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Evidence Based Cross Validation for Acoustic Power Transmission via 

Trans-Fusimo Treatment System Software for MR Guided Focused 

Ultrasound  

2) Abstract 

Introduction The novel Trans-Fusimo Treatment System (TTS) is designed to control Magnetic 

Resonance guided Focused Ultrasound (MRgFUS) therapy to ablate liver tumours under 

respiratory motion.  It is crucial to deliver the acoustic power within tolerance limits for effective 

liver tumour treatment via MRgFUS.  Before application in a clinical setting; evidence of 

reproducibility and reliability is a must for safe practice.  Materials and methods The TTS 

software delivers the acoustic power via ExAblate-2100 Conformal Bone System (CBS) 

transducer.  A built-in quality assurance application was developed to measure the force values, 

using a novel protocol to measure the efficiency for the electrical power values of 100 and 150W 

for 6s of sonication.  This procedure was repeated thirty times by two independent users against 

the clinically approved ExAblate-2100 CBS for cross-validation.  Results Both systems proved 

to deliver the power within the accepted efficiency levels (70-90%).  Two sample t-tests were 

used to assess the differences in force values between the ExAblate-2100 CBS and the TTS 

(p>0.05).  Bland-Altman plots were used to demonstrate the limits of agreement between the two 

systems falling within the 10% limits of agreement.  Two sample t-tests indicated that TTS does 

not have user dependency (p>0.05).  Conclusions The TTS software proved to deliver the 

acoustic power without exceeding the safety levels.  Results provide evidence as a part of 

ISO13485 regulations for CE marking purposes.  The developed methodology could be utilised 

as a part of quality assurance system in clinical settings; when the TTS is used in clinical 

practice. 

3) Keywords: acoustic power measurement for reliability; Blant-Altman; cross-

validation; quality assurance; legislation; pre-clinical MRgFUS, two-sample t-

test. 
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4) Main text 

a) Introduction 

   Magnetic Resonance guided Focused Ultrasound (MRgFUS) has been CE 

Conformité Européene), and Food & Drug Administration (FDA) approved for the 

treatment of uterine fibroids and the treatment of pain for bone metastasis [1-4]. ExAblate 

2000 and 2100 (InSightec, Israel) are systems for treatment of these diseases, to apply the 

static MRgFUS technique.  However, the targeting of Focused Ultrasound (FUS) in upper 

abdominal organs, such as in liver remains particularly challenging due to the complexity 

of the displacement and the deformation due to the respiratory motion; adjacent risk 

structures and the possible interference by the rib cage [5].  Trans-Fusimo Treatment 

System (TTS) software (FP7 Project Trans-Fusimo, Fraunhofer, Mevis, Germany) is a 

recently developed software aiming at treatment of liver by using MRgFUS methodology.  

This novel software makes use of the mathematical models describing the motion due to 

breathing, the propagation of the ultrasound waves through the rib cage, and into the 

targeted tumour destination and the multi-base line algorithm to read the temperature 

during ablation [5].  Virtual reality simulations prove to be promising in achieving an 

accurate prediction of a real patient scenario [5].  However, safe and efficient application 

of this procedure requires and depends on successful configuration of the hardware and 

the efficient transmission of electrical power being converted into acoustical power.  

 

The TTS system drives the transducer of the Conformal Bone System (CBS) (InSightec, 

Ltd, Tirat Carmel, Israel).  To achieve this task, TTS software has a Graphical User 

Interface (GUI) where an operator activates a command to drive the transducer.  GUI 

requires an operator to provide the information for the planned sonication coordinates, 
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sonication power, and the duration.  An electronically steerable FUS transducer receiving 

this sonication command has a grid of small transducer elements.  Focusing the 

transducer to a position is achieved by altering the phase differences between the 

elements such that the single element waves superpose constructively in the intended 

focal spot.  During sonication in MR imaging, the phase values of the sonicated spot 

change.  Based on this change, the colour mapped thermometry data reflecting the 

temperature increase caused by the FUS ablation, is visualized in the user interface of the 

TTS software.  These images are collected by using the 1.5 T MR Scanner (GE 

Healthcare, UK) and sent to the TTS software in real time.  The system configuration is 

shown in detail on Figure1.  The treatment system requires real time interaction of sub-

systems (Figure1) such as TTS workstation; TTS software; InSightec Control PC and 

CBS transducer; MR work station and Scanner.  A Transistor-Transistor-Logic (TTL) 

pulse generator provides synchronization with TTS software and the MR Scanner.  

