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SUMMARY 25 

Geomicrobiology addresses the roles of microorganisms in geological and geochemical 26 

processes and geomycology is a part of this topic focussing on the fungi. Geoactive roles of 27 

fungi include organic and inorganic transformations important in nutrient and element 28 

cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal 29 

interactions. Lichens and mycorrhizas are significant geoactive agents. Organic matter 30 

decomposition is important for cycling of major biomass-associated elements, e.g. C, H, N, 31 

O, P and S as well as all other elements found in lower concentrations. Transformations of 32 

metals and minerals are central to geomicrobiology, and fungi effect changes in metal 33 

speciation, as well as mediate mineral formation or dissolution. Such mechanisms are 34 

components of biogeochemical cycles for metals as well as associated elements in biomass, 35 

soil, rocks and minerals, e.g. S, P, and metalloids. Fungi may have the greatest geochemical 36 

influence within the terrestrial environment. However, they are also important in the aquatic 37 

environment and significant components of the deep subsurface, extreme environments and 38 

habitats polluted by xenobiotics, metals and radionuclides. Applications of geomycology 39 

include metal and radionuclide bioleaching, biorecovery, detoxification, and bioremediation, 40 

and the production of biominerals or metal(loid) elements with catalytic or other properties. 41 

Adverse effects include biodeterioration of natural and synthetic materials, rock and mineral-42 

based building materials (e.g. concrete), cultural heritage, metals, alloys and related 43 

substances, and adverse effects on radionuclide mobility and containment. The ubiquity and 44 

importance of fungi in the biosphere underlines the importance of geomycology as a 45 

conceptual framework encompassing the environmental activities of fungi. 46 

 47 

INTRODUCTION 48 
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The significance of fungi in natural environments is extensive and profound. Their most 49 

obvious roles are as decomposers of organic materials, and as animal and plant pathogens and 50 

symbionts. It is therefore obvious that they are of major importance in the global carbon cycle 51 

through such activities and as important determinants of plant growth and productivity. 52 

However, their importance in terms of nutrient and element cycling greatly extends beyond 53 

this core activity and they are involved in the biogeochemical cycling of many other elements 54 

and substances, as well as many other related processes of environmental significance. The 55 

growing discipline of geomicrobiology addresses the roles of microorganisms in geological 56 

and geochemical processes (1,2), and geomycology can be considered to be a part of this 57 

topic that focusses on the fungi (3,4). The often clear demarcation between mycological and 58 

bacteriological research has ensured that the geoactive properties and significance of fungi 59 

have been unappreciated in wider geomicrobiological contexts. The range of prokaryotic 60 

metabolic diversity found in archaea and bacteria, including their abilities to use a variety of 61 

different terminal electron acceptors in respiration and effect redox transformations of many 62 

metal species (5,6), has also contributed to a narrow overall view of the significance of 63 

eukaryotic organisms in important biosphere processes. A recent collection of 64 

geomicrobiology review articles managed to completely exclude fungi (as well as algae), 65 

even to the extent of defining “microbes” as being only bacteria and archaea (7). 66 

Nevertheless, appreciation of fungi as agents of geochemical change is growing, and their 67 

significance is being discovered even in locations not usually regarded as prime fungal 68 

habitats, e.g. rocks, acid mine drainage, deep aquatic sediments, hydrothermal vents and the 69 

igneous oceanic crust (8-11). Their significance as bioweathering agents of rocks and 70 

minerals is probably better understood than bacterial roles (12), and this ability is of prime 71 

importance in the weathering of human structures in the built environment and cultural 72 

heritage (13-15). On the positive side, the geoactive properties of fungi can be used for 73 
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human benefit and several aspects may contribute to providing solutions to several important 74 

global challenges.  Geomycology is relevant to reclamation and revegetation of polluted 75 

habitats, bioremediation, nuclear decommissioning and radionuclide containment, 76 

biorecovery of important elements, and the production of novel biomaterials. This chapter 77 

outlines important geoactive properties of fungi in relation to important environmental 78 

processes, their positive and negative applications and impact on human society. 79 

 80 

THE FUNGAL HABITAT 81 

Fungi are ubiquitous components of the microbial communities of any terrestrial 82 

environment, including such hostile habitats as the Arctic, hot deserts, and metal-rich and 83 

hypersaline soils (16). They are significant inhabitants of the aquatic environment as 84 

decomposers of organic matter but are also involved in other elemental cycles, e.g. 85 

Manganese oxidation (17). Fungi are ubiquitous in habitats polluted by xenobiotics, toxic 86 

metals and radionuclides, both terrestrial and aquatic, as well as leachates and other solid or 87 

liquid wastes (18). In such habitats, fungi may exhibit a variety of mechanisms that determine 88 

tolerance and survival, and which are also components of elemental cycles for pollutant 89 

elements (18). These “extreme” locations may also act as a reservoir of novel organisms with 90 

unusual properties. For example, acid mine drainage is now known to harbor fungal 91 

communities, the preponderance of earlier research on this habitat being devoted to 92 

prokaryotes, and some isolates possess unusual element bioaccumulation properties. New 93 

species include  Fodinomyces uranophilus and Coniochaeta fodinicola from uranium mine 94 

locations that can bind mobile uranium (10,19) and a Penidiella sp. from an acidic abandoned 95 

mine location that was capable of accumulating rare earth elements such as dysprosium (Dy) 96 

(20).  A global fungal role in biogeochemical cycling of the elements (e.g. C, H, N, O, P, S, 97 

metals, metalloids) is therefore obvious and interlinked with the ability to adopt a variety of 98 
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growth, metabolic and morphological strategies, adaptive capabilities to environmental 99 

extremes and, their symbiotic associations with animals, plants, algae and cyanobacteria 100 

