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ABSTRACT: The availability of suitable diverse fragment- and lead-oriented screening 

compounds is key for the identification of suitable chemical start points for drug 

discovery programs. The physicochemical properties of molecules are critical in 

determining the success of small molecules in clinical development, yet reports suggest 

that pharmaceutical and academic sectors often produce molecules with poor drug-like 

properties. We present a platform to design novel, high quality and diverse fragment 

and lead-oriented libraries with appropriate physicochemical properties in a cost-

efficient manner. This approach has the potential to assist the way libraries are 

constructed by significantly addressing the historical uneven exploration of chemical 

space for drug discovery. Additionally, this platform can teach both undergraduates 

and graduates compound library design. 
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INTRODUCTION  

Fragment-based drug discovery (FBDD) and high throughput screening are 

important approaches to find chemical start points for drug discovery programmes. 

These libraries rely on synthesis as well as commercial acquisition of new compounds. 

The majority of this extensive effort, mainly carried out over the last 10-15 years, 

remains unpublished, as novel proprietary compounds provide a competitive edge for 

the respective pharmaceutical companies. Hence, there is no full understanding of the 

proportion of chemical space [1,2] covered by current compound libraries and screened 

in biological assays. It is estimated that there are more than 1060 possible organic 

compounds that fulfill Lipinski’s rules [1,3]. However, a framework analysis of the CAS 

Registry suggests that chemists are more likely to use a particular framework to make a 

compound, the more often that framework has been used in the past [4]. This results in 

the proliferation of certain frameworks and limits the exploration of novel chemical 

space.  

Bemis and Murcko analyzed drug molecules according to ring, linker, framework 

and side chain atoms so that the information could be employed for the synthesis of 

new scaffolds with biological rationale [5,6]. Their analysis suggests that the scaffold 

and side chain diversity associated with known drugs is relatively low. More recently, 

analysis of  drug space (until end of 2012) by Taylor et al., describing the rings and 
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molecular scaffolds [7], showed that there were only 351 ring systems and 1197 

frameworks. Further, only six new ring systems enter drug space each year and 28% of 

new drugs contain a new ring system. This is a relatively small number compared, for 

example, to the predicted number of small aromatic rings [8]. Increasing the diversity 

and novelty of compound libraries is likely to be important in probing the drug-like 

chemical space that addresses biological space [2], to tackle both existing and emerging 

drug targets (for example protein-protein interactions).   

For many drug discovery organizations, particularly small- and medium-sized 

enterprises (SMEs) and the public sector, access to chemical matter is largely reliant on 

commercially available fragment and lead-like libraries. However, a recent analysis has 

suggested that “existing synthetic methodology is unintentionally predisposed to 

producing molecules with poorer drug-like properties and that this is likely to have 

ramifications to the early hit- and lead-finding phases of the drug discovery process” 

[9], particularly in addressing emerging target classes. In contrast, academic synthetic 

chemists are developing new synthetic methodology, which would be a powerful way 

to increase the novelty and diversity of our chemical libraries, if leveraged for 

compound library synthesis. This could be particularly beneficial for SMEs and academic 

drug discovery groups, as well as the pharmaceutical industry (Figure 1) [10].  
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Fragment-based drug discovery (FBDD) is an important approach to identify new 

leads for drug discovery [11-14]. It has the advantage of being able to address an area 

of chemical space with many fewer compounds than conventional lead-like or drug-like 

libraries. During an attempt to increase the chemical diversity of our fragment library, 

we realized that relatively simple derivatization (“capping”) of commercially available 

building blocks could expand into new areas of chemical space that are not 

commercially available, often with very different chemical and physicochemical 

properties (Figure 2), [15]. These compounds could subsequently be rapidly expanded 

into lead-like space for hits, using the same or similar chemistry. We therefore decided 

to establish a platform to design and generate compounds to address a wider range of 

fragment-space. This platform encompasses a set of criteria for compound design, and 

procedures for compound preparation and carrying out quality assurance. 

FBDD typically uses structural knowledge for fragment optimization using a range 

of strategies including merging, linking or growing [12]. Fragments typically bind to “hot 

spots” within the ligand binding site of the target [16] and options for optimization are 

prioritized according to synthetic appeal, opportunity to access relevant areas of the 

binding site, binding affinity and ligand efficiency. The prioritized fragments are then 

typically elaborated through addition of a suitable functional group, or “chemical 

handle”, to attach and elaborate the new substituent to identify further interactions 
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[11]. Ideally the chemical handle provides additional interactions within the target to 

improve affinity as well aid both fragment growth and linking.  

