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ABSTRACT

Resource demand estimation is essential for the application
of analyical models, such as queueing networks, to real-
world systems. In this paper, we investigate maximum like-
lihood (ML) estimators for service demands in closed queue-
ing networks with load-independent and load-dependent ser-
vice times. Stemming from a characterization of necessary
conditions for ML estimation, we propose new estimators
that infer demands from queue-length measurements, which
are inexpensive metrics to collect in real systems. One ad-
vantage of focusing on queue-length data compared to re-
sponse times or utilizations is that confidence intervals can
be rigorously derived from the equilibrium distribution of
the queueing network model. Our estimators and their con-
fidence intervals are validated against simulation and real
system measurements for a multi-tier application.

1. INTRODUCTION

Guaranteeing Quality-of-Service (QoS) is an important con-
cern for cloud providers and software vendors in order to
minimize service-level agreement violations. Performance
models such as queueing networks are commonly used for
performance analysis and prediction and therefore can sup-
port engineers in coping with these problems. Closed queue-
ing networks, in particular, are often preferred for software
systems since real applications are layered and thus oper-
ate under pooling constraints that limit the maximum par-
allelism level at each layer and the underpinning hardware
resources. However, despite solution methods for these mod-
els have been systematically investigated, their parametriza-
tion from real measurements is often difficult, but still it is
essential to obtain accurate predictions [31]. Among these
parameters, the resource demand, i.e., the cumulative time a
request seizes from a server excluding contention overheads,
is particularly challenging to estimate, since demands are
difficult to measure directly without introducing substan-
tial overheads. Statistical inference can therefore be used to
determine accurate estimates from indirect measurements,
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such as throughputs, utilizations, queue-length, or response
time data [4,14,17,18,20,22,37] .

Linear regression methods that use CPU utilization and re-
quest throughputs have attracted much attention in the last
decade for demand estimation. However, these methods are
known to suffer from the multicollinearity problem leading
to biased estimates [12]. On the other hand, the idea of
exploiting response time measurements has recently been
exploited in a number of works [14,22,37]. Nonetheless, col-
lecting response time may pose a large overhead to the appli-
cation system, especially if one needs to instrument separate
layers of a multi-tier application. In this paper, we therefore
investigate a different approach to obtain the demand esti-
mates, where we attempt to exploit queue-length samples,
i.e., measurements of the number of executing requests at
each resource. Recent research [34] has also explored this
problem, however the resulting algorithm based on Gibbs
sampling is computationally expensive for large models, thus
restraining its use to offline analysis.

Stemming from the above considerations, in this paper we
investigate the problem of efficiently estimating demands
from queue-length measurements. Using the equilibrium
distribution of product-form closed queueing networks, we
develop a characterization of necessary conditions for maxi-
mum likelihood solutions to the demand estimation problem.
We then provide tractable expressions for the Hessian ma-
trix that can be used to verify if a stationary point is indeed
a maximum. Furthermore, we show that the Hessian ma-
trix readily provides the confidence intervals associated to
the (local) maximum likelihood estimator.

In addition to the above contributions, we show that our
method applies also to load-dependent systems, which is a
distinctive advantage of our approach compared to other
methods. While most existing demand estimation methods
are limited to load-independent models, i.e., models where
the service demand remains constant irrespectively of the
number of requests running at a resource, our conditions to
identify maximum likelihood estimators readily extend to
load-dependent models, where demands are functions of the
current queue-length. Real-world systems typically exhibit
a load dependent behavior, often as a result of parallelism of
multi-core servers or caching and shared data structures in
enterprise web applications [5]. Therefore the ability to esti-
mate how a request demand varies with the load is essential



for predicting performance of real applications where these
aspects are critical for performance. The work in [15] is to
our knowledge the first attempt to estimate the demand in
a load-dependent queueing network, however it only applies
to open models and requires prior knowledge of a paramet-
ric expression for the load-dependent function. Instead, the
estimation technique presented in this paper generalizes to
closed load-dependent models, making demand estimation
viable also for this class of models. While the method we
propose is also more efficient if prior knowledge of the load
dependent function is available, our expressions are general
and can work also without this assumption.

We illustrate the efficiency and accuracy of the proposed
estimators using simulated data with random parameters
and a real-world enterprise application. We also compare
against existing demand estimation algorithms showing our
approach to be effective. We show the applicability of our
methodology against a real world case study of a multi-tier
application by comparing the performance of the system
with the predictions of a queueing network that uses the
estimated demands. In particular, we show that predictions
with demands estimated at low-load can be quite effective
in characterizing high-load behaviour, even in presence of
load-dependence.

Summarizing, the main contribution of this paper are:

e Novel estimators of resource demands for load-independent

and load-dependent closed queueing networks;

e Confidence interval expressions for the proposed estima-
tors in both classes of models;

e An experimental study based on simulated and real sys-
tem data showing the effectiveness of the estimation meth-
ods.

This paper extends a preliminary work published as an ex-
tended abstract in [35]. Compared to our initial investiga-
tion, in this paper we generalize our results to load-dependent
networks and include formal proofs for all the results, which
were not given in [35].

The rest of the paper is organized as follows. Section 2
reviews the previous work on demand estimation while Sec-
tion 3 presents the background information. In Section 4
a motivating example is illustrated. Later, Section 5 and 6
presents the proposed algorithms of demand estimation for
load-independent and load-dependent models. Finally, eval-
uation of the algorithms are given in Section 7 followed by
the conclusion remarks.

