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Key points summary 

 The functional importance of residues in loop G of the GABAA receptor has not been 

investigated. D43 and T47 in the α1 subunit are of particular significance as their structural 

modification inhibits activation by GABA. 

 While the T47C substitution had no significant effect, non-conservative substitution of either 

residue (D43C and T47R) reduced the apparent potency of GABA. 

 Propofol potentiated maximal GABA-evoked currents mediated by α1(D43C)β2γ2 and 

α1(T47R)β2γ2 receptors. Non-stationary variance analysis revealed a reduction in maximal 

GABA-evoked Popen, suggesting impaired agonist efficacy. 

 Further analysis of α1(T47R)β2γ2 receptors revealed that the efficacy of the partial agonist 

THIP relative to GABA was impaired.  

 GABA-, THIP- and propofol-evoked currents mediated by α1(T47R)β2γ2 receptors 

deactivated faster than those mediated by α1β2γ2 receptors indicating that the mutation 

impairs agonist-evoked gating. 
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 Spontaneous gating caused by the β2(L285R) mutation was also reduced in 

α1(T47R)β2(L285R)γ2 compared to α1β2(L285R)γ2 receptors confirming that α1(T47R) 

impairs gating independently of agonist activation. 
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Abstract 

The modification of Cys residues (substituted for D43 and T47) by 2-aminoethyl 

methanethiosulfonate in the GABAA α1 subunit loop G impairs activation of α1β2γ2 receptors by 

GABA and propofol (Baptista-Hon et al., 2016). While the T47C substitution had no significant effect, 

non-conservative substitution of either residue (D43C and T47R) reduced the apparent potency of 

GABA. Propofol (1 µM), which potentiates sub-maximal, but not maximal GABA-evoked currents 

mediated by α1β2γ2 receptors, also potentiated maximal currents mediated by α1(D43C)β2γ2 and 

α1(T47R)β2γ2 receptors. Furthermore, the peak open probabilities of α1(D43C)β2γ2 and 

α1(T47R)β2γ2 receptors were reduced. The kinetics of macroscopic currents mediated by 

α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors were characterised by slower desensitisation and faster 

deactivation. Similar changes in macroscopic current kinetics, together with a slower activation rate, 

were observed with the loop D α1(F64C) substitution, known to impair both efficacy and agonist 

binding, and when the partial agonist THIP was used to activate WT or α1(T47R)β2γ2 receptors. 

Propofol-evoked currents mediated by α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors also exhibited 

faster deactivation than their WT counterparts revealing that these substitutions impair gating 

through a mechanism independent of orthosteric binding. Spontaneous gating caused by the 

introduction of the β2(L285R) mutation was also reduced in α1(T47R)β2(L285R)γ2 compared to 

α1β2(L285R)γ2 receptors confirming that α1(T47R) impairs gating independently of activation by any 

agonist. These findings implicate movement of the GABAA receptor α1 subunit’s β1 strand during 

agonist dependent and spontaneous gating. Immobilisation of the β1 strand may provide a 

mechanism for the inhibition of gating by inverse agonists such as bicuculline. 

Abbreviations list 

DMEM, Dulbecco modified Eagle’s medium; GABA, γ-aminobutyric acid; GluCl, glutamate-activated 

Cl- channel; HEK-293, human embryonic kidney 293 cell; MD, molecular dynamic; MTSEA, 2-

aminoethyl methanethiosulfonate; pLGIC, pentameric ligand-gated ion channel; THIP, 4,5,6,7-

tetrahydroisoxazolo[5,4-c]pyridine-3-ol; TM, transmembrane; τw, weighted tau.   
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Introduction 

γ-Aminobutyric acid type A (GABAA) receptors are Cys-loop receptors of the pentameric ligand-gated 

ion channel (pLGIC) family. They mediate fast inhibitory neurotransmission. Nineteen different genes 

encode GABAA receptor subunits, providing considerable heterogeneity in GABAA receptor 

composition. The most abundant GABAA receptors in the brain are comprised of α1, β2 and γ2 

subunits (Whiting et al., 1995).  

In common with other pLGICs, GABAA receptors have an N-terminal extracellular domain, which 

contains the orthosteric agonist binding site and four transmembrane (TM) domains (TM1-4) 

containing additional binding sites for positive modulators and allosteric agonists, such as the 

general anaesthetic propofol. The Cl--selective channel pore, containing the gate, is encompassed by 

five TM2 domains arranged pseudo-symmetrically (Miller & Aricescu, 2014). The intracellular 

domains of pLGICs are generally large, being mostly composed of the TM3-4 loop (Baptista-Hon et 

al., 2013). TM domains are most highly conserved across pLGICs, while the intracellular loops are 

highly heterogeneous.  

The orthosteric binding site of the GABAA receptor is located in the N-terminal domain between 

adjacent α- and β- subunits (Smith & Olsen, 1995; Cromer et al., 2002). In this region, seven non-

contiguous loops (A-G) line the orthosteric site, where they participate in agonist binding (Boileau et 

al., 1999; Holden & Czajkowski, 2002; Wagner et al., 2004; Goldschen-Ohm et al., 2011; Tran et al., 

2011) and/or gating (Boileau et al., 2002; Newell & Czajkowski, 2003; Venkatachalan & Czajkowski, 

2008; Szczot et al., 2014; Baptista-Hon et al., 2016). These loops are contained within an anti-parallel 

β sandwich structure. In the canonical α1β2γ2 GABAA receptor, loops A, B and C are contributed by 

the primary interface, from the β2 subunit, while loops D, E, F and loop G are contributed by the 

complimentary interface, from the α1 subunit.  

Arg37 in loop G was recently identified for its role in glutamate binding to the Caenorhabditis 

elegans glutamate-activated Cl- (GluCl) pLGIC (Hibbs & Gouaux, 2011). However, residues in this 

region are not implicated in binding agonists to other pLGICs, such as the GABAA β3 homopentamer 

(Miller & Aricescu, 2014), the glycine receptor (Du et al., 2015) or the α4β2 nicotinic acetylcholine 

receptor (Morales-Perez et al., 2016). Despite a lack of involvement in binding to GABAA receptors, 

there is considerable homology among loop G amino acids between α subunits, consistent with a 

conserved role in receptor function (Fig. 1A). 
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The potential importance of loop G during gating is highlighted by comparisons of apo- and agonist 

bound structures of the glycine receptor (Du et al., 2015) and GluCl (Althoff et al., 2014). The β1 

strand containing loop G, the β2 strand containing loop D and the interconnecting β1-β2 loop, move 

towards the TM2-3 loop in the presence of bound agonist. This movement appears to precede the 

structural rearrangement of the TM domains that leads to channel opening (Calimet et al., 2013).  

We recently demonstrated the involvement of specific GABAA receptor α1 subunit loop G residues in 

function using cysteine-scanning mutagenesis (Baptista-Hon et al., 2016). D43C was the only one of 

five loop G substituents to reduce the apparent potency of GABA. Furthermore, its modification by 

positively charged 2-aminoethyl methanethiosulfonate (MTSEA) caused additional functional 

impairment. By contrast, while T47C did not significantly affect GABA’s potency, its modification by 

MTSEA inhibited GABA-evoked currents. Cysteines substituted at three other positions in loop G of 

the α1 subunit (residues 44, 45 and 46) were either inaccessible to MTSEA or their modification was 

without functional consequence (Baptista-Hon et al., 2016).     

