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The Effect of Cell Death on the Stability of a Growing Biofilm
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Abstract

In this paper, we investigate the role of cell death in promoting pattern formation
within bacterial biofilms. To do this we utilise an extension of the model proposed by
Dockery and Klapper [13], and consider the effects of two distinct death rates. Equations
describing the evolution of a moving biofilm interface are derived, and properties of steady
state solutions are examined. In particular, a comparison of the planar behaviour of
the biofilm interface in the different cases of cell death is investigated. Linear stability
analysis is carried out at steady state solutions of the interface, and it is shown that, under
certain conditions, instabilities may arise. Analysis determines that, while the emergence
of patterns is a possibility in ‘deep’ biofilms, it is unlikely that pattern formation will
arise in ‘shallow’ biofilms.

Keywords: biofilm, expansion, cell-death, mathematical modelling, free boundary

Mathematics Subject Classification: 92C15, 35R37

1 Introduction

It is widely believed that almost all bacterial biomass is located within complex, close-knit
communities called biofilms, which are found at solid-liquid, liquid-air or solid-air interfaces
[20]. They can comprise a single microbial species or more typically multiple species depend-
ing on environmental parameters [12, 27]. Biofilms that are composed of multiple species can
be found in most natural environments, while biofilms that are formed by single species are
much less common and tend to exist in specific infection sites, for example on the surface of
medical implants [7, 27]. Most biofilms exhibit heterogeneity to some extent [6, 12, 14, 23]
i.e. rather than consisting of a continuous homogeneous layer, biofilms contain microcolonies
of bacterial cells separated from other microcolonies by interstitial voids (water channels).

A defining characteristic of the biofilm is that the bacteria are encased within a self-
produced extracellular matrix [4, 21, 25], composed of a mixture of components including
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Figure 1: Morphology of wildtype Bacillus subtilis biofilm grown at 30◦C on 1.5% agar sub-
strate. Figure A: Early biofilm (18 hours into growth) shows homogeneity. Figure B: Mature
biofilm (48 hours into growth) shows complex heterogeneous pattern within the coffee-ring re-
gion (yellow outline). A close-up of the highlighted white square is shown in Figure C, where
the intricate rope-like wrinkle structure within the coffee-ring can be observed. Photographs
by L. Li (unpublished).

extracellular polymeric substance (EPS). The production of EPS, accounting for 50% to 90%
of the total biomass of the biofilm [14], involves a significant investment of energy and thus
it is assumed that this sticky matrix must be beneficial for growth by offering environmental
protection [25]. In particular, EPS is thought to contribute to the increased antimicrobial
resistance that is displayed in wildtype biofilms in comparison to eps mutants [11, 21].

Many different mathematical approaches have been proposed as a way of modelling the
development of bacterial biofilms. These techniques include cellular automata models [22, 32],
partial differential equation models [1, 17, 26], and in particular moving boundary problems
implementing a fluid dynamics approach [2, 10, 13, 19]. Free or moving boundary (or Stefan)
problems, characterised by a space and time dependent moving boundary that must be
tracked throughout development as part of the solution [8], present complex mathematical
challenges. Nonlinearity arising through the coupling of material and interface dynamics,
and the inclusion of multiple time and length scales, contribute to the difficulties associated
with these problems [24]. As a result of these complications, numerical rather than analytical
techniques are generally used to determine behaviour, except in some special simplified cases
[16].

Dockery and Klapper [13] presented a simple moving boundary model of a single substrate
limited biofilm growing into a static aqueous environment. They deduced that the biofilm
interface is linearly unstable to fingering instabilities under certain conditions. In this paper
we build on the model derived in [13] to consider the case of biofilm growth on a surface in
which the growth limiting substrate is assumed to be oxygen in the air above. The growth
surface represents agar in a typical laboratory experiment where penetration into the agar is
minimal and nutrients within the medium are not limiting for growth (initially in any case).
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Figure 2: Schematic of model set-up. The biofilm grows on an agar substrate and expands
vertically into the air above. The x and z-directions are labelled (y points into the page), as
is the characteristic length scale w. The biofilm-agar interface is positioned at z = 0.

Under these conditions complex biofilm morphologies can be produced, particularly in mature
biofilms which are often not of uniform depth and indeed can form elaborate, heterogeneous
large scale structures [1, 3, 5, 33] (see Figure 1). We extend the model formulated in [13] by
introducing a new cell death term to represent the findings of Asally et al. [1], which stated
that cell death at the base of biofilms acts as a precursor to wrinkling, specifically within the
central region of the biofilm (i.e. the ‘coffee-ring’ region, which can be seen in Figure 1B). We
examine the effect that the loss of cells has on the growth of the biofilm and the heterogeneity
and patterning displayed, particularly at steady state solutions.

2 Model set up

The model set-up used in this paper follows much the same formulation as in [13]. However,
rather than considering a biofilm growing into an aqueous environment, we investigate a
non-submerged biofilm growing on an agar substrate into the air above. For convenience,
an overview of the model set-up is described here (full details can be found in [13]), and a
schematic of the set-up is shown in Figure 2.

The domain of interest D ⊂ R3 is an unbounded slab separated by a surface z = h(x, t)
(where x = (x, y)), into two regions: (i) the biofilm in 0 < z < h(x, t), and (ii) the air above
in z > h(x, t). Oxygen is assumed here to be the growth limiting substrate and is denoted
by s = s(x, z, t).

