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Abstract 

The ubiquitin-proteasome system is a master regulator of protein homeostasis, by which 

proteins are initially targeted for poly-ubiquitination by E3 ligases and then degraded into 

short peptides by the proteasome. Nature evolved diverse peptidic motifs, termed degrons, to 

signal substrates for degradation. We discuss degrons of the N-end rule pathway and also 

degrons characterized by post-translational modifications, including phosphorylation and 

hydroxylation. In each case we detail the structural basis of E3 ligase:degron recognition and 

small-molecule mimicry approaches that disrupt those protein-protein interactions. We 

present as well genetic and chemical technologies that enable targeted degradation of proteins 

of interest, namely small-molecule dependent inducible degrons and chemical degraders, e.g. 

proteolysis-targeting chimeras (PROTACs). 
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Introduction 

The Nobel Prize in Chemistry 2004 was awarded jointly to Aaron Ciechanover, Avram 

Hershko, and Irwin Rose “for the discovery of ubiquitin-mediated protein degradation”. 

Since then, many discoveries have paved the way to a better mechanistic and structural 

understanding of the protein degradation machinery and have enabled its purposeful 

modulation and hijacking. 

The ubiquitin-proteasome system (UPS) is a complex cellular pathway by which proteins are 

first ubiquitinated and subsequently unfolded and proteolyzed by the proteasome. This 

process has direct implications primarily on regulating protein homeostasis and, depending 

on the context, can impact many cellular signaling processes, including cell cycle, DNA 

repair, apoptosis, inflammation, transcription regulation, stress response, and protein quality 

control (PQC) [1]. Three main enzymes are responsible for the specific targeting of proteins 

for degradation: E1-activating enzymes, which activate ubiquitin (Ub) in an ATP-dependent 

manner; E2-conjugating enzymes, to which the activated Ub is covalently attached to yield an 

E2~Ub thioester intermediate; and E3 ubiquitin ligases, which catalyze the transfer of Ub 

from the E2 enzyme to form an isopeptide bond with a lysine residue on the protein substrate 

(mono-ubiquitination or priming) or its covalently attached Ub (poly-ubiquitination) [2]. To 

act as catalyst in the process, E3 ligases typically recruit specific target substrates for 

degradation by recognition of peptidic segments termed ‘degrons’ as characterizing signaling 

markers [3]. The structural determinants within the degron and the E3 ubiquitin ligase that 

confer substrate specificity and dictate protein recognition and fate are of utmost importance 

to elucidate and be able to manipulate proteasome-mediated degradation and are the focus of 

this review. Recognition of structural protein domains or specific consensus sequences, e.g. 

in the case of D-box and KEN-box recognition by anaphase-promoting complex/cyclosome 

(APC/C)[4] will not be covered here. 

Nature has evolved diverse mechanisms to regulate protein homeostasis. For example, 

orchestrated autophagy of misfolded or damaged proteins is intimately linked to the UPS 

through the PQC pathway [5]. Those substrates can be targeted for degradation in different 

ways, including exposure of hydrophobic degrons that would be otherwise buried inside the 

protein or post-translational polyglycosylation of Asn residues. In the latter case, misfolded 

proteins are signaled for endoplasmic reticulum-associated protein degradation (ERAD) [6]. 

Failure to degrade misfolded proteins, consequently favoring their aggregation and eventual 
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collapse, has a major impact in the development of neurological diseases [7, 8]. Other post-

translational modifications (PTMs) apart from Asn glycosylation, such as phosphorylation of 

Ser, Tyr, and Thr residues, hydroxylation of Pro, and acetylation of Lys and their interplay 

contribute as well to determining a protein’s fate [9]. For example, acetylation competes with 

Lys ubiquitination and can prevent target degradation [10]. In other cases, the E3 ligase itself 

post-translationally modifies the substrate upon engagement, which in turn allosterically 

initiates the ubiquitination cascade of the target protein [11]. 

