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ABSTRACT 

Artificial articular joints present an interesting, and difficult, tribological problem. These bearing 

contacts undergo complex transient loading and multi axes kinematic cycles, over extremely long 

periods of time (>10yrs).  Despite extensive research wear of the bearing surfaces, particularly 

metal-metal hips, remains a major problem.  Comparatively little is known about the prevailing 

lubrication mechanism in artificial joints which is a serious gap in our knowledge as this determines 

film formation and hence wear.  In this paper we review the accepted lubrication models for artificial 

hips and present a new concept to explain film formation with synovial fluid.  This model, recently 

proposed by the authors, suggests that interfacial film formation is determined by rheological 

changes local to the contact and is driven by aggregation of synovial fluid proteins.  The implications 

of this new mechanism for the tribological performance of new implant designs and the effect of 

patient synovial fluid properties are discussed. 
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NOMENCLATURE 

BCS   Bovine calf serum 

CrCoMo  FS75 chromium, cobalt and molybdenum alloy 

CoC   Ceramic-on-Ceramic 

EHL   Elastohydrodynamic lubrication 

LHMoM  Large Head Metal-on-Metal 

MoM   Metal-on-Metal 

MoP  Metal-on-Polymer 

OA  Osteoarthritis 

PAL  Protein aggregation lubrication 

s  Inlet reservoir length 

SAPL  Surface active phospholipid 

SF   Synovial fluid 

Ra  Arithmetic mean surface roughness 

R'   reduced radius 

U  Entrainment speed 

W  Applied load 

η  Dynamic viscosity 

 

  



 

2 

 

1 Introduction 

Prosthetic implants restore joint function which has been impaired due to disease, trauma or genetic 

condition.  Due to an ageing population this is a rapidly growing sector; National Joint Registry 

(2012) figures for England and Wales reported 88,984 total hip and 93,080 knee replacement 

procedures in 2012.  However, there are significant clinical concerns over the use of 2nd generation 

Metal-on-Metal (MoM) hip joints as these have been associated with the development of 

periprosthetic tissue lesions (Revell et al., 1997).  These concerns resulted in the issue of a medical 

device alerts by the UK MHRA (2010) for MoM implants and the withdrawal of some designs from 

the market.   

MoM hips are not a recent concept; they were first introduced in the early 1960s with the 

McKee-Farrar cemented joint, which used a CoCrMo alloy for the head and articular cup.  Although 

these were widely implanted, early failures did occur due to asceptic loosening and poor 

manufacturing quality.  As a result the implant was discontinued in favour of the Charnley Metal-on-

Polymer (MoP) hip.  However, for some patients the McKee-Farrar joint had good survivorship (> 20 

years) with no apparent attendant problems (Isaac et al., 2006).  In the late 1980s attention turned 

again to the MoM design as a replacement for MoP hips, which were found unsuitable as a long 

term solution for younger patients.  The second generation MoM designs, which included 

resurfacing, larger head diameters (LHMoM) and modular hips, were driven partly by clinical 

requirements of reduced risk of dislocation, ease of implantation, conservation of bone stock and 

greater degree of movement.  Although the hip simulator studies indicated reduced wear with the 

large head MoM designs (Dowson et al., 2004; Isaac et al., 2006) the in vivo experience has been less 

positive.  The UK NJR (2012) reports higher than expected revision rates for LHMoM joints, > 5%, 

compared to 2% for conventional MoM hips.  Implant failure can be due to a number of reasons 

(NJR, 2012) including aseptic loosening, infection and breakage; however a significant number of 

patients experience “unexplained pain” and this is often linked to high levels of metal ions in the 

blood.  Explant analysis has shown these hips often have high levels of wear, often due to edge-wear 

of the cup (Underwood et al., 2012).  The reasons for increased wear and failure are complex and 

include design, metallurgy, implantation (particularly cup position) and patient factors.  The patient 

factors include gait (Bowsher, et al., 2006), lifestyle (Brown and Clarke, 2006; Shetty and Villar, 2006) 

and synovial fluid (SF) composition (Klein, 2006; Liao, et al., 1999; Maskiewicz, et al., 2010).  

Excessive implant wear is essentially due to the breakdown of the lubricating film which separates 

the surfaces; the formation mechanisms and properties of the lubricating films are the focus of this 

paper. 
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2 Why is the lubrication mechanism important? 