In the lower region, the biofilm itself is modelled as a viscous, homogeneous, incompress-
ible fluid with constant density, rescaled here to unity. The velocity, u, of this fluid is related
to the pressure, p(x, z, t) (or more specifically the pressure gradient ∇p(x, z, t)), within the
biofilm via a standard relationship, namely,

u = −λ∇p, (1)
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where λ is a positive constant (note that this relationship is often referred to as Darcy’s Law
in certain specific contexts). Cell growth and division generates a source of mass within the
biofilm which is taken into account within the conservation of mass equation,

∇ · u = g, (2)

where g = g(s) is some growth function that models the net production of bacteria per unit
volume per unit time. Combining (2) with (1) yields a relationship between growth and
resultant pressure such that

−λ∇2p = g(s). (3)

Cell maintenance and growth require substrate (in this case oxygen). Substrate consumption
is modelled by an expression of the form f(s) and thus substrate concentration within the
biofilm region is governed by the equation

st = D2∇2s− f(s), (4)

where D2 > 0 is a standard Fickian diffusion coefficient. Clearly, the growth function, g, and
substrate utilisation, f , are related as will be discussed later.

Substrate concentration in the upper region, h(x, t) < z < H(x, t), is again assumed to
diffuse in a standard Fickian manner and is thus governed by the equation

st = D1∇2s, (5)

where D1 is a positive constant. It is reasonably assumed that substrate concentration far
above the biofilm interface is unaffected by biofilm growth. Thus substrate is assumed to be
a constant above a height denoted by H(x, t)=h(x, t) +L, where L is a constant. Finally, in
the upper region, we set pressure p ≡ 0. In fact, we define the interface separating the upper
and biofilm regions by p = 0.

To complete the model, boundary conditions are imposed as follows: The biofilm-agar
interface (z = 0) is assumed impermeable to the biofilm, and therefore the z-component of
velocity is zero here. Consistent with this condition, pz(x, 0, t) = 0. Similarly, the flux of
substrate across the boundary is set to be zero at z = 0. At the biofilm surface z = h(x, t),
the pressure is assumed to be zero. Indeed this defines the location of the tracked interface
via the interface equation given below. Moreover, the substrate concentration is assumed
continuous at the interface z = h(x, t), and a flux continuity condition is imposed as detailed
below. Finally, the substrate concentration is set constant for z > H(x, t). In summary, the
applied boundary conditions are as follows:

p|z=h = 0, pz|z=0 = 0; (6a)

s|z=H = s∞, sz|z=0 = 0; (6b)

s|z=h+ = s|z=h− ; (6c)

n ·D1∇s|z=h+ = n ·D2∇s|z=h− , (6d)
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along with the interface equation

∂h

∂t
= −n · λ∇p|z=h− , (7)

where h+ and h− denote the biofilm interface approached from above and below respectively,
n denotes the (upward pointing) normal to the interface z = h and s∞ is a positive constant
representing the bulk substrate concentration.

3 Non-dimensionalisation

Some scaling factors are introduced to simplify the model. Wildtype biofilms of B. subtilis
grown on agar, despite generally having much greater length than height, appear to de-
velop spatial features with a characteristic length of pattern, denoted w, which are repeated
throughout the domain. Experimental observations show that both the characteristic length
of patterns and biofilm height are of the same order of approximately 103µm (see for example
[34, 37]). Hence, for computational purposes, a domain of fixed height, H̄, and width, w, can
be employed on which periodic boundary conditions in the x and y-directions can be imposed
for the pressure and substrate variables. A time scale, T , associated with biofilm growth can
also be introduced. By setting

x̄ =
x

w
, z̄ =

z

w
, h̄ =

h

w
, H̄ =

H

w
, L̄ =

L

w
, t̄ =

t

T
, S =

s

s∞
,

f̄(s) =
f(s)

f(s∞)
, ḡ(s) = g(s)T, P =

λT

w2
p,

the non-dimensional system can be obtained after dropping bars for simplicity:

ε1St −∇2S = 0, h(x, t) < z < H(x, t) (8){
ε2St −∇2S = −Gf(S);

∇2P = −g(S);
0 < z < h(x, t) (9)

with the evolution equation
ht = −n · ∇P |z=h− , (10)

where G = w2

s∞D2
f(s∞), εi = w2

DiT
and we have redefined ḡ(Ss∞) = ḡ(S) and f̄(Ss∞) = f̄(S)

by absorbing the constant into the functional definition. Note the (periodically repeating)
domain is rescaled such that (x, y) ∈ (0, 1)× (0, 1).



The Effect of Cell Death on the Stability of a Growing Biofilm 6

Substituting the desired forms of non-dimensional variables into the boundary conditions
(6) yields the corresponding dimensionless boundary conditions:

P |z=h = 0, Pz|z=0 = 0; (11a)

S|z=H = 1, Sz|z=0 = 0; (11b)

S|z=h+ = S|z=h− ; (11c)

n ·K∇S|z=h+ = n · ∇S|z=h− , (11d)

where K = D1/D2. As oxygen diffuses more readily through air than the porous medium
of the biofilm [9, 30], it can be reasonably assumed that D2 < D1. Hence, throughout this
paper, K > 1. It is also assumed that ε1 and ε2 are small up to observable biofilm length
scales ω [13], thus εi � 1. As noted in [13], the parameter G, referred to as the growth number,
has a particular meaning: G = w2/l2s where ls =

√
D2s∞/f(s∞) measures the penetration

depth of substrate into the biofilm i.e. a depth scale over which the diffusible substrate can
penetrate before it is consumed. The region h− ls < z < h is referred to as the active layer
of the biofilm, therefore the quantity 1/