[Insert Fig1]  

The TTS software is classified as class 3/C high risk software, where serious injury or 

death is possible according to the international standard IEC 62304.  It requires deep 

design documentation and testing before clinical trials.  The TTS software controls the 

FUS transducer by sending the newly computed phase information to the FUS transducer 

to ablate human tissue; therefore, the major risk is that the TTS software might send the 

wrong command to the FUS transducer which may produce unexpected levels of power.  

Having this complex infrastructure, it is crucial to develop reliable protocols following 

the requirements of International Organisation for Standardization ISO 13485 Quality 

Management System (QMS).  This is a mandatory step for CE mark approval for clinical 

use.  The CE mark is a legal designation that a medical product has met the requirements 

of all relevant Medical Device Directives in the EU.  In this study, the power protocol, 
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which was developed according to the requirements of ISO 13485, is explained in detail.  

ISO13485 provides the standards for evaluation of complex systems by taking 

precautions to prevent any errors and traps in the planning stage.  An important part of 

the quality control is the detection of both random and systematic errors.  This is achieved 

by critically looking at the performance, the analyses; the instruments and the operators 

taking part in the evaluation [6]. For this reason, design and development plans, risk 

assessment forms, risk assessment matrices and traceability matrices for the designed 

protocol is prepared according to the rules and regulations of ISO13485. To eliminate 

risk related to false positive and false negative test results, special attention was given to 

prepare easy to follow protocols; measuring one process parameter at a time only.  The 

developed protocol enables the collection of results for the delivered acoustic power 

during a FUS application, and is utilised as a part of the required evidence for getting 

approvals for safe use in clinics.  However, the TTS does not only require development 

of the power protocol but also the development of protocols for measuring the sonication 

duration; the position and thermometry to provide quantitative evidence in pre-clinical 

settings [7].  For this reason, initially, the system parameters were identified for the full 

system validation and the specs for these parameters were determined based on the 

current lab practices for static and moving case applications [7].  Based on the successful 

evaluation of the static and the moving case scenario validations of the TTS in pre-clinical 

settings, more clinical evidence via animal testing is intended to be collected [7].  Finally, 

the evidence of successful application of the treatment on volunteered patients, leads into 

the successful approval of CE marking procedure for MRgFUS in clinical settings. 

 

The US Food and Drug Administration (FDA) has also reported requirements that the 

equipment should not be used for clinical application if it generates higher acoustic power 
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levels than similar equipment produced for the same application [6].  Power over a certain 

level might lead into skin burns of the patients and self-heating of the transducer [6].  In 

analytical work, data and its comparison against established standard is very important.  

In this study, the acoustic power data is used as an indication of performance so that it 

can provide guidance on safety.  Knowledge of the output allows relative risk assessments 

of different values of power.  Knowing the output of the acoustic power can help provide 

evidence for safe usage.  

 

Measurement traceability is an important concept.  To ensure that the comparisons 

between measurements made by different laboratories are valid, there is a need for 

common standard and concept [8].  For this reason, in this paper the FDA approved 

ExAblate 2100 CBS is treated as a gold standard when validating the recently developed 

TTS.  Qualitative methods play an important role in performance assessment of the 

acoustic power.  One of the reasons for using the qualitative methodology is to ensure 

that the most effective exposure levels are used during patient treatment.  Another reason 

is to ensure that the exposure does not take place at levels which can be harmful to the 

human tissue [7].  It is also useful to know if the equipment is performing satisfactorily.  

Power is a useful and simple parameter for periodic performance evaluation [8].  In this 

study, the acceptable level for efficiency for converting electrical power to acoustic power 

is defined as 70-90%. 

