 kJ/kg

• We designed an algorithm, called SSO-CKA-TR-AIM, which is faster and generally

more accurate than FIM for simulations with a kinetic model including a large

number of components that could be regrouped into a small number of chemical

classes for the advection and heat conduction operator
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• SSO-CKA worked best for ISU models with no other reaction than pyrolysis reac-

tions. However, we demonstrated that for an ISU model with a non-equilibrium

reaction, SSO-CKA could give large discretization error

7.2 Recommendations for kinetic modelling

Kinetic models describing bitumen and kerogen decomposition generally include a large

number of components, often more than 20 [1, 8, 12]. However, numerical simulations

of ISU with FIM using such large models are very slow. These models are generally

lumped into smaller models with 6 components and 3 reactions [24, 53, 56].

Yet, our analysis highlighted the importance of using an accurate kinetic model for

describing the chemical reactions. In particular, it is essential to evaluate precisely the

activation energy of the decompositions in order to compute the extended Damköhler

numbers. Therefore, using a lumped kinetic model for ISU would result in an important

loss of accuracy.

This research provided a solution to this problem. The key is to use a kinetic model with

as many components and reactions needed to describe accurately the chemical reactions,

but to regroup them into a small number of chemical classes for the transport steps. The

proposed numerical procedure, called SSO-CKA-TR-AIM, gives a large speed-up with

minimum loss of accuracy.

Moreover, reaction enthalpies are often neglected for the modelling of ISU [24, 53, 56].

We demonstrated that they could have an important impact and that they should be

measured accurately.

7.3 Recommendations for designing production scheme

The heater temperature is generally chosen arbitrarily, often 350oC or 400oC. We

demonstrated in this research that there exists a link between the reference length L

of the domain and the optimal heater temperature TH for the efficiency of the process.

We demonstrated that in the absence of heat loss and gravity effects, the optimal heater

temperature was found between TR10, the temperature for which the minimum extended
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Damköhler number in the model is equal to 10, and TR20, the temperature for which

the minimum extended Damköhler number in the model is equal to 20. In the case of

fixed L, this correlation results in an interval of temperatures that contains the optimal

TH . In the case of fixed TH , it results in an interval of length that contains the optimal

L. This can significantly reduce the number of numerical simulations needed to identify

the best production scheme.

7.4 Recommendations for numerical simulation

We demonstrated that SSO-CKA-TR-AIM is generally the best numerical method for

the simulation of ISU, since it is fast, accurate and robust. However, due to the splitting

error, we do not recommend the use of this method if:

• a reaction enthalpy is larger than 1000 kJ/kg

• the model involves a reaction that is not temperature driven, for example a non-

equilibrium reaction

Future work could focus on establishing the reaction enthalpy limit more accurately or

designing a method for the case of non-equilibrium reactions.

7.5 Future work

The results of this research can be used to design the heater pattern by reducing the

number of numerical experiments necessary to identify the optimal production scheme.

However, it should be noted that they have been obtained with a model that does not

include (1) heat loss and (2) gravity effects. It has been demonstrated that heat loss

to overburden and underburden could have an impact on the efficiency of the process

[24] depending on the ratio of formation thickness to well spacing. The wider the well

spacing and the thinner the formation then the more important heat loss becomes. In

this case, the optimal temperature of the heater could be larger than TR20. Gravity

could also have an important impact and should be considered in future work.
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We were able to reduce the CPU time of the numerical simulation of ISU with no or

limited loss in accuracy. However, the major drawback of the algorithm presented is that

SSO-CKA is only first-order accurate. For test cases with large reaction enthalpies, the

overall discretization error is driven by the splitting error, and there is no point using

a method that is of order > 2 for the chemical solver. Future work could focus on (1)

defining the reaction enthalpy limit for which SSO-CKA-TR-AIM is accurate and (2)

improving the splitting method for example by using Strang-Marchuk for the coupling

between the operators C and K, or by using additive splitting as it is done in Younis

and Gerritsen [92].

It should be noted that most of the gain in CPU time was obtained from the lumping of

components into chemical classes. This could also be used in a fully coupled approach,

by applying a change of variables from the component compositions to the pseudo-

component compositions and internal chemical class compositions. Then, since the

internal compositions only affect the chemical operator which is fully local, we could

reduce the number of variables by applying a Schür complement at the linear level. This

technique could decrease the CPU time of the Fully Implicit method, but would not

improve its precision.





Appendix A

Deriving the Dimensionless

Groups by Inspectional Analysis

The general procedure of scaling the equations that describe a physical process by In-

spectional Analysis (IA) involves the introduction of arbitrary scaling factors. They

make a linear transformation from dimensional to dimensionless space. The scaling fac-

tors are then grouped into dimensionless scaling groups, and their values are selected to

minimize the number of groups.

We define the following linear transformations of every variable from the original dimen-

sional space to a general dimensionless space:

x = x∗1xD + x∗2 t = t∗1tD + t∗2

Ss = S∗s1SsD + S∗s2 ωR = ω∗R1ωRD + ω∗R2

T = T ∗1 TD + T ∗2 P = P ∗1PD + P ∗2

vg = v∗g1vgD + v∗g2 q = q∗1qD + q∗2

(A.1)

In these transformations, the scale factors are the ”*” quantities and the dimensionless

variables are those with a subscript ”D”. There are 16 scale factors, two for each

independent variable (x and t) and depend variable (Ss, ωR, T , P , vg, q). The scale

factors may be multiplicative (subscript 1) or additive (subscript 2). Since Ss and ωR

are already scaled, we assume S∗s1 = ω∗R1 = 1 and S∗s2 = ω∗R2 = 0. This will not change

the result. We substitute (A.1) into Equations (2.8), (2.9), (2.10), (2.14), (2.19) and
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(2.20) and multiple by selected scale factors to make the equations dimensionless. We

obtain :

• Solid decomposition:

∂

∂tD
(ωRρsDSs) = − At∗1

Sn−1
s,0

(ωRρsDSs)
n exp

− Ea
RT ∗1

1

TD +
T ∗2
T ∗1

 (A.2)

