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Asymptotic solutions for laminar flow based on blood circulation

through a uniformly porous channel with retractable walls and an

applied transverse magnetic field

Lin Lia, Ping Linb, Hong Zhanga, Liancun Zhenga, Xinhui Sia,∗

aSchool of Mathematics and Physics, University of Science and Technology Beijing , Beijing, 100083, China
bDivision of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom

Abstract

This paper is concerned with asymptotic solutions of a nonlinear boundary value problem (BVP),
which arises in a study of laminar flow in a uniformly porous channel with retractable walls and
an applied transverse magnetic field. For different ranges of the control parameters (i.e. α,Re and
M) arising in the BVP, four cases are considered using different singular perturbation methods.
For the first case, unlike those in the existing literature, we make use of the Lighthill method
and successfully construct an asymptotic solution with high-order derivatives at the center of the
channel. For the second case, under large suction we consider M2 = O(1) and M2 = O(Re),
respectively, which will further extend the applying range of asymptotic solutions. In other cases,
asymptotic solutions with a boundary layer are successfully constructed. In addition, numerical
solutions presented for each case agree well with asymptotic solutions, which illustrates that the
asymptotic solutions constructed in this paper are more reliable. Finally, the influences of some
parameters on flow field are discussed to develop a better understanding of the flow problem.

Keywords: laminar flow; porous and retractable channel; magnetic field; singular perturbation
method; bvp4c

1. Introduction

Blood circulating in the blood vessel has a strong effect on the human body and also serves as
one of the basic substances constituting the human body. Its dynamics is closely associated with
people’s health. For example, as said by Srivastava [1], atherosclerosis, a leading cause of death
in many countries, is one of the phenomenon in which the flow behavior of the blood in the vessel
will be influenced by the intimal thickening of stenos artery. When severe stenosis suppresses the
speed of blood, the blood supply and oxygen to the brain are reduced. Under this situation some
cells in the brain start to die and then the resulting serious diseases will appear (e.g. strokes). So
studies of fluid transport in the vessel can serve to better understand the functions of biological
organisms (e.g. lung and cardiac).

When concerning systemic circulation in blood circulation, the blood in the left ventricle is being
forced into the aorta by systole and the mitral valve between left ventricle and left atrium is closed.
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At this juncture the left ventricle forms a vessel with one end closed. Meanwhile, the mass transfer
of the vessel between inside and outside can be achieved by the seepage across permeable wall of
the vessel [2, 3, 4]. Furthermore, some idealized mathematical models are proposed which consider
the vessel to be permeable [5, 6]. So studies on such flow dynamics can be meaningful in the field
of bioengineering and medicine. In 1990, a mathematical model on the viscous flow of Newtonian
fluid inside a permeable tube with expanding or contracting cross section was established by Goto
and Uchida [7]. In their work, a expansion ratio α and a cross-flow Reynolds number Re (defined in
Section 2) were introduced to measure the expansion of the pipe and the mass transfer, respectively.
Later, Dauenhauer and Majdalani [8] considered the case that laminar flow in a porous channel
with expanding or contracting walls and thus established a mathematical model. So far there have
existed some studies on the mathematical model. To list a few, one may count Majdalani et al. [9],
Asghar et al. [10] and Hang Xu et al. [11]. On the other hand, some of medical literature have also
shown that certain external factors can change the hydrodynamic in blood flow. When the blood
is regarded as an electrically conducting fluid, the control of blood flow can be achieved by the
application of the magnetic field (Noting that the fluid is often called as Magnetohydrodynamics
or MHD). Based on the experimental investigation, Karmilov [12] has revealed that the magnetic
field exerted a most significant influence on the vascular system. Subsequently, Sambasiva [13] also
studied an unsteady MHD blood flow through a porous channel with porous walls. So far, some
valuable results on MHD in a pipe have been reported. For example, as said in [14], the effects of
MHD on blood flow are as follows: i) to reduce the high shear stress caused by stenosis and hence
to prevent the damage to the red and endothelial cells, which will help bioengineers in the design
of artificial organs and the treatment of vascular diseases (e.g. [15, 16, 17, 18]). ii) to delay the
transition from laminar to turbulent flow inside the blood vessel and thus reducing high intensity
shear zones, which are unfavorable to the blood and arterial wall. This may be vital to watch out
for the symptoms of a carotid artery blockage (e.g. [19, 20]). Motivated by above works, we have
realized the importance of magnetic field appearing in a model of laminar flow in a porous pipe with
expanding or contracting walls. However, very little is known so far about the result of laminar
flow in a porous channel with expanding or contracting walls and an applied transverse magnetic
field. Therefore, based on the work [8], a principle objective of the current study is to overcome a
deficiency in their model that does not account for the presence of a magnetic field. In fact, the
investigation of the steady flow of an electrically conducting viscous fluid through a semi-infinite
flat plate with an applied transverse magnetic field has been initiated by Suryaprakasrao [21], who
obtained an asymptotic solution for small Hartmann numbers (defined in Section 2). Later, Terrill
and Shrestha [22, 23] extended Suryaprakasrao’s work by considering laminar flow in a porous
channel with motionless walls and an applied transverse magnetic field. In their studies, based on
either numerical or asymptotic approaches, some solutions were obtained for both small and large
Reynolds numbers and all values of Hartmann number.

In fact, for the viscous flow in a porous channel with stationary walls, the earliest researcher
can be traced back to Berman [24]. In his study, a nonlinear boundary value problem (BVP) with a
cross-flow Reynolds number Re was obtained from the classical Navier-Stokes equations. For small
Re, he constructed an asymptotic solution using a regular perturbation method. Subsequently, a
number of further studies about the existence of multiple solutions of such a BVP followed shortly
thereafter. Among these are the works of Robinson [25], Skalak and Wang [26], Shih [27], Stephen
[28] and Lu [29, 30, 31, 32, 33]. Recently, when the walls of the channel were not motionless, Hang
Xu et al. [11] obtained three solutions for large suction using homotopy analysis method (HAM).
In addition, the temporal and spatial stabilities have also considerable attention in the past due
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to the existence of multiple solutions of the BVP, where one may count Brady [34], Durlofsky and
Brady [35], Sobey and Drazin [36], Zaturska, Drazin and Banks [37].