2. RELATED WORK

Existing work for characterizing resource demand are based

on statistical inference of indirect measurements, among which

CPU utilization, throughput and response time are the most
popular ones. In particular, methods for regressing CPU
utilization and throughput to obtain service demand have
gained much attention [20,26,27,37]. Later [4] has proposed
an approach for robust demand estimation, based on a Least
Trimmed Squares regression technique. However regression
methods suffer from known problems, such as multicollinear-
ity [12] that can lead to biased estimates. To overcome this

shortcoming, various algorithms based on machine learning
has been proposed. Kalman filters [33,36,38,39] have shown
to be effective in parameter tracking. Other methods in-
cluding clustering [6, 7], pattern recognition [10,13], inde-
pendent component analysis [30] have also been explored to
estimate service demands. However, these methods require
CPU utilization measurements which are not always avail-
able or reliable, especially in cloud environments. Compared
to these algorithms, our proposed methods rely on queue-
length samples, which are easier to collect since they only
require to monitor the number of running worker threads in
a system and the identity of the running request.

Besides CPU utilization, response times have also been used
for estimating service demand. The work in [17] defines a
quadratic programming using end-to-end response time and
CPU utilization together with request throughputs. The
methods introduced in [14] and [28] employ response time
values as well, but they only apply to FCFS servers. The
work in [18] focuses on estimating demands for some simple
queueing systems through optimization programs that use
response time data. Recent work [22] also proposes new al-
gorithms based on regression and maximum likelihood meth-
ods for response time data. However, collecting response
data may pose additional overhead to the system compared
to queue-length monitoring, since both arrivals and depar-
tures need to be continuously tracked.

In spite of the above mentioned measurements, queue-length
samples have also been exploited for demand estimation.
The study in [34] uses Gibbs sampling and Bayesian estima-
tion methods to obtain service demands. The method also
allows for prior information in the estimation. However, it
is computationally expensive, with running times often ex-
ceeds many tens of minutes or even hours. This makes the
technique difficult to apply to online systems. The authors
in [32] have also developed an algorithm based on Bayesian
inference, which has been shown to be robust to missing
data. A Ornstein-Uhlenbeck diffusion is used for demand
estimation in [28] also using queue-length samples. Com-
pared to the present work, the methods in [32] and [28] are
limited to open models, whereas we focus here on closed
models.

Finally, the above mentioned techniques do not provide con-
fidence interval for the estimates. The work in [11] proposes
an approach to estimate resource demand with confidence
through linear programming. Nonetheless, it does not ap-
ply to load-dependent networks. The other work for obtain-
ing confidence interval is introduced in [16]. However this
method is limited to single-class models only and does not
work for load-dependent networks.

3. REFERENCE MODEL

We consider product-form closed queueing networks, under
the assumptions of the BCMP theorem [2]. Models have R
job classes, M queues, a think time of 8y; for job class j, a
service demand 6;; at queue i for class j, and a population
of Nj jobs of class j. Indexes range in 1 < 4,k < M,1 <
jsh < R. When needed, we will explicit the dependence of
the above metrics on the demand vector 8 = (0o1, . ..,0MmR).

Let mo; be the total number of class j jobs in thinking



state and let m;; be the number of jobs of class j at sta-
tion 7. Define n; = ZR:1 n;; to be the total number of
jobs at station ¢. Then the probability of observing state
n = (noi,...,NOR, N1, .-, MR, ..., NMR) at equilibrium is
known from the BCMP theorem to be
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where 7;(u) is the load-dependent function that scales the
demand for station ¢ when its queue-length is v and G(0)
is the normalizing constant that assures > .sP(n|0) =
1, being S = {Zfio ni; = Nj,ni;; > 0} the state space.
The case v;(u) = 1,1 < u < n;, in which each demand is
independent of the station queue-length state, is referred to
as the load-independent case.

In order to perform a demand estimation, let us consider in-
dependent state samples n! € D, being D a dataset of em-
pirical observations of L vectors n!. The problem of estimat-
ing the true demand vector 8 and scaling factors v = (vi(u))
may be solved by considering a maximum likelihood (ML)
estimator

L
0,4) = £(0) = P(n'|6, 2
(8,9) = arg max_£(6) = arg (el?gg@ll:[l (n'10,7) (2)

where L(-) is the likelihood function, P(:|0,~) is defined as
in (1), and © is the parameter space composed by the can-
didate demand vector 8 and scaling factors ~.

4. MOTIVATING EXAMPLE

In this section, we provide a motivating example that com-
pares properties of three state-of-the-art demand estimation
algorithms and illustrates their limitations. We consider
utilization-based regression (UBR) (e.g., [37]), Gibbs Sam-
pling for Queue Lengths (GQL) [34] and Extended Regres-
sion for Processor Sharing (ERPS) [22]. UBR is based on
multivariate linear regression of CPU utilization against re-
quest throughput. GQL combines Bayesian estimation and
Gibbs sampling to obtain service demands from queue length
data. GQL is an iterative algorithm along each dimension
of the demand vector and thus computationally expensive.
ERPS is a regression-based method that relies on response
time and arrival queue length measurements as input for the
analysis.

We generate random queueing models with M = 2 queues
and R = 4 classes of requests and assume that the total
number of users N varies in {4, 20,40}. We generate 80 sub-
models by randomly choosing N; and 6;;. The think time is
assumed to be known and it is set in all random models to
0o; = 1,Vj. All service processes are load independent. The
required data for each algorithm is generated via simulation
using the methodology described later in Section 7. 500, 000
service completions are simulated and the results collected.

Figure 1 illustrates the mean relative absolute error and the
execution time for the above algorithms. It can be noticed
that UBR shows a bad estimation accuracy, likely due to
problems such as multicollinearity, which lead to degraded
results. Figure 1(a) instead shows that GQL and ERPS
achieve good accuracy, but Figure 1(b) reveals that the ex-
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Figure 1: Various estimation methods

ecution time of GQL is fairly large and probably unaccept-
able for online use. ERPS performs well considering both
the accuracy and execution time, nonetheless it requires re-
sponse time data, which assumes the ability to track the
state of individual requests, which may not be possible at
server-side without introducing substantial overheads (e.g.,
instrumentation of worker threads at milli-second or micro-
second timescales). Besides, none of the above algorithms
offers confidence intervals to characterize the quality of the
generated estimates. In a real system study, when the exact
demands are unknown, such confidence intervals can provide
guidance on the reliability of the inferred demand values and
the associated predictions.