 

There have been several measurement methodologies in the literature for measuring the 

acoustic power output [6, 8-15].  One of them is the large target radiation force 

methodology [6], where the target intercepts the whole ultrasonic beam to indicate a value 

of the total acoustic power.  The principle in the radiation force methodology is that 
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propagation of ultrasound through a medium is related to the transfer of momentum.  This 

transfer shows itself as a force acting on the targeted area. Measurement of this force 

provides the base value for power.  The force actually depends on the time-averaged 

intensity in the ultrasonic beam.  In this study, large target methodology is used where 

the target intercepts the whole of the ultrasonic beam to yield the total value of the 

acoustic power.  The force is related to the acoustic power, W, as described by the 

following                                expression: 

F=h.W/c                                                                                                                          (1) 

 

Where c is the speed of ultrasound in the propagating medium (in our case water), h is a 

parameter that depends on the geometry of the target and is equal to 1 for plane or totally 

absorbing target [6].  Large target radiation force balance is classified as ideal for low 

cost and ease of use [6] and preferred in this study due to these advantages.  Acoustic 

power measurements were completed by following the described protocol in this study.  

To cross validate the TTS software, against the clinical MRgFUS system, ExAblate 2100 

CBS, by two independent operators on the same set up; to observe the limits of agreement 

and the differences between the means of the measured power values, and the user 

dependency of both systems to provide evidence to fulfil the requirements of 

implementation of ISO 13845.  

b) Methodology  

The protocol developed to test the ExAblate 2100 CBS system for obtaining FDA 

approval, was used with TTS software.  A feasibility study was performed initially to 

verify the usage of the same protocol for applying electric power values of 100 W and 

150 W for 6 seconds of sonication.  These values are chosen to evaluate proper dosimetry 
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of the system with the actual acoustic power output by applying the protocol conforming 

to the requirements of ISO 13485 at our laboratory. 

Preparation  

Radiation force is measured by the weight scale holder assembly (InSightec Ltd, Tirat 

Carmel, Israel) (Figure2a).  Radiation force is detected by CM 150-1 Weight Scale. This 

scale is placed on the target in the FUS beam direction of the CBS transducer, parallel to 

the transducer.  Prior to the experiment, the initial force reading was completed by using 

a known weight on CM 150-1 Weight Scale for calibration purposes with an accuracy of 

0.1 g.  

[Insert Fig2a-f] 

The force detected by the weight scale is directly proportional to the ultrasonic power 

providing the whole beam is intercepted (Eq1) [7]. Eq1 assumes that plane waves are 

incident on the target for fields generated by plane transducers.  The main equipment used 

in this stage is a fixed transducer (CBS, 1024 elements) and as a non-fixed target; the 

force balance platform, is used in this study (Figure2a).  To determine the total acoustic 

power output of a transducer, it is essential that the target is of sufficient size to intercept 

the whole of the ultrasonic beam.  In this study, both the CBS transducer and the target 

have equal diameters.  The algorithm used by the TTS for calculating the phases is shown 

below (pseudo code), with the assumption of homogeneous medium. 

 

K = 2.0 * pi * Frequency / SpeedOfSound; 

for (elementIndex = 0 .. numberOfElements) { 

   Phase[elementIndex] = K * DistanceToElement(elementIndex, focusPosition); 

  

} 
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The power value entered in the graphical user interface during planning is used for the 

“Regular Sonication Electric Power” parameter.  

With C=1500 [m/sec] and the equivalence of 102 gram/N, to calculate power the equation 

below is used (Eq2).  

 

P [Watt] = 14.7*F[gram]                                                           (2) 

Where P was the absorbed power in target (Watt), and F was the exerted force on target 

[N]. 

Trans-Fusimo Execute Sonication Application  

 

For regular quality assurance (QA) purposes, the TTS software has a Trans-Fusimo 

Execute Sonication Application (TESA).  The main TTS software requires time 

consuming treatment planning imaging, and monitoring of the sonication procedure for 

thermometry data and tracking of land marks.  However, TESA does not require MR 

monitoring and imaging.  This protocol enables the power measurement procedure in a 

realistic time frame for the planned number of sonications to take place by two 

independent operators without providing any imaging or thermometry information but 

power information only. 