The purpose of this paper is to extend previous investigations by presenting asymptotic solutions
for laminar flow in a porous channel with expanding or contracting walls and an applied transverse
magnetic field. Specifically, in Section 2, by introducing the flow geometry, governing equations
with boundary conditions and a stream function, a BVP (i.e. (13)-(14)) including three parameters
(i.e. α,Re and M) is obtained. In general, when constructing a perturbation solution of the BVP,
we should consider the order of magnitude among these parameters, otherwise the perturbation
solution constructed is only valid for the limited scope of parameters. Therefore, Section 3 serves
to present asymptotic solutions for different cases. The asymptotic and numerical solutions are
compared and discussed in Section 4. Finally, Section 5 concludes the paper.

2. Mathematical formulation of the problem

We assume that the channel is of semi-infinite length with one closed end. In addition, to
consider a two-dimensional flow, we assume that the distance 2a between the porous walls is much
smaller than the channel’s width. Both sidewalls are assumed to have equal permeability −vw
and to expand or contract uniformly by a time-dependent rate ȧ(t). As shown in Fig.1, x and
y indicate the streamwise direction and the normal direction, respectively. u and v denote the
velocity components along x− and y−axes. The flow velocity is zero at the closed end (x = 0). As
a result, the motion of a viscous incompressible and electrically conducting fluid through a porous
channel with an applied transverse magnetic field can be described by the following equations:

∇ ·V = 0, (1)

and
∂V

∂t
+ (V · ∇)V = −1

ρ
∇p+ ν∇2V+

1

ρ
J×B, (2)

where J and B are given by the Maxwell equations

∇×H = 4πJ, (3)

∇× E = 0, (4)

∇ ·B = 0, (5)

and Ohm’s law
J = σ[E+V×B], (6)

where B = µmH, V = (u, v) and the symbols ν, σ, and µm represent the viscosity of the fluid, the
electrical conductivity and the magnetic permeability, respectively.

For simplicity, we further assume that a constant magnetic field of strength H0 is applied
perpendicular to the walls and there is no external electric field. Meanwhile, here the induced
magnetic and electric fields produced by the motion of the electrically conducting fluid are neglected.
With these assumptions the magnetic term J×B in (2) reduces to

J×B = −σH2
0V. (7)

When we take into account the symmetry with respect to the midsection plane, the necessary
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boundary conditions for the half-domain (y ≥ 0) may be as follows:

u = 0, v = −vw; y = a(t), (8)

∂u

∂y
= 0, v = 0; y = 0, (9)

u = 0, v = 0; x = 0. (10)

An appropriate stream function ϕ is introduced, denoting

ϕ =
νx

h
F (y∗, t), (11)

where y∗ = y
a
is a dimensionless variable. When there is no confusion, we will delete the superscript

∗ in the following derivation. Then the velocity components become

u =
νx

a2
Fy, v = −ν

a
F. (12)

Substituting (7) and (12) into (1)-(2) and denoting f = F
Re
, with the assumptions that the wall

expansion ratio α is constant and F is made dependent on y and α (see [8] for more detail on
them), we can obtain the BVP of the form

f ′′′ + α(yf ′′ + 2f ′) +Re(ff ′′ − f ′2)−M2f ′ = k, (13)

and the boundary conditions

f(0) = 0, f ′′(0) = 0, f(1) = 1, f ′(1) = 0, (14)

where Re = avw
ν

is called as the cross-flow Reynolds number (Re > 0 for injection and Re < 0 for

suction), α = aȧ
ν
is called as the wall expansion ratio, M = µmH0a(

σ
ρν
)
1
2 is called as the Hartmann

number, k is an integration constant and ′ denotes differentiation with respect to y.

3. Asymptotic solutions for the BVP (i.e. (13) and (14))

The main aim of this section is to present asymptotic solutions for these parameters (i.e. α,
Re and M) with different orders of magnitude. To show them more clearly, the contents on them
will be separated in Sections 3.1-3.4, respectively.

3.1 Solution for large injection Reynolds numbers

For large injection, we consider the case α = O(1) and M2 = O(1), and treat ε = 1
Re

as the
perturbation parameter. Then Eq.(13) becomes

εf ′′′ + εα(yf ′′ + 2f ′) + (ff ′′ − f ′2)− εM2f ′ = εk. (15)

Before constructing the asymptotic solution, we first introduce a result in [38]. When M = 0,
Majdalani and Zhou have solved Eq.(13) asymptotically using a regular perturbation method and
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the variation of parameters method. The corresponding asymptotic solution is as follows:

f(ς) = sin ς + ε{−2α

π
ς + (

π

4
− 4α

π
)× [(ς cos ς − sin ς) ln tan

1

2
ς − cos ςS(ς)] + α sin ς+

[(
1

2
− 8απ−2)S(

1

2
π) + 4απ−2 − 1

2
]ς cos ς}, (16)

where ς = 1
2
πy and S(ς) =

∫ ς

0
ϕ cscϕdϕ. When (16) is differentiated three times, we can obtain

f ′′′(ς) =
1

8
π3(− cos ς + ε{−α cos ς + (

1

4
π − 4α

π
)× [− sin ςS(ς)− (2 cos ς − ς sin ς) ln tan

1

2
ς − 1]

− [(
1

2
− 8απ−2)S(

1

2
π) + 4απ−2 − 1

2
](3 cos ς − ς sin ς)}), (17)

where ′ denotes differentiation with respect to ς. As observed (17), it becomes unbounded as
ς → 0 due to the secular term cos ς ln tan 1