In this review we first briefly discuss degradation of proteolytic cleavage products by the N-

end rule pathway. We next examine recruitment to E3 ligases of substrates marked for 

degradation by means of recognition of specific PTMs, namely phosphorylation and 

hydroxylation. We conclude exploring prominent small molecules from both natural and 

unnatural origin capable of modulating or even de novo re-directing substrate specificity of 

E3 ligases. In each case we describe related chemical biology tools for targeted protein 

degradation. 

 

N-degrons 

The pioneering observation of an apparent correlation between the presence of a free α-amino 

group in a protein and its ubiquitin-dependent degradation led to the formulation of the ‘N-

end rule’, by which the in vivo half-life of a protein can be determined by the nature of its N-

terminal amino acid, also termed ‘N-degron’ [12]. N-degrons are generated within the cell 

when specific residues are exposed at the N terminus by proteolytic cleavage. There are two 

classes of destabilizing N-degrons: positively charged amino acids (Arg, Lys, and His) are of 

type 1, and bulky hydrophobic ones (Phe, Trp, Tyr, Leu, and Ile) are of type 2 [13]. 

Conversely, other N-terminal amino acids such as Met and Cys confer stability against 

proteosomal degradation [14]. In eukaryotes, N-degrons are recognized by N-recognin, a 

UBR box motif present in E3 ligases that targets the substrate for ubiquitin-dependent 

proteosomal degradation [15]. For example, endoproteolytic cleavage of Scc1, a subunit of 

the cohesion complex in yeast, results in a type 1 Arg N-terminal fragment that is recognized 

and targeted for degradation by N-recognin UBR1. Notably, the fragment becomes lethal if 

accumulated [16]. 

The crystallographic structure of the UBR box of S. cerevisiae UBR1 in complex with type 1 

N-degrons revealed that specific recognition is achieved by an intricate network of hydrogen-
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bonds involving as well the amino acid in position 2 of the N-degron, which occupies an 

interfacial hydrophobic grove (Fig. 1a) [17]. Conversely, in type 2 N-degrons exquisite 

selectivity is accomplished by a highly conserved gatekeeper Tyr residue, which excludes 

Val but not the Ile, Leu, Phe, Tyr, and Trp degrons [15]. Interestingly, in bacteria, where Met 

instead of Tyr serves as gatekeeper residue, distinct selectivity is achieved by introducing 

steric clashes: bacterial UBR1 excludes Ile, Thr, and Val but not Leu, Trp, and Phe (Fig 1b 

and 1c) [13, 18, 19]. In eukaryotes, the default N-terminal amino acid is Met (N-

formylmethionine in bacteria). The striking ability of N-recognin to discriminate Met from its 

structural cousin Leu with up to 1000-fold selectivity has been deeply investigated. Notably, 

only a rare, entropically unfavored Met rotamer can fit in the N-recognin cavity and avoid 

large van der Waals steric clashes with the surrounding residues. Moreover, this rotamer 

locates the Met’s Cε in a chemically unfavorable environment [18]. 

Small molecules, e.g. p-Chloroamphetamine, are known to inhibit the N-end rule pathway by 

blocking a UBR recognition site [20]. However, broader applicability of such inhibitors to 

manipulate the cellular level of specific proteins is dramatically hampered by the lack of 

control on which substrate is downstream degraded. This limitation can be overcome by two 

distinct chemical biology approaches. In a first strategy, selective proteasome-mediated 

degradation of glutathione-S-transferase α1 (GST-α1) was achieved by linking a Boc-

protected Arg (Boc3-Arg) to a potent GST-α1 covalent inhibitor [21]. A clear advantage of 

this technology is its intrinsic modularity with respect to which protein can be addressed. For 

example, use of a noncovalent inhibitor of dihydrofolate reductase (DHFR) conjugated to 