 

To use TESA, the information for the magnitude of electrical power, the focal position, 

and the duration of sonication is entered manually by the operator into the graphical user 

interface (GUI), as shown in Figure3a.  Pressing the “Arm HIFU Transducer” button 

initializes the transducer and makes it ready for instant sonication i.e. the transducer is 

powered up and the elements are configured to random phases and almost-zero output 
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power.  Once arming is complete, the sonication can be executed.  Pressing the “Execute 

Sonication” button configures the transducer to focus on the specified position with the 

specified power.  The sonication duration is completed by running a loop of 250-ms 

sonication intervals (due to safety reasons) until the planned duration time is reached.  

Once this loop is complete, sonication is stopped automatically.  The “Stop Sonication” 

button is not activated in this protocol by the operator it is used only when there is an 

emergency. 

 [Insert Fig3 a b] 

Test Protocol  

A qualified operator secures cable connections for the TTS software to control the 

transducer (Figure 1).  The Control PC rack of ExAblate 2100 (InSightec, Israel) is put 

on power for CBS transducer.  A phantom holder is placed over the transducer (Figure 

2b).  To provide good acoustic coupling, the membrane is supposed to be kept wet.  For 

this reason, wet tissue is placed between the membrane and the phantom holder.  The 

phantom holder is filled with degassed water 3 cm below of the top of the cylinder.  Wet 

tissue is removed (Figure 2c).  The cooling system of the CBS transducer is put in 

circulation mode at least for 10 minutes.  Verification is then performed to check if there 

are any air bubbles between the membrane and phantom holder by visual inspection and 

MR scanning in sagittal, coronal and axial views. If any air bubbles are present; the 

operator will remove them for safe usage of the system.  After corrective actions are 

taken, another MR scan is completed to double check if there are any remaining air 

bubbles.  The distance from the setup base to the phantom holder bottom is measured and 

recorded.  This ensures the same membrane inflation each time for reproducibility 

purposes. 
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The weight scale holder assembly is shown in a sketch (Figure 2g). This assembly is 

placed in the cylinder and inserted diagonally to prevent trapping of air bubbles (Figure 

2c); the holder is then checked for levelness.  There is a tolerance between holder legs 

and holes in the disk to rest on the water bath (Figure 2d).  The scales are placed between 

the absorbing target and the freely moving legs to measure the force as shown in Figure 

2e.  The triangular platform is free to move along the beam direction so that force values 

can be read from the scales and recorded (Figure 2f). 

Test Parameters  

To measure the acoustic power, a sonication is performed with the parameters described 

below by using the TESA graphical user interface, with the parameters in Table 1a. 

When sonication is applied, the weight is viewed on the weight scale screen.  When the 

reading on the balance stabilizes, the weight difference between the maximum value 

during the sonication and the value after the sonication ended is calculated in grams. The 

collected force data is recorded for each sonication.  Using Eq.2, the power is calculated.  

The efficiency is calculated by dividing the calculated power by input power.  The result 

is checked, if it is within the acceptable tolerance range (70 to 90%). The sonication is 

repeated for 30 times by two independent operators. The null hypothesis is that system is 

indifferent to different operators.  

Validation against Gold Standards 

CGA stands for Central GUI Application, installed on the Control PC (CPC) of the CBS 

ExAblate2100.  Using the same setup, the CGA software of the ExAblate 2100 System 

was activated (Figure 3b).  The GUI of the CGA allows to define the magnitude of 

electrical power, the focal position and the sonication duration.  The same test parameters 

were applied by two independent users for sonication for 30 times.  These features are 
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shown in Figure3b.  Both TESA and CGA have this manual input interface for the 

operators to provide input. 

Post Processing of the Data 

From the calculated power data for each system and operator, the average power was 

calculated.  Average efficiency was calculated by dividing average power by planned 

input power.  Mean values and standard deviations (SD) for each operator and each 

system were provided as indication of performance of the system.  The graphs showing 

the number of trials and calculated power value were plotted.  A trend line was fitted in 

to each plot to calculate the Normalized Root Mean Square Error (NRMSE).  NRMSE 

was calculated by dividing the RSME with the average magnitude of the measured data, 

to eliminate dependency on measured magnitude.  NRMSE was used as a measure of 

accuracy.  

