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The oxygen-evolving photosystem II (PSII) complex located in chloroplasts and 

cyanobacteria is sensitive to light-induced damage1 which unless repaired causes reduction in 

photosynthetic capacity and growth. Although a potential target for crop improvement, the 

mechanism of PSII repair remains unclear. The D1 reaction center protein is the main target 

for photodamage2, with repair involving the selective degradation of the damaged protein by 

FtsH protease3. How a single damaged PSII subunit is recognised for replacement is 

unknown. Here, we have tested dark stability of PSII subunits in strains of the 

cyanobacterium Synechocystis PCC 6803 blocked at specific stages of assembly. We have 

found that when D1, which is normally shielded by the CP43 subunit, becomes exposed in a 

photochemically active PSII complex lacking CP43, it is selectively degraded by FtsH even in 

the dark. Removal of the CP47 subunit, which increases accessibility of FtsH to the D2 

subunit, induced dark degradation of D2 at a faster rate than that of D1. In contrast CP47 and 

CP43 are resistant to degradation in the dark. Our results indicate that protease accessibility 

induced by PSII disassembly is an important determinant in the selection of the D1 and D2 

subunits to be degraded by FtsH. 
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The unusually high rate of synthesis and degradation, or turnover, of the D1 subunit of PSII, 

first observed over 40 years ago4,5, reflects the selective replacement of D1 during the repair 

of PSII in response to light damage. In the cyanobacterium Synechocystis sp. PCC 6803 

(hereafter referred to as Synechocystis), degradation of D1 is mediated by a specific 

membrane-bound FtsH2/FtsH3 protease complex3. How FtsH complexes differentiate 

between damaged and undamaged D1 subunits is unclear6. Given that the D1 protein is 

shielded in PSII by the PSII inner antenna, CP43, several small transmembrane PSII subunits 

as well as extrinsic proteins on the lumenal side of the complex, one possibility is that at least 

partial disassembly of PSII, possibly triggered by photodamage, facilitates contacts between 

FtsH and D1. If selective degradation of D1 is primarily driven by accessibility, which does 

not need to be caused just by photo-oxidative damage to D1, one interesting prediction is that 

undamaged D1 might be preferentially degraded in the dark in PSII complexes that have been 

mutated to improve access.  

High resolution structures of cyanobacterial PSII have confirmed that the D1 and D2 

reaction center subunits are shielded in the membrane by the intrinsic CP43 and CP47 

subunits, and capped on the lumenal side of the membrane by three extrinsic subunits: PsbO, 

PsbU and PsbV (Fig. 1a)7,8. Synechocystis strains lacking the PsbO subunit still assemble 

oxygen-evolving PSII complexes but show a higher rate of D1 turnover than WT, possibly in 

response to an increase in the rate of photodamage to D1 due to perturbations on the donor 

side of PSII9,10. Enhanced D1 degradation in ΔPsbO might also be due to exposure of specific 

lumenal regions of D1 (normally hidden by PsbO and PsbU proteins, see Fig. 1) that are 

recognized by the lumenally exposed sequences of the FtsH complex. In the latter case the D1 

protein in the ΔPsbO strain might still be degraded in the dark. To test this possibility, WT and 

the ΔPsbO strain were incubated in the dark in the absence and in the presence of the protein 

synthesis inhibitor lincomycin (LIN) to eliminate possible protein resynthesis. Subsequent 
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immunoblotting experiments confirmed that the major PSII proteins D1, D2, CP43 and CP47 

were stable in the dark over a 4 h period, consistent with an inability of FtsH to access D1 and 

D2 in both WT and ΔPsbO unless the complex was further modified by photodamage  (Fig. 

1b)10. 

