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1 Introduction

It had long been suspected that varieties X over a number field k without k-points but with
a non-empty Brauer–Manin set X (Ak)

Br are fairly common. The first examples were found
in [27] and then in [2]. An earlier, conditional example is given in [21]. One should also
expect that there are many varieties X without k-points for which the étale Brauer–Manin
set X (Ak)

ét,Br ⊂ X (Ak)
Br is non-empty (we refer to [19] or [29] for the definition of these

subsets of the space X (Ak) of adèles of X ). Different methods to construct such varieties have
been found recently. In [19] Poonen constructs a threefold X with a surjective morphism to
a curve C that has exactly one k-point P and the fibre XP has points everywhere locally but
not globally. In Poonen’s example XP is a smooth Châtelet surface. The trick with a curve
with just one rational point was also used in [11] where the fibres of X → C are curves of
high genus and XP is a singular curve which geometrically is a union of projective lines. In
retrospect one could note that the examples in [27] and [2] are families of genus 1 curves
parameterised by elliptic curves of Mordell–Weil rank 0.

In this paper we propose more flexible methods to construct such examples. We show that
the varieties X such that X (k) = ∅ and X (Ak)

ét,Br �= ∅ include the following:
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800 J.-L. Colliot-Thélène et al.

a conic bundle surface X → E over a real quadratic field k, where E is an elliptic curve
such that E(k) = {0}, see Sect. 5.2;
a threefold over an arbitrary real number field k ⊂ R, which is a family X → C of
2-dimensional quadrics parameterised by a curve C with exactly one k-point (one can
choose C to be an elliptic curve), see Sect. 3.1;
a threefold over an arbitrary number field k, which is a family X → C of geometrically
rational surfaces parameterised by a curve C with exactly one k-point, the fibre above
which is singular, see Sect. 3.2.

In the first and second examples, in contrast to those previously known, the smooth fibres
satisfy the Hasse principle and weak approximation. To put this into a historical perspective
let us note that soon after Manin [17] introduced the obstruction now bearing his name,
Iskovskikh [13] constructed a counterexample to the Hasse principle on a conic bundle over
the projective line overQ. His intentionwas, as he pointed out to one of us, to give a counterex-
ample to the Hasse principle that could not be explained by the Brauer–Manin obstruction. It
is well known nowadays that Iskovskikh’s counterexample can be explained by the Brauer–
Manin obstruction, and conjecturally the same should be true for all counterexamples to the
Hasse principle on geometrically rational surfaces, see [4,5].

The examples we construct in this paper show that this is no longer the case for conic or
quadric bundles over curves of genus at least 1.

In a nutshell, the idea is this. Let k be a number field. Following Poonen we use a base
variety B such that B(k) = {P}. By a continuous deformation of the adèle attached to P at
an archimedean component we see that B(k) is not dense in B(Ak)

Br. Density may also fail
due to places of k that need not be archimedean. Suppose B contains an irreducible singular
conic S so that P = Ssing. If a place v of k splits in the quadratic extension given by the
discriminant of the binary quadratic form that defines S, then B ×k kv contains two copies
of P1kv

meeting at P . Since Br(P1kv
) = Br(kv), we can modify the adèle of P at v while

staying inside B(Ak)
Br. However, the k-point P cannot be moved in B, so B(k) is not dense

in B(Ak)
Br.

Next, one constructs a surjective morphism X → B for which the fibre XP has local
points in all but one or two completions of k, and ensures that X has kv-points for missing
places v such the resulting adelic point of X projects to B(Ak)

Br. Now, if the natural map
Br(B) → Br(X) is surjectivewe have found an adelic point in X (Ak)

Br. But sinceX (k)⊂ XP

wehave X (k) = ∅.Withmorework one can find examples such that X (Ak)
ét,Br is non-empty,

too.
In this paper we have nothing to say about the important open question whether the

implication

X (Ak)
ét,Br �= ∅ ⇒ X (k) �= ∅

holds if X is a surface with finite geometric fundamental group, e.g. a K3 surface or an
Enriques surface.

The paper is organised as follows. After some preparations in Sect. 2 we realise the
aforementioned programme for threefolds in Sect. 3. Making it work for surfaces requires
rather more effort. For this purpose in Sect. 4 we establish some Bashmakov-style properties
of elliptic curves with a large Galois image on torsion points. These properties are used in
the proof of our main result in the case of surfaces in Sect. 5. Some general observations on
the Brauer–Manin set are collected in Sect. 6.

The authors are grateful to Nathan Jones and Chris Wuthrich for their helpful advice on
Serre curves. We used sage [30] in our calculations with elliptic curves. This work started
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Pathologies of the Brauer–Manin obstruction 801

in April 2013 when the authors were guests of the Hausdorff Institut für Mathematik (Bonn)
during the special programme “Arithmetic and geometry”.

2 Brauer groups and torsors on quadric bundles

For the convenience of the reader we recall the following well known lemma.

Lemma 2.1 Let k be afield of characteristic zero. Let X be a smooth projective quadric over k
of dimension at least 1. Then the natural map Br(k) → Br(X) is surjective. If dim(X) ≥ 3,
then this map is an isomorphism.

Proof Let k̄ be an algebraic closure of k, and let �k = Gal(k̄/k). For any smooth, projective
and geometrically integral variety X over k there is a well known exact sequence

0 → Pic (X) → Pic
(
X

)�k → Br (k) → Ker
[
Br (X) → Br

(
X

)] → H1 (
k,Pic

(
X

))
,

where X = X ×k k̄. If X is a quadric of dimension at least 1, then Pic(X) is a permutation
�k-module and Br(X) = 0 (since X is rational and the Brauer group is a birational invariant
of smooth projective varieties). By Shapiro’s lemma we have H1(k,Pic(X)) = 0, so the
exact sequence implies the surjectivity of the map Br(k) → Br(X). When dim(X) ≥ 3,
the map Pic(X) → Pic(X) is an isomorphism, because both groups are generated by the
hyperplane section class, so in this case Br(k) → Br(X) is an isomorphism. �	

In this paper a quadric bundle is a surjective flat morphism f : X → B of smooth,
projective, geometrically integral varieties over a field k, the generic fibre of which is a
smooth quadric of dimension at least 1, and all geometric fibres are reduced.

We denote by k(B) the function field of B, and by Xk(B) the generic fibre of f : X → B.
If dim(Xk(B)) = 1, then f : X → B is called a conic bundle.

The following proposition is essentially well known, at least when B = P
1
k , see [26,

Cor. 3.2], [6, Thm. 2.2.1, Thm. 2.3.1], [3, Prop. 2.1].

Proposition 2.2 Let f : X → B be a quadric bundle over a field k of characteristic zero.
In each of the following cases the map f ∗ : Br(B) → Br(X) is surjective.

(i) dim(Xk(B)) = 1 and there is a point P ∈ B of codimension 1 such that for each point
Q �= P of codimension 1 in B the fibre XQ contains a geometrically integral component
of multiplicity 1;
(ii) dim(Xk(B)) = 2 and for each point Q ∈ B of codimension 1 the fibre XQ contains
a geometrically integral component of multiplicity 1;
(iii) dim(Xk(B)) ≥ 3.

Proof (i) Let γ ∈ Br(k(B)) be the class of the conic Xk(B). Since γ is in the kernel of the
natural map f ∗ : Br(k(B)) → Br(Xk(B)), the assumption of (i) implies that the residue
resQ(γ ) ∈ H1(k(Q),Q/Z) is zero if Q �= P . Take any α ∈ Br(X). By Lemma 2.1 the
map f ∗ : Br(k(B)) → Br(Xk(B)) is surjective, so the image of α in Br(Xk(B)) comes from
some β ∈ Br(k(B)). Again, by the assumption of (i) we have resQ(β) = 0 if Q �= P .
Moreover, resP (β) = 0 or resP (β) = resP (γ ). By the purity theorem for the Brauer group
[10, III, Thm. 6.1, p. 134] we conclude that β ∈ Br(B) or β − γ ∈ Br(B). Since f ∗(β) =
f ∗(β −γ ) = α in Br(Xk(B)), and the natural map Br(X) → Br(Xk(B)) is injective, we have
proved (i).
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802 J.-L. Colliot-Thélène et al.