To construct the B&A plot and to evaluate the agreement, each data set was measured by 

using the TTS and the ExAblate 2100 CBS and then sorted from smallest to largest and 

paired [15].  The difference for each paired data was calculated by simple subtraction 

(TTS data -ExAblate 2100 CBS data).  The mean for each paired data was calculated by 

adding each paired data and dividing by 2 (TTS data + ExAblate 2100 CBS data)/2.  B&A 

was plotted using the differences between two data sets against the mean of the two 

measurements.  Plotting difference against mean allows us to investigate any possible 

relationship between the measurement error and the true value [15].  The mean of the two 

paired measurements was assumed as the true value.  The percentile difference for each 

paired data was calculated by dividing the difference by the calculated mean 

Difference/Mean (%). The average of this percentile differences was calculated for the 

full data set to check against the previously set 10% difference criterion based on the 

current lab practices.  The limits of agreements between two systems were calculated by 
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using the mean value ± 2s (standard deviation). It is recommended that 95% of the data 

points should lie within the ± 2s of the mean difference as demonstrated in B&A plots 

[15]. 

 
Two sample t-tests were used to investigate the significance of difference between the 

mean values of the delivered power by using the TTS and ExAblate 2100 CBS.  Two 

sample t-tests were also utilised to check the significance of difference based on two 

independent operators using the system. 

c) Results 

Descriptive statistics for calculated power and calculated average efficiency are listed for 

applied power of 100 W and 150 W for both TTS software and ExAblate 2100 systems 

in Table1b and Table 1c respectively for both operators.  The acoustic efficiency is 

calculated for each system.  Results show that both systems produce efficiency values 

within the accepted tolerance limits (70-90%).  There is no single data falling out of this 

efficiency range during the experiments for each system. 

 

The calculated acoustic power versus number of trials graphs are provided for each 

operator (Figure Appendix).  By using the fitted line as a model and computed acoustic 

power as the data, the NRMSE was calculated for each data set.  For the first operator 

with TTS software NRMSE for 100 W and 150W was calculated as 0.02 and 0.04 

respectively.  For the second operator, NRMSE was 0.02 and 0.01 respectively and for 

ExAblate2100, NRMSE was calculated as 0.02 and 0.01 for the first operator and 0.02 

and 0.01 respectively.  Overall, NRMSE being less than 0.1 for both systems indicated 

good accuracy levels. 
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The calculated mean difference (%) between the TTS and the ExAblate 2100 was 0,13 

% for 100 W and 3.8 % for 150 W, meeting the pre-defined spec based on current lab 

practices, which was set as 10 %.  Bland-Altman plots were used to interpret the limits 

of agreement.  Any other new set of tests by using the TTS software and ExAblate 2100 

would be expected to fall in the limits of agreement shown in the graphs (Figure 4 a-d) 

with 95% level of confidence.  Two-sample t-tests were used to assess the differences in 

force values between the ExAblate-2100 CBS and the TTS (p>0.05), indicating the 

difference between the means is insignificant. 

 

Two-sample t-tests were also used to assess the dependency of the system to the 

operators.  P values were calculated for 100W and 150W between the operators for using 

TTS.  P being >0.05, the null hypothesis is not rejected.  Also for ExAblate 2100, P values 

for delivered acoustic power values of 100 W and 150 W between the operators were 

calculated as (p>0.05).  The results show that there is no significant difference in 

delivered power, due to different operators for both systems. 

[Insert Table1a-c] 

[Insert Fig 4 a- d] 

d) Discussions 

 The Trans-Fusimo Treatment System software aims at sonicating to a moving target (i.e. 

liver tumour) by delivering high levels of power.  The radiation force technique is the 

most widely used and accepted fundamental technique due to its practicality [16]. For 

safe delivery of the power, it is crucial that the system is deemed to be reliable and to be 

producing acoustic power outputs [16] within the established safety margins in in a 

reproducible way. 

