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Computational methods are increasingly being applied to the study of psychiatric 
disorders. Often, this involves fitting models to the behavior of individuals with subclinical 
character traits that are known vulnerability factors for the development of psychiatric 
conditions. Anxiety disorders can be examined with reference to the behavior of individ-
uals high in “trait” anxiety, which is a known vulnerability factor for the development of 
anxiety and mood disorders. However, it is not clear how this self-report measure relates 
to neural and behavioral processes captured by computational models. This paper
reviews emerging computational approaches to the study of trait anxiety, specifying 
how interacting processes susceptible to analysis using computational models could 
drive a tendency to experience frequent anxious states and promote vulnerability to the 
development of clinical disorders. Existing computational studies are described in the 
light of this perspective and appropriate targets for future studies are discussed.
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iNTRODUCTiON

In psychological experiments, computational models can be used to capture individual differ-
ences in behavior and neural activity across a variety of contexts (1–3). For example, measured 
differences may be related to an underlying neurological condition (4–6). Research applying com-
putational modeling to behaviors and neural activity associated with mental illness has enjoyed 
considerable growth in recent years and is collectively known as computational psychiatry (7–11). 
By drawing on theories of decision-making (12, 13), reinforcement learning (14), and Bayesian 
inference (12, 15–17), researchers have begun to explore the processes underlying psychiatric 
symptoms (18), classify individuals along symptom dimensions (19), and formulate theories 
about disease mechanisms in conditions such as depression [e.g., Ref. (20)], obsessive–compul-
sive disorder [e.g., Ref. (21)], autism [e.g., Ref. (22)], and schizophrenia [e.g., Ref. (23, 24)]. This 
work demonstrates considerable potential for computational methods to describe and explain 
behavioral differences pertaining to psychiatric illness.

Comparatively, little computational work has been carried out in relation to anxiety disorders, 
which have been described as the most common of all mental health problems (25, 26) and are 
highly costly for societies (27, 28). The current version of the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5) describes several anxiety disorders, including specific phobia, panic 
disorder, agoraphobia, social anxiety, and generalized anxiety disorder (GAD), all of which involve 
“anticipation of future threat” (29) and “tend to be highly comorbid with each other” (29). Anxiety is 
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also featured in the National Institute of Mental Health Research 
Domain Criteria within the domain of Negative Valence Systems, 
where it is conceived as encompassing “responses to potential 
harm” (30). Continuing uncertainty about the best way to clas-
sify anxiety disorders (31–33) and advocacy for a dimensional 
perspective (34) has encouraged a focus on subclinical “trait” 
anxiety in work seeking to explore mechanisms underlying 
individual differences in response to diffuse threat (35).

Derived from self-report questionnaires, trait anxiety is a 
measure of the frequency with which symptoms of anxiety are 
experienced by an individual (36), or how characteristic they are 
of an individual in general (37). It is distinct from “state anxiety,” 
which is a measure of the intensity of anxiety experienced on 
comparatively short timescales (36, 38, 39). Although elevated 
levels of trait anxiety are a risk factor for the development of 
clinical anxiety disorders (40), it remains unclear how this risk is 
conferred. As a result, researchers hoping to bring the precision of 
computational methods to bear on the topic have no clear guide 
about which mechanisms to target and how they are involved in 
state, trait, and pathological anxiety.

This review draws on evidence from neuroscience, cognitive 
psychology, and existing computational studies to provide an 
integrated computational perspective on trait anxiety. Consistent 
with a network view of personality traits (41), its primary 
hypothesis is that the trait vulnerability consists in altered learn-
ing, rooted in biological differences, which leads over time to a 
characteristic profile of biases and behaviors that make anxious 
states more likely. In parallel, frequent anxious states calibrate 
the brain to anticipate a hostile environment, increasing the risk 
that anxiety will come to dominate an individual’s behavior [for 
a description of relevant biological mechanisms, see Ref. (42)]. 
By explicitly decomposing trait anxiety into subcomponents, this 
perspective provides starting points for future computational 
studies of anxiety-related biases in non-clinical populations.

There follows a brief introduction to methods commonly 
used in computational psychiatry, which may be unfamiliar to 
some readers. Subsequently, the relationships between anxious 
states, trait anxiety, and anxiety disorders are discussed, along 
with their relationships to self-reported trait anxiety scores that 
are often used as regressors in behavioral analysis. A description 
of neuroscientific background material is then used to motivate 
the decomposition of trait anxiety into biological risk factors, a 
resultant primary learning bias, and associated behavioral prefer-
ences. Existing computational studies that evaluate behaviors and 
biases associated with trait anxiety are described in detail and 
their findings situated within this schema. Finally, questions for 
future study are suggested.

COMPUTATiONAL BACKGROUND

This review makes reference to four types of computational 
model: reinforcement learning models, models of decision 
processes, Bayesian models, and network models. Each model 
type has already been applied to the study of anxiety in one form 
or another—and detailed accounts of exemplar studies will be 
provided in the section on “Existing Computational Studies of 
Trait Anxiety.” The current section provides brief introductions 

along with references to relevant tutorial material and intuitive 
suggestions about how these modeling approaches could be used 
to capture individual differences associated with pathological 
anxiety. This is intended to assist the reader in understanding 
the computationally informed conceptualization of trait anxiety 
introduced in the sections on “State Anxiety, Trait Anxiety, and 
Anxiety Disorders” and “Trait Anxiety: Targets for Computational 
Studies” and the more in-depth discussion of computational stud-
ies and open questions in the sections on “Existing Computational 
Studies of Trait Anxiety” and “Outstanding Computational 
Questions.”

Computational models are precise descriptions of underlying 
processes thought to generate key aspects of observed behavior. 
Models force scientists to make explicit any assumptions about 
these processes by explicitly encoding them in the form of math-
ematical equations and computer programs. The relative power 
of different models to explain a given data set can be compared 
using model selection procedures (43, 44), which provide a 
principled way to decide which model (and, therefore, which set 
of assumptions) gives the best description of the underlying gen-
erative process. Furthermore, most models feature one or more 
parameters that can be adjusted to alter model performance. The 
most likely parameters to have produced experimental data can 
be found using well-established statistical methods and between-
groups differences in fitted parameters can capture potential 
reasons for observed differences in behavior (unlike, say, a differ-
ence in reaction times, which might show that one group is faster 
than another without explicitly connecting this difference to any 
underlying generative process).

One popular source of models used to analyze the behavior of 
clinical populations (14) is the theory of reinforcement learning, 
which describes how agents adapt their behavior in the light of 
experience to maximize rewards and minimize punishments 
(45). Reinforcement learning models assign values to states 
(e.g., stages of an experiment) and actions (e.g., pressing a but-
ton) by ascribing higher values to states that feature rewards 
or actions that lead to better outcomes (e.g., for a biological 
organism, access to food, or avoidance of a predator). Actions 
are typically chosen using probabilistic action selection rules 
that bias choices toward high-valued actions; values, in turn, 
are continually revised on the basis of discrepancies between 
expected and actual outcomes, which are known as prediction 
errors. Two parameters are essential to this process: the “learning 
rate”—that determines how rapidly prediction errors alter value 
estimates and the “temperature”—that determines the degree of 
randomness in action choices. For high temperature settings, 
action selection will be exploratory so that new or low-valued 
actions continue to be sampled; at lower temperatures, action 
selection will be “greedy,” repeatedly exploiting previously suc-
cessful actions.