The proof of (i i) uses Lemma 2.1 and the arguments from the proof of (i).
In case (i i i) it is well known that each fibre of f at a point of B of codimension 1 contains a

geometrically integral component ofmultiplicity 1. Then (i i i) follows from the last statement
of Lemma 2.1. �	
Proposition 2.3 Let f : X → B be a quadric bundle over a field k of characteristic zero.
Then any torsor X ′ → X of a finite k-group scheme G is the inverse image under f of a
torsor B ′ → B of G.

Proof By our definition of quadric bundles, the morphism f is flat and all its geometric fibres
are connected and reduced. The generic geometric fibre of f is simply connected. By [25,
X, Cor. 2.4] this implies that each geometric fibre of such a fibration is simply connected.
The result then follows from [25, IX, Cor. 6.8]. �	

3 Threefolds

3.1 Example based on real deformation

Let k be a number field with a real place. We fix a real place v, so we can think of k as a
subfield of kv = R.

Let C be a smooth, projective, geometrically integral curve over k such that C(k) consists
of just one point,C(k) = {P}. By [20] such a curve exists for any number field k, and by [18,
Thm. 1.1] we can take C to be an elliptic curve over k. Let � ⊂ C(R) be an open interval
containing P . Let f : C → P

1
k be a surjective morphism that is unramified at P . Choose a

coordinate function t on A
1
k = P

1
k\ f (P) such that f is unramified above t = 0. We have

f (P) = ∞. Take any a > 0 in k such that a is an interior point of the interval f (�) and f
is unramified above t = a.

Let w be a finite place of k. There exists a quadratic form Q(x0, x1, x2) of rank 3 that
represents zero in all completions of k other than kv and kw , but not in kv or kw . We can
assume that Q is positive definite over kv = R. Choose n ∈ k with n > 0 in kv and
−nQ(1, 0, 0) ∈ k∗2

w . Let Y1 ⊂ P
3
k × A

1
k be given by Q(x0, x1, x2) + nt (t − a)x23 = 0, and

let Y2 ⊂ P
3
k × A

1
k be given by Q(X0, X1, X2) + n(1 − aT )X2

3 = 0. We glue Y1 and Y2
by identifying T = t−1, X3 = t x3, and Xi = xi for i = 0, 1, 2. This produces a quadric
bundle Y → P

1
k with exactly two degenerate fibres (over t = a and t = 0), each given by

the quadratic form Q(x0, x1, x2) of rank 3. Define X = Y ×
P
1
k
C . This is a quadric bundle

X → C with geometrically integral fibres.
For example, if k = Q, we can take kw = Q2 and consider Y defined by

x20 + x21 + x22 + 7t (t − a)x23 = 0.

Proposition 3.1 In the above notation we have X (Ak)
ét,Br �= ∅ and X (k) = ∅.

Proof Since C(k) = {P} we have X (k) ⊂ XP . The fibre XP is the smooth quadric
Q(x0, x1, x2) + nx23 = 0. This quadratic form is positive definite thus XP has no points in
kv = R and so X (k) = ∅. By assumption XP has local points in all completions of k other than
kv and kw. The condition−nQ(1, 0, 0) ∈ k∗2

w implies that XP contains kw-points, so XP has
local points in all completions of k but one. Choose Nu ∈ XP (ku) for each place u �= v. Con-
sider a small real ε > 0 such that a− ε ∈ f (�) and ε < a. Let M ∈ � be such that f (M) =
a−ε. Then the smooth real fibre XM is given by an indefinite quadratic formand so XM (kv) �=
∅. Choose any Nv ∈ XM (kv). We now have an adelic point (Nu), where we allow u = v.
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Pathologies of the Brauer–Manin obstruction 803

We claim that (Nu) ∈ X (Ak)
ét,Br.

LetG be a finite k-group scheme. Proposition 2.3 implies that any torsor X ′/X ofG comes
from a torsor C ′/C of G, in the sense that X ×C C ′ → X and X ′ → X are isomorphic as
X -torsors with the structure group G. Let σ ∈ Z1(k,G) be a 1-cocycle defining the k-torsor
which is the fibre ofC ′ → C at P . Twisting X ′/X andC ′/C by σ and replacing the group G
by the twisted group Gσ and changing notation, we can assume that C ′ contains a k-point P ′
that maps to P in C . The irreducible component C ′′ of C ′ that contains P ′ is a geometrically
integral curve over k. Let X ′′ ⊂ X ′ denote the inverse image of C ′′ in X ′. The fibres of the
morphism X → C are geometrically integral, hence such are also the fibres of X ′ → C ′ and
X ′′ → C ′′. Thus X ′′ is a geometrically integral variety over k.

There are natural isomorphisms X ′′
P ′ ∼= X ′

P ′ ∼= XP , so we can define N ′
u ∈ X ′′(ku) as the

point that maps to Nu ∈ X (ku) for each u �= v. The map C ′′ → C is finite and étale. The
image of C ′′(R) in C(R) is thus closed and open. The image of the connected component of
P ′ ∈ C ′′(R) is the whole connected component of P ∈ C(R), hence contains�. The inverse
image of the interval � in C ′′(R) is a disjoint union of intervals, one of which contains P ′
and maps bijectively onto �. Let us call this interval �′. Let M ′ be the unique point of �′
over M . Let N ′

v ∈ X ′′
M ′(R) be the point that maps to Nv ∈ XM (R). Thus the adelic point

(N ′
u) ∈ X ′′(Ak) ⊂ X ′(Ak) projects to the adelic point (Nu) ∈ X (Ak).
By the definition of the étale Brauer–Manin obstruction, to prove that (Nu) is contained

in X (Ak)
ét,Br it suffices to show that (N ′

u) is orthogonal to Br(X ′). For this it is enough to
show that (N ′

u) is orthogonal to Br(X ′′). By Proposition 2.2 (i i) applied to X ′′ → C ′′ we
know that the natural map Br(C ′′) → Br(X ′′) is surjective. Thus it is enough to show that
the adèle on C ′′ such that its u-adic component is P ′ when u �= v and and its v-component
is M ′, is orthogonal to Br(C ′′). The real point M ′ is path-connected to P ′, so this adèle is in
the connected component of the diagonal image of the k-point P ′ in C ′′(Ak). But the latter
adèle is certainly in C ′′(Ak)

Br, and the proposition follows. �	
Remark 3.2 (1) Our method gives simple examples of threefolds with points everywhere

locally but not globally and no Brauer–Manin obstruction. An even simpler proof is
available in the case of fibrations into quadrics of dimension at least 3 over a curve.

(2) By a theorem ofWittenberg [32, Thm. 1.3] the variety X has a 0-cycle of degree 1 over k,
that is, there exist field extensions k1, . . . , kr of k whose degrees have no common factor
such that X (ki ) �= ∅ for i = 1, . . . , r . Although [32, Thm. 1.3] requires the finiteness
of the Shafarevich–Tate group of the Jacobian of C , Wittenberg pointed out that in the
proof of his theorem this assumption is only used to ensure the existence of a suitable
0-cycle of degree 1 on C . In our case such a 0-cycle is directly provided by the k-point
P , so the assumption on the Shafarevich–Tate group is not needed. For more details see
Remark 5.7 below.

3.2 Examples based on deformation along a rational curve defined over a
completion of k

Lemma 3.3 Let k be a number field. There exists a smooth, projective, geometrically integral
surface B over k with the following properties:

B contains a curve S isomorphic to an irreducible singular projective conic;
the singular point of S is the unique k-point of B;
there is a surjective morphism π : B → P

1
k with smooth and geometrically integral

generic fibre such that π(S) = P
1
k .
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804 J.-L. Colliot-Thélène et al.