(16,21,22).  The ability of many fungi to grow oligotrophically by scavenging nutrients from 101 

the air and rainwater helps them survive on stone and rock surfaces which are considered to 102 

be an inhospitable environment (9,23).  In addition, organic and inorganic residues on 103 

mineral surfaces or within cracks and fissures can act as nutrient sources in the sub-aerial 104 

rock environment (24).  One of the most successful means for fungi to survive in the extreme 105 

sub-aerial environment is underpinned by their symbiotic associations with algae and 106 

cyanobacteria as lichens where the phototrophs provide a source of carbon and protection 107 

from light and irradiation (24,25).  Lichens enable colonization of a wide range of 108 

environments including those at climatic extremes such as the Arctic and Antarctic, exposed 109 

rock surfaces and dry deserts. 110 

 111 

In the deep subsurface, the research emphasis is mostly on prokaryotes, but the presence of 112 

fungi is now well known (11, 26-28). Fungi occur in abundance and high diversity in such 113 

varied environments as deep-sea sediments (29), hydrothermal vents (30,31), and methane 114 

cold-seeps (29,32). They are now also known as abundant inhabitants of the igneous oceanic 115 

crust which has consequently been described as the largest fungal habitat on Earth (11). 116 

Fungi seem to play an important ecological role in the igneous oceanic crust as they exist in 117 

symbiosis with chemolithotrophic prokaryotes, decompose organic matter, dissolve and form 118 

minerals, and therefore are involved in the cycling of elements (11,33,34).  Fossilized 119 

microorganisms have been observed in drilled cores and dredged samples from the ocean 120 

floor with a majority of these findings representing fungi (34,35). These fungi existed in a 121 

close symbiotic-like relationship with two types of prokaryotes, which appeared to use the 122 

structural framework of the mycelium for their growth (34). It therefore seems clear that 123 
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geomycological processes are significant in a wide range of biosphere habitats, including 124 

those traditionally thought to be inimical to fungal growth and development (36). 125 

 126 

ORGANIC MATTER DECOMPOSITION AND BIOGEOCHEMICAL CYCLING OF 127 

COMPONENT ELEMENTS 128 

Organic matter decomposition is the attribute most commonly associated with fungi, and is a 129 

major contribution to global biogeochemistry as well as the spoilage of foodstuffs and 130 

organic materials (21,36).  In fact, fungal processes represent a potential control point in the 131 

global carbon cycle (37). To some extent, research on this aspect of chemoorganotrophic 132 

metabolism has obscured the wider global implications of decomposition in terms of the 133 

cycling of other elements and nutrients, and also contributed to a lack of attention to fungal 134 

roles in wider geochemical cycles.  135 

 136 

Most biogeochemical attention on fungi has been given to carbon and nitrogen cycles, and 137 

the ability of fungi to utilize a wide spectrum of organic compounds is well known.  Simple 138 

compounds such as sugars, organic acids, and amino acids can easily be transported into the 139 

cell while more complex molecules are first broken down to smaller molecules by 140 

extracellular enzymes before cellular entry.  Such compounds include natural substances such 141 

as cellulose, pectin, lignin, lignocellulose, chitin and starch to anthropogenic products like 142 

hydrocarbons, pesticides, and other xenobiotics (21,37).  Organometals (compounds with at 143 

least one metal-carbon bond) can also be attacked by fungi. Degradation of organometallic 144 

compounds can be carried out by fungi either by direct enzymic action or by facilitating 145 

abiotic degradation, e.g. by alteration of external pH through metabolite excretion. Tributyltin 146 

oxide and tributyltin naphthenate may be degraded to mono- and dibutyltins by fungal action, 147 

inorganic Sn(II) being the final degradation product (38). Organomercury compounds may be 148 
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detoxified by conversion to Hg(II) by fungal organomercury lyase, the Hg(II) being 149 

subsequently reduced to Hg(0) by mercuric reductase, a system analogous to that found in 150 

mercury-resistant bacteria.  151 

 152 

Some fungi have remarkable degradative properties and ligninolytic fungi, like the white rot 153 

Phanerochaete chrysosporium, can degrade many xenobiotics including aromatic 154 

hydrocarbons, chlorinated organics, polychlorinated biphenyls, nitrogen-containing aromatics 155 

and many other pesticides, dyes and xenobiotics (39,40). Such activities are of importance in 156 

polluted habitats and have been applied in bioremediation where ligninolytic fungi have been 157 

used to treat soil contaminated with substances like pentachlorophenol (PCP) and polynuclear 158 

aromatic hydrocarbons (PAHs) (21, 41-43). In many cases, xenobiotic-transforming fungi 159 

need additional utilizable carbon sources for co-metabolism because although capable of 160 

degradation, they cannot adequately utilize these substrates as an energy source. Inexpensive 161 

utilizable lignicellulosic wastes such as corn cobs, straw and sawdust can therefore be used as 162 

nutrient additions for enhanced pollutant degradation. Wood-rotting and other fungi have also 163 

received considerable attention for the bleaching of dyes and industrial effluents, and 164 

biotreatment of various agricultural wastes such as forestry, pulp and paper by-products, 165 

sugar cane bagasse, coffee pulp, sugar beet pulp, apple and tomato pulp, and cyanide (42). 166 

 167 

As mentioned, fungi are highly important in the degradation of naturally-occurring complex 168 

molecules in terrestrial and aquatic habitats. Since around 95% of plant tissue is composed of 169 

carbon, hydrogen, oxygen, nitrogen, phosphorus and sulfur, decomposition activities of fungi 170 

are clearly important in relation to redistribution of these elements between organisms and 171 

environmental compartments. As well as C, H, O, N, P, and S, another 15 elements are 172 

typically found in living plant tissues - K, Ca, Mg, B, Cl, Fe, Mn, Zn, Cu, Mo, Ni, Co, Se, 173 
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Na, Si. However, all 90 or so naturally-occurring elements may be found in plants, mostly at 174 

low concentrations although this may be highly dependent on environmental conditions. 175 