A straightforward hypothesis concerning reinforcement 
learning in anxiety disorders is that patients are more likely 
than controls to repeat actions that previously allowed them 
to avoid an unpleasant outcome. Given a suitable experimental 
design, this tendency might correspond to a lower fitted tem-
perature parameter in a reinforcement learning model, which 
increases the probability that reinforced actions are repeated. 
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Since key quantities in reinforcement learning models have 
well-established neural correlates (46–49), measuring them in 
neuroimaging experiments could be an effective way to detect 
anxiety-related differences in neural activation [for a study 
addressing state anxiety, see Ref. (50)].

Sequential sampling models (51) describe how a decision is 
made to select one option among a finite number of alternatives 
on timescales usually less than 2–3  s. Decisions susceptible to 
analysis with such models are made rapidly and typically involve 
just two alternatives (52). A widely used subtype of sequential 
sampling model, the drift-diffusion model (DDM) (53, 54), 
models a decision as a particle moving randomly toward a 
boundary. DDMs combine information from response time 
distributions for correct and incorrect responses over many trials 
to calculate “drift rate” and “decision threshold” parameters that, 
respectively, express (i) how quickly the particle moves toward 
the boundary and (ii) how far it has to travel before a decision is 
made [for further information on derivation of these parameters, 
including model implementation, see Ref. (55–59)]. Since many 
threat-related biases observed among anxious individuals oper-
ate on timescales under 3 s [reviewed in Ref. (60)], DDMs ought 
to be able to capture their effects. Indeed, these models have 
already been used to examine cognitive biases relating to threat 
processing and classification among subjects with high levels of 
self-reported trait anxiety [see Existing Computational Studies of 
Trait Anxiety; also Ref. (61–64)].

Models of Bayesian inference describe how the probability 
associated with a hypothesis can be updated in the light of new 
evidence, such as experimental data. Crucially, new information 
is integrated with prior expectations in order to update beliefs 
about the world (65–68). Operating at a higher level of abstrac-
tion than either reinforcement learning or DDMs [both of which 
can be encompassed within a Bayesian framework; see Ref. (69, 
70)], these models can be used to infer how subjects represent 
dynamic aspects of environmental states or which preferences 
they bring to bear on a particular problem. For example, a recent 
paper made use of a Bayesian model to infer how participants’ 
estimates of environmental volatility varied with self-reported 
levels of trait anxiety (71). Bayesian Decision Theory (BDT) (12, 
69) can be used to express individual differences in deliberative, 
or prospective, decision-making that depend on individual 
preferences expressed in the form of utility functions. This too 
has clear relevance to the behavior of individuals with anxiety 
disorders, who are predicted to exhibit a number of distinctive 
preferences, including increased expected utilities of avoidance 
and threat detection. These and other preferences can be inferred 
from behavioral data collected using appropriate models and 
experimental designs [see, for example, Ref. (72)].

As these examples show, computational modeling is not only 
relevant to the study of anxiety, but has considerable advantages 
compared to more traditional methods of behavioral analysis 
that rely on statistical tests alone. Specifically, modeling can 
detect behavioral effects too subtle to be revealed by traditional 
methods (61, 72), isolate neural activity that tracks variables of 
interest (50), and provide theoretical explanations for variability 
in behavioral performance (71). These examples are described in 
more detail in the section on “Existing Computational Studies of 

Trait Anxiety.” A further type of modeling—network analysis—
may offer an additional advantage: the capacity to understand and 
describe how different symptoms of anxiety disorders, or anxious 
behavior in general, interact and reinforce one another.

Network analysis is a way of representing and understanding 
interactions between subcomponents of complex systems like 
biological cells or social networks (73). As in the case of other 
computational approaches, the application of network analysis to 
the study of psychiatric symptoms is a relatively recent develop-
ment (74–76). It was originally motivated by work on the theory 
of psychological measurement (77) and diagnostic systems (78), 
which described problems with a view of psychiatric disorders 
(78) or personality dimensions (41) that sees them as arising 
from a single hidden factor. According to this work, psychiatric 
illnesses are entirely constituted by characteristic sets of causally 
interacting symptoms—and not, like many physical illnesses, 
dependent on a single hidden variable that causes all the symp-
toms independently [(76, 78); see also Ref. (79)]. This idea has 
been used to explain patterns of comorbidity (74), transitions 
between health and disease (80), and vulnerability to mental 
illness (81). Network analysis in such studies generally proceeds 
by analyzing correlations between self-reported symptoms that 
suggest how they might be related—for example, that subgroups 
of symptoms within a disorder tend to cluster together (82) or 
that certain stressful life events are more likely to cause some 
symptoms of depression than others (83).

In relation to anxiety disorders, the same approach has been 
applied to self-report and experimental measures of anxiety 
from individuals with a diagnosis of social anxiety disorder 
(SAD) (84), facilitating analysis of correlations between these 
measures. The combination of network analysis methods with 
experimental measurement of attentional factors, which have an 
established albeit complex relationship with anxiety symptoms 
(85), demonstrates how network methods may be fruitfully 
combined with other experimental techniques. Their further 
combination with precise quantification of neural and behavioral 
phenotypes, which can be detected using the other computational 
methods described in this section, has great potential to reveal 
how interacting neural processes combine to generate and sustain 
behaviors associated with psychopathology, including the clini-
cally relevant over-expression of anxiety. With this prospect in 
mind, the next section introduces relationships and distinctions 
between adaptive, pathological, and trait anxiety, to show where 
the application of computational models can have the greatest 
impact.

STATe ANXieTY, TRAiT ANXieTY, AND 
ANXieTY DiSORDeRS

Anxiety disorders involve states of anxiety so frequent and 
intense they dominate and undermine a patient’s daily life, lead-
ing them to seek medical attention; however, states of anxiety 
serve an adaptive function if they are deployed appropriately, 
priming individuals to detect, and respond to danger. It follows 
that an intuitive biological hypothesis about anxiety disorders 
would be that they involve a primary malfunction in the brain 
mechanisms that regulate anxious states. Trait vulnerability to 
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the development of anxiety disorders would then consist in less 
severe dysregulation of anxious states than that observed in a 
clinical anxiety disorder.

A conceptual problem with this view is that there are no objec-
tive rules that determine when an anxious state is appropriate; 
instead, anxious states are triggered on the basis of an individual’s 
lifelong learning about environmental dangers. The capacity to 
learn effectively about environmental dangers therefore con-
stitutes an additional factor that determines whether or not an 
individual is likely to experience uncontrolled, obtrusive anxious 
states—but one that depends upon an extremely wide range of 
cognitive abilities, including (for example) memory, reinforce-
ment learning, sensory discrimination, and attentional control. 
As a result, frequent symptoms of anxiety—as indexed by a high 
trait anxiety score—are unlikely to derive from a single causal 
factor that is consistent across individuals, even though these 
individuals share the common feature of experiencing frequent 
anxious states.

The first part of this section describes evidence for the adaptive 
function of state anxiety in situations where this function can be 
clearly defined. Subsequently, we introduce anxiety disorders as 
described in the DSM-5. Finally, we examine how a biologically 
mediated tendency to experience more anxious states may lead to 
the maladaptive responses observed in anxiety disorders.

State Anxiety
The adaptive function of anxious states can be most clearly 
illustrated with reference to animal studies and related work 
on neurobiology. Ethological research, which addresses animal 
behavior in natural or “semi-natural” settings (86), has shown 
that rodents do not react to the potential presence of a natural 
predator (signaled by cat odor for example) in the same way they 
react to a definite and observable threat (a cat). In a classic experi-
ment (86), cat odor prompted rats to engage in “risk assessment” 
and suppression of ongoing non-defensive behaviors whereas an 
actual cat caused rats to run into their burrows or freeze (86, 87). 
Separate test batteries were devised to measure these respective 
behavioral profiles and used to show that the former was much 
more susceptible to moderation by the administration of anxio-
lytic drugs than the latter (88).