√
G is a measure of the active layer depth which can

alternatively be thought of as a measure of the efficiency of substrate utilisation.
Finally, the functional forms for f and g must be set. Following [13] we take the simplest,

reasonable form for f , namely f(S) = S, and use this throughout the paper as a viable
approximation to more complete descriptions of appetite-limited substrate utilisation in non-
saturated conditions. It is well known that bacterial death occurs in the biofilm [28, 35, 36]
and of particular relevance here is recent work that has highlighted the role that cell death
plays in mediating heterogeneous growth [1]. Asally et al. [1] highlighted the role of cell death
in generating pattern formation in bacterial biofilms grown in laboratory conditions repre-
sented by the model set-up considered here. In particular, in [1], it was shown that cell death
occurred at the base of Bacillus subtilis biofilms (at the biofilm-agar interface). Specifically,
it was hypothesised that the resulting cell death pattern within the central coffee-ring region
(highlighted in Figure 1B), acts as a pre-pattern for the striking growth patterns of the type
illustrated in Figure 1C. To model this phenomena, it is necessary to introduce a death term
into the bacterial growth function g i.e. (in non-dimensional form) g(S) = f(S)−d(S) where
d = d(S) represents the death of cells, which can be thought of as being associated with cell
removal or shrinkage. In [13], most of the analysis considers the case d ≡ 0. In this paper we
investigate the role of cell death in more detail. In particular we examine two cases: cell death
at a constant rate (discussed briefly in [13]) and substrate dependent cell death, motivated
by [1]. We therefore consider both d(S) := µ and d(S) := µ(1−S) in turn. The former is the
standard constant death term. The latter is a simple model for the phenomenon discussed
in [1], where death rate increases with decreasing substrate concentration (corresponding to
increasing distance below the biofilm-air interface) and approaches the constant death rate
µ below the active layer region. Thus g(S) = S − µ and g(S) = (1 + µ)S − µ, respectively.
In both cases we present an analysis of the effects of cell death on the development of the
biofilm and pattern formation.
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In conclusion, on setting ε1 = ε2 = 0 (a standard analytical approach in the solution of
moving boundary problems) and employing the growth and utilisation functions detailed
above yields a quasi-static description of equations (8) and (9)

∇2S = 0; h(x, t) < z < H(x, t) := h(x, t) + L, (12){
∇2S = GS;

∇2P = −DµS + µ;
0 < z < h(x, t) (13)

that is to be solved in conjunction with the interface evolution equation (10) and boundary
conditions (11). Here

Dµ =

{
1, d(S) := µ,

1 + µ, d(S) := µ(1− S),
(14)

where µ is a positive constant. As an aside we note that setting Dµ = 1 and µ = 0 in
equation (13) recovers the case where no cell death occurs (d ≡ 0), which is the main focus
in [13].

The paper is organised as follows. Planar solutions to equations (12)-(13) are found and
differences between behaviour at the steady states in the different cases of cell death are
noted. Following this, the corresponding non-planar solutions are derived and the possibility
of pattern formation occurring at steady states is investigated in both ‘shallow’ and ‘deep’
biofilms (as explained later).

4 Planar solutions

First, we consider the effects of cell death on planar solutions. From (12)-(13), planar solutions
S0(z, t), P0(z, t) and h0(t) must satisfy

S0,zz = 0 h0(t) < z < H0 := h0(t) + L. (15){
S0,zz = GS0;

P0,zz = −DµS0 + µ;
0 < z < h0(t) (16)

where the boundary conditions for planar solutions are

P0 |z=h0 = 0 , P0,z |z=0 = 0; (17a)

S0 |z=H0 = 1, S0,z |z=0 = 0; (17b)

S0|z=h+0 = S0|z=h−0 ; (17c)

KS0,z|z=h+0 = S0,z|z=h−0 ; (17d)

and the interface evolution equation is

h′0(t) = −P0,z|z=h0 . (18)
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Solving (15)-(16) with the above boundary conditions, it follows that the planar solution for
the substrate is

S0(z, t) =


1− S̄K−1

√
G tanh(

√
Gh0)(H0 − z), h0(t) < z < H0;

S̄
cosh(

√
Gz)

cosh(
√
Gh0)

, 0 < z < h0;

(19)

where

S̄ =
[
1 + LK−1

√
G tanh(

√
Gh0)

]−1
is the value of the substrate at the interface z = h0. Substituting the second expression in
(19) into the second expression of (16), integrating twice and implementing the boundary
conditions yields

P0(z, t) =
DµS̄

G

[
1− cosh(

√
Gz)

cosh(
√
Gh0)

]
+
µ

2
(z2 − h20). (20)

Finally, substitution of (20) into the interface evolution equation (18) yields

h′0(t) =
DµS̄√
G

tanh(
√
Gh0)− µh0. (21)

We now examine the effects of cell death on the planar development of the biofilm by focussing
on the biofilm-substratum interface h0 and referring to equation (21). A closed form solution
for equation (21) cannot be obtained, however it is informative to consider the qualitative
structure of the solution in each case of cell death. We are only interested in non-negative
solutions and it follows directly from standard arguments that solutions of (21) with non-
negative initial data remain non-negative.

To distinguish between solutions h0 in the different cases of cell death, the notation h0a,
h0c and h0s is used to denote planar solutions in the absence of death (where Dµ = 1 and
µ = 0), with constant death (where Dµ = 1) and with substrate dependent death (where
Dµ = 1 + µ), respectively. Immediately, it can be seen that for any given h0,

h′0a > h′0s > h′0c, (22)

representing the fact that biofilm growth at a specific planar height will be fastest when no
cell death is present, as one might anticipate. For each fixed value of µ, growth at h0 will also
be faster in the case of substrate dependent death compared to constant cell death. Further
qualitative details can be found by examining the different death cases in turn.