Boc3-Arg led to rapid and robust DHFR degradation in cells. In contrast, linkage of the 

inhibitors to non-protected Arg rendered inactive degraders, indicating that Boc3-Arg tagging 

works independently of the N-end rule pathway [21]. While the defined biological 

mechanism of Boc3-Arg tagging is not fully understood, Long et al. used cycloheximide 

blocking to show that reduction of DHFR levels was due to induced degradation and not to 

translation inhibition [21]. Very recently it has been shown that Boc3-Arg tagging localizes 

the target proteins directly to the 20S proteasome and stimulates its degradation without 

requiring ubiquitination [22]. A related approach called hydrophobic tagging (HyT) has been 

developed to append hydrophobic moieties to ligands and fusion proteins to induce targeted 

degradation [23, 24]. In a different approach, a Trojan horse genetic strategy was conceived 

by Taxis et al., who developed tobacco etch virus (TEV) protease-mediated induction of 

protein instability (TIPI) [25]. TIPI is a method to genetically control the abundance of a 
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protein of interest (POI) by genetically inserting a dormant destabilizing N-degron. Upon 

expression of a site-specific protease, the dormant N-degron becomes exposed and triggers 

selective targeting of the POI by UBR and its proteasome-mediated degradation [25]. 

 

Phosphodegrons 

Phosphorylation at one or several amino acids on proteins is well known to direct formation 

of new protein-protein interactions (PPIs). The first protein module identified as a “reader” of 

phosphorylated protein modifications was the Src homology 2 (SH2) domain, which belongs 

to the protein kinase family and recognizes exclusively phosphorylated Tyr (pTyr) [26]. Later 

on pTyr-, as well as pSer- and pThr-binding domains have been identified in other protein 

families and their crucial involvement in cell signaling and DNA damage response have 

become apparent [27]. 

Protein phosphorylation in regions so-called ‘phosphodegrons’ is also exploited for effective 

substrate recognition by E3 ligases and processive proteasome-mediated degradation [15]. A 

well-studied phosphodegron-binding system is the archetypical S-phase kinase-associated 

protein 1 (Skp1)-Cul1-F-box (SCF) Cullin RING ligase (CRL) (Fig. 2a), in which the variant 

F-box domain dictates substrate recognition. This family can be classified according to the 

presence of specific substrate recognition domains into FBWX, containing WD40 repeats, 

FBXL, presenting Leu-rich motifs, and the less characterized FBXO subclass [28]. For 

example, F-box WD40-containing protein 7 (FBW7) is the substrate recognition module of 

the cyclin-dependent kinase (CDK) regulator complex SCFFBW7. Crystallographic studies of 

SCFFBW7 and its yeast ortholog, SCFCdc4, revealed that phosphodegron recognition in this 

system is driven by three primary features at the PPI interface: electrostatic interactions and a 

rich hydrogen-bond network that discriminate and exclusively trap the phosphorylated state 

of the target degron; hydrophobic patches that recognize two conserved hydrophobic residues 

in the phosphodegron; and positively charged residues that prompt suboptimal binding of 

basic phosphodegrons (Fig. 2b and 2c) [29, 30]. In yeast, SCFCdc4 targets for poly-

ubiquitination and proteasome-mediated degradation phosphorylated substrate inhibitor of 

CDK1 (SIC1), thereby enabling entry into the cellular S phase. Orlicky et al. carried out a 

screening of 50,000 small molecules to identify inhibitors of CDC4 that would prevent 

degradation of SCFCdc4 targets. They identified an allosteric modulator of SCFCdc4 that 

inhibits recruitment of pSIC1 by intercalating within the β-propeller of Cdc4, ~25Å away 
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from the phosphodegron recognition site of Cdc4 (Fig. 2d) [31]. In mammalian cells, 

SCFFBW7 recruits a number of important regulatory factors in cell growth and division 

pathways that function as proto-oncogenes in many cancers, such as cyclin E, MYC, and 

NOTCH, signaling them for ubiquitination and degradation [32]. Cancer-associated 

mutations in Fbxw7 and in the genes encoding SCFFBW7 substrates can weaken binding 

affinities of the E3 ligase for its substrate degrons [32]. Small-molecule rescue, as opposed to 

disruption, of these PPIs could provide therapeutic benefit against prevalent mutant cancers. 

