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Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical

setting. However, a long term of phenobarbital administration in pregnant women

may produce side effects on embryonic skeletogenesis. In this study, we aim to

investigate the mechanism by which phenobarbital treatment induces developmental

defects in long bones. We first determined that phenobarbital treatment decreased

chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos.

Phenobarbital treatment also suppressed mineralization in both in vivo and in vitro long

bone models. Next, we established that phenobarbital treatment delayed blood vessel

invasion in a cartilage template, and this finding was supported by the down-regulation

of vascular endothelial growth factor in the hypertrophic zone following phenobarbital

treatment. Phenobarbital treatment inhibited tube formation and the migration of human

umbilical vein endothelial cells. In addition, it impaired angiogenesis in chick yolk sac

membrane model and chorioallantoic membrane model. In summary, phenobarbital

exposure led to shortened lengths of long bones during embryogenesis, which might

result from inhibiting mesenchyme differentiation, chondrocyte proliferation, and delaying

mineralization by impairing vascular invasion.

Keywords: phenobarbital, chick embryos, chondrogenesis, mineralization, angiogenesis, osteogenesis

INTRODUCTION

Phenobarbital (PB), an antiepileptic drug (AEDs), is a sedative hypnotic barbiturate and an
anticonvulsant drug. It is commonly used to control their seizures in pregnant women with
epilepsy (Lowe, 2001). It is also used to treat bipolar disorder, migraine prophylaxis, cancer and
neuropathic pain (Wlodarczyk et al., 2012). Importantly, AEDs are used to avoid complications
in pregnant women with epilepsy. Because pregnant women still develop status epilepticus, the
mortality rates of the mother and the baby will increase if she stops taking AEDs (Ahir and Pratten,
2014). In addition, epilepsy in pregnancy could lead to fetal intracranial hemorrhage and heart rate
alterations (Johnson et al., 1989). However, the side effects include classic osteomalacia (Hahn et al.,
1978), craniofacial growth retardation, cleft palate and congenital heart defects (Azarbayjani and
Danielsson, 1998; Holmes et al., 2004) when the concentration of AEDs is excessive. Therefore, it
is absolutely necessary to monitor AEDs application in clinical settings to reduce fetal mortality
and to avoid teratogenicity (Ornoy, 2006). Although as a kind of commonly used AEDs clinically,
there has been little evidence gathered on the side effects of PB on embryogenesis, except that a few
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studies on the mechanisms of PB-induced embryonic
cardiovascular malformation (Schmitz et al., 2010b; Ahir
and Pratten, 2014), it remains unclear about the explicit
mechanism how PB treatment affects bone development during
embryogenesis.

Vertebrate skeletal development occurs by two distinct
mechanisms: intramembranous and endochondral ossification
(Stickens et al., 2004). Intramembranous ossification occurs in
the formation of flat bones such as the skull vault, cranium and
clavicle (Ornitz and Marie, 2002). Most mammalian bones form
through endochondral ossification such as long bone of the limbs,
basal bones of the skull, vertebrae, ribs and the pelvis (Cheng
et al., 2016).

As the prophase of endochondral ossification, chondrogenesis
is regulated by a large number of signaling molecules, such
as Sox9 (Zhou et al., 2015). Chondrocytes in the hyaline
cartilage begin to form a specialized extracellular matrix that
synthesizes type II collagen (Araldi and Schipani, 2010), and
the chondrocytes near the ends of the cartilaginous template
proliferate rapidly, while those in the center of the template exit
the cell cycle, undergo hypertrophy and produce type X collagen
to replace type II collagen (Dao et al., 2012). The programmed
death of hypertrophic chondrocytes and blood vessel invasion
indicate that ossification has begun. The cartilage is gradually
replaced by bone while the bone marrow forms (Cheng et al.,
2014). Along with bone development, bone marrow extends
toward the epiphyseal growth plate, which is made up of well-
demarcated zones of cells (Hall and Miyake, 1992). The resting
or reserve zone (RZ) near the ends of the cartilaginous template
supplies cells to the proliferating zone (PZ), in which the cells
are arranged in columns and are always proliferating; then, those
cells begin to differentiate into hypertrophic chondrocytes to
form the hypertrophic zone (HZ).

Being a rigid and tightly compacted organ, bone is also
highly vascularized (Simon and Keith, 2008). Angiogenesis
plays a crucial role in bone formation and repair (Provot
and Schipani, 2007). A well-established vascular system in
bone tissue is indispensable for endochondral ossification
(Kanczler and Oreffo, 2008). A key feature of the endochondral
ossification process is that the cartilage template will be gradually
replaced by bone tissues along with blood vessel invasion
(Kronenberg, 2003; Provot and Schipani, 2005). Next the
increasing numbers of blood vessels introduce more osteoblast
progenitors which increase endochondral ossification. Regarded
as a coupling process, osteogenesis-angiogenesis is essential for
keeping homeostasis during bone development, and it may also
aid in finding the target of therapies for bone regeneration and
repair. A large number of signaling molecules are involved in
angiogenesis to regulate the production of new blood vessels from
a pre-existing vasculature (Polverini, 2002; Carmeliet, 2003).
A vital angiogenesis regulator in the cartilaginous template
replacement is vascular endothelial growth factor (VEGFA),
which is released by the late hypertrophic chondrocytes and
induces blood vessels to invade the cartilage model (Pfander
et al., 2004; Zelzer and Olsen, 2005). The receptors of VEGFA,
VEGF-R1 (Flt-1), and VEGF-R2 (KDR/Flk-1) are also important
for angiogenesis during embryonic osteogenesis (Shibuya, 2006).

Many other signalingmolecules, such as hypoxia-inducible factor
1α (HIF-1α) and parathyroid hormone-related protein (PTHrP),
play important roles during mutually dependent osteogenesis
and angiogenesis (Bentovim et al., 2012; Kigami et al., 2013).

In this study, we employed chick embryos as model to explore
the effects of PB on bone development during embryogenesis
in vivo, and then combined in vitro cell cultures to investigate the
role of angiogenesis in PB-interfered osteogenesis, to adequately
assess the true impact of PB on skeletogenesis.

MATERIALS AND METHODS

Embryo Manipulation
Fertilized Leghorn eggs were obtained from the Avian Farm
of the South China Agriculture University (Guangzhou, China)
and were incubated in a humidified incubator (Hamburger and
Hamilton) (Misske et al., 2007). PB (98% purity, Merck) were
dissolved in 0.9% sterile saline and then stored in 4◦C. The
chick embryos were exposed to different concentrations of PB
(0.04, 0.4, or 4mM) or 0.9% sterile saline (control) for 15.5 days.
Briefly, approximately 200µL of 0.9% sterile saline or 0.04, 0.4,
or 4mM PB was carefully injected into a small hole made in the
air chamber of the egg every other day from day 1.5 until day
17. The surviving embryos were harvested for skeleton staining
(n = 6 for each group).