S. LOAD-INDEPENDENT NETWORKS

In this section, we focus on demand estimation for load-
independent models, thus we ignore scaling factors since
~vi(u) = 1, Vi,u and focus on deriving estimators for the
service demand vector 6. In addition, we derive the ana-
lytical expressions of the confidence intervals for the @ esti-
mates. Finally, we introduce a closed-form approximate for-
mula that simplifies the task of obtaining an approximate,
but accurate, estimate.

5.1 Necessary conditions

We begin with assuming that the parameter space © is a
compact set and that the think time 6p; are known and
strictly positive. Under the above conditions, it is simple to
show that the likelihood function is continuous and that a
ML estimator exists [21]. We also assume that © is large
enough for the true demand 8 to be an interior point of this
set. A consequence of this assumption is that our results do
not cover the estimation of demands with true value 6;; = 0.
This is equivalent to say that we assume a-priori knowledge
of what classes of jobs can visit a given resource, which seems
a realistic assumption in many practical situations.

Under the above assumptions, we can give the following
characterization of the ML estimator in (2).

THEOREM 1. Given a dataset D, a necessary condition
for an interior point of ® to be an ML estimator @ of the
service demand is that

Qi;(0) = Qi;(D), Vi, j,

where Qq; (D) = ZlL:l nl;/L are the empirical mean queue-
lengths calculated over the dataset D.



The proof of this theorem and the following ones are given in
the Appendix. Note that the predicted mean queue lengths
Qi;(0) can be computed, for example, using the MVA algo-
rithm [2].

The main contribution of Theorem 1 is to provide theoret-
ical support to the idea that the estimation of demands
in load-independent models may be simply performed by
matching theoretical predictions of mean queue-lengths to
the observed mean values in the real system, without need
for correction terms. Furthermore, it states the less obvious
fact that the demand estimation depends only on the mean
queue-length, even though the maximum-likelihood function
is probabilistic in nature. That is, if one can find a vector
6 that generates by the MVA algorithm mean queue-length
predictions that are identical to the observed values, then
this vector will satisfy the necessary condition to be a ML
estimator. Clearly, even if Theorem 1 does not prove 6 to
be the ML estimator, the condition of the theorem ensures
that @ will achieve correct performance predictions that re-
produce the training data. Hence, while in principle several
vectors @ may satisfy the same necessary condition, any of
these will be a suitable choice for reproducing the observa-
tions.

The main requirement for Theorem 1 to be a sufficient con-
dition is the availability of results that prove that a given set
of queue-length values Q;;(0) can be obtained by a unique
vector 0. This appears intuitive, but we are not aware of
any such formal characterization in the literature of product-
form models, presumably due to the complex non-linear na-
ture of the MVA equations. Therefore, in order to support a
deeper analysis of the demand vectors obtained from (1), we
derive the expression of the Hessian matrix for the under-
pinning closed queueing network that can be used to verify
that a candidate vector is indeed a local maximum for (2).

THEOREM 2. The Hessian matriz of £(0) at  is a MR x
MR matriz with elements

éiz(Qk"r(é)(Qkh(é) - Q?}i(év N-1,)=Qu), i=kj=h
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where N = (N1,...,Ngr), L is the total number of samples,
and Q;:;;(a N —1;) is the mean queue length in a model 0b-
tained by adding an identical replica of queue i to the closed
network under study and removing a job of class j from it.

With the Hessian matrix at é, we can easily check if the
generated estimate is a local minimum, a local maximum or
a saddle point. In particular, if H () is invertible and H (0)
is positive definite, i.e. all eigenvalues are positive, then 0
is a local minimum. If H (@) is negative definite, i.e. all
eigenvalues are negative, then fisa point of local maximum
and therefore a local maximum likelihood estimator.

We also remark that Theorem 1 does not specify how one
can find the demand vector 6, since the expression of 6 is
given there in implicit form. An explicit approximation for
0 is developed later in Section 5.3.

5.2 Exact confidence intervals

In this section, we assume that the vector 0 has been ob-
tained and we give a characterization of the resulting confi-
dence intervals. As shown in the proof of the next theorem,
this result follows from the fact that we have found that the
Fisher information matrix I can be explicitly computed for
a closed queueing network, since this is simply the negative
Hessian matrix at 8. For the confidence interval, we assume
the critical value c is given, which determines the confidence
level (e.g. ¢ = 1.96 means 95% confidence).

COROLLARY 1. Assume that 0 satisfies the standard reg-
ularity conditions for asymptotic normality. The confidence
interval for the ML estimator is then given by

where I(0) is the negative Hessian matriz, i.e. I1(0) =
—H(0).

The above expression for the confidence intervals can assist
in evaluating the ML estimation accuracy. The main result
is that, similarly to the ML estimator, also confidence inter-
vals can be computed using the standard MVA algorithm,
since this involves evaluating models where some queues are
replicated, i.e., where we add new stations having identical
demands. As we show later in this paper, the situation is
more complex in load-dependent models.

5.3 Approximate Closed-Form Expression

We now turn our attention to obtaining numerically an es-
timator O that satisfies the necessary conditions of Theo-
rem 1. One simple possibility is to apply search method such
as numerical optimization and fixed point iteration to find
a vector @ that matches the empirical mean queue-lengths.
However, this turns out to be expensive in the case of numer-
ical optimization. Also, we were unable to find fixed point
iteration schemes that were converging on all instances.

To cope with the above problems, we develop in this section
an accurate approximation of @ using the Bard-Schweitzer
(BS) approximation [1,29]. Our idea is to relax the neces-
sary condition of the theorem by requiring that the queue-
length Q;;(0) is computed not by exact methods, but by
the BS approximate mean-value analysis, which leads to a
simple analytical form for Q;;(0). Such approximation is
fairly accurate for multiclass models, except in some con-
trived examples, and therefore the degree of approximation
of the necessary condition is quite limited.