A Synechocystis mutant lacking the inner PSII antenna CP43 (ΔCP43 strain) also 

shows an extremely fast turnover of the D1 protein in the light11 (Fig. S1). Like in ΔPsbO this 

turnover is dependent on the FtsH2/FtsH3 complex11 and has been thought to relate to the fast 

light-induced damage occurring in the non-oxygen evolving PSII complex termed RC47, 

which lacks CP43 and associated low-molecular-mass (LMM) subunits but it is still 

photochemically active and able to transfer an electron from redox-active tyrosine Yz to 

bound plastoquinone QA
12. However, based on the available structural models of 

cyanobacterial PSII7,8, the absence of CP43 would necessarily expose the N-terminal stromal 

helix, first two trans-membrane helices and the interconnecting lumenal loop of D1, allowing 

interactions with other proteins in the membrane including the FtsH2/FtsH3 protease complex 

(Fig. 2a). To test whether FtsH could now degrade D1 in the absence of light-induced damage, 

immunoblotting experiments were performed on low-light grown cells transferred to the dark 

in the absence and presence of lincomycin. The data showed that levels of the CP47, D1 and 

D2 proteins were maintained in the absence of the inhibitor but in its presence the D1 protein 

was degraded to less than 20% of its initial level after 4 h of incubation (Fig.2b). The D2 

protein was more stable but degraded to about 50% of its initial level while the CP47 antenna 

was not degraded at all. All three large PSII proteins were stable during the 4 h dark 

incubation in a derivative of the ΔCP43 mutant lacking the FtsH2/FtsH3 complex 

(ΔCP43/ΔFtsH2) confirming the crucial role of the FtsH2/FtsH3 complex in dark degradation 

(Fig. 2a). We also used native gel electrophoresis to check the assembly status of PSII 

proteins in ΔCP43 before and after dark incubation (Fig. 2c). At the beginning, all of D1 and 
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D2 were present in the RC47 complex, and only low amounts of CP47 were detected in an 

unassembled state. After the 4-hour dark treatment in the presence of inhibitor most of the D1 

protein had been degraded while D2 and especially CP47 accumulated as unassembled 

proteins. A small amount of D2 and CP47 co-migrated in a region that could possibly 

correspond to a D2-CP47 degradation intermediate produced after D1 removal (Fig. 2c, 

vertical arrow). In contrast, in the absence of the FtsH2/FtsH3 complex, the RC47 complex 

found in the ΔCP43/ΔFtsH2 mutant remained intact. 

Spectroscopic measurements have confirmed that the isolated RC47 complex is able to 

photoreduce QA and photo-oxidize tyrosine Yz with kinetics equivalent to that seen in non-

oxygen-evolving PSII core complexes containing CP43 of WT12. Nevertheless, as the RC47 

complex could be very sensitive to light-induced damage even during its growth under low 

light conditions, we pre-incubated the cells of the mutant in the dark for 14 hours to prevent 

possible light-induced damage to PSII before adding lincomycin (Fig. S2). After 4 hours of 

additional dark incubation the D1 protein was degraded to about 50% of its initial level. In 

summary, the data confirmed that the FtsH2/FtsH3 heterocomplex can degrade the D1 protein 

in the RC47 complex independent of light-induced damage. D2 is degraded slower, possibly 

after detachment of CP47 and LMM polypeptides PsbX and PsbY (Fig. 2a) while free CP47 is 

clearly much more resistant to proteolysis than D1 and D2.  

It is still uncertain what triggers the detachment of CP43. Given that CP43 provides 

one of the amino-acid ligands to the Mn4CaO5 cluster, one possibility is that at least partial 

detachment of CP43 might be driven by light-induced destruction of the cluster, either as a 

primary effect of light-induced oxidative damage13 or a secondary effect following damage 

elsewhere in PSII13. Detachment of some LMM PSII subunits like PsbJ may also change 

binding of CP43 and allow contact of D1 with FtsH. Another possibility is that light-induced 

oxidative damage to the polypeptide chain of D1 or bound co-factors weakens the interaction 
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of D1 with CP43. Light-induced damage to PSII could also cause peroxidation of the lipid 

belt located between the D1 protein and CP43 antenna7,8 leading to destabilization of CP43 

binding and opening the space for FtsH. Alternatively, a specific lipase activated by light-