Alcian Blue and Alizarin Red Staining
To visualize the skeleton, the chick embryos were stained with
alcian blue and alizarin red as previously described (Schmitz
et al., 2010a). Day-17 chick embryos were freed from adherent
tissue, fixed in 95% ethanol for 3 days, stained for cartilage
with alcian blue and counterstained for bone with alizarin
red (Solarbio, Beijing, China). Long-bone tissues were carefully
photographed using a stereomicroscope (Olympus MVX10,
Japan). The length of the alizarin red-stained portion of each
radius, ulna, tibia and phalanx was quantified using Image Pro-
Plus 5.0 (Media Cybernetics).

Phalange Explant Cultures
The fertilized eggs were incubated for 14 days; then, the growth
plates of phalanges were isolated and randomly used for control
(0.9% sterile saline) or PB treatment (0.4 or 1.6mM). The growth
plates were cultured in F-12 (Myclone, USA) supplemented with
10% fetal bovine serum (FBS, Gibco, Gaithersburg, MD, USA)
containing PB or 0.9% sterile saline (control) at 37◦C and 5%
CO2 (Galaxy S, RS Biotech, UK). After incubation for 72 h, the
cultured growth plates were examined using semi-quantitative
RT-PCR analysis (n = 3 for each group).

Angiogenesis Assessment of Yolk Sac
Membrane (YSM)
Fertilized eggs were incubated for 2.5 days and then placed into
a sterilized glass dish with the YSM facing upward (n = 6
for each group). Two silicone rings were placed on top of the
leading edge of the blood vessels marked with ink to indicate
the starting position of the YSM within the ring. 50µL of 0.9%
sterile saline (control) was introduced into the ring located on
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the left side of the YSM, marked in black. Fifty microliter of 0.4
or 1.6mM PB was introduced into the ring marked in red on the
right side of the same embryo. The extent of the expansion of
the blood vessel plexus inside the silicone rings was determined
and photographed after incubation for 12–36 h. The density of
blood vessels in the YSM was analyzed using Image Pro-Plus 5.0
software. The blood vessel density is expressed as the percentage
of the blood vessel area in the whole stereomicroscopic field
(He et al., 2014). The extended distance of blood vessels was
also quantified. Some YSMs were also embedded in paraffin
wax, serially sectioned at 5µm (Leica RM2126RT, Germany) and
stained with hematoxylin & eosin (H&E). The rest of the YSMs
were harvested for RNA isolation.

Angiogenesis Assessment in
Chorioallantoic Membrane (CAM)
Chick embryos were incubated until day 7.5 (n = 3 for each
group), when the CAM is well developed. The embryos were
treated with PB (0.4 or 1.6mM) or 0.9% sterile saline (control)
for 48 h, and all surviving embryos were harvested for analysis.
The CAM and accompanying blood vessels in the control
and PB-treated embryos were photographed using a Canon
Powershot SX130 IS digital camera (12.1M Pixels). The blood
vessel density was quantified as described above for assessing
angiogenesis in the YSM. The CAMs were also harvested for
different biochemical assays as described below.

Histological Analysis and
Immunofluorescence Staining
Seventeen-day-old embryos treated with PB were harvested and
fixed in 4% paraformaldehyde (PFA). The phalanges of the
embryos were decalcified using a 10% EDTA solution in 1mM
PBS (pH 7.4) for 7 days at 4◦C and were then embedded in
paraffin. The samples were serially sectioned at 5µm thicknesses
using a microtome (Leica RM2126RT, Germany). Longitudinal
sections of these bones were produced and further stained with
H&E using a standard protocol for histological observations
(Schmitz et al., 2010b) (n = 4 for each group). The extent of
apoptosis in the bone tissues was detected by TUNEL analysis
using an in situ Cell Death Detection Kit (Roche, Switzerland)
(n = 4 for each group). The staining was performed according
to the manufacturer’s protocol and was adapted for bone section
labeling. Immunofluorescence staining was performed on some
sections of the phalanges using a monoclonal primary antibody
against p-Histone H3 (pH3, 1:400, Santa Cruz Biotechnology)
or a rabbit polyclonal PCNA (1:100, Santa Cruz Biotechnology)
at 4◦C overnight, followed by Alexa Fluor 555-labeled anti-
rabbit IgG secondary antibody (1:1000, Invitrogen, CA, USA)
(n = 5.6 for each group). The sections were counterstained
with 4′-6-diamidino-2-phenylindole (DAPI, 5µg/mL; Life Tech,
USA) to reveal the nuclei and were finally photographed using an
Olympus IX51 microscope. Histomorphometry was performed
on TUNEL-, pH3- and PCNA-immunofluorescent sections of
phalange growth plates using Image Pro-Plus 5.0 software. Cell
proliferation was evaluated as a percentage of pH3+ cells or
PCNA+ cells relative to the corresponding cells of the control

groups. Cell apoptosis was evaluated as a percentage of TUNEL+

cells relative to the corresponding cells of the control groups.

Cell Culture, Immunofluorescence
Staining, and F-Actin Staining
Human umbilical vein endothelial cells (HUVECs, a kind gift
from Zhi Huang’s lab) and MC3T3-E1 cells (a mouse pre-
osteoblastic cell line that was a gift from Chao Wan’s lab) were
cultured in a humidified incubator at 5% CO2 and 37◦C in
6-well plates (1×106 cells/ml) containing DMEM/F12 (Myclone,
USA) supplemented with 10% FBS; cells were exposed to PB
(0.4 or 1.6mM) or control (0.9% sterile saline). The cells
were photographed using an inverted fluorescence microscope
(Nikon, Ti-u, Japan) linked to NIS-Elements F3.2 software. After
incubation for 24 h, these cultures were incubated with p-Histone
H3 primary antibody (pH3, 1:400, Santa Cruz Biotechnology)
at 4◦C overnight (n = 6 for each group). Then, Alexa Fluor
555-labeled anti-rabbit IgG secondary antibody was used for
visualizing the primary antibody. For F-actin detection, cultured
cells were stained using phalloidin-Alexa Fluor 555 (1:500,
Invitrogen) at room temperature for 2 h. All the cells were
counterstained with DAPI at room temperature for 1 h. Cell
proliferation was evaluated as a percentage of pH3+ HUVECs or
pH3+ MC3T3-E1 cells relative to the corresponding cells of the
control groups.

