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Abstract 

The eight different types of ubiquitin (Ub) chains that can be formed play important roles in 

diverse cellular processes. Linkage-selective recognition of Ub chains by Ub-binding domain 

(UBD)-containing proteins is central to coupling different Ub signals to specific cellular 

responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been 

characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY-

1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48-

linked polyUb. We here identify that this linkage-selective binding is mediated by a single 

MIU motif (MIU2) in MINDY-1.  The crystal structure of MIU2 in complex with K48-linked 

polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open 

conformation that can only be accommodated by K48-linked triUb. The weak Ub binder 

MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage 

selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition 

by UBDs. 

Introduction 

Ubiquitylation is a protein modification that regulates a plethora of cellular signaling [1-4]. 

The 76-residue ubiquitin (Ub) is attached to Lys residues of target substrates through an 

enzymatic cascade that involves Ub-activating enzyme (E1), Ub-conjugating enzyme (E2) 

and Ub-ligating enzyme (E3) [5]. Ub itself has seven Lys residues and an N-terminal Met 

residue that can be ubiquitylated, which results in the formation of eight types of 

polyubiquitin (polyUb) chains: M1, K6, K11, K27, K29, K33, K48 and K63 [6]. The 

different chain types are associated with different cellular functions and they adopt distinct 

conformations. For example, K48-linked polyUb chains that target proteins for proteasomal 

degradation adopt compact conformations [7]. Indeed, K48-linked polyUb chains have also 

been observed in open conformations, reflecting the flexible nature of polyUb chains [8,9]. 

Proteins containing Ub-binding domains (UBDs) recognize these distinct conformations of 

polyUb chains and translate the different Ub signals to produce distinct outcomes [10]. Since 

Ub signals regulate diverse cellular processes, they have to be removed and regulated, and 

this function is mainly performed by dedicated proteases called deubiquitinating enzymes 

(DUBs) [11].  

To date, there are 21 families of UBDs reported, which vary in size, structure, and mode of 

binding with Ub [10,12]. Ub-interacting motif (UIM) and motif interacting with Ub (MIU) 
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are the smallest among the UBDs. Both motifs form an a-helical structure composed of ~20 

residues [13-16]. They bind to monoUb through hydrophobic residues centered on a key 

alanine that interacts with the hydrophobic I44 patch (L8, I44, H68 and V70) on Ub. The 

signature motif of the MIU is the inverse of a UIM, which explains why monoUb binds MIU 

in a reverse orientation than when bound to UIM [15,16].  

The affinity of a UIM for monoUb is relatively weak with dissociation constants (Kd) in the 

range of 100 µM to 2 mM [17]. The MIU of Rabex-5 has slightly higher affinity for monoUb 

at approximately 30 µM [15,16]. To compensate for the weak affinities, many proteins 

contain arrays of more than one UIM or MIU motifs, which provide avidity to bind  polyUb 

chains with relatively higher affinity [13,15,16,18-21]. In some UBDs, these arrangements 

also determine the linkage selective binding for polyUb. For instance, in the tandem UIM of 

Rap80, each UIM motif binds to a single Ub and the linker between the two motifs 

determines the orientation of the binding surfaces on the individual UIMs thereby imparting 

specificity in binding to polyUb of K63 linkage type [18,19]. 

We recently reported the discovery of a new family of DUBs called MINDY (MIU-

containing novel DUB family) that is highly selective at cleaving K48-linked polyUb chains 

[22]. The first member identified in this family, FAM63A/MINDY-1, contains a tandem MIU 

repeat (tMIU) that is highly specific for binding to K48-linked polyUb chains. The tMIU 

enables efficient cleavage of long polyUb chains by MINDY-1. In order to understand the 

molecular mechanism of how the tMIU of MINDY-1 specifically recognizes K48 chains, we 

biochemically and biophysically analyzed its Ub binding in detail. Our results reveal an 

atypical mode of polyUb recognition where the second MIU (MIU2) on its own contains all 

the specificity determinants. MIU2 makes contacts with all three Ub moieties in a K48-linked 

polyUb chain via three different binding-sites on the MIU. The first MIU (MIU1) further 

contributes to polyUb binding through avidity despite itself being a poor binder for polyUb 

chains. Collectively, our results provide new concepts for polyUb recognition by MIU motifs.    
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Results and Discussion 

MINDY-1 contains a tandem MIU repeat, highly selective at binding K48-polyUb chains 

Preferences of tandem UIMs for binding to one linkage type of polyUb chains over the other 

has been described [13,18,19,23]. However, such analyses were limited to only few chain 

types, mostly K48 and K63 linkages. Only recently, methods to assemble large quantities of 

pure polyUb chains of M1, K6, K11, K29, K33, K48 and K63 were established [24-31]. This 

has been an invaluable tool for UBD linkage profiling that led for instance to the 

identification of NZF1 of TRABID as a K29- and K33-polyUb selective binder [27]. When 

profiled against tetraUb of seven linkage types, we confirmed the exclusive preference of 

Rap80 and Epsin-15 tUIMs for binding to K63 polyUb chains [18,19] (Fig EV1A). We 

found that S5a tUIM that was previously reported to bind K11, K48 and K63 chains also 

captures M1 polyUb chains [23,32] (Fig EV1A). The tandem A20_ZnF-MIU domain of 

Rabex-5 previously reported to capture M1-, K48- and K63-polyUb chains [15,16,33,34] also 

binds to tetraUb linked via K6, K11, K29 and K33 (Fig EV1A). Our results demonstrate that 

using a panel of tetraUb chains in Halo-tagged UBD pull-down assays can reveal the linkage 

preference of a given UBD. 