In many cases both short and long term failure of artificial joints is due to wear of the articulating 

surfaces.  Material loss and damage of the surfaces may originate in physical (abrasion or adherence) 

or chemical (corrosion) mechanisms. These result in the formation of micron (polymer) or 

nanometre (metal) sized wear debris which is biologically active and often provokes an adverse 

cellular response (Wroblewski et al., 1993, Hart et al., 2006, Revell et al., 1997).  The development of 

wear-resistant materials, including cross-linked polyethylene (Wang et al. 1998), metal treatment 

(Varano et al., 2006) and ceramics (Essner et al., 2005) has been the focus of much research over the 

years (Katti et al., 2004).  However the range of materials available to the implant designer is limited 

as these must be low wearing, biocompatible; both in bulk and particulate and easy to manufacture 

to a reliable standard (Katti et al., 2004). 

The other approach to improving wear performance is to optimise the lubrication function of 

the joint, to exploit this we need to understand the film formation mechanisms occurring during 

articulation.  Currently there are two general theories; fluid film EHL (Dowson, 2006a) and boundary 

lubrication (Hills, 2000) mechanisms.  Although these theories are often treated separately it is 

highly likely, depending on the implant operating conditions, both will contribute to lubricant film 

formation during articulation.   

Most tribology studies of implants have focussed on the measurement of wear; either in 

simple pin-on-disc devices to study fundamental material properties (Tipper et al., 1999; Yao et al., 

2003) or in more complex hip simulators where the effect of additional implant parameters (design, 

gait, position) can be assessed (Bowsher et al., 2009; Fisher et al., 2004; Medley et al., 1997).  Wear 

is essentially determined by the lubricant film and material properties.  It is, therefore, important to 

understand lubricant behaviour over the entire gait cycle; including film thickness and distribution in 

the loaded-contact zone. Artificial joints undergo a range of loading and kinematic conditions during 

operation.  The kinematics are complex as the load, sliding speed and direction of sliding all change 

within the cycle.  Identifying the lubrication mechanism (or mechanisms) operating over the gait 

cycle will provide the most reliable basis for predicting wear and provide the underpinning 

knowledge necessary to optimise implant and material development. 

 

3 Stribeck analysis of lubricated contacts 

The likelihood of surface damage is often represented in a Stribeck curve (Stachowiak and Batchelor, 

2005) which relates friction coefficient and wear as a function of a duty parameter; Uη/W.  Where U 

is the entrainment speed, η the dynamic viscosity and W the applied load.  A representative diagram 



 

4 

 

of a Stribeck curve is shown in Figure 1a.  Whilst Figure 1b presents a representative sketch of the 

contact, indicating the location of the main contact, inlet and exit regions.  Lubricant film formation 

is generally described as a result of chemical (Boundary Lubrication) or fluid flow effects 

(Hydrodynamic or Elastohydrodynamic lubrication).  The “boundary”, “mixed” and “hydrodynamic” 

lubrication regimes are indicated on the Stribeck curve. The contribution of these mechanisms to 

total film thickness will depend on the lubricant properties and operating parameters.  The 

hydrodynamic mechanisms rely on the relative movement of the surfaces to entrain fluid into the 

contact zone and form a separating film; this mechanism will predominate at high speeds and for 

high fluid viscosities.   

At low duty parameter values a separating (load bearing) fluid film is not formed, this is 

known as the boundary regime.  Friction coefficient and wear are high due to large plastic 

deformation of surface asperities. This behaviour can be modified in the presence of boundary 

additives, as indicated in Figure 1a.  Film formation is determined by chemical rather than physical 

(viscosity) properties, as the boundary layer can be formed by either chemical reaction, 

chemisorption or physisorption mechanisms (Stachowiak and Batchelor, 2005).  Typical boundary 

additives have polar or reactive chemical bonds which interact with the metal surface to form a 

coherent, low-shear stress film which resists asperity penetration and reduces friction and 

abrasive/mechanical wear.  As the duty parameter increases the fluid film thickness also increases 

gradually separating the contacting surfaces.  The friction coefficient drops due to a reduction in 

asperity interaction, reaching a minimum before increasing again.  This decreasing regime is known 

as the “mixed” regime, friction arises from both surface interactions and fluid forces.  The increase in 

friction at high duty parameter values is due to the increasing film thickness and thus a greater fluid 

shear contribution to the measured friction.  Once a separating film is formed wear due to 

adhesive/mechanical wear ceases; any continuation is due to debris (third body abrasion) and 

chemical (corrosive) components within the lubricant.   

