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Summary (250 words) 

Lectins recognise a diverse array of carbohydrate structures and perform numerous 

essential biological functions. Here we focus on only two families of lectins, the 

Siglecs and C-type lectins. Triggering of intracellular signalling cascades following 

ligand recognition by these receptors can have profound effects on the induction and 

modulation of immunity. In this chapter, we provide a brief overview of each family 

and then focus on selected examples which highlight how these lectins can influence 

myeloid cell functioning in health and disease. Receptors that are discussed include 

Sn (siglec-1), CD33 (siglec-3) and Siglecs-5, -7, -8, -9, -10, -11,  -14, -15, -E, -F, and 

-G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL and the macrophage mannose 

receptor. 

 

Introduction 

Lectins, defined as proteins which recognise carbohydrates, perform numerous 

essential biological functions. Recognising a diverse array of carbohydrate 

structures, vertebrate lectins have been subdivided into several structurally distinct 

families which can be located intracellularly (such as the intracellular M-type family of 

lectins which function primarily in the glycoprotein secretory pathway), in the plasma 

membrane (such as some members of the C-type lectin and Siglec families, which 

are involved in pathogen recognition and immune regulation) or are secreted into the 

extracellular milieu (such as some members of the galectin family, which serve 

several homeostatic and immune functions) (Table 1). Given the particular focus of 

this book, we will restrict our discussion in this chapter to selected myeloid- and 

plasma-membrane expressed members of only two families, the C-type lectins and 

siglecs. We will provide a brief overview of each family and then focus on selected 
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illustrative and detailed examples which highlight how these lectins influence myeloid 

cell functioning in health and disease. For an overview on the other lectin families, 

the reader is referred to an excellent website 

(http://www.imperial.ac.uk/research/animallectins/ctld/lectins.html). 

 

Siglecs 

Siglecs are a distinct subgroup of the immunoglobulin (Ig) superfamily that have 

evolved to use sialylated glycans as their predominant ligands (1). Siglecs have 

been mainly defined in mammalian species, but clear orthologues are also present in 

amphibia and fish (2).  Siglec-like molecules have also been identified in 

streptococcal bacteria ((3)) and in an adenovirus capsid protein (4).  In mammals, 

there are 2 subgroups of siglecs: (i) sialoadhesin (Sn, Siglec-1), CD22 (Siglec-2), 

MAG (Siglec-4) and Siglec-15 which are present in all species and (ii) CD33-related 

siglecs that vary considerably in composition between species and appear to be 

undergoing rapid evolution (Figure 1).  Due to uncertainties in gene ontologies, the 

human CD33-related siglecs have been assigned numerical suffixes whereas the 

mouse CD33-related siglecs have been assigned alphabetical suffixes. All siglecs 

are type 1 membrane proteins containing a homologous N-terminal V-set Ig-like 

domain that recognises sialylated glycans, followed by variable numbers of C2 set 

domains.  Recognition of sialic acid depends on a conserved structural template 

involving both hydrogen bonding networks, ionic and hydrophobic interactions, 

together with variable inter-strand loops that make contact with additional glycan 

residues and confer extended specificity to siglecs (5).  A siglec-like Ig fold was 

recently seen in the regulatory myeloid receptors, PILR-α and -β, which mediate high 

affinity binding to mucin-like sialylated ligands via both protein- protein and protein-
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sialic acid interactions (6, 7).  Siglecs are expressed broadly across the 

haemopoietic and immune systems, except for MAG which is restricted to the 

myelin-forming cells of the nervous system, oligodendrocytes and Schwann cells 

(Figure 1).  As discussed below, some siglecs are highly restricted to particular cell 

types, whereas others are more broadly expressed.  In humans and mice, the major 

subgroup of cells lacking siglecs are CD4 and CD8 T cells, although in other species 

such as chimpanzees, Siglec-5 is reported to be expressed on all circulating T cells 

(8) 

When expressed naturally at the cell surface, siglecs interact with sialic acid-

containing ligands both in cis (on the same plasma membrane) and in trans (on the 

plasma membrane of different cells). The degree to which each occurs likely 

depends on the relative affinity, density and display of sialylated ligands as well as 

other poorly understood topographical constraints. Both types of interaction have 

been shown to play important roles in immune modulation (reviewed in (9, 10)). The 

cytoplasmic tails of most siglecs contain two or more tyrosine-based motifs that can 

be phosphorylated and recruit SH2-domain containing effector molecules. The  most 

common motif is the immunoreceptor tyrosine-based inhibitory motif (ITIM) that is 

has been identified in hundreds of receptors of the immune system (11).  

Phosphorylated ITIMs exhibit high affinity for the tandem SH2-domain containing 

protein tyrosine phosphatases,  SHP-1 and SHP-2, which are activated on binding to 

ITIMs and thereby potentially capable of modulating signalling functions of siglec-

expressing cells (9). Many siglecs also possess ITIM-like motifs that appear to 

synergise with the ITIMs for efficient recruitment of SHP-1 and SHP-2 (12, 13). The 

same motifs are also important for the endocytic functions of many siglecs. Some 

siglecs possess a basic residue in the transmembrane region (Figure 1) that leads to 
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formation of a membrane complex with DAP-12, an adaptor with an immunoreceptor 

tyrosine based activation motif (ITAM).  As a consequence, these siglecs have the 

potential to directly trigger signal transduction via Syk recruitment and activation. 

Links between glycan recognition by siglecs and subsequent intracellular signalling 

have been a major focus for many laboratories since their discovery, but the specific 

downstream targets and biochemical pathways remain elusive for the most part. The 

focus of this section will be siglecs that are expressed predominantly on human 

myeloid cells, namely Sn (siglec-1), CD33 (siglec-3) and Siglecs-5, -7, -8, -9, -10, -

11,  -14 and -15. Given the importance of mouse models in determining the 

biological functions of siglecs, the murine CD33-related Siglecs-E, -F, and –G will be 

grouped with their most closely-related human counterparts for comparative 

purposes. 

 

Sialoadhesin (Siglec-1, CD169) 

Sn is a prototypic siglec that was identified as a sialic acid-dependent erythrocyte 

receptor expressed by subsets of mouse resident tissue macrophages (14).  Sn has 

an unusually large number of 17 Ig domains which appear conserved in mammals 

and reptiles (15). These are important for extending the sialic acid-binding site away 

from the plasma membrane to promote intercellular interactions. Sn prefers α2-3-

linked sialic acids over α2-6- and α2-8-linked sialic acids and does not bind sialic 

acids modified by hydroxylation (Neu5Gc) or  9-O-acetylation (e.g. Neu5,9Ac2) (16, 

17).  