Based on sequence analysis we discovered that two previously uncharacterized proteins, 

FAM63A and FAM63B, contain a tandem MIU at the C terminus (Fig 1A-B and Fig EV1B-

C). In our recent study, we characterized these two proteins to be DUBs of a novel family, 

which we named MINDY (MIU-containing novel DUB family) [22]. While the sequences of 

the MIU motifs are highly conserved between the two proteins, the linker region connecting 

the two motifs is not (Fig 1A). Despite this similarity, the tMIU of FAM63A/MINDY-1 is 

highly specific for binding to K48 chains whereas the tMIU of FAM63B/MINDY-2 is non-

specific and binds to polyUb chains of different linkage types (Fig 1C). We therefore wanted 

to understand how the tMIU of MINDY-1 achieves linkage specificity for K48 chains. 

Single MIU motif is sufficient for selective binding to K48 chains 

We first evaluated the contribution of each MIU motif of MINDY-1 towards polyUb binding. 

Mutating the key central alanine of the MIU motif to glycine has been reported to disrupt the 

motif from binding to monoUb [16]. We therefore mutated the central alanine or deleted the 

whole motif of MIU1 or MIU2 and tested the effect of such mutations on K48-linked tetraUb 
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binding. Mutating or deleting MIU1 did not disrupt binding to K48-tetraUb (Fig 2A lane 

4&6). In contrast, mutating or deleting MIU2 completely abolished binding to K48-tetraUb 

(Fig 2A lane 3&5). These observations were further confirmed in pull-down assays of 

ubiquitylated materials from HEK293 cells (Fig 2B). Together, our data suggest that MIU2 is 

the dominant polyUb chain binder in MINDY-1. 

Tandem UIMs and MIUs have been reported to prefer binding to longer polyUb chains 

[13,16,20,21,35-38]. Pull downs from HEK293 cell extracts using MINDY-1 tMIU did not 

capture lower molecular weight polyUb chains, suggesting a preference for binding to longer 

polyUb chains (Fig 2B). To investigate this further, we incubated Halo-tagged tMIU with 

K48-linked polyUb chains of different lengths that varied from monoUb to pentaUb (Fig 

2C). We found that the tMIU binds to tri-, tetra- and pentaUb, but does not bind to monoUb 

and diUb, supporting a preference of tMIU to bind longer polyUb chains. To measure the 

affinity of the tMIU for polyUb chains of the varying lengths, we performed ITC 

measurements where MINDY-1 tMIU was titrated into either K48-diUb, triUb or tetraUb 

(Fig 2D-F). We observed affinities of 23 µM, 1.2 µM and 185 nM for diUb, triUb and 

tetraUb, respectively, suggesting that the affinity of MINDY-1 tMIU for polyUb chains 

increases with chain length. Collectively, our results demonstrate that MINDY-1 tMIU 

preferably binds to longer K48-linked polyUb chains. 

To explore the role of MIU1 in the binding of MINDY-1 tMIU to polyUb chains, we 

compared the binding of MIU1 and MIU2 on their own to K48-triUb by ITC. If MIU1 has no 

role in overall binding, we predict the affinity of MIU2 for K48-triUb to be the same as that 

observed with tMIU. Consistent with our previous finding, MIU1 on its own has no 

measurable affinity towards polyUb chains (Fig 2G). Surprisingly, we found that the affinity 

of the tMIU containing both MIU1 and MIU2 for K48-triUb is ten-fold higher than that of 

MIU2 on its own (Fig 2H). This suggests that even though the affinity of the isolated MIU1 

for K48-triUb is negligible, it contributes to tMIU binding through avidity.  

Since MIU1 only provides weak binding to polyUb chains, we hypothesize that MIU2 is the 

main determinant of K48-linkage selectivity. When Halo-tagged MIU2 was incubated with a 

panel of seven types of polyUb chains it only captured K48-tetraUb (Fig 2I). This implies 

that on its own MIU2 is still selective towards K48 linkages and therefore is the linkage 

specificity determinant in MINDY-1 tMIU. 
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Cooperativity between MIU1 and MIU2 results in highly selective polyUb interaction 

Even though MIU2 is sufficient to capture K48-linked polyUb chains, MIU1 is still required 

for the tMIU to bind polyUb chains with higher affinity. However, it remains unclear whether 

MIU1 also contributes to the overall linkage selectivity of the tMIU. To address this, we first 

explored the contribution of the linker separating the two motifs. One major difference 

between the K48-linkage-specific MINDY-1 tMIU and the linkage-unspecific MINDY-2 

tMIU is their linker length and composition (Fig 1A). In Rap80, the linker length in-between 

two UIM motifs defines the specificity for K63-linked polyUb [18,19]. Therefore, to test 

whether the linker length and composition of MINDY-1 tMIU regulate polyUb binding, we 

replaced the 5-residue linker of MINDY-1 tMIU with the one of MINDY-2 tMIU. Swapping 

the linker made no difference to linkage specificity of the tMIU (Fig 3A lane 6). The 

presence of two proline residues results in a rigid linker (Fig 1A). To make the linker 

relatively flexible, we mutated the two proline residues to alanine or replaced the whole 

linker with poly-Ser-Gly or poly-Ala linker (Fig 3A lane 7-9). Again, we found that altering 

the composition of the linker does not convert the K48-linkage specificity of the tMIU. In 

summary, the length and composition of the linker does not affect the specificity of MINDY-

1 tMIU for K48-linked polyUb chains. 

Despite being very similar to the tMIU of MINDY-1, it is intriguing that the tMIU of 

MINDY-2 binds to polyUb chains of all linkage types (Fig 1C). We therefore characterized 

the binding properties of the individual MIU motifs of MINDY-2 and found that the first 

MIU (MIU1) motif of MINDY-2 is the dominant Ub-binder whereas the second motif 

(MIU2) shows no detectable binding (Fig 3B). Further, MINDY-2 MIU1 has no linkage 

selectivity as it captures polyUb chains of all linkage types (Fig 3C). The affinity of 

MINDY-2 MIU1 on its own to polyUb chains is weaker compared to the tMIU (Fig 3C and 

1C). This suggests that similar to MINDY-1, the weak polyUb-binder MIU2 in MINDY-2 

also contributes to overall polyUb binding of the tMIU through avidity.  