 The onset of the different lubrication regimes is often identified by the  ratio, defined by 

equation (1); it represents the ratio between surface separation and composite surface roughness of 

solid bearings; 

 

𝜆 =
ℎ𝑚𝑖𝑛

(𝑅𝑎1
2+𝑅𝑎2

2)
1
2⁄
      (1) 

 

where hmin is the minimum film thickness and Ra the surface roughness of the respective contacting 

bodies.  Figure 1a presents a typical Stribeck curve of friction coefficient versus contact parameters 

with the λ ratios for different lubrication regimes indicated. These are; 
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>3 Fluid film regime: the surfaces are fully separated and mechanical wear is minimised 

= 1-3 Mixed lubrication regime: intermittent contact of surface asperities with some wear 

and fluctuating friction coefficient 

<1 Boundary regime: the surfaces are in close contact often with high friction coefficient 

and significant wear. 

However it must be remembered that the Stribeck curve, and lambda ratio, were developed for 

journal bearings lubricated by simple hydrocarbon oils under steady-state loads and speeds.  The 

applicability of such a simple analysis to the more complex case of implant lubrication undergoing 

transient loads and speeds with a multiphase fluid is questionable.  

 

4 Tribological conditions in artificial joints 

One of the problems encountered when considering implant lubrication is the complexity of the 

system.  The hip joint experiences transient loading and variable sliding velocities over the gait cycle, 

which results in a range of contact conditions and possible lubrication mechanisms.  Typically these 

joints function at slow speeds, low pressures and transient loading under reciprocating sliding.  For 

example in steady-state walking, replacement hip joints, experience two loading peaks per cycle 

with loads varying from ~0.1 to 3.5 KN and linear speeds of 0-30 mm/s. The maximum contact 

pressures are generally low (<70 MPa), compared to engineering contacts.  However, physiological 

kinematics and loads can vary markedly for different activities and patients (Bergmann et al., 2010).  

The other part of the problem is the lubricant, which is periprosthetic synovial fluid (SF).  SF 

is a complex mixture of macromolecules (protein, glycoproteins, hyaluronin) and surface active 

species (phospholipids) (Kitano et al., 2001; Wang et al., 2003).  The chemical composition includes 

hyaluronan (HA), proteins and glycoproteins, phospholipids and cholesterol (Kitano et al., 2001). A 

number of these species, particularly phospholipids and proteins, are thought to contribute to the 

boundary lubrication of the implant.  The problem is further complicated by changes to the physical 

and chemical properties of SF due to disease, trauma and postoperatively (Kitano et al., 2001; Wang 

et al., 2003; Delecrin et al., 1994), so that there is no “typical” composition.  Periprosthetic SF, which 

refills the cavity post-implant, has different properties to healthy SF; the pH and protein 

concentrations increase and the effective viscosity decreases due to changes in the HA content 

(Kitano et al., 2001; Delecrin et al., 1994).  The major chemical constituents and physical properties 

of SF are summarised in Table 1.   

The rheology of SF is complex as it is rheopectic at low (<100 s-1) (Oates et al., 2006) and 

shear-thinning at high shear rates (Cooke et al. 1978).  Rheopexy is defined as an increasing stress as 

a function of time at a constant shear rate.  At low shear rates protein molecules are reported to 



 

6 

 

aggregate forming a three-dimensional network, which breaks down at high shear rates (non-

Newtonian behaviour) (Oates et al., 2006). Measured viscosity for healthy SF at assumed 

physiological shear rates (> 103 s-1) is typically in the range 0.01-0.1 Pas (Cooke et al. 1978).  For 

diseased and post-arthoplasty SF the high shear rate viscosity drops to less than 0.001 Pas (Cooke et 

al. 1978).  For SF it is usual to assume that at physiological shear rates the effective viscosity is 

constant (2nd Newtonian regime). Typically a value of 0.002-0.005 Pas is used in film thickness 

modelling calculations (Wang et al., 2008).   

25% BCS has been commonly employed as the model screening fluid for healthy SF; the 

solution has a similar total protein concentration and non-Newtonian rheology (Cooke et al., 1978).   