 



15 
 

To evaluate this, the developed protocol was used to compare against the approved 

systems standards.  Feasibility tests were run before the independent operators ran their 

sessions.  Prior to the experiments, risk assessment forms were filled in.  Risk assessment 

matrices were evaluated based on the severity of risk involved and probability of the risk 

occurring during the experiments.  Risk mitigation procedures were completed and 

traceability matrices were evaluated for each risk mitigation point. Risk mitigation points 

involved secure cabling between subsystems such as TTL cable from the TTS 

workstation, to MR scanner and ExAblate 2100 CBS, to avoid any power transmission 

problems, calibration of the scales, and training of the operators to understand the 

protocol steps in application. Instructions were printed before the repeatability 

experiments and operators followed the steps accordingly, so that the dependency of the 

system to operator’s usage was minimized.  T-test evaluations showed that the difference 

in acoustic power between the independent operators using the same system is 

insignificant with p>0.05.  One of the limitations of this study was that independent 

operators were not randomized and only two qualified operators tested the system.  

Although as an improvement point; it could be argued that the number of operators should 

be increased, with a p value being greater than 0.05, this would only lead into more testing 

time and results might not have been affected.  The results imply that the designed 

protocols were effective in guiding the operators to apply the protocols correctly. Ideally, 

the system is not expected to produce different power values when different operators 

employ it.  The results are also in support of this expectation. 

 

Statistical methods used to test for agreement of medical instruments, play a crucial role 

to draw correct conclusions from the data gathered to compare the devices.  Bland-Altman 

(B&A) plots are reported to be the most popular statistical method when testing for 
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agreement of medical instruments [18].  This method provides the means to check how 

close the pairs of values are from two different systems.  It also relaxes the expectation 

that two different instruments with different methodologies should give identical paired 

measurements.  The other option to evaluate consistency between the two systems would 

be the correlation coefficient (r).  However, the correlation coefficient is more suitable 

for investigating the linear relationship.  It is not our expectation that two systems should 

produce paired linearly increasing or decreasing values in this protocol.  The B&A plot 

analysis is a simple way to evaluate a bias between the mean differences, and to estimate 

an agreement interval, within which 95% of the differences of the second method, 

compared to the first one, fall [15].  The B&A plots define the intervals of agreements as 

shown in Figure 4 a-d.  The limits of agreement between the means were set as 10 % prior 

to the design of the experiments for checking the acceptable limits of agreement with 

B&A plots.  The plots show that all the measured data using TTS software and the gold 

standard used in this study, fall into the ±1.96+ mean difference interval, meeting the 

specifications set prior to the current experiments.  B&A methodology was considered as 

a suitable statistical method to draw conclusions based on the designed protocol.  To 

evaluate the significance of difference between the ExAblate 2100 CBS and the TTS, two 

sample t-tests showed that the difference between the means by ExAblate 2100 CBS and 

TTS is insignificant; p>0.05. 

 

Quantitative analysis of the results shows that the efficiency is relatively low (73%) for 

100 W, when compared to 150 W (80-83%).  This could be explained by the fact that h 

value in Eq1, is actually higher than unity for higher powers as it is difficult to produce a 

material that will completely absorb incident ultrasound with no reflections.  Also, for 

higher powers, the absorbed power might lead into heating up of the absorbing material 
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causing thermal expansion and thereby change in bouncy forces [12-15].  This might 

explain the difference of efficiency between low (100W) and high (150W) power 

application.  In fact, the speed of sound in Eq1 is also temperature dependent.  It could 

have been ideal to observe the water temperature at the same time during the experiment.  

However, this could have interfered with the force readings and complicate the 

experiment design.  For this reason, the c value during these experiments was assumed to 

be constant.  To minimize the thermal heating effect, a five-minute time break between 

the measurements was given.  It should also be noted that the calculated efficiency levels 

were not higher than pre-established limits i.e. (70-90%) eliminating the need for further 

investigation.  In this protocol, due to the design geometry of the force balance platform, 

the sonication coordinate was chosen as 170mm for limiting the energy density on the 

absorber in a way that compromises between the need to have the entire beam in the 

absorber and the damage that the focused ultrasound beam can do to the absorber.  The 

applied methodology has strengths for simplicity for conducting repeatability 

experiments in MR unit for MRgFUS application, and cost effectiveness. With radiation 

force methodology uncertainty in the measurements is also known to be lower when 

compared to hydrophone measurements where uncertainties could be up to 20% [9].  