induced damage could attack the belt allowing access of FtsH to D1. We do not exclude the 

possibility that FtsH itself plays an active role in the partial disassembly of PSII during the 

initial phase of repair. Although the RC47 complex accumulates in the absence of FtsH211, 

detachment of CP43 in this case might be an effect of advanced light-induced damage such as 

the selective oxidation of Trp residues in CP4314 which occurs in PSII when D1 cannot be 

rapidly replaced15. Detachment of CP43 most probably requires release of extrinsic lumenal 

proteins like PsbV. In this case lumenal parts of FtsH2/FtsH3 complex may provide temporary 

low-affinity binding sites to facilitate re-binding of extrinsic proteins to PSII during re-

assembly. 

If accessibility is important for selective degradation of D1, we reasoned that the 

removal of both CP43 and CP47 would now enhance degradation of D2 in addition to D1. To 

test this, we used a deletion strain lacking CP47 termed ΔCP47. In this strain PSII forms two 

RC complexes (RCa and RC*) containing D1, D2, PsbE, PsbF, PsbI and several additional 

proteins16 while the second PSII antenna CP43 cannot attach to the complex and remains in an 

unassembled state17. According to the structural models of PSII the N-terminal tail of D2 as 

well as its N-terminal trans-membrane helices and the first lumenal loop are uncovered due to 

the absence of CP47 and PsbX (Fig. 3a, see also16). A pulse-chase experiment in cells exposed 

to light showed that the D2 protein was now turned-over at a rate exceeding that of the D1 

protein, while unassembled CP43 was stable as observed for the CP47 antenna in the ΔCP43 

strain (Fig. S1). When the cells of the mutant were incubated in the dark in the presence of 

lincomycin (Fig. 3b), the amount of the D2 protein decreased to about 50% of its initial 

content while the level of D1 (sum of mature D1 and iD1, a maturation intermediate18) 
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decreased to about 70% of the initial level. Unlike the ΔCP43 mutant both proteins partly 

disappeared even in the absence of inhibitor suggesting that the absence of CP47 negatively 

affected the accumulation of D1 and D2 in the dark. When the FtsH2 protease was inactivated 

in the ΔCP47 strain, D1 and D2 were stabilized in the dark (Fig. 3a) again documenting the 

crucial role of the FtsH2/FtsH3 heterocomplex in degradation. 2D electrophoresis showed that 

the RCa complex containing D2, D1, cytochrome b-559, PsbI and the assembly factor Ycf4816 

disappeared slightly faster than the larger RC* complex which additionally contains the 

recently identified Ycf39-Hlip complex16 (Fig. 3c). Overall, these data revealed that D2 

degradation could also occur in the dark independently of light-induced damage in PSII RC 

assembly complexes.  

Previous studies have often assumed that light-induced oxidative damage to D1 and D2 was 

required to trigger selective degradation2. The data presented here suggest that selective 

degradation of D1 and D2 can actually occur in the dark. This raises the new idea that 

undamaged D1 and D2 within PSII sub-complexes are already naturally triggered for 

proteolytic degradation by FtsH and, consequently, that unwanted degradation of undamaged 

D1 and D2 is prevented through the attachment of CP43 and CP47 antennae and LMM 

polypeptides. Given this, we suggest that damaged D1 is recognised and selectively degraded 

because of partial or complete detachment of CP43 from damaged PSII complexes which 

thereby directs the proteolytic machinery towards D1 rather than D2 degradation (for model 

see Fig. 4). Nevertheless, as the absence of CP43 may also affect binding of nearby LMM 

PSII subunits like PsbI and PsbJ, we cannot fully exclude that this modified binding may also 

contribute to the better accessibility of D1 to the protease. It would be logical for this 

accessibility to be regulated so that is synchronized with protein replacement but as yet the 

mechanistic details remain elusive. FtsH complexes play a key role in PSII repair in 

chloroplasts so it is likely that a similar situation applies to plants. In our model (Fig. 4), the 



8 

 

stimulatory effect of light on D1 and D2 degradation2 is likely to be due to oxidative damage 

further destabilizing PSII structure to allow easier removal from the complex.  