Cell Counting Kit-8 (CCK8) Assay
The viability of HUVECs and MC3T3-E1 cells was assessed
using a modified CCK8 assay (Dojindo Molecular Technologies,
Japan). All of the cells were cultured in 96-well plates (2.5 ×

104 cells/ml) as described above and were exposed to PB (0.1,
0.2, 0.4, 0.8, or 1.6mM) or the control (0.9% sterile saline).
After 24 h, 10µL of CCK8 (5 g/L) was added into the 96-well
plates, followed by incubation for 4 h at 37◦C. The absorbance
values were measured at 450 nm using a Bio-Rad Model 450
Microplate Reader (Bio-Rad, CA, USA). Cell viability was
indirectly established using the ratio of the absorbance value of
PB-treated cells relative to the control (n = 6 for each group).

Morphometry of Mesenchymal
Differentiation of Cultured Cells
The mesenchymal cells were dissected from 4.5-day (Hamburger
and Hamilton Stage 23, HH23) chick embryos and were insolated
as previously described (Ahrens et al., 1977; San Antonio and
Tuan, 1986; Delise and Tuan, 2002). Briefly, limb buds were
dissected from HH23 chick embryos and treated with trypsin
(0.25%; Life Tech, USA), the ectoderm was removed and limb
buds were gently dissociated into single cells. The cells were
cultured in 6-well plates (2.5 × 104 cells/ml) containing DMEM
supplemented with 10% FBS and were exposed to either PB
(0.4 or 1.6mM) or the control (0.9% sterile saline). Following
treatment with different concentrations of PB for 2 weeks,
the cultures were fixed in 95% ethanol for 20min and then
stained with 1% toluidine blue at room temperature overnight
to demonstrate the chondrogenic differentiation.
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Micromass Cell Culture and Morphometry
of Chondrogenic Matrix Production by
Cultured Cells
Micromass cultures were produced from limb bud mesenchymal
cells as previously described (Delise and Tuan, 2002). Briefly,
limb buds were dissected from HH23 chick embryos and were
treated with trypsin; the ectoderm was removed and limb buds
were gently dissociated into single cells. The cells were suspended
in DMEM (Life Tech, USA) with 10% FBS at a density of 2.0×107

cells/mL and were spotted as 10µL droplets per well on a 6-well
plate. After 3 h of pre-incubation, all the wells were flooded with
500µL of culture medium. The cells were incubated at 37◦C and
5% CO2 in an incubator (Galaxy S, RS Biotech, UK). PB (0.4
or 1.6mM) dissolved in DMEM with 10% FBS was introduced
on the second day after plating. The control cultures received
0.9% sterile saline only. The culture medium was changed every
2 days.After incubation for 3 days, the cultured cells were fixed in
95% ethanol and then stained with 1% alcian blue dye (pH 1.0)
overnight at room temperature. The alcian blue-stained cartilage
nodules that formed in the absence or presence of PB were
photographed using an inverted microscope (Nikon Eclipse Ti-
U, Japan). The average size (area) of the chondrogenic nodules
was digitized as total stain intensity/nodule number (n = 4 for
each group).

Mineralization of MC3T3-E1 Cultures
MC3T3-E1 cells were cultured as described above for the
micromass cell cultures. After treatment with PB (0.4 or 1.6mM)
for 7 days, the cultures were fixed in 95% ethanol for 20min
and then were stained with 2% alizarin red dye (pH 4.2) at room
temperature overnight to detect the calcium deposits (n = 3 for
each group).

Tube Formation Assay
Each well of a 12-well plate was coated with 200µL of a
mixture of Matrigel (BD Biosciences, USA); then, the plate was
incubated at 37◦C for 30min to promote gelling. HUVECs
were resuspended in DMEM/F12 medium with 10% FBS in the
absence or presence of PB (0.4 or 1.6mM), and the final volume
each well was 1ml. Photographs were taken after incubation for
4–8 h using an inverted microscope (Nikon Eclipse Ti-U, Japan)
at the middle of each well. The average number of tubules was
calculated using the examinations of six separate microscopic
fields. Tube formation in the presence of PB was compared to
tube formation in media with 0.9% sterile saline as the control or
the control vector (n = 3 for each group).

Scratch-Wound Assay
HUVECs were seeded in 6-well plates with DMEM/F12 medium.
At confluence, a wound was induced by scratching themonolayer
with a 1-mL pipette tip. The cells were then washed 3 times with
sterile PBS. HUVECs were incubated in serum-free DMEM/F12
medium with PB (0.4 or 1.6mM) or 0.9% sterile saline (control)
at 5% CO2. Images were acquired at 0, 12, 24, and 36 h post-
scratching. The images were taken using an inverted microscope
(Nikon Eclipse Ti-U, Japan) (n = 6 for each group).

Semi-Quantitative RT-PCR
Total RNA was extracted from the cells and tissues using a
Trizol kit (Invitrogen, USA). First-strand cDNA was synthesized
to a final volume of 25µL using a SuperScript RIII first-
strand kit (Invitrogen, USA). Following reverse transcription,
PCR amplification of the cDNA was performed using chick-
specific primers. The primers sequences are provided in
Supplementary Figure 1. The PCR reactions were performed
using a Bio-Rad S1000TM Thermal cycler (Bio-Rad, USA) as
previously described (Ahir and Pratten, 2014). The resolved PCR
products were visualized using a transilluminator (SYNGENE,
UK), and photographs were captured using a computer-assisted
gel documentation system (SYNGENE). The intensity of the
fluorescently stained bands was measured and normalized using
Image Pro-Plus.

Data Analysis
Data analyses and construction of statistical charts were
performed using Graphpad Prism 5 (Graphpad Software, CA,
USA). The results were presented asmean± SD. All comparisons
among groups were made using ANOVA or Student’s t-test.

ETHICS STATEMENTS

This study was approved by the Institutional Animal Care and
Use Committee in Jinan University Medical College, Guangzhou,
China and all efforts were made to minimize suffering.