Recently, the ISO standard governing the preparation of screening fluids for hip joint simulators 

altered the dilution of BCS from 25% ± 2% (Kaddick and Wimmer, 2001) to 30 ± 2 g/l (ISO #14242-1, 

2012) or ca 50%.  This reflects the increased protein concentration observed for periprosthetic SF. 

However, the standard does not provide protocol for additional components; for example there are 

differences in the ratio of proteins (albumin and -globulin) and phospholipid content. BCS also lacks 

other important components; such as hyaluronan.  The development of a more pertinent screening 

fluid will require a fundamental understanding of the lubrication mechanisms controlling implant 

wear and the effect of patient SF composition.  

 

5 Conventional lubrication models in artificial hips 

Two very different classical lubrication mechanisms have been proposed for MoM joints these are 

boundary (Hills, 2000; Gale et al., 2007; Roba et al., 2009; Wang et al., 1998) and EHL (Dowson and 

Jin, 2006b; Jalali-Vahid et al., 2006; Jin, 2006).    

 

5.1 Boundary lubrication 

Boundary lubrication dominates under conditions where a fluid film is not formed (by hydrodynamic 

action); these are high loads, low speeds and low fluid viscosity.  A number of SF species have been 

identified as potential boundary lubricants; these include HA, proteins, glycoproteins and 

phospholipids (Gale et al., 2007). HA is a high molecular weight (105-106 Da) linear polysaccharide 

and in diseased SF the concentration and molecular weight of HA are decreased.  HA is thought to 

contribute to viscoelasticity and viscosity enhancement (Swann et al., 1974) but to have negligible 

boundary lubrication function (Tadmor et al., 2003). Phospholipids are a major component of 

biological membranes, which form structured mono and bilayers at interfaces (Hills and Butler 

1985).  A major class are the zwitterionic phosphatidylcholines which have a positively charged 

quaternary ammonium ion (polar head) and adjacent phosphate ion.  The positively-charged head 
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group adsorbs at surfaces to form an oligolamellar layer (Swann and Radin 1972) with the long 

hydrocarbon chains forming a hydrophobic surface. 

Other SF components have been identified as having boundary lubrication capabilities. In the 

late 1970s attention turned to lubricin, a highly purified glycoprotein fraction of SF as the primary 

boundary lubricant of articular cartilage (Swann and Radin 1972; Swann et al., 1981; Schwarz and 

Hills 1998).  Analysis of lubricin indicated it contains protein and carbohydrate with a small 

percentage (~12%) of phospholipid.  The phospholipid fraction (SAPL) was identified as the primary 

boundary lubricant in lubricin (Gale et al., 2007; Schwarz and Hills 1998).   The water-soluble 

glycoprotein component is thought to act as a carrier for the insoluble phospholipid.  

Surface analysis of explanted joints from hip simulator and retrieval studies has been 

reported by Wimmer et al. (2003).  In this study surface layer formation on forty-two retrieved MoM 

hip joints was compared to results from in vitro test specimens.  The paper reported evidence of 

thick carbon-rich deposited layers on over 80% of the components.   These films were usually 

“within or at the border of the formerly articulating surfaces”.  They concluded the films were 

formed by denatured proteins deposited from solution in the high pressure contact regions.  It was 

suggested the proteins acted as a solid lubricant reducing adhesion and abrasion. There is 

supporting evidence from Wang and co-workers (1998) for this idea; they concluded that the protein 

layer acts as a “solid” boundary layer which prevents adhesive wear.  Examples of thick deposited 

films on an explanted joint are shown in Figure 2a; the “rainbow” colours indicate film thickness in 

the range 200-500 nm.  FTIR reflection-absorption analysis of the film on the explanted head showed 

it to be protein-based with significant -globulin content (Burgett et al., 2013).  Deposited films 

formed on the stationary surface used in a reciprocating test are shown in Figure 2b, again the 

rainbow colours indicate thick protein films at either end of the wear track. 

Organic reacted or deposited layers also appear to play a role in conditioning the alloy 

subsurface and thus affecting wear.  Recent studies of the CrCoMo alloy published by Pourzal et al. 