Parallel research on the activity of the neurotransmitter 
serotonin suggested a neurobiological correlate of this behav-
iorally important distinction between responses to proximal 
and distal threats (42, 89). In an influential theory, Deakin and 
Graeff suggested that serotonergic signals from a region of the 
brainstem—the dorsal raphe nucleus—were involved in an 
“anticipatory anxiety system” (42) that simultaneously increased 
aversive processing in the amygdala and restrained activation 
of fight/flight behaviors, which is mediated by glutamatergic 
projections from the amygdala to the brainstem periaqueductal 
gray (90). When activated, this system would generate the risk 
assessment behaviors observed in ethological experiments, along 
with suppression of ongoing activities [see also Ref. (91)], allow-
ing animals to make more sophisticated defensive responses and 
thereby increasing their chances of survival. Some predictions of 
this hypothesis about the neural substrates of threat processing 
have been corroborated in human neuroimaging experiments 

involving healthy controls (92) and patient groups (93). Taken 
together with animal work on risk assessment (94), it presents 
a consistent view of anxiety as a state that suppresses ongoing 
activity, keeps fight/flight responses at bay, and facilitates threat 
processing.

States of anxiety arising in response to an ambiguous threat 
can be studied in healthy human volunteers using threat of 
shock studies (95). In these studies, participants perform a 
behavioral task under two conditions: in one condition, they 
are told that they may experience a painful electric shock at any 
time; in the other, they are safe. Actual shocks are rare, but the 
possibility of a shock provokes a state of anxiety (96). Threat of 
shock has the overall effect of biasing participants away from 
task-directed (97, 98) and toward sensory processing (97, 99). 
It improves performance in threat detection tasks (100), but 
impairs performance in tasks involving emotional distractors 
(101). A recent neuroimaging study demonstrated that threat 
of shock is associated with increased neural activity correlated 
with aversive prediction error signals in healthy participants 
(50), consistent with the idea that threat learning is altered in 
states of anxiety. All these results support the view, derived from 
animal and pharmacological studies, that adaptive state anxi-
ety facilitates threat detection and processing at the expense of 
other resource-demanding cognitive processes in the context of 
uncertain threat.

Anxiety Disorders
Anxiety disorders, as described in the DSM-5, capture charac-
teristic ways in which excessive or uncontrolled anticipation 
of uncertain threat can lead people to seek medical attention. 
The 11 anxiety disorders described in the DSM-5 are separation 
anxiety disorder; selective mutism; specific phobia; SAD; panic 
disorder; agoraphobia; GAD; substance/medication-induced 
anxiety disorder; anxiety disorder due to another medical 
condition; other specified anxiety disorder; and unspecified 
anxiety disorder. Diagnosis of an anxiety disorder typically 
follows persistence of symptoms for 6  months [(29), p. 189] 
and elimination of alternative explanations, including other 
psychiatric conditions.

The majority of anxiety disorders involve overwhelming and 
persistent states of anxiety experienced in relation to a particular 
context. Separation anxiety, for example, involves distress about 
potential separation from attachment figures [(29), p. 190]. 
Selective mutism involves failure to speak in particular social 
situations where doing so may cause embarrassment [(29), p. 
195]. Specific phobia, social phobia, and agoraphobia are perhaps 
more familiar, and similarly involve fears and avoidance behav-
iors associated with relatively well-defined settings in which the 
nature of the threat remains somewhat diffuse.

Two further anxiety disorders are characterized by symptom 
profiles rather than responses to particular situations. In panic 
disorder, there is no circumscribed situation or set of objects that 
triggers panic attacks: panic attacks themselves, along with fear of 
further attacks, are the overriding features [(29), p. 208]. Notably, 
there is evidence that panic, in contrast to anxiety, involves 
different processes and brain structures, and in particular the 
periacqueductal gray matter (86, 89); here we are focusing on 
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anxiety rather than panic, so uniquely panic-related processes 
and mechanisms will not be a focus. In GAD, anxiety and worry 
about a variety of issues, along with accompanying physical 
signs such as muscle tension and fatigue, are the characteristic 
symptoms [(29), p. 222].

All anxiety disorders are characterized by inappropriate or 
maladaptive manifestations of anxiety, which may conceivably 
emerge in any individual. Nevertheless, various biological factors 
render some individuals more vulnerable to the development of 
anxiety disorders [for a review considering psychological and 
neurobiological factors together, see Ref. (102)]. Precisely what 
these factors are, how they may best be characterized, and how 
they might interact with one another and the environment to 
make the development of clinical anxiety disorders more likely 
remains incompletely understood.

Trait Anxiety
Threat-induced state anxiety and clinical anxiety disorders 
represent opposite extremes in terms of the adaptiveness of 
anxious states. Trait anxiety scores are commonly used as a 
proxy for proneness to experience maladaptive anxious states, 
but this self-report measure does not have a straightforward 
interpretation in terms of biology. In the case of the com-
monly used Spielberger State–Trait Anxiety Inventory Y2 score 
[STAI-Y2 (36)] it explicitly measures the frequency with which 
individuals report experiencing 20 separate characteristics of 
anxious states. Despite inevitable variability in the willingness 
to endorse particular characteristics (due, for example, to dif-
fering interpretations of specific words or phrases), the summed 
frequency score can be regarded as a good indication of how 
often someone has experienced anxious states over the course 
of their life [for a comparison with other self-report scales, see 
Ref. (103)].

Thus, although individuals with high levels of self-reported 
trait anxiety appear to be more prone to the development of some 
anxiety disorders (40), there is no reason to believe these people 
form a homogeneous group in terms of underlying biological risk 
factors (77, 104); what they share is a high self-reported frequency 
of experienced anxious states. Clearly, more frequently experi-
enced anxious states may indicate exposure to a more anxiogenic 
environment, an increased biological predisposition to experi-
ence anxious states, or complex interactions between the two. 
Furthermore, biological risk factors are themselves likely to be 
diverse and different factors more or less significant in different 
environments.

This state of affairs is depicted in Figure 1. A lifelong tendency 
to experience frequent anxious states, as indexed by the STAI-Y2 
score, increases the probability that someone will be diagnosed 
with an anxiety disorder. However, this tendency is itself the 
result of biological and environmental factors. The experience 
of frequent anxious states is assumed to feed back into biological 
factors through neuroplasticity (105) and epigenetic changes 
(106, 107), thereby opening a pathway for the effect of early 
stressful life events on biological vulnerability to the develop-
ment of anxiety disorders (108–110). Biological vulnerabilities 
are assumed to affect environment factors directly by increasing 
attention to environmental threats, as described in the section, 

“Trait Anxiety: Targets for Computational Studies” [for other 
ways in which trait vulnerabilities might promote aversive expe-
riences, see Ref. (102)].

Working from this conception of the relationship between 
trait anxiety, state anxiety, and anxiety disorders, the next section 
of this review draws on experimental evidence to decompose the 
trait vulnerability into key subcomponents. It focuses on inter-
preting behavioral and neuroscientific findings in computational 
terms in order to suggest appropriate targets for computational 
studies. The resulting conceptualization of the trait vulnerability 
is not meant to be definitive, but rather a starting point for future 
studies.