In humans and mice, Sn expression appears specific for tissue macrophage 

subsets described as ‘CD169+ macrophages’ (18-20).  These cells are abundant in 
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lymphoid tissues, notably subcapsular sinus macrophages in lymph nodes and 

marginal metallophilic macrophages in the spleens of rodents or perifollicular 

capillary sheaths in spleens of humans (21). These macrophage populations are 

strategically positioned to capture viruses and immune complexes from the afferent 

lymphatics and splenic sinuses respectively and may therefore share similar 

biological functions (22).  Emerging evidence clearly shows that CD169+ 

macrophages play a key role in the capture of a broad range of viruses, including 

arteriviruses (23), retroviruses (24), herpes viruses (25, 26) and adenoviruses (27), 

and for the first two, this directly involves viral recognition by Sn. CD169+ 

macrophage capture of viruses is important for restraining viral spread to distal sites 

(28), but it can also promote viral transfer to neighbouring cells such as T cells (29, 

30) and B cells (31) and directly prime CD8+ cytotoxic T cells for responses to viral 

antigens via cross-presentation (27) .  Interestingly, CD169+ macrophages in the 

spleen have been shown to act as “Trojan horses” for vesicular stomatitis viruses, 

permitting high viral replication that is important for stimulation of protective adaptive 

immune responses (32). In addition to viruses, CD169+ macrophages can capture 

apoptotic tumour cells and cross-present tumour antigens to drive anti-tumour 

cytotoxic CD8 T cell responses (33).  Conversely, uptake of apoptotic cells by 

CD169+ macrophages can drive tolerance of self-reactive T cells via induction of the 

chemokine CCL22 (34).  CD169+ macrophages can also transfer exogenous 

antigens to DCs and promote cross presentation to CD8 T cells (35) and transfer 

antigens to B cells (36) and NKT cells (37) to promote cellular activation.  Besides its 

constitutive high expression on tissue macrophage subsets, Sn can also be induced 

strongly on monocytes, macrophages and monocyte-derived DCs in vitro by type I 

interferons or agents such as viruses and TLR ligands that induce interferon 
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production (24).  Accordingly, Sn is upregulated on circulating monocytes in HIV-

infected individuals and on macrophages in rheumatoid arthritis (38), primary biliary 

cirrhosis (39), systemic sclerosis (40) and systemic lupus erythematosus (SLE) (41). 

Sn expression on inflammatory macrophages has been associated with favourable 

prognosis in colorectal cancer (42) and in endometrial carcinoma (43), but with a 

more severe disease in proliferative glomerulonephritis (44). Many of the above 

disease associations may reflect exposure of macrophages to interferons rather than 

being causally related.  Indeed, in the BWF1 murine model of spontaneous SLE, 

there was no influence of Sn-deficiency on disease severity (45). However, in mouse 

models of inherited neuropathy (46-48), autoimmune uveoretinitis (49) and 

experimental allergic encephalomyelitis (EAE) (50), Sn-deficient mice exhibited 

reduced inflammation accompanied by reduced levels of T cell and macrophage 

activation. In the EAE model, this appears to be due to a Sn-dependent suppression 

of CD4+ FoxP3+ regulatory T cell expansion thereby promoting inflammation (50) 

whereas in the other CNS models, Sn-dependent regulation of CD8 T cells is 

important (46). The upregulation of sialylated ligands for Sn on activated T cell 

populations is likely to be an important determinant in mediating the Sn-dependent 

suppression of T cell subsets and function (51).  Sn can also efficiently mediate the 

capture and uptake of exosomes released from B lymphocytes following apoptosis 

and therefore play a role in antigen presentation to T cells (52, 53) . 

A role for Sn in phagocytic interactions of macrophages with various sialylated 

bacterial and protozoal pathogens was initially demonstrated, including Neisseria 

meningitidis (54), Campylobacter jejuni (55) and Trypanosoma cruzi (56).  Sn-

dependent targeting of heat-killed C. jejuni to splenic red pulp macrophages led to a 

rapid induction of type I interferon and pro-inflammatory cytokines, in a MyD88-
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dependent manner, suggesting a host protective role for Sn against sialylated 

bacteria (57).  This was also supported in an infection model using a sialylated strain 

of Group B streptococcus (GBS), where Sn-deficient mice exhibited reduced 

bacterial spread (58). However, this protective role for Sn was only seen in 

neutrophil-depleted mice, suggesting that Sn-dependent macrophage bacterial 

uptake can provide a backup defence in the event of neutrophils failing to clear the 

bacteria. Conversely, Sn expression on macrophages and monocyte-derived DCs 

can be exploited by enveloped viruses displaying host-derived sialic acids, leading to 

their capture, uptake and dissemination.  This was first seen with the porcine 

reproductive and respiratory syndrome virus which targets lung alveolar 

macrophages of pigs (23) and more recently with HIV (24) and other retroviruses 

(31, 59). On HIV, Sn can recognise both gp120, a sialylated glycoprotein and GM3, a 

monosialylated ganglioside terminating in NeuAcα2-3Gal (30, 60-62). GM3 is 

packaged into the HIV envelope during the budding from infected cells which occurs 

in lipid rafts (63).  On monocyte-derived DCs, Sn interactions with HIV lead to 

membrane invaginations containing viral particles that are very efficiently transferred 

to T cells in a process known as ‘trans-infection (30). In vivo evidence that Sn 

promotes retroviral trans-infection was obtained following infection of mice using 

murine leukaemia virus where trans-infection of B cells depended on the expression 

of Sn on lymph node sinus-lining macrophages (31).  

Although Sn is unusual amongst siglecs in not having well-defined signalling 

motifs in its cytoplasmic tail, recent reports have suggested it can associate with the 

ITAM adaptor, DAP12 and either suppress type 1 interferon production or stimulate 

TGF-β production (64, 65). These studies were both done using RNA knockdown 
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approaches to suppress Sn expression and the physiological significance of the 

findings should be confirmed using primary macrophages from Sn-deficient mice. 

 

CD33 (Siglec-3) 

CD33 is a marker of early human myeloid progenitors and leukemic cells, and is also 

expressed on monocytes, tissue macrophages, NK cell subsets and weakly on 

neutrophils.  It has 2 Ig domains and was the first of the CD33-related siglecs to be 

characterized as an inhibitory receptor, suppressing activation of FcγRI and 

recruiting SHP-1 and SHP-2 (66). CD33 has some preference for α2-6- over α2-3-

sialylated glycans and binds strongly to sialylated ligands on myeloid leukaemic cell 

lines (67).  The restricted expression of CD33 has been exploited in the treatment of 

acute myeloid leukemia using Gemtuzumab, a humanized anti-CD33 monoclonal 

antibody coupled to the toxic antibiotic calicheamicin. Binding of anti-CD33 mAbs to 

CD33 triggers endocytosis of the bound antibody. This depends on ITIM 

phosphorylation, recruitment of the E3 ligase Cbl, and ubiquitylation of the CD33 

cytoplasmic tail (68-70). Selective expression of CD33 on leukaemic progenitor cells 

also makes it an attractive target for therapy using chimeric antigen receptors 

expressed on cytotoxic T cells.  

Recently, two co-inherited single-nucleotide polymorphism (SNPs) have been 

associated with protection of humans against late-onset Alzheimer’s disease in 

genome-wide association studies.  These SNPs result in increased exon 2 skipping, 

leading to raised levels of CD33 lacking the V-set domain and reduced levels of full-

length CD33 (71).  Since full-length CD33 can inhibit microglial cell uptake of Aβ 

protein in a sialic acid dependent manner (72, 73), it is thought that individuals 
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lacking the protective SNPs may accumulate more toxic Aβ proteins, thus driving 

pathology. Targeting CD33 using antibodies that either inhibit function or promote 

internalisation and degradation may be a useful approach to treating Alzheimer’s 

disease. 

 The murine orthologue of CD33 exists as two spliced forms that differ in the 

cytoplasmic tail, neither containing the typical ITIM found in most other CD33-related 

Siglecs (74). Furthermore, mCD33 has a lysine residue in the transmembrane 

sequence and may therefore couple to the DAP-12 transmembrane adaptor, as 

shown for mouse Siglec-H (75) and human Siglecs-14 (76), -15 (77) and -16 (78).  In 

contrast to hCD33, mCD33 in the blood is expressed mainly on neutrophils rather 

than monocytes, which also suggests a nonconserved function of this receptor (79). 