In this study we investigated whether amino acid substitutions at positions 43 and 47 that impair 

function do so by impairing gating. In order to replicate MTSEA modified α1(T47C), which impairs 

function (Baptista-Hon et al., 2016), we replaced Thr47 by Arg. We compared the efficacy of GABA as 

an activator of α1(D43C)β2γ2, α1(T47R)β2γ2 and α1β2γ2 receptors using analysis of channel open 

probability (Popen) and potentiation by the positive allosteric modulator propofol. We investigated 

the kinetics of THIP- and propofol-evoked currents mediated by α1(T47R)β2γ2 receptors. We also 

examined the influence of α1(T47R) substitution on receptors containing the β2(L285R) substitution, 

which causes enhanced spontaneous gating. Using these approaches, we established that non-

conservative substitutions at two key positions in loop G reduce gating efficacy. 
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Methods 

Cell culture and transfection - Human embryonic kidney 293 (HEK-293) cells were grown and 

maintained in Dulbecco Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine 

serum, 100 µg ml-1 penicillin and 100 units ml-1 streptomycin at 37oC and 5% CO2. Cells were seeded 

at low density in either poly-L-lysine coated, or uncoated 35 mm dishes for outside-out patch 

recordings or whole-cell recordings, respectively. Transfections were performed by calcium 

phosphate precipitation, using 1 µg total cDNA per dish, as described previously (Baptista-Hon et al., 

2016). cDNAs encoding wild type (WT) and mutant mouse GABAA subunits were in the pRK5 

mammalian expression vector. For heteromeric expression of GABAA α1β2γ2 subunits, a 1:1:1 

transfection ratio was used. cDNA encoding enhanced green fluorescence protein (in pEGFP vector, 

0.1 µg) was included to identify successfully transfected cells using fluorescence microscopy. 

Transfected cells were functionally examined using voltage-clamp electrophysiology after 48 to 72 h. 

All tissue culture reagents were obtained from Invitrogen (Paisley, UK). 

Mutagenesis of GABAA α1 and β2 subunits – Single point mutations were performed by overlap 

extension polymerase chain reaction (PCR) (Heckman & Pease, 2007). For α1 subunits, PCR products 

were digested using SmaI restriction endonuclease and EcoRI (5’) and BamHI (3’) restriction 

endonucleases were used for β2 subunits. All GABAA receptor subunits were ligated into pRK5 

vector. All mutagenesis reactions and ligations were verified using agarose gel electrophoresis and 

sequenced prior to functional characterisation (Genetics Core Services, University of Dundee). All 

PCR and molecular cloning reagents were obtained from Fermentas (Thermo-Fisher, Loughborough, 

UK). 

Electrophysiology - The whole-cell or excised outside-out patch configurations of the patch-clamp 

technique was used to record GABA-evoked currents from HEK-293 cells expressing WT, or mutant, 

GABAA receptors. Recording electrodes were fabricated from borosilicate glass capillaries, and when 

filled with intracellular solution had resistances of 1.3 – 2.3 MΩ for whole-cell recordings, and 3.0 – 

5.0 MΩ for outside-out patch recordings. The electrode solution contained (in mM): 140 CsCl, 2 

MgCl2, 1.1 EGTA, 3 Mg-ATP and 10 HEPES (pH 7.4 with CsOH). The extracellular solution contained 

(in mM): 140 NaCl, 4.7 KCl, 1.2 MgCl2, 2.5 CaCl2, 10 HEPES and 10 glucose (pH 7.4 with NaOH). Cells 

were voltage clamped at an electrode potential of -60 mV. For whole-cell recordings, currents were 

evoked by rapid application of agonists using the three-pipe Perfusion Fast Step system (Warner 

Instruments, CA, USA), as described previously (Baptista-Hon et al., 2016).  
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For outside-out patch recordings, maximally efficacious and saturating concentrations of agonists 

were applied also using the Perfusion Fast Step system, with heat pulled and bevelled (Narashige, 

London, UK) theta and three-barrelled pipes (Othman et al., 2012). This allows rapid solution 

exchange consistently of <500 s around an open pipette tip (Hinkle & Macdonald, 2003). Solution 

exchange times were measured using liquid junction currents arising from moving the open pipette 

tip into an extracellular solution diluted by 10%. The 10-90% rise time of the liquid junction current 

was used as a measure of solution exchange rate. Liquid junction currents were routinely measured 

at the end of every outside-out patch recording, to ensure the fidelity of fast solution exchange. For 

experiments examining the macroscopic current kinetics of propofol-evoked currents, the 

concentration of propofol used was chosen on the basis that the evoked current does not contain a 

surge following propofol removal, which is mediated by propofol blockade (Hadley & Amin, 2007). 

All electrophysiological data were recorded using an Axopatch 200B amplifier. Data were low pass 

filtered at 2 kHz for whole cell currents and 10 kHz for outside-out patch currents. Analog data were 

digitised at 20 kHz for whole cell currents and 100 kHz for outside-out patch currents using a 

Digidata 1320A interface and acquired using pCLAMP8 software (all from Molecular Devices, CA, 

USA). 

Data analysis - The peak amplitudes of agonist-evoked currents were measured using Clampfit10 

software (Molecular Devices, CA, USA), using averaged current traces from at least five agonist-

evoked currents. The potentiating effects of propofol on peak GABA-evoked currents were analysed 

as percentage potentiation, using the formula: 

                
(          )

     
     

Where Ipot and IGABA represent the potentiated and control peak current amplitudes, respectively. 

Non-stationary variance analysis was performed as described by Szczot et al (2014). A minimum of 

10 consecutive responses to a 5 ms application of maximally efficacious and saturating 

concentration of GABA were recorded from outside-out patches, using the rapid application method 

described above. The currents were analysed using a custom-written script in MatLab (The 

Mathworks, Inc., Natick, Massachusetts, U.S.A.). The rising phase of each current was excluded from 

the analysis. The starting point for analysis was therefore set at the peak of the current. Mean 

current (I) and variance (σ2) at each time point were divided into 30 equally spaced bins and plotted 

as I vs σ2, which were fitted with the following function: 
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Where i is the single channel amplitude, N is the number of channels and C is the background 

variance. From these parameters, the maximal open probability (Popen) was calculated by: 

              
      

   
 

Single channel conductance was calculated by dividing the single channel amplitude (i) by the 

membrane holding potential (-60 mV). 

Activation rates were measured using the 10 - 90% rise time of agonist-evoked inward current. 

Macroscopic desensitisation and deactivation kinetics were measured by fitting multi-exponential 

functions to the decaying phase of the inward current, during or following agonist application, 

respectively. The multi exponential function is defined by: 

 ( )     
  

  ⁄      
  

  ⁄  

Where τN represent time constants and AN represent the proportion of the particular τ. The best-fit 

number of exponential terms (1 to 3 terms) were determined using an F-test with the confidence set 

at the 95% level. Rates of desensitisation and deactivation are provided as weighted τ (τw) values, 

calculated using: 

                

Individual GABA concentration vs current amplitude relationships were fitted with a logistics 

equation: 

 (      )  
   

    (              )   )
 

From which GABA EC50 and Hill slope (nH) values were determined. 

Statistics - Data are presented as mean ± S.E.M. Differences in means of three or more groups were 

compared using one-way analysis of variance (ANOVA), with a post-hoc Dunnet’s or Tukey’s 

comparison. Pairwise comparisons were performed using the student t-test. In all cases P < 0.05 was 

considered statistically significant. Statistical analyses were performed using GraphPad Prism 5 

(GraphPad Software, San Diego, California, U.S.A.). 
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Results 

Residues in loop G and loop D influence the apparent potency of GABA  

Loop G of the GABAA receptor α subunit contributes residues to the complimentary interface near 

the orthosteric binding site in heteropentameric GABAA receptors. The alignment reveals that the α1 

subunit Thr47 is entirely conserved among all GABAA α subunits at the position equivalent to that of 

Arg37 in the C. elegans GluCl α subunit (Fig. 1A). Asp43, an α1 subunit residue we previously 

demonstrated to be important for GABAA receptor function (Baptista-Hon et al., 2016) is also 

conserved in all but the α2 subunit, which contains an Asn at the equivalent position. Loop G runs 

adjacent and anti-parallel to loop D on the β2 strand. The location of a critical loop D residue, Phe64, 

known to participate in GABA binding and efficacy is also shown in the alignment (Boileau et al., 

1999; Szczot et al., 2014). Residues in these positions are highlighted on the GluCl structure in 

relation to bound glutamate (Fig. 1B) (Hibbs & Gouaux, 2011). GluCl Arg37 in loop G forms part of 

the glutamate binding site and is involved in receptor activation (Hibbs & Gouaux, 2011). We 

investigated the influence of  the T47R substitution on GABAA α1β2γ2 receptor function. Our 

previous study demonstrated that a non-conservative substitution to Asp43 (D43C) in loop G of the 

GABAA α1 subunit significantly reduced the apparent potency of GABA (Baptista-Hon et al., 2016). 