THEOREM 3. Assume > o, Qnj # Nj, Vj. Let 6% be an
interior point of ® and Q% (0"°) = Qi; (D), where Q¥ (-) is
the Bard-Schweitzer approzimation of Qi;(-). Then

gbs _ Qi;(D) bo,s (3)

] M A R A A

(Nj = 22— Qi (D)) (1+ 305, Qin(D) — Qi (D)/N;)

It can be noted that Theorem 3 is a closed-formula that
can be readily computed using the empirical mean queue
lengths. This makes it suitable for online use. For ease of
reference, we refer to the demand vector € obtained with (3)
as the QMLE demand estimator.



6. LOAD-DEPENDENT NETWORK

In this section, we illustrate how the previous results gener-
alize to the load-dependent case. Here the problem is more
complex since one needs to estimate not just the demands
0;;, but also the scaling factors v;(u), which together define
the mean demand 6;;(u) = 60;;v:(u) for station ¢ when it
has u enqueued jobs. Recall that we have denoted by -y the
vector that includes the scaling factors 7;(u), Vi, u. Here we
present the ML estimates for the service demand vector 6
as well as for the scaling function . We then introduce a
technique to identify the initial points that help in efficiently
searching for the optimal estimates.

6.1 Necessary conditions

We take similar assumptions for the parameters set as for the
load-independent case, with the main difference being that
the scaling factors «;(u) are unknown. We assume these
terms ~;(u) to be bounded and, without loss of generality,
we take v;(1) = 1 so that 0;;(1) = 6;;. These conditions
guarantee existence of the estimators [19].

THEOREM 4. Given a dataset D, a necessary condition
for a point x = (0,4) in the interior point of © to be a ML
estimator of demands and scaling factors is that

Qij(X) = Qi; (D), Vi, j,
and
P(ni = v|x) = P(nx = v|D), Vk, v

where P(ny = v|D) are the empirical marginal queue length
probabilities obtained from the dataset D.

The Hessian matrix for the load-dependent case is general-
ized as follows.

THEOREM 5. The Hessian matriz of L(X) at the ML es-
timates x s given as
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The result is qualitatively similar to the one in Theorem 1,
and analogous considerations apply. An optimization pro-
gram can be formulated by minimizing the difference be-
tween theoretical and the observed mean queue lengths and
marginal probabilities. In particular, the load-dependent
MVA algorithm [2] can be used in an optimization program
to find vectors @ and 4 that satisfy the mean queue-length
necessary condition of Theorem 4. However, load-dependent
MVA is known to be computationally expensive as the model
size grows, having O(M RN Hle N,) time and space re-
quirements, being N the total population in the model and

R the number of classes. That is, complexity is roughly
quadratic in the total number of jobs in the model. There-
fore, these methods experience early memory bottlenecks
when the model size grows. This means that even for small
models with a few queues, load-dependent MVA is difficult
to use in an optimization program due to its large computa-
tional requirements. Moreover, efficient computation of the
marginal probability P(7x > v|D) is also required by Theo-
rem 4. To alleviate this computational bottleneck, we define
a method to locate a good initial point for the optimization
program.

Similar as the discussion in Section 5.2, we are able to use
the above expression to determine if the generated estimates
are local maximum or not. The confidence interval of load-
dependent network can be characterized in the same way
as in Corollary 1. Differently from the load-independent
case, computing confidence intervals here requires to ob-
tain the second-order moments of marginal queue-length,
i.e., the terms E[n;jn; ;:|Xx], for determining the Hessian ma-
trix. This assumes the availability of efficient computational
algorithms for such moments, which yet do not exist in the
load-dependent setting. Moreover, marginal probability and
mean queue-length is also required to compute the confi-
dence intervals. Therefore, without specialized algorithms,
the applicability of confidence intervals will be limited to
models with a small or a medium-sized population, where
these moments can be obtained by direct computation over
the state space. It is therefore an interesting line of future
research in closed queueing networks to develop efficient al-
gorithms that can determine such joint moments.

6.2 Initialization heuristic

As introduced in Section 6.1, an optimization program can
be formulated to obtain the ML estimates from Theorem 4.
However, the heavy computational requirement of MVA re-
stricts its application to large models. Therefore, here we
develop an algorithm to alleviate this problem by identify-
ing a good initial point for the optimization program.

Noticing that the structure of (1) allows us to apply loga-
rithms, we write

ZZnulog ij +Zlog ~i(u

=1 j=1

log(P(n|6,v))

— log(G(8)) + Z no; 1og(6o;) (4)

Jj=1

M R
D> log(ni!)

i=0 j=1

M

+ Zlog(ni!) —

For each observed state m € S’, where S’ is the observed
state space, we can rewrite (4) as

Z Zn” log(6:;) + Zlog ~i(u 5)

=1 j=1

—log(G(0)) + 1

log(P(n|D))

where I is constant and I = Zle Tio; log(8o;)+ 3 | log(7;!)—
Zf\io Zf:l log(ﬁij!)'



It is now possible to observe that by treating log(P(n|D))
as response variable and log(8), log(+) and the normalizing
constant log(G(0)) as unknown variables, we can easily solve
(5) as a multivariate linear regression. This therefore pro-
vides an initial guess for the demands 0 and scaling factors
~, without the need for computing the most expensive term,
i.e., the normalizing constant G(0). The above approach can
therefore assist in the optimization program in identifying
a suitable initial point in negligible computational time. As
we show later in the validation, this initial point substan-
tially improves the optimization compared to the use of a
random initial point.