TRAiT ANXieTY: TARGeTS FOR 
COMPUTATiONAL STUDieS

Neuroscientific and psychological experiments have described 
various ways in which individuals high in trait anxiety differ 
from their less anxious counterparts. Some of these differences 
hint at altered underlying computational processes that could be 
captured using the modeling approaches described in the section 
on “Computational Background.” The current section focuses on 
four areas of interest: learning about threats, avoidance of danger, 
attention to threats, and frequency of experienced anxious states. 
The first three are highly susceptible to computational modeling; 
the fourth, which is indexed by self-reported trait anxiety, can be 
considered a consequence of them.

A schematic view of trait anxiety, where it is seen as result-
ing from these interacting computational processes, is shown in 
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Figure 2. As described in the previous section, the term “anxiety” 
is used in experimental psychology and neuroscience to describe 
an unfocused response to diffuse, unpredictable threat [(35, 111, 
112); though compare Ref. (113)]. It is distinct from responses 
to predictable and well-characterized threat, which are more 
correctly labeled as fear (114) and panic (89). The hypothesis 
illustrated in Figure 2 is that altered learning about threats, avoid-
ance and attention alter the overall number of threats expected in 
the environment and render the distinction between threats and 
non-threats more ambiguous, leading to more frequent states of 
anxiety (115, 116).

Figure 2 thus illustrates how the self-report measure of trait 
anxiety is proposed to arise from underlying computational 
processes that will be further elucidated in the rest of this section. 
It should be noted that formulating this hypothesis is a different 
objective to describing state anxiety itself as a computational 

process—although that is a worthwhile and important goal 
[interested readers could see, for example, Ref. (117)]. Instead, it 
demonstrates how computational ideas might be combined with 
existing findings to provide insight into underlying factors that 
predispose some individuals to become anxious more frequently 
than others.

Overgeneralization of Aversive Learning
Learning about aversive outcomes is often investigated using fear 
conditioning paradigms. In classical or Pavlovian conditioning 
(118, 119), a biologically significant “unconditioned stimulus” 
(US) is repeatedly presented following a predictive, initially 
neutral “conditioned stimulus” (CS). The US triggers suitable 
preparatory responses, such as salivation in the case of food; after 
a few repetitions these responses are evoked by the CS alone. 
In the case of an inescapable and inherently aversive US, such as 
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electric shock, characteristic responses include fear-potentiated 
startle (120, 121) and increased galvanic skin response (122). 
Manipulation of factors influencing response transfer from US 
to CS (“acquisition” of the conditioned response) can be used to 
investigate complex underlying processes of associative learn-
ing [for a classic account, see Ref. (123)]. Since these learning 
processes can be described computationally using the theory of 
reinforcement learning [see Computational Background; also 
Ref. (124, 125)], behavioral measures in appropriately designed 
conditioning paradigms can be combined with reinforcement 
learning models to quantitatively assess them [see, for example, 
Ref. (126)].

A systematic review of fear conditioning in the anxiety dis-
orders found that patients exhibited both stronger acquisition of 
conditioned responses and impaired differentiation between con-
ditioned and non-conditioned stimuli [(127); see also Ref. (128)]. 
These effects led to generalization of conditioned fear responses 
(127)—for example, from a predictive CS to other perceptu-
ally similar stimuli (129). Generalization of fear responses was 
subsequently demonstrated among patients with panic disorder 
(130, 131) and GAD (132, 133). Similar effects have been found 
in healthy individuals with high levels of trait anxiety [(134, 135), 
but see Ref. (136)].

Importantly, generalization of fear conditioning to perceptu-
ally similar stimuli [such as circles with similar diameters, as in 
Ref. (129)] may only be the most straightforward example of 
wider trends in fear generalization prompted by sufficient levels 
of anxious arousal. Humans also reason symbolically, general-
izing across abstract relations (137–139). This process may be 
particularly relevant for anxiety disorders whose symptoms 
concern situations that have not been directly experienced, but 
whose aversive nature is inferred from fear conditioning in related 
scenarios (140, 141). A small body of experimental work provides 
evidence for such “symbolic” fear generalization (142–145).

The core neural substrate of associative fear learning is a 
network of brain regions centered on the amygdala (146), whose 
neurobiology is understood in exquisite detail [for a recent review, 
see Ref. (147)]. It has been argued that individual differences 
involving associative learning dependent on the amygdala con-
tribute to the development of anxious temperament and anxiety 
disorders both by driving specific behaviors and by biasing wider 
cognitive processing (148, 149). However, a recent review of the 
neurobiological basis of fear generalization (150) describes a 
variety of candidate or contributory mechanisms, including hip-
pocampal pattern completion, cholinergic neuromodulation, and 
molecular factors within the amygdala. A recent brain imaging 
study investigating fear generalization (151) found that aversive 
and sensory information encoded in separate brain regions both 
contributed to the effect.

These early neurobiological results indicate that there may be 
several routes to fear generalization, with potentially significant 
consequences for its role in the development of anxiety disorders. 
For example, reinforcement sensitivity theories of personality 
posit that differences in reactivity to reinforcers underlie the long-
term emergence of differences in temperament, such as anxiety 
(116). But if reactivity interacts with sensory discrimination to 
determine fear generalization (151), punishment sensitivity is 

only one of two factors that can lead a fear association to be 
generalized, alongside altered sensory processing. These factors 
would surely interact, but one or the other could be more impor-
tant among different patient groups. In SAD, for example, fear 
generalization has not always been evident in laboratory tests that 
do not involve socially relevant stimuli (150) and has only been 
partially evident when such stimuli are involved (152). However, 
difficulties in sensory discrimination have been detected (153). 
Combined with real-life social situations involving specifically 
feared outcomes like embarrassment, sensory discrimination 
impairments could result in context-specific fear generalization.

Finally, although generalization of aversive associations has 
usually been investigated using fear conditioning paradigms, 
generalization could sometimes be more evident at the level of 
conscious reports than at the autonomic level (154), perhaps 
reflecting different neural substrates [i.e., hippocampal rather than 
amygdalar; see Ref. (155)] and consistent with cognitive “expec-
tancy models” of fear acquisition (156, 157). Computationally, 
these differences could be detected using Bayesian models, which 
can be used to quantify the acquisition of expectations during per-
ceptual learning (158) and readily combined with reinforcement 
learning approaches (69). Whether originating in reinforcement 
sensitivity or perceptual differences, generalization of aversive 
learning would always have the crucial result of increasing the 
number of fear-inducing stimuli in the environment, thereby 
raising the probability of initiating the anxious states described 
in the section on “State Anxiety.”

Overgeneralization of Avoidance
The defining characteristic of an aversive stimulus, or punish-
ment, is that it “is something an animal will work to escape 
or avoid” (159). Unlike pure associative learning, which 
underpins classical conditioning, successful avoidance requires 
implementation of an action. Among animals of a particular 
species, certain avoidance behaviors are instinctive punishment 
responses and can be transferred very easily from US to CS; 
others have to be learned based on their potential to facilitate 
escape [for a review, see Ref. (160)]. Though analogous to the 
learning of appetitive behaviors to obtain rewards, avoidance 
learning poses an additional theoretical challenge because 
reinforcement in this case depends on non-occurrence of an 
aversive event. This problem of so-called negative reinforcement 
can be solved by assuming that an aversive CS first acquires the 
power to generate fear by classical conditioning and that any 
action serving to remove the CS will be reinforced because it 
reduces fear (161, 162).