 

Siglec-5 (CD170) and Siglec-14 

The SIGLEC-5 and SIGLEC-14 genes are adjacent to each other on chromosome 

19 and encode proteins containing four and three Ig-like domains respectively.  The 

first two Ig domains of Siglecs-5 and -14 share more than 99% sequence identity but 

then diverge.  Siglec-5 is an inhibitory receptor with typical ITIMs, whereas Siglec-14 

is complexed with DAP12 and mediates activatory signalling.  Both Siglecs-5 and -14 

bind similar ligands, with a preference for the sialylTn structure (Neu5Acα2-

6GalNAcα) (76). Although many antibodies to Siglec-5 cross-react with Siglec-14, 

specific antibodies have shown that while Siglec-5 is expressed on neutrophils and B 

cells, Siglec-14 is found at low levels on neutrophils and monocytes.  A SIGLEC-14 

null allele is frequently present in Asian populations but is less common in 

Europeans (80).  This is due to a recombination event between the 5’ region of the 
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SIGLEC-14 gene and the 3’ region of the SIGLEC-5 gene, resulting in a fusion 

protein that is identical to Siglec-5, but expressed in a Siglec-14-like manner.  

Individuals with chronic obstructive pulmonary disease (COPD) who are SIGLEC-14 

null, exhibited reduced exacerbation attacks compared with individuals expressing 

Siglec-14 (80).  Siglec-5 can bind sialylated strains of N. meningitidis and both 

Siglecs-5 and -14 can bind sialylated strains of Haemophilus influenzae implicated in 

COPD exacerbations and trigger inhibitory and activatory responses respectively 

(80). Thus, the absence of Siglec-14 on neutrophils would lead to reduced 

inflammatory responses in SIGLEC-14 null individuals. Besides expression on 

leukocytes, both Siglecs-5 and -14 are found on human amniotic epithelium and may 

influence responses to GBS infection and the frequency of preterm births in infected 

mothers (81).  Besides mediating sialic acid-dependent interactions with host cells 

and pathogens, Siglecs-5 and -14 can mediate sugar-independent interactions with 

some strains of GBS via recognition of the beta protein (81).  A recent study also 

demonstrated that the non-glycosylated danger associated molecular pattern 

(DAMP) protein HSP70, can bind to Siglecs-5 and -14 and modulate cellular 

responses (82). There are no obvious equivalents of Siglecs-5 or -14 in mice making 

it difficult to study this interesting pair of receptors in animal models. 

 

Siglecs-7, -9, -E 

Siglecs-7 and -9 share a high degree of sequence similarity, and appear to have 

evolved by gene duplication from an ancestral gene encoding a 3-Ig-domain 

inhibitory siglec, represented in mice by Siglec-E.  Siglec-7 is the major Siglec on 

human NK cells and is also seen at lower levels on monocytes, macrophages, DCs 
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and a minor subsets of CD8 T cells (83-85).  Siglec-7 has also been detected in 

platelets, basophils and mast cells where it may modulate survival and activation 

(85).  Siglec-9 is prominently expressed on neutrophils, monocytes, macrophages 

and DCs, ~30% of NK cells and minor subsets of CD4 and CD8 T cells (86, 87) . 

Despite high sequence similarity, Siglec-7 binds strongly to α2-8-linked sialic acids 

present in ‘b-series’ gangliosides (and some glycoproteins, whereas Siglec-9 prefers 

α2-3-linked sialic acids (88).  Sulfation of the SLex structure can strongly influence 

recognition by both Siglecs, with Siglec-9 preferring, 6-sulfo-SLex, and Siglec-7 

binding well to both 6-sulfo-SLex and 6’-sulfo-SLex (89).   It has recently been shown 

that Siglec-9 can bind strongly to high molecular weight hyaluronan, and that its 

ligation on neutrophils leads to suppression of cellular activation (90).  

 Siglec-E in mice exhibits a combination of some features of Siglec-7 and 

Siglec-9, being mainly expressed on neutrophils, monocytes and macrophages, with 

sialic acid binding preferences that span those of both Siglecs-7 and -9 (91).  Similar 

to T cells, NK cells in mice appear to lack expression of inhibitory Siglecs.  Siglec-E 

is an important inhibitory receptor of neutrophils, as initially demonstrated in a LPS-

induced lung inflammation model in which Siglec-E-deficient mice exhibited 

exaggerated CD11b-dependent neutrophil influx (92).  This was found to be linked to 

Siglec-E-dependent production of reactive oxygen species by neutrophils triggered 

on the CD11b ligand fibrinogen which suppressed neutrophil recruitment to the lung 

(93).  Siglec-E dependent inhibition of neutrophil function has also been proposed to 

be a mechanism underlying an exaggerated ageing phenotype observed in one 

strain of Siglec-E-deficient mice (94).  Several studies have also demonstrated 

inhibitory functions of Siglec-E on macrophages and dendritic cells, including 

suppression of proinflammatory cytokine production in response to TLR ligands and 
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promotion of regulatory T cells in response to sialylated antigens (95-99).  

Furthermore, targeting Siglec-E on macrophages with sialylated nanoparticles was 

shown to block inflammatory responses in vitro and in vivo (100).   

Tumour cells often upregulate cell surface sialylated glycans and it appears 

that these may be important in Siglec-dependent dampening of anti-tumour 

immunity.  Siglecs-7 and -9 can both suppress NK cell cytotoxicity against tumour 

cells expressing relevant glycan ligands (101-103).  Siglec-9 and Siglec-E can also 

dampen neutrophil activation and tumour cell killing, while ligation of Siglec-9 or 

Siglec-E on macrophages by tumour glycans seems to suppress formation of tumour 

promoting M2 macrophages (98).  Studies with GBS have also demonstrated that 

sialylated bacteria can subvert innate immune responses by targeting Siglec-9 and 

Siglec-E on neutrophils and macrophages, resulting in attenuation of phagocytosis, 

killing and proinflammatory cytokine production (104, 105).    

 

 

Siglec-8, F 

Siglec-8 has 3 Ig domains and is expressed on eosinophils and mast cells, with 

weaker expression on basophils (106, 107).  It binds strongly to 6’-sulfo-SLex and to 

mucins isolated from bronchial tissues (108, 109), but endogenous mucin ligands do 

not seem to require sulfation for strong binding (110).  In mast cells, antibodies to 

Siglec-8 can inhibit FcεR1triggered degranulation responses in line with its role as an 

inhibitory receptor (111).   In eosinophils, much attention has focussed on the role of 

Siglec-8 in triggering apoptosis, which can occur following cross-linking with anti-
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Siglec-8 antibodies or sialoglycan polymers (112, 113).  Apoptosis depends on 

generation of reactive oxygen species and caspase activation and is paradoxically 

enhanced in the presence of cytokine “survival” factors such as GM-CSF and 

interleukin-5 (113). A role for Siglec-8 in the pathogenesis of asthma has been 

suggested by upregulation of Siglec-8 ligands in inflamed lung tissue (109) and by 

associations of Siglec-8 polymorphisms with asthma (114). 

Although there is no ortholog of Siglec-8 in mice, the four-Ig domain mouse 

Siglec-F is expressed in a similar way to Siglec-8 on eosinophils, has a similar 

glycan-binding preference for to 6’-sulfo-SLex and appears to have acquired similar 

functions through convergent evolution (115-117). There are some important 

differences, however.  Siglec-F can recognise a broader range of α2-3-linked sialic 

acids, it is also expressed on alveolar macrophages and triggers weaker apoptosis 

using different signalling pathways (118). Siglec-F-null mice show exaggerated 

eosinophilic responses in certain lung allergy models, suggesting that Siglec-F 

negatively regulates eosinophil production and/or survival following immunological 

challenge (119, 120).  Interestingly, Siglec-F ligands in the airways and lung 

parenchyma were also up-regulated during allergic inflammation, but these did not 

appear to require sulfation to mediate strong binding to Siglec-F (110).  