1 2 3

with the dimensionless solid density ρsD defined by:

1

ρsD
= ωR + (1− ωR)

ρR
ρC

(A.3)

4

• Charred residual conservation

∂

∂tD
(ωCρsDSs) = − (1− aG)

∂

∂tD
(ωRρsDSs) (A.4)

5

• Mass conservation:

∂ρsDSs
∂tD

+
∂ρgDSg
∂tD

= −
v∗g1t

∗
1

φx∗1

∂

∂xD

(
ρgD

(
vgD +

v∗g2
v∗g1

))
(A.5)

6 7

with the dimensionless gas density ρgD defined as:

ρgD =
MGP

∗
1

ρRRT ∗2

T ∗2
T ∗1

PD +
P ∗2
P ∗1

TD +
T ∗2
T ∗1

 (A.6)

8 3

9

3

• Darcy’s law:

vgD =
K0P

∗
1

µg,0x∗1v
∗
g1

KD

µgD

∂PD
∂xD

−
v∗g2
v∗g1

(A.7)

10 7
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with the dimensionless permeability:

KD = exp (−η (Ss − Ss,0)) (A.8)

11 12

and the dimensionless gas viscosity µgD:

µgD = 1 +
δµgT

∗
1

µg,0

(
TD −

T0 − T ∗2
T ∗1

)
(A.9)

13 14

• Energy equation:

∂TD
∂tD

= − φρRγR
(1− φ) ρIγI

(ρsDSsγsD + ρgDSgγgD)
∂TD
∂tD

−
v∗g1t

∗
1

φx∗1

φρRγR
(1− φ) ρIγI

ρgDγgD

(
vgD +

v∗g2
v∗g1

)
∂TD
∂xD

− q∗1t
∗
1

(1− φ) ρIγIx∗1T
∗
1

∂qD
∂xD

− φρRγR
(1− φ) ρIγI

∆hr
γRT ∗1

∂ωRSsD
∂tD

− φρRγR
(1− φ) ρIγI

(
aG (γsD − γgD)

(
TD −

T0 − T ∗2
T ∗1

))
∂ωRSsD
∂tD

(A.10)

15

6 15 7

16

15 17

15
5

14

with the dimensionless specific heat capacity of solid and gas defined by:

γsD =

(
ωR + ωC

γC
γR

)
(A.11)

γgD =
γG
γR

(A.12)
18

19

• Fourier’s law:

qD = −κsT
∗
1

q∗1x
∗
1

(
1− φ (κs − κg)

κs
(1− Ss)

)
∂TD
∂xD

− q∗2
q∗1

(A.13)

20 21 22
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• Oil shale boundary conditions:

- at xD = −x
∗
2

x∗1
∀tD :

TD =
TH − T ∗2
T ∗1

and vgD = −
v∗g2
v∗g1

- at xD =
L− x∗2
x∗1

∀tD :

qD =
q∗2
q∗1

and PD =
P0 − P ∗2
P ∗1

(A.14)

23

24 7

25

22 26

• Polymer decomposition boundary conditions:

- at xD = −x
∗
2

x∗1
∀tD :

qD =
εsσT

∗4
1

q∗1

((
TH − T ∗2
T ∗1

+
T ∗2
T ∗1

)4

−
(
TD +

T ∗2
T ∗1

)4
)
− q∗2
q∗1

and PD =
P0 − P ∗2
P ∗1

- at xD =
L− x∗2
x∗1

∀tD :

qD = −εsσT
∗4
1

q∗1

(
TD +

T ∗2
T ∗1

)4

− q∗2
q∗1

and PD =
P0 − P ∗2
P ∗1

(A.15)

23

27 24 3 3 22

26

25

27 4 22 26

• Initial conditions:

SsD = Ss0

PD =
P0 − P ∗2
P ∗1

at tD = − t
∗
2

t∗1
∀xD

TD =
T0 − T ∗2
T ∗1

(A.16)

12

26

14

28

The scaling groups that appear in these equations are numbered (e.g., 1 ). Each equa-

tion is dimensionless, and the 28 scaling groups are dimensionless too. The next task is

to reduce the number of groups.
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A large number of scaling groups can be set to zero by chosing the additive factors to

be zero or to the initial or final value of the variable. Therefore, we choose:

x∗2 = 0 t∗2 = 0

T ∗2 = T0 P ∗2 = 0

v∗g2 = 0 q∗2 = 0

(A.17)

Then, the groups 7, 9, 14, 22, 23 and 28 are equal to zero. Next, we need to define the

multiplicative factors. Setting scaling groups to one usually leaves the final formulation

in a compact form that is generally free of constant. Therefore, we choose:

x∗1 = L

T ∗1 = ∆T = TH − T0 P ∗1 = P0

v∗g1 =
K0P0

µg,0L
q∗1 = κs

∆T

L

(A.18)

Thus, the groups 10, 20, 24, 25, and 26 are equal to one. For the multiplicative factor

t∗1, various time scales such as the time scale of the chemical reaction or the time scale

of heat conduction could be chosen. Here we chose to normalize our time to the time

taken for heat to diffuse at initial conditions. This has the advantage that group 16 in

Equation A.10 is set to 1 i.e. the rate of change of heat transfer with distance is 1 at

initial time.

t∗1 = τ =
(1− φ) ρIγIL

2

κs
⇒ Group 16 = 1 (A.19)

Note that the order of the reaction n and the order of the solid mobility parameter η are

two additional parameter. Therefore there remain 16 groups that are not yet defined.