Anxiety may influence avoidance learning in two ways: by 
altering the process of classical conditioning used to build fear 
associations so that more stimuli generate fear and more actions 
(those that remove the fear stimuli) are negatively reinforced; or 
by shifting motivation toward avoidance rather than exploration 
so that avoidance is more of a priority than alternative actions. 
These effects would be mutually reinforcing rather than mutu-
ally exclusive. Evidence for the former effect comes from studies 
relating the generalized fear conditioning described in the section 
on “Overgeneralization of Aversive Learning” to subsequent pat-
terns of avoidance behavior (163, 164). The latter, direct effect 
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could be measured in behavioral paradigms orthogonalizing 
avoidance and exploration.

Working independently or in combination over a long period 
of time, these two mechanisms would have the overall effect of 
reducing an animal’s exploration of fear-associated regions of 
state space by making avoidance more likely (160). This would 
prevent the animal from learning that its fears were exaggerated. 
At the same time, negative reinforcement associated with appar-
ently successful avoidance behaviors would further increase their 
likelihood of being repeated (165) and this process could become 
habitual in disorders involving compulsivity as well as anxiety 
[(166, 167); though see Ref. (168)].

Computationally, avoidance learning can be described by 
reinforcement learning models. One approach, based on the 
theory of negative reinforcement, is to use so-called actor–critic 
models (165, 169), which feature interconnected “actor” and 
“critic” modules that separately learn state and action values 
(45). The critic learns by a passive process akin to classical con-
ditioning, which reduces the value of states that tend to predict 
an aversive outcome (equivalent to fear acquisition). The actor 
updates action values based on increases in state value obtained 
by leaving these low-valued states (reinforcement due to fear 
reduction). As a result, actions leading away from states predic-
tive of punishment (i.e., avoidance behaviors) are reinforced [for 
a detailed explanation, see Ref. (165)]. Generalized avoidance 
could occur in such models by a variety of mechanisms, includ-
ing oversensitive learning by the critic (so many states would take 
on negative values, leading to too many opportunities for nega-
tive reinforcement) and oversensitive learning in the actor (so 
even very small increases in state value could strongly reinforce 
an avoidance action). Intriguingly, these mechanisms could have 
differentiable neural substrates (47), perhaps offering a means 
of identifying characteristics of different subgroups of anxious 
individuals.

increased expected Utility of Threat 
Detection
There is a substantial literature on altered attentional mechanisms 
among individuals with high levels of trait anxiety [see, for 
example, Ref. (170–174)]. These may include altered automatic 
threat evaluation [e.g., Ref. (170, 175)], difficulty disengaging 
from threat (176, 177), or impaired goal-directed relative to 
stimulus-driven attention [(178, 179); for a summary of all these 
theories and some others, see Ref. (174)]. Accordingly, attentional 
bias modification has been investigated as a treatment for anxi-
ety (174, 180) and new directions continue to be explored [for 
example, enhancing attention toward positive stimuli (181)].

From a computational perspective, attentional biases can be 
interpreted as evidence of altered utility functions [for a related 
discussion, see Ref. (182)]. For example, difficulty disengaging 
from threats could reflect an increased expected utility of threat 
monitoring relative to alternative action choices. DDMs can be 
used to investigate value-based attentional mechanisms (183, 
184) and could be applied to probe threat-related attentional 
biases among anxious subjects.

Attentional biases characterized by interference with work-
ing memory (178) may be linked to reduced recruitment of 

prefrontal regions for attentional control during conflict pro-
cessing (185). Individuals exhibiting such biases can be seen as 
allocating increased expected utility to environmental scanning 
relative to alternative goal-directed processes. Like generalized 
avoidance, this could conceivably emerge as a long-term adapta-
tion to a cognitive environment in which unpredictable dangers 
appear to be more abundant due to overgeneralization of aversive 
associations.

Behaviorally, this kind of adaptation may be expressed as 
increased agitation under conditions of uncertainty, since uncer-
tainty further increases the need to monitor the environment. 
Learning under uncertainty can be explored using Bayesian 
models (186, 187), so it would be interesting to apply such models 
to examine whether anxious individuals expect more uncertainty 
within their environment. Combining such methods with meas-
urements of attentional control could help to determine whether 
uncertainty increases the expected utility of information gather-
ing over task-directed behavior and whether any such effects are 
enhanced among anxious individuals.

More Frequent Anxious States
Identification and avoidance of a clear danger signal is a result of 
fear as long as it does not involve significant uncertainty (114). 
In a situation characterized by potential or ambiguous threat, it is 
not always clear which action might facilitate an escape to safety. 
The best option might not be to act immediately, but rather to 
inhibit action and wait for more information in the form of a 
change in the environment, recollection of an informative 
memory, or generation of a novel idea. It may even be appropri-
ate to approach the threat (113). As described in the section on 
“State Anxiety,” evidence from ethological studies (86), pharma-
cology (88), and research on the neurobiology of the serotonin 
system (42, 89) suggests that such conflict situations promote a 
characteristic pattern of risk assessment and “behavioral inhibi-
tion” (91). Anxious states in humans are theorized to involve a 
similar process of conflict resolution (91) that has been equated 
with the subjective experience of “anxious rumination” [(188), 
p. 11], conceived as scanning for threats in one’s memory and 
imagination rather than the immediate environment.

Spatio-temporal proximity is often a crucial factor in deter-
mining whether a threat provokes a state of fear or anxiety (113), 
because more distal threats (for example, not having enough 
money upon one’s retirement) and the best means of avoiding 
them (in this case, various ways to save money) tend to be less 
clearly defined. It has previously been argued that trait anxiety 
consists in a reduced “defensive distance” for a given real distance 
to a threat (115) so that, for example, relatively far off risks would 
provoke risk assessment. This effect is typically ascribed to the 
interactions of neurotransmitter systems (116).

Defensive distance can also be understood at the level of 
learning processes. In an ecological setting, organisms do not 
face threats in isolation, but operate within an environment 
whose dangers they have learned about throughout their lives. 
As a result, their evaluation of the overall level of danger they 
face is based not just upon on their proximity to a single threat, 
but on what could be termed “background” or “mean” defensive 
distance, which would encompass their expected proximity to 
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a threat given their overall learning about the environment. By 
increasing the number of stimuli that acquire fear associations, 
generalized aversive learning would reduce the mean defensive 
distance, effectively lowering the overall threshold at which 
specific threats would provoke a state of anxiety. A similar effect 
on defensive distance is proposed for increased expected utility 
of threat detection, because it would lead to more potentially 
threatening stimuli being detected.

As well as reducing defensive distance, generalized aversive 
learning could increase uncertainty about the nature of threats 
by compromising anxious individuals’ capacity to distinguish 
between safe and threatening circumstances. For example, gen-
eralizing fear (and thus avoidance) after a bad social experience 
with one person to others who were associated with them would 
increase uncertainty about where to find safe social interactions. 
Detection of more social threats (due to an increased expected 
utility of threat detection) would further increase such uncertainty.

Collectively these mechanisms are proposed to increase the 
frequency of anxious states by increasing the expected proximity 
of danger and uncertainty about its likely origin, even in relatively 
safe situations. Their collective influence is depicted in Figure 2, 
which can be considered an elaboration on the “Biological trait 
vulnerability” node from Figure  1 along with the thick arrow 
linking it to the self-report measure of “Frequent anxious states.” 
Their predicted relationships could be tested empirically using 
network methods [as for questionnaire and experimental data in 
Ref. (84)] if they were separately assessed within a stable cohort 
of experimental subjects. Such an approach has the distinct 
advantage of acknowledging that such biases reflect long-term 
trends in learning and behavior whose interrelationships cannot 
be directly assessed within a single experiment.