These include toxic and inessential metals and metalloids including As, Hg, Pb and U. Some 176 

plants accumulate relatively high concentrations of metals like Ni and Cd. Plant metal 177 

concentrations may reflect environmental conditions and provide a bioindicator of toxic 178 

metal pollution or a metalliferous substrate. Metal-accumulating plants are also receiving 179 

attention in bioremediation (=phytoremediation).  180 

 181 

Similar concepts of element cycling also relate to animal and microbial biomass. Animals 182 

also contain multiple elements in varying amounts. The human body (like other organisms) is 183 

mostly water and around 99% of the mass comprises oxygen, carbon, hydrogen, nitrogen, 184 

calcium and phosphorus.  However, many other elements are present in lower amounts 185 

including substances taken up as contaminants in food and water.  It follows that 186 

decomposition, degradative and pathogenic activities of fungi are linked to the redistribution 187 

and cycling of all these constituent elements on local and global scales.  There must be a 188 

fungal component therefore in the biogeochemical cycles of virtually all biomass-associated 189 

elements (3,21). The release of elements and nutrient moieties through degradation makes 190 

them available to other microorganisms and plants, and also chemical interaction with the 191 

environmental pool of different chemical species.  192 

 193 

FUNGAL INTERACTIONS WITH THE INORGANIC ENVIRONMENT: ROCKS, 194 

MINERALS AND METALS 195 

 196 

Bioweathering 197 
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Rocks and minerals represent a vast reservoir of elements, many essential for life, and such 198 

elements must be released in forms that may be assimilated by the biota. These include essential 199 

metals as well as elements like S and P (3,44). Many important microbial processes are 200 

influenced by minerals including nutrient acquisition, cell adhesion and biofilm formation (45). 201 

Essential nutrients and environmental contaminants sorbed to mineral surfaces can be acquired 202 

or removed by organisms including metals and organic compounds (46,47). Other elements 203 

and nutrients may be released from minerals as a result of bioweathering, and fungi have 204 

notable activities in this context (3,16,24,48). 205 

 206 

Bioweathering can be defined as the erosion, decay and decomposition of rocks and minerals 207 

mediated by living organisms. Fungi are well suited as geoactive weathering agents since they 208 

possess a variety of growth, metabolic and morphological strategies and can be resistant to a 209 

range of environmental extremes such as metal toxicity, UV radiation, and desiccation. Their 210 

mutualistic associations with plants (mycorrhizas), algae and cyanobacteria (lichens) are 211 

particularly significant geoactive agents (3,16,24,48). The ability of fungi to translocate water, 212 

ions and nutrients within the mycelial network is another important feature for exploiting 213 

heterogeneous environments (49-51). 214 

 215 

Fungi appear to be ubiquitous components of the microbiota of all rocks, building stone and 216 

concrete, and have been reported from a wide range of rock types, e.g. limestone, marble, 217 

granite, sandstone, basalt, gneiss, dolerite and quartz, even from the most extreme 218 

environments (9,16,48). Rock surfaces may be subject to moisture deficit and nutrient 219 

limitation although many species can tolerate extremes of UV irradiation, salinity, pH, and 220 

water potential (16,24,25,48,52). Nutrients can be scavenged from the atmosphere and 221 

rainwater, and they also use organic and inorganic residues on surfaces or within cracks and 222 
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fissures, waste products of other microorganisms, decaying plants and insects, dust particles, 223 

aerosols and animal faeces as nutrient sources (24). Fungi may receive protection from 224 

environmental extremes by the presence of melanin pigments and mycosporines in their cell 225 

walls, and by the production of mucilaginous exopolymeric substances that may entrap 226 

inorganic particulates, e.g. clay minerals, providing further protection (9,53). Fungal 227 

interactions with rock-mineral substrates can result in dissolution and biodeterioration but also 228 

the formation of patinas, films, varnishes, and crusts (3,9).  In soil, fungus-mineral interactions 229 

are also an integral component of environmental cycling of elements and nutrients (4,21).  230 

 231 

Biomechanical deterioration of rocks and minerals can occur through hyphal penetration and 232 

burrowing into decaying material and along crystal planes in, e.g. calcitic and dolomitic rocks 233 

(3,24,54). Intracellular turgor pressure may be a significant factor in biomechanical disruption 234 

(55,56). Spatial exploration of the environment to locate and exploit new substrates is 235 

facilitated by a range of sensory responses that determine the direction of hyphal growth such 236 

as thigmotropism (or contact guidance) (57). Biochemical weathering of rocks and minerals 237 

can occur through excretion of geoactive metabolites (58,59), and this is believed to be a more 238 

significant process than mechanical degradation although a combination of mechanisms is 239 

often likely. This can result in pitting and etching of surfaces to complete dissolution of mineral 240 

grains (60-62).  Bioweathering is a highly significant process and has direct consequences not 241 

only for rock and mineral dissolution, but the mobilization and immobilization of metals, 242 

nutrient release, and the formation of secondary minerals (2,3). 243 

 244 

Metal mobilization 245 

Metal mobilization from rocks, minerals, soil and other substrates can be a consequence of 246 

protonolysis, carbonic acid formation from respiratory CO2, complexation by Fe(III)-binding 247 
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siderophores and other excreted metabolites, e.g. amino acids, phenolic compounds, and 248 

organic acids, and methylation (for e.g. Hg, Se and As) which can result in volatilization. 249 

Fungal-excreted carboxylic acids can attack mineral surfaces providing protons as well as a 250 

metal-chelating anion, e.g. citrate (58).  Oxalic acid can leach metals that form soluble oxalate 251 

complexes, e.g. Al and Fe (63). Solubilization mechanisms can result in metal mobilization 252 

from toxic metal containing minerals, e.g. pyromorphite (Pb5(PO4)3Cl), contaminated soil and 253 

other solid wastes (64-66).  Fungi may also mobilize metals and attack mineral surfaces by 254 

redox transformations: Fe(III) and Mn(IV) solubility is increased by reduction to Fe(II) and 255 