WT α1 or α1(T47R) subunits were transiently expressed with β2 and γ2 subunits in HEK-293 cells. 

Representative examples of GABA-evoked currents recorded under voltage-clamp at -60 mV from 

cells expressing α1β2γ2 or α1(T47R)β2γ2 receptors are shown in Figure 1C. GABA-evoked current 

amplitudes were expressed as a percentage of the maximum and plotted as a concentration-

response relationship (Fig. 1D). A logistic function fitted to the data points reveals that the α1(T47R) 

substitution caused a rightward shift in the GABA concentration-response relationship (Fig 1D). The 

EC50 for GABA activation of WT α1β2γ2 receptors was 17 ± 5 µM (n = 7). The EC50 for GABA activation 

of α1(T47R)β2γ2 receptors was 1500 ± 320 µM (n = 7). The non-conservative D43C substitution in 

loop G of the GABAA α1 subunit produced a similar reduction in the apparent potency of GABA 

(Baptista-Hon et al., 2016).  

Phe64, which is located on the adjacent and anti-parallel loop D is involved in GABA binding and 

gating (Boileau et al., 1999; Szczot et al., 2014). The α1(F64C) substitution causes a significant 

reduction in the apparent potency of GABA (Boileau et al., 1999; Szczot et al., 2014; Baptista-Hon et 

al., 2016). Substitution of Phe64 with the equivalent residue found at this position in GluCl (F64T) 

caused a similar impairment in the apparent potency of GABA. The EC50 of α1(F64T)β2γ2 receptors 

was 16 ± 1 mM (n = 3). A one-way ANOVA revealed a significant difference between the GABA EC50 
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values (P < 0.0001). A post-hoc Tukey’s comparison revealed statistically significant differences in 

GABA EC50 between WT and α1(T47R)β2γ2 receptors (P < 0.05), between WT and α1(F64T)β2γ2 

receptors (P < 0.0001) and also between α1(T47R)β2γ2 and α1(F64T)β2γ2 receptors (P < 0.0001). 

There were no statistically significant differences in the Hill slope values of the GABA concentration-

response relationships (P = 0.24; one-way ANOVA). This observation suggests that the number of 

GABA binding sites remains the same and argues against altered stoichiometry caused by the α1 

subunit substitutions. We also evaluated the peak current density of α1β2γ2, α1(T47R)β2γ2 and 

α1(F64T)β2γ2 receptors, by normalising the current amplitude evoked by maximally efficacious 

concentrations of GABA, to cell capacitances.  The mean (± S.E.M.) current densities are 1510 ± 264 

pA pF-1 (n = 18), 684 ± 119 pA pF-1 (n = 24) and 401 ± 155 pA pF-1 (n = 5), for α1β2γ2, α1(T47R)β2γ2 

and α1(F64T)β2γ2 receptors, respectively. There was a statistically significant difference in peak 

current density (P = 0.003; one-way ANOVA). A post-hoc Tukey’s comparison revealed significant 

reductions in the mean current densities for α1(T47R)β2γ2 (P < 0.001), and α1(F64T)β2γ2 receptors 

(P < 0.05), when compared with α1β2γ2 receptors. We have previously reported a reduction in 

current density for α1(D43C)β2γ2 and α1(F64C)β2γ2 receptors, compared to WT receptors (Baptista-

Hon et al., 2016). 

The identities of residues in Loop G at positions 43 and 47 influence agonist efficacy 

Apparent potencies, determined from concentration-response relationships, are composites of 

agonist binding affinity and gating efficacy (Colquhoun, 1998). Therefore, reductions in EC50 values 

for α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors compared to WT could be caused by reduced GABA 

affinity and/or efficacy. We investigated the possibility that D43C and T47R substitutions might 

impair the efficacy of GABA using propofol, a general anaesthetic that acts as a positive allosteric 

modulator of GABAA receptors (Berger et al., 1997). Co-application of propofol (1 µM) with an EC50 

concentration of GABA (10 µM) to HEK-293 cells expressing α1β2γ2 receptors caused current 

amplitudes to increase by 62 ± 18% (n = 4), relative to currents evoked by GABA (10 µM) alone. The 

application of propofol (1 µM) alone had no effect (data not shown). We subsequently tested the 

ability of propofol (1 µM) to potentiate currents evoked by maximally efficacious concentrations of 

GABA mediated by α1β2γ2 (1 mM), α1(D43C)β2γ2 (100 mM), α1(T47R)β2γ2 (30 mM) and 

α1(F64C)β2γ2 receptors (300 mM). GABA concentrations were chosen based on the concentration-

response relationship shown in Figure 1D for α1β2γ2 and α1(T47R)β2γ2 receptors, and our 

previously published concentration-response relationships for α1(D43C)β2γ2 and α1(F64C)β2γ2 

receptors (Baptista-Hon et al., 2016). Figure 2A shows representative examples of maximal GABA-

evoked currents in the presence or absence of propofol. Co-application of propofol with GABA to 
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cells expressing α1β2γ2 receptors did not cause any potentiation, consistent with GABA having full 

efficacy. By contrast, recordings from cells expressing α1(D43C)β2γ2 or α1(T47R)β2γ2 receptors 

revealed that the co-application of GABA with propofol increased current amplitudes relative to 

GABA alone (Fig. 2A). This suggests that GABA lacks full efficacy at α1(D43C)β2γ2 and α1(T47R)β2γ2 

receptors. The loop D α1(F64C) substitution is known to reduce the efficacy of GABA (Szczot et al., 

2014). Consistent with this observation, we found that co-application of GABA (300 mM) with 

propofol (1 µM) also increased the current amplitude relative to GABA (300 mM) alone at 

α1(F64C)β2γ2 receptors (Fig. 2A). We quantified the effect of propofol on maximal GABA-evoked 

currents (Fig. 2B). The graph shows data expressed as mean percent potentiation by propofol. 

Currents mediated by α1β2γ2 receptors were unaffected by propofol (-0.72 ± 1.6%; n = 5). By 

contrast, propofol (1 µM) potentiated maximal GABA-evoked currents mediated by α1(D43C)β2γ2, 

α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors by 19 ± 5% (n = 9), 23 ± 5% (n = 9) and 47 ± 8% (n = 4), 

respectively (Fig. 2B). The differences in mean percentage potentiation were statistically significant 

(P < 0.0001; one-way ANOVA). A post-hoc Tukey’s comparison revealed a statistically significant 

difference in propofol potentiation of maximal GABA-evoked currents between α1β2γ2 and 

α1(D43C)β2γ2 (P < 0.05), α1(T47R)β2γ2 (P < 0.001) and α1(F64C)β2γ2 receptors (P < 0.0001). There 

is also a significant difference in propofol potentiation between α1(F64C)β2γ2 and either 

α1(D43C)β2γ2 (P < 0.001) or α1(T47R)β2γ2 receptors (P < 0.05). These data indicate that D43C and 

T47R substitutions impair the efficacy of GABA, albeit to a lesser extent than the F64C substitution. 

We examined whether the reduced efficacy of GABA as an agonist at α1(D43C)β2γ2 or 

α1(T47R)β2γ2 was associated with reduced maximal open probabilities (Popen) of GABA-activated 

channels as would be expected for mutations that affect gating. We calculated Popen using non-

stationary variance analysis of maximal GABA-evoked currents. This approach has been used 

previously to demonstrate that the Popen of GABAA receptors containing the α1(F64C) substitution 

was reduced (Szczot et al., 2014). Currents evoked by brief (5 ms) rapid applications of maximally 

efficacious concentrations of GABA were recorded from outside-out patches containing α1β2γ2, 

α1(D43C)β2γ2 or α1(T47R)β2γ2 receptors. A minimum of 10 consecutive GABA-evoked currents 

were used to calculate mean current (I) and variance (σ2) for each time point. Representative 

examples of variance and mean current are shown for α1β2γ2 and α1(T47R)β2γ2 receptors (Fig. 3A). 