Other examples of phosphodegron reader subunits in E3 CRLs include the Suppressor of 

Cytokine Signaling (SOCS) proteins and Cbl, each containing SH2 domains as substrate-

recognition domain [33, 34]. 

Rational design of small molecules that disrupt the recognition of phosphorylated targets 

usually relies on occupying the canonical phosphate-binding site of the reader protein. This 

typically involves developing peptidomimetics, i.e. fragments of the native substrate that 

retain structural features of the molecular recognition motif while improving specific 

physicochemical properties. Alternative approaches involve identifying hits from screening 

compound libraries. A limitation of those methods is that resulting molecules often lack 

selectivity amongst phosphodegron recognizers. For instance, the SH2-containing 

transcription factors signal transducer and activator of transcription (STAT) 5a and STAT5b 

have a sequence identity of 93% and recognize the same substrate peptide motifs, despite 

tissue-specific expression patterns and a number of non-redundant biological functions [35, 

36]. The observation that cathecol bisphosphate is a sub-μM inhibitor of STAT5b with 35-

fold selectivity over STAT5a motivated the development of a series of peptidomimetics using 

the cathecol bisphosphate fragment as anchor [37]. The most potent compound, Stafib-1, has 

a Ki of 44 nM for STAT5b with over 50-fold selectivity over STAT5a and retains selectivity 

in tumor cells when formulated as a prodrug derivative [37]. Structural features that could 

shine light on the exquisite selectivity exhibited by Stafib-1 remain elusive. 

 

Oxygen-dependent degrons (ODDs) 

The modularity of the CRL architecture enables a dynamic and context-specific recruitment 

of substrate-binding proteins [38]. A notable case is the von Hippel-Lindau (VHL) protein, 

which forms part of an E3 ligase complex with the adaptor proteins Elongin (Elo) B and 

EloC, Cul2, and RBX1 (CRL2VHL) (Fig. 3a). VHL recognizes and targets for degradation 
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hypoxia-inducible factor alpha (HIF-α) subunits, which are efficiently trans-4-prolyl 

hydroxylated (Hyp) under normal oxygen levels [39, 40]. In contrast, under hypoxia HIF-α 

subunits escape hydroxylation and recognition by VHL, are consequently stabilized inside 

cells, and drive transcriptional responses to hypoxia. Crystallographic studies revealed the 

structural basis for HIF-1α binding by VHL, and elucidated the exquisite specificity for the 

recognition of the C4-exo conformation of Hyp (Fig. 3b) [41-43]. This mechanism of 

substrate recognition inspired the structure-guided fragment-based design of non-peptidic 

small-molecule Hyp derivatives that mimic binding of the natural substrate (Fig. 3c) [44-47]. 

By occupying the PPI interface of CRL2VHL:HIF-1α, these molecules could effectively 

displace HIF-1α binding with nanomolar potency [47]. Further optimization of this class of 

inhibitors led to the discovery of VHL inhibitor VH298 as a novel potent, selective, and cell-

active chemical probe of the VHL-HIF pathway [48]. VHL inhibitors have therapeutic 

potential in certain disease conditions where accumulation of HIF-α subunits and subsequent 

triggering of hypoxic response could prove beneficial [49]. 

 

Small-molecule dependent degrons 

Methods to induce conditional and controlled degradation of POIs have substantial potential 

as both chemical biology and therapeutic tools. Interestingly, plants have evolved two 

analogous induced protein degradation mechanisms by phytohormones auxin and jasmonate 

as part of their signalosome [50, 51]. Transport inhibitor response 1 (TIR1) is the F-box 

substrate recognition subunit of a SCFTIR1 ubiquitin ligase (Fig. 4a), which targets 

transcriptional repressors known as Aux/IAA (indole-3-acetic acid) proteins for proteosomal 

degradation. By binding auxin, TIR1 increases affinity for its targets and triggers their rapid 

ubiquitination and proteosomal degradation [50, 52]. Crystal structures of Arabidopsis TIR1 

in complex with auxin and an Aux/IAA degron peptide derived from the IAA7 protein 

elucidated the structural basis of how auxin binding directs TIR1:substrate interactions (Fig. 