Firstly, in the case of no cell death, it is clear from (21) that for any non-negative h0,
h′0a > 0 and

lim
h0a→∞

S̄ =
1

1 +K−1L
√
G

=⇒ lim
h0a→∞

h′0a =
1√

G+K−1LG
.
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Thus, given any non-negative initial biofilm height h0a(0), the biofilm is predicted to increase
in height (thickness) without bound. Moreover, the growth rate reaches a terminal velocity
inversely proportional to the growth number, G, and the length scale, L, of the far-field
substrate concentration, and directly proportional to K, a measure of the relative density of
the biofilm. This relationship has very natural consequences in that it predicts efficient growth
or a closer far-field substrate will induce faster growth, whilst a biofilm more impervious to
substrate (smaller K) will grow more slowly.

In the case of positive death rates, µ > 0, it is straightforward to verify from equation (21)
that

h′0(t) ≤
Dµ tanh(

√
Gh0)√

G
− µh0

≤ Dµ√
G

√
Gh0 − µh0

= (Dµ − µ)h0,

(23)

and hence a sufficient condition for monotonic die-back of the biofilm is Dµ < µ. Hence,
in the case of constant cell death, complete die-back will occur for µ > 1. In the case of
substrate dependent cell death, condition (23) simplifies to h′0s(t) ≤ h0s, and therefore (23)
fails to define any necessary or sufficient conditions to ensure the die-back of a biofilm in the
presence of substrate dependent death. Rather, (23) simply states that growth in this case
can be no faster than exponential.

Considering the interface equation (21) in isolation and following standard arguments, it
is clear that at least one real steady state, the trivial steady state, exists in both the absence
and presence of cell death. While the trivial steady state h∗0 = 0 is the singular fixed point
in the absence of death and the presence of constant cell death with µ > 1, a second steady
state h∗0 = h∗0(µ) given implicitly by

h∗0(µ) =
Dµ S̄

∗

µ
√
G

tanh
(√

Gh∗0

)
, (24)

where ∗ denotes evaluation at this steady state, exists in the case of constant cell death where
µ < 1 and all cases of substrate dependent death. An examination of extreme parameter
cases contributes to a better understanding of steady state behaviour in the presence of cell
death. It is clear that as µ→ 0, h∗0 →∞. It can also be seen that

lim
µ→0

h′0c(t) = lim
µ→0

h′0s(t) =
tanh(

√
Gh0)

√
G
(

1 + LK−1
√
G tanh(

√
Gh0)

)
=h′0a(t),

(25)

therefore as µ → 0, biofilm growth in the presence of death is expected to follow the same
evolutionary behaviour as that in the absence of death, with the biofilm growing without
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bound. On the other hand, if µ→∞, then h′0c < 0 and h∗0c = 0, while

h∗0s →
tanh(

√
Gh∗0s)√

G
(

1 + LK−1
√
G tanh(

√
Gh∗0s)

) . (26)

Moreover, it can be shown by rearrangement of equation (24) and implementation of the
chain, product and quotient rules, that both ∂h∗0c/∂µ < 0 and ∂h∗0s/∂µ < 0. Hence, as may
be expected, an increase in cell death results in thinner biofilms overall, regardless of whether
death is constant or substrate dependent. Similarly, ∂h∗0c/∂G < 0 and ∂h∗0s/∂G < 0, and
thus decreasing substrate penetration depth ls, where ls = 1/

√
G, has the effect of decreasing

steady state biofilm height.
Standard ODE arguments applied to the interface equation (21) in isolation suggest that

the singular trivial steady state h∗0 = 0 will be unstable in the absence of death, and stable
in the presence of constant death where µ > 1. In the case of constant death with µ < 1
and all cases of substrate dependent death, similar arguments infer that the trivial steady
state will be unstable, while the second non-trivial steady state h∗0(µ) will be stable to linear
perturbations. As a result, it is predicted that in contrast to constant cell death, complete
biofilm die-back will never occur in the case of substrate dependent cell death; even for large
µ, the biofilm height will reach a positive steady value.

In conclusion, a planar analysis of the model predicts that in the absence of cell death, a
biofilm with planar surface limited only by substrate diffusion increases in thickness without
bound with a terminal velocity determined by the value of the growth parameters. In the
case of constant cell death, the model predicts that for sufficiently small death rates (µ < 1)
planar height will tend to a steady state with value h∗0c = h∗0c(µ). For constant cell death
at super-threshold levels (µ > 1), biofilm collapse is induced. In the case of a substrate-
dependent death rate, the model predicts that the planar height will always tend to a steady
state with value h∗0s = h∗0s(µ), regardless of the value of µ. In the following section, we discuss
stability of the interface to non-planar perturbations and the role of cell death in this process.