Screening fragments with “built-in” handles has the potential for additional 

interactions with the target (protein) and faster elaboration of a fragment. However 

care has to be taken as increasing complexity in a fragment decreases the probability of 

it achieving optimal ligand - protein interactions [17]. Conversely, too little complexity 

can lead to interesting interactions being missed [18]. Therefore, a careful balance is 

required between the “built-in” handles and the complexity of the fragment. 

Subsequent introduction of a chemical handle to a fragment may alter the binding 

conformation. This was demonstrated by Shoichet et al., who showed that 

deconstruction of a larger potent β-lactamase inhibitor into small fragments with 

“minimal complexity” does not necessarily recapitulate its binding to the enzyme [19]. 

However, fragments with additional functional-group complexity could recapitulate the 

larger potent β-lactamases inhibitor binding. Conversely, smaller fragments could 

identify more ligand efficient binding modes to the “hot spot”, which after alternative 

optimization strategies, could potentially lead to development of compounds with 

better drug-like properties e.g. lower molecular weight. 

A case study in support of the use of fragments with pendent functional groups 

suitable for rapid elaboration comes from Nazaré et al. [20] who demonstrated the 
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super-additivity effect of linking two fragments (derived from deconstructing a potent 

factor Xa inhibitor) containing amide and sulfonamide functional groups respectively 

(Figure 3).   

To make maximum use of the fragment library, an ideal scenario would be to have 

a linkage between the scaffolds in a fragment library and a lead-like library. This would 

have two advantages: firstly, a hit in a fragment screen could be rapidly expanded into 

lead-like space using analogues of the scaffold in the lead-like library, or using known 

robust chemistry to grow the fragments. Secondly, if there is a hit on screening a lead-

like library, this could be rapidly “de-constructed” into fragments to probe the key 

receptor-ligand interactions. Given the rapid increase in the number of possible 

compounds as the heavy atom count in a molecule increases, there will be a limit to the 

examples of a fragment-scaffold that can be in a lead-like library. Therefore, it will be 

important to have chemistry suitable for fragment-scaffold elaboration. 

 

RESULTS AND DISCUSSION 

Design Process. A key component of our library platform was to identify under-

represented areas of commercial chemical space and create diversity based on 

functional group manipulation. A library design team, composed of experienced 

medicinal chemists, investigated a number of procedures for synthesis of fragments 
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with differing synthetic complexity, based on the analysis of fragment scaffolds in 

relation to published biologically relevant data. Our workflow is shown in Figure 4. 

We had three start points to develop novel fragments (Figure 5): (1) in-house 

assembly of diverse monomer (appendage) sets, which could be functionalized into 

both fragment and lead-like libraries, (2) commercial and in-house project 

intermediates, and (3) novel chemical scaffolds. Designs were filtered to ensure that 

compounds selected for synthesis filled in “gaps” in chemical space in our current 

fragment library.  

Our focus here was on producing fragment and lead-like libraries to identify non-

covalent, reversible inhibitors. Functional groups known to be chemically reactive or 

toxic were removed (so called “Structural Alerts”), as were compounds reported to be 

pan assay interference compounds (PAINS) [21]. Supporting information includes the 

Drug Discovery Unit revised in-house [22] and modified Eli Lilly-published [23] 

structural alerts and the PAINS alerts. After applying the structural alerts, we then set 

about defining descriptors and selection criteria for non-covalent reversible fragment 

libraries, monomer sets and lead-like libraries (Table 1). We report the final version we 

now use, which is the result of several rounds of iteration and optimization of the 

library selection parameters; so several of the early libraries were designed with slightly 

different criteria.  
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Although a number of key reports have evaluated the impact of aromatic ring 

count [24-26] and Fsp3 on solubility and compound developability within drug-like 

chemical space [27,28], in practice, we did not explicitly factor in the aromatic ring 

count, as the other parameters took care of this. As historical fragment libraries 

(including our own) sample limited shape diversity [15], which in practice may impact 

opportunities to introduce shape diversity [29], we introduced routine calculations of 

the principal moments of inertia (PMI). Computational tools of evaluating novelty and 

diversity included ECFP4 fingerprint analysis, principal component analysis (PCA) and 

commercial availability versus established libraries (see Table 1). 