4b) [50]. 

Inspired by this natural mechanism, Nishimura et al. developed an auxin-inducible degron 

(AID) for the controlled degradation of proteins [53]. First applied to yeast, the method 

involves knock-in of the AID at either end of the POI, so that the fusion protein can be 

rapidly and efficiently depleted upon addition of auxin to the culture medium and conditional 

expression of the plant SCFTIR1 ubiquitin ligase [54]. The auxin degron technology has 
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proven its potential to study the biological function of proteins in higher eukaryotes. For 

example, it has been recently applied to induce rapid and conditional depletion of essential 

genes, for which knockouts or small-interfering RNAs are not suitable, in human and 

embryonic stem cells by introducing the AID-POI fusion using the CRISPR/Cas9-based 

method [54]. 

From a structural point of view, auxin and jasmonate act as “molecular glue” of specific PPIs, 

i.e. they stabilize the interaction of the substrate-binding domain of their respective E3 ligase 

and specific substrates [55]. Strikingly, phthalimide immunomodulatory drugs (IMiDs) 

thalidomide and its second-generation derivatives lenalidomide and pomalidomide act dually 

as molecular glues and PPI disruptors in humans by targeting the protein cereblon (CRBN) 

[56]. CRBN is the substrate-binding domain of the Rbx1-Cul4-DDB1-CRBN (CRL4CRBN) E3 

ubiquitin ligase (Fig. 4c). IMiD-binding by CRL4CRBN prevents engagement of its 

endogenous substrate MEIS2; it also re-directs effective recruitment and CRBN-dependent 

degradation of the transcription factors Ikaros and Aiolos as well as Casein kinase 1α (CK1α) 

[57-60]. Additionally, lenalidomide derivative CC-885 was shown to induce recruitment and 

degradation of the translation termination factor GSPT1 [61]. These observations 

demonstrate that substrate selectivity of E3 ligases can be effectively modulated by binding 

of small molecules, which can act either as stabilizers or disruptors of specific E3 

ligase:degron complexes. The structural basis of small-molecule induced recognition of 

CK1α and GSPT1 by CRL4CRBN revealed a molecular glue mechanism similar to auxin [61, 

62]. Crystallographic data along with site-directed mutagenesis studies on a homology model 

of the Ikaros:CRBN complex further demonstrates that a hairpin-loop with low sequence 

homology but conserved topology serves as key structural degron for IMiD-induced CRBN 

recognition of substrates (Fig. 4d) [61]. 

 

PROTACs: Small-molecule directed protein degradation 

Small molecules can be designed to recruit proteins into proximity to E3 ligases to induce 

target degradation. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional 

molecules composed of a ligand for an E3 ligase and a ligand for a POI, connected by a 

linker [63]. PROTACs that hijack CRL2VHL and CRL4CRBN using derivatives of the VHL and 

CRBN ligands shown in Fig. 3 and 4 have proven very successful in inducing degradation of 

the epigenetic regulators BET bromodomain proteins (BRD2, BRD3 and BRD4) and the 
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estrogen-related receptor α (ERRα) in cells and in vivo [64-67]. Crucially, PROTACs can 

exhibit higher selectivity for protein degradation than one might anticipate based on the 

intrinsic binding selectivity of the warhead target ligand. For example, Zengerle et al. showed 

that VHL-targeting PROTACs based on the pan-BET inhibitor JQ1 induced preferential 

depletion of BRD4 in cells [64]. Lai et al. later also found that specific PROTACs engaging 

VHL or CRBN have distinct degradation preferences for their target kinases [68]. The sub-

stoichiometric catalytic modality of PROTAC’s activity relieves the need to fully occupy a 

target binding site, aiding differential efficacy. Furthermore, the nature of the targeted E3 

ligase [69], the chemical nature of the ligand and choice of derivatization points from the 

ligands, as well as possible cooperativity of ternary complex formation can all influence 

PROTAC’s activity and play a role in enhancing target selectivity. 