These remaining dimensionless groups are no longer arbitrary. The system depends only
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on these groups and the order of reaction. The groups are:

DK = D1S
n−1
s,0 =

A (1− φ) ρIγI
κs

Na = D2 =
Ea
R∆T

T ∗0 = D3 =
T0

∆T

ρ∗C =
1

D4
=
ρC
ρR

aG = D5

Le =
1

D6
=

φµg,0κs
K0P0 (1− φ) ρIγI

ρ∗G = D8 =
MGP0

ρsRT0
η = D11

Ss0 = D12 δµ∗g = D13 =
δµg∆T

µg,0

Γ∗R = D15 =
φρRγR

(1− φ) ρIγI
∆h∗r = D17 =

∆hr
γs∆T

γ∗C = D18 =
γC
γR

γ∗G = D19 =
γG
γR

∆κ∗s = D21 = φ
κs − κg
κs

ε∗ = D27 =
εsσ∆T 3L

κs

(A.20)

The dimensionless groups satisfy the scaling requirements for the one-dimensional prob-

lem. We can demonstrate that they are independent by using the method of elementary

row operations descibed in [78]. We obtain the following form of the dimensionless

equation:

• Solid decomposition:

∂

∂tD
(ωRSs) = − DK

Sn−1
s,0

(ωRSs) exp

(
− Na

TD + T ∗0

)
(A.21)

1

ρsD
= ωR +

ωC
ρ∗C

(A.22)

• Charred residual conservation:

∂

∂tD
(ωCSs) = −aC

∂

∂tD
(ωRSs) (A.23)

• Total mass conservation:

∂

∂tD
(ρsDSs) +

∂

∂tD
(ρgDSg) = − 1

Le

∂

∂xD
(ρgDvgD) (A.24)

ρgD = ρ∗G

(
PD

TD + T ∗0

)
(A.25)
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• Darcy’s law:

vgD =
KD

µgD

∂PD
∂xD

(A.26)

KD = exp (−η (Ss − Ss,0)) (A.27)

µgD = 1 + δµ∗g (TD − T ∗0 ) (A.28)

• Energy equation:

∂TD
∂tD

= −Γ∗R (ρsDSsγsD + ρgDSgγgD)
∂TD
∂tD

−
Γ∗R
Le
ρgDvgDγgD

∂TD
∂xD

− ∂qD
∂xD

− Γ∗R (∆h∗r + aG (γsD − γgD)TD)
∂ωRSs
∂tD

(A.29)

γsD = ωR + ωCγ
∗
C (A.30)

γgD = γ∗G (A.31)

• Fourier’s law:

qD = −
(
1−∆κ∗gSg

) ∂TD
∂xD

(A.32)

• Oil shale boundary conditions:

- at xD = 0 ∀tD :

TD = 1 and vgD = 0

- at xD = 1 ∀tD :

qD = 0 and PD = 1

(A.33)
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• Polymer decomposition boundary conditions:

- at xD = 0 ∀tD :

qD = ε∗ (1 + T ∗0 )4 − ε∗ (TD + T ∗0 )4 and PD = 1

- at xD = 1 ∀tD :

qD = −ε∗ (TD + T ∗0 )4 and PD = 1

(A.34)

• Initial conditions:

Ss = Ss0

PD = 1 at tD = 0 ∀xD

TD = 0

(A.35)



Appendix B

Numerical simulation of

advection-heat diffusion-reaction

problems using the Finite Volume

Method

In this appendix, we describe the numerical method used for the simulation of advection-

heat diffusion-reaction problems and implemented in EXTEND, the C++ simulator

developed for this work (source code given in attached CDROM). EXTEND uses an

overall molar composition formulation for the fluid description. To distinguish molar

from mass quantities, we used .̂ for the molar quantities.

To simplify the writing of the system of equations, we define Mj the mole accumulation

of component j B.1 and E the total energy accumulation B.2 in the domain:

Mj (P, T, Sp, ξp,j) = φ
∑
p

ξp,j ρ̂pSp (B.1)

E (P, T, Sp, ξp,j) = (1− φ) ρIuI + φ
∑
p

ρ̂pûpSp (B.2)

where φ is the rock porosity, Sp, ρ̂p and ûp are the saturation, molar density and molar

internal energy of phase p, ξp,j is the mole fraction of component j in phase p, and ρI

and uI are the rock density and internal energy. The mass flow Fj of component j and
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the total enthalpy flow Fh are given by:

Fj (P, T, Sp, ξp,j) = −
∑
p

ξp,j ρ̂pλpK∇ (P − ρpgD) (B.3)

Fh (P, T, Sp, ξp,j) = −
∑
p

ĥpρ̂pλpK∇ (P − ρpgD) (B.4)

where g is the gravitational constant, D is the depth, K is the rock permeability, and ρp

and ĥp are the mass density and the molar internal enthalpy of phase p. The mobility

λp of phase p is defined by:

λp =
krp
µp

(B.5)

where kr,p and µp are the relative permeability and the viscosity of phase p. Finally, the

mass reaction rate Rj of component j and the total enthalpy of reaction Rh are given

by:

Rj (P, T, Sp, ξp,j) =
∑
i

âijAi exp

(
−Eai
RT

)
Ĉi (B.6)

Rh (P, T, Sp, ξp,j) =
∑
i

∆ĥriAi exp

(
−Eai
RT

)
Ĉi (B.7)

where âi,j is the molar stoichiometric coefficient for component j as a product (âi,j > 0)

or a reactant (âi,j < 0), Ai and Eai are the frequency factor and the activation energy of

reaction i, R is the universal gas constant, Ĉi is the mole concentration of the reactant

Xi and ∆ĥri the molar enthalpy of reaction i.

So the system of equations for an advection-heat diffusion-reaction problem is:

∂

∂t
Mj (P, T, Sp, ξp,j) = −∇Fj(P, T, Sp, ξp,j) +Rj (P, T, Sp, ξp,j) (B.8)

∂

∂t
E (P, T, Sp, ξp,j) = ∇ (κ∇T )−∇Fh(P, T, Sp, ξp,j) +Rh (P, T, Sp, ξp,j) (B.9)

This system has nt + 1 equations, where nt is the total number of components. Several

representations of the fluid are possible. With the natural variables formulation, we

represent the fluid with the variables P, T, Sp and ξp,j . This system includes 2 + np +

np × nt variables, where np is the number of phases. To close the system, we need

1 + np + nt × (np − 1) additional equations. They are:

• (1)
∑

p Sp = 1
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• (np)
∑

j ξp,j = 1

• (nt × (np − 1)) equilibrium constraints for components j in phase p and p+ 1

This formulation has the advantage of representing the fluid with the natural saturation

variables. However, the equilibrium equations are only valid if Sp > 0. Otherwise, they

need to be replaced by Sp = 0 and ξp,j = cst. This switch of equations could generate

convergence problems when a phase appears or disappears. To remedy this, we use the

overall molar composition formulation.