The rising phases of the currents were not included in the analysis (grey portion in Fig. 3A). A 

parabolic function was fitted to the plot of mean current versus variance to determine the single 

channel amplitude and the number of channels (Fig. 3B). From these values, the single channel 

conductance (γ) and maximal Popen were calculated (See Methods). Neither the α1(D43C) nor 
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α1(T47R) substitutions significantly altered γ (Fig. 3C; P = 0.96; one-way ANOVA). The mean 

maximum Popen values for α1β2γ2, α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors were 0.78 ± 0.05 (n = 

8), 0.50 ± 0.09 (n = 5) and 0.56 ± 0.05 (n = 7), respectively (Fig. 3D). One-way ANOVA revealed a 

statistically significant difference in mean maximal Popen (P = 0.0083). A post-hoc Tukey’s comparison 

determined a statistically significant difference in mean maximal Popen between α1β2γ2 and 

α1(D43C)β2γ2 receptors (P < 0.05), and between α1β2γ2 and α1(T47R)β2γ2 receptors (P < 0.05). 

These data agree well with the results of propofol potentiation experiments and indicate that the 

α1(D43C) and α1(T47R) substitutions reduce the efficacy of GABA by reducing the maximal Popen of 

GABAA receptors to a similar extent.  

Substitutions in loop G and loop D have common effects on GABA-evoked gating kinetics                 

We used rapid GABA application to outside-out patches excised from HEK-293 cells to investigate 

the kinetics of macroscopic currents mediated by recombinant α1(D43C)β2γ2, α1(T47R)β2γ2 and 

α1(F64C)β2γ2 receptors. Figure 4A shows representative examples of currents evoked by maximal 

concentrations of GABA, recorded at -60 mV from patches containing α1β2γ2, α1(D43C)β2γ2, 

α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors. Macroscopic currents mediated by α1(F64T)β2γ2 

receptors resemble those of α1(F64C)β2γ2 receptors and are not shown. Traces in Figure 4B are 

amplitude-normalised rising phases mediated by α1β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 

receptors. Current activation rates were quantified as 10 - 90% rise-times. Mean activation times are 

plotted in the bar graph (Fig. 4B). Comparison of the mean rise-times reveals a statistically significant 

difference between these receptor subtypes (P < 0.0001; one-way ANOVA; Fig. 4B; Table 1). Currents 

mediated by both α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors were activated more slowly than 

α1β2γ2 (P < 0.0001) and also when compared with α1(D43C)β2γ2 (P < 0.0001) and α1(T47R)β2γ2 

receptors (P < 0.0001, post-hoc Tukey’s comparison). The activation rates between α1β2γ2, 

α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors did not differ significantly. However, there was a trend 

towards a slower activation rate for both loop G substitutions.  

GABA-evoked currents decay in the continued presence of the agonist through the process of 

desensitisation. We quantified desensitisation by measuring current remaining at the end of the 

GABA application and expressing it as a percentage of peak current amplitude. The averaged values 

are plotted in Figure 4C. Comparison of these values reveals a significant difference between the 

receptor subtypes (P = 0.0003; one-way ANOVA; Fig. 4C). GABA-evoked currents mediated by 

α1(D43C)β2γ2, α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors desensitised significantly less than those 
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mediated by α1β2γ2 receptors (P < 0.001, post-hoc Tukey’s comparison). The extent of 

desensitisation did not significantly differ between α1β2γ2 and α1(T47R)β2γ2 receptors.  

It was possible to fit exponential functions to evaluate the apparent desensitisation rates for 

α1β2γ2, α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. An F-test (see Methods) revealed that a three-

component exponential function consistently yielded the best fit to the desensitising current. The 

components of the multi-exponential function were used to calculate w (see Methods) and the 

mean values of w are plotted in Figure 4D. There was no significant difference in mean w
 values (P = 

0.08; one-way ANOVA), although visual inspection of the exemplar traces in Figure 4A shows 

apparent differences in the time course of desensitisation between α1β2γ2, α1(D43C)β2γ2 and 

α1(T47R)β2γ2 receptors. Indeed, analysis of the individual components of desensitisation reveals 

significant differences (Table 1). The α1(D43C) and α1(T47R) substitutions influence the fastest 

component of apparent desensitisation by reducing the rate and the percentage, respectively. There 

was also an increase in the contribution of the slowest time constant to apparent desensitisation for 

α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. The intermediate component was not affected by the 

substitutions. These analyses indicate that the loop G α1(D43C) and α1(T47R) substitutions cause 

similar changes in desensitisation kinetics. 

Traces in Figure 4E show amplitude normalised deactivation time courses of α1β2γ2, α1(T47R)β2γ2 

and α1(F64C)β2γ2 receptors. The deactivation traces for α1(D43C)β2γ2, α1(T47R)β2γ2 

α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors are indistinguishable from each other. Therefore, for 

clarity, examples of α1(D43C)β2γ2 and α1(F64T)β2γ2 receptors are not shown. An F-test revealed 

that a three-component exponential function best describes the deactivation time course in α1β2γ2, 

α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. For α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors, the 

slowest component was lost and the deactivation time courses were best described with a two-

exponential function. Comparison of the mean w values for deactivation of GABA-evoked currents 

mediated by the different receptor subtypes revealed a statistically significant difference (P < 

0.0001; one-way ANOVA; Fig. 4E; Table 2). There were significant differences between the w values 

for α1β2γ2 and α1(D43C)β2γ2, α1(T47R)β2γ2, α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors (all P < 

0.0001, post-hoc Tukey’s comparison). The individual components of the multi-exponential fits are 

summarised in Table 2. Macroscopic currents mediated by GABAA receptors containing the loop D 

α1(F64C) and α1(F64T) substitutions were more severely affected, in terms of activation rates and 

extent of apparent desensitisation, than were those containing the α1(D43C) and α1(T47R) 

substitutions. By contrast, deactivation rates were similarly affected by all substitutions in loops G 

and D. 



 

 

 
This article is protected by copyright. All rights reserved. 

14 
 

Kinetics of currents activated by the partial agonist THIP  

In the preceding investigation of GABA efficacy and gating kinetics, the loop G α1(D43C) and 

α1(T47R) substitutions had similar effects. We therefore restricted our subsequent analysis to the 

α1(T47R) substitution using the loop D α1(F64C) substitution as a comparator.  

Propofol potentiation and maximal Popen data suggest that the efficacy of GABA is impaired by non-

conservative substitutions in loop G. These changes in efficacy were associated with dramatically 

increased deactivation rates and changes in desensitisation kinetics. We investigated currents 

evoked by THIP, a partial agonist at WT GABAA α1β2γ2 receptors to determine whether these are 

kinetic hallmarks of partial agonism. 

We verified that THIP is a partial agonist when applied rapidly (see Methods) to excised outside-out 

patches containing α1β2γ2 receptors. Maximally effective concentrations of GABA and THIP were 

chosen on the basis of concentration-response relationships (Fig. 1D) and the observation that 

higher agonist concentrations did not further increase current amplitude when applied rapidly to 

outside-out patches (data not shown). Figure 5A shows representative examples of maximally 

effective GABA- and THIP-evoked currents recorded from outside-out patches containing α1β2γ2 

and α1(T47R)β2γ2 receptors. THIP-evoked currents mediated by α1β2γ2 receptors were smaller 

than those activated by GABA (Fig. 5B). The exemplar data reveal a further reduction in the relative 

THIP-evoked current amplitude mediated by α1(T47R)β2γ2 receptors, consistent with our data 

above that this non-conservative substitution reduces agonist efficacy. THIP did not evoke 

measurable currents at α1(F64C)β2γ2 receptors (data not shown). The relative efficacy of THIP at 

α1β2γ2 receptors, was on average 77 ± 5% of that of GABA (n = 5; Fig. 5B). The relative efficacy of 

THIP as an agonist of α1(T47R)β2γ2 receptors was reduced to 17 ± 3% of that of GABA (n = 6). The 

reduction in THIP efficacy at α1(T47R)β2γ2 receptors was statistically significant (P = 0.0001; t-test; 

Fig. 5B). 

Inspection of α1β2γ2 receptor-mediated currents reveals that those activated by THIP and GABA 

exhibit differing kinetics (Fig. 5A). The normalised current traces in Figure 5C illustrate the rising 

phases of GABA- and THIP-evoked currents mediated by WT receptors. We compared their 

activation rates by measuring the time for currents to increase from 10% to 90% of their peaks (Fig. 