Monomer Set Selection. Diverse monomer appendage sets were compiled to 

support our early hit- and lead-finding phases. The process for diverse monomer 

appendage set selection and purchase has evolved with the selection of each monomer 

set and was often dovetailed to the availability from the internal inventory. For 

example, selection of approximately 60 diverse primary and secondary amines included 

the following: 

1. Extracting amines from the eMolecules database, salt stripping and filtering based 

on commercial availability from a set of suppliers (Aldrich, Enamine, Fluorochem, 

Tyger, Acros, Chembridge, Key Organics, ChemDiv, Otava and Maybridge, Combi-

Blocks and Frontier) 
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2. Filtering compounds based on the properties described in Table 1 for monomer 

sets, which included in-house curated structural alerts. 

3. Clustering of the filtered compounds using the ECFP4 fingerprint and binning by 

molecular weight for visual selection by a focused group of experienced medicinal 

chemists. 

4. Purposely skewing the selection towards the lower molecular weight range within 

each cluster, to provide a greater diversity of cores of varying molecular weight and 

physicochemical properties. 

5. A final set selection by further splitting into bins to ensure maximal coverage of 

both fragment and lead-like chemical space: 30 monomers were selected with MW 

≤ 120, 20 with 120 < MW < 160 and 10 with 160 < MW ≤ 200. 

 

We selected subsequent monomer sets in a similar manner and have thus far 

included carboxylic acids, sulfonyl chlorides and aldehydes. Learning from initial 

experience resulted in the monomers being enumerated after the initial filtering of the 

eMolecules search to afford the capped products and then examples taken from each 

cluster by chemist’s eye selection. Cost, commercial availability and specific project 

requirements were factored into the final design of monomer sets. 
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Monomer Set Capping Fragment Library Design. Since the monomer sets were 

diverse, as defined by fingerprint analysis and visual inspection, we considered that 

“minimal functional group transformation” would give a diverse selection of functional 

group containing fragments (see Figure 6). Based on the case study by Nazaré et al., 

[20] the initial project focused on acetylation and mesylation of the amine monomer 

set and relevant inventory amines (see Scheme 1). 

We employed the following protocol to identify the most suitable fragments for 

synthesis and selected examples of the acetylated and mesylated amine monomer set 

are shown in Charts 1 and 2: 

1. Enumeration to give the acetylated and mesylated products. 

2. The virtual products were filtered according to the fragment properties in Table 1. 

3. Structural alert filters (PAINS, Eli Lilly and in-house) were applied [21-23]. 

4. Filtered compounds were clustered using the ECFP4 fingerprint (0.5 Tanimoto). 

5. Commercial availability of the exact compound within the eMolecules database 

was checked. In general, we avoided re-making commercially available 

compounds. However sometimes when the compound was part of an array, it was 

cost-effective to include it. 
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6. Tanimoto similarity of each compound to the current fragment library was 

calculated; however this was treated as a guide and all structures were inspected 

by a medicinal chemist before preparation.  

7. PCA (ECFP4) and PMI plots were generated for enumerated products to better 

understand the chemical diversity.  

 

In our platform, designed compounds were synthesized through in-house 

chemistry or through outsourcing. The fragment functional group capping initiative, as 

part of an academic-based drug discovery unit, provided an excellent opportunity to 

nurture undergraduate students on how to design and synthesize fragments. 

Undergraduate project students were paired with a mentor and provided with a set of 

enumerated fragments for a particular monomer set coupling reaction. Guiding of 

students by the mentor through the selection process, provided valuable training in the 

use of modern in silico prediction (StarDrop™ (www.optibrium.com)) and visualization 

(Vortex) software. The reagent sets were then selected and the students guided to 

identify robust and safe synthetic routes for parallel synthesis. The optimal synthetic 

route was identified with a trial set of compounds and the library was then prepared 

using parallel techniques, starting with 6 compounds and progressing towards 24 

compound arrays. As well as using the monomer sets, this approach was extended to 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 

 

commercially available building blocks and appropriate in-house project intermediates. 

This platform also has the advantage from a training context of being tunable, ranging 

from straightforward functional group interconversion to more complex scaffold 

synthesis. 