Mn(II) respectively.  Fungal reduction of Hg(II) to volatile elemental Hg(0) has also been 256 

recorded (67). As discussed earlier, metals may be mobilized from organic substrates during 257 

decomposition (21). 258 

 259 

Metal immobilization 260 

Fungi are effective accumulators of metals and related substances. Important mechanisms 261 

include biosorption to cell walls, pigments and exopolymers, intracellular transport, 262 

accumulation and sequestration, or bioprecipitation on and/or around hyphae (3,53,68-76).  263 

Living or dead fungal biomass are effective biosorbents for a variety of metals including Ni, 264 

Zn, Ag, Cu, Cd and Pb as well as actinides, e.g. U, Th, with a variety of functional groups 265 

being involved (24,53,76). The presence of chitin, and pigments like melanin, may enhance the 266 

ability of fungal biomass to act as a biosorbent. Fungal biomineralization processes lead to 267 

metal immobilization as biominerals or elemental forms, as described below (3).  268 

 269 

Biomineralization  270 

Biomineralization refers to the processes by which organisms form minerals. Biologically-271 

induced mineralization (BIM) is where the organism modifies the local microenvironment 272 
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creating conditions amenable for extracellular chemical precipitation of mineral phases. The 273 

organism does not appear to control the biomineralization process in BIM while a great degree 274 

of control over biomineralization is exerted in biologically-controlled biomineralization 275 

(BCM), e.g. the complex cellular biomineral structures found in certain other eukaryotes like 276 

diatoms (77). Fungal biomineralization therefore usually refers to biologically-induced 277 

mineralization. This can result from the bioweathering mechanisms discussed previously such 278 

as redox transformations and metabolite excretion (78,79) and organic matter decomposition 279 

where released substances re-precipitate with metals in the microenvironment, and vice versa 280 

(4,21,80-82). As mentioned, fungal surfaces provide many reactive sites for sorption (≡ 281 

biosorption) and this can also lead to the formation of mineral precipitates (2,71,83).   282 

 283 

Common Mineral and Biomineral Transformations by Fungi 284 

Fungi are involved in many environmental mineral transformations at differing scales (84-86). 285 

They are clearly a very important group of geoactive organisms especially when considering 286 

their ubiquity and capacity for production of mineral-transforming metabolites, their symbiotic 287 

associations, and the aforementioned consequences of their major significance in organic 288 

matter decomposition (4,5).  289 

 290 

Carbonates  Insoluble carbonates may be broken down by fungal attack, usually the result of 291 

acid formation (87-89). Such activity is particularly evident on limestones and marble used in 292 

building construction, but can also occur in natural limestone (88,90). Fungal attack on 293 

carbonates (dolomites and limestones) can result in transformation of these substrates to 294 

dolomite (CaMg(CO3)2), glushinskite (MgC2O4.2H2O), weddellite (CaC2O4.2H2O), 295 

whewellite (CaC2O4.H2O), and possibly struvite (NH4MgPO4·6H2O) (91).  296 

 297 
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Certain fungi can deposit calcium carbonate extracellularly (92-95). Calcite (CaCO3) and 298 

calcium oxalate monohydrate (whewellite; CaC2O4.H2O) was precipitated on hyphae of 299 

Serpula himantioides when grown in simulated limestone microcosms (93). Urease-positive 300 

fungi degrade urea liberating carbonate (96). This process results in the precipitation of metal-301 

containing carbonates which provides a means of metal immobilization and biorecovery (94). 302 

Incubation of Neurospora crassa in urea-containing media resulted in the formation of calcite, 303 

as well as carbonates containing other metals. When a carbonate-laden N. crassa culture 304 

supernatant was mixed with CdCl2, the Cd was precipitated in the form of highly pure otavite 305 

(CdCO3) (94). After incubation in media containing urea and CaCl2 and/or SrCl2, 306 

Pestalotiopsis sp. and Xepiculopsis graminea (syn. Myrothecium gramineum), isolated from 307 

calcareous soil, precipitated calcite (CaCO3), strontianite (SrCO3), vaterite in different forms 308 

[CaCO3, (CaxSr1−x)CO3] and olekminskite [Sr(Sr,Ca)(CO3)2] suggesting that urease-positive 309 

fungi could play an important role in the environmental fate, bioremediation or biorecovery of 310 

Sr or other metals and radionuclides that form insoluble carbonates (95). Paecilomyces 311 

javanicus mediated the formation of an unknown lead mineral phase after incubation in liquid 312 

media with lead shot. After 2 weeks incubation, precipitated mineral phase particles were found 313 

to contain plumbonacrite (Pb10(CO3)6O(OH)6). However, after 4 weeks incubation, the lead 314 

particles that accumulated inside the fungal pellets were transformed into a white mineral phase 315 

composed of lead oxalate (PbC2O4), hydrocerussite (Pb3(CO3)2(OH)2) and a new lead 316 

hydroxycarbonate mineral species, thus revealing novel steps in lead carbonation by fungi (97). 317 

  318 

Oxalates  Calcium oxalate is the most common form of oxalate in the environment, occurring 319 

as the dihydrate (CaC2O4.3H2O, weddellite) or the more stable monohydrate (CaC2O4.H2O, 320 

whewellite) (59,79).  Calcium oxalate can be associated with free-living, pathogenic and plant 321 

symbiotic fungi, and lichens, and is formed by precipitation of soluble calcium as the oxalate 322 
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(59,61,87,98,99). Fungal calcium oxalate can exhibit a variety of crystalline forms (tetragonal, 323 

bipyramidal, plate-like, rhombohedral or needles) (100). Calcium oxalate has an important 324 

influence on soil biogeochemistry, acting as a calcium reservoir, and can also influence 325 

phosphate availability. Fungi can produce many other metal oxalates on interacting with a 326 

variety of different metals and metal-bearing minerals, e.g. Ca, Cd, Co, Cu, Mg, Mn, Sr, Zn, 327 