 

Siglec-10, G  

Siglec-10 has five Ig-like domains and in addition to the ITIM and ITIM-like motifs, 

displays an additional tyrosine-based motif in its cytoplasmic tail (121-123). It is 

expressed at relatively low levels on several cells of the immune system, including B 

cells, monocytes and eosinophils (122). It can also be strongly upregulated on 
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tumour-infiltrating NK cells in hepatocellular carcinoma where its expression was 

negatively associated with patient survival (124). It is the only CD33-related human 

Siglec that has a clear-cut orthologue in mice, designated Siglec-G (9).  Both Siglec-

10 and Siglec-G prefer Neu5Gc over Neu5Ac in both α2-3 and α2-6 linkages (125). 

Similar to Siglec-10 in humans and pigs (126), Siglec-G is mainly expressed on B 

cells and subsets of dendritic cells and weakly on eosinophils (127, 128). Mice 

deficient in Siglec-G show a tenfold increase in numbers of a specialized subset of B 

lymphocytes, the B1a cells, which make natural antibodies (129). These Siglec-G 

deficient B1a cells also show exaggerated Ca-fluxing following BCR cross-linking.   

Studies using ‘knockin’ mice carrying an inactivating mutation in the sialic acid 

binding site of Siglec-G show a similar phenotype (127). This appears to be due to a 

requirement of sialic acid-dependent cis-interactions between Siglec-G and the BCR.  

On DCs, Siglec-G has been proposed to regulate cytokine responses to DAMPs 

released by necrotic cells in sterile inflammation.  This is thought to be due to a 

dampening effect of cis-interactions between Siglec-G and the heavily sialylated 

DAMP receptor, CD24 (130).  Disruption of this interaction through sialidases 

released by bacteria such as Streptococcus pneumoniae may be important in 

triggering inflammatory responses in sepsis (131).  A recent study has also shown 

that pseudaminic acid expressed on the flagella of C. jejuni can be recognised by 

Siglec-10 and trigger IL-10 production in dendritic cells (132).  This suggests a novel 

form of glycan recognition by Siglec-10 that is exploited by some pathogens. 

 

Siglecs-11 and -16 
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Siglecs-11 and 16 are paired inhibitory and activatory receptors, with 5 and 4 Ig 

domains respectively (78, 133).  In most humans, the SIGLEC-16 gene has a 4 base 

pair deletion and only ~35% of humans express one or two functional alleles.  The 

extracellular regions of these proteins are  >99% identical due to gene conversion 

events, and anti-Siglec-11 mAb 4C4 cross-reacts with Siglec-16.   Siglec-11 binds 

weakly to α2-8-linked sialic acids in vitro. Siglec-11 appears to be absent from 

circulating leukocytes, but is expressed widely on populations of tissue 

macrophages, including resident microglia in the brain, where high levels of α2-8-

linked sialic acids are present on gangliosides. Expression of Siglec-11 on microglia 

can impair their phagocytosis of apoptotic cells and neurotoxicity (134). Polysialic 

acid presented by neural cell adhesion molecule, NCAM, is also α2-8-linked and was 

shown to be recognised by Siglec-11 on macrophages and suppress LPS-dependent 

TNF-α production and phagocytosis triggered by LPS exposure (134, 135).  

Interestingly, microglial expression appears to be unique to humans (136). In mice, 

its function may be mediated by Siglec-E which is similarly expressed on microglia 

and able to mediate neuroprotective effects in response to inflammatory signals (96). 

The activating receptor Siglec-16 is also present on macrophages, including those in 

the brain, but functional studies have not been reported (78). 

 

Siglec-15 

Siglec-15 was first described in 2007 as a highly conserved and ancient Siglec found 

in vertebrates (77).  It lacks the typical arrangement of cysteines seen in the V-set Ig 

domain of other siglecs and has an unusual intron-exon arrangement.  Nevertheless 

it can bind the SialylTn structure (Neu5Acα2-6GalNAcα), with weaker binding to 3’ 
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sialyllactose. It is associated with DAP12 and also has a tyrosine-based motif in the 

cytoplasmic tail.  On macrophages, interactions with SialylTn antigens expressed by 

tumour cells was shown to trigger TGFβ production which could be important in 

immunosuppression and promoting tumour growth (137).  

Although first reported as being expressed on macrophages and dendritic 

cells in human lymphoid tissues, subsequent work has established that Siglec-15 is 

most strongly expressed in osteoclasts and their precursors where it plays an 

important role together with RANK ligand in triggering osteoclast differentiation (138-

141).  Osteoclasts are key cells involved in bone degradation and share a common 

hemopoietic progenitor with macrophages.  Mice lacking Siglec-15 show a mild 

ostepetrosis and impaired osteoclast differentiation (140, 141).  Specific antibodies 

directed to Siglec-15 are able to phenocopy this due to antibody-induced 

internalisation and degradation of Siglec-15 (142).   Siglec-15 therefore provides a 

novel target for diseases involving excessive osteoclast activation and bone loss, 

such as menopause-related osteoporosis. 

 

C-type lectin receptors 

 C-type lectin receptors (CLR) are a diverse collection of over 1000 proteins 

and are the largest lectin family (143). All of these receptors possess at least one C-

type lectin-like domain (CTLD), a characteristic fold formed by disulphide linkages 

between highly conserved cysteine residues (143). Based on their phylogeny and 

structure, CLRs have been divided into 17 groups which are either membrane bound 

or secreted (143). The term C-type lectin originated from initial observations that 

these receptors required Ca2+ for carbohydrate recognition. However, we now know 
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that not all CLRs require Ca2+ for ligand recognition and that these receptors can 

recognize a much more diverse range of ligands, such as lipids and proteins for 

example. Many of these receptors have also been shown to bind to different classes 

of ligands (ie: they are multivalent), and can recognise both endogenous and 

exogenous ligands.  

 A great many CLRs have essential roles in immunity. A key example are the 

endothelial-expressed selectins which function as adhesion molecules by binding 

cell surface glycoproteins on leukocytes and play a critical part in leucocyte migration 

during inflammation (144). Other examples include the secreted collectins, such as 

the surfactant proteins, which function in both pulmonary physiology and immunity, 

and serum mannose-binding protein (MBL), which has an essential role in triggering 

complement activation through MBL-associated serine proteases in response to 

microbial infection (145). The focus of the rest of this section, however, will be on 

selected transmembrane receptors that are widely expressed by myeloid cells and 

have been extensively characterized in murine models, including Dectin-1, MICL, 

Dectin-2, Mincle/MCL, and the macrophage mannose receptor. Detailed descripitons 

of these molecules will serve as illustrative examples of varied nature of C-type 

lectins and their importance in myeloid cell function in health and disease. The 

functions and properties of other myeloid expressed CLRs, including well 

characterised receptors such as DC-SIGN, can be found in several excellent reviews 

(146-148).  

 

Dectin-1 (CLEC-7A) 

Dectin-1 is one of the best characterised myeloid expressed CLR, and this type II 

transmembrane receptor belongs to group V within the CLR family. Dectin-1 contains 
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a single extracellular C-type lectin-like domain (CTLD), a stalk region, a single-pass 

transmembrane domain and a cytoplasmic tail containing signalling motifs, including 

an Immuno-receptor Tyrosine based Activation-like Motif (ITAM-like or hem-ITAM) 

and a tri-acidic motif (Figure 2). Dectin-1 is alternatively spliced into two major 

isoforms, differing by the presence or absence of the stalk region, which are 

expressed differentially in different cell types and mouse strains and which have 

slightly different functionalities (149).  The receptor is N-glycosylated, which can 

affect its expression and function (150), and is predominantly expressed by myeloid 

cells, including monocytes, macrophages, dendritic cells and neutrophils (151). 

There is also evidence for expression of this receptor on B-cells and subsets of T-

cells, and it may be unregulated on epithelial cells during inflammation (151-154). 