(2009a; 2009b) have analysed the microstructural changes that occur in the subsurface region of 

retrieved (resurfacing) and simulator-tested tested MoM implants. The hip-simulator test samples 

indicated the formation of a carbon-rich nanocrystalline layer approximately 200 nm thick (Pourzal 

et al., 2009b).  The formation of this layer through mechanical mixing (Rigney 2000) is reported to be 

the origin of the excellent wear resistance of the CrCoMo alloy (Pourzal et al., 2009a). 

A few studies have analysed bulk fluid remaining in the simulator test chamber to obtain 

insights into lubrication mechanism (Maskiewicz et al., 2010).  BCS solution rapidly forms 

precipitates during the test (Wang et al., 2003) and must be regularly replaced.  In a recent paper 

Maskiewicz and co-workers (Maskiewicz et al., 2010) analysed protein degradation products formed 
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during simulator tests of serum-based lubricants.  They reported the formation of “high molecular 

weight aggregates which precipitated out of solution”. There was no evidence of protein molecular 

fragmentation. The major conclusion from this work was that high shear rates within the articulating 

interface were responsible for protein agglomeration.  Other studies; for example Lu and McKellop 

(1997) suggested that high local contact pressures and increased temperatures lead to denaturing 

and precipitation of proteins.     

 Few numerical models exist for the boundary lubrication regime due to the complexity of 

coupling the contact mechanics, lubricant flow and surfactant properties.  This, in part, has led to 

dependency on numerical simulations of film formation in artificial joints using EHL models, which 

are discussed in the following section. 

 

5.2 'Fluid film' lubrication 

The alternative theory is that MoM hip joints operate in the “fluid-film” regime where the rubbing 

surfaces are separated by ElastoHydrodynamic lubricant (EHL) film (Dowson and Jin, 2006b; Jalali-

Vahid et al., 2006; Jin, 2006).  In EHL the film formation mechanisms are very different to boundary 

lubrication.  Friction is now a result of fluid forces (lubricant rheological properties) and not surface 

asperity interaction.  EHL requires the entrainment of a viscous fluid which combined with the 

deformation of the surfaces contributes to the development of a separating film.  Wear is, now, 

caused by chemical corrosion or 3rd body abrasion and not mechanical wear mechanisms between 

the main contacting bodies.  For simple hydrocarbon oils the film thickness can be accurately 

predicted for different load and speed conditions and this has been verified by many experimental 

studies using optical interferometry (Spikes, 1999). 

Typically EHL film thickness, h, is predicted simply as: 

 

h ≈ (speed)n x (viscosity)y x load-m 

 

However conventional EHL film thickness equations are only applicable to systems where 

there is a significant increase in the lubricant viscosity due to high contact pressure (Spikes, 1999).  

SF and BCS are aqueous suspensions and the bulk (water) rheology is typically employed when 

predicting contact film thickness. The viscosity of water is low, but more importantly the pressure 

viscosity coefficient is tiny.  Isoviscous EHL equations have been developed to predict film thickness 

for such fluids.  Hooke (1980) provides the following central film thickness equation for elastic-

isoviscous (low pressure, hard) contacts; 
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  ℎ = 4.18
(𝑈𝜂)0.6𝑅’0.67

𝑊0.13𝐸’0.47
      (2) 

 

where E' is the reduced Young’s modulus defined by 2/E’ = (1 – v1
2)/E1 + (1 – v2

2)/E2, respectively, 

where Rx1, Rx2, E1, E2, v1, and v2 denote the radii in the entrainment direction, the Young’s moduli, 

and the Poisson’s ratios of the two contacting bodies. 

EHL film thickness increases with speed (~U0.6) but is relatively insensitive to load (~W-0.13); 

typically a 10x increase in load halves the film thickness.  The effect of mean speed on calculated film 

thickness from Eq. 2 is shown in Figure 3 for simple low viscosity (0.001, 0.005 and 0.01 Pa s) fluids.   

Due to the transient loads and speeds experienced over the hip gait cycle it would be 

expected that the predicted EHL film thickness also fluctuates, an example from Jalali-Vahid et al. 

(2006) is shown in Figure 4.  Central and minimum film thickness is plotted against time over a model 

gait cycle for a model fluid (viscosity 0.9 mPas).  Over the gait cycle central film thickness is predicted 

to fluctuate between 20 and 40 nm, where film formation is considered due to a mixture of 

hydrodynamic (entrainment speed) and squeeze film effects.   Jalali-Vahid et al. (2006) predict that 

for a typical MOM hip implant with an average surface roughness of 0.01 um, a λ ratio of 1-2 is 

achieved, suggesting that the contact operates just within the mixed regime.  The analysis also 

confirms the chemical (boundary) properties of the SF rather than the bulk viscosity will play an 

important role in determining wear. 