Ni and Pb (3,59,64,79,101-103). The formation of toxic metal oxalates may contribute to 328 

fungal metal tolerance (53,102).  In many arid and semi-arid regions, calcareous soils and near 329 

surface limestones (calcretes) are secondarily cemented with calcite (CaCO3) and whewellite 330 

(calcium oxalate monohydrate, CaC2O4.H2O) and the presence of fungal filaments 331 

biomineralized with these substances has been reported (52). Calcium oxalate can also be 332 

degraded to calcium carbonate, and this may again cement pre-existing limestones (104). Other 333 

experimental work has demonstrated fungal precipitation of secondary calcite, whewellite, and 334 

glushkinskite (MgC2O4.2H2O) (3,16,48,93). Fungal attack on a dolomitic and seawater 335 

substrate resulted in the formation of Ca-oxalates (weddellite, CaC2O4.2H2O; whewellite, 336 

CaC2O4.H2O) and glushinskite (MgC2O4.2H2O) (105).  337 

 338 

Oxides  Several fungi can oxidize Mn(II) to Mn(IV)O2 including Acremonium spp. 339 

(17,106,107). Fungal oxidation is probably non-enzymatic in many cases although 340 

involvement of laccase and/or multicopper oxidases have been shown in ascomycetes (17,106). 341 

Non-enzymatic microbial Mn2+ oxidation may be effected through production of organic acids 342 

such as citrate, lactate, malate, gluconate, or tartrate. Some fungi can oxidize Mn(II) and Fe(II) 343 

in metal-bearing minerals such as siderite (FeCO3) and rhodochrosite (MnCO3) resulting in 344 

their precipitation as oxides (108). Manganese and iron oxides are major components (20–345 

30%) along with clay (~60%) and various trace elements in desert varnish (9,108). Oxidation 346 

of Fe(II) and Mn(II) by fungi can lead to the formation of dark patinas on glass surfaces (109). 347 
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Manganese-reducing microbes may mobilize oxidized manganese, releasing it into the aqueous 348 

phase. Most of those fungi that reduce Mn(IV) oxides reduce them indirectly (non-349 

enzymatically) with the likely mechanism being the production of metabolic products that act 350 

as reductants for Mn(IV) such as oxalate (1,103).  351 

 352 

Phosphates  Phosphorus occurs primarily as organic phosphate esters and inorganic forms, 353 

e.g. calcium, aluminium, and iron phosphates. Organic phosphates are broken down by 354 

phosphatases which liberate orthophosphate during the microbial decomposition of organic 355 

material. Fungi also mobilize orthophosphate from insoluble inorganic phosphates by 356 

producing acids or chelators, e.g. gluconate, citrate, oxalate, and lactate, which complex the 357 

metal resulting in dissociation. Phosphate-solubilization is very important in the plant 358 

mycorrhizosphere (110). Microbes can also play a role in the formation of phosphate minerals 359 

such as vivianite (Fe3(PO4)2.8H2O), strengite (FePO4.2H2O), and variscite (AlPO4.2H2O). 360 

The orthophosphate may be derived from organic phosphate degradation while Fe or Al may 361 

arise from solubilization of other minerals. Such formation of phosphate minerals is probably 362 

most common in soil (1). Fungal biodeterioration of metallic lead can result in pyromorphite 363 

(Pb5[PO4]3X [X= F, Cl or OH]) formation (111-113). Many fungi can solubilize uranium 364 

oxides and depleted uranium and reprecipitate secondary uranium phosphate minerals, 365 

uramphite and/or chernikovite, which can encrust fungal hyphae to high accumulation values 366 

(73,74,114). These minerals appear capable of long-term U retention (73,74,114,115). 367 

Aspergillus niger and Paecilomyces javanicus precipitated U-containing phosphate 368 

biominerals when grown with an organic P source with the hyphal matrix acting to localize the 369 

uranium minerals. The uranyl phosphates identified included potassium uranyl phosphate 370 

hydrate (KPUO6.3H2O), meta-ankoleite [(K1.7Ba0.2)(UO2)2(PO4)2.6H2O], uranyl phosphate 371 

hydrate [(UO2)3(PO4)2.4H2O], meta-ankoleite (K(UO2)(PO4).3H2O), uramphite 372 



 16 

(NH4UO2PO4.3H2O) and chernikovite [(H3O)2(UO2)2(PO4)2.6H2O] (80). These organisms 373 

could also mediate lead bioprecipitation during growth on organic P substrates (81). These 374 

minerals were identified as pyromorphite (Pb5(PO4)3Cl) which was only produced by P. 375 

javanicus, and lead oxalate (PbC2O4), which was produced by A. niger and P. javanicus (81). 376 

Several yeasts could also mediate lead bioprecipitation when utilizing an organic phosphorus-377 

containing substrate (glycerol 2-phosphate, phytic acid) as sole phosphorus source. The 378 

minerals precipitated here included lead phosphate (Pb3(PO4)2), pyromorphite (Pb5(PO4)3Cl), 379 

anglesite (PbSO4), and the lead oxides massicot and litharge (PbO). All yeasts examined 380 

produced pyromorphite, and most produced anglesite (82).  381 

 382 

Silicates Silicates comprise 30% of all minerals and about 90% of the Earth’s crust (116) 383 

(1,60,116). Many species of fungi play a role in the dissolution of silicates and therefore in the 384 

formation of clay minerals, and in soil and sediment formation (54, 87, 117-122). The presence 385 

of clay minerals can be a typical symptom of rock bioweathering by lichens and 386 

ectomycorrhizas (118,119). Bioweathering is mainly indirect, through the production of 387 

metabolites together with biomechanical effects (123,124). Geoactive metabolites may be 388 

excreted into the bulk phase but may also be produced by adhering organisms on silicate 389 

surfaces resulting in etching (125,126). After colonization of sheets of muscovite, a 390 

phyllosilicate mineral, by Aspergillus niger, dissolution was evident by a network of fungal 391 