7. NUMERICAL VALIDATION

We now present the validation methodology for evaluating
the proposed algorithms. We have evaluated the algorithms
using randomly generated queueing models. Service comple-
tions data are simulated from the underlying Markov Chain
of a closed network, which is described in [2]. From these
data, we have generated typical monitoring measurements
such as response time, CPU utilization, throughput and
queue-length samples. In particular, to obtain queue-length
samples, we have first computed the steady state probabil-
ity from the simulation events. Then we have sampled from
it by generating random numbers between 0 and 1 and de-
termining which sample fits in the cumulative probability.
This is also known as the inverse transform sampling.

Our experiments have been run on a desktop machine with
an Intel Core i7-2600 CPU, running at 3.4GHz with 16 GB
of memory. We use the mean absolute percentage error as
the evaluation criteria.

7.1 Load-independent network

7.1.1 QMLE evaluation

We begin with evaluating the proposed algorithm for load-
independent network. For comparison, we have also imple-
mented several other demand estimation algorithms. They
are CI [22], UBR [37], GQL [34] and ERPS [22]. UBR,
ERPS and GQL have been already introduced in Section 4.
CI requires the complete sample path of the requests for
analysis. The input data for these algorithms is generated
from the same simulation events as of the queue-length sam-
ples. 500,000 service completions are generated.

The parameters for the random models are M € {2,4,8},
R € {2,3,4}, K = Zj N; € {4,20,40},60; € {1,5,10}.
For each model generated from the above parameters, 80
sub-models are defined by randomly generating N; and 6;;
from the uniform distribution. Without loss of generality,
demands are normalized so that ZR:1 0;; = 1 . Here, we
limit to assess the QMLE estimator in Theorem 3 since it
is much more practical to compute than the exact one in
Theorem 1.

Figure 2 presents a sensitivity analysis of the considered al-
gorithms. The result of UBR is not included since the error
is around 100% due to multicollinearity. From the figure, it
can be noticed that CI is the most accurate method since it
relies on the knowledge of the complete sample path. How-
ever, this method cannot be applied in production systems,
where only sample measurements are available. The error
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Figure 2: Sensitivity analysis of the estimators

of QMLE and GQL is almost the same, around 5%, which
shows the effectiveness of QMLE since GQL is defined us-
ing a much more complex algorithm featuring Gibbs sam-
pling and iterative approximation of the normalising con-
stant G(6). ERPS is worse in terms of accuracy, but gener-
ally still quite accurate. As expected, the accuracy of QMLE
and GQL increases as the number of observed queue-length
samples increases. However, with only 500 queue-length
samples QMLE already achieves a small 10% error.

Figure 3(a) shows the execution time of each method. Clearly
the proposed QMLE is orders magnitude better than the
other algorithms with average 0.0002 second against 1400
(CI), 3 (ERPS) and 148 (GQL) seconds.

7.1.2  Confidence Interval validation

Validation on the confidence interval requires computing the
maximum likelihood estimates of the service demand 6. For
this purpose, we have implemented a fixed point iteration
method based on Theorem 1 to estimate . The test is
based on a queueing model with M = 2R = 3, K =
Each test consists of H experiments with a queue-length
dataset D of L = {500,2000,5000} entries generated from
the same model. Each experiment has a different queue-
length dataset which is generated from the same simulation
events. We use 95% confidence intervals.

Figure 3(b) presents the confidence interval validation result.
H is set to {100,500,1000}. The vertical axis shows the
percentage of the cases that the exact demand lies in the
confidence interval of the estimated demand. For different L
and H, results suggest that the confidence interval is correct.

7.2 Load-dependent network
7.2.1 Exact analysis

For the evaluation of load-dependent queueing networks, we
have used the MATLAB fmincon solver to estimate @ and
4i(t) based on Theorem 4. We consider the following scaling
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factors v;(t): v:(t) = 1/t and v;(t) = 1/ min(¢, C;), where C;
is the number of CPUs at queueing node i. These two rep-
resent the most typical load-dependent scenarios, e.g. think
time and multi-core feature of servers.

The random models generated here consider M = 2 queues,
R = 2 classes, K = 8 jobs, think time 6y; € {1,5,10} and
C; € {2,3,4}. This is a very small model, but we are limited
in scalability by the cost of load-dependent MVA. We gen-
erate 8 sub-models considering the high computational cost
and randomly generate the number of jobs and the demands
using a uniform distribution. Figure 4 shows the result for
different scaling factors. It is easy to observe that the er-
ror drops as the number of observed queue-length samples L
increases since the average queue-length and marginal prob-
ability becomes more accurate. Given L = 5000 samples the
error for the demands is already below 10% and the error
on scaling factors around 20%.

7.2.2  Confidence interval validation

We here present the confidence interval validation based on
Section 6.1. The exact demand is computed in the same way
as in the previous section. The test is based on a queueing
model with M = 2 queues, R = 2 classes, K = 4 jobs. We
explicitly consider the multi-core load-dependent behavior
here with C; = 2. Each test consists of H experiments with
a queue length dataset D of L = {2000, 5000, 10000} entries
generated from the same model. We use 95% confidence
intervals. The result is presented in Figure 5. Clearly, it
shows the computed confidence interval is correct given the
estimates for different L and H.

7.2.3 Initial value determination
Here, we present the evaluation for the proposed method in
Section 6.2 to determine the initial point for the optimization
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program and the impact on the evaluation process.

The random queueing models are generated with M = 2
R=2,K=4,C € {23,4}, 6o; € {1,5,10}. 8 sub-models
are generated. Figure 6 presents the evaluation result. In
Figure 6(a), we demonstrate the error on the demands 6
and ~ comparing both the initial points (referred to as LR)
and the estimates from the optimization program (referred
to as OPT). Clearly the initial points already output very
accurate estimates, which are useful to guide the optimiza-
tion program. Figure 6(b) shows the execution time of the
optimization program for using random initial points and
the initial points returned from LR. It can be noticed the
execution time drops significantly with the heuristic initials.
We do not include the execution time of LR since it is based
on linear regression and takes less than 0.1 second.

8. CASE STUDY

In this section, we present a case study based on a real ap-
plication.