The EHL models consider film formation to depend solely on the synovial fluid bulk viscosity 

(usually the assumed 2nd Newtonian value) and the operating conditions (speed, contact pressure) of 

the joint.  The equations are used to calculate film thickness over the gait cycle and provide a 

relatively simple method of exploring the effects of implant parameters (kinematics, load, implant 

geometry) on fluid-film lubrication and thus by inference prosthesis wear.  It must be remembered 

that such predictions are only valid if the underlying mechanisms of film formation and relationship 

to sliding speed and load are correct.  However the correlation of theory and experiment is only 

verified by experimental work for simple, single phase lubricants undergoing steady-state shear and 

loading.  For a complex lubricant containing different phases, for example an emulsion or grease 

(Lubrecht, 2001), the film thickness response to changing contact conditions is often very different 

and cannot be predicted by classical EHL models.    

 One of the most important factors determining film thickness is the viscosity of the fluid in 

the inlet region (Figure 1b) as it is this material which is entrained into the contact zone.  Generally, 

this material is assumed to have the same composition and properties, particularly viscosity, as the 

bulk solution.  In EHL models SF is considered to be a single phase fluid which has a Newtonian 

rheology at physiological shear rates (Dowson and Jin, 2006b).   However SF exhibits complex 
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rheological behaviour depending on the shear conditions (Oates, 2006).  The EHL models implicitly 

ignore the contribution of boundary films to the lubrication process and the effect of different SF 

chemical composition on film formation.   

 

5.3 Protein-Aggregation Lubrication (PAL) 

The role of proteins in the lubrication process has been the focus of recent research in our group 

(Fan et al., 2011; Mavraki and Cann, 2011; Myant et al., 2012).  Lubricant film thickness has been 

measured for a CoCrMo femoral head loaded and sliding against a coated (Chromium overlaid by 

silica) glass disc.  The contact pressures and sliding speeds match those occurring in MoM hip joint.  

Various protein-containing lubricants were used including 25% BCS and albumin/globulin solutions.  

The tests used an optical interferometric method to measure the central film thickness and to follow 

the growth of the contact zone as the metal surface wears (Myant et al., 2012).  Film thickness was 

usually measured with increasing and then decreasing speed.  The results showed that film 

formation did not follow the classical EHL rules for a simple fluid.  An example is shown in Figure 5 

which plots film thickness against speed for 25% w/w BCS solution, predicted results (Eq. 2) for a 

fluid with a bulk viscosity of 0.01 Pa s are also shown.  Typically film thickness was time dependent 

and tended to give much thicker films at low speeds than predicted by EHL models although this 

depended on the protein content (Myant et al., 2012).  The reason for the very different behaviour 

observed with these fluids is the properties in the inlet region. 

The model SF solutions were observed to undergo phase changes local to the contact, 

shown in Figure 6.  The inlet zone to the contact (which is approximately 300 m in diameter) is at 

the bottom of the image.  The protein- aggregate is seen at the lower edge of the contact zone; the 

boundary has been outlined for clarity.  The presence of protein-aggregate ensures much thicker 

films upstream in the contact zone. The rate and extent of these changes was dependent upon 

contact conditions (entrainment speed, load, geometry), and suspension composition (protein type 

and concentration).  Suspended proteins collected in the inlet, which dramatically altered the 

lubricant composition before it entered the contact.  For uni-directional sliding surface deposits 

were observed on the stationary component around the contact, with the highest concentration 

within the contact inlet zone (Myant et al., 2012).  In bi-directional reciprocating tests depositions 

occurred at each end of the stroke as seen in Figure 2b.  Post-test FTIR Reflection-Absorption 

Spectroscopy (Burgett et al., 2013) analysis of these deposits confirmed they were proteins. This 

inlet aggregation mechanism created a new phase with greatly increased protein content and 

viscosity, which is entrained into the contact generating larger than predicted films.  The subsequent 

film distribution across the contact zone is chaotic and can vary in thickness by as much as 80 nm.  
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Even under steady state conditions (constant load and speed) film thickness appears transient; in 

time and across the contact.  This is, in part, due to the seemingly random breakup of inlet 

aggregates as they are dragged into the contact.  The dominant factor determining the level of film 

formation is the protein aggregation in the inlet region; thus we have adopted the PAL (Protein 

Aggregation Lubrication) acronym identifying this process. 