5C). THIP-evoked currents activated significantly more slowly than did GABA-evoked currents (P < 

0.0001; t-test). 
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The apparent desensitisation time course for THIP-evoked currents mediated by α1β2γ2 receptors 

was best described using a three-component exponential function. THIP-evoked currents showed 

subtle differences in desensitisation kinetics compared with GABA-evoked currents. There was no 

statistically significant difference in the τw between GABA-evoked and THIP-evoked currents (Fig. 5D; 

P = 0.29; t-test). The individual time constants and their relative proportions are summarised in 

Table 1. There was a significant reduction in the proportion of the fastest desensitisation 

component, and a concurrent significant increase in the slowest component. The effect of a partial 

agonist on desensitisation time course at α1β2γ2 receptors is similar to those caused by the loop G 

α1(D43C) and α1(T47R) substitutions, which impaired efficacy. 

Traces in Figure 5E (normalised to the amplitude at the end of a 500 ms GABA application) are 

examples of GABA- and THIP-evoked current deactivation mediated by WT receptors. The 

deactivation time course for THIP-evoked currents were best described using a triple exponential 

function, similar to GABA-evoked currents. Comparison of mean τw values reveal that THIP-evoked 

currents deactivate significantly faster than GABA-evoked currents (P = 0.0008, t-test; Fig. 5E). The 

individual components of the deactivation kinetics are summarised in Table 2. The increase in the τw 

of deactivation can be attributed to a significant reduction in all three time constants and a shift in 

the proportion from the slowest to the fastest component. These data agree well with our findings 

above that partial agonism is associated with an increase in deactivation rate, but also, to a lesser 

extent, with slower activation and desensitisation kinetics. These findings support a previous report 

of kinetics associated with partial efficacy using single channel recording (Mortensen et al., 2004) 

and imply that slow activation, slow desensitisation and fast deactivation are associated with weaker 

agonists.  

In the presence of the α1(T47R) substitution, the efficacy of THIP is further reduced relative to GABA 

(Fig. 5A). We therefore compared the macroscopic kinetics of THIP-evoked currents mediated by 

α1β2γ2 and α1(T47R)β2γ2 receptors. The current traces in Figure 5F show amplitude normalised 

rising phases of THIP-evoked currents mediated by α1β2γ2 and α1(T47R)β2γ2 receptors. The bar 

graph shows mean 10 - 90% rise times. THIP-evoked currents mediated by α1(T47R)β2γ2 receptors 

were activated significantly more slowly than those mediated by α1β2γ2 receptors (P = 0.002; t-test; 

Fig. 5F; Table 1).  

Currents mediated by α1(T47R)β2γ2 receptors desensitised too slowly to allow fitting with an 

exponential function (see Fig. 5A). Therefore, we examined desensitisation by measuring the current 

remaining at the end of the THIP application as a percentage of that at its peak. This approach 
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revealed a significant reduction in the extent of THIP-evoked current desensitisation mediated by 

α1(T47R)β2γ2 receptors compared to those mediated by α1β2γ2 receptors (P = 0.0001; t-test; Fig. 

5G; Table 1).  

The current traces in Figure 5H show amplitude normalised deactivation phases from THIP-evoked 

currents at α1β2γ2 and α1(T47R)β2γ2 receptors. The deactivation of THIP-evoked currents mediated 

by α1(T47R)β2γ2 receptors was consistently best described using two exponential terms, compared 

to three terms necessary to adequately describe deactivation mediated by α1β2γ2 receptors. 

Analysis of the mean w values reveals a significant reduction of the w values for the activation of 

THIP-evoked currents mediated by α1(T47R)β2γ2 receptors compared to WT receptors (P = 0.0001; 

t-test; Fig. 3G; Table 2). There was a significant reduction in the fastest time constant, as well as a 

significant increase in its proportion. As mentioned above, the slowest deactivation time constant 

present in recordings of THIP-evoked currents mediated by WT receptors were not seen in recording 

of currents mediated by α1(T47R)β2γ2 receptors. These data agree well with the other macroscopic 

current kinetic data showing progressively increasing effects on activation and deactivation rates 

with reductions in agonist efficacy.  

Deactivation kinetics of propofol-evoked currents 

It is possible that the changes in current kinetics quantified above (slow activation, slow 

desensitisation and fast deactivation), caused by mutations in the vicinity of the orthosteric binding 

site are composites of altered rates of agonist association and dissociation, agonist efficacy and 

desensitisation. This might be expected particularly for the α1(F64C) mutation, which affects agonist 

binding. In order to examine the effect of amino acid substitutions in loop G and loop D on receptor 

gating, independent of orthosteric agonist binding we examined the kinetics of currents activated by 

the allosteric agonist propofol mediated by α1β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors. The 

concentration of propofol used, which evoked robust currents without evidence of block, was either 

30 or 100 µM, and did not differ between the receptor subtypes, suggesting that the potency for 

propofol was not dramatically affected by the amino acid substitutions. The activation time course 

of propofol (30 or 100 µM)-evoked currents mediated by α1β2γ2 receptors, was independent of 

concentration (data not shown). 

Figure 6A shows representative examples of propofol-evoked currents recorded from outside-out 

patches containing α1β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors. The current traces in Figure 

6B are amplitude normalised rising phases of propofol-evoked currents mediated by WT and mutant 

receptors. We measured activation rate as the 10 - 90% rise time. The means are plotted in the bar 
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graph (Fig. 6B). The α1(T47R) and α1(F64C) substitutions did not significantly affect the 10 - 90% rise 

time of propofol-evoked currents (P = 0.51; one-way ANOVA). 

Propofol (30 or 100 µM)-evoked currents did not exhibit measurable apparent desensitisation and 

therefore this parameter was not analysed (Fig. 6A). Traces in Figure 6C are amplitude normalised 

deactivation phases of propofol-evoked currents mediated by α1β2γ2, α1(T47R)β2γ2 and 

α1(F64C)β2γ2 receptors. A double exponential best describes the deactivation time course and the 

mean w is plotted in the bar graph (Fig. 6C). Comparison of the w values for deactivation revealed a 

significant differences (one-way ANOVA) between α1β2γ2, α1(T47R)β2γ2 (P < 0.0001) and 

α1(F64C)β2γ2 (P < 0.0001, post-hoc Tukey’s comparison). The w of deactivation did not differ 

between different mutant receptors. These data demonstrate that the deactivation rate for the 

allosteric agonist propofol is affected by the T47R and F64C substitutions, suggesting that loop D 

Phe64 and loop G Thr47 are involved in gating of α1β2γ2 GABAA receptors independent of 

occupation of the orthosteric binding site. 

α1 subunit T47R reduces spontaneous gating 

Our observation that propofol-evoked currents were influenced by the α1(T47R) substitution 

suggests that loop G Thr47 influences gating regardless of the occupancy of the orthosteric binding 

site. In order to examine the influence of the α1(T47R) and α1(F64C) substitutions on GABAA 

receptor gating independent of any agonist activation, we studied their effects on GABAA receptors 

that display enhanced spontaneous gating. Leu285 is a conserved residue in all β-subunits located in 

TM3. The GABAA β1(L285R) substitution is associated with alcohol preference and enhanced 

spontaneous gating (Anstee et al., 2013).  