2
ς. Besides this, when α = 0, the series solution, given

by Yuan [39], also exhibits the similar feature (i.e. the third derivative of the series solution tends
to infinite at the center of the channel). However, here the unboundedness does not seem to occur
in practical application. Later, the existence of a viscous shear layer, pointed out by Terrill [40],
would result in the appearance of the unboundedness. To eliminate the unboundedness in f ′′′,
Zhou and Majdalani [38] obtained a uniformly valid composite solution using matched-asymptotic
expansions with logarithmic corrections. However, in the current study, we will not plan to follow
their line due to the complexity of matching process. The Lighthill method (Noting that it is a
method of strained coordinates, the reader can see [41] for more detail on it) is used to eliminate
the secular term. The specific process is as follows: Firstly, we introduce a variable transformation
on y:

y = ξ + εX1(ξ) + ε2X2(ξ) +O(ε3), (18)

where the functions X1, X2 will be determined later. f and εk can be expanded as the following
forms:

f(y) , g(ξ) = g0(ξ) + εg1(ξ) + ε2g2(ξ) +O(ε3), (19)

εk = λ0 + ελ1 + ε2λ2 +O(ε3). (20)

Substituting (18)–(20) into (15) and equating coefficients of εn, one can obtain

ε0 : g0g̈0 − ġ0
2 = λ0 (21)

ε :
...
g0 + α(ξg̈0 + 2ġ0) + g0g̈1 + g1g̈0 − 2ġ0ġ1 −M2ġ0 = λ1 + 3Ẋ1λ0 (22)

· · · · · · .

Here · denotes the derivative with respect to ξ. According to (14), the boundary conditions
corresponding to gi (i = 0, 1, 2, · · · ) can be induced:

5



i). The wall of the channel (i.e. y=1)

We assume that ξ̃ is the root of (18) at y = 1, then

ξ̃ = 1− εX1(ξ̃)− ε2X2(ξ̃) +O(ε3)

= 1− ε{X1(1) + Ẋ1(1)[−εX1(ξ̃)− ε2X2(ξ̃)] + · · · } − ε2{X2(1) + Ẋ2(1)[−εX1(ξ̃)− ε2X2(ξ̃)] + · · · }
· · · · · ·
= 1− εX1(1)− ε2[X2(1)− Ẋ1(1)X1(1)] +O(ε3). (23)

Using (23), we can induce

f |y=1 = 1 =⇒ 1 = g|ξ=ξ̃ = g|ξ=1 + ġ|ξ=1{−εX1(1)− ε2[X2(1)− Ẋ1(1)X1(1)] + · · · }
= g0|ξ=1 + ε[g1 −X1ġ0]|ξ=1 +O(ε2), (24)

f ′|y=1 = 0 =⇒ 0 = ġ|ξ=ξ̃ = ġ|ξ=1 + g̈|ξ=1{−εX1(1)− ε2[X2(1)− Ẋ1(1)X1(1)] + · · · }
= ġ0|ξ=1 + ε[ġ1 −X1g̈0]|ξ=1 +O(ε2). (25)

The resulting boundary conditions at y = 1 become

g0|ξ=1 = 1, g1 −X1ġ0|ξ=1 = 0, · · · (26)

ġ0|ξ=1 = 0, ġ1 −X1g̈0|ξ=1 = 0, · · · . (27)

ii). The center of the channel (i.e. y=0)

We suppose that ξ̂ is the root of (18) at y = 0, then

ξ̂ = −εX1(ξ̂)− ε2X2(ξ̂)) +O(ε3) = −εX1(0)− ε2[X2(0)− Ẋ1(0)X1(0))] +O(ε3), (28)

f |y=0 = 0 =⇒ 0 = g|ξ=ξ̂ = g|ξ=0 + ġ|ξ=0{−εX1(0)− ε2[X2(0)− Ẋ1(0)X1(0)] + · · · }
= g0|ξ=0 + ε[g1 −X1ġ0]|ξ=0 +O(ε2), (29)

f ′′|y=0 = 0 =⇒ 0 = g̈ + ġ[
−εẌ1 − ε2Ẍ2

1 + εẊ1 + ε2Ẋ2

]|ξ=ξ̂

= {g̈|ξ=0 +
...
g |ξ=0[−εX1(0)− ε2(X2(0)− Ẋ1(0)X1(0)) + · · · ]}+ {ġ|ξ=0

+ g̈|ξ=0[−εX1(0)− ε2(X2(0)− Ẋ1(0)X1(0)) + · · · ]} · [ −εẌ1 − ε2Ẍ2

1 + εẊ1 + ε2Ẋ2

]|ξ=ξ̂

= g̈0|ξ=0 + ε[g̈1 −X1

...
g 0 − Ẍ1ġ0]|ξ=0 +O(ε2). (30)

The boundary conditions at y = 0 become

g0|ξ=0 = 0, g1 −X1ġ0|ξ=0 = 0, · · · (31)

g̈0|ξ=0 = 0, g̈1 −X1

...
g 0 − Ẍ1ġ0|ξ=0 = 0, · · · . (32)
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Using (26)-(27) and (31)-(32), the solution for (21) can be obtained as follows:

g0 = sin(
π

2
ξ) , sin θ, (33)

where θ = π
2
ξ and λ0 = −π2

4
. Substituting (33) into (22) yields the equation for g1:

sin θg′′1(θ)− 2 cos θg′1(θ)− sin θg1(θ) = (
π

2
− 4α

π
+

2M2

π
) cos θ − 2Ẋ1(ξ) +

2α

π
θ sin θ +

4

π2
λ1, (34)

where ′ denotes the derivative with respect to θ. To eliminate the singularity that may appear in
g1, we can set

(
π

2
− 4α

π
+

2M2

π
) cos θ − 2Ẋ1(ξ) +

2α

π
θ sin θ +

4

π2
λ1 = 0. (35)