B.1 Overall molar composition formulation

B.1.1 Overall molar fractions

We define the overall molar fraction ζj of component j :

ζj =

∑
p ξp,j ρ̂pSp∑
p ρ̂pSp

(B.10)

For the overall molar composition formulation, the fluid is represented by P, T, ζ1, ..., ζnt .

This system includes nt + 2 variables. To close it, we simply use
∑
ζj = 1.

With this formulation, Sp and ξj,p are no longer variables but are function of P, T, ζ1, ..., ζnt .

In practice, the saturations and phase compositions are obtained from P, T, ζ1, ..., ζnt by

an algorithm called a flash computation. In the next section, we describe the method

for np = 2 and an equilibrium modelled by K-values.

B.1.2 K-values two-phase flash computation

Here we assume that the system contains only two phases, for example a gas phase g

and an oil phase o. Therefore, for each component j, the overall molar composition ζj

is given by:

ζj = ξo,jΠo + ξg,jΠg (B.11)

where Πp is the molar fraction of phase p:

Πp =
ρ̂pSp

ρ̂gSg + ρ̂oSo
(B.12)
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The equilibrium equation for component j is given by:

ξg,j = Kjξo,j (B.13)

Therefore, the phase composition are given by:

ξo,j =
zj

1 + Πg (Kj − 1)

ξg,j =
Kjzj

1 + Πg (Kj − 1)

(B.14)

Moreover, the phase compositions are constrained by the equations:

∑
j

ξo,j =
∑
j

ξg,j = 1 (B.15)

Therefore, the gas molar fraction can be found by solving the Rashford-Rice equation:

g (Πg) =
∑

(ξg,j − ξo,j)) =
∑ (Kj − 1) zj

1 + Πg (Kj − 1)
(B.16)

An efficient algorithm to solve Equation B.16 can be found in Leibovici and Neoschil

[54]. When Πg has been obtained, we can compute the phase composition using Equation

B.14. Then, we can compute the molar density and finally, the phase saturations using

Equation B.12.

B.2 Finite Volume Method

B.2.1 Finite Volume Discretization

The Finite Volume Method is a discretization technique for solving PDEs which uses a

volume integral formulation of the problem with a finite partitioning set of volumes to

discretize the equations. In this work, we use Cartesian grids (figure B.1).

For cell centered grids, the variables are defined at the cell centres. We then assume

that all variables and physical quantities are piecewise constant in each cell. Therefore,
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P, T, ζj

Figure B.1: Cartesian grid. For cell centered grids, the variables are defined at the
cell centres.

the discrete formulation of Equations B.8 and B.9 for cell i is given by:

Vi
d

dt
Mj = −

∑
ei

Fj .neiSei + ViRj

Vi
d

dt
E =

∑
ei

κ∇T.neiSei −
∑
ei

Fh.neiSei + ViRh

(B.17)

where Vi is the volume of the cell i, and nei and Sei are the normal and the surface of

the edge ei of cell i. To avoid instability oscillations, we use upstream weighted flows,

so that the mass and energy flows between the cells ei− and ei+ of an edge ei are given

by:

Fj .neidSei = −
∑
p

ξp,j ρ̂pλpT
f
rei (Pei+ − Pei− + ρp,eig∆D)

Fh.neidSei = −
∑
p

ĥpρ̂pλpT
f
rei (Pei+ − Pei− + ρp,eig∆D)

∇T.neidSei = T erei (Tei+ − Tei−)

(B.18)

where ξp,j , ρ̂p, λp and ĥp are taken at cell up = ei+ if Pei+ > Pei−, up = ei− otherwise.

T frei and T erei are the flow and energy transmissibility for edge ei:

T frei =
KSei
lei

T erei =
κSei
lei

(B.19)

where lei is the distance between the centres of the cell ei− and ei+. For simplicity, the

mass density in the gravity term is averaged between ei+ and ei−

To obtain the time-space discretized problem, the system of equations B.17 is integrated

between tn and tn+1 = tn + ∆t. The variations of the accumulation terms Mj and E

are then calculated between time n+ 1 and time n. However, the choice between using
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each variable at time n or n+ 1 remains for the operators Fj , Fh, Rj , Rh and ∇ (κ∇T ).

For the explicit method, all variables are taken at time n. In this case, the values of the

variables at time n+ 1 can be directly computed from the values at time n, so that the

time integration is computationally cheap. However, very small time steps are generally

required for stability. To avoid this issue, we only consider integration schemes where:

• the reaction term is treated implicitly

• the pressure term in the flow is treated implicitly

Therefore, the time-space discretized problem is given by:

Vi
Mn+1
j −Mn

j

∆t
=−

∑
ei,p

ξkp,j ρ̂
k
pλ

k
p,T

f
rei

(
Pn+1
ei+ − P

n+1
ei− + ρkp,eig∆D

)
+ ViR

n+1
j

Vi
En+1 − En

∆t
=−

∑
ei,p

ĥkp,j ρ̂
k
pλ

k
pT

f
rei

(
Pn+1
ei+ − P

n+1
ei− + ρkp,eig∆D

)
+
∑
ei

T erei

(
T kei+ − T kei−

)
+ ViR

n+1
h

(B.20)

with k = n + 1 or k = n. In this work, we consider three possible methods: the Fully

Implicit Method (FIM), the IMplicit Pressure Explicit Saturation (IMPES) method, and

the Adaptive Implicit Method (AIM). In each case, the system of non-linear equations

B.20 is solved using Newton’s method (Section B.2.5).