Proof According to [20] there is a smooth, projective and geometrically integral curve C
over k with exactly one k-point, C(k) = {O}. Moreover, by [18, Thm 1.1] there is an elliptic
curve over k with this property. Let f : Z → C be any conic bundle such that the fibre ZO

over O ∈ C(k) is an irreducible singular conic. The singular point of S = ZO is then the
unique k-point of Z .

There is a closed embedding Z ⊂ P
n
k for some n ≥ 1. By the Bertini theorem [12,

II.8.18, III.7.9], there exists a hyperplane H1 ⊂ P
n
k such that Z ∩ H1 is a smooth and

geometrically integral curve. This implies that S is not a subset of H1.
Let d be the degree of Z in P

n
k . We can find a hyperplane H2 ⊂ P

n
k such that Z ∩ H1 ∩ H2

is a set of d distinct k̄-points not in S. It follows that no geometric irreducible component of
S is contained in a hyperplane passing through H1 ∩ H2.

Let P̃nk be the blowing-up of P
n
k at H1 ∩ H2 � P

n−2
k . The projection from H1 ∩ H2 defines

a morphism P̃
n
k → P

1
k . Let B be the Zariski closure of Z\(Z ∩ H1 ∩ H2) in P̃

n
k , so that B

is the blowing-up of Z in d distinct points. Thus B is a smooth, projective, geometrically
integral surface with a unique k-point, equipped with a surjective morphism π : B → P

1
k

with smooth and geometrically integral generic fibre. Moreover, S is contained in B, and
π(S) = P

1
k . �	

Let P be the unique k-point of B, and let Q = π(P) ∈ P
1
k(k). Let K be the quadratic

extension of k over which the components of S are defined. If w is a place of k that splits
in K , then the kw-variety S ×k kw is the union of two projective lines meeting at P . Let
Lw ⊂ B ×k kw be one of these rational curves. Since π(Lw) = P

1
kw
, there is a point

Nw ∈ Lw(kw) such that π(Nw) �= Q.

Proposition 3.4 Let w1 and w2 be places of k that split in K , w1 �= w2. Let Y → P
1
k be a

conic bundle satisfying the following conditions:

there exists a closed point R ∈ P
1
k , R �= Q, such that the restriction Y\YR → P

1
k\R is a

smooth morphism, and the fibre of π : B → P
1
k at R is smooth;

the fibre YQ is a smooth conic that has kv-points for all completions of k except w1 and
w2, in particular YQ(k) = ∅;

Yπ(Nw)(kw) �= ∅ for w = w1, w2.

Then for the smooth threefold X = Y ×
P
1
k
B we have X (Ak)

ét,Br �= ∅ and X (k) = ∅.

Proof Let p : X → B be the natural projection. Since B(k) = {P}, π(P) = Q and
YQ(k) = ∅, we see that X (k) = ∅.

The fibre XP is naturally isomorphic to YQ . For a place v such that v �= w1, v �= w2

choose Mv ∈ XP (kv). For w = w1, w2, choose a kw-point Mw in the kw-fibre XNw (which
is isomorphic to Yπ(Nw)). We claim that (Mv) ∈ X (Ak)

ét,Br.
One easily checks that the projection map X → B is a quadric bundle as defined in this

paper: both X and B are smooth and projective over k, the generic fibre is a geometrically
integral conic, the morphism X → B is flat and all its geometric fibres are reduced. Let G be
a finite k-group scheme. By Proposition 2.3 every torsor X ′ → X of G is the pullback of a
torsor B ′ → B of G. After a twist by a k-torsor of G, as detailed in the proof of Proposition
3.1, we may assume that B ′ has a k-point P ′ over P . Let B ′′ be the irreducible component
of B ′ that contains P ′. Then B ′′ is geometrically integral. Let X ′′ be the inverse image of
B ′′ under the map X ′ → B ′. The k-variety X ′′ is geometrically integral, and X ′′ → B ′′ is a
conic bundle.
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Pathologies of the Brauer–Manin obstruction 805

For all v �= w1, w2 the fibre X ′′
P ′ contains a kv-point M ′

v that maps to Mv in XP . Since
B ′′ → B is finite and étale, forw = w1, w2 the inverse image of Lw in B ′′ contains a rational
kw-curve L ′

w through P ′ that maps isomorphically to Lw. Let N ′
w be the kw-point of L ′

w that
maps to Nw . Then there is a kw-point M ′

w in X ′′
N ′

w
that maps to Mw ∈ XNw (kw). To prove

our claim it is enough to show that the adelic point (M ′
v) in X ′′ is orthogonal to Br(X ′′).

Let x̄ ∈ R be a k̄-point. Since the singular loci of the morphisms Y → P
1
k̄
and π : B → P

1
k̄

are disjoint, the fibre Bx̄ = π−1(x̄) is a smooth integral curve over k̄. The fundamental group
of P1

k̄
is trivial. Therefore, by [25, Chap. X, Cor. 1.4], the map π1(Bx̄ ) → π1(B) is surjective.

Since B
′′
is integral, this implies that B ′′×B Bx̄ is also integral. As a consequence, the inverse

image of R in B ′′ is a geometrically integral k(R)-curve D. Hence D is integral.
Since the restriction of the conic bundle X ′′ → B ′′ to the complement B ′′\D of the integral

curve D is a smoothmorphism, this conic bundle satisfies the condition of Proposition 2.2 (i).
It follows that the induced map Br(B ′′) → Br(X ′′) is surjective. Thus it remains to prove
that the image of (M ′

v) in B ′′ is orthogonal to Br(B ′′).
This image is the adelic point such that for all v �= w1, w2 the kv-component is P ′. For

w = w1, w2 the kw-component is N ′
w. But L

′
w is a projective line over kw containing both

P ′ and N ′
w. The natural map Br(kw) → Br(L ′

w) is an isomorphism. Thus when pairing the
image of (M ′

v) in B ′′ with Br(B ′′) we may replace (M ′
v) by the diagonal adèle (P ′), which

by the reciprocity law is orthogonal to Br(B ′′). �	
Remark 3.5 Consider a surface B with a morphism π : B → P

1
k as in Lemma 3.3. Let

Y → P
1
k be a quadric bundle all fibres of which are of dimension d ≥ 2 and contain a

geometrically integral component of multiplicity one (which is automatic if d ≥ 3). Assume
that the singular loci of B → P

1
k and Y → P

1
k do not intersect. Let X = Y×

P
1
k
B. Suppose that

the fibre YQ , where Q = π(P) ∈ P
1(k), is a smooth quadric such that YQ(kv) �= ∅ for all v �=

w but YQ(kw) = ∅ (such quadrics exist in dimension 2 and higher, but not in dimension 1).
Assume that Lw has a non-empty intersection with the image of X (kw) → B(kw). In view
of Proposition 2.2 (i i), (i i i), an argument similar but shorter than the one above shows that
X (k) = ∅ and X (Ak)

ét,Br �= ∅. In this example dim(X) = 2 + d ≥ 4.

Example 3.6 One can construct a threefold over k = Q as in Proposition 3.4 as follows. Let
E be the elliptic curve y2 = x3 − 5. Then E(Q) = {O}, where O is the point at infinity. Let
(r : s : u : v : t) be homogeneous coordinates in P

4
Q
. The first of the equations

xyt2 = u2 + v2, r2 − 5s2 − 17t2 − u2 = 0 (1)

defines a closed subset of (E\{O}) × P
2
Q
which extends to a conic bundle surface B → E .