We then wondered whether replacing MIU1 of MINDY-1 with a motif that binds non-

selectively to polyUb chains could alter the linkage preference of MINDY-1 tMIU. First we 

tested if introducing a K48-selective MIU at the position of MIU1, alters the specificity of the 

tandem MIU. When analyzed, a tandem repeat of the K48-selective MINDY-1 MIU2 is still 

K48-linkage selective and in fact appears to bind to K48 chains with higher affinity (Fig 3D 

top). Next, we performed a domain swap, where we replaced MINDY-1 MIU1 with the non-
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selective polyUb binder of MINDY-2 MIU1. The hybrid tMIU is no longer K48-selective 

and binds to K6, K11, K48 and K63 chains, which is similar to the profile of MINDY-2 

tMIU (Fig 3D bottom and Fig 1C). Thus, within the tMIU, having a non-selective polyUb 

binder at the position of MIU1 converts the K48-specific binder to a non-specific one. In 

summary, the weak polyUb-binding property of MIU1 allows MIU1 to work in synergy with 

MIU2 to increase the affinity of MINDY-1 tMIU for polyUb without altering its selectivity 

towards K48-linked polyUb chains.  

MIU2 binds to open conformations of K48-linked polyUb chains 

To understand how MINDY-1 MIU2 specifically recognizes K48-linked polyUb and how 

this interaction is enhanced by MIU1, we attempted to crystallize the tMIU in complex with 

K48-triUb. Unfortunately, we were unable to obtain any crystals. We therefore crystallized 

the tMIU in complex with K48-diUb and these crystals diffracted to 2.0 Å. The structure was 

solved by molecular replacement using Ub as a search model. There are two Ub moieties 

present in the asymmetric unit (ASU) (Fig 4A). Although discernible electron density is not 

present for the linkage between the two Ub moieties, L73 of the distal Ub is pointing towards 

K48 of the proximal Ub. Clear electron density was visible for a helix, which was manually 

built in and the structure was refined to the final statistics shown in Appendix Table S1. To 

our surprise, only one 4-turn-helix corresponding to MIU2 (residues 408 to 426) could be 

modeled into the electron density. The weak affinity of MIU1 for polyUb chains (Fig 2G) 

and the unstructured linker connecting the two MIU motifs might explain the absence of 

electron density for MIU1. 

Interestingly, when we analyzed the crystal packing we found that the diUb from the ASU 

makes contact with the diUb from the symmetry-related molecule, forming a cyclic K48-

linked tetraUb chain (Fig 4B). This cyclic chain adopts a doughnut-like shape with two 

grooves at its center where the two MIU2 molecules bind (Fig EV2A). All the I44 patches 

are no longer at the interface between Ub moieties and therefore, this cyclic K48-tetraUb 

chain is in an open conformation. 

To date, four structures of K48-tetraUb chains have been solved [8,39-41]. In three of these 

structures (1F9J, 2O6V and 3ALB), K48-linked tetraUb forms cyclic chains. However, these 

are all in closed conformations where the I44 patches of the all Ub moieties are buried in the 

interface (Fig 4C middle). Even though the other crystal structure of K48-tetraUb is in an 
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open conformation (1TBE), the fourth and the first Ub moieties are not linked and therefore, 

is a non-cyclic chain and different from the K48-tetraUb chain observed in this study (Fig 4C 

right). Interestingly, looking further into the symmetry-related molecules, we can also model 

an open non-cyclic K48-tetraUb (Fig EV2B). However, the distance between K48 and G76 

of the second and third Ub moieties (~11 Å) is too far-apart for an isopeptide bond to form. 

Therefore, this conformation is less likely to exist in nature. In summary, we here report a 

novel structure of open cyclic K48-linked tetraUb chains when in complex with two 

MINDY-1 MIU2 motifs. 

Mechanism of K48-linked triUb recognition by MIU2 

The four Ub moieties of the cyclic K48-tetraUb chain are wrapped around the two MIU2 

helices (Fig 4B). In such an arrangement, a single MIU2 interacts simultaneously with three 

Ub moieties using three different binding-sites on the MIU2 helix (Fig 5A-B and Fig EV3A). 

Only K48-linked polyUb chains can adopt this conformation, as K48 is the only lysine 

residue within close proximity to the C terminus of the distal Ub (Fig EV3B). This structure 

of MIU2 with K48-linked triUb explains the preference of MINDY-1 to bind to longer 

polyUb chains (Fig 2). 

The first binding interface (Site 1) is formed through hydrophobic interactions and hydrogen 

bonds between MIU2 and the middle Ub (Fig 5C and Fig EV3C). This mode of binding is 

similar to the one reported for Rabex-5 MIU and monoUb [15,16]. The conserved A416 of 

MIU2 is buried deep within the I44 patch of the middle Ub. As with other MIUs and UIMs, 

mutation of A416 completely abolishes polyUb binding (Fig 5F and Fig EV4C). L413, L415 

and L419 that surround A416 also contribute in binding to I44 patch. The hydrogen bonds are 

formed between the side chains of D412 and Q420 and the main chains of Ub A46, G47 and 

L71. In addition to this, the side chains of MIU2 Q420 and Ub R42 and R72 also interact. 

Indeed, mutating residues D412, Q420 or E423 on MIU2 significantly reduces the tMIU 

binding to K48-tetraUb, highlighting the importance of these Site 1 interactions (Fig 5G). 

Collectively, these networks of hydrophobic interactions and hydrogen bonds suggest a tight 

binding of the middle Ub to MIU2. 

The second binding interface (Site 2) is formed between MIU2 and the proximal Ub, which 

occupies a smaller buried surface area of ~240 Å2 in comparison to Site 1 (~500 Å2) and Site 

3 (~480 Å2) (Fig 5A). The proximal Ub is bound by MIU2 in an unusual way, where a bulky 
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hydrophobic residue on Site 2, Y424, mediates key interactions – the hydrophobic aromatic 

ring of Y424 interacts with the I44 patch of the proximal Ub, and the hydroxyl group of 

Y424 interacts with the main chain amide group of A46 and G47 (Fig 5D). These 

interactions are analogous to MIU2 A416 and D412 on Site 1, respectively (Fig 5C). 