B.2.2 Fully Implicit Method

The Fully Implicit Method takes every variables in each operator implicitly (k = n+ 1):

Vi
Mn+1
j −Mn

j

∆t
=−

∑
ei,p

ξn+1
p,j ρ̂n+1

p λn+1
p, T frei

(
Pn+1
ei+ − P

n+1
ei− + ρn+1

p,ei g∆D
)

+ ViR
n+1
j

Vi
En+1 − En

∆t
=−

∑
ei,p

ĥn+1
p,j ρ̂

n+1
p λn+1

p T frei

(
Pn+1
ei+ − P

n+1
ei− + ρn+1

p,ei g∆D
)

+
∑
ei

T erei
(
Tn+1
ei+ − T

n+1
ei−

)
+ ViR

n+1
h

(B.21)



Appendix B. Numerical simulation 139

FIM is the most common approach for thermal reservoir simulations. This method

is unconditionally stable and can take very large time-steps, but is computationally

expensive. Indeed, each non-linear iteration in Newton’s algorithm (Section B.2.5) solves

a linear system that can be quite large, especially for models with a large number of

component nt.

B.2.3 IMPES method

The IMPES method treats the saturation (and composition and temperature) terms in

the flows explicitly (k = n):

Vi
Mn+1
j −Mn

j

∆t
=−

∑
ei,p

ξnp,j ρ̂
n
pλ

n
p,T

f
rei

(
Pn+1
ei+ − P

n+1
ei− + ρnp,eig∆D

)
+ ViR

n+1
j

Vi
En+1 − En

∆t
=−

∑
ei,p

ĥnp,j ρ̂
n
pλ

n
pT

f
rei

(
Pn+1
ei+ − P

n+1
ei− + ρnp,eig∆D

)
+
∑
ei

T erei
(
Tnei+ − Tnei−

)
+ ViR

n+1
h

(B.22)

For the same time-step, the IMPES formulation is computationally more efficient than

FIM. Indeed the temperature and the overall compositions at time n+ 1 only appear in

the accumulation terms of Equation B.22. Therefore, they only appear in the diagonal

part of the Jacobian matrices used for the linear system solved at each Newton’s iteration

(Section B.2.5). This means that Tn+1 and ζn+1
1 ...ζn+1

nt can be directly obtained from

Pn+1. The linear system can therefore be reduced to a system with only one variable

by block i (Pn+1
i ). Also IMPES is more accurate than FIM (introduces less numerical

dispersion). However, treating some variables explicitly introduces limits on the size of

the stable time-step that can be taken.

To obtain a stability criteria, we use the Courant-Friedrich-Levy (CFL) condition for

incompressible two-phase flow. In this case, we obtain a saturation equation by adding

the component conservation equations:

∂

∂t
(φρ̂gSg + ρ̂oSo) = −∇ (ρ̂gvg + ρ̂ovo) (B.23)
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We further assume that we can neglect the phase interactions for the purpose of the

stability analysis. Equation B.23 becomes:

∂

∂t
(φρ̂gSg) = −∇ (ρ̂gvg)

∂

∂t
(φρ̂oSo) = −∇ (ρ̂ovo)

(B.24)

Since the flow is assumed incompressible, vt = cst and the gas velocity can be obtained

as:

vg = fgvt (B.25)

where fg is the gas fractional mobility:

fg =
λg

λg + λo

(
1 +

λo (ρg − ρo) g∆D

Qt
T frei

)
(B.26)

where Qt is the total flow of of velocity vt across the surface of the finite volume i.

Therefore, we obtain the saturation equation:

∂Sg
∂t

= −vt
φ
f ′g∇Sg (B.27)

By applying the Von Neumann stability analysis to Equation B.27, we obtain the fol-

lowing CFL stability condition for saturations:

(
Qt
Viφ

f ′g

)
∆t < 1 (B.28)

The composition equation is given by

∂

∂t
(φξg,j ρ̂gSg + φξo,j ρ̂oSo) = −∇ (ξg,j ρ̂gvg + ξo,j ρ̂ovo) (B.29)

We assume that Kj =
ξg,j
ξo,j

varies slowly with pressure and temperature for the purpose

of the stability analysis. By substituting Equation B.24 into Equation B.29, we obtain:

∂ξo,j
∂t

(φKj ρ̂gSg + φρ̂oSo) = −∇ (ξo,j) (ρ̂gvg + ξo,j ρ̂ovo) (B.30)
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By applying the Von Neumann stability analysis, we obtain the following CFL stability

condition for compositions:

(
1

Viφ

ξo,j ρ̂oQo + ξg,j ρ̂gQg
ξo,j ρ̂oSo + ξg,j ρ̂gSg

)
∆t < 1 (B.31)

where Qg and Qo are the total gas and oil flow across the surface of the finite volume i.

Finally, we obtain the temperature equation by substituting Equation B.27 in Equation

B.9:

((1− φ) ρIγI + φρ̂oSoγ̂o + φρ̂gSgγ̂g)
∂T

∂t
= − (ρ̂ovoγ̂o + ρ̂gvgγ̂g)

∂T

∂x
+ κ

∂2T

∂x2
(B.32)

By applying the Von Neumann stability analysis, we obtain the following CFL stability

condition for temperature:

[
1

Viφ

(
ρ̂oγ̂oQo + ρ̂gγ̂gQg
ρ̂oSoγ̂o + ρ̂gSgγ̂g

+
2T erei

ρ̂oSoγ̂o + ρ̂gSgγ̂g

)]
∆t < 1 (B.33)

Therefore, the time-step used in an IMPES simulation is constrained by Equations B.28,

B.31 and B.33. The CFL conditions are locally defined and during a simulation, they are

large for only a few cells (the one near the saturation or temperature front). However,

since the time-step is the same for all finite volumes, it is restricted by the less stable

cell. To solve this problem, we can use the Adaptive Implicit Methods.