For proteins, or any suspended particulate, entry to the contact will depend upon surface 

drag forces between the main contacting bodies and the suspended material, and their positioning 

relative to the central flow line (Dwyer-Joyce, 1999).  On approaching the inlet zone, most of the 

proteins will be subject to off-axis fluid forces as the majority of lubricant flows around the contact, 

not through it.  Thus only proteins very close to the central flow line will enter the contact.  The 

closer the protein molecule is to the central flow line the greater the probability for contact entry.  A 

sketch of the flow lines around a point contact, similar to an artificial hip implant, is shown in Figure 

7.  Entrainment speed plays a significant role in this; at low entrainment speeds, and therefore low 

fluid flow forces, surface drag forces dominate pulling aggregates into the contact.  As entrainment 

speed increases the particulate are more likely to flow around the contact, due to an increase in the 

hydrodynamic forces flowing around the contact.  This results in a decrease in film thickness and 

thus an inverse proportionality with entrainment speed - the opposite of classical EHL theory (Eq. 2) 

as shown in Figure 5.  Figure 8 shows two optical interference images between a CoCr ball and glass 

flat, lubricated with 25%BCS.  The LHS image shows the contact at low entrainment speed, RHS at 

high entrainment speed.  Fluid flows top-to-bottom in both images.  At low entrainment speeds 

(LHS) a large inlet is formed as off-axis hydrodynamic forces are negligible.  At high entrainment 

speeds (RHS) the inlet length is reduced, due to the increased hydrodynamic forces the suspended 

proteins preferentially flow around the contact edges.   

 This decrease in film thickness has been related to shear thinning behaviour of the 

lubricant, but it can also be seen as a reduction in protein- aggregate entry to the contact.  At higher 

entrainment speeds the lubricant in the contact is returning to bulk phase properties, although 

entrainment speeds far greater than those suggested for an average gait cycle are required for this 

to be completed (Myant and Cann, 2013).  

Thick films were observed to form rapidly at low speeds after the commencement of sliding.  

Film thickness was highly sensitive to load and exhibited elastic properties as it recovered 

substantially when un-loaded, which is thought to be a result of porous networks which form within 

the contact.  In the fluid environment the protein films are highly viscous however once removed 

and dried they adhere strongly to the CoCrMo surface, similar behaviour has been reported by other 

studies (Wimmer et al., 2003).  In earlier papers the formation of thick deposited organic films 
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observed on explants was ascribed to denaturing of proteins due to thermal effects (Wimmer et al., 

2003).  We agree that thermal effects could contribute to this process but we also consider that 

shearing will also help to form such protein aggregates and such explant studies provide further 

support for our model.   

Clearly we need to understand in more detail the tribological role of deposited protein layers 

and the effect of implant (transient speed, loads) and patient (gait, synovial fluid chemistry) factors 

on film formation.  Film formation depends on the build-up of viscous material in the inlet as such it 

is time-dependent and sensitive to changes in the direction of sliding.   In earlier papers (Myant et 

al., 2012) the focus was on steady-state behaviour which is not representative of implant kinematics.  

Disruption of the inlet reservoir either by changing sliding direction, transient speeds or the passage 

of surface scratches, examples are shown in Figure 2a, will occur in vivo.  

 

6 Implications of the PAL mechanism for implant tribology 

The classical film formation mechanisms reviewed in this paper are derived from early studies with 

hydrocarbon fluids and simple additive systems.  When applied to SF lubrication they are usually 

considered to be mutually exclusive with the chemists favouring boundary lubrication and the 

engineers EHL-based mechanisms.   However, we consider both the classical mechanisms to be too 

simplistic as they do not address the central problem of a complex, biphasic fluid undergoing 

transient loading and motion.  It is likely that all three lubrication regimes are experienced during a 

single gait cycle.  The imperative to categorise SF lubrication as either “boundary” or “EHL” has been 

driven in part by the modelling community where the predictive models for Newtonian fluids are 

well-established.  The assumptions implicit in the EHL models – for example film thickness increasing 

with speed and being relatively insensitive to load are not necessarily true for complex fluids.  Any 

implant design based on these considerations could be fatally flawed.  A possible example of this are 

LHMoM hips.  The design of these was based, in part, on the assumption that an artificial hip 

predominately operates in the EHL regime during the gait cycle.  And, that by following the classical 

EHL theorems the λ ratio could be increased (Figure 9) by simple changes to the implant design 

(Tipper et al., 2005).  The danger occurs when full film lubrication is not achieved and the surfaces 

touch; the ultra-smooth surfaces and highly conformal contact create a large real area of contact.  