8.1 Experimental setting

The benchmarking application chosen is MyBatis JPetStore!,
an open source version of Sun’s J2EE pet store applica-
tion. It is an e-commerce application that allows customers
to login, browse pet categories, select pets and checkout
payments. A single end-to-end transaction is considered,
with customers visiting all the application pages sequen-
tially. 5GB of data (2,000,000 items) for viewing and selec-
tion by customers is used in the testbed.

Two tiers of servers are used, with both the Web/Applica-
tion and Database servers consisting of 4-core Intel Xeon

"https://github.com/mybatis/jpetstore-6



Table 1: Performance prediction with same dataset where demands are estimated

. BS AMVA-QD
Z(s) | Metric | LD-LR —=r—Rps T GQL [ QMLE | CT [ ERPS | GQL | QMLE
X 136 | 96 | 106 | 135 | 1LI | 23 | 35 | 4.2 5.7
0.1 Q 97 | 96| 95 | 139 | 83 | 34| 33 | 70 2.2
CN 198 | 136 150 | 222 | 163 | 1.6 | 33 | 101 | 7.2
X 61 | 75 | 88 | 93 76 | 39 | 7.0 | 44 12
0.5 Q 140 | 64.0| 41.0 | 394 | 398 |123| 106 | 17.7 | 10.6
XN 158 | 408 | 402 | 459 | 419 | 83 | 88 | 150 | 10.1
X 3.6 | 3.7 | 94 | 41 14 | 36 | 123 | 42 1.9
1 Q 177 | 434 | 444 | 453 | 401 | 14.6 | 211 | 183 | 144
CN 188 | 439 | 583 | 462 | 411 | 120 | 39.2 | 184 | 155
X 18 | 23 | 179 | 39 30 | 38 | 200 | 5.7 5.4
5 Q 375 | 63.0| 161.3 | 444 | 602 |37.1| 1774 | 120 | 146
CN 38.9 | 62.6 | 443.0 | 46.2 | 59.9 | 36.0 | 464.6 | 142 | 14.9
X 70 | 58 | 117 | 7.7 65 | 34 | 107 | 46 5.1
All Q 19.7 | 450 | 64.1 | 358 | 371 | 16.8| 531 | 13.7 | 104
CN 23.3 | 40.2 | 139.1 | 40.1 | 39.8 | 145 | 1200 | 144 | 11.9

Table 3: Experiment setup with Think Time, Con-
currency and Database server CPU Utilization.

Think time Number of jobs CPU Utilization
0.1s {1,3,5,10,15} {0.12,0.38,0.58,0.90,0.95}
0.5s {1,3,5,10,20} {0.03,0.14,0.23,0.44,0.79,0.93}
1s {1,2,5,10,20,40} | {0.04,0.06,0.14,0.26,0.51,0.88}
5s {1,10,20,40} {0.01,0.06,0.12,0.22}

E5620 CPUs with 8 GB of memory. The Grinder® open
source testing framework is used for load injection, with each
test lasting 10 minutes to eliminate transient values. The
experiment setup is listed in Table 3, with Database server
CPU utilization values listed corresponding to tested concur-
rency values. As bottlenecks are observed at the Database
server CPU (maximum contribution to overall service de-
mands), these metrics are used in the performance analysis
(i-e., network, memory and disk effects are negligible).

8.2 Explaining observed performance
Considering that in real system the exact demand is un-
known, we evaluate the proposed algorithm by comparing
the observed performance metrics and the theoretical ones
computed with the estimated demands. Here, the algo-
rithms considered are the proposed linear regression method
for determining the initial values, which is referred as LD-
LR, as well as the QMLE approach. The load-independent
algorithms introduced in Section 7.1 are also included.

The performance metrics considered here are average through-

put (X), average queue length (Q) and average response
time (CN). To produce these metrics, we consider using
both the Bard-Schweitzer (BS) approximation, which we al-
ready used in Section 5.3 and the recently proposed AMVA-
QD method, which is an approximate algorithm for mean
performance metrics in load-dependent models [5]. For the
previous case, we scale the demands by the minimum of the
number of jobs and number of CPUs to approximate the
multi-core behavior of the server. For the latter case, we

Zhttp://grinder.sourceforge.net/

explicitly use the softmin function, which is defined as

ueau + Cieaci

Wz(u) = eau 4 eaCi

This is an approximation of the multi-core function and con-
verges to the exact value as a——o0. We set ato be a = —10
throughout the experiment. For load-independent demand
estimation algorithms, we assume the number of CPUs is
given. For LD-LR, we use the Piecewise Cubic Hermite in-
terpolation method [9] to fit the estimated v and then use
AMVA-QD to estimate the performance.

Table 1 presents the analysis result. From the table, it
can first be noticed that evaluation with AMVA-QD returns
much accurate result than using AMVA-BS for all the algo-
rithms. In addition, compared to CI and GQL, QMLE out-
puts stable and accurate performance for all different kind
of models. Finally, the linear regression method produces
accurate result as well except the case with Z = 5, which is
caused by the large K in that experiment. Considering that
this method does not have a-priori knowledge of how many
cores the server has, the finding is more significant than the
others.

8.3 Performance prediction

Here we study another common problem which is to pre-
dict the performance of the application using benchmarked
dataset. In particular, the demand is first estimated for the
benchmarked dataset, then it is used to predict the perfor-
mance for a number of requests that is different from the one
used for demand fitting. For ease of comparison, we assume
the think time is the same as the one of the experiment on
which the demand was fitted.