Mutating Y424 to Ala or acidic residues, but not Phe or Trp, abolishes tMIU binding to K48-

tetraUb, confirming the crucial role of the hydrophobic aromatic ring for Ub binding (Fig 

5H). Y424 also interacts with L73 of the middle Ub and therefore highlights the key role of 

Y424 in stabilizing MIU2 interaction with polyUb. In other MIU motifs, the position 

corresponding to Y424 is commonly occupied by acidic residues and therefore, the mode of 

binding by Y424 is a unique feature of MINDY-1 MIU2 (Fig 5B). 

The third binding interface (Site 3) is formed between MIU2 and the distal Ub, which was 

determined from crystal contacts with the symmetry-related molecule (Fig 4A-B). MIU2 

L408, T411, L415 and L419 interact with the hydrophobic patch on the distal Ub formed by 

I36, P37, L71 and L73 (Fig 5E). In addition, the side chains of MIU2 T411, Q418 and Q421 

form hydrogen bonds with the main chains of Ub I36, L71 and L8, respectively. Further 

interactions between the side chains of MIU2 E422 and Ub R72 reinforce the binding. To 

determine the contribution of Site 3 to polyUb binding, we individually mutated residues 

forming Site 3. With the exception of L415 and L419, mutation of L408, T411, Q418, Q421 

or E422 did not disrupt polyUb binding of the tMIU (Fig 5F-G and Fig 5B). L415 and L419 

also bind to the middle Ub (Site 1) and therefore, the loss of binding observed upon mutating 

these residues could be a result of simultaneously disrupting Site 1 interaction with the 

middle Ub. 

We postulate that additional interactions mediated by MIU1 with the distal Ub may 

compensate for the mutations on Site 3 (Fig 5J). To test this hypothesis, we mutated residues 

on Site 3 in MIU2 and found that in the absence of MIU1, mutating L415, Q418 and L419 

abolishes binding to polyUb (Fig 5I). This suggests that the residual binding of L415, Q418 

and L419 mutants observed in tMIU was due to MIU1 binding to Ub. In addition to 

highlighting the contribution of Site 3 of MIU2 to Ub binding, these observations suggest that 

MIU2 binding to the distal Ub is enhanced by MIU1 through mechanisms yet to be 

elucidated (Fig 5J). 

MIU2 A416 and Y424 bind the middle Ub and proximal Ub, respectively, in an orientation 

that can only be accommodated by K48-linked diUb, which explains the linkage selectivity 
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of MIU2 (Fig EV4A and Fig EV3B). This mode of binding is analogous to Rap80 tUIM, 

where the linker connecting the two UIMs of Rap80 stretches and positions the interacting 

surfaces of the two UIMs in an orientation that only K63-linked diUb can accommodate (Fig 

EV4B) [18,19]. Altering the distance between the key alanine residues of the two UIMs 

abrogates Rap80 tUIM binding to K63 chains [19]. To test if MINDY-1 MIU2 also employs 

the same mode of binding, we altered the distance between the two binding sites within 

MIU2 by deleting E423 or introducing Ala residues in-between A416 and Y424 (Fig EV4D). 

Indeed, altering the distance between these two key residues completely disrupts tMIU 

binding to polyUb chains (Fig EV4D-F). These results highlight the importance of the spatial 

arrangements between two Ub-binding sites within MINDY-1 MIU2 to bind and orient Ub 

moieties within K48-linked polyUb chains. 

Individual UIM motifs in Hrs and AIRAPL have been reported to contain multiple Ub-

binding sites [20,42]. Hrs UIM has two hydrophobic strips on either side of its helix, which 

each binds to the I44 patch of independent Ub molecule [42]. The two Ub molecules bound 

to Hrs are not linked by any isopeptide bond and therefore, the double-sided Ub-binding on 

Hrs UIM does not provide linkage specificity but a higher efficiency in binding to multiple 

monoubiquitylated cargoes in the endocytic pathway [42]. On the other hand, the tUIM of 

AIRAPL recognizes K48-linked triUb where the two Ub-binding sites on UIM2 bind to two 

moieties of Ub simultaneously, whereas UIM1 binds to the proximal Ub [20]. Even though 

AIRAPL UIM2 was described as the K48 linkage determinant for the tUIM, in the absence of 

UIM1, UIM2 failed to bind K48-triUb. In contrast, MINDY-1 MIU2 uses distinct 

mechanisms in which the three Ub-binding sites simultaneously bind to all three Ub moieties 

(Fig 5J). 

K48-linked polyUb chains are flexible and adopt different conformations as both open and 

closed chains have been reported for unbound chains [9]. However, all structures of K48-

linked diUb chains in complex with their binding partners are found in open conformations 

where at least one of the two I44 patches is occupied [20,43-47]. The two K48-diUb chains 

bound to MINDY-1 MIU2 are also in open conformations and suggest a preference for UBDs 

to bind to K48 chains in more extended conformations (Figure EV2C). In contrast, K63-

linked polyUb chains in complex with their binding partners have been observed in both open 

and closed chain conformations [48]. It is intriguing that none of the UBDs analyzed to date 

recognize and bind to the closed conformation of K48 chains. 
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It is interesting that MINDY-1 tMIU, in addition to sensing polyUb chain linkage type can 

also select for chain length (Fig 2). In our recent study we demonstrated that tMIU is required 

for MINDY-1 DUB activity in hydrolyzing long K48-linked polyUb chains [22]. In the 

present study we observe that MINDY-1 MIU2 binds to K48-polyUb chains in open 

conformations (Fig 5A). We hypothesize that the tMIU helps MINDY-1 to bind to the 

regions where long K48 chains are in open conformations, and therefore facilitates the DUB 

to bind to its substrate (Fig EV4G).  