Obviously, from (35), one can obtain

X1(θ) = (
1

2
− 2α

π2
+

2M2

π2
) sin θ − 2α

π2
θ cos θ +

4λ1

π3
θ + C1, (36)

where C1 is an integration constant. At this juncture, Eq.(34) becomes

sin θg′′1(θ)− 2 cos θg′1(θ)− sin θg1(θ) = 0. (37)

According to [9], for the general homogeneous equation (37), its solution can be shown as follows:

g1(θ) = K1 cos θ +K2(sin θ − θ cos θ), (38)

whereK1 andK2 are integration constants. Applying boundary conditions (26)-(27) and (31)-(32),
one obtains

K1 =
π

2
C1, K2 = 0. (39)

When considering the non-zero solution of g1 and setting C1 = 1, we can obtain

g1 =
π

2
cos θ, λ1 = −π2

4
+ α−M2. (40)

Finally, by combining (40) with (33), the resulting solution f(y) becomes as follows:

f(y) = sin(
π

2
ξ) + ε

π

2
cos(

π

2
ξ), (41)

where y = ξ + ε[(1
2
− 2α

π2 +
2M2

π2 ) sin(π
2
ξ)− α

π
ξ cos(π

2
ξ) + (1

2
− 2α

π2 +
2M2

π2 )ξ + 1].

To verify the validity of the asymptotic solution (41), Table 1 not only presents the comparison
between asymptotic and numerical solutions (see M = 2;α = ±2), but also shows the comparison
our results with the analytical solution obtained by Majdalani et al. [9] for α = 2,M = 0. As
observed from Table 1, the last three columns indicate that our asymptotic results are closer to
numerical results in comparison to ones obtained by Majdalani et al. In a sense, this also illustrates
that applying the Lighthill method is reliable for large injection. Therefore, we hope that it can
be extended to the similar flow problems.
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3.2 Solution for large suction Reynolds numbers

For large suction, under M = 0 Majdalani et al. [8, 9] have pointed out the existence of
thinning boundary layer. Here we not only consider the boundary layer, but also further extend
to the case M2 = O(Re). For added clarity, this section is divided into two parts: the first part–
α = O(1) and M2 = O(1) as Re → −∞, and the second part – α = O(1) and M2 = O(Re) as
Re → −∞.

A. α = O(1) and M2 = O(1) as Re → −∞
As mentioned before, a viscous boundary layer is formed near the walls of the channel. To better

describe it, the method of boundary layer correction (Noting that the reader can see [42, 43, 44]
for more detail on this method) is used to deal with it. The specific process is as follows:

We define ε = 1
Re

to be our perturbation parameter, and set f ′(0) = β and f ′′′(0) = δ, then
Eq.(13) can be written as

εf ′′′ + εα(yf ′′ + 2f ′) + (ff ′′ − f ′2)− εM2f ′ = εδ + 2εαβ − β2 − εM2β, (42)

where εk = εδ + 2εαβ − β2 − εM2β.
We introduce a variable transformation of the form

1− y = ετ, (43)

and expand the function f into a composite form as follows:

f(y) = f0(y) + ε(f1(y) + g1(ξ)) + ε2(f2(y) + g2(ξ)) + ε3(f3(y) + g3(ξ)) +O(ε4). (44)

Noting that gi(ξ), i = 1, 2, · · · , are boundary layer functions and rapidly decay when y is away
from the walls. In addition, the constants β, δ can be written as follows:

β = β0 + εβ1 + ε2β2 + ε3β3 +O(ε4)

δ = δ0 + εδ1 + ε2δ2 + ε3δ3 +O(ε4)

}
. (45)

Using (43)–(45), the boundary conditions (14) become

f(0) = 0, f ′′(0) = 0 =⇒ fi|y=0 = 0, f ′′
i |y=0 = 0, i = 0, 1, 2, · · · (46)

f(1) = 1 =⇒ f0|y=1 = 1, fi|y=1 + gi|τ=0 = 0, i = 1, 2, · · · (47)

f ′(1) = 0 =⇒ f ′
i |y=1 − ġi+1|τ=0 = 0, i = 0, 1, 2, · · · (48)

Here ′ and · denote the derivatives with respect to y and τ , respectively. Substituting (44)–(45)
into (42) and equating coefficients of εn, one can obtain

f0f
′′
0 − f ′2

0 = −β2
0 . (49)

The corresponding boundary conditions become

f0|y=0 = 0, f ′′
0 |y=0 = 0, f0|y=1 = 1. (50)

8



As a result, we have
f0 = y, β0 = 1. (51)

For g1, the equation becomes
−
...
g 1 + g̈1 = 0, (52)

and the corresponding boundary condition becomes

ġ1|τ=0 = f ′
0|y=1 = 1. (53)

According to the character of the boundary function, the expression of g1 should be

g1 = eτ . (54)

Next, we have the following equation:

yf ′′
1 − 2f ′

1 = −2β1, (55)

and the corresponding boundary conditions are as follows:

f1|y=0 = 0, f ′′
1 |y=0 = 0, f1|y=1 = −g1|τ=0 = −1. (56)

From (55)-(56), we can obtain the following results:

f1 = −y, β1 = −1. (57)

At this juncture, for g2, the boundary condition becomes

ġ2|τ=0 = f ′
1|y=1 = −1. (58)

On the other hand, the corresponding equation becomes

−
...
g 2 + g̈2 + αeτ + eτ − τeτ = 0. (59)

So we can obtain

g2 = eτ [−1

2
τ 2 + (α + 3)τ − (α + 4)]. (60)