“footprints” that reflected coverage by the mycelium (126). New biominerals resulted from 392 

fungal interactions with both zinc silicate and zinc sulfide, largely resulting from organic acid 393 

excretion. Zinc oxalate dihydrate was formed and mineral surfaces showed varying patterns of 394 

bioweathering and biomineral formation (127).  Silicate dissolution may release limiting 395 

nutrients like bound P and Fe. In lichen bioweathering of silicates, calcium, potassium, iron, 396 

clay minerals and nanocrystalline aluminous iron oxyhydroxides become mixed with fungal 397 
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organic polymers (118), while biotite (K(Mg,Fe(II))3AlSi3O10(OH,O,F)2) was penetrated by 398 

fungal hyphae along cleavages, partially converting it to vermiculite 399 

((Mg,Fe(II),Al)3(Al,Si)4O10(OH)2.4H2O) (117). The fungal partner has also been reported to 400 

be involved in formation of secondary silicates, such as opal (SiO2.nH2O) and forsterite 401 

(Mg2SiO4), in lichen thalli (128). The transformation rate of mica and chlorite to clay minerals 402 

was pronounced in ectomycorrhizosphere soil and probably a result production of organic acids 403 

and direct extraction of K+ and Mg2+ by fungal hyphae (119).  Fungal-clay mineral interactions 404 

also play an important role in soil development, aggregation and stabilization (16,129).  405 

Interactions between clay minerals and fungal biomass alters the sorptive properties of both 406 

clay minerals and fungal hyphae (130,131) and also affect the size, shape and structure of 407 

mycelial pellets (132). 408 

 409 

Reduction or oxidation of metals and metalloids   Many fungi can precipitate reduced forms 410 

of metals and metalloids, e.g. Ag(I) reduction to elemental silver Ag(0); selenate [Se(VI)] and 411 

selenite [Se(IV)] to elemental selenium [Se(0)]; tellurite [Te(IV)] to elemental tellurium 412 

[Te(0)] (133-135). Reduction of Hg(II) to volatile Hg(0) can also be mediated by fungi (67,68).  413 

Increased arsenate reduction contributed to tolerance in an Aspergillus sp. (136,137). Mn 414 

oxidation/reduction has been described above. 415 

  416 

Other mycogenic minerals  A range of minerals other than those mentioned above have been 417 

found in association with fungi (2,3,73,74,77,80-82,114). Mycogenic secondary minerals 418 

associated with fungal hyphae and lichen thalli include desert varnish (MnO and FeO), 419 

ferrihydrite (5Fe2O3.9H2O), iron gluconate, calcium formate, forsterite, goethite (α-420 

Fe3+O(OH)), moolooite (Cu(C2O4).0.4H2O), halloysite (Al2Si2O5(OH)4), and hydrocerussite 421 

(Pb3(CO3)2(OH)2) (16,48,52,108,120,128,138). Another biogenic mineral (tepius) has been 422 
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identified in association with a lichen carpet occurring in high mountain ranges in Venezuela 423 

(128).  424 

 425 

Halide transformations Several fungi have the ability to produce a variety of atmospheric 426 

methyl halides. This ability is widespread in both free-living and symbiotic fungi, and is 427 

dependent on substrate concentration and community composition (139,140). The production 428 

of chloromethane (CH3Cl) by wood-rotting fungi, e.g. Phellinus spp., may be particularly 429 

significant with one estimate of annual global input to the atmosphere from this source being 430 

160 000 t of which 75% is released from tropical and subtropical forests (139). Filamentous 431 

fungi may also contribute to the global circulation of stable iodine and also the long-lived 432 

radioiodine, 129I (half-life: 1.6 x 107 years), released from nuclear facilities (141). 433 

 434 

FUNGAL SYMBIOSES IN GEOMYCOLOGY 435 

Many fungi form partnerships with plants (mycorrhizas) and algae or cyanobacteria (lichens) 436 

that are significant geoactive agents. In general terms, the mycobiont is provided with carbon 437 

by the photobionts, while the mycobiont may protect the symbiosis from harsh environmental 438 

conditions (e.g., desiccation, metal toxicity), and provide increased access to inorganic 439 

nutrients such as phosphate and essential metals. 440 

 441 

Lichens are fungi that exist in facultative or obligate symbioses with one or more 442 

photosynthesizing partners occurring in almost all surface terrestrial environments (142). 443 

Lichens play important roles in retention and distribution of nutrient (e.g. C, N) and trace 444 

elements, in soil formation, and rock bioweathering (54,87,143).  Lichens can accumulate 445 

metals such as lead (Pb) and copper (Cu), and many other elements, including radionuclides 446 

(144).  They also form a variety of metal-organic biominerals, e.g. oxalates, especially during 447 
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growth on metal-rich substrates (98,143). On copper sulfide bearing rocks, precipitation of 448 

copper oxalate (moolooite) can occur within lichen thalli (145,146). 449 

 450 

The majority of terrestrial plants depend on symbiotic mycorrhizal fungi (147,148). 451 

Mycorrhizal fungi can mediate metal and phosphate solubilization from mineral sources, 452 

extracellular precipitation of metal oxalates, and immobilize metals within biomass 453 

(65,66,149-157). Such activities lead to changes in the physico-chemical characteristics of the 454 

root environment and enhanced bioweathering of soil minerals (55,157,158). Furthermore, 455 

ectomycorrhizal mycelia may respond to different soil silicate and phosphate minerals (e.g. 456 

apatite, quartz, potassium feldspar) by regulating growth and metabolic activity (159,160).   457 

  458 

Mycorrhizal fungi often excrete bioweathering agents such as low molecular weight 459 

carboxylic acids and siderophores (65,161). Ectomycorrhizal fungi can also form narrow 460 

pores in weatherable minerals in podzol E horizons, probably by dissolution of Al silicates 461 