Our study also reveals that despite its sequence similarity with MINDY-1 tMIU, 

FAM63B/MINDY-2 tMIU is completely non-specific for any particular linkage type (Fig 

1C). Interestingly, full length MINDY-2 selectively hydrolyzes only K48 chains [22]. These 

observations suggest that the tMIU of MINDY-2 may enable the enzyme to process mixed 

and branched Ub types. Future work will elucidate how the UBD and the catalytic domain of 

MINDY-1 and MINDY-2 work together in a cellular context. 

Materials and Methods 

cDNA clones and antibodies 

All cDNA clones were generated by the DNA cloning team,	 Medical Research Council 

Protein Phosphorylation and Ubiquitylation Unit (MRC PPU) Reagents and Services, 

University of Dundee, United Kingdom (Appendix Table S2). Anti-Ub was purchased from 

DAKO (Z0458). 

Halo-UBD expression and purification 

UBDs were cloned as fusion proteins with an N-terminal GST tag or a tandem GST-Halo tag 

(Appendix Table S2). Recombinant proteins were expressed in E. coli strain BL21 grown in 

2xTY media containing 100 µg/ml ampicillin. Cells were induced with 300 µM isopropyl b-

D-1-thiogalactopyranoside (IPTG) at an OD600 of 0.6-0.8 and grown for 16 h at 16 °C. Cells 

were pelleted and resuspended in 50 mM Tris pH 7.5, 300 mM NaCl, 10% glycerol, 0.075% 

2-mercaptoethanol, 1 mM benzamidine, 1 mM AEBSF and protease inhibitor cocktail 

(Roche). Cell lysis was carried out by sonication. After being clarified through centrifugation, 

bacterial lysate was incubated with Glutathione Sepharose 4B resin (GE Healthcare) for 2 h 

at 4 °C. The resin bound proteins were washed extensively with high salt buffer (25 mM Tris 

pH 7.5, 500 mM NaCl, and 1 mM DTT) and low salt buffer (25 mM Tris pH 7.5, 150 mM 

NaCl, 10% glycerol, and 1 mM DTT). Halo-tag UBD was eluted by cleaving off the GST tag 
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using C3 protease. The purified proteins were concentrated, flash frozen in liquid nitrogen 

and stored at -80 °C. 

Assembly and purification of polyubiquitin chains of defined lengths 

PolyUb chains were assembled enzymatically in reactions containing 1500 µM Ub (Sigma 

Aldrich), 50 mM Tris pH 7.5, 10 mM MgCl2, 0.6 mM DTT and 10 mM ATP, incubated at 30 

°C for the indicated period of time. M1 chains were assembled for 2 h in the presence of 1 

µM UBE1, 10 µM UBE2L3 and 10 µM HOIP [24]. K6 chains were assembled for 3 h in the 

presence of 0.5 µM UBE1, 9.5 µM UBE2L3, 12.40 µM NleL (170-782) and 5 µM OTUB1 

[25]. K11 chains were assembled for 6 h in the presence of 1 µM UBE1, 40 µM UBE2S-UBP 

and 2 µM AMSH [26]. Fresh DUB was added and the reaction was incubated for another 16 

h. K29 chains were assembled for 6 h in the presence of 0.64 µM UBE1, 9.5 µM UBE2D3 

and 3 µM UBE3C [27]. K33 chains were assembled for 6 h in the presence of 0.5 µM UBE1, 

9 µM UBE2D1 and 6.3 µM AREL1 [28]. In the K29 and K33 chains assembly, DUBs (2 µM 

vOTU for K29, and 5 µM OTUB1 + 20 µM Cezanne E287K/E288K for K33) were added 

after the 6 h incubation and the reaction was incubated for another 16 h. K48 chains were 

assembled for 6 h in the presence of 1 µM UBE1 and 25 µM UBE2R1 [49]. K63 chains were 

assembled for 3 h in the presence of 1 µM UBE1, 10 µM UBE2N and 20 µM UBE2V1 [49]. 

At the end of the assembly reaction, enzymes used in the reaction were precipitated by the 

addition of a total volume of 50 ml of 50 mM sodium acetate pH 4.5. After at least 3 h 

incubation at 4 °C, the solution was filtered (0.22-µm). DiUb, triUb, tetraUb, and pentaUb 

were purified by cation exchange using a ResourceS 6 ml column (GE Healthcare), 

equilibrated in 50 mM sodium acetate pH 4.5, and eluted in a gradient with elution buffer (50 

mM sodium acetate pH 4.5 and 1 M NaCl). Peak fractions containing di-, tri-, tetra- and 

pentaUb chains were concentrated and buffer exchanged to 20 mM Tris pH 7.5. 

UBD linkage selectivity profiling assays 

Halo-tagged UBDs (10.5 nmol) was incubated with 100 µl of the HaloLink resin (Promega) 

in 500 µl of the coupling buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.05% NP-40 substitute 

and 1 mM DTT) for 2 h at 4 °C. The UBD linkage selectivity analysis was carried out by 

incubating 10 µl of the coupled Halo-UBD with 29 pmol of tetraUb of the indicated linkages 

in 500 µl of pull down buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% NP-40, 1 mM DTT, 

0.5 mg/ml BSA) for 2 h at 4 °C. The resin was washed two times with the wash buffer (50 

mM Tris pH 7.5, 250 mM NaCl, 0.2% NP-40, 1 mM DTT) and once with the coupling 
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buffer. Captured tetraUb chains were eluted by adding LDS buffer, separated on 4-12% SDS-

PAGE gel (Life Technology), and visualized by silver staining using Pierce Silver stain kit 

(ThermoFischer). 

Isothermal titration calorimetry (ITC) 

ITC measurements were performed on a MicroCal PEAQ-ITC (Malvern) at 25 °C with a 

setting of 20 ´ 2 µl injections. All proteins were dialyzed into 50 mM Hepes pH 7.5, 150 mM 

NaCl and 250 µM TCEP. For all measurements, the syringe contained UBD at a 

concentration of 300 µM, and the cell contained polyUb chains at a concentration of 30 µM.  