RESULTS

PB Treatment Delays Endochondral
Ossification and Shortens Long Bones
To investigate the effect of PB on skeletal development,
we performed alcian blue/alizarin red staining to
examine skeletal development in detail (Figures 1A–C,
Supplementary Figures 2A,B) and observed that exposing
chick embryos to 0.4mM PB caused a marked defect in the
ossification of several cartilage-based structures. In the axial
skeleton, the defects in endochondral ossification were evident
in the vertebral column (Supplementary Figures 2A’,B’).
Simultaneously, in the appendicular skeleton at the level
of the limbs, 0.4mM PB treatment impaired endochondral
ossification centers in the phalanges (Figures 1D,F,H), the
radius and ulna (Supplementary Figures 2A”,B”), and the
tibia (Supplementary Figures 2A”’,B”’). The ossification of
phalanges, however, was indistinguishable between the control
embryos and the embryos treated with 0.04mM PB, suggesting
that lower concentrations of PB do not affect ossification
(Figures 1E,H). We did not show the embryos treated with
4mM PB because of their high mortality rates (Figure 1G).
The length of the phalanges was measured in control and PB
(0.4mM) treated group (Figure 1I, Supplementary Table 1).
For the ulna, the rate of alizarin red+ staining was measured
between control and PB treatments and statistical analyzed
(Supplementary Figure 2C, Supplementary Table 1). For
the radius, the rate of alizarin red+ staining was measured
between control and PB treatments and statistical analyzed
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FIGURE 1 | Alcian blue and alizarin red staining of the phalanx and assessment of cell viability following PB treatment. Early chick embryos (day 1.5) were

treated with PB (0.04, 0.4, or 4mM) for 15.5 days; then, the skeletal structures were stained with alcian blue and alizarin red dyes. (A–C) Control embryo (A), embryos

treated with 0.04mM (B) or 0.4mM PB (C). (D–F) Representative images of phalanges from control (D) and PB-treated (E,F) chick embryos at day 17. (G) Bar graph

showing embryonic mortality when embryos were exposed to different concentrations of PB. (H) Bar graph comparing the rate of alizarin red+ phalanges in all of the

phalanges between the control and PB-treated groups. (I) Bar graph comparing the length of phalanges between the control and 0.4mM PB-treated groups. (J)

Semi-quantitative RT-PCR and bar graphs showing the expression of Runx-2, ALP-L and Col1α1 in phalanges following 0.4mM PB treatment. (K,L) Bar graphs

showing the viability of MC3T3-E1 cells (K) and HUVECs (L) after 0.9% sterile saline (control) or PB (0.1–1.6mM) treatment for 24 h. Scale bars = 1 cm in (A,B) and

2mm in (D–F). *P < 0.05, **P < 0.01.

(Supplementary Figure 2D, Supplementary Table 1). For
the tibia, the rate of alizarin red+ staining was measured
between control and PB treatments and statistical analyzed
(Supplementary Figure 2E, Supplementary Table 1).
The length of ulna was measured in control and PB
(0.4mM) treated group (Supplementary Figure 2F,
Supplementary Table 1). The length of radius was
measured in control and PB (0.4mM) treated group
(Supplementary Figure 2G, Supplementary Table 1). The
length of tibia was measured in control and PB (0.4mM) treated
group (Supplementary Figure 2H, Supplementary Table 1).
RT-PCR data showed that PB treatment down-regulated
osteogenesis-related genes, including Runx-2, ALP-L and Col1α1
(Figure 1J, Supplementary Table 1).

Next, we used MC3T3-E1 cells and HUVECs to test the
effect of PB on cell viability. MC3T3-E1 cell viability was
inhibited by PB in a dose-dependent manner in comparison
to that of the control (Figure 1K, Supplementary Table 2),
as was HUVEC viability in comparison to that of the
control group (Figure 1L, Supplementary Table 2). These
results imply that PB treatment during embryogenesis
shortened embryonic long bones and inhibited mineralization
in vivo.

PB Treatment Inhibits Chondrogenesis
To investigate whether PB could affect mesenchyme
differentiation, the limb buds of HH23 chick embryos were
dissected into single cells and were then cultured in a monolayer
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in vitro for 2 weeks. The cells were stained with toluidine blue to
verify that they were chondrocytes that had differentiated from
mesenchyme (arrowheads in Figures 2A–C). In the presence
of PB, the number of chondrocytes was reduced in comparison
with that of the control group, suggesting that PB inhibits
chondrogenesis. To further confirm this result, the high-density
micromass culture system of limb bud mesenchymal cells
was used. In this model, chondrogenesis is initiated when the
mesenchymal cells start to condense and aggregate to form
large nodules. These nodules appear morphologically similar to
cartilage. After 3 days of culture, the nodules began to produce

an extracellular matrix (Mello and Tuan, 1999). The size of alcian
blue-positive cartilaginous nodules in PB was smaller than those
of the control group (Figures 2D–F). We further measured the
alcian blue-positive area in the absence or presence of PB and
found that it was consistent with the results from the alcian
blue staining (Figure 2G, Supplementary Table 3). RT-PCR
showed that PB exposure down-regulated chondrogenesis-
related genes, including SOX-9 (n = 3 for each group)
and Col2α1 (Figure 2H, Supplementary Table 3). These
observations indicate that PB treatment triggered a delay in
chondrogenesis.

FIGURE 2 | PB treatment effects on the chondrogenesis of chick mesenchyme in vitro. Alcian blue staining was performed on the micromass cultures treated

with various concentrations of PB. The limb buds of HH23 chick embryos were dissected into mesenchymal cells and were cultured in presence of different

concentrations of PB. (A–C) Representative light micrographs of the mesenchyme cell cultures treated with 0.9% sterile saline (control, A), 0.4mM PB (B), or 1.6mM

PB (C) for 2 weeks. (A’–C’) Representative images of toluidine blue-stained mesenchyme cells, which were incubated with 0.9% sterile saline (control, A’), 0.4mM PB

(B’), or 1.6mM PB (C’) for 2 weeks. (D–F) Representative micrographs of alcian blue-stained micromass cultures, which were incubated with 0.9% sterile saline

(control, D), 0.4mM PB (E), or 1.6mM PB (F) for 72 h. (G) Bar chart showing the average size (area) of chondrogenic nodules formed in the presence of 0.9% sterile

saline or PB after 72-h incubation. (H) Semi-quantitative RT-PCR and bar graph showing the expression of Sox-9 and Col2α1 in the cell mass culture following PB

treatment. Scale bars = 300µm in (A–C), 150µm in (A’–C’), and 500µm in (D–F). *P < 0.05, **P < 0.01.
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PB Treatment Expands the Hypertrophic
Zone and Suppresses Chondrocyte
Proliferation
To explore the mechanism of delayed endochondral ossification
in PB-treated chick embryos, we first performed H&E staining in
the growth plate. The H&E stained phalanx sections showed that
the HZ in the PB groups was longer than in the control group.
Moreover, the PZ in the PB groups was shorter than in the control
group (Figures 3A,B). For the growth plate, the rates in different
zones are shown in Figure 3C and Supplementary Table 4.