We first determined whether GABAA α1β2(L285R)γ2 receptors also displayed enhanced spontaneous 

gating by applying picrotoxin (100 µM) to block spontaneous currents recorded in the absence of 

agonist (ISpont). Maximal GABA evoked currents (IGABA) were then recorded. We quantified the extent 

of spontaneous gating as the percentage of ISpont to IGABA (ISpont/IGABA). The β2(L285R) substitution 

conferred enhanced ISpont (Fig. 7). We investigated the effect of the α1(T47R) and α1(F64C) 

substitutions on these currents. However, GABA failed to activate α1(F64C)β2(L285R)γ2 receptors, 

while picrotoxin inhibited standing currents (n = 3; data not shown). Therefore our subsequent 

experiments were restricted to the α1(T47R) substitution. Figure 7A shows representative examples 

of ISpont (grey traces) and IGABA (black traces) mediated by α1β2γ2, α1β2(L285R)γ2 and 

α1(T47R)β2(L285R)γ2 receptors. The presence of the α1(T47R) substitution reduced the amplitude 

of ISpont relative to IGABA (Fig. 7A). The mean extent of spontaneous gating is plotted in Figure 7B. WT 
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α1β2γ2 receptors had negligible ISpont/IGABA (0.0008 ± 0.0002%; n = 6). By contrast, α1β2(L285R)γ2 

receptors had enhanced ISpont/IGABA (65 ± 12%; n = 4) and that of α1(T47R)β2(L285R)γ2 receptors was 

only 12 ± 5% (n = 4). A one-way ANOVA revealed a statistically significant difference in mean 

ISpont/IGABA (P < 0.0001). A post-hoc Tukey’s comparison revealed statistically significant differences 

between the mean ISpont/IGABA of α1β2γ2 and α1β2(L285R)γ2 receptors (P < 0.0001), and between 

α1β2(L285R)γ2 and α1(T47R)β2(L285R)γ2 receptors (P < 0.0001). Our data therefore demonstrate 

that the β2(L285R) substitution confers greatly enhanced spontaneous activity, but the α1(T47R) 

substitution attenuated this effect. This demonstrates that the α1(T47R) substitution reduces the 

gating of GABAA α1β2γ2 receptors independent of any agonist occupancy.  
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Discussion 

Data from this study and our previous study respectively demonstrate that two substitutions, T47R 

and D43C, at strategic locations in loop G reduce the apparent potency of GABA (Baptista-Hon et al., 

2016). Changes in apparent potency can be caused by reduced binding affinity and/or gating efficacy 

(Colquhoun, 1998). Both mechanisms contribute to the reduced apparent potency of GABA caused 

by the α1(F64C) loop D substitution (Szczot et al., 2014; Baptista-Hon et al., 2016). Loop D located in 

the β2 strand is critical for agonist binding in the GABAA receptor and, consistent with this, 

modification of Cys64 by MTSEA is hindered by GABA, but not by the allosteric agonists, propofol 

and pentobarbital (Holden & Czajkowski, 2002; Baptista-Hon et al., 2016). By contrast, we previously 

demonstrated that both GABA and propofol reduce the rate of MTSEA modification of Cys43 and 

Cys47 in α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors, respectively (Baptista-Hon et al., 2016). This is 

consistent with movement associated with gating being the cause of reduced accessibility, rather 

than agonist binding. Movement of loop G during gating may be responsible for reduced accessibility 

to MTSEA. Furthermore, restriction of movement by non-conservative substitutions of amino acids 

at positions 43 and 47 may impair gating leading to the observed dextral shift in the GABA 

concentration-response relationship for α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors relative to WT.  

We directly explored whether the α1(D43C) and α1(T47R) substitutions reduce GABA efficacy using 

propofol at a concentration below that required for activation, but sufficient for positive allosteric 

modulation of sub-maximal GABA-evoked currents mediated by WT receptors (Berger et al., 1997). 

Propofol potentiated maximal GABA-evoked currents mediated by both α1(D43C)β2γ2 and 

α1(T47R)β2γ2, but not WT receptors. This suggests that propofol restores the efficacy of GABA lost 

through the D43C and T47R substitutions in loop G. Using non-stationary variance analysis, we also 

demonstrated that the maximal Popen is reduced for α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors, 

without a change in single channel conductance, indicating that loop G does indeed play a role in 

efficacy. Using the same approach, it was demonstrated that the loop D α1(F64C) substitution also 

reduces maximal Popen, albeit to a greater extent (Szczot et al., 2014). Our data showing that the 

magnitude of propofol potentiation of a maximally efficacious concentration of GABA was greater in 

α1(F64C)β2γ2 receptors, than in α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors agrees well with the 

relative impairments of Popen associated with these substitutions. Furthermore, the efficacy of THIP 

was also reduced by loop G and loop D substitutions providing additional evidence that orthosteric 

agonist efficacy is indeed impaired. 
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Mounting structural evidence suggests that the antiparallel β1 and β2 strands, which contain loop G 

and loop D, respectively, move during gating. Comparisons of apo- and ligand-bound structures of 

the glycine receptor (Du et al., 2015), and the C. elegans GluCl (Althoff et al., 2014) reveal 

movements in the β1 and β2 strands. Molecular dynamic (MD) simulations of C. elegans GluCl 

deactivation show that the loop connecting β1 and β2 strands moves towards the TM2-3 loop 

(Calimet et al., 2013). This movement appears to precede conformational changes within the TM 

domains which lead to gating. Furthermore, mutations that prevent the electrostatic interaction 

between the β1-β2 loop and the TM2-3 loop in the GABAA α1 subunit reduce GABA efficacy (Kash et 

al., 2003). We have also previously demonstrated that substitution of the conserved α1 subunit 

TM2-3 Lys278 by methionine reduces the efficacy of GABA (Hales et al., 2006). These functional, 

structural and simulation data, together with our current findings, suggest that the movement of 

loop G residues is involved in a series of structural rearrangements required for normal channel 

gating. 

GABA-evoked currents mediated by α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors exhibit a 

dramatically increased deactivation rate compared to WT receptors. There were also changes to 

apparent desensitisation kinetics and a tendency towards slowed activation rate. α1(F64C) and 

α1(F64T) substitutions in loop D caused more substantial changes in macroscopic current kinetics, 

with activation, apparent desensitisation and deactivation rates all significantly affected. This is 

consistent with the dual binding and gating role played by Phe64 in loop D (Boileau et al., 1999; 

Szczot et al., 2014). These changes in kinetics, particularly the observed increase in deactivation 

rates, are consistent with those we have previously observed for the α1(K278M) substitution, at the 

TM2-3 loop location, far removed from the agonist binding site, which also impairs agonist efficacy 

(Hales et al., 2006; Othman et al., 2012). In this case faster deactivation reflected a reduced mean 

open time. Reduced mean open time may also account for the increase in deactivation rates for 

α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors as both substitutions caused reduced Popen compared to 

WT receptors.  

Ligand binding experiments indicate that GABA cannot dissociate from homomeric 1 receptors in 

the open channel conformation (Chang & Weiss, 1999). Similarly GABA becomes trapped in its 

binding sites on α1β3γ2 receptors and does not unbind until the channel closes (Bianchi & 

Macdonald, 2001). Therefore the deactivation time course is largely dictated by the mean open time 

of the receptor. Our data demonstrate that THIP-evoked currents deactivate faster than GABA-

evoked currents, consistent with single channel data demonstrating a shorter mean open time 

associated with activation by the partial agonist (Mortensen et al., 2004).  
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Our data indicate that the efficacy of THIP is severely impaired in the presence of the α1(T47R) 

substitution. It is worth noting that the macroscopic current kinetics of THIP-evoked currents in 

α1(T47R)β2γ2 receptors begin to resemble those with the loop D α1(F64C) and α1(F64T) 

substitutions. This may suggest that as agonist efficacy becomes progressively impaired, there may 

be incremental changes to activation, apparent desensitisation and deactivation rates. 

We have previously observed that reduced efficacy associated with the α1(K278M) substitution, was 

not restricted to GABA but also generalised to activation by propofol (Hales et al., 2006). Consistent 

with a similar scenario, propofol-evoked currents mediated by α1(T47R)β2γ2 receptors also 

deactivate faster than their WT counterparts, suggesting that the mean open times for propofol-

activated channels were also reduced by the α1(T47R) substitution. These data confirm that the 

α1(T47R) substitution impairs gating through a mechanism independent of orthosteric binding and 

suggest a common conformational rearrangement associated with activation by orthosteric and 

allosteric agonists.  

We also examined the effect of α1(T47R) substitution on spontaneous gating to further explore the 

generality of its ability to impair gating. Our previous work demonstrates that WT GABAA receptors 

exhibit a low level of spontaneous gating that can be blocked by the non-competitive inhibitor 

picrotoxin and the inverse agonist bicuculline (McCartney et al., 2007). The α1(K278M) substitution, 

which inhibits GABA and propofol efficacy also reduces spontaneous gating (Othman et al., 2012).  