Through mechanisms which are not yet completely understood, the CTLD of 

Dectin-1 is able to recognise β-1,3-glucan containing carbohydrates (155). These 

carbohydrates are found predominantly in fungal cell walls, and consequently there 

has been considerable focus on the role of Dectin-1 in anti-fungal immunity. Indeed, 

Dectin-1 recognises many fungal species, including major human pathogens such as 

Aspergillus, Candida, Coccidioides and Pneumocystis (156). There is now 

substantial evidence that Dectin-1 plays an essential role in anti-fungal immunity: 

several polymorphisms of this receptor in humans (including a Y238X polymorphism 

which essentially renders homozygous individuals Dectin-1 deficient) have been 

linked to increased susceptibility to mucocutaneous fungal infections or fungal 

induced inflammation in the gut (157-159). Moreover, Dectin-1 knockout mice are 

more susceptible to systemic and mucocutaneous infections with several pathogens 

(160-162). However, the requirement for Dectin-1 for controlling C. albicans in vivo is 
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dependent upon the fungal strain, which undergo differential changes in their cell 

wall during infection (163). 

In addition to fungi, Dectin-1 can recognise mycobacteria. How Dectin-1 

recognises these pathogens is unknown and although shown to promote IL-12 

responses in vitro, the receptor does not appear to play an essential role in anti-

mycobacterial immunity in vivo (164, 165). Dectin-1 has also been implicated in the 

recognition of other pathogens, including Leishmania (166). 

 Dectin-1 was originally identified as acting as a T-cell costimulatory molecule 

through recognition of an endogenous ligand (167), but the nature of this ligand 

remains elusive. Several other endogenous ligands have been described, including 

vimentin, through which Dectin-1 was thought to involved driving lipid oxidation in 

atherosclerosis (168). However, Dectin-1 deficiency was subsequently found not to 

affect atherosclerosis development in mouse models (169). Dectin-1 has also been 

implicated in the reverse transcytosis of sIgA-antigen complexes by intestinal M cells 

and induction of subsequent mucosal and systemic antibody responses (170). 

Moreover, in the presence of galactosylated IgG1, Dectin-1 associates with FcγRIIB 

resulting in the inhibition of complement-mediated inflammation (171). In response to 

intestinal mucus, FcγRIIB, along with another lectin, galectin-3, complex with Dectin-

1 to promote the anti-inflammatory properties of DCs, enhancing homeostasis and 

oral tolerance (172). Most recently, a protective role for Dectin-1 in antitumor 

immunity has been demonstrated. Mechanistically, Dectin-1 mediated recognition of 

N-glycan structures on tumour cells was shown to augment NK-mediated killing and, 

in a model of hepatocarcinogenesis, act protectively by supressing TLR4 signalling 

(173, 174).  
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Upon recognition of β-glucans, Dectin-1 can activate Syk-dependent and Syk-

independent intracellular signalling cascades. Surprisingly, the activation of Syk was 

shown to require the tyrosine phosphatase SHP-2, which acted as a scaffold and 

facilitated the recruitment to Syk to Dectin-1 (175). The ability of Dectin-1 to induce 

Syk-dependent signalling pathways is mediated by a single phosphorylated tyrosine 

residue in the ITAM-like motif within the cytoplasmic tail and is likely to require 

receptor dimerization (176). Signalling through this pathway involves PKCδ and the 

CARD9-Bcl10-Malt1 complex and leads to the induction of canonical and non-

canonical NF-κB subunits and IRF1, resulting in gene transcription (177, 178). 

Recently, CARD9 was found to be dispensable for NF-κB activation, but regulated 

ERK activation by linking Ras-GRF1 to H-Ras (179). The CARD9 pathway is utilized 

by several other receptors (see also below) and is essential for protective 

antimicrobial immunity, particularly against fungi (180-182). Syk activation by Dectin-

1 induces IRF5 and nuclear factor of activated T cells (NFAT), through PLCγ and 

Calcineurin (183, 184); a pathway inhibited by immunosuppressive drugs, such as 

cyclosporine, and linked to the increased susceptibility to fungal infection that occurs 

following administration of these compounds (185). The Syk-independent pathway 

from Dectin-1 involves activation of Raf-1, which integrates with the Syk-dependent 

pathway at the point of NF-κB activation (186). Other pathways also exist. For 

example, the induction of phagocytosis by Dectin-1 in macrophages is Syk 

independent, requiring Bruton’s tyrosine kinase (Btk) and Vav-1 (187, 188). The 

ability of Dectin-1 to induce productive intracellular signalling (ie: leading to cellular 

responses) requires receptor clustering into a “phagocytic synapse” and exclusion of 

regulatory tyrosine phosphatases (189). Moreover, the ability of Dectin-1 to induce 
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productive responses to purified agonists can be cell-type specific; an effect linked to 

differential utilization of CARD9 (190). 

Activation of Dectin-1 signalling pathways can induce multiple cellular 

responses, including actin-mediated phagocytosis (Figure 3), phagosome 

maturation, activation of the respiratory burst, regulation of NET formation in 

neutrophils, DC maturation and antigen presentation, in part through the use of 

autophagy machinery (191-194). Dectin-1 can activate inflammasomes, facilitating 

the production of IL-1β. Indeed, this receptor has been implicated in activation of the 

NLRP3 inflammasome, although the pathways involved are unclear, and can directly 

induce the non-canonical Caspase 8 inflammasome, through CARD9 and MALT1 

(195-197). Assembly and activation of the Caspase-8 inflammasome was recently 

shown to require the non-receptor tyrosine kinase Tec (198).  Dectin-1 also induces 

the production of eicosanoids, several cytokines and chemokines (including TNF, IL-

10, IL-6, IL-23, CCL2, CCL3), and can modulate cytokine production and cellular 

functions induced by other PRRs. For example, costimulation of Dectin-1 and 

MyD88-coupled TLRs leads to the synergistic production of cytokines, such as TNF 

and IL-23, while simultaneously repressing the induction of others, such as IL-12 

(199, 200). Another example is the ability of Dectin-1 to activate complement 

receptor 3 (CR3, alternatively Mac-1), through activation of Vav1, Vav3 and PLCγ, 

which results in enhanced neutrophil phagocytosis and ROS production (201).  

These two receptors also act collaboratively in macrophages, through association in 

lipid rafts and activation of the Syk-JNK-AP-1 pathway, to enhance inflammatory 

cytokine responses (202). 

Like the TLRs, Dectin-1 is capable of instructing the development of adaptive 

immune responses, particularly Th1 and Th17 immunity (203). Interestingly, Dectin-
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1-activated DCs can also instruct Treg (CD25+Foxp3+) to express IL-17 (204). While 

Th1 responses are important for the control of systemic infections, Th17 responses 

are critical for controlling fungal infections at the mucosa. Indeed, several human 

diseases associated with chronic mucocutaneous candidiasis, including CARD9 

deficiency, have been linked to alterations in components of the Th17 response 

(205). How Dectin-1 promotes Th17 responses is incompletely understood, but 

involves Malt1-dependent activation of the NF-κB subunit c-Rel, which is required for 

the induction of polarizing cytokines such as IL-1β, and IL-23p19 (206). Dectin-1 can 

also induce humoral responses (207), stimulate cytotoxic T-cell responses (208), 

and induce myeloid-derived suppressor cells which can suppress T and NK cell 

responses (209). In addition to classic adaptive immunity, activation of Dectin-1 has 

been shown to induce innate immune memory (or trained immunity), through the 

epigenetic reprogramming of monocytes that occurs following aerobic glycolysis 

induced through an Akt-mTOR-HIF-1α pathway (210, 211). 