(162,163). Such excretions can also release elements from apatite and wood ash (K, Ca, Ti, 462 

Mn, Pb) (164).  Ericoid mycorrhizal and ectomycorrhizal fungi can dissolve several 463 

cadmium, copper, zinc and lead-bearing minerals including metal phosphates 464 

(65,66,152,161,165). Mobilization of phosphorus from inorganic and organic phosphorus 465 

sources is generally regarded as one of the most important functions of mycorrhizal fungi, 466 

and this can also result in redistribution of incorporated metals, and the formation of other 467 

secondary minerals including other metal phosphates. The ericoid mycorrhiza Oidiodendron 468 

maius can solubilize zinc oxide and phosphate (161). Many ericoid mycorrhizal and 469 

ectomycorrhizal fungi are able to solubilize zinc, cadmium, copper phosphates and lead 470 

chlorophosphate (pyromorphite) releasing phosphate and component metals (65,152). An 471 

association of arbuscular mycorrhizal fungi (AMF) with Lindenbergia philippensis, sampled 472 
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from a Zn-contaminated settling pond at a zinc smelter, enhanced Zn accumulation in Zn-473 

loaded rhizosphere sediment compared to treatments that suppressed AMF colonization. A 474 

significant proportion of Zn was present as crystalline and other solid materials that were 475 

associated with the root mucilaginous sheath (166). Such results may indicate a role for AMF 476 

in enhancing Zn immobilization in the rhizosphere of plants that successfully colonize Zn 477 

mining and smelting disposal sites (153,166,168). 478 

 479 

ENVIRONMENTAL AND APPLIED SIGNIFICANCE OF GEOMYCOLOGY 480 

The kinds of processes detailed previously can impact upon human society not only through 481 

their environmental significance and biotechnological applications, but also in deleterious 482 

contexts such as biodeterioration and biocorrosion. The biodeterioration of stone and mineral 483 

artefacts represents a loss of cultural heritage (13,14). Materials used to stabilize building 484 

blocks (mortar) and to coat surfaces prior to painting (plaster or stucco) are also susceptible 485 

to biodeterioration (13). Highly deteriorated stone surfaces provide a ‘‘proto-soil’’ for 486 

colonization by mosses, ferns and higher plants (14). Mechanisms of stone deterioration are 487 

complex and include most of the direct and indirect mechanisms previously discussed for 488 

mineral dissolution (13,169). Extracellular polymeric substances (EPS) are also capable of 489 

metal complexation and weakening of mineral lattices through wetting and drying cycles, as 490 

well as the production of efflorescences, i.e. secondary minerals produced through reaction of 491 

anions from excreted acids with cations from the stone (170). Physical damage may be 492 

caused by hyphal penetration of weakened areas (88,138).  Lichens cause damage due to 493 

penetration by their rhizines, composed of fungal filaments, and expansion/contraction of the 494 

thallus on wetting/drying (171). ‘‘Lichen acids’’, mainly oxalic acid, cause damage at the 495 

stone/lichen interface, and lichen thalli may accumulate up to 50% calcium oxalate, 496 

depending on the substrate (172,173). In addition, carbonic acid formed in the lichen thallus 497 
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can solubilize calcium and magnesium carbonates in calcareous stone (174). Fungal 498 

biodeterioration of ancient ivory (natural apatite; walrus tusk) was accompanied by 499 

widespread etching and tunneling by hyphae and extensive formation of calcium oxalate 500 

monohydrate, whewellite (175). Concrete and cement can be biodeteriorated and in some 501 

environments, fungi dominate the concrete-deteriorating microbiota (13,14,176-178). 502 

Microbial attack on concrete is mediated by protons, inorganic and organic acids and the 503 

production of hydrophilic slimes leading to biochemical and biomechanical deterioration 504 

(13,75,169). Several species of microfungi were able to colonize samples of the concrete used 505 

as radioactive waste barrier in the Chernobyl reactor and leached iron, aluminium, silicon and 506 

calcium, and re-precipitated silicon and calcium oxalate (75).   507 

 508 

Mineral and metal solubilization mechanisms enable metal removal from industrial wastes, 509 

low-grade ores, and metal-bearing minerals. This may have application in bioremediation, 510 

metal biorecovery and recycling (58,68,179,180). Metals can be solubilized from fly ash 511 

(originating from municipal solid waste incineration), contaminated soil, electronic scrap and 512 

other waste materials by fungal activity (179,181). Although fungal systems cannot compare 513 

with the efficiency of bacterial bioleaching, they may be more suited to specific bioreactor 514 

applications (58).  A variety of fungal mechanisms result in metal immobilization such as 515 

biosorption, bioaccumulation and bioprecipitation. Biosorption is a physico-chemical 516 

process, and is a property of both living and dead organisms (and their components), and 517 

fungi are effective agents for removal of metals, radionuclides and other substances from 518 

solution (69,70,71,76,130,182-193). Urease-positive fungi can be used to precipitate metal-519 

containing carbonates, some in nanoscale dimensions, thus providing a means of metal 520 

biorecovery as well as potentially useful nanoscale biomineral products (94,95). Similarly, 521 

the formation of other insoluble metal compounds by fungi or their metabolites could also be 522 
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considered as a means to biorecover metals, metalloids and radionuclides, e.g. oxalates, 523 

oxides, oxalates, and phosphates, as well as the production of elemental metal or metalloid 524 

forms (2,78). Some biomineral and elemental products, including those of nanoscale 525 

dimensions, are of relevance to the production of novel advanced biomaterials with 526 

applications in metal and radionuclide bioremediation, antimicrobial treatments (e.g. nano-527 

silver), solar energy and electrical battery applications, and microelectronics (194). In a novel 528 

approach, urease-positive Neurospora crassa was used to precipitate manganese carbonate. 529 