In contrast, we found that detached CP47 and CP43 are much more resistant to 

proteolytic degradation in the dark, possibly because their transmembrane helices are much 

more densely packed and stabilized by pigment binding, the N-terminal tail is inaccessible 

and accessory and LMM subunits bind on the periphery to prevent FtsH binding. Previous 

work on assembly mutants has reported that CP43 can accumulate to WT levels but that CP47 

is much less stable and is a target of the FtsH2/FtsH3 complex11. Why detached CP47 is much 

more stable than pre-assembled CP47 is currently unclear and might reflect differences in the 

protein conformation depending on the content of bound pigments and auxiliary protein 

factors that help stabilize released CP47. Alternatively, pre-assembled CP47 might undergo 

more accurate quality control in the biogenesis membrane regions than in regions in which D1 

and D2 are degraded.  

 

Methods 

Strains and Culture Conditions 

The following previously described mutants of the glucose-tolerant strain of Synechocystis sp. 

PCC 6803, referred to here as wild-type (WT)19, were used in the study: (i) the PsbO-less 

strain, ΔPsbO, with psbO gene inactivated by a spectinomycin (specR) resistance cassette20, 

(ii) the CP43-less strain, ΔCP43, with psbDIC gene inactivated by a chloramphenicol (CmR) 

resistance cassette21, FtsH2-less variant of CP43-less strain with psbC gene inactivated by an 

kanamycin resistance cassette and ftsH2 gene inactivated by chloramphenicol resistance 

cassette11, and (iii) the CP47-less strain, ΔCP47, with the psbB gene inactivated by an 

spectinomycin resistance cassette22, and its FtsH2-less variant with ftsH2 gene inactivated by 
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chloramphenicol resistance cassette. The latter ΔCP47/ΔFtsH2 double mutant was obtained by 

transforming the ΔCP47 cells by genomic DNA from ftsH2-less strain and selection for 

chloramphenicol resistance. The complete segregation of the mutant was confirmed by PCR. 

The strains were grown in BG-11 medium containing 5 mM glucose, solid media contained in 

addition 10 mM TES/NaOH, pH 8.2, 1.5 % agar and 0.3% sodium thiosulphate. 50-100 ml 

liquid cultures were shaken in 250 ml conical flasks at 29 °C with a surface irradiance of 10 

µmol photons m
-2

 s
-1

 of white light due to light sensitivity of the ftsH2 deletion strains. 

Cultures were analyzed in the exponential phase (OD750nm in the range 0.6-0.8). 

 Before the dark incubation experiments the cells of each strain were divided into two 

aliquots, each placed into an Erlenmayer flask and stirred in the dark for four hours either in 

the absence or presence of lincomycin (LIN, 100 µg ml-1 final concentration)   

 

Thylakoid preparation and protein analyses 

Cyanobacterial membranes were prepared by breaking the cells using glass beads23. For 

analysis of protein complexes, isolated membranes were solubilized in 1% (w/w) dodecyl-β-

D-maltoside (DM) and analyzed on 4-14% clear-native gel24,23. Individual components of 

protein complexes were resolved by incubating the gel strip from the first dimension in 2% 

SDS and 1% dithiothreitol for 30 min at room temperature and proteins were separated in the 

second dimension by SDS-electrophoresis in a denaturing 12-20% polyacrylamide gel 

containing 7 M urea23. Samples obtained for each strain were always analyzed on a single gel 

for direct comparison. One-dimensional SDS-PAGE for analysis of pulse-chase labeled 

proteins and for quantification of proteins in blots was carried out in the same 12-20% 

polyacrylamide gel containing 7 M urea. For autoradiography the gels were stained by 

Coomassie Blue, dried and exposed to Phosphorimager plate (GE Healthcare) overnight. The 
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intensity of the radioactively labeled bands was quantified by ImageQuant TL software (GE 

Healthcare). For immunoblotting, the gels were first stained with Sypro Orange (Stained gels) 

proteins from 1D or 2D gels were  transferred onto a PVDF membrane and incubated with 

primary antibodies specific for D1, D2, CP43, CP47 and Ycf3916 as well as with secondary 

antibody conjugated with horseradish peroxidase (Sigma-Aldrich, Germany). Samples with 

the same chlorophyll content (2 µg for 1D gels and 4 µg for 2D gel) were loaded onto the gel. 