To exclude the possibility that the expansion of HZ resulted
from increased chondrocyte proliferation, we examined the
proliferation rate of chondrocytes in the PZ or RZ using
pH3 or PCNA immunofluorescence staining. The results
revealed fewer pH3+ or PCNA+ cells in the RZ and PZ
of the growth plates exposed to PB (Figures 3D–F,D’–E’,
Supplementary Figures 3A–F,A’–D’, Supplementary Table 4).
These results suggest that expanded HZ was not associated with
increased cell proliferation, but it may be related to the decreased
long-bone length in the PB-treated 17-day-old chick embryos.

To determine whether the expanded HZ was associated
with the reduction of cell death, we examined apoptosis in
RZ and PZ using the TUNEL assay. There was no apparent
difference in the RZ or PZ between the PB and control groups
(Supplementary Figure 3G–N,G’–L’, Supplementary Table 4).
These results suggest that an expanded HZ was not associated
with decreased cell death. However, the percentage of apoptotic
cells in the HZ in PB-treated group was less than that
of the control group (Figures 3G–J, Supplementary Table 4),
suggesting that PB might delay the ossification of long bones.

These data indicate that the expansion of the HZ in the PB
growth plate is not caused by increased proliferation or decreased
apoptosis of chondrocytes in RZ or PZ. Therefore, the shortened
length of long bone may be due to the decreased proliferation,
and the hypertrophic zone phenotype may be caused by the
ossification defect.

PB Exposure Delays Ossification of Long
Bones and Mineralization in MC3T3-E1
Cultures
To explore whether the expanded hypertrophic zone resulted
from a defect in ossification, we performed H&E staining
on the vertical sections of phalanges and measured the area
of the mineralized zone of the phalanges (Figures 4A–C,
Supplementary Table 4). We observed that the mineralized zone
of the phalanges was narrowed by the PB treatment, suggesting
that PB natively affects the ossification of long bones.

To further determine the inhibitory effect of PB on
ossification, we used MC3T3-E1 cells to investigate the
possible PB effects on the function of osteoblasts. We
already showed that PB inhibited MC3T3-E1 cell viability
in a dose-dependent manner. This inhibitory effect of PB
was further confirmed by the pH3 immunofluorescent
staining of PB-treated MC3T3-E1 cells (Figures 4D–G,
Supplementary Table 5). Actin polymerization was determined
using phalloidin staining. We observed that PB remarkably

weakened the actin polymerization and caused the cells
to lose their polarities (Figures 4H–J). The high-density
micromass culture system stained with alizarin red dye also
showed that PB significantly decelerated the mineralization of
MC3T3-E1 cultures compared with that of the control culture
(Figures 4K–N, Supplementary Table 5). Furthermore, we
examined the expression of osteoblast markers using semi-
quantitative RT-PCR analysis, including Col1α1, ALP-L, and
OPN (Figure 4O, Supplementary Table 5). Taken together,
these data reveal that the PB treatment caused a delay in
the ossification of long bones and inhibited the cytoskeletal
organization of MC3T3-E1 cells.

PB Treatment Inhibits Angiogenesis In vivo

and In vitro
To discover whether the delayed ossification phenotype results
from a defect of vascular invasion, we performed H&E staining
on the marrow cavity of phalanges at day 17 and found that
the number of blood vessels (arrowheads in Figures 5A’–B”) in
the PB-treated group was less than that in the control group.
This observation showed that PB delayed vascular invasion
in long bones. Then, we isolated the growth plates from the
14-day-incubated embryos and cultured those in the absence
or presence of PB for 72 h. The expression of Col10α1 and
VEGFA was determined using semi-quantitative RT-PCR. The
former is a specific marker of hypertrophic chondrocytes,
and the latter is an angiogenesis-related gene (Figure 5C,
Supplementary Table 5).

To further explore the role of PB in angiogenesis, we
used HUVECs to conduct tube formation assays and scratch-
wound assays. First, the tube formation assay showed that
PB treatment restricted tube formation compared to that
of the control group (Figures 5D–J, Supplementary Table 5).
Meanwhile, the scratch-wound assay showed that PB treatment
for 12 h (Figures 6A’–C’), 24 h (Figures 6A”–C”) or for 36 h
(Figures 6A”’–C”’) inhibited the cell migration distance toward
the midline along with incubation time in comparison with
that of the control group (Fig. 6D). Both the area (Figure 6E,
Supplementary Table 5) and number of migrated cells toward
the midline (Figure 6F, Supplementary Table 5) were reduced
by 36 h of PB treatment. This inhibitory effect of PB was further
confirmed by F-actin immunofluorescence staining of PB-treated
HUVECs, and cytoskeletal organization was markedly weakened
by PB treatment (Figs. 6G-I). Together, these findings suggest
that the PB treatment indeed impaired vascular invasion and
inhibited the migration ability of HUVECs.

PB Treatment Affects Angiogenesis in
Chick YSM and CAM
To investigate the effect of PB on angiogenesis in vivo, we
used the YSM angiogenesis model. PB or 0.9% sterile saline
(control) was administered to the silicon rings. These rings
are useful in retaining PB and sterile saline in one place on
the YSM. The starting point of the YSM blood vessels was
marked with red/black inks on the silicon rings and was
kept constant in all replicates. We found that PB treatment
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FIGURE 3 | PB treatment effects on the length and cell cycles of growth plates in phalanges. Histological analysis of epiphyseal growth plates in phalanges

of day 17 chick embryos exposed to PB. (A,B) Representative images of H&E stained phalanges sections from control (A) and PB treatment (B) groups at day 17. (C)

Bar graph comparing the length of each zone in the growth plate in the control and PB groups. (D–E’): PCNA immunofluorescence of phalanges in control (D,D’) and

PB-treated embryos (E,E’). (F) Bar graph comparing the proportion of PCNA+ cells in PZ in control and PB-treated vertical sections of phalanges. (G,H) HZ of control

(G) and PB-treated phalanges (H) stained with TUNEL to indicate apoptotic cells. (I) Representative images of the negative control of TUNEL in the HZ of the growth

plate. (J) Bar graph comparing apoptotic chondrocytes of HZ in control and PB-treated phalanges. Scale bars = 600µm in (A,B), 100µm in (D–E’) and 25µm in

(G–I). **P < 0.05.

significantly decreased the expansion velocity of the blood
vessel plexus compared with that of the control embryos
(Figures 7A–D,A’–D’,A”–D”). This was indicated by the
leading edges of the control blood vessel plexus reaching
the rings after incubation for 24 h and reaching beyond the
rings after incubation for 36 h. The blood vessel density was

significantly decreased in PB-treated vessels after incubation
for 36 h (Figure 7F, Supplementary Table 6). The extended
distance of blood vessels was inhibited when exposed to PB
for 36 h (Figure 7G, Supplementary Table 6). The area of
transverse sections occupied by blood vessels was significantly
decreased in the PB treated group compared to that of the
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FIGURE 4 | H&E staining of phalanges and the assessment of PB treatment effects on the proliferation and mineralization of MC3T3-E1 cells.