The large number of E3 ligases (> 600) encoded in the human genome [70] and the diversity 

and specificity of degron recognition motifs (reviewed recently in ref. [71]) provide 

numerous opportunities for PROTAC drug development. To date, only a handful of E3 

ligases (including CRBN, VHL, MDM2 and IAP, Table 1) have been effectively hijacked by 

all small-molecules PROTACs using the respective E3 ligands. However, drug-like small-

molecule ligands are beginning to emerge for more E3 targets (Table 1), suggesting other 

unexplored E3s may prove amenable to structure-based drug design. 

PROTACs are an emerging technology that is attracting interest as chemical tool for target 

validation due to its simplicity and modularity. Recent improvements in efficacies and 

selectivity of PROTACs support development as new therapeutic modality [72]. However, 

structural and mechanistic details regarding PROTAC-induced complexes between E3 ligase 

and POI, and POI’s processive ubiquitination remain to be elucidated. 

 

Conclusions 

We present here a selection of different degrons that E3 ligases recognize to specifically 

target substrates for proteasome-mediated degradation. The examples presented highlight 

how we are only beginning to scratch the surface of proteasome-mediated protein 

degradation, with more mechanisms of degron recognition likely to emerge in future. We 

anticipate that unraveling the overall structure and dynamics of E3 ligase:substrate 

complexation above and beyond epitope recognition for degron engagement will pave the 

way to a more detailed mechanistic understanding of processive ubiquitination. Beyond their 
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relevance to ubiquitin-specific mechanisms, the studies of E3 ligase degron recognition have 

contributed more broadly to the field of structural biology and small-molecule druggability 

by revealing the structural basis for PTM-dependent and small-molecule induced de novo 

formation of PPIs of functional relevance. 

Small molecule approaches that enable conditional degradation of POIs, namely small-

molecule dependent inducible degrons and PROTACs, represent complementary 

technologies and sophisticated chemical biology tools for post-translational protein 

inactivation. Targeted protein degradation is attracting increasing interest at both academic 

and pharmaceutical levels because of the potential to address therapeutic areas for which 

current methods are not suitable or are inadequate. Indeed, small molecules have been 

already used to induce rapid, selective depletion of key oncogenes or aberrant proteins in 

cells and in vivo disease models. We anticipate that this new modality of chemical 

intervention will impact increasingly relevant and yet un-drugged biological systems in the 

future. 
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TABLES 

Table 1. Small-molecule ligands of E3 ligases. E3 ligases, their recognized degron motifs, 

and examples of developed small-molecule ligands. 

E3 ligase 
Example 

substrate 

Degron/structural 

motif/pattern 

PDB of a 

protein–

degron 

complex 

Example of ligand 

(inhibitor/molecular 

glue) 

PDB of the 

protein–

ligand 

complex 

β-TrCP 
β-catenin, 

IκBα 
DpSGxxpS 1P22 [73] 

6-O-angeloylplenolin 

 

n.a. 

cIAP/XIAP 
Caspase-3, 

SMAC 

Substrate-targeting 

based on specific 

PPIs 

1I3O [74] 

Birinapant 

 

4KMP [75] 

CRBN 

MEIS2, 

IKZF1/3, 

CK1α, 

GSPT1 

Conserved 

structural loop with 

conserved Gly 

5HXB 

[61], 

5FQD [62] 

Thalidomide 

 

4CI1 [57] 

KEAP1 NRF2 
[DNS]x[DES][TNS

]GE 
2FLU [76] 

Compound 7 

 

5FNU [77] 