We extended the approach to a number of other types of chemistry, including 

urea formation (Figure 6) and cross-coupling of the monomer sets. This was rolled out 

initially to final (fourth) year project students, working in our laboratories and then 

subsequently to third year undergraduate students. The students gained a significant 

training in the parallel synthesis and purification of small polar compounds and 

excitement stimulated by production of novel compounds. 

 

Synthesis of Multiple Diverse Scaffolds from Common Intermediates. The next 

step was to identify flexible platforms for the synthesis of multiple unexplored diverse 

fragment scaffolds from readily available key intermediates. A pilot platform was based 

around the evaluation of fused bicyclic fragment frameworks described by Bemis and 

Murcko [5,6], in particular 6,5- and 6,6-fused bicyclic scaffolds, with the requirements 

of a saturated ring and sp3 vectors with diverse functional groups capable of forming 

varied pharmacophoric points. To better understand the existing landscape for such 

scaffolds, we conducted database searches and refined the output based on 
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commercial availability as well as property selection filters based on our guide criteria 

for fragment selection within Table 1. A selection of the output in Figure 7 shows an 

uneven distribution of the explored potential chemical space for a selected set of 

different vectors as well as decreased representation because of increased structural 

complexity through the addition of chirality and heteroatoms into the saturated six-

membered ring. From the authors’ experience, the fact that a compound is offered 

commercially does not necessarily mean it is readily available at a suitable cost, as 

compound suppliers often assign a synthesis time based on literature routes and a 

minimum scale. In our opinion, the output in Figure 7 provides a balanced approach for 

identifying compounds that may be available and are likely to be accessed via literature 

synthetic routes. 

To sample wide chemical space, we opted to identify common intermediates that 

could be prepared on a large scale and readily expanded into multiple structurally 

complex and diverse unexplored scaffolds. This approach led us to evaluate cyclic 

ketone building blocks, based on validated literature chemistry to make 

tetrahydroquinazoline, tetrahydroindazole and tetrahydrobenzothiazole 6,5- and 6,6-

fused bicyclic scaffold derivatives. These derivatives were targeted from three simple 

commercially available ketone starting materials, ethyl 4-oxocyclohexanecarboxylate 

(21: X = CH2CO2Et), N-Boc-4-piperidone (22: X = NBoc), and N-4-Boc-
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aminocyclohexanone (23: X = CHNHBoc), which were subsequently converted into 

diverse fused ring systems using divergent synthetic protocols (Scheme 2). These 

included α-substitution with N,N-dimethylformamide dimethyl acetal (DMF–DMA) to 

provide the corresponding enones 24–26 (24: X = CHCO2Et, 25: X = NBoc, and 26: X = 

CHNHBoc) and α-monobromination with Br2 to afford α-bromo ketones 27–29 (27: X = 

CHCO2Et, 28: X = NBoc, and 29: X = CHNHBoc). 

Acid-catalyzed cyclization of enone 24 with S-methylisothiourea afforded the 2-

(methylthio)-tetrahydroquinazoline 30, which was subsequently oxidized with m-

chloroperoxybenzoic acid (m-CPBA) to the corresponding sulfone 31. The reactive 2-

(methylsulfonyl) group of 31 was treated with ammonia, dimethylamine, and 

methylamine to access amines 32 (R1 = R2 = H), 33 (R1 = R2 = Me), and 34 (R1 = Me, R2 = 

H) respectively. 

Cyclization of enones 25 and 26 with the appropriate guanidine salts (Scheme 2), 

guanidine carbonate, 1,1-dimethylguanidine sulfate, methylguanidine hydrochloride 

provided a corresponding set of minimal amino-derived fragments 35 (X = NBoc, R1 = R2 

= H), 36 (X = CHNBoc, R1 = R2 = H), 37 (X = NBoc, R1 = R2 = Me), 38 (X = CHNBoc, R1 = R2 = 

Me), 39 (X = NBoc, R1 = Me, R2 = H), and 40 (X = CHNBoc, R1 = Me, R2 = H). Treatment of 

enones 24–26 with hydrazine hydrate afforded indazoles 41–43 (41: X = CHCO2Et, 42: X 

= NBoc, and 43: X = CHNHBoc), whereas coupling of α-bromo ketones 27–29 with 
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thioacetamide led to thiazoles 44–46 (44: X = CHCO2Et, 45: X = NBoc, and 46: X = 

CHNHBoc) (Scheme 2). Further reactions from these common intermediates could also 

be envisaged, such as reaction of enones 24–26 with hydroxylamine, cycloaddition 

reactions of the enones 24–26, or Robinson annulation of 21–23, followed by 

subsequent chemistry or building diverse ring systems from the ketone intermediates 

21–29 (Scheme 2).  