The fibre BO over O is the singular conic S with equation u2+v2 = 0. The uniqueQ-point P
of B is the singular point of S. The morphism π : B → P

1
Q
given by the projection to (u : t)

satisfies the conclusions of Lemma 3.3. The second equation of (1) defines a smooth quadric
Q ⊂ P

3
Q
. Let Y → Q be the blowing-up of the closed point of Q given by u = t = 0. The

projection via the coordinates (u : t) is a morphism Y → P
1
Q
which makes Y a conic bundle

as in Proposition 3.4. Let X = Y ×
P
1
k
B. The fibre XP over P is the conic r2−5s2−17t2 = 0

over Q, so for the places w1 and w2 one takes the primes 5 and 17. For p = 5, 17 choose a
suitable point Np ∈ S(Qp) with v = 1 and u = αp ∈ Qp such that α2

p = −1.

One can give a different proof of the non-emptyness of the set X (AQ)ét,Br using themethod
of [11]. (By Proposition 6.1 (i i) below it does not matter which birational model is used for
this). Let K = Q(

√−1). Consider the fibre XO of the composed morphism X → B → E

123



806 J.-L. Colliot-Thélène et al.

over O ∈ E(Q). The singular surface XO is fibred into conics over the singular conic S; the
inverse image of the singular point P ∈ S is a smooth conic XP ⊂ XO . Thus XO ×Q K is
the union of two geometrically irreducible components permuted by Gal(K/Q) that intersect
transversally in XP , each of them isomorphic to YK = Y ×Q K . Since 5 and 17 split in K
and the components of XO ×Q K have K -points, we see that XO (AQ) �= ∅. We claim that

XO (AQ) ⊂ X (AQ)ét,Br.

Indeed, let G be a finite k-group scheme. The generic fibre of X → E is a geometrically
integral, smooth and geometrically rational surface, so it is geometrically simply connected.
One checks that the morphism X → E is flat and all its geometric fibres are connected
and reduced. Now [25, X, Cor. 2.4] implies that each geometric fibre of X → E is simply
connected. As in the proof of Proposition 2.3 we see from [25, IX, Cor. 6.8] that any torsor
X ′/X of G is the pullback of a torsor E ′/E of G. As in the proofs of Propositions 3.1 and 3.4
it is enough to assume that E ′ has aQ-point O ′ over O ∈ E(Q). Thus a natural isomorphism
X ′
O ′ ∼= XO gives an identification X ′

O ′(AQ) ∼= XO(AQ), so to prove our claim it is enough
to show that the natural map Br(Q) → Br(XO ) is an isomorphism.

Let i : XP → XO be the closed embedding. Let ν : YK → XO be the normalisation
morphism and let C = ν−1(XP ). Then C = XP ×Q K is the intersection of the quadric
QK = Q ×Q K given by the second equation in (1) with the plane u = 0. The morphism
ν : C → XP is the natural projection XP ×Q K → XP .

The exact sequence of étale sheaves on XO

0 → Gm,XO → ν∗Gm,YK ⊕ i∗Gm,XP → i∗ν∗Gm,C → 0

is similar to the exact sequence (2) in [11]. The normalisation morphism ν and the closed
embedding i are finite morphisms, so ν∗ and i∗ are exact functors, hence on taking cohomol-
ogy we obtain an exact sequence

Pic(YK ) ⊕ Pic(XP ) → Pic(C) → Br(XO) → Br(YK ) ⊕ Br(XP ) → Br(C).

The discriminant of the quadratic form defining Q is not a square in K , hence Pic(QK ) is
generated by the class of the hyperplane section, and the natural map Br(K ) → Br(QK ) is an
isomorphism. By the birational invariance of the Brauer group we obtain that the natural map
Br(K ) → Br(YK ) is also an isomorphism. It is well known that Br(XP ) is the quotient of
Br(Q) by the subgroup generated by the class of the conic XP , which is given by the symbol
(5, 17). This symbol remains non-zero in Br(K ), hence C(K ) = ∅ and so Pic(C) is also
generated by the class of the hyperplane section. Since the composition of the embedding
C → YK with the birational morphism YK → QK is the natural embedding of C as a plane
section of QK , we see that the restriction map Pic(YK ) → Pic(C) is surjective. Now using
the fact that Br(C) is the quotient of Br(K ) by the subgroup generated by the symbol (5, 17)
we easily deduce that Br(XO ) = Br(Q).

To conclude, our example resembles that of Poonen [19] in that the fibres of X → E are
birationally equivalent to intersections of two quadrics in P

4. However, in our case the fibre
above the unique Q-point is geometrically simply connected and satisfies Br(XO ) = Br(Q)

and XO(AQ) �= ∅, so we see that the étale Brauer–Manin set of X is non-empty without
studying X any further. Note that it is essential that the fibres of X → E have dimension
at least 2. Indeed, each everywhere locally solvable geometrically connected and simply
connected curve over a number field k has a k-point [11, Remark 2.2].
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4 Elliptic curves with a large Galois image

Let k be a field of characteristic zero, with an algebraic closure k̄. For a field K such that
k ⊂ K ⊂ k̄ we denote by �K the Galois group Gal(k̄/K ). Let kcyc ⊂ k̄ be the cyclotomic
extension of k, i.e. the abelian extension of k obtained by adjoining all roots of unity.

Let E be an elliptic curve over k, and let ρ : �k → GL2(Ẑ) be the Galois representation
in the torsion subgroup of E . The group SL2(Z/2) is isomorphic to the symmetric group
S3. Let us define SL

+
2 (Ẑ) as the kernel of the composition of the reduction modulo 2 map

SL2(Ẑ) → GL2(Z/2) with the unique non-trivial homomorphism ε : GL2(Z/2) → {±1}.
(The finite group GL2(Z/2) can be identified with the symmetric group S3, and then ε is the
signature character.)

In this section we prove the following theorem using methods that go back to Bashmakov
[1, Ch. 5].

Theorem 4.1 Let E be an elliptic curve over a field k of characteristic zero such that SL+
2 (Ẑ)

is a subgroup of ρ(�k) ⊂ GL2(Ẑ). Let K be a field such that k ⊂ K ⊂ kcyc, and let
ϕ : E ′ → E×k K be an isogeny of elliptic curves over K . Then for any point P ∈ E(K ) that
cannot be written as P = mQ with m > 1 and Q ∈ E(K ), the scheme ϕ−1(P) is integral.

In the assumption of the theorem,Lemma4.7 (b) below shows that the isogenyϕ : E ′ → E
can be identified with the multiplication by n map E → E for some integer n. The theorem
then follows from Proposition 4.8.

Serre [24, Prop. 22] proved that for any elliptic curve E over Q the image ρ(�Q) is
contained in a certain subgroup H which only depends on the discriminant  of E . The
group H has index 2 in GL2(Ẑ) and contains SL+

2 (Ẑ). N. Jones [14] showed that almost all
elliptic curves over Q are Serre curves which means that ρ(�Q) = H. Theorem 4.1 thus
applies to almost all elliptic curves E over Q.

4.1 Group cohomology

For an integer n > 1 we define SL+
2 (Z/n) as SL2(Z/n) if n is odd, and as the kernel of the

following composite map if n is even:

SL2(Z/n) → SL2(Z/2) → Z/2,

where the first arrow is reductionmodulo 2, and the second arrow is the signature SL2(Z/2) �
S3 → {±1}.
Proposition 4.2 Let n be a positive integer, and let G ⊂ GL2(Z/n) be a subgroup containing
SL+

2 (Z/n). If n is odd, then H1(G, (Z/n)2) = 0. For n = 2rm, where m is odd and r ≥ 1,
the abelian group H1(G, (Z/n)2) is annihilated by 2r−1.

The proof of Proposition 4.2 is based on a few lemmas.

Lemma 4.3 For any integer n > 1 we have H0(SL+
2 (Z/n), (Z/n)2) = 0.