Following the process above, we can easily obtain the following results:

f2 = (α + 4)y, (61)

f3 = (−α2 − 11α +M2 − 129

4
)y, (62)

g3 = −1

4
e2τ + eτ [

1

8
τ 4 − 1

2
(α + 3)τ 3 + (

1

2
α2 + 3α + 9)τ 2 + (−α2 − 10α+M2 − 28)τ+

α2 + 11α−M2 +
65

2
]. (63)
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Finally, the composite solution f becomes as follows:

f = y + ε{−y + eτ}+ ε2{(α + 4)y + eτ [−1

2
τ 2 + (α + 3)τ − (α+ 4)]}+ ε3{(−α2 − 11α

+M2 − 129

4
)y − 1

4
e2τ + eτ [

1

8
τ 4 − 1

2
(α+ 3)τ 3 + (

1

2
α2 + 3α + 9)τ 2 + (−α2 − 10α +M2

− 28)τ + α2 + 11α−M2 +
65

2
]}. (64)

A comparison of −f ′′(1) between our results and Majdalani et al. [9] is presented in Table 2.
As observed, we can find that the biggest error occurs in the case α = −20 and M = 52. This
is because M2 is too large to meet the assumption M2 = O(1). So, in the next section we will
consider the case M2 = O(Re).

B. α = O(1) and M2 = O(Re) as Re → −∞
Since M2 = O(Re) and r = −M2

Re
, we can derive r ∼ O(1). In addition, we denote ε = 1

Re
,

f ′(0) = β, and f ′′′(0) = δ. Eq.(13) can be written as

εf ′′′ + εα(yf ′′ + 2f ′) + (ff ′′ − f ′2) + rf ′ = εδ + 2εαβ − β2 + rβ, (65)

where εk = εδ+2εαβ−β2+rβ. Following the procedure in Part A, we can induce the expressions
for fi and gi as follows:

f0 = y, (66)

f1 = −y, (67)

f2 = (α + 4− r)y, (68)

f3 = (−α2 − 11α+ 3αr − 2r2 + 15r − 129

4
)y, (69)

g1 = eτ , (70)

g2 = eτ [−1

2
τ 2 + (α + 3− r)τ − (r − α− 4)], (71)

g3 = −1

4
e2τ + eτ [

1

8
τ 4 +

1

2
(r − α− 3)τ 3 + (

1

2
α2 + 3α− αr +

1

2
r2 − 4r + 9)τ 2 + (−α2

−10α + 3αr − 2r2 + 14r − 28)τ + α2 + 11α− 3αr + 2r2 − 15r +
65

2
]. (72)

As a result, the composite solution of (65) becomes as follows:

f =y + ε{−y + eτ}+ ε2{(α + 4− r)y + eτ [−1

2
τ 2 + (α + 3− r)τ − (r − α− 4)]}+ ε3{(−α2

− 11α+ 3αr − 2r2 + 15r − 129

4
)y − 1

4
e2τ + eτ [

1

8
τ 4 +

1

2
(r − α− 3)τ 3 + (

1

2
α2 + 3α− αr

+
1

2
r2 − 4r + 9)τ 2 + (−α2 − 10α + 3αr − 2r2 + 14r − 28)τ + (α2 + 11α− 3αr + 2r2

− 15r +
65

2
)]}. (73)
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When comparing (73) with (64), we can find that the Hartmann number M initially appears
in the term O(ε2) for this case, which indicates the increase of the magnetic field’s effect on the
solution. We can observe that the asymptotic solution (73) becomes more accurate for α = −20
and M = 52 (see Tables 2-3).

3.3 Solution for large Hartmann numbers

In this section, we consider the case that the intensity of the magnetic field is large enough so
that the magnetic field force is the main influence factor.

We treat ε = 1
M2 as the perturbation parameter and denote β = f ′(0) and δ = f ′′′(0), then

Eq.(13) can be written as

εf ′′′ + εα(yf ′′ + 2f ′) + εRe(ff ′′ − f ′2)− f ′ = εδ + 2εαβ − εReβ2 − β, (74)

where εk = εδ + 2εαβ − εReβ2 − β.

A. Inner solution

As said by Terrill et al. [22, 23], when α = 0, large Hartmann number M would result in the
appearance of a boundary layer near the wall. To obtain a solution within the boundary layer, an
appropriate stretching transformation is introduced as follows:

ξ =
1− y

εa
, (75)

f(y) = 1 + εbg(ξ), (76)

where a and b are constants that will be determined later. Substituting (75)–(76) into (74) yields

−ε1+b−3a...g + ε1+b−2aAg̈− ε1+b−aα(ξg̈+2ġ)+ ε1+2b−2aRe(gg̈− ġ2)+ εb−aġ = εδ+2εαβ− εReβ2−β,
(77)

where · denotes the derivative with respect to ξ and A = α +Re.
As expected, the magnetic boundary layer involves a balance between viscous and magnetic

terms. Thus we set 1 + b − 3a = b − a, which indicates a = 1
2
. Besides, because of the balance

of the order of magnitude on both sides of Eq.(77), we have b = a = 1
2
. At this juncture, Eq.(77)

becomes

−
...
g + ε

1
2Ag̈ − εα(ξg̈ + 2ġ) + εRe(gg̈ − ġ2) + ġ = εδ + 2εαβ − εReβ2 − β. (78)

g(ξ), β and δ are expanded as follows:

g(ξ) = g0(ξ) + ε
1
2 g1(ξ) + εg2(ξ) + ε

3
2 g3 +O(ε2),

β = β0 + ε
1
2β1 + εβ2 + ε

3
2β3 +O(ε2),

δ = δ0 + ε
1
2 δ1 + εδ2 + ε

3
2 δ3 +O(ε2).

 (79)

Substituting (79) into (78) and equating coefficients of εi, one can obtain

ε0 : −...
g0 + ġ0 = −β0, (80)

ε
1
2 : −...

g1 + ġ1 + (α +Re)g̈0 = −β1, (81)

ε : −...
g2 + ġ2 + (α +Re)g̈1 − α(ξg̈0 + 2ġ0) +Re(g0g̈0 − ġ0

2) = δ0 + 2αβ0 −Reβ2
0 − β2, (82)
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ε
3
2 : −...

g3+ ġ3+(α+Re)g̈2−α(ξg̈1+2ġ1)+Re(g0g̈1+g1g̈0−2ġ0ġ1) = δ1+2αβ1−2Reβ0β1−β3, (83)

· · · · · · .