In order to examine the effects of the loop G and loop D substitutions on gating that is independent 

of any agonist, we used the L285R substitution in the β2 subunit to enhance spontaneous gating. A 

previous study of β1(L285R) demonstrated that the substitution caused a large increase in GABA-

independent gating (Anstee et al., 2013). Consistent with this, α1β2(L285R)γ2 receptors also 

exhibited marked spontaneous currents that were inhibited by picrotoxin. Spontaneous gating was 

reduced in α1(T47R)β2(L285R)γ2 compared to α1β2(L285R)γ2 receptors confirming that, like 

α1(K278M), α1(T47R) impairs gating independently of agonist activation. 

In summary this study suggests that movement of loop G in the β1 strand of the GABAA receptor α1 

subunit is involved in a conformational rearrangement associated with channel activation. The non-

conservative replacements of Asp43 and Thr47 reduce efficacy presumably by impeding movement 

of the entire β1-β2 antiparallel loop structure. The importance of this region of pLGICs in activation 

by orthosteric agonists might have been predicted by structural data and MD simulations (Calimet et 

al., 2013; Althoff et al., 2014; Du et al., 2015).  
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Kinetic models of glycine and nicotinic acetylcholine receptor gating incorporate pre-open shut 

states, termed flip and prime, respectively (Burzomato et al., 2004; Mukhtasimova et al., 2009). The 

rates of transition into these states correlate with agonist efficacy (Lape et al., 2008). It is therefore 

not a surprise that the α1(F64C) substitution in loop D, which reduces the efficacy of GABA, also 

reduces the transition rate constants into the flip state (Szczot et al., 2014). It is possible that the 

D43C and T47R substitutions also hinder these pre-open transitions. Perhaps more surprisingly, 

however, the T47R substitution also impairs gating that is independent of orthosteric (or indeed 

allosteric) agonist activation.  

A requirement for the movement of loop G residues during agonist independent gating may provide 

a mechanism for the negative efficacy that is characteristic of inverse agonism. It is possible that 

bicuculline inhibits GABAA receptor gating, caused by either allosteric or spontaneous activation, by 

immobilising the antiparallel β1-β2 strand structure (McCartney et al., 2007). Additional structural 

studies will be required to test this hypothesis. 
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Figure legends 

Figure 1. Loop G and loop D of C. elegans GluCl and GABAA receptor α subunits. A, Amino acid 

sequence alignment of the mouse GABAA α1 to α6 subunits and GluCl α subunit. The β1 and β2 

strands are highlighted in green and red, respectively. Residues in loop G and D of the GABAA α1 

subunit are underlined. Also underlined are the homologous residues on the GABAA α2 to α6 and 

GluCl which are relevant to this study. B, The C. elegans GluCl (Hibbs & Gouaux, 2011) model, 

showing the interface between two subunits (blue – primary interface, yellow – complimentary 

interface) with the β1 and β2 strands highlighted (green and red, respectively). Bound glutamate is 

shown in grey. Inset shows the highlighted area in more detail. Asn33 and Arg37 are shown on the 

β1 strand as stick rendering in green. Thr54 is shown on the β2 strand as stick rendering in red. C, 

Representative examples of whole-cell currents evoked by a maximal and an approximate EC50 

concentration of GABA (indicated) mediated by α1β2γ2 or α1(T47R)β2γ2 GABAA receptors. The bar 

indicates GABA application (2 s). D, Concentration-response relationships for α1β2γ2 (circles) or 

α1(T47R)β2γ2 (triangles) receptors. Current amplitudes were expressed as a percentage of the 

maximum current amplitude recorded from each cell. The sigmoidal curve represents the logistic 

function fitted to the data points. 

 

Figure 2. The identity of Loop G and loop D residues influences agonist efficacy. A, Representative 

examples of whole-cell currents mediated by α1β2γ2, α1(D43C)β2γ2 α1(T47R)β2γ2 or α1(F64C)β2γ2 

receptors evoked by a maximal concentration of GABA alone (black traces) or in the presence of 1 

µM propofol (grey traces). The concentration of GABA used was 1 mM for α1β2γ2, 300 mM for 

α1(D43C)β2γ2 and 30 mM for α1(T47R)β2γ2 and 300 mM for α1(F64C)β2γ2 receptors. Propofol 

potentiated GABA-evoked currents mediated by α1(D43C)β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 

receptors. B, Bar graph shows mean percentage potentiation by propofol. Propofol significantly 

potentiated GABA-evoked currents mediated by α1(D43C)β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 

receptors (* P < 0.05, P < 0.001 and P < 0.0001, respectively; one-way ANOVA post-hoc Tukey’s 

comparison). There was also a statistically significant difference between α1(F64C)β2γ2 receptors 

and α1(D43C)β2γ2 or α1(T47R)β2γ2 receptors (# P < 0.05 and P < 0.001, respectively; one-way 

ANOVA post-hoc Tukey’s comparison).  
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Figure 3. Maximal Popen is reduced in α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. A, Representative 

examples of variance and mean current calculated from 10 consecutive GABA applications to α1β2γ2 

or α1(T47R)β2γ2 receptors. The application of GABA is indicated by the liquid junction current above 

each trace. Only the variance and mean current values following the peak of the current (black) were 

used in the analysis. B, Mean current versus variance plot for α1β2γ2 or α1(T47R)β2γ2 receptors. 

The dotted line represents the parabolic function fitted to the data points. C, Bar graph of mean 

single channel conductances. The single channel conductance for α1β2γ2, α1(D43C)β2γ2 and 

α1(T47R)β2γ2 receptors were 26 ± 3.2 pS (n = 8), 27 ± 2.9 pS (n = 7) and 26 ± 2.3 pS (n = 5) 

respectively. There was no significant difference between the means (P = 0.96; one-way ANOVA). D, 

Bar graph of mean maximal Popen for α1β2γ2, α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. There was 

a statistically significant difference in Popen between α1β2γ2 and α1(D43C)β2γ2 receptors and 

between WT α1β2γ2 and α1(T47R)β2γ2 receptors (* P <0.05; one-way ANOVA; post-hoc Tukey’s 

comparison). 

Figure 4. The kinetics of GABA-evoked currents mediated by α1β2γ2, α1(D43C)β2γ2, α1(T47R)β2γ2, 

α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors. A, Representative examples of GABA-evoked currents 

mediated by α1β2γ2, α1(D43C)β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors recorded from 

outside-out patches. The associated square pulses indicate the junction currents corresponding to 

agonist application. B, (inset) Representative examples of amplitude-normalised activation phases of 

GABA-evoked currents mediated by α1β2γ2 (black), α1(T47R)β2γ2 (grey) or α1(F64C)β2γ2 (grey) 

receptors. Bar graph shows mean 10-90% rise time of current activation. Both α1(F64C) and 

α1(F64T) substitutions significantly slowed the GABA-activation rate when compared with α1β2γ2 

receptors (* P < 0.0001; one-way ANOVA post-hoc Tukey’s comparison) and with α1(D43C)β2γ2 or 

α1(T47R)β2γ2 receptors (# P < 0.0001; one-way ANOVA post-hoc Tukey’s comparison). C, Bar graph 

shows the mean percentage current remaining. GABA-evoked currents mediated by α1(D43C)β2γ2, 

α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors desensitise significantly less, when compared with 

α1β2γ2 receptors (P < 0.05; P < 0.001 and P < 0.001, respectively; one-way ANOVA post-hoc Tukey’s 

comparison). D, Mean desensitisation τw of α1β2γ2, α1(D43C)β2γ2 and α1(T47R)β2γ2 receptors. 

There was no statistically significant difference in mean τw (P = 0.08; one-way ANOVA). The individual 

components of the multi-exponential fit is summarised in Table 1. E, (inset) Representative examples 

of amplitude-normalised current deactivation following agonist removal. The superimposed traces 

are time-shifted for clarity. The step above each trace indicates the liquid junction current 

corresponding to agonist removal. The bar graph shows mean deactivation τw. GABA-evoked 

currents mediated by α1(D43C)β2γ2, α1(T47R)β2γ2, α1(F64C)β2γ2 and α1(F64T)β2γ2 receptors 



 

 

 
This article is protected by copyright. All rights reserved. 