Proof The group SL+
2 (Z/n) contains the transformation (x, y) �→ (x + y,−x). �	

Lemma 4.4 Let G1 and G2 be finite groups, let M1 be a G1-module and let M2 be a
G2-module such that (M1)

G1 = (M2)
G2 = 0. The following natural map is injective:

H1 (G1 × G2, M1 ⊕ M2) −→ H1 (G1, M1) ⊕ H1 (G2, M2) .
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808 J.-L. Colliot-Thélène et al.

Proof It is enough to prove that H1(G1 ×G2, Mi ) injects into H1(Gi , Mi ) for i = 1, 2. To
fix ideas, assume i = 1. We have an inflation-restriction exact sequence

0 → H1
(
G2, (M1)

G1
)

→ H1 (G1 × G2, M1) → H1 (G1, M1) ,

which implies the lemma. �	
Lemma 4.5 For an odd prime p we have H1(SL2(Z/pr ), (Z/pr )2) = 0 for any positive
integer r .

Proof Let C = {±Id} ⊂ GL2(Z/pr ). This is a central subgroup, so we have an inflation-
restriction exact sequence

0 → H1
(
SL2

(
Z/pr

)
/C,

((
Z/pr

)2)C
)

→ H1
(
SL2

(
Z/pr

)
,
(
Z/pr

)2)

→ H1
(
C,

(
Z/pr

)2)
.

Theorder ofC is 2 but p is odd, sowehave H1(C, (Z/pr )2)=0.Wealso have ((Z/pr )2)C=0,
and the lemma follows. �	
Lemma 4.6 For a positive integer r the group H1(SL+

2 (Z/2r ), (Z/2r )2) is annihilated
by 2r−1.

Proof When r = 1 the group SL+
2 (Z/2r ) has order 3, so the claim is obvious.

Now suppose r ≥ 2. We denote the tautological SL+
2 (Z/2r )-module (Z/2r )2 by M . Let

σ be the scalar 2 × 2-matrix (1 + 2r−1)Id, and let H = {Id, σ }. It is clear that H � Z/2
is a central subgroup of SL+

2 (Z/2r ) and MH = 2M . Let G = SL+
2 (Z/2r )/H . There is an

inflation-restriction exact sequence

0 → H1(G, 2M) → H1 (
SL+

2

(
Z/2r

)
, M

) → H1(H, M)G .

Since 2r−1(2M) = 0 the group H1(G, 2M) is annihilated by 2r−1. We have

H1(H, M) = Ker [(1 + σ) : M → M] /(1 − σ)M.

For r ≥ 3 we have 1 + 2r−2 ∈ (Z/2r )∗, hence the kernel of 1 + σ = 2(1 + 2r−2)Id is
2r−1M = (1− σ)M . Thus H1(H, M) = 0 for r ≥ 3. For r = 2 the map (1+ σ) : M → M
is the multiplication by 4 on M = (Z/4)2, hence in this case H1(H, M) = M/2M . Since H
is central in SL+

2 (Z/2r ), the action of G on H is trivial, hence G acts on M/2M through its
quotient SL+

2 (Z/2). The only invariant element under this action is zero. Thus H1(H, M)G =
0 in all cases, so the lemma is proved. �	
Proof of Proposition 4.2 If R1 and R2 are commutative rings with 1, then we have
SL2(R1×R2) ∼= SL2(R1)×SL2(R2). By Lemma 4.3we have H0(SL+

2 (Z/m), (Z/m)2) = 0
for every positive integer m. Writing n as a product of prime powers, and applying Lem-
mas 4.4, 4.5 and 4.6 we prove Proposition 4.2 in the case G = SL+

2 (Z/n). In the general
case we note that SL+

2 (Z/n) is normal in G, and the only SL+
2 (Z/n)-invariant element in

(Z/n)2 is zero. Hence the restriction from G to SL+
2 (Z/n) gives an injective map

H1 (
G, (Z/n)2

)
↪→ H1 (

SL+
2 (Z/n) , (Z/n)2

)
,

and the proposition follows. �	
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4.2 Isogenies of elliptic curves

The multiplication by n map on an elliptic curve E is denoted by [n] : E → E . Let
ρn : �k → GL2(Z/n) be the Galois representation in the n-torsion subgroup E[n].
Lemma 4.7 Let E be an elliptic curve over a field k of characteristic zero such that
SL+

2 (Z/�) ⊂ ρ�(�k) for every prime �. Then we have the following statements.

(i) Let M be a finite �k-submodule of E(k̄). Then M = E[m] for an integer m �= 0. In
particular E(k) is torsion-free.
(i i) Let ϕ : C → E be an isogeny of elliptic curves. Then there is an integer n > 0 and
an isomorphism of elliptic curves ψ : E ˜−→C such that ϕ ◦ ψ = [n].

Proof (i) Let n be the smallest positive integer such that [n]M = 0. We claim that
M = E[n]. The �k-module M is the direct sum of its �-primary components M{�}. If
�r is the highest power of the prime number � that divides n, then �r is the smallest
positive integer that annihilates M{�}. The tautological SL+

2 (Z/�)-module (Z/�)2 is
simple, hence the �k-module E[�] is simple by assumption. But �r−1M{�} �= 0, so we
have �r−1M{�} = E[�]. The abelian group E[�r ] is isomorphic to (Z/�rZ)2, so any
subgroup that is mapped by multiplication by �r−1 onto (�r−1

Z/�rZ)2 is equal to the
whole group. Thus M{�} = E[�r ], and hence M = E[n].
(i i) Passing to the dual isogeny of ϕ : C → E we see that it is enough to prove that
every isogeny α : E → E ′ is [m] : E → E for some integer m. This follows from (i)
by taking M = Ker(α). �	

Proposition 4.8 Let E be an elliptic curve over a field k of characteristic zero such that
ρ(�k) ⊂ GL2(Ẑ) contains SL+

2 (Ẑ). For any field K such that k ⊂ K ⊂ kcyc we have the
following statements.

(i) SL+
2 (Ẑ) ⊂ ρ(�K ), hence SL+

2 (Z/n) ⊂ ρn(�K ) for any positive integer n.
(i i) For any point P ∈ E(K ) that cannot be written as P = mQ for m > 1 with
Q ∈ E(K ), and for any integer n > 0, the scheme [n]−1(P) is integral.

Proof (i) The composition det ρ : �k → GL2(Ẑ) → Ẑ
∗ is the cyclotomic character, so

�kcyc is the subgroup of �k given by the condition det ρ(x) = 1. In view of the natural
surjections SL2(Ẑ) → SL2(Z/n), this proves (i).
(i i) Let Kn = K (E[n]). In (i) we proved that G = �K /�Kn is a subgroup of
GL2(Z/n) containing SL+

2 (Z/n). The scheme [n]−1(P) is a K -torsor of E[n] of the class
κ(P) ∈ H1(K , E[n]), where κ : E(K )/n ↪→ H1(K , E[n]) is the Kummer map.
There is an inflation-restriction exact sequence

0 → H1 (G, E[n]) → H1 (K , E[n]) → H1 (Kn, E[n])G . (2)

The restriction of κ(P) to H1(Kn, E[n]) is a �K -equivariant homomorphism
ϕ : �Kn → E[n] (where �K acts on �Kn by conjugations, and on E[n] in the usual
way). Its image is thus a �K -submodule of E[n]. By (i) and by Lemma 4.7 (i), we have
ϕ(�Kn ) = E[m] for somem|n. The set of K -points of [n]−1(P)×K Kn with a natural action
of �Kn can be identified, by a choice of the base point, with the set E[n] on which g ∈ �Kn

acts by translation by ϕ(g).
Write n = 2r s, where r ≥ 0 and s is odd. We first deal with the case r = 0, and then

proceed by induction in r . Since P is not divisible in E(K ) by assumption, and E(K ) is
torsion-free, the order of κ(P) ∈ H1(K , E[n]) is n.
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If n is odd, by Proposition 4.2 the exact sequence (2) gives rise to an embedding of
H1(K , E[n]) into Hom(�Kn , E[n]), so that ϕ has order n. It follows that ϕ(�Kn ) = E[n] in
this case. This implies that [n]−1(P) ×K Kn is irreducible, hence [n]−1(P) is irreducible.