Evaluation results are given in Table 2 focusing on the case
Z = 0.1s. For each dataset, we estimate the demands first
and predict the performance for K € {1,3,5,10,15} and
obtain the average error. We limit our study to use load-
independent algorithms only for demand estimation since it
is unfair to use methods such as the LD-LR to predict the
performance considering for small K there is not enough



Table 2: Performance prediction with different datasets

K | Metric BS AMVA-QD
CI | ERPS | GQL | QMLE | CI | ERPS | GQL | QMLE
X 18.5 | 18.5 37.6 13.2 8.2 8.2 25.2 3.7
1 Q 15.5 | 15.5 27.1 11.9 7.9 7.9 18.1 5.0
CN 25.0 | 25.0 45.0 19.7 13.1 13.1 33.9 7.7
X 14.1 14.2 13.1 15.2 6.7 6.9 3.7 5.4
3 Q 10.0 | 10.0 11.6 13.0 3.7 3.7 4.8 5.8
CN 21.2 | 214 19.1 21.9 9.1 9.6 7.1 9.9
X 14.4 | 14.5 13.6 14.2 7.8 8.0 4.1 6.9
5 Q 9.9 9.9 12.2 10.0 3.8 3.8 5.2 3.7
CN 223 | 225 20.3 21.4 11.2 | 11.7 8.3 9.6
X 13.3 | 14.2 13.2 13.7 4.1 7.0 3.7 5.3
10 Q 11.2 | 10.0 11.9 10.4 4.4 3.7 4.9 3.8
CN 189 | 21.5 19.6 19.9 6.9 9.7 7.6 7.8
X 13.1 13.1 13.6 13.8 3.8 3.8 4.8 5.6
15 Q 11.6 | 11.6 10.7 10.3 4.7 4.7 4.1 3.8
CN 189 | 21.5 19.6 19.9 7.1 7.1 7.4 8.1
X 14.7 | 14.9 18.2 14.0 6.1 6.8 8.3 54
All Q 11.7 | 114 14.7 11.1 4.9 4.8 74 4.4
CN 21.3 | 224 24.7 20.6 9.5 10.2 12.9 8.6

information on 4. From the table, in general algorithms
with AMVA-QD performs much better than the ones with

AMVA-BS method. The proposed QMLE method with AMVA-

QD is able to predict the performance with less than 9%
€erTor.

9. CONCLUSION

In this paper, we have proposed a class of maximum likeli-
hood estimator for resource demand in closed queueing net-
works with both load-independent and load-dependent ser-
vice. After identifying necessary conditions for an estimator
to be a maximizer of the likelihood function, we derived ex-
plicit and tractable expressions for the confidence interval of
the estimates. For load-independent models, a closed form
formula has been presented for demand estimation, which
allows to obtain good estimates very quickly. Moreover, a
heuristic method is proposed to accelerate searching for the
estimates in load-dependent networks. Finally, evaluation
based on simulation data and traces of a multi-tier applica-
tion demonstrate the applicability of the proposed methods
to demand estimation in real software systems.
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Appendix

Proof of Theorem 1

A sufficient condition for existence of a ML estimator is that
the parameter space is compact and the likelihood function
continuous. Observe that the parameter space is compact
since 6 is assumed bounded. Since the normalising constant
is continuous in @ and G(0) # 0 since 6o, ; > 0, then £(0) is
also continuous in 6.

Given existence, we now determine the ML estimator. Re-
call the following relationship proved in [§]

9G(0) _ Qis(0)

This allows us to take the first derivative of the likelihood
function as follows

ace) o (R I S
d6;; ~ dbi; [HTH)H"’H nlw']
J J =1 1=1 j=1 "4 (7)
=> (— () , ””) £(6)
91']' 07;]'
=1

A stationarity point is then found at
L
—Qi;(0)L+> ni; =0
=1

which implies the condition Qi;(6) = Qi;. This completes
the proof. [J

Proof of Theorem 2



Given the maximum likelihood estimator é, the Hessian ma-
trix is defined as

9% log L(9)

H(O)sinn = 0000, lo=6

(8)
Using (7), the partial derivative of log £(6) with respect to
Qij is

Olog L(O) 1 0L(0)

_ Q- Qu(9)
0., L(6) 00

» 9)

It can be seen from (9) that in order to obtain the Hessian
the partial derivative of Q;;(0) is required. According to [24]
0;;GVH(0, N —1;)

G(6,N)

Qi (6) =
where 1; is a vector has all components zeros except for j
and G1*(-) refers to a model with an additional queue iden-

tical to queue 4 in the original model (i.e. same demands).

If i = k and j = h, we then have

0Qi;j(6)  GT(O,N—1;) 0,;GT(6,N —1,)Qi;(6)
96, —  G(O.N) 0,,G(0, V)
0, QF6,N-1;) ..
+ S0 = GH(O,N — 1)) o
- CTON L) (1 1 05 (0.N ~ 1,) - @ (6)
G(0,N) e
Q (9)

(1+Qf(6,N —1;) —

Qi;(0))

For the other cases, we have

8Qij(0) _ 0;; +i(97N_ lj) +i )
D~ GON) b GTO.N-15)
0,670, N — 1,)Qun(6)
0, G+z(90j:fG(0 ;V) ()
- Qul0) 0.~ 11~ Q@)
kh

Combine (10)(11) with (7) and (8), the diagonal elements of
the Hessian matrix is

H@) - L) Qz]( )—Qi; L 9Qi;(0)
9T 90,00, 02, 0i; 00y
_ LQij(é)(Qm‘(é) - QL (0,N —1,) — Qi
02,

The non-diagonal elements are

(@), = P800 _ L 00u6)
ikh aé”aékh é 8ékh
_LQ ) .
L9u®) (0, (8) - Qi (0. N ~ 1)
eljekh

which completes the proof. [
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Proof of Corollary 1

According to [21, Chapter 9], the distribution of the max-
imum likelihood estimator @ is asymptotically normal with
mean 0 and the covariance matrix being approximated by
the inverse of the Fisher Information matrix I(8).