B.2.4 Adaptive Implicit Method

The Adaptive Implicit Method (AIM) combines the two previous approaches by treating

some cells in the discrete model with FIM and other with IMPES using the CFL con-

ditions as a switching criterion. If all CFL conditions related to a cell are smaller than

0.9, the cell is treated with IMPES. Otherwise, it is treated with FIM. For robustness,

the cells containing a well are always treated implicitly.

AIM is very efficient for advection problems with a large number of components. How-

ever, for thermal reactive problems, two issues appear:

• For stiff reactions and/or fast phase transfers, the CFL conditions for incompress-

ible two-phase flow may not be representative of the stability of the problem
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• The thermal conduction part in Equation B.33 is generally large, and a doubling

of the space resolution increases it by a factor 4

AIM could be applied with various integration schemes such as IMPTES (IMplicit Pres-

sure and Temperature Explicit Saturations) or IMPSAT (IMplicit Pressure and Satura-

tion explicit rest), but in this work we only considered AIM with IMPES.

B.2.5 Newton’s method

For FIM, IMPES or AIM, integrating between time n and n + 1 implies solving the

non-linear system of Equations B.20. We defined R the residual:

R (X) =

 Vi
Mn+1
j −Mn

j

∆t +
∑

ei Fj .neiSei − ViRj

Vi
En+1−En

∆t −
∑

ei κ∇T.neiSei −
∑

ei Fh.neiSei − ViRh

 = 0 (B.34)

where X =
(
Pn+1, Tn+1, ζn+1

1 , ...ζn+1
nt

)
is the set of variables. If Xr is a root of Equation

B.34, X0 an estimate of Xr, and h = Xr −X0:

0 = R (Xr) = R (X0 + h) ≈ R (X0) +
∂R

∂X
(Xk) .h (B.35)

Therefore:

h ≈ −
(
∂R

∂X
(Xk)

)−1

.R (X0) (B.36)

The matrix J = ∂R
∂X is the Jacobian matrix of the system. For a problem with nb grid

cells (or blocks) and nt component, J is of size m×m where m = nb × (nt + 2).

The Newton’s algorithm for finding a root of equation B.34 is defined as:

1. Choose initial estimation X = X0, a tolerance ε > 0 and a maximum number of

iterations kmax

2. Compute R (Xk)

3. If ||R (Xk) || < ε, return Xk

4. Compute J (Xk) and solve h = −J−1.R

5. Xk+1 = Xk + h
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6. if k + 1 = kmax, return Xk+1

7. k = k + 1 and go back to 2

By a Taylor series expansion at order 2, it can be easily demonstrated that the Newton’s

method converges quadratically if the Jacobian of R is non-singular for every X between

Xk and Xr [47]. Otherwise, Newton’s method is said to have overshot. To avoid this, the

solution h obtained at step 4 is usually damped by a factor α so that hdamp = αh < hmax.

In EXTEND, we use hmax = 0.1.

B.3 Operator Splitting Methods

Here we recall the definition of the splitting methods described in Chapter 4 and give

some implementation details. The methods are described on a simple problem of the

form: 
∂u

∂t
= A.u+K.u, t ∈ (0, T ] .

u(0) = u0

(B.37)

where A is the advection-heat diffusion operator and K the chemical reaction operator.

We also define the heat diffusion operator C and the heat and mass convection operator

A′ = A− C.

B.3.1 Sequential Split Operator

The Sequential Split Operator (SSO) solves each operator sequentially as if they were

following each other in time. The order of the splitting can have a significant impact on

the precision of the method. In this work, we consider three different SSO methods:

• SSO-AK
∂u∗

∂t
= A.u∗, t ∈

[
tn, tn+1

]
, u∗(tn) = u(tn)

∂un+1

∂t
= K.un+1, t ∈

[
tn, tn+1

]
, un+1(tn) = u∗(tn+1)

(B.38)
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• SSO-KA
∂u∗

∂t
= K.u∗, t ∈

[
tn, tn+1

]
, u∗(tn) = u(tn)

∂un+1

∂t
= A.un+1, t ∈

[
tn, tn+1

]
, un+1(tn) = u∗(tn+1)

(B.39)

• SSO-CKA

∂u∗

∂t
= C.u∗, t ∈

[
tn, tn+1

]
, u∗(tn) = u(tn)

∂u∗∗

∂t
= K.u∗∗, t ∈

[
tn, tn+1

]
, u∗∗(tn) = u∗(tn+1)

∂un+1

∂t
= A′.un+1, t ∈

[
tn, tn+1

]
, un+1(tn) = u∗∗(tn+1)

(B.40)

For non-linear operators, each substep of the method defines a system of non-linear

equations, which can be solved using Newton’s method. The initial guess for the New-

ton’s iterations can have a large impact on the performance of the method. If the initial

guess is far from the final solution, it can lead to convergence failure. We observed in

our numerical experiments for the ISU process that this was particularly true for the

advection operator. The solution of the chemical reaction steps could have very large

pressures, far from the solution of the advection step. Therefore, in our implementation,

we use the solution of the last advection step as an initial guess. This solution is saved

at the end of each advection step to be used for the next time-step.

B.3.2 Strang-Marchuk Split Operator

In this procedure, the transport equation is first solved over half a step, then the chem-

istry operator is solved over the entire time-step. Finally, the solution is obtained after

solving another transport step over half a time-step:

∂u∗

∂t
= A.u∗, t ∈

[
tn, tn+1/2

]
, u∗(tn) = u(tn)

∂u∗∗

∂t
= K.u∗∗, t ∈

[
tn, tn+1

]
, u∗∗(tn) = u∗(tn+1/2)

∂un+1

∂t
= A.un+1, t ∈

[
tn+1/2, tn+1

]
, un+1(tn) = u∗∗(tn+1)

(B.41)

In our implementation, we solve the chemistry step with two time-steps of size ∆t/2.