29 
 

deactivated significantly faster when compared to those mediated by α1β2γ2 receptors (* P < 

0.0001; one-way ANOVA post-hoc Tukey’s comparison). The individual components of the multi-

exponential fits are summarised in Table 2. 

Figure 5. The kinetics of GABA- and THIP-evoked currents mediated by α1β2γ2 or α1(T47R)β2γ2 

receptors. A, Representative examples of maximal GABA- (black) and THIP-evoked (grey) currents 

recorded from excised outside-out patches containing α1β2γ2 or α1(T47R)β2γ2 receptors. The 

upward (black) and downward (grey) steps above each correspond to the liquid junction current for 

GABA and THIP application, respectively. B, The mean maximum THIP-evoked current amplitude (as 

percentage of maximal GABA current amplitude) was significantly less than the maximum GABA-

evoked current amplitude at α1β2γ2 receptors (# P = 0.002; paired t-test). The efficacy of THIP was 

significantly reduced at α1(T47R)β2γ2 receptors (* P = 0.0001; t-test). C, Representative examples of 

the activation phases of GABA- (black) and THIP-evoked (grey) currents recorded from excised 

outside-out patches containing α1β2γ2 receptors. The associated graph illustrates the mean 10-90% 

rise times. THIP-evoked currents activated significantly slower than GABA-evoked currents (* P = 

0.0001; t-test). D, Bar graph shows mean desensitisation τw. THIP-evoked currents desensitised 

significantly more slowly than GABA-evoked currents (* P = 0.0011; t-test). E, Representative 

examples show amplitude-normalised deactivation phases of GABA- (black) and THIP-evoked (grey) 

currents. Bar graph shows mean deactivation τw. THIP-evoked currents deactivated significantly 

faster than GABA-evoked currents (* P = 0.0001; t-test). F, Representative activation phases of THIP-

evoked currents from outside-out patches containing α1β2γ2 (black) and α1(T47R)β2γ2 (grey) 

receptors. Bar graph shows mean 10-90% rise times. The α1(T47R) substitution significantly slowed 

the activation rates of THIP-evoked currents, as compared to WT receptors (* P = 0.002; t-test). G, 

Bar graph shows mean percentage current remaining. THIP-evoked currents show less 

desensitisation as compared to α1β2γ2 receptors (* P = 0.0001; t-test). H, Representative examples 

of amplitude-normalised deactivation phases of THIP-evoked currents mediated by α1β2γ2 (black) 

and α1(T47R)β2γ2 (grey) receptors. Bar graph shows mean deactivation τw. The α1(T47R) 

substitution significantly increased deactivation rate (* P = 0.0001; t-test). 

Figure 6. The kinetics of propofol-evoked currents mediated by α1β2γ2, α1(T47R)β2γ2 and 

α1(F64C)β2γ2 receptors. A, Representative examples of propofol-evoked currents mediated by 

α1β2γ2, α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors recorded from excised outside-out patches. The 

square pulse above each trace indicates the time-course of solution exchange. B, Representative 

examples of amplitude-normalised activation phases of propofol-evoked currents mediated by 

α1β2γ2 (black), α1(T47R)β2γ2 (grey) and α1(F64C)β2γ2 (grey) receptors. The bar graph shows the 
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mean 10-90% rise time of current activation. There were no statistically significant differences in the 

activation rates of propofol-evoked currents. C, Representative examples of amplitude-normalised 

decaying phases of the currents depicted in A, following propofol removal. The superimposed traces 

are time-shifted for clarity. The step above each trace indicates the liquid junction current 

corresponding to agonist removal. The bar graph shows mean deactivation τw. Propofol-evoked 

currents mediated by α1(T47R)β2γ2 and α1(F64C)β2γ2 receptors deactivated significantly faster 

when compared to those mediated by α1β2γ2 receptors (* P < 0.0001 for both; one-way ANOVA 

post-hoc Tukey’s comparison). Mean kinetic parameters are summarised in Table 1. 

Figure 7. Spontaneous gating mediated by α1β2γ2, α1β2(L285R)γ2 and α1(T47R)β2(L285R)γ2 

receptors. A, Representative examples of GABA-evoked currents (black traces) and inhibition of 

spontaneous currents by picrotoxin (grey traces) mediated by α1β2γ2, α1β2(L285R)γ2 and 

α1(T47R)β2(L285R)γ2 receptors. B, Bar graph shows mean percentage spontaneous current 

(expressed as ISpont/IGABA). One-way ANOVA revealed a statistically significant difference in mean 

spontaneous current (P < 0.0001). Mean spontaneous current amplitudes differed between α1β2γ2 

and α1β2(L285R)γ2 receptors (* P < 0.0001) and between α1β2(L285R)γ2 and α1(T47R)β2(L285R)γ2 

receptors (# P < 0.0001; post-hoc Tukey’s comparison).  
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Table 1. Summary of desensitisation components. 

 Agonist τf %f τm %m τs %s τw 

α1β2γ2 

GABA 
3.2 ± 

0.34 
27 ± 3.0 36 ± 6.3 30 ± 6.0 410 ± 49 43 ± 4.5 190 ± 25 

THIP 4.6 
7.5 ± 5.8 

#
 

33 ± 5.9 31 ± 5.0 350 ± 34 
61 ± 6.5 

#
 

240 ± 35 

α1(D43C)β2γ2 GABA 
6.7 ± 1.9 

* 
21 ± 6.1 42 ± 7.0 11 ± 4.3 

460 ± 

110 

68 ± 7.0 

* 
320 ± 87 

α1(T47R)β2γ2 GABA 
4.6 ± 

0.94 

13 ± 3.7 

* 
50 ± 7.7 18 ± 3.7 

790 ± 

220 

69 ± 4.6 

* 

570 ± 

170 

#
 P < 0.05 (unpaired t-test) compared with the equivalent WT GABA-evoked current value.  

* P < 0.05 (one-way ANOVA post-hoc Tukey’s comparison) compared with GABA-evoked currents mediated by α1β2γ2 

receptors.  
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Table 2. Summary of deactivation components. 

 Agonist τf %f τm %m τs %s τw 

α1β2γ2 

GABA 11 ± 2.0 
8.1 ± 

3.7 
47 ± 5.6 61 ± 5.2 270 ± 54 30 ± 5.0 100 ± 17 

THIP 3.2 ± 0.89 
# 

40 ± 

8.4 
#
 

12 ± 1.7 

#
 

61 ± 7.1 68 ± 13 
#
 6.1 ± 1.5 

#
 12 ± 1.4 

#
 

α1(D43C)β2γ2 GABA 7.9 ± 1.8 
64 ± 

3.1 * 
45 ± 12 

28 ± 2.6 

* 

280 ± 

110 

7.5 ± 2.6 

* 
34 ± 8.7 * 

α1(T47R)β2γ2 

GABA 
0.91 ± 

0.094 * 

73 ± 

5.4 * 
8.4 ± 2.2 

25 ± 5.3 

* 
140 ± 27 

2.3 ± 0.32 

* 

4.4 ± 0.47 

* 

THIP 
0.93 ± 

0.076 

93 ± 

1.6 
#
 

20 ± 4.5 

#
 

7.0 ± 1.6 

#
 

NA NA 
2.2 ± 0.46 

#
 

α1(F64C)β2γ2 GABA 1.9 ± 0.62 *  
91 ± 

5.4 * 
42 ± 15 

8.5 ± 5.4 

* 
NA NA 

3.5 ± 1.3 

* 

α1(F64T)β2γ2 GABA 
0.83 ± 

0.071 * 

93 ± 

1.5 * 
72 ± 24 

6.6 ± 1.5 

* 
NA NA 

6.2 ± 2.5 

* 

#
 P < 0.05 (unpaired t-test) compared with the equivalent GABA-evoked current value.  

* P < 0.05 (one-way ANOVA post-hoc Tukey’s comparison) compared with GABA-evoked currents mediated by α1β2γ2 

receptors.  

NA – not applicable due to a loss of this component. 
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