Nowsuppose thatn = 2n′ and the scheme [n′]−1(P) is irreducible. Themultiplication by2
map defines a surjective morphism [n]−1(P) → [n′]−1(P) which is a torsor of E[2]. We
know that�K acts transitively on [n′]−1(P)(K ) andwewant to show that�K acts transitively
on [n]−1(P)(K ). For this we must show that each K -fibre of [n]−1(P) → [n′]−1(P) is
contained in one �K -orbit. Recall that the �Kn -set [n]−1(P)(K ) is identified with E[n] so
that g ∈ �Kn acts as the translation by ϕ(g). The K -fibres of [n]−1(P) → [n′]−1(P) are the
E[2]-orbits in E[n]. Therefore, it is enough to show that ϕ(�Kn ) contains E[2]. As the order
of κ(P) is n, by Proposition 4.2 the exact sequence (2) shows that the order of ϕ is divisible
by 2s. Thus ϕ(�Kn ) contains E[2s] and hence contains E[2]. This finishes the proof. �	

5 Surfaces

5.1 An elliptic curve

For an elliptic curve E over a field k of characteristic zero we denote by Ec the quadratic
twist of E by c ∈ k∗.

Lemma 5.1 Let E be an elliptic curve over a field k of characteristic zero. For a quadratic
extension K = k(

√
d) we have an exact sequence

0 → Ed(k) → E(K ) → E(k).

Proof Let σ be the non-zero element of Gal(K/k). We have E(k) � E(K )σ . The choice
of a square root of d in K defines an isomorphism Ed ×k K � E ×k K . This gives an
identification Ed(k) � {x ∈ E(K )|σ(x) = −x}. Sending x ∈ E(K ) to x + σ(x) defines a
homomorphism E(K ) → E(k) with kernel Ed(k). �	
Proposition 5.2 There exist the following data:

a real quadratic field k = Q(
√
c), where c is a square-free positive integer not congruent

to 1 modulo 8;
a totally real biquadratic field K = Q(

√
c,

√
d), where d is a square-free positive integer;

an elliptic curve E overQ of discriminant < 0, such thatSL+
2 (Ẑ) ⊂ ρ(�k), E(k)={0},

and E(K ) is torsion-free of positive rank.

Proof Let E be the curve y2 + y = x3 + x2 − 12x − 21 of conductor 67 and discriminant
 = −67, and take c = 10, d = 2. Using sage we check that E(Q) = E10(Q) = 0. By
Lemma 5.1 we have E(k) = 0. Using sage we check that E2(Q) � E5(Q) � Z, so by
Lemma 5.1 we conclude that E(K ) is torsion-free of positive rank. We claim that E is a
Serre curve, which means that ρ(�Q) = H, where H is a subgroup of GL2(Ẑ) of index 2
containing SL+

2 (Ẑ). By a result of N. Jones [14, Lemma 5], for this it is enough to show that
E satisfies the following conditions:

ρ�(�Q) = GL2(Z/�) for all primes � (this is checked using sage),
ρ8(�Q) = GL2(Z/8) (this is checked using [7]), and
ρ9(�Q) = GL2(Z/9) (this is checked using [8]).

By Proposition 4.8 (i), SL+
2 (Ẑ) ⊂ ρ(�Q) implies SL+

2 (Ẑ) ⊂ ρ(�k). This finishes the proof.
�	
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Remark 5.3 For c and k = Q(
√
c) as above, the conic x2 + y2 + z2 = 0 has points in all

non-Archimedean completions of k, but no points in the two real completions of k. Indeed,
this conic hasQp-points for all odd primes p. Since 2 is ramified or inert in k, this conic also
has points in the completion of k at the unique prime over 2.

5.2 A conic bundle over the elliptic curve

Let k, K and E be as in Proposition 5.2. The elliptic curve E can be given by its short
Weierstraß equation

y2 = r(x),

where r(x) = x3 + px + q , for p, q ∈ Q. Since  = −4p3 − 27q2 < 0 the topological
space E(R) is connected. The neutral element of E(k) is the point at infinity. We denote by
π : E → P

1
k the projection sending (x, y) to x .

Let P ∈ E(K ) be a point not divisible in E(K ). Let σ ∈ Gal(K/k) be the generator.
Since P+σ(P) ∈ E(k) = 0 we obtain that π(P) is a point ofA1

k(k) = k, say π(P) = a ∈ k.
The K -point P gives rise to a solution of y2 = r(a) in K , hence r(a) ∈ k is totally positive.
We have r(a) �= 0 since E(K ) is torsion-free.

Let b ∈ k, b �= a. We define a central simple algebra A over k(P1k) = k(x) as a tensor
product of quaternion algebras

A = ((x − a)/(x − b), r(b)) ⊗ (−1,−1). (3)

The algebra A is unramified outside of the points x = a and x = b. At each of these points
the residue of A is given by the class of r(b) in k∗/k∗2.

Proposition 5.4 (Albert) Let F be a field, char(F) �= 2, and let α, β, γ, δ ∈ F∗. The tensor
product of quaternion algebras (α, β)⊗(γ, δ) is a division algebra if and only if the diagonal
quadratic form 〈α, β,−αβ,−γ,−δ, γ δ〉 is anisotropic. If it is isotropic, then (α, β)⊗ (γ, δ)

is similar to a quaternion algebra over F.

For the proof see [15, § 16.A]. The quadratic form 〈α, β,−αβ,−γ,−δ, γ δ〉 is called an
Albert form associated to (α, β) ⊗ (γ, δ).

Lemma 5.5 Let k, K , a, r(t) be as above. If b ∈ k is such that r(b) is totally negative, then
the algebra A over the field k(P1k) = k(x) is similar to a quaternion algebra.

Proof The associated Albert form contains the subform � = 〈r(b), 1, 1, 1〉. By Remark 5.3
the form 〈1, 1, 1〉 is isotropic over all finite completions of k. Since r(b) is totally negative,�
is isotropic over both real completions of k. By the Hasse–Minkowski theorem the quadratic
form � is isotropic over k. An application of Proposition 5.4 concludes the proof. �	

We are now ready to state one of the main results of this paper. (For an explanation why
we do not consider the case k = Q see Proposition 6.5 below.)

Theorem 5.6 There exist a real quadratic field k, an elliptic curve E and a smooth, projective
andgeometrically integral surface X over k with a surjectivemorphism f : X → E satisfying
the following properties:

(i) the fibres of f : X → E are conics;
(i i) there exists a closed point P ∈ E such that the field k(P) is a totally real biquadratic
extension of Q and the restriction X\ f −1(P) → E\P is a smooth morphism;
(i i i) X (Ak)

ét,Br �= ∅ and X (k) = ∅.
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Proof We keep the above notation: k = Q(
√
10), E is the curve of Proposition 5.2 given

by its short Weierstraß equation y2 = r(x), viewed as a curve over k, and K = k(P) =
Q(

√
10,

√
2). We fix b ∈ k such that r(b) is totally negative, and define a central simple

algebra A by (3). By Lemma 5.5, A is similar to a quaternion algebra B over k(P1k). Let
f : X → E be a relatively minimal conic bundle such that the generic fibre Xk(E) is the
conic over k(E) defined by the quaternion algebra B ⊗k(P1) k(E). (We call a conic bundle
X → E relatively minimal if for every conic bundle Y → E any birational morphism
X → Y compatible with the projections to E , is an isomorphism. See [16, Thm. 1.6] for the
well known description of the fibres of X → E .) The closed point P = π−1(a) � Spec K is
a solution to y2 = r(a). The residue of B ⊗k(P1) k(E) at P is the class of r(b) in K×/K×2,
which is non-trivial since r(b) is totally negative. We have π−1(b) = Spec k(

√
r(b)), and

the residue at this closed point is the class of r(b) in k(
√
r(b))∗/k(

√
r(b))∗2 which is trivial.