This is equivalent to using the Alternating Split Operator (ASO) method proposed by
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Kaluarachchi and Morshed [44], but with a half time-step. This way SMSO, applied

with a time-step of 2×∆t computes the same number of transport and chemical steps

as SSO-AK and SSO-KA with ∆t. Therefore, we always compare the result with a

time-step for SMSO twice the size as for SSO-AK and SSO-KA.

B.3.3 Iterative Split Operator

The Iterative Split Operator (ISO) method tries to reduce the splitting error by iterating

over the splitting scheme. Unlike SNIA, each sub-step of an iterative scheme solves an

approximation to the fully coupled PDE system so that the iteration could converge

toward the solution of the fully coupled system. For the first step, the chemical reaction

is taken explicitly and the transport operator is solved using FIM. For the second step,

the chemical reaction is solved with FIM with the transport operator taken explicitly:

∂u∗2i+1

∂t
= A.u∗2i+1 +K.u∗2i t ∈

[
tn, tn+1

]
.

u∗2i+1(tn) = un(tn)

∂u∗2i+2

∂t
= A.u∗2i+1 +K.u∗2i+2 t ∈

[
tn, tn+1

]
.

u∗2i+2(tn) = un(tn)

(B.42)

for i = 0, 1, ...,m or until convergence.

For non-linear problems, an additional difficulty arises from the fact that each substep

i defines a system of non-linear equations, which we solve with Newton’s method. Due

to the instability issues induced by the explicit treatment of one of the operator, these

substeps might not have a solution. For example, if the operator K has one of more

eigen values with modulus higher than 1, the transport steps, which treat K explicitly,

are unstable.

This happens regularly when we apply ISO for the numerical simulation of the ISU

process. In that case, we simply ignore the convergence failure and go to the next step.

Many times, ISO converges despite this problem. More generally, our numerical experi-

ments showed that the performance of the method was improved by fixing a maximum

number N of Newton’s iterations for each substep. For the test cases considered in this

work, choosing N = 5 gave the best results.
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We also observed that the choice of u∗0 can have a large impact on the convergence of

ISO. However, we were unable to find a better choice that u∗0 = un. Finding the right

guess that ensured the stability of the splitting iteration could potentially make ISO

applicable for the numerical simulation of ISU.

B.4 Validation

Our implementations of FIM, IMPES and AIM were validated by considering three 1D

PDE with analytical solution:

1. Buckley-Leverett

2. Advection-heat diffusion with constant coefficients

3. Advection-reaction with constant coefficients

We then validated our splitting methods with an advection-heat diffusion-reaction with

constant coefficients by comparison with FIM.

B.4.1 Buckley-Leverett

The Buckley-Leverett equation is used to model incompressible immiscible two-phase

flow in porous media. We consider a 1D reservoir which is initially filled with oil (So=0).

We inject water on the left end at constant rate and we produce fluid on the right end

at constant pressure. Both phases are assumed incompressible so that the total velocity

vt = vw + vo is constant. The Buckley-Leverett equation is given by:

∂Sw
∂t

= −vt
φ
f ′w (Sw)

∂Sw
∂x

(B.43)

where fw is the water fractional flow. For simplicity, we neglect the effects due to gravity

and capillary pressure, so that the fractional flow is simply the ratio of the water mobility

λw to the total mobility of the fluid λt = λw + λo:

fw =
λw
λt

(B.44)



Appendix B. Numerical simulation 147

By defining the dimensionless space variable xD = x/L and the dimensionless time

variable tD = tvt/(φL), we obtained the dimensionless Buckley-Leverett equation:

∂Sw
∂tD

= −f ′w (Sw)
∂Sw
∂xD

(B.45)

To develop a solution, Equation B.45 must be reduced to one dependent variable. Since

Sw = Sw (x, t):

dSw =

(
∂S

∂xD

)
tD

dxD +

(
∂S

∂tD

)
xD

dtD (B.46)

By tracing a fixed saturation line through the domain, that is dSw(xD,tD)
dtD |Sw

= 0

(
dxD
dtD

)
Sw

= −
(∂Sw/∂tD)xD
(∂Sw/∂xD)tD

(B.47)

Since fw is a function of Sw only:

(
∂fw
∂xD

)
tD

=

(
∂fw
∂Sw

)
tD

.

(
∂Sw
∂xD

)
tD

(B.48)

Substituting Equations B.47 and B.48 into Equation B.45, we obtain the frontal advance

equation:
dxD
dtD |Sw

= f ′ (Sw) (B.49)

Since Equation B.47 is only valid for (∂Sw/∂xD)tD 6= 0, Equation B.49 describes the

displacement of a shock front with saturation Sw = Sf . By integrating the conservation

equation B.45 on the right end of the front, we obtain the shock saturation equation:

Sff
′
w (Sf ) = fw (Sf ) (B.50)

The position of the front is then given by:

xf = tDf
′
w (Sf ) (B.51)
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Therefore, the analytical solution of Equation B.43 writes:

If Sw ≥ Sf

xD (Sw, tD) = tDf
′
w (Sw)

If xD > xf

Sw = 0

(B.52)

Figure B.2 shows the saturation profiles for (a) µo/µw = 1 and (b) µo/µw = 5 at dimen-

sionless time tD = 0.5 obtained with FIM, IMPES and AIM, and with the analytical

solution. The results were obtained with a grid containing 50 cells and a dimensionless

time-step of 0.01. For µo/µw = 1, the maximum CFL is 0.8. IMPES gives a more

accurate result than FIM. Since CFL< 1 for every cell, AIM uses IMPES except for

the two cells containing a well. For µo/µw = 0.5, the maximum CFL is 1.2. IMPES is

unstable. We observe than the water saturation is non-monotonous near the front. In

this case, AIM uses 20% of FIM cells in average and we obtain a stable solution.
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Figure B.2: Comparison of numerical and analytical solution for dimensionless
Buckley-Leverett equation B.45 at tD = 0.5 for krw (Sw) = S2

w with µo/µw = 1 and
µo/µw = 10.