However for this study, having created a platform of diverse scaffolds, we next 

turned our attention on how to best represent potential larger lead-like arrays, by 

increasing functional group diversity and applying “capping” chemistry to generate 

more diverse fragments or to move them into lead-like space. To further diversify the 

functional groups of the 15 scaffolds in a parallel fashion, esters 32–34, 41, and 44 were 

reduced using lithium aluminium hydride to afford the corresponding alcohols 47–51 or 

hydrolyzed with NaOH to give acids 52–56. Acids 53, 54, and 56 were further coupled 

with methylamine or dimethylamine to afford the primary methyl amides 57–59, or the 

corresponding secondary dimethyl amides 60–62 respectively (see Scheme 3). 

Further examples are included in the Supporting Information. Of course many 

other derivatizations can be applied to the scaffolds in Scheme 3, such as reductive 

amination, ether formation, conversion of the carboxylate to a five-membered 

heterocycle, and so forth. 
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The above functional group modifications provided a more even sampling of 

potential pharmacophores for these 6,5- and 6,6-fused bicyclic scaffolds. These initial 

scaffolds are limited to a specific vector; however, we envisage that the methodology 

can be extended to different vectors, saturated ring sizes as well as further addition of 

heteroatoms into the saturated ring system. 

Evaluation of the Compounds. PCA (ECFP4) analysis of these diverse fragments 

showed that they were significantly different from the historical fragment library 

(Figure 8a). This was considered largely to be as a result of the synthetic design to 

incorporate a heteroaromatic ring fused to a sp3-saturated ring with a chiral vector of 

varied functional groups. PMI analysis was used to evaluate the 3D diversity of the 

fragments, due their relatively limited numbers of conformations due to their small size 

(Figure 8b) [30]. These fragments do not probe the more sphere-like region of the PMI 

plot, as the vectors explored provided a degree of rod- and disc-shaped character, but it 

is key to emphasize that these fragments are not flat and highly conjugated due to their 

design strategy (Figure 8c). To ensure that the new fragments were distinct from our 

historical fragment library, an ECFP4 fingerprint with a Tanimoto cutoff ≤ 0.6 was 

generally employed, although some compounds with higher Tanimoto similarity were 

included following visual analysis. Commercial availability (i.e., novelty) was determined 
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by searching eMolecules (Figure 8f); revealing that many compounds were not 

commercially available, enabling exploration of novel fragment chemical space. 

Evaluation of the commercial availability, shape and diversity for a range of the 

fragment sets synthesized to date are shown below, together with highlights of selected 

molecules (Figure 9). 

Plating, Quality Control, Solubility, and Stability. Compound quality and handling 

are key to the successful deployment of any screening library. This is particularly true in 

the area of fragment-based lead discovery where fragments may be routinely screened 

at concentrations up to 1 mM. When screening at such a high concentrations small 

amounts of impurity, can have a significant impact on the false positive rate and can 

lead to the wasteful deployment of valuable resources. To minimize wasted time and 

effort spent on following up artifacts, we established the following practices for quality 

control and compound handling. 

Upon synthesis, fragments were routinely analyzed from solid by 1H NMR and LC–

MS to confirm identity and ensure appropriate purity (> 95%) before registration in our 

compound management database. At this point the weighed sample was submitted to 

our compound-handling group and the data captured in the database used to drive 

solubilization protocols for preparation of stock solutions and samples for further 

characterization. Further characterization involved the collection and analysis of one-
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dimensional NMR spectra of an approximately 2 mM solution of the compound in 

phosphate buffer with suppression of the water signal by excitation sculpting [31]. 