 

The results showed that the TTS software was less efficient than the ExAblate 2100 

system by 3% for power values of 150 W.  However, the system did not exceed the 

established tolerance levels, and actually did not cause any excessive energy levels. Thus, 

in terms of safety, the TTS software proved to be safe.  This result might also imply that 

the TTS software might not be as efficient as the ExAblate 2100 CBS system in reaching 

high temperature values.  For this reason, it is very important to develop protocols for 
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measuring thermometry to observe if an efficient temperature increase for tumor ablation 

could be achieved by using TTS software as a next step.  

 

In the developed protocol, power values were only applied for 6 seconds, however, in 

practice longer sonication durations are used.  The force was calculated as time averaged 

value over a short-duration of time as 6 s, however, the main focus in the applied protocol 

was not the duration of the planned sonication but the power.  In fact, another protocol 

has been designed to test the deviation of sonication duration and any delay after 

sonication is stopped in case of emergency as a next step  

 

The developed protocol showed the importance of following the requirements of the 

quality management system ISO 13485 to improve the quality of the tests results in 

generating evidence when testing agreement of medical system before use in clinics. 

Results were convincing that the TTS software can deliver the power in a controlled way 

within expected efficiency limits.  Based on this evidence, novel protocols are designed 

for testing of remaining system parameters again following the requirements of ISO 

13485. 

e) Conclusions 

This study demonstrated the steps in evaluating the high risk TTS software; according to 

the international standard IEC 62304.  Acoustic power measurements proved to be 

consistent with the defined clinical standard.  However, the application of MRgFUS in 

the liver has some other important system parameters such as; sonication duration 

deviation, emergency stop delay, thermometry, and sonication position deviation that 

need to be quantified by applying reproducible protocols.  The next step in our work is 

to design novel protocols, check their feasibility, and improve these protocols for each of 
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these crucial system parameters.  The efficiency of power delivery is set as the first 

milestone, affecting all the other parameters.  For this reason, priority was given to 

measuring the efficiency of acoustic power delivery.  Based on this evidence, following 

the procedures of ISO13485, full validation of the system is planned.  This study is the 

first, but most crucial step in system validation as it paves the way to the next system 

parameters to be tested. 
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7) Legend of Figures and Tables  

Figure 1. Detailed description of hard- and software interfaces  

Figure 2 a. Weight scale and holder assembly as a moving target to place the weight 

scale on.  2b. Experimental Setup with membrane (ExAblate 2100 CBS, InSightec, 

Tirat Carmel, Israel.), wet tissue in between the membrane and the cylinder where 

degassed water is filled in. 2c. Weight scale holder assembly insertion. 2d. Positioning 

of weight scale and moving target using the tolerance between holder legs and the disk 

2e. Positioning of the scale during experiment to read the values 2f. Screen of the scale 

to read the values g) schematic view of the weight scale assembly, and side view with 

weight scale assembly inserted in degassed water in cylindrical water bath. 
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Figure 3a. Trans-Fusimo Execute Sonication Application showing the GUI for entering 

focus position, sonication duration and power for QA purposes, with buttons to start the 

transducer and execute the sonication b) CGA software of ExAblate 2100 (InSightec) 

system. 

Figure 4. Bland-Altman plot of difference in measured delivered acoustic power for 100 

W by TTS and ExAblate 2100 against the mean of the measured delivered acoustic 

power, by the first operator a) and second b), showing mean and mean±1.96SD as upper 

and lower limits of agreement, and for 150 W by TTS and ExAblate 2100 against the 

mean of the measured delivered acoustic power, by the first operator c) and second d), 

showing mean and mean±1.96SD as upper and lower limits of agreement 

Figure Appendix. Measured acoustic power for 1st   (a,b) and 2nd (c,d) operators by 

using TTS software and ExAblate 2100 software, with best fit trend line formula to 

calculate NRMSE. 

Table 1a) Test parameters which are logged into the GUI of TESA by the operators b) 

Descriptive statistics for electrical power values of 100W and calculated average 

efficiency c) Descriptive statistics for electrical power values of 150 W and calculated 

average efficiency.   
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