MDM2 P53 
FxxxWxx[VIL] 

forming an α-helix 

1YCR 

[78] 

Nutlin-3a 

 

4IPF [79] 

VHL 
HIF-1α 

HIF-2α 
LxxLAHyp 

1LM8 [41] 

1LQB [42] 

VH298 

 

5LLI [48] 
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FIGURES 

 

Figure 1. Structural basis of N-degron recognition. a) Crystal structure of ubiquitin ligase 

UBR1 from S. cerevisiae in complex with the type 1 N-degron substrate peptide RLGE (PDB 

code 3NIN [17]). The electrostatic potential surface of UBR1 is shown. b) Crystal structure 

of N-end rule adaptor protein ClpS from C. crescentus in complex with type 2 N-degron 

substrates Leu, Phe, and Trp (PDB codes 3G19, 3GQ1, and 3GW1, respectively [18]). 

Gatekeeper residue Met53 is highlighted. In a) and b), residues forming hydrogen bonds with 

the substrate are labelled. Note that in b), only Trp can interact by hydrogen bond with the 

backbone of Met75. c) Sphere representation of amino acid Ile modelled in PyMOL in the 

binding site of b) using PDB code 3G19. 
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Figure 2. Structural basis of phosphodegron recognition. a) Crystal structure of human 

SCFFBW7 in complex with a phosphodegron peptide (PDB code 2OVR [30]). b) Apical view 

of the FBW7:peptide interaction (PDB code 2OVR). The electrostatic potential surface of 

FBW7 is shown. c) Closer view of the FBW7:phosphodegron hydrogen-bond interactions. 

Remarkably, only the phosphate group engages in polar interactions with the receptor. d) 

Superposition of the FBW7:phosphodegron complex and Cdc4 from S. cerevisiae in complex 

with an allosteric inhibitor (PDB code 3MKS [31]). 
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Figure 3. Structural basis of oxygen-dependent degron recognition. a) Crystal structure of 

human VHL:EloB:EloC:HIF-1α (PDB code 1LM8 [41]). b) Closer view of the hydrogen-

bond interactions in the VHL:HIF-1α peptide complex (PDB code 1LM8). Notably, only the 

C4-exo pucker of Hyp can be satisfactorily accommodated in the pocket. In red dashed lines, 

hydrogen-bond interactions that stabilize a conserved water molecule. c) Apical view of the 

superposition of VHL in complex with HIF-1α peptide and peptidomimetic VHL inhibitor 

VH032 (PDB codes 1LM8 and 4W9H, respectively [47]). The electrostatic potential surface 

of VHL is shown. 
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Figure 4. Structural basis of ligand-induced substrate recognition of CRLs. a) Crystal 

structure of SCFTIR1 from A. thaliana (PDB code 2P1M [50]). TIR1 binds a molecule of 

inositol-6-phosphate (InsP6). b) Closer view of the hydrogen-bond interactions of TIR1 in 

complex with auxin and a IAA7 peptide (PDB code 2P1Q [50]). The auxin:IAA7 degron 

peptide interaction is primarily driven by van der Waals packing. The hydrogen-bond 

network of a stabilized water molecule is shown in red dashed lines. c) Superposition of 

crystal structures of human CRL4CRBN:CC-885:GSPT1 and CRL4CRBN:lenalidomide:CK1α 

complexes (PDB codes 5HXB and 5FQD, respectively [61, 62]). d) Closer view with 

highlighted residues on CRBN that form hydrogen bonds with the ligands (CC-885 in wheat 

and lenalidomide in orange). Note that Trp377 interacts only with lenalidomide, whereas CC-

885 extends further reaching His353. Both compounds sit in a hydrophobic cavity of Trp 

residues. The topological conservation of the structural degron loop of GSPT1 and CK1α as 

recognized by CRBN and the conserved Gly residue are highlighted. The loop interacts with 

the small molecules primarily via van der Waals packing. e) Sequence alignment of the 

structural degron loops in CK1α, GSPT1, and Ikaros. 
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