The boundary conditions for gn become

gn(0) = 0 , ġn(0) = 0 ; n = 0, 1, 2, · · · . (84)

The solution of Eq.(80), subject to the boundary conditions in (84), is

g0 = −β0e
−ξ − β0ξ + β0. (85)

Using (85), the solution of Eq.(81) satisfying the boundary conditions in (84) is

g1 = e−ξ(−1

2
Aβ0ξ −

1

2
Aβ0 − β1)− β1ξ + (β1 +

1

2
Aβ0). (86)

Furthermore, the expressions of g2 and g3 become

g2 =e−ξ[(
1

4
αβ0 −

1

8
A2β0 +

1

4
Reβ2

0)ξ
2 + (−1

4
αβ0 −

1

8
A2β0 −

1

2
Aβ1 +

5

4
Reβ2

0)ξ +
5

4
Reβ2

0 −
1

2
Aβ1

− 1

4
αβ0 −

1

8
A2β0 + δ0 − β2] + (δ0 − β2)ξ + (

1

4
αβ0 −

5

4
Reβ2

0 +
1

2
Aβ1 − δ0 + β2 +

1

8
A2β0),

(87)

g3 =e−ξ[(
1

8
Aαβ0 +

1

8
AReβ2

0 −
1

48
A3β0)ξ

3 + (−1

8
A2β1 +

1

4
αβ1 +

1

2
Reβ0β1 +

5

8
AReβ2

0 −
1

8
Aαβ0)ξ

2

+ (−1

4
αβ1 −

3

8
Aαβ0 −

1

2
Aβ2 +

5

2
Reβ0β1 −

1

8
A2β1 +

1

2
Aδ0 +

9

8
AReβ2

0)ξ + (−β3 + δ1+

5

2
Reβ0β1 −

3

8
Aαβ0 +

1

2
Aδ0 −

1

4
αβ1 −

1

8
A2β1 +

9

8
AReβ2

0 −
1

2
Aβ2)] + (−β3 + δ1)ξ + (β3 − δ1

+
3

8
Aαβ0 +

1

4
αβ1 +

1

8
A2β1 −

1

2
Aδ0 −

9

8
AReβ2

0 +
1

2
Aβ2 −

5

2
Reβ0β1). (88)

Hence, the inner perturbation solution of (74) can be expressed as

f (i) = 1 + ε
1
2 g0 + εg1 + ε

3
2 g2 + ε2g3 +O(ε

5
2 ), (89)

where the coefficients βn and δn (n = 0, 1, · · · ) are to be determined by the matching process in
Part C.

B. Outer solution

The outer solution of (74) satisfies the inviscid equation

f ′ = β, (90)

and the corresponding outer boundary conditions become

f(0) = 0, f ′′(0) = 0. (91)
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Thus the outer solution f (o)(y) is
f (o)(y) = βy, (92)

where β = β0 + ε
1
2β1 + εβ2 + ε

3
2β3 + ε2β4 +O(ε

5
2 ).

C. Matching process

If (92) is written in terms of the inner variable ξ, then

f (o)i = (β0 + ε
1
2β1 + εβ2 + ε

3
2β3 + ε2β4)− ε

1
2 (β0 + ε

1
2β1 + εβ2 + ε

3
2β3)ξ + · · · . (93)

When ξ → ∞, we can obtain

β0 = 1, β1 = 1, β2 = 1 +
1

2
A, β3 =

1

8
A2 +

3

4
(α−Re) + 1, (94)

β4 =
1

2
A2 +

3

8
A(α− 3Re) +

3

2
α− 11

4
Re+ 1, δ0 = 0, δ1 = 0. (95)

As a result, the complete solution of (74) satisfying the boundary conditions in (14) can be obtained
as follow:

f = f (o) + f (i) − f (o)i

= 1 + ε
1
2{−e−ξ − ξ + 1}+ ε{e−ξ(−1

2
Aξ − 1

2
A− 1)− ξ +

1

2
A+ 1}+ ε

3
2{e−ξ[(

1

4
α +

1

4
Re

− 1

8
A2)ξ2 + (−1

4
α +

5

4
Re− 1

8
A2 − 1

2
A)ξ + (−1

4
α +

5

4
Re− 1

8
A2 − A− 1)]− (1 +

1

2
A)ξ

+ (
1

4
α− 5

4
Re+

1

8
A2 + A+ 1)}+ ε2{e−ξ[(− 1

48
A3 +

1

8
A2)ξ3 + (−1

8
A2 +

5

8
ARe− 1

8
Aα

+
1

4
α +

1

2
Re)ξ2 + (−3

8
A2 − 3

8
Aα+

9

8
ARe− 3

4
α+ 2Re)ξ + (−1

2
A2 − 3

8
Aα+

9

8
ARe− 3

2
α

+
11

4
Re− 1)]− (

1

8
A2 +

3

4
α− 3

4
Re+ 1)ξ +

1

2
A2 +

3

8
A(α− 3Re) +

3

2
α− 11

4
Re+ 1}. (96)

As seen in Table 4, the asymptotic results agree well with the numerical ones no matter whether
the parameters (i.e. α and Re) are positive or negative.