Longitudinal sections were produced from the phalanges of day 17 chick embryos exposed to PB. MC3T3-E1 cells were used to determine the effect of PB on

osteoblastic cell proliferation. (A,B) Representative images of H&E stained phalanx sections from control (A) and PB-treated MC3T3-E1 cells (B) at day 17. (C) Bar

graphs comparing the rate of the mineralized length to the total length of phalanges of control and PB treatment groups. (D–F) pH3+ immunofluorescence staining

was performed on MC3T3-E1 cells to show cell proliferation in the absence or presence of PB. (G) Bar graph comparing the number of pH3+ MC3T3-E1 cells in the

control and PB cultures. (H–J) F-actin fluorescence staining was performed in the control and PB-treated MC3T3-E1 cells. (K–M) Alizarin red staining was performed

in the control and PB-treated MC3T3-E1 cells after a 7-day culture. (N) Bar graph comparing the alizarin red+ area in the control and PB-treated MC3T3-E1 cell

cultures. (O) Semi-quantitative RT-PCR and bar graph showing the expression of Col1α1, ALP-L, and OPN in MC3T3-E1 cells following PB treatment. Scale bars =

400µm in (A,B), 25µm in (D–F), (H–J), and 500µm in (K–M). *P < 0.05, **P < 0.01.

control group (Figures 7E–E”,H, Supplementary Table 6).
Furthermore, RT-PCR data showed that PB treatment
down-regulated angiogenesis-related genes, including HIF-
1α, MMP9, VEGFA, VEGF-R1, and VEGF-R2 (Figure 7I,
Supplementary Table 6).

To further verify the observation above in a chick YSM
model, we also used CAM, another angiogenesis model.
Again we observed that the blood vessel density in chick
CAM was suppressed after treatment with PB for 48 h
(Supplementary Figures 4A–D,A’–C’, Supplementary Table 6).
Furthermore, RT-PCR data showed that PB treatment
down-regulated the angiogenesis-related genes HIF-
1α, VEGFA and VEGF-R1 (Supplementary Figure 4E,
Supplementary Table 6). These data suggest that PB treatment
indeed suppressed angiogenesis in the chick YSM and CAM
models.

DISCUSSION

AEDs are extensively used for pregnant women with epilepsy
to control their seizures and avoid complications. If withdrawn,
there is a high risk of mortality for both the mother and the
fetus, and intranasal hemorrhage and heart rate alterations often
occur in the fetus (Ahir and Pratten, 2014). Because the chronic
administration of AEDs can lead to a variety of disorders of
bone and mineral metabolism, a wider range of AED application
has been limited. It is worth noting that the impact of AED
treatment on endochondral ossification during fetal osteogenesis
is still unclear, although people have noted the adverse effect of
long-term use of AEDs on bone development (Hahn et al., 1978).
Therefore, it is necessary to reveal the mechanism behind these
effects of AEDs on osteogenesis during embryogenesis to avoid
the harmful side effects of AED application in a clinical setting.
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FIGURE 5 | PB treatment effects on the vascularization of long bones and the tube formation of HUVECs. Longitudinal sections were produced from the

phalanges of day 17 chick embryos exposed to PB. HUVECs were used to determine the effect of PB on tube formation. (A,B) Phalanges of control (A) and

PB-treated HUVECs (B) stained with H&E to indicate vascularization. (A’,B’) Representative high-magnification images from the sites indicated by dotted squares in

(A,B). Arrows in (A’,B’) indicate the vascularization in marrow cavity (A’) and bone collar (B’). (A”,B”) Representative high-magnification images from the sites

indicated by dotted squares in (A,B). Arrows in (A”,B”) indicate the vascularization in the marrow cavity (A”) and bone collar (B”). (C) Semi-quantitative RT-PCR and

bar chart showing the expression of Col10α1 and VEGFA in the growth plate following PB treatment. (D–I) Light microscopy images of tube formation in HUVECs

following 0.9% sterile saline or PB treatment for 4 h (D–F) or 8 h (G–I). (J) Bar graph showing the average tube numbers in the control and PB cultures. Scale bars =

50µm in (A,B), 25µm in (A’,B’), (A”,B”), and 200µm in (D–I). *P < 0.05, **P < 0.01.

Here, we focused on the effect of PB, a commonly prescribedAED
in the clinic, on bone development during embryogenesis.

Endochondral ossification involves two critical steps:
the initial formation of a cartilage model and the eventual
replacement of the model with vasculature, osteoblasts,
osteoclasts and bone matrix. That both processes work in proper
coordination is essential for normal bone development. In
this study, we observed that PB treatment caused shorter long
bones in chick embryos, including the phalanx, tibia, radius
and ulna (Figure 1, Supplementary Figure 2). We assumed that

there might be two possibilities to give rise to the shortened
length of chick long bones. The formation of a proper cartilage
model is a prerequisite for normal endochondral ossification
(Knudson and Knudson, 2001). Therefore, the first possibility
that may cause shortened long bones is the small cartilage
template induced by PB treatment. This hypothesis is supported
by the experiments using the high-density micromass culture
system of limb bud mesenchymal cells, where we demonstrated
that PB treatment impaired the capacity of mesenchymal
cells to differentiate into chondrocytes, and the expression of
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FIGURE 6 | Scratch-wound assay to investigate the effects of PB treatment on the migration of HUVECs. (A–C) Representative images of the

scratch-wound assay in HUVECs at 0-h incubation from the control (A), 0.4mM PB-treated (B), and 1.6mM PB-treated groups (C). (A’–C”’) Representative images

of the scratch-wound assay in HUVECs at 12 h (A’–C’), 24 h (A”–C”), and 36 h incubation (A”’–C”’) from the control, 0.4mM PB-treated, and 1.6 Mm PB-treated

groups. (D) Bar graph showing the migration distances of HUVECs along with incubation time in the presence or absence of PB. (E) Bar graph showing the area of

HUVEC migration at 36 h in the presence or absence of PB. (F) Bar graph showing the number of migrated HUVECs at 36 h in the presence or absence of PB. (G–I)