5 Non-planar growth

5.1 General formulation

Next, in order to investigate the stability of the planar solutions to non-planar perturbations,
we follow a similar method as described in [13] and consider solutions of (10), (12), (13) of
the form

S(x, z, t) = S0(z, t) + S1(z, t) exp(ik · x),

P (x, z, t) = P0(z, t) + P1(z, t) exp(ik · x),

h(x, t) = h0(t) + h1(t) exp(ik · x),

(27)

where S0, P0 and h0 are as defined in section 4, where |S1| � 1, |S1,z| � 1, |P1| � 1, |P1,z| �
1, |h1| � 1, |h′1(t)| � 1 and where k is the 2-dimensional wave number k = (k1, k2) with



The Effect of Cell Death on the Stability of a Growing Biofilm 11

|k| = k. As in [13], we set H(x, t) = h0(t) + L for simplicity. On substitution into (10),
(12), (13), and after following standard arguments, it can be shown that the perturbations
S1(z, t), P1(z, t) must satisfy

S1,zz − k2S1 = 0; h0(x, t) < z < H0(t) (28){
S1,zz − (k2 +G)S1 = 0;

P1,zz − k2P1 = −DµS1;
0 < z < h0(x, t) (29)

and the interface perturbation h1(t) satisfies

h′1 = −h1P0,zz|h0 − P1,z|h0 . (30)

[This last equation follows from substitution into (10) and on using the second equation in
(16)]. The corresponding boundary conditions for the small perturbations S1, P1, h1 are

h1P0,z|h0 + P1|h0 = 0, P1,z|0 = 0; (31a)

S1|h0+L = 0, S1,z|0 = 0; (31b)

h1S0,z|h+0 + S1|h+0 = h1S0,z|h−0 + S1|h−0 ; (31c)

K
(
h1S0,zz|h+0 + S1,z|h+0

)
= h1S0,zz|h−0 + S1,z|h−0 . (31d)

[Note that all of the above expressions neglect higher order terms]. Solving for S1(z, t) in
(28) and (29) and using the boundary conditions (31b)-(31d) yields:

S1(z, t) =


A1S̄h1

√
G

sinh[k(H0 − z)]
cosh[k(H0 − h0)]

, h0(x, t) < z < H0(t),

B1S̄h1
√
G

cosh[
√
k2 +Gz]

cosh[
√
k2 +Gh0]

, 0 < z < h0(x, t),

(32)

where A1 = A1(t) and B1 = B1(t) are constants (w.r.t. z) of integration, that after some
algebra can be expressed as

A1 =
(K − 1)

√
k2 +G tanh(

√
Gh0) tanh(

√
k2 +Gh0)−

√
GK

K
(√

k2 +G tanh(kL) tanh(
√
k2 +Gh0) +Kk

) ,

B1 =−

(
k(K − 1) tanh(

√
Gh0) +

√
G tanh(kL)√

k2 +G tanh(kL) tanh(
√
k2 +Gh0) +Kk

)
.

(33)

Using (32), the second equation in (29) yields

P1(z, t) = h1

[
E1e

kz + F1e
−kz − DµB1S̄√

G

cosh(
√
k2 +Gz)

cosh(
√
k2 +Gh0)

]
. (34)
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Applying the boundary condition (31a) and substituting the expression for P0 given in (20)
results in E1 = F1 where

E1 =
1

2 cosh(kh0)

[
DµS̄√
G

(B1 + tanh(
√
Gh0))− µh0

]
. (35)

Finally, an expression for the first order correction to the interface evolution equation is
obtained. On substitution of the expression for S0(z, t) for 0 < z < h(x, t) given in (19) into
(30) and using (34), it follows that

h′1(t) =h1

[
(kh0 tanh(kh0)− 1)µ+DµS̄

(
1− k tanh(kh0)√

G
B1

)
−

DµS̄

(
k tanh(kh0) tanh(

√
Gh0)√

G
−
√
k2 +G√
G

tanh(
√
k2 +Gh0)B1

)]
,

(36)

where B1 < 0, and is given in (33). It is noted that (36) is of the form h′1(t) = ω(k, t)h1(t),
where ω(k, t) is the dispersive coefficient of system (12)-(13) about the planar solutions (19)-
(21). It is clear that the sign of ω(k, t) varies depending on the choice of the wave number
k and other parameter values. Therefore, the evolving planar solution of system (12)-(13) is
potentially unstable to non-planar perturbations with certain wave numbers.

Notice also that the above linearisation is around a general h0 = h0(t), and is there-
fore valid for all values of h0. Linearisation around the uniform steady state h∗0, such that
P0(z, t) = P0(z) and S0(z, t) = S0(z), results in the same system and solutions as defined
in equations (32)-(36) (where h0 is replaced by h∗0) due to the fact that the quasi-static de-
scription of equations (equations (12)-(13)) is considered. On substitution of the steady state
expression (24) into equation (36), a specific expression for the evolution of h1(t) at h0 = h∗0
in the presence of cell death is found as h∗

′
1 (t) = h1(t)ω

∗, where

ω∗ = µ

[
h∗0

tanh(
√
Gh∗0)

(√
G− k tanh(kh∗0)B

∗
1 +

√
k2 +G tanh(

√
k2 +Gh∗0)B

∗
1

)
− 1

]
, (37)

and the superscript ∗ denotes evaluation at the non-trivial steady state h∗0c or h∗0s. Expres-
sion (37) is the same for both constant and substrate dependent cell death, though recall
that the steady state h∗0 > 0 only exists for constant cell death if µ < 1, and h∗0c < h∗0s for a
fixed value of µ.

5.2 Relevant perturbations and values of k

We note that the above expressions A1(t) and B1(t) and thus the non-planar solutions S1(z, t),
P1(z, t) and h′1(t) in section 5.1 are undefined at k = 0. However, non-planar solutions in
this special case can be found by substitution of k = 0 into the equations (28)-(29) and
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perturbations (27) and solving as above. Comparing the solutions with k = 0 and k > 0, it
can be seen that

S1(k = 0, z, t) = lim
k→0

S1(z, t),

P1(k = 0, z, t) = lim
k→0

P1(z, t),

h′1(k = 0, t) = lim
k→0

h′1(t).