The role of Dectin-1 in driving adaptive immunity during infection is still not 

completely understood but there has been some recent progress. For example, 

Dectin-1 was found not to be essential for IL-17 production in mice systemically 

infected with Candida albicans (203), yet was required to drive Th17 polarization 

during pulmonary infection with Aspergillus fumigatus (162, 212). The ability of 

Dectin-1 to induce T helper cell differentiation during a skin infection model with C. 

albicans was recently shown to be dependent on fungal morphology (correlating with 

β-glucan exposure) and the dendritic cell subset involved (213). In the 

gastrointestinal tract (GI), Dectin-1 was found to be essential for driving fungal-

specific CD4+ T-cell responses and for the maintenance of the cellularity of GI-

associated lymphoid tissues (214). Dectin-1 can also regulate intestinal Treg cell 
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differentiation through modification of the microbiota, following exposure to dietary β-

glucans (215). 

 

MICL (CLEC-12A) 

Myeloid Inhibitory C-type Lectin (MICL, also called DCAL-2, CLL-1, and KLRL-1) is 

structurally similar to Dectin-1, and located in the same genomic region (192). Unlike 

Dectin-1, MICL is one of the few myeloid expressed CLRs that contains an ITIM in its 

cytoplasmic tail and, like some of the Siglecs described above, can induce inhibitory 

intracellular signalling through SHP-1 and SHP-2 phosphates (216). Human MICL is 

alternatively spliced into at least three isoforms (α, β and γ), and the receptor is 

expressed as a monomer and heavily glycosylated (216). These latter features differ 

in the murine ortholog, which is expressed as a dimer and is only moderately 

glycosylated (217). In both species, MICL is expressed primarily by myeloid cell 

including macrophages, monocytes, dendritic cells and granulocytes, although the 

receptor is also expressed on B cells, CD8+ T-cells and bone-marrow NK cells in the 

mouse (217, 218). Expression levels of MICL are substantially regulated during 

inflammatory processes both in vitro and in vivo (217, 218). Interestingly, MICL is 

highly expressed on acute myeloid leukaemia (AML) cells, and the receptor has 

been put forward as a marker of this disease as well as for developing antibody-

directed immunotherapies (219-222). In addition, murine MICL has been proposed to 

marker for a distinct subset of CD8α- DC’s (223). In mouse, targeting of antigens to 

MICL was found to induce CD4 and CD8 T-cell proliferation and enhance antibody 

responses (224).  

MICL functions as an inhibitory receptor and experiments with receptor 

chimeras have directly demonstrated that MICL can inhibit the activation signals 
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induced through other PRRs (216). Moreover, antibody cross-linking experiments 

have shown that MICL can inhibit NK cell cytotoxicity (225) and differentially 

modulate DC responses, such as IL-12 production, depending on the mode of 

activation (226). Recently, MICL was shown to be regulated in an ATG16L1 

(autophagy-related protein 16-like 1)-dependent manner, and play a key role in 

antibacterial autophagy through a functional interaction with an E3-ubiquitin ligase 

complex (227).  

MICL recognises an endogenous ligand in many tissues and was recently 

identified as a receptor for dead cells and uric acid (217, 228). MICL was shown to 

be required to supress the inflammatory responses induced by these ligands (228). 

Similar observations have made with human leukocytes (229). Thus MICL appears 

to have an important role in controlling damage-induced inflammation and may be 

involved in autoimmune diseases. Indeed, MICL was recently found to play an 

essential role in regulating myeloid cell-mediated inflammation in a murine model of 

rheumatoid arthritis (RA) (230). Although polymorphisms of CLEC12A do not 

associate with RA, autoantibodies to MICL were identified in a subset of RA patients 

which, in mouse models, could exacerbate the disease (230). These findings 

suggest that the threshold of myeloid cell activation can be modulated by 

autoantibodies that bind to these types of inhibitory receptors. Downregulation of this 

receptor has also been proposed to underlie hyperinflammatory responses observed 

in Behçet's syndrome and gout (231). 

 

Dectin-2 (CLEC4n) 

 Dectin-2 has a structure similar to that of Dectin-1, except that it possesses a 

short cytoplasmic tail lacking recognisable signalling motifs (232). To mediate 
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intracellular signalling, this receptor associates with the ITAM-containing FcRγ 

adaptor molecule (232).  Dectin-2 is unusual in this respect in that its interaction with 

the adaptor is mediated by a membrane-proximal region within its intracellular tail, 

rather than through a transmembrane arginine residue as occurs with other similarly 

structured receptors (233). Like Dectin-1, signalling from the ITAM motif following 

Dectin-2 ligation occurs through the Syk, PKCδ and CARD9–BCL10–Malt1 pathway, 

but also involves Phospholipase Cγ2  (233-238). Dectin-2 is expressed primarily by 

myeloid cells, including macrophages, subsets of DC, neutrophils as well as 

monocytes, where its expression can markedly upregulated during inflammation, 

(206, 239-241).  

Dectin-2 recognises high mannose based structures through its ‘classical’ 

carbohydrate-binding CTLD, which possesses a conserved EPN motif (242). This 

ligand specificity enables recognition of a variety of pathogens (including bacteria 

and nematodes for example) and pathogen-derived molecules (including house dust 

mite allergens) (232). Recently, Dectin-2 was shown to recognise mannose-capped 

lipoarabinomannan of mycobacteria, and play a role in anti-mycobacterial immunity 

(243). However, most attention has focussed on the role Dectin-2 in antifungal 

immunity, where it is required for protection against infection with selected fungal 

species, including C. albicans (through recognition of α-mannans on specific 

morphological forms) and C. glabrata (233-236, 244). Dectin-2 can also recognise 

species of Malassezia, through an O-linked mannobiose-rich glycoprotein, 

Blastomyces dermatitidis, Cryptococcus neoformans, Fronsecaea pedrosoi and A. 

fumigatus (245-249). In addition to pathogens, Dectin-2 may recognise an 

endogenous ligand and be involved in modulating UV-induced immunosuppression 

(250).  
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Like Dectin-1, Dectin-2 induces several cellular responses in response to 

microbial stimuli and can influence the development of adaptive immunity. In 

response to C. albicans, for example, Dectin-2 was shown to drive inflammatory host 

cytokine responses, including TNF, IL-6 and IL-12, and the development of Th17 and 

Th1 immunity (233, 235, 236, 248). Notably, Dectin-2 was found to selectively induce 

Th17-polarizing cytokines including IL-23 and IL-1β, by activating the NF-κB subunit, 

c-Rel, via Malt1 (206). More recently, Dectin-2 was found to regulate a key neutrophil 

IL-17 autocrine loop during fungal infection (247). This receptor also plays a role in 

the physical recognition of fungi, and signalling from Dectin-2 can induce Nlrp3 

inflammasome activation, extracellular trap formation, the respiratory burst, and 

production of cysteinyl leukotrienes (238, 241, 251-254). Dectin-2 may also form 

heterodimeric complexes with MCL (Dectin-3), although this is still controversial 

(255, 256). 