3.4 Solution for large wall contraction ratios

In this section, we take into account the leading influence of wall contraction ratio α on the
flow, and treat ε = − 1

α
as the perturbation parameter. Then Eq.(13) becomes

−εf ′′′ + (yf ′′ + 2f ′)− εRe(ff ′′ − f ′2) + εM2f ′ = −εδ + 2β + εReβ2 + εM2β, (97)

where −εδ + 2β + εReβ2 + εM2β = −εk. When M = 0, Majdalani et al. [8] pointed out that
the effect of large contraction ratio on flow behaviour was the same as that of large suction on
flow behaviour. Thus, following the procedure outlined in Section 3.2, we introduce the stretching
transformation of the form

ξ =
1− y

ε
, f(y) = 1 + εg(ξ). (98)
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Then Eq.(97) becomes

ε−1(
...
g + g̈)− (ξg̈ + 2ġ +Reg̈)− εRe(gg̈ − ġ2)− εM2ġ = −εδ + 2β + εReβ2 + εM2β, (99)

here · denotes differentiation with respect to ξ. Substituting (79) into (99) and equating coefficients
of εn yields

ε−1 :
...
g0 + g̈0 = 0, (100)

ε0 :
...
g1 + g̈1 − (ξ +Re)g̈0 − 2ġ0 − 2β0 = 0, (101)

ε :
...
g2 + g̈2 − (ξ +Re)g̈1 − 2ġ1 −Re(g0g̈0 − ġ0

2)−M2ġ0 = −δ0 + 2β1 +Reβ2
0 +M2β0, (102)

ε2 :
...
g3 + g̈3 − (ξ +Re)g̈2 − 2ġ2 −Re(g0g̈1 + g1g̈0 − 2ġ0ġ1)−M2ġ1 = −δ1 + 2β2 + 2Reβ0β1 +M2β1,

(103)

· · · · · · .

The corresponding boundary conditions become

gn(0) = 0, ġn(0) = 0; n = 0, 1, 2, · · · . (104)

The outer solution f (o) = βy can be expressed in terms of the inner variable ξ:

f (o)i = (β0 + εβ1 + ε2β2 + ε3β3)− ε(β0 + εβ1 + ε2β2)ξ + · · · · · · (105)

By solving (100), one can obtain
g0 = C1(e

−ξ + ξ − 1). (106)

We can obtain C1 = −1, β0 = 1, and β1 = 1 using the matching process. Similarly, g1, g2 and g3
can be derived as follows:

g1 = e−ξ(−1

2
ξ2 −Reξ − C2) + (Re− C2)ξ + C2, (107)

g2 =e−ξ[−1

8
ξ4 − 1

2
Reξ3 − 1

2
(Re2 + 1)ξ2 + (−Re2 + 2Re+M2)ξ − C3]−

1

2
δ0ξ

2 + (Re2 − 2Re

−M2 − C3)ξ + C3, (108)

g3 =e−ξ[− 1

48
ξ6 − 1

8
Reξ5 + (−1

4
Re2 +

1

8
Re− 1

8
)ξ4 + (−1

6
Re3 +Re+

1

2
M2)ξ3 + (−1

2
Re3 +

5

2
Re2

+
7

2
Re+ReM2 +M2 − 1

2
)ξ2 + (−Re3 + 7Re2 + 9Re+ 3ReM2 + 2M2)ξ +

1

4
Re− C4]

− 1

4
e−2ξRe− 1

2
δ1ξ

2 + (Re3 − 7Re2 − 37

4
Re− 3M2Re− 2M2 − C4)ξ + C4, (109)

where C2 = β2 = Re + 1, C3 = β3 = Re2 − Re + 1 − M2 and C4 = β4 = Re3 − 7Re2 − 37
4
Re −

3M2Re− 2M2. Finally, the complete solution of (97), subject to the boundary conditions in (14),
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can be expressed as

f = f (o) + f (i) − f (o)i

= 1 + ε{−e−ξ − ξ + 1}+ ε2{e−ξ(−1

2
ξ2 −Reξ −Re− 1)− ξ +Re+ 1}+ ε3{e−ξ[−1

8
ξ4

− 1

2
Reξ3 − 1

2
(Re2 + 1)ξ2 + (−Re2 + 2Re+M2)ξ − (Re2 −Re+ 1−M2)] + (−Re− 1)ξ

+ (Re2 −Re+ 1−M2)}+ ε4{−1

4
e−2ξRe+ e−ξ[− 1

48
ξ6 − 1

8
Reξ5 + (−1

4
Re2 +

1

8
Re− 1

8
)ξ4

+ (−1

6
Re3 +Re+

1

2
M2)ξ3 + (−1

2
Re3 +

5

2
Re2 +

7

2
Re+ReM2 +M2 − 1

2
)ξ2 + (−Re3

+ 7Re2 + 9Re+ 3ReM2 + 2M2)ξ +−Re3 + 6Re2 +
21

2
Re+ 3M2(Re+ 1)− 1] + (−Re2

+Re+M2 − 1)ξ + (Re3 − 6Re2 − 41

4
Re− 3M2Re− 3M2 + 1)}. (110)

A comparison of −f ′′(1) between the asymptotic and numerical solutions is shown in Table 5.
When α is large, the asymptotic results have a good match with the numerical results.

4. Comparison of the numerical and asymptotic solutions and discussion

The main aim of this section is to present a comparison of the numerical and asymptotic
solutions and some discussion. For the former, the BVP (i.e. (13) and (14)) has to be solved
numerically. Here we use bvp4c of Matlab to solve it [45]. In addition, unless stated otherwise,
for all our computations with bvp4c, we use the default relative error tolerance 10−3 and the
default absolute error tolerance 10−6. On the other hand, we will compare asymptotic results with
numerical results to verify the accuracy of asymptotic solutions constructed in Section 3. A number
of possible ways on the comparison are available, e.g. by comparing f(y), f ′(y) proportional to
the flow velocity, f ′′(1), related to the skin-friction at the walls, etc. In [46] Terrill pointed out
that the comparison of f ′′(1) was found to be the most effective way. Here we will follow his line,
and the corresponding values of −f ′′(1) with the different ranges of the control parameters are
presented in Tables 1-5.