Crucially, state anxiety is characterized by processing and 
behavioral features likely to compound the effects of long-term 
trait vulnerabilities (100, 189). As a result, these factors would 
interact on a variety of timescales so that, for example, a bias 
toward reactive avoidance acquired over many years might lead to 
particularly jittery behavior when combined with a state-induced 
enhancement of aversive processing. Such state–trait interac-
tions may underlie the incapacitating effect of anxious states on 
individuals with high levels of self-reported trait anxiety and 
constitute one important way in which frequent anxious states 
form positive feedback loops with trait vulnerability factors.

eXiSTiNG COMPUTATiONAL STUDieS 
OF TRAiT ANXieTY

With a schematic view of computational processes underlying 
trait anxiety in place, this section describes existing computa-
tional studies of trait anxiety and considers how they might fit 
in to the framework illustrated in Figure 2. The account above 
indicates that trait anxiety involves a mixture of biologically 
driven learning biases and learned preferences shaped by these 
biases over time. Existing computational studies have approached 
trait anxiety both by analyzing mechanisms of aversive learning 
and detecting established preferences. As described above, 
these can be understood in relation to computational theories 

of Pavlovian conditioning (124), avoidance learning (165, 169), 
decision-making (53), and learning under uncertainty (65, 68).

Altered Conditioning and 
Avoidance Learning
In a 2015 paper, Browning and colleagues assessed the perfor-
mance of individuals with variable levels of trait anxiety in an 
avoidance learning task featuring two levels of environmental 
volatility. In the “low volatility” environment, participants could 
most effectively avoid an aversive stimulus by learning stable 
probabilistic associations between two possible action choices 
and the aversive outcome; in the “high volatility” environment, 
the action-outcome contingencies reversed at regular intervals. 
An ideal Bayesian learner adapts its rate of learning to account 
for changes in volatility, selecting a higher learning rate when 
contingencies appear to change (65). Browning et al. discovered 
that the degree of learning rate adaptation among experimental 
subjects was inversely correlated with trait anxiety, indicating 
that high trait anxious individuals were less adept at detecting 
changing contingencies. Furthermore, pupillometry revealed 
that low but not high trait anxious participants exhibited changes 
in pupil diameter correlated with volatility a few seconds after the 
outcome, suggesting that learning rate modulation was associated 
with a physiological process tracking volatility (71).

The “anxiety-related deficit in contingency learning” (71) 
detected in this study is consistent with findings that anxious 
individuals overgeneralize associative fear conditioning. This is 
because more general conditioning would reduce the distinc-
tion between fear responses to the two stimuli, interfering with 
statistical learning about the contingencies. Computationally, it 
manifests as “a deficit in the use of higher order statistics about 
the causal structure of adverse environments to guide decision-
making” (71), and it seems to impair avoidance, since high trait 
anxious individuals were observed to make more mistakes on 
trials involving difficult choices (71). A possible neurological 
substrate of this effect is cholinergic modulation of sensory cortex 
by the nucleus basalis of Meynert, driven by increased activation 
of the central amygdala (150); reduced reactivity of the pupil to 
volatility could reflect a simultaneous inhibitory effect of height-
ened central amygdala activity on the Edinger–Westphal nucleus 
(190). These effects would be consistent with reduced modula-
tory activity in the amygdala-regulating ventromedial prefrontal 
cortex during fear conditioning (128).

Problems interpreting the causal structure of aversive expe-
riences—derived from generalized fear conditioning—could 
further influence thoughts and actions by shifting motivation 
toward aversive responding and avoidance. This possibility can 
be investigated by presenting stimuli that have acquired fear asso-
ciations through classical conditioning during instrumental tasks 
(191). Such stimuli simultaneously inhibit appetitive approach 
and promote withdrawal (191–193), indicating that tendencies 
toward approach and avoidance are subject to indirect contex-
tual modulation by conditioned fear stimuli. By increasing the 
number of aversive Pavlovian influences within the environment, 
generalization of fear conditioning could theoretically potentiate 
both effects. The relative influence of inhibited reward-seeking 
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and potentiated avoidance could depend in part upon interac-
tions between serotonergic and dopaminergic neuromodulation 
because these neurotransmitters regulate action selection in 
different ways. For example, inhibition may be mediated by 
serotonin (194, 195) and response vigor by dopamine [(196); for 
a review, see Ref. (197)].

A pioneering computational account of serotonin’s role in 
the regulation of negative mood has described how variations in 
serotonin transporter metabolism that are found in the healthy 
adult population and associated with trait anxiety (198) could 
promote excessive inhibition of negatively valenced trains of 
thought (199). In this account, serotonin provides an inhibitory 
signal that reduces the probability an individual will explore 
thought processes likely to lead to affectively negative outcomes, 
analogous to increased avoidance (200). An under-active seroto-
nin transporter increases the availability of serotonin, reducing 
exploration of states potentially leading to negative outcomes. 
Whenever an individual with this profile experienced a reduc-
tion in serotonergic neuromodulation [which could happen for 
various reasons—for an accessible description of factors affecting 
overall serotonin levels, see Ref. (201)], they would be exposed to 
the negative thought processes they had previously avoided. This 
would lead to a sudden increase in unexpected negative outcomes 
(199). Repeated experiences of this nature would make the world 
seem a more unpredictable and frightening place.

In relation to overgeneralized fear conditioning, it would be 
interesting to consider whether overproduction of serotonergic 
inhibitory signals by an excess of aversive conditioned stimuli 
could also increase avoidance. Dayan and Huys (199) describe a 
reinforcement environment in which rewards and punishments 
are symmetric and the level of serotonergic neuromodulation 
causes negatively valenced states to be avoided, leading to 
oversampling of positive states. Recent findings concerning the 
involvement of serotonin in reward and punishment signaling 
complicate this picture (202), but overgeneralized fear condition-
ing could lead the environment itself to appear weighted toward 
punishing outcomes by attributing negative valence to states that 
were actually benign. This would similarly restrict environmental 
sampling—this time limiting exploration of states that could lead 
to positive outcomes.

Altered Threat Processing and 
expectancies
In a 2010 paper, White and colleagues used a DDM (53, 54) to 
examine the relationship between threat processing and trait 
anxiety. In one experiment, participants performed a lexical 
decision task, which involves classifying strings of letters as 
words or non-words. Subjects chose between “word” and “non-
word” for hundreds of letter strings, some of which were neutral 
and some threatening words. Their performance was initially 
assessed using accuracy and response time measures and higher 
trait anxiety found to be associated with non-significant trends 
toward faster and more accurate classification of threatening 
relative to non-threatening words. Subsequently, accuracy and 
response time measures were used to fit a DDM to the behavior 
of each participant and the fitted drift rate parameters (which 
express the speed at which a particle moves toward a decision 

boundary; see description in the section on “Computational 
Background”) were compared. Drift rates were significantly 
higher among individuals with high trait anxiety for threatening 
relative to non-threatening words.

This task addressed a seeming contradiction in the literature on 
trait anxiety: a cognitive model of anxiety (203) predicted gener-
ally heightened threat reactivity; but previous experimental work 
had failed to find an effect of trait anxiety on threat processing in 
experimental paradigms that did not involve input competition 
[(204, 205) for example; an example of a task that does involve 
input competition would be the emotional Stroop, described in 
Ref. (171)]. Since anxiety is associated with conflict resolution 
(91), the negative experimental findings could have indicated that 
it was input competition—and not threat processing itself—that 
was affected by trait anxiety. The results of White et  al. (61) 
suggest that trait anxiety is associated with direct enhancement 
of threat processing even in the absence of input competition, 
consistent with theoretical predictions (203), but in contradiction 
to previous experimental findings. The non-significant trends in 
accuracy and response time indicate that—in this group of par-
ticipants—such differences could have been overlooked without 
the use of a computational model.