(38)

Also, at the steady state h∗0,

ω∗(k = 0, t) = µ

[
√
Gh∗0

(
1

tanh(
√
Gh∗0)

+ B̂∗1

)
− 1

]
= lim

k→0
ω∗(k, t), (39)

where ∗ again denotes evaluation at non-trivial steady state h∗0 and

B̂∗1 =−

(
(K − 1) tanh(

√
Gh∗0) +

√
GL√

GL tanh(
√
Gh∗0) +K

)
= lim

k→0
B∗1 . (40)

It is therefore clear that all solutions can be evaluated at, and are continuous at, k = 0. We
use this limiting case later.

Recall that we are interested in periodic solutions. In addition we restrict our attention
to perturbations satisfying a zero-mass assumption (no addition or loss of material), and
therefore the applicable values of k are k = 2nπ, where n ∈ N. Moreover, it is possible to
choose the rescaling in order that the perturbation represented by any relevant wave number
k = 2nπ, where n ≥ 2, can be scaled to represent the cosine function over a single wavelength
(where k = 2π) on the chosen domain (recall the non-dimensionalisation in section 3). Thus
the only relevant wave number is k = 2π.

6 The role of cell death on pattern formation

Having found expressions for planar and non-planar biofilm growth, focus is turned to deter-
mining the effect of different death terms on the growth of the biofilm. The role of cell death
in the evolution of patterns is of particular interest and is now investigated.

It can be seen from equation (36) that in the absence of cell death, the dispersion relation
ω(k, t) reduces to

ωa = S̄

(
1− k tanh(kh0)√

G
B1 −

k tanh(kh0) tanh(
√
Gh0)√

G

+

√
k2 +G√
G

tanh(
√
k2 +Gh0)B1

)
.

(41)
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In the presence of constant and substrate dependent cell death, the respective expressions
for the dispersion relations at a specific h0 are given by ωc = (kh0 tanh(kh0)− 1)µ+ ωa and
ωs = (kh0 tanh(kh0)− 1 + ωa)µ+ ωa.

At first glance it appears that the term (kh0 tanh(kh0)−1)µ in ωc represents the effect of
the bacterial death in the constant cell death case, suggesting that for kh0 small enough, the
introduction of µ > 0 contributes an extra negative term in ωc, which switches to an extra
positive term as h0 increases. Therefore the model seems to predict that at the early stage of
biofilm growth (where h0 is small), a constant rate of bacterial death will stabilise the planar
height growth to heterogeneous perturbations while at the mature stage of biofilm growth
(where h0 is large), constant bacterial death will destabilise the planar height growth. These
observations suggest constant bacterial death facilitates spatial pattern formation in mature
biofilms. However, recalling that h0 = h0(µ), it is clear that ωa is also dependent on µ, and
thus the effect of cell death is not incorporated solely within the expression (kh0 tanh(kh0)−
1)µ, but rather within all terms in ωc. Similar arguments follow for substrate dependent
cell death: cell death is present in all terms in ωs. As a result, a comparison of the planar
solutions and behaviour of the dispersion relations ωc and ωs with respect to cell death is
not as straightforward as appears at first sight. In order to investigate the behaviour of
non-planar growth further, we now carry out a closer inspection at some extreme values in
order to quantify certain qualitative features.

The first case considered assumes biofilm height at steady state is much less than the
depth of the active layer, ls, and thus substrate concentration is plentiful (a characteristic of
early biofilms [31]) and approaching S∞ throughout the entire biofilm depth. Recalling that
G = w2/l2s , it is clear that in the non-dimensional setting, the approximation h∗0 � 1/

√
G

can be used to represent this situation, and thus we refer to the biofilm as being ‘shallow’.
In this case the substrate dependent death term d(S) ≈ µ(1− S∞), and therefore cell death
remains approximately constant at its minimum rate everywhere in the biofilm.

Using h∗0 � 1/
√
G, the substitution of tanh(

√
Gh∗0) '

√
Gh∗0 can be made in equation (24)

in order to find the non-trivial steady states h∗0c and h∗0s of shallow biofilms. The steady states
are given by

h∗0c =
K(1− µ)

µGL
, h∗0s =

K

µGL
. (42)

Note that in order to satisfy the shallow biofilm assumption, the value of the death parameters
µc (in the case of constant cell death) and µs (in the case of substrate dependent cell death)
must be sufficiently high, specifically

µc �
K

K + L
√
G
, µs �

K

L
√
G
. (43)

Using equation (42), the dependence of ω∗ on µ can be explicitly defined in the case of
shallow biofilms. Substitution of either h∗0c or h∗0s from equation (42) into ω∗ (equation (37))
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yields

ω∗ =−B∗1S
µ√
G

(
k tanh(kh∗0)−

√
k2 +G tanh(

√
k2 +Gh∗0)

)
< 0,

(44)

where

B∗1S = −
√
G

(
k(K − 1)h∗0 + tanh(kL)

Kk +
√
k2 +G tanh(

√
k2 +Gh∗0) tanh(kL)

)
< 0. (45)

As ω∗ < 0 for all wave numbers, it is clear that perturbations will not grow in shallow biofilms
in either case of cell death. Therefore, in the long term, it is predicted that shallow biofilms
will display no pattern formation.