Thus f : X → E is smooth away from P . This gives (i) and (i i).
If we go over to one of the two real completions kv of k, the point P breaks up into two

real points P1 and P2. The residue at each of these points is an element of R∗/R∗2 given by
the image of r(b), and that element is totally negative. Thus the algebra A is ramified at both
P1 and P2. The fibre of X → E above each point Pi ∈ E(kv) is thus a singular conic, hence
has a kv-point. In particular, X (kv) �= ∅ for each of the real completions of k. The condition
 < 0 implies that E(kv) is connected, thus any point in the image of X (kv) → E(kv) is
path connected to the point 0, which is the unique point of E(k). (In fact, the image of X (R)

in E(R) is the closed interval between P1 and P2 which does not contain 0.) Let Mv be any
point of X (kv), and let Iv ⊂ E(kv) � S1 be a real interval linking f (Mv) and 0.

The value of A at∞∈P
1
k , hence also at 0∈E(k), is (−1,−1), hence the fibre X0= f −1(0)

is the conic x2 + y2 + z2 = 0. By Remark 5.3, X0 has points in all completions of k except
the two real completions, hence X0(k) = ∅. Since E(k) = {0} it follows that X (Ak) �= ∅,
but X (k) = ∅. For each finite place v of k choose Mv ∈ X0(kv).

We now prove that (Mv) ∈ X (Ak)
ét,Br. By Proposition 2.3 every torsor X ′ → X of a

finite k-group scheme G is the pullback X ′ = X ×E E → X of a torsor E ′ → E of G. By
twisting E ′ and X ′ with a k-torsor of G (and replacing G with the corresponding inner form)
we can assume that E ′ has a k-point 0′ over 0 ∈ E(k). The connected component C of E ′
containing this k-point is a smooth, projective, geometrically integral curve. The k-morphism
ϕ : C → E is finite and étale, hence C has genus 1. Choosing 0′ for the origin of the group
law on C we make ϕ : C → E into an isogeny of elliptic curves and write 0 = 0′.

Let Y = X ×E C . Then Y is a smooth, projective, geometrically integral surface over k
which is an irreducible component of X ′. The morphism g : Y → C is a conic bundle. By
Proposition 5.2 (3) we have SL+

2 (Ẑ) ⊂ ρ(�k). Since the point P ∈ E(K ) is not divisible, we
can apply Theorem 4.1 to the elliptic curve E and the isogeny ϕ : C → E . It follows that the
inverse image Q = ϕ−1(P) of the closed point P of the k-curve E is a closed point of the
k-curve C . We see that g : Y → C is a conic bundle such that Y\YQ → C\Q is a smooth
morphism. By Proposition 2.2 (i), the induced map g∗ : Br(C) → Br(Y ) is surjective.

For each finite place v of k let M ′
v be the kv-point in the fibre Y0 over 0 ∈ C(k) that

projects to Mv ∈ X0(kv). Now let v be a real place of k. By Lemma 4.7 (i i) the isogeny
ϕ : C → E is identified with [n] : E → E for some n. Since  < 0, the induced map
C(kv) � E(kv) → E(kv) is a surjective étale map S1 → S1. Since Iv is contractible, we
see that ϕ−1(Iv) is a disjoint union of copies of Iv exactly one of which contains 0. Let us
call this interval I ′

v . One of its ends is 0 and the other end is a point R ∈ C(kv) such that
ϕ(R) = f (Mv). Hence the real fibreYR is naturally isomorphic to the fibre of f : X → E that
containsMv . LetM ′

v be the point in YR(R) that projects toMv . Since Br(Y ) = g∗(Br(C)), we
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see that (M ′
v) ∈ Y (Ak)

Br. But Y is an irreducible component of X ′ hence (M ′
v) ∈ X ′(Ak)

Br.
This is a lifting of the adelic point (Mv), and therefore (Mv) ∈ X (Ak)

ét,Br. �	
Remark 5.7 In the proof above the adèle ( f (Mv)) ∈ E(Ak) and the k-point 0 ∈ E(k) have
the following property: for each place v the class of the 0-cycle f (Mv) − 0 is infinitely
divisible in Pic(E ×k kv), in fact it is even zero if v is non-archimedean. Methods initiated by
one of the authors and developed by Frossard [9, Thm. 0.3], by vanHamel, and byWittenberg
[32, Thm. 1.3], then show that there exists a 0-cycle of degree 1 on X . In these various papers,
finiteness of the Shafarevich–Tate group of the Jacobian of the base curve is assumed in order
to appeal to the Cassels–Tate dual exact sequence, which guarantees the existence of a 0-cycle
of degree 1 on the curve satisfying a divisibility property analogous to the one above. In our
case we can take this 0-cycle of degree 1 to be the k-point 0, so there is no need to assume
the finiteness of the Shafarevich–Tate group of E .

6 Remarks on the Brauer–Manin set

6.1 Birational invariance

Recall that Br0(X) denotes the image of the map Br(k) → Br(X).

Proposition 6.1 Let k be a number field, and let X andY be smooth, projective, geometrically
integral varieties over k that are birationally equivalent.

(i) If X (Ak)
Br �= ∅, then Y (Ak)

Br �= ∅.
(i i) If X (Ak)

ét,Br �= ∅, then Y (Ak)
ét,Br �= ∅.

(i i i) Assume, in addition, that Br(X)/Br0(X) is finite. Then the density of X (k) in
X (Ak)

Br implies the density of Y (k) in Y (Ak)
Br .

Proof (i) By Hironaka’s theorem, there exist a smooth, projective variety Z over k and
birational morphisms f : Z → X and g : Z → Y . Let v be a place of k. Since Z is
proper, f (Z(kv)) is closed in X (kv). Let us show that X (kv) = f (Z(kv)), for which it is
enough to show that f (Z(kv)) is dense in X (kv). There exists a non-empty Zariski open
setU ⊂ X such that f induces an isomorphism f −1(U ) ˜−→U . ThenU (kv) ⊂ f (Z(kv)),
but U (kv) is dense in X (kv) by the implicit function theorem.
Thus for any (Mv) ∈ X (Ak) there exists (Nv) ∈ Z(Ak) such that ( f (Mv)) = (Nv).
The birational morphism f induces an isomorphism f ∗ : Br(X) ˜−→Br(Z). From the
projection formula we conclude that if (Mv) ∈ X (Ak)

Br, then (Nv) ∈ Z(Ak)
Br. By the

covariant functoriality of the Brauer–Manin set we have g
(
Z(Ak)

Br
) ⊂ Y (Ak)

Br.
(i i) Let G be a finite k-group scheme. By the birational equivalence of the fundamental
group [25, X, Cor. 3.4] there is a natural bijection between X -torsors and Y -torsors of
G in which a torsor X ′/X corresponds to Y ′/Y if X ′ ×X Z = Y ′ ×Y Z . (This bijection
respects the twisting by a k-torsor of G.) Let us denote this Z -torsor of G by Z ′. The
natural morphism Z ′ → X ′ is a componentwise birational morphism of smooth and
projective varieties, so it induces an isomorphism Br(X ′) ˜−→Br(Z ′).
Consider any (Mv) ∈ X (Ak)

ét,Br. Let (Nv) ∈ Z(Ak) be a lifting of (Mv) as in part (i).
By the definition of X (Ak)

ét,Br, for any torsor X ′/X the adèle (Mv) is the image
of some (M ′

v) ∈ X ′(Ak)
Br (after twisting X ′/X by a k-torsor of G and replacing

G by the corresponding inner form). If N ′
v ∈ Z ′(kv) is the point M ′

v ×Mv Nv for
each place v, then (N ′

v) ∈ Z ′(Ak)
Br by the projection formula. This implies that
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(Nv) ∈ Z(Ak)
ét,Br. By the covariant functoriality of the étale Brauer–Manin set we have

g(Z(Ak)
ét,Br) ⊂ Y (Ak)

ét,Br.