Crystallization and structure determination of MINDY-1 tMIU:K48-diUb 

Purified MINDY-1 tMIU (untagged) and K48-linked diUb were mixed in 1:1 ratio at 400 

nmol each. After an 16 h incubation, the protein complex was concentrated to 16.3 mg/ml. 

Crystals were grown using vapor diffusion technique in mother liquor containing 100 mM 

sodium acetate pH 5.4 and 18.5 % PEG3350. Crystals were cryo-protected in mother liquor 

containing 30% PEG400 before vitrification in liquid nitrogen. Diffraction data was collected 

at ID30A of the European Synchrotron Radiation Facility (Grenoble, France). Data was 

processed and scaled using XDS [50] and merged using AIMLESS [51]. The structure was 

solved by molecular replacement using Ub (1UBQ [52]) as a search model in Phaser [53]. 

Iterative rounds of refinements were done using REFMAC5 [54] with model building in 

COOT [55]. The structure was finally re-refined using PDB_REDO [56]. The final data 

collection and refinement statistics are shown in Table 1.  

The structure was analyzed with PIC and PISA [57,58]. Figures were made with the PyMOL 

Molecular Graphics System, Schrödinger, LLC (https://www.pymol.org/). 

Accession code 

Coordinates for MINDY-1 tMIU:K48-diUb complex have been deposited at the Protein Data 

Bank under accession codes 5MN9. 
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Figure Legends 

Figure 1. Linkage selectivity in tandem MIU repeats of MINDY-1 

(A) Sequence alignment of MINDY-1/FAM63A and MINDY-2/FAM63B tMIUs from 

different species. MIU1, MIU2 and the tMIU linker are indicated. The conserved motif of 

MIU is shown: ɸ, large hydrophobic; #, acidic; x, any residues. Hs, Homo sapiens; Pa, Pongo 

Abelii; Bt, Bos taurus; Mm, Mus musculus; Rn, Rattus norvegicus. Protein sequences were 

retrieved from Uniprot database, aligned using the ClustalO program and edited with the 

Jalview software [59]. 

(B) Schematic representation of MINDY-1 and MINDY-2 domains. The MIU motifs of 

MINDY-1 and MINDY-2 are colored red and blue, respectively. 

(C) PolyUb linkage selectivity profiling for MINDY-1 and MINDY-2 tMIU. TetraUb chains 

of the indicated linkage types (29 pmol) were incubated with 1.05 nmol Halo-tagged tUIM of 

MINDY-1 or MINDY-2 immobilized on HaloLink resin for 2 h at 4 °C. The captured 

materials were analyzed on silver-stained 4-12% SDS-PAGE gel.  

Figure 2. MIU2 is sufficient for binding to K48 chains 

(A) K48-linked tetraUb chains were captured by Halo-tagged tMIU wild-type or mutants of 

MINDY-1 as in Fig 1C. Red and grey squares indicate wild-type and mutant MIU (Ala-to-

Gly), respectively. 

(B) HEK293 cell lysates (1 mg) were incubated with 1.05 nmol Halo-tagged tMIU wild-type 

or mutants. The captured Ub was visualized by anti-Ub immunoblotting. 

(C) MonoUb and K48-linked polyUb chains of different lengths (29 pmol each) were 

incubated with 1.05 nmol of Halo-tagged tMIU. The captured materials were visualized as in 

Fig 1C. Asterisks indicate non-specific bands from Halo-UBD, which exhibit a similar 

electrophoretic mobility as tri- and pentaUb. 

(D-F) ITC measurements for MINDY-1 tMIU binding to K48-linked diUb (D), triUb (E), and 

tetraUb (F). Kd value of each measurement is indicated. 

(G-H) ITC measurements for MINDY-1 MIU1 (G) and MIU2 (H) binding to K48-linked 

triUb. Kd value of each measurement is indicated. 

(I) PolyUb linkage selectivity assay of MINDY-1 MIU2 was carried out as in Fig 1C. 

Asterisk indicates non-specific bands from Halo-UBD. 
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Figure 3. Synergy between MIU1 and MIU2 in polyUb binding 

(A) M1-, K48- and K63-tetraUb chains were mixed in equal amount of 29 pmol each and 

incubated with 1.05 nM Halo-MINDY-1 tMIU with wild-type or mutant linkers. The 

captured materials were analyzed as in Fig 1C. Asterisks indicate non-specific bands from 

Halo-UBD, which run at the similar electrophoretic mobility as K63-tetraUb. 

(B) K48- or K63-linked tetraUb chains were captured by Halo-tagged tMIU wild-type or 

mutants of MINDY-2 as in Fig 2A. Blue and grey squares indicate wild-type and mutant 

MIU (Ala-to-Gly), respectively. Asterisks indicate non-specific bands from Halo-UBD. 

(C) PolyUb linkage selectivity assay of MINDY-2 MIU1 was carried out as in Fig 1C. 

Asterisks indicate non-specific bands from Halo-UBD. 

(D) PolyUb linkage selectivity assays of hybrid tMIUs were carried out as in Fig 1C. The 

first MIU motif of MINDY-1 tMIU was replaced by MINDY-1 MIU2 (top) or MINDY-2 

MIU1 (bottom). Asterisks indicate non-specific bands from Halo-UBD, which have a similar 

electrophoretic mobility as M1- and K63-tetraUb chains. 

Figure 4. Crystal structure of K48-diUb in complex with MINDY-1 MIU2  

(A) Structure of MINDY-1 MIU2 and K48-diUb complex within an asymmetric unit (ASU) 

with 2|Fo|-|Fc| (blue) electron density maps for MIU2 contoured at 1σ. Proximal (light cyan) 

and distal (blue) are in cartoon representation and MIU2 (salmon) is in sticks. 

(B) Open cyclic K48-linked tetraUb chains. Ub moiety #1 (light cyan), #2 (blue) and MIU2 

moiety #1 (salmon) are from the ASU. Ub moiety #3 (teal), #4 (green) and MIU2 moiety #2 

(salmon) are from the symmetry-related molecules. K48 and the C-terminal tail of Ub 

moieties are indicated. 