In comparison to ‘shallow’ biofilms, we refer to ‘deep’ biofilms in the instances where
the depth of the biofilm far exceeds the depth of the active layer, and represent this by
assuming h∗0 � 1/

√
G. In this case, a large part of the biofilm is subjected to substrate

deprivation, with the bottom region being the most adversely affected. This is indicative of
mature biofilms [31]. A consequence of the assumption h∗0 � 1/

√
G is that the approximation

tanh(
√
Gh∗0) ' 1 can be made. The non-trivial steady states for deep biofilms in the presence

of cell death are found from equation (24) and are given by

h∗0c =
K

µ
√
G(K + L

√
G)
, h∗0s =

(
1 +

1

µ

)
K√

G(K + L
√
G)
, (46)

which are again explicitly dependent on µ, where µ must be sufficiently small, specifically

µc �
K

K + L
√
G
, µs �

K

L
√
G
, (47)

to be consistent with the condition h∗0 � 1/
√
G. In this case,

ω∗c =η∗c − µ
ω∗s =η∗s(1 + µ)− µ

(48)

for η∗c = η(h∗0c) and η∗s = η(h∗0s), where

η(h) =
K

K + L
√
G

(
1− B1L√

G

(
k tanh(kh)−

√
k2 +G

))
, (49)

and

B1L = −k(K − 1) +
√
G tanh(kL)

Kk +
√
k2 +G tanh(kL)

< 0, (50)

(note that B1L is independent of µ, h0 and h∗0, and that |B1L| < 1).
As noted previously, it is clear that an increase in µ decreases the steady states h∗0c and

h∗0s, which in turn lowers η∗ (see equations (46) and (49)). It is therefore apparent from
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equation (48) that ∂ω∗c/∂µ < 0, and thus increased (constant) cell death has a stabilising
effect on non-planar perturbations to h∗0c. Since η < 1, it can also be shown that ∂ω∗s/∂µ < 0,
and therefore it can be said that, overall, an increase in µ has a stabilising effect on non-planar
perturbations to h∗0s.

Recalling section 5.2, it is clear that in order to investigate the possibility of pattern
formation occuring in deep biofilms satisfying our specified boundary conditions, behaviour
of the dispersion relations ω∗c and ω∗s must be analysed at the relevant wave number, k = 2π.
Therefore, substitution of k = 2π and h∗0c and h∗0s from equation (46) into equations (48)-(50)
give the values of η(h), B1L and subsequently ω∗ that must be considered:

η(h∗0c, k = 2π) =
K

K + L
√
G

(
1− B1L√

G

(
2π tanh

(
2πK

µ
√
G(K + L

√
G)

)
−
√

4π2 +G

))
,

(51a)

η(h∗0s, k = 2π) =
K

K + L
√
G

(
1− B1L√

G

(
2π tanh

(
2πK(1 + µ)

µ
√
G(K + L

√
G)

)
−
√

4π2 +G

))
,

(51b)

where

B1L(k = 2π) = − 2π(K − 1) +
√
G tanh(2πL)

2πK +
√

4π2 +G tanh(2πL)
< 0. (52)

As both ∂ω∗c/∂µ < 0 and ∂ω∗s/∂µ < 0 for any fixed k and any h∗0, it follows that in the case
of deep biofilms, the maximum values of ω∗c (k = 2π) and ω∗s(k = 2π) can be found by taking
the limits as µ→ 0. We find that

lim
µ→0

ω∗c (k = 2π) = lim
µ→0

η(h∗0c, k = 2π)

=
K

K + L
√
G

(
1− B1L(k = 2π)√

G

(
2π −

√
4π2 +G

))
≥ K

K + L
√
G

(1 +B1L(k = 2π))

> 0.

(53)

Similarly, it is found that

lim
µ→0

ω∗s(k = 2π) = lim
µ→0

ω∗c (k = 2π) > 0. (54)

Thus, in both regimes of cell death, the wave number k = 2π becomes unstable to perturba-
tions as µ→ 0.

In the case of constant cell death, the condition ∂ω∗c/∂µ < 0 holds. Also, as limµ→0 ω
∗
c (k =

2π) > 0, it follows that as µ transits some critical value µcritc , the stability of the wave number
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µ

ω∗c

µcritc

µ−c µ+c

A

0
µ

ω∗s

µcrits

µ−s µ+s

B

0

ω∗

µcrits

µ

µcritc

ω∗sω∗c

C

0

Figure 3: Schematic representation of dispersion relations ω∗(k = 2π) as functions of µ, in
the case of

√
Gh∗0 � 1. Figure A: Plot showing ω∗c , which passes through µcritc , where µ−c <

µcritc < µ+c . Figure B: Plot showing ω∗s , which passes through µcrits , where µ−s < µcrits < µ+s .
Figure C: Schematic showing both ω∗c (blue solid line) and ω∗s (red dashed line), where the
relative positions of µcritc and µcrits are labelled.

k = 2π changes. This critical value is defined implicitly by the equation

ω∗c (µ
crit
c , k = 2π) = η(h∗0c(µ

crit
c ), k = 2π)− µcritc = 0. (55)

We have:

ω∗c > 0 (growing perturbations) for k = 2π if µ < µcritc , (56a)

ω∗c < 0 (decaying perturbations) for k = 2π if µ > µcritc , (56b)

(see Figure 3A). It is possible to find an interval in which the implicitly defined value µcritc

lies by considering other aspects of the problem as follows. It can be shown that ∂ω∗c/∂k > 0,
and as such the limits as k → 0 and k →∞ give the threshold values of µ, denoted µ−c and
µ+c , for which all wave numbers k > 0 in ω∗c can be said to be unstable or stable respectively.
We have ω∗c > 0 for all k > 0 if µ < µ−c and ω∗c < 0 for all k > 0 if µ > µ+c , where