As noted in the section on “State Anxiety, Trait Anxiety, 
and Anxiety Disorders,” transient states of anxiety in healthy 
participants also increase threat-related biases (95), demonstrat-
ing that such biases are subject to short-term modulation in the 
context of diffuse threat regardless of trait anxiety. A recent neu-
roimaging study addressed this issue using functional magnetic 
resonance imaging (fMRI) to detect activity-related changes in 
the blood-oxygenation-level dependent (BOLD) response that 
were correlated with aversive prediction error, alongside a threat 
of shock (96) manipulation of state anxiety to see how aversive 
learning changed under stress (50). Participants were required 
to predict whether particular cues would be followed by happy 
or fearful faces under probabilistic contingencies that ensured a 
steady stream of appetitive (happy) and aversive (fearful) predic-
tion errors. The experiment was repeated in a “safe” condition 
and under threat of shock. When they were at risk of receiving 
an electric shock, participants reported higher levels of anxiety. 
In the same condition, aversive prediction error signals in the 
ventral striatum were significantly increased whereas appetitive 
prediction errors were unchanged. It would be interesting for 
future experiments to explore how these effects compare with 
threat biases attributable to trait anxiety such as those detected 
by White and colleagues.

As well as altered threat processing, trait anxiety is associated 
with altered threat expectations (157, 206, 207) and computa-
tional methods could be used to quantify and analyze the impact 
of these expectations in new and revealing ways. For example, 
a recent study used BDT (12, 69) to infer threat expectations 
from human behavior in a simulated approach-avoidance task 
(72). Participants had to choose when, if at all, to approach a 
reward while at various levels of risk from a “predator.” If they 
were caught by the predator they would lose all rewards previ-
ously collected in that stage of the task. A computational model 
based on BDT was designed to capture optimal behavior in the 
task under different prior expectations about reward-threat 
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correlations: if threats were expected to correlate with reward 
onsets, participants would wait before approaching to collect a 
reward; otherwise, there would be no reason not to approach as 
soon as the reward appeared. Across four experiments, subjects 
tended to wait before approaching a reward, suggesting they 
had a prior expectation that threats and reward onsets were 
correlated. Since there were no such correlations in the task 
itself, the prior was taken to reflect a preexisting bias among 
experimental subjects (72).

Having quantified a bias toward behavioral inhibition in 
the face of approach-avoidance conflict (whose connection 
with anxiety is described in the section on “More Frequent 
Anxious States” above), the study goes on to examine how this 
bias might be altered among anxious individuals. Modulation 
of approach latency by threat probability and potential loss was 
increased among anxious participants, suggesting they were 
using an altered prior threat probability function (i.e., their 

threat expectations were different). The study’s achievement is 
thus threefold: it provides a quantitative measure of behavioral 
inhibition in the face of approach-avoidance conflict, links this 
to prior threat expectations and demonstrates that these expecta-
tions are altered among individuals with high levels of trait 
anxiety. In the future, this quantifiable example of anxiety-related 
behavioral inhibition could be adapted for fMRI experiments 
in order to explore brain activity likely to be abnormal among 
people with anxiety disorders as a result of heightened threat 
expectations.

OUTSTANDiNG COMPUTATiONAL 
QUeSTiONS

The examples above demonstrate that computational studies 
have produced a number of results characterizing altered aversive 
learning, threat processing and expectancies among individuals 
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Functional level
How can we best model anxiety-like biases in conditioning and avoidance?
When are these biases adaptive and when are they problematic?
Can reduced attentional control be modeled as increased utility of threat 
detection?
Can computational modeling provide a developmental account of anxiety 
disorders?

Algorithmic level
How does generalized fear conditioning influence decision-making and 
avoidance learning?
Can these effects be understood using DDMs or reinforcement learning models?
Can reinforcement schedules influence the utility of threat detection vs reward 
seeking?
Can this be used to explore environmental influences on the development of 
anxiety disorders?

implementation level
Do dopamine agonists facilitate active avoidance among anxious individuals?
Can any such effects be linked to activity in the nucleus accumbens?
Does increased cholinergic neuromodulation in sensory cortex generalize fear 
conditioning?
How can this be modeled computationally?

All levels
How do trait-related biases interact with those observed during anxious states?
Can network methods be applied to study interactions between computational 
processes?
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with high trait anxiety. But can they be related to the network 
of trait-defining processes derived from theoretical considera-
tions in the section, “Trait Anxiety: Targets for Computational 
Studies”? For example, do they provide evidence of generalized 
aversive learning or avoidance, or of a connection between 
expected utility of threat detection and tendency to initiate 
anxious states? One possible mapping from the study results 
to the conceptual model is shown in Figure 3. This network is 
not meant to be definitive, but rather to illustrate the principle 
of considering particular results within a wider computational 
framework. The addition of an arrow from “Frequent anxious 
states” to “Increased threat processing” on the basis of Robinson 
et al. (50) demonstrates how a wider schematic view might be 
updated following a new result. Existing arrows in this version of 
the network are dashed to emphasize that the relationships they 
indicate are hypothetical and need to be investigated further. 
New arrows or nodes could be added based on additional stud-
ies, or the current nodes rearranged to express an alternative 
theoretical perspective.

One thing that is apparent both from this diagram and the 
preceding discussion is that computational studies can illuminate 
the processes underlying trait anxiety at different levels of detail. 
In particular, models can be devised with reference to functional 
outcomes (e.g., more frequent experienced anxiety), algorithmic 
processes of learning and action selection (e.g., generalization of 
fear conditioning), or specific biological mechanisms of interest 
(e.g., serotonergic signaling). These levels correspond to David 
Marr’s three levels of analysis—functional, algorithmic, and 
implementational—which are intended to capture “the different 
levels at which a device must be understood before one can be 
said to have understood it completely” (208). In doing so, they 
also capture different perspectives from which a computational 
process may be considered to have gone awry: that of what it is try-
ing to achieve; that of the representations and algorithms it uses; 
and that of the mechanistic implementation of these algorithms. 
The rest of this section examines trait anxiety from these three 
perspectives to motivate new computational questions that could 
develop and refine the schematic view presented in Figure 2. An 
overview of relevant questions is provided in Table 1.

At the most abstract level—that of functional outcomes—trait 
anxiety increases the resources devoted to threat detection, 
analysis, and avoidance relative to other activities, leading to 
more anxious states. Analyzing trait anxiety at this level means 
asking whether this goal is appropriate. In anxiety disorders 
it has clearly gone too far, which is why these conditions are 
categorized as disorders in the first place; in the case of trait 
anxiety the situation is less clear. Increased threat detection 
and avoidance confer clear evolutionary advantages on animals 
living in dangerous environments [for an intuitive example, see 
Ref. (209); memorably described in Ref. (210)] and it seems 
unlikely that there is an optimum baseline level equally suitable 
for all circumstances. Consistent with this idea, some arguments 
ascribe the current prevalence of anxiety disorders to evolution-
ary adaptations that only happen to be disadvantageous in the 
modern world (211).