(C) Comparison of different K48-linked tetraUb conformations. Schematic diagram 

illustrates the coloring and numbering of Ub moieties, which are the same as for Fig 4B. K48 

and C-terminal tail are shown in red-sticks and spheres, respectively. For simplicity, only I44 

is shown in blue spheres to represent the hydrophobic I44 patch (L8, I44, H68 and V70). 

PDB ID: 1TBE [8] and 1F9J [39]. 

Figure 5. Mechanism of polyUb chain recognition by MIU2 

(A) Structure of MIU2 in complex with K48-linked triUb is shown in cartoon. K48-triUb 

proximal (light cyan) and middle (blue) Ub are from asymmetric unit, while the distal Ub 

(teal) is from symmetry related molecule (Fig 4B). K48 and the C-terminal tail of Ub are 
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indicated. 

(B) Sequence alignment of MIU motifs from various proteins. All sequences are from H. 

sapiens, except for YPL191C and YGL082W, which are from S. cerevisiae. Residues of 

MINDY-1 MIU2 that form the three Ub-binding sites are indicated. The conserved motif of 

MIU is shown: ɸ, large hydrophobic; #, acidic; x, any residues. 

(C-E) Close-up views of interactions between MINDY-1 MIU2 and the middle Ub (Site 1), 

proximal Ub (Site 2), distal Ub (Site 3). Hydrophobic interactions and hydrogen bonds are 

shown on the top and bottom panels, respectively. Residues at the interface are shown in 

sticks and colored as in Fig 5A. Dotted lines indicate hydrogen bonds. 

(F-G) Residues of MIU2 involved in hydrophobic interactions (F) and hydrogen bonds (G) 

were mutated and the effect on tMIU binding to K48-tetraUb was investigated as in Fig 2A. 

(H) Role of Y424 in tMIU binding to K48-tetraUb was investigated by mutating MIU2 Y424 

to the indicated residues and pulldown assays were performed as in Fig 2A.  

(I) Residues of MIU2 forming Site 3 binding site were mutated and the effect on MIU2 

binding to K48-tetraUb was investigated as in Fig 2A. 

(J) A model of how MINDY-1 tMIU achieves its K48-linkage selectivity. Three Ub-binding 

sites on MIU2 engage the I44 patches of the middle and proximal Ub, and the I36 patch of 

the distal Ub.  

Figure EV1. tMIU and tUIM from various proteins display different linkage preference 

for polyUb chains 

(A) Linkage selectivity profile of tUIMs from Rap80, Epsin-15 and S5a, and tandem RUZ-

MIU from Rabex-5. The assays were performed as in Fig 1C. 

(B) Sequence alignments of the C-terminal UBD region of FAM63A/MINDY-1 from the 

indicated species.  

(C) Sequence alignments of the C-terminal UBD region FAM63B/MINDY-2 from the 

indicated species. Sequence boundaries of MINDY-1 and MINDY-2 MIU motifs used in this 

studies are shown. The conserved motif of MIU is shown: ɸ, large hydrophobic; #, acidic; x, 

any residues. 

Figure EV2. Crystal structure of K48-diUb in complex with MINDY-1 MIU2 

(A) The cyclic open K48-linked tetraUb forms a doughnut-like shape with two grooves at 

center where two MIU2 helices bind. Four Ub moieties in Fig 4B are shown in white surface 
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representation. The structure is rotated on the y-axis to show three different orientations. I44 

patch (L8, I44, H68 and V70) is colored blue.  

(B) A non-cyclic open conformation of K48-lined tetraUb can also be modeled from 

symmetry-related molecules of the structure of K48-diUb in complex with MINDY-1 MIU2. 

Structures are presented as in Fig 4B. Ub moieties within the asymmetric unit are indicated 

with dotted boxes. Red dotted line indicates the distance between Ub #2 K48 and Ub #3 G76. 

(C) The two K48-diUb chains bound to MIU2 are in open conformations. Unbound K48-

diUb (PDB ID: 1AAR [7]) is colored grey and white for distal and proximal Ub, respectively. 

Two K48-linked diUb chains in cartoon are shown in complex with MIU2 in ribbon and 

colored as in Fig 5A. Il44 is shown as blue spheres. K48 and C-terminal tail are shown in 

red-sticks and spheres, respectively. 

Figure EV3. Structure of MIU2 in complex with K48-triUb 

(A) Crystal structure of MIU2 in complex with K48-triUb is shown in two orientations, 

rotated on the y-axis. Ub moieties are shown in white surface. The two hydrophobic patches 

of Ub: I44 patch (L8, I44, H68 and V70) and I36 (I36, L71 and L73) are colored blue and 

green, respectively. 

(B) Crystal structure of MIU2:K48-triUb complex is represented in ribbon. Lysine residues 

of the Ub moieties are shown in sticks and spheres. The distances between C-terminal tail of 

the middle Ub and the K48 or K6 of the proximal Ub are shown. 

(C-E) Surface representations of the three binding sites between MIU2 and K48-linked triUb. 

Residues involved in hydrophobic interactions and hydrogen bonds are colored red and 

orange, respectively. Yellow surface indicates portion of the residues at the binding interface 

that are not directly involved in hydrophobic interactions or hydrogen bonding. 

Figure EV4. Role of the distance between Ub-binding sites in MIU2 in driving 

selectivity 

(A-B) K48-diUb (orange) (A) and K63-diUb (green) (B) in complex with MINDY-1 MIU2 

and Rap80 tUIM, respectively are shown in cartoon. The distal moieties of the two diUb 

chains were superposed. The N- and C-terminal ends of MIU2 and tUIM are indicated. The 

key residues of MIU/UIM that engage with I44 (blue spheres) are shown in sticks. The linker 

of Rap80 tUIM is colored red. PDB ID: 3A1Q [19]. 

(C) MIU2 A416 was mutated to Gly, Ser and Asp, and the effect on tMIU binding to K48-

tetraUb was investigated as in Fig 2A. 
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(D-E) The distance between two Ub-binding sites on MIU2 was altered by deleting E423 or 

inserting Ala residues N terminus to Y424 (D). The effect of mutations on MINDY-1 tMIU 

binding to K48-tetraUb was investigated as in Fig 2A (E). 