B.4.2 Advection-heat diffusion with constant coefficients

For this case, we consider a 1D porous media of length L initially filled with water at

T0 = 20oC. We assume that the inert solid and the water have the same volumetric heat

capacity, so that the overall volumetric capacity ργ is constant. We set on the left end

of the domain a constant temperature boundary condition T1 = 30oC and a velocity v.
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On the right end, we set a no heat flow ∂T/∂x = 0 and constant pressure boundary

condition. We assume that the water is incompressible so that the velocity is constant

in the domain. Therefore, the energy equation B.9 becomes:

ργ
∂T

∂t
= κ

∂2T

∂x2
− vργ ∂T

∂x
(B.53)

The time scale of the heat conduction in the domain is defined by:

τ =
ργL2

κ
(B.54)

By defining the dimensionless variables xD = x/L, tD = t/τ and TD = (T − T0) / (T1 − T0),

we obtained the dimensionless advection-diffusion equation:

∂TD
∂tD

=
∂2TD
∂x2

D

− λ∂TD
∂xD

(B.55)

where λ = vτ/L is the advection constant. An approximated analytical solution of

Equation B.55 has been proposed by Siemienuich and Gladwell [80]:

TD (xD, tD) =
1

2

{
erfc

(
xD − λtD

2
√
tD

)
+ erfc

(
xD + λtD

2
√
tD

)}
+ exp (−λ)

(
1 +

λ (2− xD − λtD)

2

)
erfc

(
2− xD + λtD

2
√
tD

)
− exp (−λ)λ

√
tD
π

exp

(
−(2− xD − λtD)2

4tD

) (B.56)

Figure B.3 shows the temperature profiles at dimensionless time tD = 0.5 for (a) λ = 0.1

and (b) λ = 1.0 obtained with FIM and the analytical solution. The results were

obtained with a grid containing 50 cells. Since the conduction part of the temperature

CFL condition (Equation B.33) is proportional to ∆x2, we use a very small dimensionless

time-step of 0.001. The maximum CFL obtained is 5.005 for λ = 0.1 and 5.05 for λ = 1.0.

Since CFL> 1, IMPES cannot be used for this case.
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Figure B.3: Comparison of numerical and analytical solution for dimensionless
advection-diffusion equation B.55 at tD = 0.5 with (a) λ = 0.1 and (b) λ = 1.0.
The results were obtained with a grid containing 50 cells and a dimensionless time-step

of 0.001.

B.4.3 Advection-reaction with constant coefficients

We consider a 1D porous media of length L and a fluid model with two water components:

a reactant R and a product P . R decomposes with the reaction:

R
r−→ P (B.57)

The reaction is a first-order decay, so the chemical rate is equal to:

r = KφζRρw (B.58)

Initially, we have ζR = 0. We inject on the left end of the domain with constant

velocity v and we produce at the right end with constant pressure. The water is assumed

incompressible so that the velocity is constant through the domain. The conservation

of component R writes:

φρw
∂ζR
∂t

= −ρwv
∂ζR
∂x
−KφρwζR (B.59)
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By defining the dimensionless variables xD = x/L and tD = tv/(φL), we obtain the

dimensionless advection with first-order decay equation:

∂ζR
∂tD

= − ∂ζR
∂xD

−DKζR (B.60)

where DK = KφL/v is the Damköhler number of the reaction. This equation has the

following analytical solution:

If xD ≤ tD

ζR = exp (−DKxD)

If xD > xf

ζR = 0

(B.61)

Figure B.4 shows the reactant mole fraction profiles for (a) DK = 0.1 and (b) DK = 1.0

at dimensionless time tD = 0.5 obtained with FIM, IMPES and AIM, and with the

analytical solution. The results were obtained with a grid containing 50 cells and a

dimensionless time-step of 0.01. The CFL numbers are constant equal 0.5 in the domain.

Therefore, IMPES is stable and AIM uses IMPES everywhere except for the cells which

include a well, which are taken implicitly.
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Figure B.4: Comparison of numerical and analytical solution for dimensionless
advection-reaction with constant coefficient B.60 at tD = 0.5 with (a) K = 0.1 and
(b) K = 1.0. The results were obtained with a grid containing 50 cells and a dimen-

sionless time-step of 0.01.
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B.4.4 Advection-diffusion-reaction with constant coefficients

To validate our splitting method, we consider a simple advection-diffusion-reaction prob-

lem which is a combination of 2 and 3 but with a reaction enthalpy to couple the two

equations:

ργ
∂T

∂t
= κ

∂2T

∂x2
− vργ ∂T

∂x
−∆hrKφρζR

φρ
∂ζR
∂t

= −ρv∂ζR
∂x
−KφρζR

(B.62)

We assume for simplicity that the two time constants ργL2

κ and Lφ
v are equal. Therefore,

by using the dimensionless variables xD = x/L, tD = t/τ and TD = (T − T0) / (T1 − T0),

we obtained the following system:

∂TD
∂tD

=
∂2TD
∂x2

D

− φ∂T
∂x
−∆h∗rDKζR

∂ζR
∂tD

= − ∂ζR
∂xD

−DKζR

(B.63)

where DK = Kτ is the Damköhler number and ∆h∗r = φ∆hr
γ(T1−T0) is the reduced reaction

enthalpy.

Figure B.5 shows the temperature and reactant mole fraction profiles at dimensionless

time tD = 0.5 obtained with FIM, SSO-AK, SSO-KA, SMSO, SSO-CKA. The results

were obtained with a grid containing 50 cells and a dimensionless time-step of 0.05.

ISO is the most accurate method since we cancel the splitting error by iterations. For

this case, ISO performs three splitting iterations in average, so it requires roughly three

time more computation than FIM. We observe than SMSO gives the best compromise

between accuracy and performance of all splitting methods.
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Figure B.5: Comparison of numerical and analytical solution for dimensionless
advection-heat diffusion-reaction with constant coefficient B.63 at tD = 0.5 with
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ations in average, so it requires roughly three time more computation than FIM. We
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