In order to assess such arguments it would be necessary to 
consider under which circumstances biases associated with trait 

anxiety are beneficial and under which circumstances they are 
detrimental. As described by Bach (72), the establishment of 
normative models of anxiety, which emphasize its adaptive value 
in appropriate situations, is an important starting point from 
which to ask questions relevant to its dysfunction. It would be 
interesting to test a conceptual model whereby: (i) enhanced and 
overgeneralized fear conditioning (derived, for example, from 
high reinforcement sensitivity) increase the number of danger 
signals in the environment, resulting in more avoidance; (ii) this 
increases approach-avoidance conflict, so associated behaviors, 
such as environmental scanning, are used more readily; and 
(iii) over time, these behaviors are reinforced, so it becomes 
more likely they will be used in the future. In this way, general-
ized conditioning could result in a general tendency to prefer 
information-gathering behaviors at the expense of task-related 
activities—in other words, “anxiety looking for a threat to per-
ceive” (91), which may tip into pathological hypervigilance in 
anxiety disorders.

Such developmental processes could be explored in com-
puter simulations featuring agents with varying levels of rein-
forcement sensitivity. In any such simulations, the relationship 
between threat detection and the frequency of anxious states 
could undermine the adaptive value of increased threat detec-
tion for a biological system. Specifically, more frequent anxious 
states caused by greater uncertainty about the nature of threats 
in the environment and their proximity would themselves 
enhance threat-related biases, conceivably leading to feedback 
interactions between state anxiety and subcomponents of the 
trait vulnerability (i.e., the arrows between “Increased threat 
processing” and “Frequent anxious states” in Figure  3). Such 
interactions should be explored in future theoretical studies 
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because they may determine the point at which an adaptive 
awareness of threats could become an unmanageable state of 
hypervigilance. In terms of experimental data, analysis of lon-
gitudinal data using network and experience sampling methods 
(81) could be used to determine whether individuals with high 
trait anxiety are more likely to display symptoms of anxious 
states after a negative experience, or perhaps continue display-
ing such symptoms for longer.

Some studies have already explored interactions between state 
and trait anxiety on shorter (i.e., within-experiment) timescales 
(212, 213) and computational accounts of the effects observed 
in these studies, or related effects, could also be developed. 
Reductions in attentional control due to stress, for example, 
could interact with over-general fear conditioning to severely 
disrupt concentration (the former effect increasing distract-
ibility; the latter increasing the number of distractions). This 
could undermine anxious individuals’ ability to learn effectively 
about newly encountered threats, since reinforcement learning 
relies on attentional processes in complex environments (214). 
Alternatively, as described in the section, “Trait Anxiety: Targets 
for Computational Studies,” enhanced threat processing under 
stress could combine with a learned predisposition toward 
avoidance to result in erratic motor activity. Computational 
accounts of such processes could prove valuable in explaining 
how intrinsic vulnerabilities might promote systemic breakdown 
under specific circumstances.

Most existing computational work on trait anxiety has been 
carried out at the algorithmic level. In the experimental studies 
described in the section on “Existing Computational Studies of 
Trait Anxiety,” tasks are relatively well-defined, but individuals 
with varying levels of trait anxiety nevertheless differ in the way 
they avoid unpleasant outcomes (71), process threat-related 
information (61), or trade off approach and avoidance (72). 
Conditioning and avoidance biases will continue to be explored 
in experiments that compare average performance of groups 
with high and low trait anxiety, or seek correlations with a 
trait-anxiety regressor. Such experiments could investigate, for 
example, how generalized fear conditioning influences decision-
making and avoidance [perhaps using reinforcement learning 
models to provide an algorithmic explanation for results such as 
those described in Ref. (163)]. In relation to attentional control 
deficits, modeling work could examine how particular reinforce-
ment schedules, involving different levels of uncertainty, could 
enhance the expected utility of threat detection relative to reward 
seeking. Where severe and unpredictable punishments were 
highly likely, for example, it would presumably be advantageous 
to prioritize threat detection over other activities. In this case, a 
bias toward threat detection would follow from heightened threat 
expectations. Alternatively, modeling could be used to explore 
the question of how particular forms of threat detection leading 
to apparently successful punishment avoidance (for example, eye 
movements to check for something snake-like moving along the 
ground) could be reinforced. For example, could they be subject to 
the same process of negative reinforcement as avoidance actions 
themselves? In this case, threat detection would be conceived 
more as a habit, which was employed more frequently regardless 
of conscious threat expectations.

A further aim of future studies operating at the algorithmic 
level should be to assess relationships between different com-
putational features of trait anxiety. Efforts in this area could 
benefit greatly from the application of network analysis (76) 
to measurable differences in computational learning processes. 
For example, individuals with high levels of trait anxiety strug-
gle to adapt learning about aversive outcomes to changes in 
environmental volatility (71), react differently to approach-
avoidance conflict (72) and process threatening information 
more rapidly (61), but would these effects be strongly correlated 
with one another if these experiments were carried out on 
the same subjects? And might one effect turn out to be more 
fundamental than the others? Answering such questions would 
help researchers develop new versions of the network depicted 
in Figure 2, providing greater insight into the ways algorithmic 
learning processes associated with trait anxiety interact over 
time to generate vulnerability to the development of anxiety 
and mood disorders.

At the implementational level, the potential role of choliner-
gic neuromodulation in trait vulnerability to anxiety has been 
discussed elsewhere (71, 150) and may be related to its hypoth-
esized involvement in signaling expected uncertainty—that 
is, uncertainty arising from “known unreliability of predictive 
relationships” (215). Individual differences in the activity of 
acetylcholine could be a primary biological cause of increased 
sensory uncertainty about the relationships between percepts 
and aversive outcomes and this possibility could be investigated 
by building on previous modeling work describing the effects 
of cholinergic neuromodulation (216). Bayesian modeling 
approaches, with their capacity to represent various forms of 
uncertainty (186, 215), will be key to any such endeavors.

In relation to the activity of dopamine and serotonin, rein-
forcement learning models could be used to further examine vari-
ability of fMRI BOLD prediction error signals during avoidance 
learning, extending previous non-computational work (217). 
Combined with manipulations of serotonergic and dopaminergic 
neuromodulation [as in, for example, Ref. (196)], this approach 
could help elucidate the relative contributions of these neuro-
transmitter systems to expected alterations in avoidance learning 
associated with trait anxiety. For example, could high trait anxiety 
be associated with increased encoding of aversive value—and, if 
so, does this lead to increased encoding of reward value for avoid-
ance? Could enhancement of dopaminergic neuromodulation 
more effectively facilitate active avoidance than active approach 
among individuals high in trait anxiety?

A final task for models operating at the implementational level 
will be to link findings about human trait anxiety to ongoing 
circuit-level research on the mechanisms underlying anxiety in 
animals [reviewed in Ref. (218, 219)]. This will allow for con-
siderable elaboration of the “Biological predisposition” nodes in 
Figure 2. Since various biological mechanisms could conceivably 
lead to similar anxious phenotypes at the level of behavioral 
measurement or self-reported symptoms a full characterization 
of these possibilities will be necessary to provide the most effec-
tive treatments for anxiety disorders in the long run—and it is 
hard to imagine that this can be provided by experiments on 
human subjects alone.
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with the precision tools of computational modeling. However, 
this review has sought to demonstrate that modeling can be a 
useful addition to the study of trait anxiety precisely because it 
forces scientists to be explicit about the details and relevance of 
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between them.

Furthermore, two of the immediate challenges presented by 
trait anxiety—its basis in interactions between multiple cognitive 
processes and potentially considerable dependence on environ-
mental factors—are likely to characterize any dispositional factor 
associated with mental illness. The study of trait anxiety provides 
an ideal opportunity to tackle these challenges with reference to a 
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