The corresponding confidence interval for éij is

0ij £ c\/ 1(0)%;

where c is the appropriate z critical value (e.g. 1.96 for 95%
confidence). The Fisher Information for unknown parame-
ters O is a matrix I(0) defined by elements

0% log L(0)

B[ 00,001, ]

I (0)ij,kh =
According to [21, Chapter 2], for the maximum likelihood
estimator é, it can be further simplified to

9% log L(6)

I(é)ij,kh == 90,.90.n = _H(é)ij,kh
ij

oo

The Fisher Information matrix for the maximum likelihood
estimates is also referred to as the observed Fisher Informa-
tion matrix. This completes the proof. []

Proof of Theorem 3
By the Arrival Theorem [25] we have:
0i; = Qi;(6)

X;(0)(1+ Ai;(0))

where A;; = Zf‘:l
closed network implies
get

Qir(0, N — 1;). Since Little’s law on a

X;(0)60.i; + X2i%, Qij(8) = Nj, we
Qi;(0) X;(6)6o,5

(N; = 3o, Qi;(0)) X5(0)(1 + Ai;(6))

Direct substitution can be used to check that his expression

holds also for the Bard-Schweitzer fixed point. Simplifying
we can write

02‘]‘ =

bs(o)

0. ) 00,]’
ij =

T - Qo) (1 QEE) -

75 (0)/N;)

for all demand vectors 8. For the Bard-Schweitzer estimator,
the last expression becomes (3) since Q;;(8°°) = Q;;. This
completes the proof. [

Proof of Theorem 4

Similar to the proof of Theorem 1, it is not difficult to verify
the existence of the ML estimator. From [8], the relationship
in (6) still holds for the load-dependent queueing network.
Define x = (60,+), therefore considering 6;;, we have

Z( i Z;f) £(x)

=1
which implies the condition Qy; (%) = Qj.




For ~(v), we have

OlogL(x) _ 1 0L(x)
Om(v)  L(x) Om(v)
_LP(x>2v) L 9G(x) (12)
Ve(v) G(x) vk (v)

P(nk > v) — P(nk > v[x)

=L ()

The stationarity point is P(ny > v) = P(ng > v|x) which
further simplifies to P(ny = v) = P(ni, = v|x). O

Proof of Theorem 5

Similar as the proof of Theorem 2, derivation of Hessian
matrix H(x) requires the evaluation of second-order par-
tial derivatives. First, we consider the partial derivative of
log L(x) regarding 6;;

Dlog L0x) _ 1 9L() _ ; QD)= Qi) (13
00;; L(x) 00 Oi;

The following computes the partial derivative of Q;;(x) re-
garding 0;/;/. if i =4, 5 = 7', we have

9Qij(x) _ 93 nesniiP(nlx)

(15)— e (V) -

00, s 00,
_ Pones MiiP(nlx) (i — Qi (x))
= 0
2 Bl (14)
D omes M P(nlx) — Qi (X) Doy e s nii P(nx)
= 5
_ Elnf|x] - Q% (x)
Otherwise, we have
9Qij(x) _ 92 nesnisP(nIX)
891‘/]'/ aai’j’
_ Yones NisP(X) (i — Quryr (X))
B 0: ;0
~ Yones iy P(nlx) — Qi (X) Xopes nisP(nlx)
B O:r
_ Blnigniylx] = Qi () Qi (x)

0i/j/

Substituting (14) and (15) into (13), for H(X):j,i; we have

5 9*log L(x)
(X)is.is 96,,00,
_ QX)) — Qi;(D) L 9Qi(x)
0 Oi;  0ij
_ L

(Q?j(fc) - E[nfgﬁ(] +Qij(X) — @u(D))

T h2
0%

for H(X):j,i7;, we have

H(x 9% log L(x L 9Qi;(x
(X)ijirjr = Wé() = 7?#()
igOU;7 57 i i1 37

&0

_ LQij(X)Qi’j’(A )A— Elnijni | X]
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2
For computing nyio(i)ﬁa(gfj, ag)’iif)X) is already given in
(12). Noticing that
OP(ny. > v[x) _ > IP(n|x)
80” nes,n>v 80”
1
=9 > Pnlx)(niy — Qi(x))
v nes,ng>v
1
= ;(E[mjlx,nk > 0] = Qi (X)P(nx > v|x))
ij
Therefore we have
N 0log L(x
H(X)ijko = gi(X)
Ok (v)005;
_ ;1 Qu()P(ne 2 v[x) — Elnig|x, ni 2 v]
Xii Y (V)
2
Finally, we consider to compute 8log7££>()/. If £ =
Vi (v)0;, (V')
K,v=1
OP(ny. > v[x) _ 3 IP(n|x)
i (v) s, ()
nesS,ng>v

_ P(n|x) P(n|x) 0G(x)
= 2 ¥ (v) G(x) Ok(v)

nesS,ng>v
1
= Z WP(””X)U —P(ni > v|x))
nesS,ng>v Vk
- MP(% > u|x)
Vi (v) -

For cases otherwise

OP(nk > vlx) _
I (v) 2

- ¥

nes,ny>v,n, >v’

OP(n|x)

/
nes,n>v a’Yk;’ (1} )

P(n|x) 3 P(n|x) 0G(x)
W) s, GO o (V)
P(n|x)P(nw > v'|x)
Yier (V1)
_ Pl > v,y > 0'|x) = P(ng 2 0[x)P(ner > v'[x)
Yier (V')
Therefore, for H (X)kv,kv We have
9% log L(X%)
0k (v) 0%k (v)
P(ni > v|x) — P(ng > v|D)
=L =
A (v)?
1 —P(ng > v[x)
i (v)?
P(ni > v|x)? — P(7ix > v|D)
Y (v)?

Pk > v,n > 0'x) 3

nesS,ng>v

H(X)kv,kv -

— LB(ni > 0[%)

=L

For H(X)kv,k’v’
N Olog L(x)
H v,k’v = [Z 7 NAax N
OO = s () ()
Plni > V)P > V%) = Pl > v,me > v'[%)
A (0) Yk (V')
which completes the proof. []
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