After thermal treatment at 300oC, the carbonized biomass-manganese oxide composite 530 

material was used in lithium-ion batteries (LiB) and supercapacitors where it was found to 531 

exhibit excellent electrochemical properties. In LiB, around 90% charge capacity was 532 

retained after 200 charge-discharge cycles (195). 533 

 534 

The ability of fungi and bacteria to transform metalloids has been successfully used for 535 

bioremediation of contaminated land and water. Selenium methylation results in 536 

volatilization and this has been used to remove selenium from the San Joaquin Valley and 537 

Kesterson Reservoir, California (196). Mycorrhizal associations may have application in 538 

phytoremediation (197,198), the use of plants to remove or detoxify environmental pollutants 539 

(199), by metal phytoextraction or by acting as a biological barrier (200-202).  Glomalin, an 540 

insoluble glycoprotein, is produced in copious amounts on hyphae of arbuscular mycorrhizal 541 

fungi and can sequester metals such as Cu, Cd and Pb (203). Arbuscular mycorrhizal fungi 542 

can also decrease U translocation from plant roots to shoot (204-206).  For ericaceous 543 

mycorrhizas, the fungus prevents translocation of Cu and Zn to host plant shoots 544 

(147,207,208).  The development of stress-tolerant plant-mycorrhizal associations may be a 545 

promising strategy for phytoremediation and soil amelioration (161,209,210).  546 

 547 
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Some of the geomycological processes detailed previously may have consequences for 548 

abiotic soil treatment processes, notably the immobilization of toxic metals by phosphate 549 

formation.  Apatite Ca5(PO4)3(F,Cl,OH), pyromorphite Pb5(PO4)3Cl, mimetite 550 

Pb5(AsO4)3Cl and vanadinite Pb5(VO4)3Cl are the most common prototypes of the apatite 551 

mineral family. Such minerals hold promise for stabilization and recycling of industrial and 552 

nuclear waste and have been explored for treatment of lead-contaminated soils and waters 553 

(211-216). The stability of these minerals is therefore of interest in any soil remediation 554 

strategy seeking to reduce the effects of potentially-toxic elements, like Pb, V and As. For 555 

example, pyromorphite is a highly insoluble lead phosphate mineral under a wide range of 556 

geochemical conditions and has often been suggested as a means to reduce Pb bioavailability. 557 

However, solubilization of pyromorphite and formation of lead oxalate by several free-living 558 

and symbiotic fungi demonstrates that pyromorphite may not be as effective at immobilizing 559 

lead as some previous studies have suggested (64,65). Similarly, despite the insolubility of 560 

vanadinite, fungi exerted both biochemical and biophysical effects on the mineral including 561 

etching, penetration and the formation of new biominerals (217). Lead oxalate was 562 

precipitated by Aspergillus niger during the bioleaching of vanadinite and mimetite which 563 

implies a general fungal mechanism for the transformation of lead-containing apatite group 564 

minerals (e.g. vanadinite, pyromorphite, mimetite) (217,218). This pattern of fungal 565 

bioweathering of lead apatites could be extended to other metal apatites, such as calcium 566 

apatite [Ca5(PO4)3(OH,F,Cl)]. Here, the formation of monohydrated (whewellite) and 567 

dihydrated (weddellite) calcium oxalate can be accomplished by many different fungal 568 

species (79,93,99,175,219,220). The ability of free-living and mycorrhizal fungi to transform 569 

toxic metal-containing minerals should therefore be taken into account in risk assessments of 570 

the long-term environmental consequences of in situ chemical remediation techniques, 571 

revegetation strategies or natural attenuation of contaminated sites. The bioweathering 572 
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potential of fungi has been suggested as a possible means for the bioremediation of asbestos 573 

rich soils.  Several fungi could extract iron from asbestos mineral fibres (e.g. 7.3% from 574 

crocidolite and 33.6% from chrysotile by a Verticillium sp.), thereby removing the reactive 575 

iron ions responsible for DNA damage (221). 576 

 577 

CONCLUSIONS 578 

The geoactive roles of fungi have often received scant attention in geomicrobiological 579 

contexts but they are of clear importance in several key areas. These include a variety of 580 

organic and inorganic transformations important in nutrient and element cycling, rock and 581 

mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. 582 

Lichens and mycorrhizas are of special significance as geoactive agents. Organic matter 583 

decomposition is important for the cycling of major biomass-associated elements, e.g. C, H, 584 

N, O, P and S as well as all other elements that may be found in lower concentrations. 585 

Transformations of metals and minerals are central to many geomicrobial processes, and 586 

fungi can effect changes in metal speciation, toxicity and mobility, as well as mediate mineral 587 

formation or dissolution. Such mechanisms are important components of natural 588 

biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and 589 

minerals, e.g. S and P, and metalloids, actinides and metal radionuclides. It is within the 590 

terrestrial environment where fungi have the greatest abundance and geochemical influence. 591 

However, they are also important in aquatic habitats and are now recognized as significant 592 

components of aquatic sediments and the deep subsurface. Geomycological processes can 593 

have beneficial or detrimental consequences in a human context. Beneficial applications in 594 

environmental biotechnology include metal and radionuclide bioleaching, biorecovery, 595 

detoxification, and bioremediation, and in the production of biominerals or metal(loid) 596 

elements with catalytic or other properties in nanoparticle, crystalline or colloidal forms. The 597 
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latter may be relevant to the development of novel biomaterials. Adverse effects include 598 

biodeterioration and destruction of natural and synthetic materials, rock and mineral-based 599 

building materials (e.g. concrete), cultural heritage, biocorrosion of metals, alloys and related 600 

substances, and adverse effects on radionuclide speciation, mobility and containment. The 601 

ubiquity and importance of fungi in biosphere processes underlines the importance of 602 

geomycology as a conceptual framework encompassing the environmental activities of fungi, 603 

their impact, and their applied significance. 604 

 605 
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