F-actin fluorescence staining was performed on HUVECs treated with 0.9% sterile saline or PB for 24 h. Scale bars = 500µm in (A–C), (A’–C’), (A”–C”), (A”’–C”’),

and 25µm in (G–I). *P < 0.05, **P < 0.01.

chondrogenesis-related genes SOX9 and Col2α1 was decreased
following PB treatment (Figure 2). SOX9 plays an essential role
in early chondrogenesis, and Col2α1 is expressed specifically
in chondrocytes (Kosher et al., 1986; Akiyama et al., 2002). In
addition, the cell proliferation of chondrocytes in the growth
plate decreased in the RZ and PZ following PB treatment
(Figures 3D–F,D’–E’ and Supplementary Figures 3A–F,A’–D’).
These observations are in accordance with human studies
in which AEDs caused a deficiency of vitamin D, which is
involved in cell proliferation and differentiation (Wilson et al.,

2003; Rovner and O’Brien, 2008). These findings undoubtedly
confirm our assumption. The other possible explanation for
the shorter long bones is that the process of mineralization was
defective. We found that mineralization happened later than
normal following PB treatment. This conjecture is based on
our observation that PB treatment led to decreased apoptosis
of HZ in the growth plate (Figures 3G–J). Apoptosis in the
HZ is a necessary process for mineralization (Ornitz and
Marie, 2002). We also found that PB treatment caused an
extended HZ (Figures 3A–C). This phenotype might not be
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FIGURE 7 | PB treatment effects on angiogenesis in YSM. The colored ink marks on the silicon rings define the leading edges of the developing blood vessel

plexus in the YSM of 2.5-day chick embryos. (A–D) Representative images of the appearance of the blood vessel plexus after 0 h (A), 12 h (B), 24 h (C), and 36-h

incubation (D) in the control group. (A’–D’) Representative images of the appearance of the blood vessel plexus after 0 h (A’), 12 h (B’), 24 h (C’), and 36-h incubation

(D’) in the 0.4mM PB-treated group. (A”–D”) Representative images of the appearance of the blood vessel plexus after 0 h (A”), 12 h (B”), 24 h (C”), and 36-h

incubation (D”) in the 1.6mM PB-treated group. (E–E”) Representative H&E stained transverse sections of the YSM from the sites indicated by dotted lines in (D,D”).

(F) Bar graph comparing the blood vessel density of the YSM at 36 h between the control and PB-treated groups. (G) Bar graph comparing the blood vessel extent in

the YSM at 36 h between the control and PB-treated groups. (H) Bar graph comparing the blood vessel area of the YSM at 36 h between the control and PB-treated

groups. (I) Semi-quantitative RT-PCR and bar chart showing the expression of HIF-1α, MMP9, VEGFA, VEGF-R1, and VEGF-R2 in the YSM following PB treatment.

Scale bars = 1mm in (A–D), (A’–D’), (A”–D”), and 200µm in (E–E’). *P < 0.05, **P < 0.01.

induced by increased proliferation or by decreased apoptosis
of chondrocytes in the RZ and PZ (Figures 3D–J,D’–E’ and
Supplementary Figures 3A–N,A’–L’). Hence, we speculate
that the decreased apoptosis and extended length of HZ in
PB-treated bone may be caused by an ossification defect. AED
treatment causes the blockage of calcium channels, which
eventually leads to a loss in bone mineral density (Hernández-
Díaz and Levin, 2014), might explain the phenotype in this
study.

Bone ossification requires a delicate balance between bone
formation of osteoblasts and bone resorption of osteoclasts
(Huang et al., 2014). Being devoid of walking and bearing
weight, the number of osteoclasts during embryogenesis is
considerably less than that after birth (Cheng et al., 2016).
Therefore, we used MC3T3-E1 cells to further determine
whether PB treatment inhibited ossification of long bones.

We observed that the proliferation of MC3T3-E1 cells was
inhibited by PB (Figures 4D–G). In addition, PB treatment
disrupted the cytoskeleton of MC3T3-E1 cells and caused the
cells to lose their polarity (Figures 4H–J), which might cause
an inhibitive effect on cell vitality and indirectly lowered the
proportion of osteoblasts that differentiated into osteocytes
[8]. We further confirmed this result by alizarin red staining,
in which we observed that PB treatment decelerated the
deposition of calcium salt and ossification. Furthermore, PB
treatment reduced the expression of Col1α1, ALP-L, and OPN
in MC3T3-E1 cells, and the reduced expression of osteoblast
markers also indicated the inhibition of ossification (McKee
et al., 1992; Miao and Scutt, 2002; Ornitz and Marie, 2002)
(Figures 4K–O).

It is reported that PB treatment can impair cardiovascular
development, which naturally reminds us to detect the effects
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of PB on blood vessels since angiogenesis plays a crucial
role during bone ossification and formation (Bath and
Scharfman, 2013; Cheng et al., 2016). In this study, we
found that PB treatment suppressed vascular invasion in
the development of long bones. As an important regulator
of blood vessel invasion into the cartilage model, VEGFA
expression in HZ was down-regulated by PB treatment
(Figures 5A–C; Pfander et al., 2004; Zelzer and Olsen, 2005),
Therefore, we speculate that PB treatment might affect
the angiogenesis during bone development, which in turn
reduces bone mineralization. To verify this assumption,
we firstly performed tube formation assays and scratch-
wound assays using HUVECs. The results indicated that PB
treatment suppressed tube formation (Figures 5D–J) and
restrained the migration of HUVECs. These results were
further confirmed by the observation that PB treatment
disrupted the HUVECs’ cytoskeleton, which plays an important
role in cell migration (Figure 6). Next, to identify the effect
of PB on angiogenesis in vivo, we used chick embryonic
YSM and CAM models to further investigate whether PB
affected angiogenesis. The results showed that PB treatment
restricted angiogenesis and decreased the expression of
angiogenesis-related genes, HIF-1, MMP9, VEGFA, VEGF-
R1, and VEGF-R2, which indeed could support the above
observations (Figure 7, Supplementary Figure 4). Those
angiogenesis-related genes play crucial roles in angiogenesis
during bone growth and development (Araldi and Schipani,
2010; Olivares-Navarrete et al., 2013). Both in vivo and in vitro
experiments on angiogenesis appear to validate our above
hypothesis.