Analysis of this data allowed further confirmation of identity, purity (> 95%) and 

allowed us to generate an estimate of solubility based on a comparison of the intensity 

of the compound signal with the DMSO-d5 peak. Water–LOGSY was also acquired for 

each compound to assess the levels of self-aggregation [32]. Further physicochemical 

characterization included kinetic solubility, by assesses the compound solubility in the 

range of 250 µM to 1 mM, and CHI logD (pH7.4) data on selected fragment. As 

expected, based on the in silico design predictions, the kinetic solubility was overall 

very good for the majority of the compounds, with only a handful with kinetic solubility 

between 250 µM to 1 mM (Figure 10a). Since fragment and lead optimization based 

drug discovery programs commonly use ligand efficiency metrics based on in silico 

predictions of logP and logD, we also obtain a good understanding of the correlation 

between measured and in silico predicted values for a scaffold at an early stage. The 

coefficient of determination (R2) for a plot of the in silico predicted logD (Stardrop™) 

versus measured CHI-logD (pH7.4)[33] for fragments with a suitable chromophore, 

showed a moderate correlation (Figure 10b) [34]. This data is helpful when making 

choices between fragment hits and facilitates better in-house CHI-logD predictions for 

hit expansion and lead orientated synthesis.  
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To ensure that compound quality is maintained throughout the lifetime of the 

library, a strict compound-handling regime has been implemented. Fragments are 

solubilized and held as a 200 mM DMSO solution in master plates. These master plates 

are used to create multiple daughter plates that are sealed and stored in low-humidity, 

inert atmosphere at –20 °C until required. Once in use, each daughter set is stored at 

room temperature and used for a maximum of six months. This important part of our 

compound management workflow minimizes the significant degradation that may be 

encountered when subjecting screening sets to multiple freeze–thaw cycles [35]. An 

important part of any fragment screening protocol would be confirmation of activity 

with fresh material that has been properly checked for identity and purity. 

 

CONCLUSION 

A successful academic-based platform has been set up to nurture both 

undergraduates and graduates to understand the importance of physicochemical 

properties in the design and synthesis of novel polar fragments. This powerful, yet 

general design and synthesis platform provides a much needed source of novel high-

quality diverse fragments to complement our internal library enhancement efforts. To 

date this platform has delivered 356 diverse compounds within our selected criteria. 

Screening of these compounds has already led to the identification of fragment hits and 
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the results will be presented at a future date. We intend to apply the lessons learned 

from current and future screens to feedback into the design and selection process. As 

such, we continue to expand our platforms to synthesize diverse scaffolds from 

common bulk intermediates, develop diverse monomer sets to support internal drug 

discovery programs as well as generate novel fragment and lead-like arrays through the 

training of undergraduates and graduates. Expansion of such platforms within the 

academic sector could significantly address the historical uneven exploration of 

chemical space and improve access to high quality and diverse fragment and lead-like 

chemical matter. Such an effort should significantly improve the probability of success 

for both academic- and industrial-based translational research and we are open to 

collaborate with parties interested in adopting or supporting such platforms. Whilst 

preparing this manuscript, we were encouraged to see the recent publication of a 

conceptually similar approach by Marsden et. al. towards the synthesis of diverse 

scaffolds that can be elaborated into novel lead-like chemical space [36]. 

 

Notes  

The authors declare a collaboration with Key Organics (http://www.keyorganics.net/) to 

make fragments (which have passed the plating, quality control, solubility and stability 
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criteria) available for purchase, with the view of investing proceeds into additional 

design and synthesis platforms. 
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Figure 1. The importance of synthetic methodology to provide fragment, lead-like 

and drug-oriented libraries to initiate and drive translational drug discovery.  

Figure 2. The effect of “capping” a carboxylic acid can give rise to a number of 

different pharmacophores.  

Figure 3. Nazaré et al.[20] case study showing the superadditive effect of linking 

amide and sulfonamide functionalized fragments to afford a potent factor Xa inhibitor. 

Figure 4. Typical workflow. The precise order of steps was sometimes varied. 

Figure 5. Strategy for compiling fragment and lead-like libraries. 

Figure 6. Example monomer sets and minimal functional group transformations. 

Figure 7. Database substructure searches for selected 6,5- and 6,6-fused bicyclic 

scaffolds with a functional group, based on commercial availability as well as property 

selection filter (MW ≤ 250, LogP ≤ 2.5, HBD ≤ 3, HBA ≤ 6, PSA ≤ 90 Å, RotB ≤ 3).  

Figure 8. (a) PCA of synthesized diverse scaffolds (green) vs original fragment 

library (grey). (b) PMI plot of synthesized diverse scaffolds (green) vs original fragment 

library (grey). (c) Fsp3 of synthesized diverse scaffolds. (d) Intralibrary Tanimoto 

similarity of synthesized diverse scaffolds using the ECFP4 fingerprint. (e) Fsp3 of 

original fragment library. (f) Commercial availability of synthesized diverse scaffolds 

(eMolecules). 
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Figure 9. (a) PCA of capped monomer sets (green) vs original fragment library 

(grey). (b) PMI plot of capped monomer sets (green) vs original fragment library (grey). 