µ−c =
K

(K + L
√
G)2

, µ+c =
K

K + L
√
G
. (57)

Thus it is clear that µcritc must lie in the interval defined by

µ−c < µcritc < µ+c , (58)

(again see Figure 3A). Recalling condition (47), it can be seen that for any value of µ > µ+c ,
the assumption of deep biofilms (h∗0c � 1/

√
G) does not hold. Therefore any µ > µ+c is

irrelevant in our analysis of deep biofilms subject to constant cell death.
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In the case of substrate dependent cell death, the conditions ∂ω∗s/∂µ < 0 and limµ→0 ω
∗
s(k =

2π) > 0 hold. As in the case of constant cell death it follows that, as µ transits some critical
value, denoted µcrits , the sign of ω∗s changes. Again we note that while the critical death
parameter µcrits cannot be defined explicitly, it is implicitly defined by

ω∗s(µ
crit
s , k = 2π) = η(h∗0s(µ

crit
s ), k = 2π) · (1 + µcrits )− µcrits = 0, (59)

and the following conditions are true:

ω∗s > 0 (growing perturbations) for k = 2π for µ < µcrits , (60a)

ω∗s < 0 (decaying perturbations) for k = 2π for µ > µcrits . (60b)

Using a similar method as described in the case of constant cell death, we use the fact that
∂ω∗s/∂k > 0, and take the limits of ω∗s as k → 0 and k → ∞, to define the threshold values
of µ, denoted µ−s and µ+s , for which all wave numbers k > 0 in ω∗s can be said to be unstable
or stable respectively. We have ω∗s > 0 for all k > 0 if µ < µ−s and ω∗s < 0 for all k > 0 if
µ > µ+s , where

µ−s =
K

(K + L
√
G)2 −K

, µ+s =
K

L
√
G
. (61)

Clearly µcrits lies in the interval
µ−s < µcrits < µ+s , (62)

(see Figure 3B). Once again it follows from condition (47), that the assumption h∗0s � 1/
√
G

does not hold for µ > µ+s . Therefore analysis of deep biofilms subject to substrate dependent
cell death, and the corresponding dispersion relation ω∗s , bears no significance when µ > µ+s .

Comparing the cases of constant and substrate dependent cell death it is clear that, for
any fixed k > 0 and a fixed set of parameter values, ω∗c < ω∗s . As a result, µcritc < µcrits (as
shown in Figure 3C). Thus it is possible that, for a fixed set of parameter values, a single value
of µ satisfying both h∗0c � 1/

√
G and h∗0s � 1/

√
G may be chosen such that the condition

µcritc < µ < µcrits (63)

holds. In this special case, it is clear that ω∗c (k = 2π) < 0 and ω∗s(k = 2π) > 0. Thus, the
wave number k = 2π is unstable to perturbations in the case of substrate dependent cell
death but is stable in the case of constant cell death. As a result, it is predicted that for
values of µ in the interval defined by condition (63), patterning may occur in the case of
substrate dependent cell death but will not occur in the case of constant cell death.

7 Conclusions

In this paper we introduced an extension of the model of Dockery and Klapper [13] to
investigate the role of cell death in biofilm growth and wrinkle formation. It was found
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that the existence of a non-trivial steady state in the presence of both constant and substrate
dependent cell death limits biofilm growth. While sufficiently high death rate, µ, was found to
induce complete biofilm die-back in the case of constant cell death, complete biofilm collapse
was precluded, independent of the size of µ, in the case of substrate dependent cell death.
In the instances where complete die-back did not occur, it was found that cell death played
a key role in determining steady state biofilm height. As one might anticipate, the steady
state biofilm depth was predicted to decrease with increasing cell death rate.

In addition to determining the effect of cell death on biofilm height, our analysis also
revealed the role of cell death in pattern formation. By analysing the evolution of non-planar
perturbations to the non-trivial steady state, it was found that there is potential for spatial
patterns to arise in deep biofilms, characterised by low levels of either constant or substrate
dependent cell death. Moreover, the possibility of patterns evolving in shallow (early-stage)
biofilms was ruled out. Experimental results have shown that during development, wildtype
B. subtilis biofilms initially grow in height until reaching a critical thickness at which point
vertical growth slows in lieu of horizontal expansion [29, 37]. It is also commonly observed
that patterning occurs in mature (deep) biofilms [1, 5, 33]. Thus our analysis is in accordance
with observed biological results.

Recent experimental observations by Asally et al. [1] showed that cell death focussed
at the base of biofilms can induce patterning in biofilms. Interestingly, our analysis shows
that biofilms subject to substrate dependent cell death at a certain rate µ could potentially
exhibit pattern formation, whereas biofilms subject to constant cell death at the same rate
are predicted to exhibit no pre-patterning behaviour. In summary, our analysis predicts that
cell death focussed at the base of the biofilm is more likely to generate patterns, and is thus
in line with the results of [1].

In conclusion, we propose that cell death may act as a precursor to patterning in biofilms
by generating an instability within the biofilm. As in [1], we suggest that this patterning is
likely to be further acted upon by other mechanisms at work in the biofilm in order to generate
large-scale wrinkles. Biofilm models incorporating additional biological (in particular the
role of EPS [18]) and mechanical processes, following similar approaches as explored in e.g.
[15, 33], may provide a complementary understanding of biofilm pattern formation.
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