It should be noted that the dosage of PB we employed
in this experiments is higher than the average dosage of PB
used in adults, which is limited to 60–240 mg/day to minimize
the side effects of PB. It was reported that PB administered
with similar protocols up to 0.1mM caused some heart defects
in embryonic chick cardiomyocyte cultures (Ahir and Pratten,
2014). Congenital heart defects were usually considered as the
major side effects of PB while the digital, craniofacial and
growth retardation as its minor side effects, that was to say,
the teratogenetic sensitivity of bone should be lower than that
of heart. With a purpose of establishing an acute teratogenic
model to investigate its effects on embryonic skeletogenesis, a
dosage of 0.4mM PB was mainly employed in this experiment,
which was within an acceptable range. It was also supported
by the study that 0.4mM PB affected hormonally mediated
bone resorption processes of the cultured fetal rat long bone
(Hahn et al., 1978). Moreover, CCK-8 assay was used to detect
the effects of PB exposure on cell viability, in order to figure
out the possible concentration which affected both MC3T3-E1
and HUVECs. Generally, the earlier the embryos are exposed
to the drugs, the higher the mortality will be, Therefore, the
chick embryos were exposed to PB at a later stage in this
experiments in case causing a high mortality. HH10 was selected
as the first PB exposure time point, when the embryos showed
much stronger viability, while the skeletogenesis was still at
the very primitive stage of neural crest. Another consideration
was that PB exposure might affect cell viability in cultures,

FIGURE 8 | Proposed mechanism by which PB treatment decelerates

mineralization and shortens long bones during embryonic

skeletogenesis.

hence the inhibition of cell viability and apoptosis caused by PB
should be taken into account when discussing the mechanism
related to the PB related phenotypes observed in vitro. In this
experiment, we used chick embryos as the animal model in
this experiment, with the advantage of observing angiogenesis
more intuitively by using chick CAM and YSM, which is hard
to manipulate by other animal models. Nevertheless, it should
also be acknowledged that chick embryos have the limitations on
lower uptake of chemicals from the CAM and without exrecetory
pathways.

In summary (Figure 8), we have used a combination of
in vivo and in vitro experimental approaches to demonstrate
that PB treatment shortened embryonic long bones. PB
treatment inhibited chondrogenesis and proliferation of
chondrocytes, and later it may be influenced ossification by
inhibiting the proliferation of osteoblasts and vascular invasion.
Further experimentation is required to explore the molecular
mechanisms underlying PB’s effects on bone development.
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Supplementary Figure 1 | Sets of primers used for RT-PCR in this study.

Supplementary Figure 2 | PB treatment effects on osteogenesis of long

bones. Alcian blue and alizarin red staining were performed in day-17

chick embryos treated with PB for 15.5 days. (A–A”’) Whole embryo

(A); representative images of the appearance of day-17 chick embryos’

vertebra (A’), radius and ulna (A”), and tibia (A”’) from the 0.9% sterile

saline treatment group (control). (B–B”’) Whole embryo treated with

0.4mM PB (B). Representative images of the appearance of day-17

chick embryos’ vertebra (B’), radius and ulna (B”), and tibia (B”’) from

the PB treatment groups. (C–E) Bar charts comparing the rate of

alizarin red+ length to the total length of the ulna (C), radius (D) and

tibia (E) between the control and PB treatment groups. (F–H) Bar

charts comparing the length of the ulna (F), radius (G), tibia (H)

between the control and PB-treated embryos. Scale bars = 5 cm in

(A,B) and 1 cm in (A’,B’), (A”,B”), (A”’,B”’).

Supplementary Figure 3 | PB treatment effects on the cell cycles and the

apoptosis of growth plates in phalanx. Histological analysis of epiphyseal

growth plates in the phalanges of 17-day-old chick embryos exposed to PB.

(A–D) pH3+ immunofluorescence of phalanges of the control (A,B) and

PB-treated embryos (C,D) in the RZ or PZ of the growth plate. (A’–D’)

Representative high-magnification images from the sites indicated by dotted

squares in (A–D). (E–F) Bar charts comparing the rate of pH3+ cells in the RZ (E)

or PZ (F) of the growth plate between the control and PB-treated phalanges.

(G–J) RZ or PZ of control (G,H) and PB-treated phalanges (I,J) stained with

TUNEL. (G’–J’) Representative high-magnification images from the sites indicated

by dotted squares in (G–J). (K,L) Representative images of the negative control of

TUNEL staining in the RZ (K) or PZ (L) of the growth plate. (K’,L’) Representative

high-magnification images from the sites indicated by dotted squares in (K,L).

(M,N) Bar charts comparing apoptotic chondrocytes of the RZ (M) or PZ (N) in

the growth plate between the control and PB-treated phalanges. Scale bars =

50µm in (A,B), 25µm in (A’,B’), 50µm in (G–L), and 25µm in (G’–L’).

Supplementary Figure 4 | PB treatment effects on angiogenesis in the

CAM. (A–C) Representative images of the vessel plexuses in the CAM, which

were treated with 0.9 sterile saline (control, A), 0.4mM PB (B), or 1.6mM PB (C)

for 48 h. (A’–C’) Representative high-magnification images from the sites indicated

by dotted squares in (A–C). (D) Bar graph showing the comparison of blood

vessel densities in the CAM model following treatment with different

concentrations of PB. (E) Semi-quantitative RT-PCR and bar graph showing the

expression of HIF-1α, VEGFA, and VEGF-R1 in the YSM model following PB

treatment. Scale bars = 1 cm in (A–C) and 3mm in (A’–C’).

Supplementary Table 1 | The data of Figures 1I–J,

Supplementary Figures 2C–H. The results are presented as the mean ± SD. All

comparisons between groups were made using ANOVA or Student’s t-test.

*P < 0.01, **P < 0.05.

Supplementary Table 2 | The data of Figures 1K–L. The results are presented

as the mean ± SD. All comparisons between groups were made using ANOVA or

Student’s t-test. *P < 0.01, **P < 0.05.

Supplementary Table 3 | The data of Figures 2G,H. The results are presented

as the mean ± SD. All comparisons between groups were made using ANOVA or

Student’s t-test. *P < 0.01, **P < 0.05.

Supplementary Table 4 | The data of Figures 3C,F,J, Figures 4C and

Supplementary Figures 3E,F,M,N. The results are presented as the mean ±

SD. All comparisons between groups were made using ANOVA or Student’s

t-test. *P < 0.01, **P < 0.05.

Supplementary Table 5 | The data of Figures 4G,N,O, Figures 5C,J and

Figures 6D–F. The results are presented as the mean ± SD. All comparisons

between groups were made using ANOVA or Student’s t-test. *P < 0.01,

**P < 0.05.

Supplementary Table 6 | The data of Figures 7F–I,

Supplementary Figures 4D,E. The results are presented as the mean ± SD. All

comparisons between groups were made using ANOVA or Student’s t–test.

*P < 0.01, **P < 0.05.
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