(c) Fsp3 of capped monomer sets. (d) Intralibrary Tanimoto similarity of capped 

monomer sets using the ECFP4 fingerprint. (e) Fsp3 of original fragment library. (f) 

Commercial availability of synthesized capped monomer sets (eMolecules).  

Figure 10. (a) Kinetic solubility versus in silico predicted logD. (b) in silico predicted 

logD versus measured CHI-logD (pH7.4), showing the line of unity.  

Scheme 1. Acetylation and mesylation of the amine monomer set and inventory 

amines: Reagents and conditions: (a) CH3COCl, DIPEA, DCM, rt; (b) CH3SO2Cl, DIPEA, 

DCM, rt. 

Scheme 2. Synthesis of 6,5- and 6,6-fused bicyclic scaffold derivatives. Reagents 

and conditions: (a) DMF–DMA, Et3N, microwave irradiation at 130 °C for 24, or DMF–

DMA, toluene, 100 °C for 25 and 26; (b) Br2, AlCl3, MeCN (27) or EtOAc (28 and 29), 0 °C 

Æ rt; (c) S-methylisothiourea, 4 M dioxane HCl solution, DMSO, 130 °C; (d) m-CPBA, 

DCM, rt; (e) 33% aqueous NH3 solution, dioxane, microwave irradiation at 160 °C for 32, 

or dimethylamine and methylamine, THF, microwave irradiation at 160 °C for 33 and 34; 

(f) guanidine carbonate, KOAc, EtOH, microwave irradiation at 100 °C for 35 and 36, or 

1,1-dimethylguanidine sulfate, and methylguanidine hydrochloride, Cs2CO3, DMSO, 80 

°C for 37–40; (g) NH2NH2, H2O, EtOH, 40 °C (41), or rt (42 and 43); (h) thioacetamide, 
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DMF, 80 °C for 44, or thioacetamide, EtOH, microwave irradiation at 100 °C for 45 and 

46. 

Scheme 3. Capping chemistry to increase diversity. Reagents and conditions: (a) 

LiAlH4, THF, rt; (b) NaOH, MeOH, reflux; (c) methylamine (57–59) or dimethylamine (60–

61), DIPEA, PPA, DCM, rt; (d) TFA, DCM, rt; (e) CH3COCl (64 and 67) or CH3SO2Cl (65 and 

68), DIPEA, DCM, rt. 

Chart 1. Selected fragments from acetylation of the amine monomer set 

Chart 2. Selected fragments from mesylation of amine monomer set 

Table 1. Descriptors and guide selection criteria employed for non-covalent reversible 

fragment libraries, monomer sets and lead-like libraries 
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Click here to download high resolution image



e-component
Click here to download e-component: Supporting Information.pdf



e-component
Click here to download e-component: DDU_structural_alerts_DDT.sdf



e-component
Click here to download e-component: Lilly_structural_alerts_DDT.sdf



e-component
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Table 1. Descriptors and guide selection criteria employed for non-covalent reversible 
fragment libraries, monomer sets and lead-like libraries 

Fragment  
library 

Monomer sets 
Lead-like  
library 

HAC 5–18 
LogP ≤ 2.5 
LogD ≤ 2.5 
HBD ≤ 3 
HBA ≤ 6 
PSA ≤ 90 Å 
RotB ≤ 3 
Ar rings ≤ 3 

MW ≤ 200 
LogP ≤ 2 
HBD ≤ 3 
RotB ≤ 3 
Ar rings ≤ 3 

 

HAC 14–26 
LogP –1 to 3 
Ar rings ≤ 3 
 

Commercial availability, shape & diversity 
eMolecules 
sp3 Content 

PMI (used for fragment library to impart understanding of shape where rotatable 
bonds ≤ 3) 

PCA (ECFP4) 
ECFP4 fingerprint 

Medicinal chemists eye (Vortex) 

Structural alerts 

PAINS, Eli Lilly and DDU integrated set 
Physicochemical data were calculated using StarDrop™ (www.optibrium.com). clogD values were 
calculated at pH 7.4 

Table
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x A platform for the production of novel, high quality fragment and lead-like libraries. 
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