To develop a better understanding of the flow character, in the following section we not only
graphically show the axial velocity profiles f ′(y) over different ranges of the control parameters
α,Re and M , but also further give some discussion on the effects of these parameters on flow
behavior.

When Re = 600, Fig.2 illustrates the behaviour of the self-similar axial velocity f ′(y) for
expansion ratio α = −2 and 2, respectively, over a range of dimensionless Hartmann number M .
In Fig.2a, an initial glance indicates that the effect of varying M on the axial velocity f ′(y) is
not obvious. That is because for this case, the incompressible fluid injecting from the walls of
the channel is mainly to determine the flow behaviour in comparison with the magnetic field and
the wall deformation. When the Reynolds number is increased, the axial velocity distribution
approaches a cosine profile (see (41) in Section 3), specifically

f ′(y) = cos(
π

2
y); Re → +∞. (111)

(111) has often been called “Taylor’s profile” due to its relevance to several applications including
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paper manufacture and gas separation. With the comparison of asymptotic and numerical solutions,
an error appears with Hartmann number M . Also the error increases as M increases. That is
because the asymptotic solution constructed in Section 3.1 is only suitable for small Hartmann
number (i.e. M2 = O(1)), which can be verified by the case M = 0. Meanwhile, as seen in Fig.2a,
the largest error seems to occur near the center of the channel for a fixed M . When α = 2, similar
conclusions can be drawn (see Fig.2b).

Fig.3 presents the self-similar axial velocity f ′(y) for large suction. In this case, since sufficiently
large suction can dominate over wall expansion and magnetic filed, the suction region formed near
the closed head-end causes the incompressible fluid entering from the right side of the channel to
move farther upstream to the walls along the wall-normal direction. Here the non-slip condition
(i.e. f ′(1) = 0 in (14)) is also considered by us. As a result, the axial velocity profile becomes a
spatially uniform value 1 near the center of the channel while appearing a thinning boundary layer
near the walls of the channel. Moreover, from (43) in Section 3.2, we can obtain that the boundary
layer has a thickness of O(ε). In addition, in Fig.3, we also see the comparison between numerical
and asymptotic solutions for f ′(y). The magnified graph indicates that a better agreement can be
realized as M → 0, and the error increases as M increases. However, on the whole, the accuracy
of the asymptotic solution (i.e. (64) in Section 3.2) is reliable. by recalling (64) and (73), the
asymptotic solution ultimately collapses into the essentially irrotational form, namely,

f(y) = y +O(Re−1); Re → −∞. (112)

Such behaviour is also consistent with Majdalani et al. [9] and Hang Xu et al. [11] in the absence
of magnetic field.

To study the self-similar axial velocity sensitivity to M , the expansion ratio is held constant at
α = −2 and α = 2 for a fixed Re = 1 (see Fig.4). When the walls of the channel were motionless,
Terrill and Shrestha [22] pointed out that a magnetic boundary layer existed near the walls if Re
was small and M was large. Further if Re (< 0) and M were both large, then the flow near the
walls would consist of a combined magnetic and suction boundary layer. As predicted by them,
here we do find the existence of a magnetic boundary layer (see M = 200). Moreover, considering
the balance between viscous and magnetic terms, we also obtain that the thickness of the magnetic
boundary layer is O(ε

1
2 ), which is different from the result included in Section 3.2. In addition, for

M = 200, when Re is varied from 1 to 20, both numerical (−) and asymptotic (· · · ) solutions are
compared. The results are found to be in very well agreement, which indicates that the accuracy
of the asymptotic solution (96) is reliable.

When Re = 1, 15 and M = 0, for varying α, the corresponding self-similar axial velocity profiles
are plotted in Fig.5. It may be interesting to note that the special case M = 0 and α = 0, where
the value of f ′(0) is near 1.5 and the self-similar axial velocity profile is parabolic. Such behaviour
is consistent with one in the fully developed Hagen-Poiseuille flow. As α is varied from 0 to -200, a
boundary layer is gradually formed. That is because the rapid volumetric contraction of the walls
causes the incompressible fluid near the closed head-end to rapidly move towards the right side
of the channel. When comparing Fig.3 with Fig.5, we can conclude that they have some similar
phenomena, e.g. from (98), the thickness of the boundary layer is O(ε), and is equal to one for
large suction. when M = 0, to describe the similar effects of large suction and large contraction
on flow behaviour, Majdalani et al. [8] have even defined an effective suction Reynolds number,
that is,

Rs = −(Re+ α), (113)
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which combined the effect of the suction with the one of the wall contraction. On the other hand,
for α = −200, as M is varied from 0 to 20, both numerical (−) and asymptotic (· · · ) solutions are
compared. Obviously, the accuracy of the asymptotic solution (110) is reliable, and the precision
extends to 3 significant figures.

5. Conclusions

In this paper, for the BVP (13) and (14), we have constructed asymptotic solutions for different
ranges of the control parameters. Based on numerical solutions with bvp4c, the accuracy of these
asymptotic solutions is also easily verified. On the other hand, by discussing the effects of the
control parameters on the flow behaviour, some conclusions may be summarized as follows:

i) For large injection, the axial velocity profile is still parabolic when M2 = O(1).
ii) The Lighthill method has been successfully used to eliminate the singularity of the higher

order derivatives.
iii) Whether the situation is large suction, large Hartmann number or large contraction ratio,

the boundary layer can always be found, but the corresponding thicknesses are different.
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Figure 1: Physical Configuration
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Figure 2: Comparison between numerical and asymptotic solutions for f ′(y) at a) α = −2, and
b) α = 2; Re = 600.
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Figure 3: Comparison between numerical and asymptotic solutions for f ′(y) at a) α = −2, and
b) α = 2; Re = −600.
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Figure 4: Comparison between numerical and asymptotic solutions for f ′(y) at a) α = −2, and
b) α = 2.
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b) Re = 15.
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