For both 1D and 2D gels, bands of ATP synthase subunits α and β (AtpA/B) were used as the 

loading control and they are shown on the gels. In 1D blot the dilution series of the sample 

from the cells just before dark incubation (0h dark; 0.5, 1 and 2 µg of chlorophyll 

corresponding to 25, 50 and 100% of 0h dark sample) is also shown to document the response 

of the antibody. Three independent quantifications of proteins were performed and the values 

in the figures represent means of these measurements.  

 Models of PSII complexes based on the structure of Thermosynechococcus elongatus 

(PDB ID 4V62) were performed using PyMOL Molecular Graphics System. The D1 protein 

is shown in red, D2 in orange, CP47 in green, CP43 in pink, small PSII  subunits in blue, 

PsbO in yellow, PsbU in blue-green and PsbV in dark violet. 

 

Correspondence and requests for materials should be addressed to Josef Komenda 

(komenda@alga.cz) 
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Figure legend 

Figure 1. Model of the PSII core complex and complex lacking the lumenal subunits 

PsbO and PsbU (a) and the dark stability of PSII proteins in WT and PsbO-less mutant 

(b).  

(a) Designation of proteins is described in Material and Methods, arrows designate N-terminal 

helices of D1 and D2, probable primary targets for the FtsH2/FtsH3 protease.  

(b) Cells of the mutants were incubated in the dark in the presence (+LIN) and absence (-LIN) 

of lincomycin and their PSII protein content was assessed by immunoblotting. The values 

represent mean of three independent measurements of band intensities, SE did not exceed 8%.  

 

Figure 2. Model of the RC47 assembly intermediate complex (a), degradation of PSII 

proteins in the ΔCP43 and ΔCP43/ΔFtsH2 mutant strains in the dark (b) and two 

dimensional analysis of membranes from the control and dark incubated mutant cells 

(c).  

(a) Designation of proteins and helices as in Fig. 1. 

(b) Cells of the mutants were incubated in the dark as in Fig.1, SE of three independent 

measurements did not exceed 10%.  

(c) Proteins of the mutant cells were analyzed by 2D CN/SDS-PAGE, the gel stained by Sypro 

Orange (Gel stain) was electroblotted and used for immunodetection of PSII proteins.  

Figure 3. Model of the RCII assembly intermediate complex (a), degradation of the PSII 

proteins in the ΔCP47 and ΔCP47/ΔFtsH2 strain in the dark (b) and two dimensional 

analysis of membranes from the control and dark incubated mutant cells (c). 

(a) Designation of proteins and helices as in Fig. 1. 
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(b) Cells of the mutants were incubated in the dark as in Fig.1, SE of three independent 

measurements did not exceed 10%.  

(c) Proteins of the mutant cells were analyzed by 2D CN/SDS-PAGE, the gel stained by Sypro 

Orange (Gel stain) was electroblotted and used for immunodetection of PSII proteins. 

Figure 4. Model of the selective degradation of the D1 and D2 proteins. PSII complexes 

are viewed perpendicular to the membrane plane with transmembrane helices shown in D1 

(A) in red, D2 (D) in orange, CP47 (47) in green, CP43 (43) in pink and small subunits in 

blue. Only D1 and D2 in the assembly complexes lacking CP43 (RC47) or both CP43 and 

CP47 (RCII) can be approached by FtsH2/3 complex to initiate dark degradation. 

Photodamage to the monomeric PSII core complex (RCCII) and larger dimeric complexes 

(not shown) induces conformational changes to allow access of FtsH2/3 to damaged D1. 
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