(F) As in Fig EV4E, but the effect of the mutations on MINDY-1 tMIU binding to tetraUb of 

seven linkage types were investigated. Asterisks indicate non-specific bands from Halo-

UBD, which has a similar electrophoretic mobility as K63-tetraUb. 

(G) A model of how tMIU contributes to the efficiency of long K48-linked polyUb chains 

hydrolysis by MINDY-1 DUB. The hydrophobic I44 patches are colored in blue and 

illustrate the open and closed conformations of the polyUb chains. 
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Appendix Table S1: Data collection and refinement statistics 

 MINDY-1 tMIU:K48-diUb 
Wavelength (Å) 0.96769 

Beamline ID30A 
Resolution range (Å) 48.87-2.05 (2.05-2.11) 

Space group I41 

Unit cell dimensions 
55.14 55.14 105.51 
90.00 90.00 90.00 

Total reflections 65512 (5060) 
Unique reflections 9899 (765) 

Multiplicity 6.6 (6.6) 
Completeness (%) 100 (100) 

I/sI 19.4 (2.9) 
R-merge 0.043 (0.544) 

CC1/2 0.999 (0.818) 
Rwork 0.1826 
Rfree 0.2234 

Average B-factor 37.0 
macromolecules 1335 

water 3 
RMS (bonds) 0.010 
RMS (angles) 1.441 

Ramachandran favored (%) 100 
Ramachandran allowed (%) 0 
Ramachandran outliers (%) 0 
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Appendix Table S2: cDNA construct used in the study 

All constructs were made in pGEX6P backbone. All proteins are Halo-tagged, except those 

indicated with asterisks, which are untagged. Sequences were retrieved from Uniprot with 

accession codes of Q8N5J2-1 (MINDY-1/FAM63A), Q8NBR6-1 (MINDY-2/FAM63B), 

Q96RL1-1 (Rap80), P42566-1 (Epsin-15), P55036-1 (S5a) and Q9UJ41-2 (Rabex-5). 

 

Protein DU number Construct Boundaries 
MINDY-1 tMIU 47443 388-426 

MINDY-1 tMIU A416G 47712 388-426 
MINDY-1 tMIU A396G 47985 388-426 

MINDY-1 MIU1 55039 388-403 
MINDY-1 MIU2 47422 406-426 

MINDY-1 MIU2 A416G 47512 406-426 
      

MINDY-1 tMIU (linker 
QSQEINWEQIPE) 48000 388-403 + linker + 409-426 

MINDY-1 tMIU (linker SGSGS) 55001 388-403 + linker + 409-426 
MINDY-1 tMIU (linker ARGAL) 55020 388-403 + linker + 409-426 
MINDY-1 tMIU (linker AAAAA) 55044 388-403 + linker + 409-426 

      
MINDY-1 tMIU L408A 55225 388-426 
MINDY-1 tMIU T411A 55241 388-426 
MINDY-1 tMIU D412A 55259 388-426 
MINDY-1 tMIU L413A 47703 388-426 
MINDY-1 tMIU E414A 55226 388-426 
MINDY-1 tMIU L415A 47711 388-426 
MINDY-1 tMIU A416G 47712 388-426 
MINDY-1 tMIU A416S 47762 388-426 
MINDY-1 tMIU A416D 55396 388-426 
MINDY-1 tMIU Q418A 55227 388-426 
MINDY-1 tMIU Q418K 55358 388-426 
MINDY-1 tMIU L419A 47708 388-426 
MINDY-1 tMIU Q420A 55242 388-426 
MINDY-1 tMIU Q421E 47827 388-426 
MINDY-1 tMIU Q421R 47828 388-426 
MINDY-1 tMIU E422A 55395 388-426 
MINDY-1 tMIU E423A 55243 388-426 
MINDY-1 tMIU Y424A 47721 388-426 
MINDY-1 tMIU Y424D 47767 388-426 
MINDY-1 tMIU Y424E 47759 388-426 
MINDY-1 tMIU Y424F 47760 388-426 
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MINDY-1 tMIU Y424W 47768 388-426 
      

MINDY-1 MIU2 L408A 55463 406-426 
MINDY-1 MIU2 T411A 28668 406-426 
MINDY-1 MIU2 L415G 47513 406-426 
MINDY-1 MIU2 Q418A 55428 406-426 
MINDY-1 MIU2 Q421A 55429 406-426 
MINDY-1 MIU2 E422A 55430 406-426 
MINDY-1 MIU2 L419A 47583 406-426 

      
MINDY-1 tMIU* 49555 388-426 
MINDY-1 MIU1* 47865 386-406 
MINDY-1 MIU2* 47848 406-426 

      
MINDY-1 tMIU (-1) 55221 388-426 (Δ423) 
MINDY-1 tMIU (+1) 55295 388-426 (1xA in between 423&424 ) 
MINDY-1 tMIU (+3) 55222 388-426 (2xA in between 423&424 ) 
MINDY-1 tMIU (+6) 55223 388-426 (6xA in between 423&424 ) 
MINDY-1 tMIU (+7) 55224 388-426 (7xA in between 423&424 ) 

      
MINDY-2 tMIU 47515 507-559 

MINDY-2 tMIU A546G 47758 507-559 
MINDY-2 tMIU A519G 55074 507-559 

MINDY-2 MIU1 55019 507-526 
MINDY-2 MIU2 47542 535-559 

      
MINDY-1 MIU2 + MINDY-1 

MIU2 (linker PRGPL) 55043 409-426 + linker + 409-426 

MINDY-2 MIU1 + MINDY-1 
MIU2 (linker PRGPL) 55040 507-526 + linker + 409-427 

      
Rap80 tUIM 55032 78-125 

Epsin-15 tUIM 49822 851-895 
S5a tUIM 49625 196-309 

Rabex-5 tUIM 55021 13-73 
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