The induction of cysteinyl leukotrienes, in particular, has led to a great deal of 

interest in the role of Dectin-2 in airway inflammation induced by house dust mite 

(HDM). This CLR can recognise a glycan component of HDM, inducing the 

production of cysteinyl leukotrienes by DC and stimulating the development of Th2 

responses (252, 257). In mouse models of HDM-mediated pulmonary inflammation, 

Dectin-2 drove eosinophilic and neutrophilic responses by promoting both Th17 and 

Th2 immunity (257-260). Despite a clear role for Dectin-2 in allergy and host defence 

in mouse models, there is only one report demonstrating a link between 

polymorphism in this receptor and human disease (pulmonary Cryptococcosis) 

(261). 
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MINCLE / MCL (CLEC4D / CLEC4e) 

 Macrophage inducible C-type lectin receptor (Mincle) and Macrophage C-type 

lectin (MCL, also known as CLECSF8 or Dectin-3) are similar in structure to Dectin-

2, but are discussed here together because they form a heterotrimeric complex 

(along with the ITAM-containing FcRγ adaptor) that is required for expression at the 

cell surface (256, 262-265). The FcRγ adaptor appears to associate primarily with 

Mincle, through a positively charged arginine residue in the transmembrane domain, 

and can induce signalling through the Syk, PKCδ, CARD9–Bcl10–Malt1 and MAPK 

pathways leading to activation of transcription factors, including NF-kB (237, 262, 

266). This adaptor can also associate with MCL, but this occurs in an unusual 

fashion independently of any charged amino acid residue in the transmembrane or 

cytoplasmic domain (264, 267). The association of MCL with Mincle is mediated by 

the stalk region, and expression of these receptors is co-ordinately regulated under 

naïve and inflammatory conditions (256, 265). The CTLD of MCL has also been 

shown to be involved in regulating surface expression (267). 

 Unsurprisingly, given that they function as complex, there is significant 

overlap in the reports describing the expression and function of Mincle and MCL. 

Both these receptors have been described as being  predominantly expressed 

myeloid cells, including macrophages, neutrophils, monocytes and DC, although 

there is also evidence of expression on other leukocytes, including some subsets of 

B cells (256, 262, 267-273). Expression of these receptors can be upregulated 

following exposure to inflammatory stimuli, including microbial components such as 

LPS, and for Mincle this has been shown to occur in a MyD88 and C/EBPβ-

dependent manner (256, 274, 275). Mincle has also been reported to be reciprocally 
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expressed on neutrophils and monocytes within individuals, which has functional 

implications (269).  

 Mincle and MCL have both been shown to induce and / or regulate numerous 

cellular responses including endocytosis, phagocytosis, the respiratory burst, 

activation of the Nlrp3 inflammasome, neutrophil extracellular trap (NET) formation 

and the production of pro-inflammatory cytokines and chemokines (TNF, MIP-2, IL-

1β, MIP-1α, IL-6, KC, G-CSF and MIP-2 for example) (237, 255, 262-264, 267, 272, 

276-279). Moreover, both receptors can modulate the development of adaptive 

immunity, promoting Th1 and Th17 responses (264, 277, 278). Mincle has also been 

shown to promote Th2 development, by supressing Dectin-1-mediated IL-12 

production (178).  

The CTLD of Mincle contains a classical mannose-recognition EPN motif but 

the receptor appears to primarily recognise microbial glycolipids (280-283). Specific 

microbial ligands have been identified, including mycobacterial cord factor, trehalose 

dimycolate (TDM), its synthetic analogue trehalose dibehenate (TDB), and glycerol 

monomycolate from mycobacteria, and glyceroglycolipid and mannitol-linked 

mannosyl fatty acids from fungi (245, 277, 284). Structural analysis suggests that 

Mincle’s CTLD has binding sites for both the sugar and fatty acid moieties of these 

ligands (282, 283).  In contrast, the CTLD of MCL is unable to directly recognise 

carbohydrates (267), but this receptor can recognise TDM (264). Structural analysis 

has suggested that, like Mincle, the CTLD may interact with both the sugar and fatty 

acid moieties of this glycolipid (282). 

 Given the ability of these CLRs to recognise mycobacterial components, it is 

not surprising that both receptors have been implicated in anti-mycobacterial 

immunity. In response to mycobacterial ligands, for example, Mincle induces the 
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production of inflammatory cytokines, nitric oxide, granuloma formation, and Th1 and 

Th17 responses (271, 272, 277, 278, 285). These activities of Mincle contribute to 

the adjuvant activities of complete Freund’s adjuvant (286). MCL was similarly found 

to be required for the adjuvant activity of TDM, and loss of this receptor impaired 

both innate (inflammation, granuloma formation) and adaptive responses (T-cell 

function) induced by this glycolipid (264). Mincle has also been shown to recognise 

intact mycobacteria in vitro, but its actual role in vivo during infection is still unclear 

(277, 278, 287). One group has reported no effect of Mincle-deficiency on infections 

with M. tuberculosis H37Rv, whereas other groups have described some alterations 

in inflammation and bacterial burdens following infection with Mycobacterium bovis 

BCG or M. tuberculosis Erdman (271, 287, 288). In contrast, MCL was recently 

discovered to have an essential role in the non-opsonic recognition of mycobacteria 

by myeloid cells, and loss of this receptor resulted in higher extracellular 

mycobacterial burdens which drove neutrophilic inflammation and increased 

mortality in mouse models (289). Importantly, a polymorphism of MCL was also 

shown to be associated with susceptibility to tuberculosis in humans (289). 

 Both Mincle and MCL can also recognise other bacteria, including Klebsiella 

pneumonia. During K. pneumonia infection, for example, MCL-/- mice showed 

increased susceptibility and presented with increased bacterial burdens, 

inflammatory neutrophilic responses, and severe lung pathology (290). Mincle has 

similarly been found to be required for the control of K. pneumonia infection in 

mouse models (279).  

Mincle was first characterised as receptor for C. albicans (291), and in 

response to this fungal pathogen, Mincle can induce protective immune responses 

including phagocytosis, fungal killing and inflammatory cytokine production (269, 
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291). As mentioned above, Mincle was found to be reciprocally expressed on 

leukocytes within the same individuals, and in monocytes expression correlated with 

reduced fungal uptake and killing, but enhanced inflammatory cytokine production. In 

contrast, expression of Mincle on neutrophils correlated with enhanced fungal uptake 

and killing (269). MCL-/- mice were also shown to display increased susceptibility to 

C. albicans, with higher fungal burdens, and defective inflammatory responses (255). 

However, these observations are controversial, as other groups have not found any 

evidence for a role of MCL in anti-Candida immunity (263, 267, 289).  

Mincle has been implicated in immunity to Malassezia and was found to be 

required for cytokine induction and inflammation during in vivo infection (280). In 

addition, Mincle recognises Fonsecaea pedrosoi and F. monophora, causative 

agents of chromoblastomycosis (178, 292). In contrast to other fungal pathogens, 

this recognition was found to be inefficient, due to a lack of TLR costimulation, and 

contributed to chronicity of the infection (292). Moreover, in response to F. 

monophora, Mincle can supress Dectin-1-mediated IL-12 production, promoting Th2 

responses (178). Similarly, Mincle was shown to suppress Th17 cell differentiation 

induced by Dectin-2 (248). 

Mincle also recognises endogenous ligands. Spliceosome-associated protein 

(SAP)130, released from necrotic cells, was shown to be a ligand for Mincle, 

although recognition occurred through a different binding site on its CTLD (262).

 Mincle recognition of SAP130, induces inflammatory cytokine production 

(MIP-2 and TNF, for example) and neutrophil accumulation (262). Recently, human 

Mincle was also shown to recognise cholesterol crystals (293). This recognition of 

endogenous ligands suggests a role for Mincle in homeostasis, although our 

understanding of this function is still poor. There is emerging evidence, however, 
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suggesting that Mincle may be involved in rheumatoid arthritis, pathogenesis of 

ischemic stroke and early brain injury after subarachnoid haemorrhage, and obesity-

induced adipose tissue inflammation and fibrosis (294-298).  