(i i i) Let U ⊂ X and V ⊂ Y be non-empty Zariski open sets such that there is an
isomorphism h : V ˜−→U . Under the assumption of (i i), the group Br(Y )/Br0(Y ) �
Br(X)/Br0(X) is finite. Let β1, . . . , βn ∈ Br(Y ) be coset representatives. There exists
a finite set � of places of k such that each βi vanishes on Y (kv) for each v /∈ �.
Thus every adèle (Mv) ∈ Y (Ak)

Br can be approximated by an adèle (Nv) ∈ Y (Ak)
Br

such that Nv ∈ V (kv) for all completions kv of k. Let Mv = h(Nv). Since h induces
an isomorphism Br(Y ) � Br(X), the adèle (Mv) is in X (Ak)

Br. If X (k) is dense in
X (Ak)

Br, we can approximate (Mv) by a k-point M in U . Then N = h−1(M) ∈ V (k)
is close to (Nv) ∈ Y (Ak)

Br. �	
Remark 6.2 (1) We do not know if the analogue of Proposition 6.1 (i i i) holds for the étale

Brauer–Manin set.
(2) We do not know if Proposition 6.1 (i i i) still holds when Br(X)/Br0(X) is infinite, but we

can make the following observation. Recall that X (Ak)• denotes the quotient of X (Ak)

by the relationwhich identifies two points in the same connected component.For smooth,
projective, geometrically integral varieties X and Y that are birationally equivalent, if
one does not assume the finiteness ofBr(X)/Br0(X), then Y (k) can be dense in Y (Ak)

Br•
without X (k) being dense in X (Ak)

Br• . Indeed, let Y = A be an abelian surface over Q
such that A(Q) = {0} and the Shafarevich–Tate group of A is finite. Let Z be the blowing-
up of A at theQ-point 0, and let X be the blowing-up of Z at someQ-point (allQ-points
of Z are contained in the exceptional divisor). The surface X contains two copies of P1

Q

meeting at aQ-point P; let us call them E and F . The finiteness of the Shafarevich–Tate
group of A implies [28, Prop. 6.2.4] that A(AQ)Br is the connected component of 0 in
A(AQ), which is isomorphic to the real connected component of 0 in A(R). Choose a
Q-point M �= P in E , and a Q-point N �= P in F . Let q be a prime. Consider the adelic
point (Mp) of X , where Mp = M for all p �= q (including p = ∞) and Mq = N .
Since the morphism f : X → A induces an isomorphism f ∗ : Br(A) ˜−→Br(X) and
f (Mp) = 0 for all p, we see that (Mp) ∈ X (AQ)Br. However, the connected component
of (Mp) in X (AQ) contains no Q-points. Indeed, a Q-point of X is either in E or in F .
In the first case it cannot approximate Mq in the q-adic topology, and in the second case
it cannot approximate Mp in the p-adic topology where p is any prime different from q .
It is easy to see that (Mp) ∈ X (AQ)ét,Br, so the previous discussion applies to the set of
connected components of the étale Brauer–Manin set as well.

6.2 Cases where the Brauer–Manin obstruction suffices

The following result shows that for the conclusion of Theorem 5.6 to hold, the conic bundle
f : X → E must contain degenerate fibres.

Proposition 6.3 Let E be an elliptic curve over a number field k with a finite Shafarevich–
Tate group. Let f : X → E be a Severi–Brauer scheme over E. Then X (Ak)

Br �= ∅ implies
X (k) �= ∅. Moreover, X (k) is dense in X (Ak)

Br• .

Proof Since f : X → E is a projective morphism with smooth geometrically integral
fibres, there exists a finite set of places � such that E(kv) = f (X (kv)) for v /∈ �. We
may assume that � contains the archimedean places of k. At an arbitrary place v the set
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f (X (kv)) is open and closed in E(kv). Let (Mv) ∈ X (Ak)
Br. By functoriality we then

have ( f (Mv)) ∈ E(Ak)
Br. The finiteness of the Shafarevich–Tate group of E implies [28,

Prop. 6.2.4] the exactness of the Cassels–Tate dual sequence

0 → E(k) ⊗ Ẑ →
∏

E(kv)• → Hom(Br(E),Q/Z), (4)

where E(kv)• = E(kv) if v is a finite place of k, and E(kv)• = π0(E(kv)) if v is an
archimedeanplace.By a theoremofSerre, the imageof E(k)⊗Ẑ in that product coincideswith
the topological closure of E(k), see [22,23,31]. Approximating at the places of �, we find a
k-point M ∈ E(k) such that the fibre XM = f −1(M) is a Severi–Brauer variety with points
in all kv for v ∈ �, hence also for all places v. Since XM is a Severi–Brauer variety over k,
it contains a k-point, hence X (k) �= ∅. For the last statement of the theorem we include
into � the places where we want to approximate. If kv � R, each connected component of
X (kv) maps surjectively onto a connected component of E(kv). The Severi–Brauer varieties
satisfy the Hasse principle andweak approximation, so an application of the implicit function
theorem finishes the proof. �	
Remark 6.4 The sameargumentworksmore generally for a projectivemorphism f : X → E
such that each fibre contains a geometrically integral component of multiplicity 1, provided
that the smooth k-fibres satisfy the Hasse principle. For the last statement to hold, the smooth
k-fibres also need to satisfy weak approximation.

The following proposition is a complement to Theorem 5.6 which explains why a similar
counterexample cannot be constructed over Q.

Proposition 6.5 Let E be an elliptic curve over a number field k such that both E(k) and
the Shafarevich–Tate group of E are finite. Let f : X → E be a conic bundle. Suppose that
there exists a real place v0 of k such that for each real place v �= v0 no singular fibre of
f : X → E is over a kv-point of E. Then X (Ak)

Br �= ∅ implies X (k) �= ∅.
Proof If a k-fibre of f is not smooth, then this fibre contains a k-point. We may thus assume
that the fibres above E(k) are smooth. Let (Mv) ∈ X (Ak)

Br. Then ( f (Mv)) ∈ E(Ak)
Br. Set

Nv = f (Mv) for each place v. The finiteness of the Shafarevich–Tate group of E implies
the exactness of the Cassels–Tate dual sequence (4). Hence there exists N ∈ E(k) such that
N = Nv for each finite place v and such that N lies in the same connected component as
Nv for v archimedean. The fibre XN is a smooth conic with points in all finite completions
of k. For an archimedean place v �= v0, the map X (kv) → E(kv) sends each connected
component of X (kv) onto a connected component of E(kv). Since N and Nv are in the same
connected component of E(kv), this implies XN (kv) �= ∅. Thus the conic XN has points in all
completions of k except possibly kv0 . By the reciprocity law it has points in all completions
of k and hence in k. �	
Remark 6.6 If E(k) is finite we cannot in general expect X (k) to be dense in X (Ak)

Br• or
even in X (Ak)

ét,Br• . Indeed, if the fibre XN over some k-point N of E is an irreducible
singular conic, then the singular point P of XN is the unique k-point of XN . Let (Mv) be
any adèle in XN (Ak). Note that if v splits in the quadratic extension of k over which the
components of XN are defined, then XN ×k kv is a union of two projective lines meeting
at P . Using the fact that Br(P1kv

) = Br(kv) we see that (Mv) ∈ X (Ak)
Br. Furthermore, we

have (Mv) ∈ X (Ak)
ét,Br, cf. [11, Remark 2.4]. On the other hand, (Mv) is not in the closure

of X (k) in X (Ak)• provided Mv �= P for at least one finite place v of k.
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