    

The Macrophage Mannose Receptor 

The mannose receptor (MR, CD206) is a type I transmembrane protein that contains 

a heavily glycosylated extracellular region consisting of a cysteine rich domain, a 

fibronectin type II domain, and eight CTLDs (Figure 4) (299, 300). Two 

conformations of the MR have been proposed: an extended form and a more 

compact ‘‘bent’’ form that is influenced by pH (301). The MR is expressed 

predominantly intracellularly, as part of the endocytic pathway, in subsets of 

macrophages and DCs, as well as some other non-myeloid cell types including 

endothelial cells (300, 302). The expression of this receptor can be influenced by 

several cytokines, including IL-4 which causes marked upregulation of the MR (303). 

In fact, this upregulation has led to the MR being used as a marker for alternatively 

activated macrophages (304).  Within the MR gene is a co-regulated microRNA 

(miR-511-3p), that modulates cellular activation in tumour associated and other 

macrophages and was recently shown to contribute to intestinal inflammation (305, 

306). The extracellular domain of the MR can also be cleaved by metalloproteinases 

following cellular activation, through Dectin-1 signalling for example, releasing a 

functional soluble form (sMR) (307). 

 The extracellular domains of the MR each recognise different structures. The 

cysteine rich domain binds sulfated carbohydrates, the fibronectin domain binds 

collagen, while the CTLDs (specifically CTLDs 4-8) binds terminal mannose and 

fucose-based structures as well as N-acetyl glucosamine in a Ca2+-dependent 
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manner (300). The MR can also recognise CpG-motif containing 

oligodeoxynucleotides (308). The recognition of such a broad range of structures has 

led to substantial literature implicating the MR in both homeostasis and antimicrobial 

immunity. Indeed, the MR has been shown to recognise multiple types of pathogen, 

including viruses, helminths, trypanosomes, fungi and bacteria (166, 300). 

Recognition by the MR has been proposed to induce several cellular responses, 

including endocytosis, phagocytosis, antigen cross-presentation and cytokine 

production, and modulate the development of adaptive immunity (300, 309, 310). 

How the MR actually mediates many of these responses are unclear, as the receptor 

lacks known signalling motifs it its cytoplasmic tail, although its ability to mediate 

antigen cross presentation was shown to involve ubiquitination (311). In fact, its role 

in some of these responses is now controversial. For example, the MR was initially 

described as a phagocytic receptor, but subsequently shown not to be directly 

capable of mediating this activity (312, 313).  

 Several lines of evidence suggest that the effects ascribed to the MR may 

stem from collaboration with other receptors. For example, this receptor has been 

proposed to collaborate with Dectin-1 and the TLRs in the response to fungi such as 

C. albicans and Paracoccididiodes brasiliensis, inducing the production of IL-17, 

Th17 and Tc17 cells (314-316). The differential responses to various MR ligands 

also support a notion for collaboration with other receptors from intracellular 

signalling. For example, mannan had no effect on DC cytokine production, yet other 

MR ligands, including mannose capped lipoarabinomannan (Man-LAM; a 

mycobacterial cell envelope molecule) and biglycan (an extracellular matrix 

proteoglycan), were found to influence cytokine responses in these cells (317). 

However, many of the ligands of the MR are recognised by other receptors, such as 
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Dectin-2 and Mincle (discussed above), and this overlapping specificity casts doubt 

on much of the early work. 

 Despite the considerable literature implicating the MR in immunity, studies of 

the MR-deficient mice have suggested that the functions of this receptor are largely 

redundant. These mice are viable and do not show significantly increased 

susceptibility to most infectious agents. For example, loss of the MR did not alter the 

susceptibility of mice to infection with M. tuberculosis, C. albicans or P. carinii (318-

320). On the other hand, the MR-knockout mice were found to have slightly 

increased susceptibility to infections with C. neoformans, due to alterations in 

development of protective CD4 T cell responses (321). Deficiency of the MR has 

also been shown to lead to alterations in the regulation of serum glycoprotein 

homeostasis and the development of crescentic glomerulonephritis as well as 

allergic responses to cat allergens such as Fel D1,  (322-324). In humans, 

polymorphisms in MR have been linked to susceptibility to asthma, sarcoidosis and 

tuberculosis (325-327) 

 

Conclusion 

Research over the last few decades has provided exciting new insights into the wide 

and varied functions of lectins. Through their ability to recognise carbohydrates and 

other ligands, we now appreciate that these molecules are an essential component 

of multicellular existence. As our understanding of the physiological roles of these 

receptors increases, opportunities for novel therapeutic approaches are emerging, 

such as the targeting of these receptors to drive vaccine responses (328). Yet, there 

is still much we need to learn. For example, we tend to study these molecules in 

isolation, but it is clear that these receptors function in a coordinated and cooperative 
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fashion. Indeed, the recognition of intact pathogens involves numerous receptors 

which trigger multiple intracellular signalling pathways, producing an integrated 

cellular response. Despite the importance of such receptor cross-talk we still 

understand very little about how such signalling is integrated and how this directs the 

final immunological response. We also know relatively little about the regulation and 

influence of glycosylation on homeostasis and immune function, or the recognition 

mechanisms that are involved. Tackling these important problems is a priority for 

future research. 
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Figure Legends: 

Figure 1: Siglecs in humans and mice. There are two subgroups of siglecs: One 

group contains siglecs that are conserved in all mammalian species and the other 

group contains CD33-related Siglecs which appear to be undergoing rapid evolution 

in primates. (ITIM) Immunoreceptor tyrosine-based inhibitory motif.  The cell types 

expressing highest levels of each siglec are indicated. B, B cell; Eos, eosinophil; 

Mac, macrophage; mDC, myeloid dendritic cell; Mon, monocyte; Neu, neutrophil; 

NK, NK cell; Oli, oligodendrocyte; Ost, osteoclast; pDC, plasmacytoid dendritic cell; 

Pla, placental syncytiotrophoblast; Sch, Schwann cell 

 

Figure 2: Selected signal transduction cascades induced by C-type lectin receptors. 

Activation receptors, such as Dectin-1, Dectin-2, Mincle and MCL, induce cellular 

responses primarily through Syk-kinase, although other pathways can be involved, 

such as those induced by Raf-1. Inhibitory receptors, such as MICL, activate protein 

tyrosine phosphatases (PTP: such as SHP-1) which attenuate activation pathways. 

DNGR-1 (CLEC9A), not discussed in the text, is an actin binding receptor expressed 

by CD8+ DC and involved in antigen cross-presentation. Reprinted with permission 

from (329). 

 

Figure 3: Dectin-1 can mediate the non-opsonic phagocytosis of fluorescently 

labelled fungal particles (green) via actin (red)-based phagocytic cups. Reprinted 

with permission from (155). 

 

Figure 4: The macrophage mannose receptor. Structure of the MR indicating its 

exogenous and endogenous ligands (including those in tissues). MØ, macrophage; 
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HBV, hepatitis B virus; CPS, capsular polysaccharide; SEA, secreted egg antigen; 

Adam-13, a disintegrin and metalloprotease 13. Reprinted with permission from 

(300). 
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Table 1: Lectin families 

 

 

Family name Selected Ligands 

Calnexin Glc1Man9 

Chitinase-like lectins GlcN, GalN, chitin, Chito-oligosaccharides 

C-type lectins various (eg: Mannose, fucose, GalNAc, β-glucan) 

F-box lectins high mannose and sulfated glycoproteins  

Ficolins GlcNAc, GalNAc, fucose 

F-type lectins Fucose and others (eg: 3-O-methyl-D-galactose) 

Galectins β-Galactosides (eg: N-acetyllactosamine) 

Intelectins galactofuranose, pentoses 

L-type lectins various (eg: oligomannose)  

M-type lectins high mannose glycans (eg: Man8GlcNAc2) 

P-type lectins mannose 6-phosphate 

R-type lectins various (eg: GalNAc,  sialic acid,  sulfated glycans) 

Siglecs (I-type lectins) sialic acid 