This creates seizure or scuffing like conditions which will cause high levels of wear.  The drive to 

improve bearing performance by only increasing λ is too simplistic (Cann, et al., 1994).  Many of the 

new generation artificial hips based on this principle are now experiencing high revision rates 

(National Joint Registry, 2012) and in some cases have been recalled from the market (MHRA, 2010).  

It has been known for many years, within other tribology lead industries, that other surface 
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topography parameters, which are not employed in Eq. (1), also determine wear performance and 

bearing life (Hirst and Hollander, 1974). 

It is difficult to derive fundamental lubrication mechanisms from implant simulator studies 

as these have generally been developed to provide an assessment of the wear performance under 

realistic joint kinematics and loading.   The range of loads and speeds experienced by the articulating 

contact region mean it highly likely that the lubricant film formation mechanism will also vary.  The 

other variant is test time; there is ample evidence of structural and compositional changes to the 

articulating surface and subsurface, particularly during the ‘running-in’ period (Wang, 1998; 

Wimmer, 2003; Pourzal, 2009a; 2009b).  Thus it is likely the wear mechanisms will also change again 

complicating the interpretation of results.   

We have proposed a new lubricating mechanism for model synovial fluid which is based on 

the formation of a high viscosity protein-rich phase in the inlet to the sliding contact.  This material 

forms, under some conditions, a much thicker film than predicted by the simple fluid models.   Film 

formation is highly dependent upon the type of transient motion the bearing is subjected to, as this 

can either help or hinder the formation of inlet aggregates.  The proposed lubrication mechanism 

has significant implications for the tribological performance and failure of artificial hips. 

In recent years the design of “hard-hard” (CoM, MoM, CoC) hips has been driven by classical 

lubrication models derived from our understanding of mineral oil-based tribology (Dowson and Jin, 

2006b; Jalali-Vahid et al., 2006; Jin, 2006).  The move from MoP to MoM and CoC derives from the 

principle embodied in the Archard-wear law (Archard, 1953; Unsworth, 2006) that hard materials 

wear less.  The increased head diameter and lower diametral clearance result in higher sliding 

speeds and lower contact pressures.  As a result EHL equations predict increased film thickness, 

therefore increasing the “fluid film” thickness and hence the lambda value to >3 for most of the gait 

cycle.   

The effect of different design and patient factors on film thickness for different lubrication 

mechanisms is summarised in Table 2.  For all mechanisms a reduction in contact pressure is 

beneficial and this might explain the improved wear results obtained for LHMoM in simulator tests 

(Tipper et al., 2005).  One of our observations is that the PAL film thickness decreases significantly 

with increasing contact pressures (Myant  et al., 2012). However, the effect of increased sliding 

speeds is not so easy to predict.  Our results (Myant et al., 2012) indicate that film thickness change 

with speed depends on the protein concentration and hence will be affected by patient SF 

composition.  For high protein concentrations commonly associated with OA or periprosthetic SF the 

PAL film tends to decrease with speed.  Clearly once the dominant mechanism moves away from 

simple EHL fluids the effect of synovial fluid composition becomes important and this will vary 
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significantly from patient to patient.  At present this variation is not captured in the screening 

process with BCS fluid.   

 

7 Conclusions 

The paper has examined lubricant film formation mechanisms in MoM hip joints.  The following 

conclusions are drawn: 

1. Artificial implants currently represent one the most difficult problems in tribology: 

transient loads and speeds coupled with a complex, multicomponent lubricating fluid. 

2. The assumption that implant lubrication can be described by classical film formation 

mechanisms is too simplistic.  These models were developed for single phase 

hydrocarbon fluids with Newtonian rheology.  

3. The use of classical EHL models to predict SF film thickness in artificial hips is flawed and 

is not a good basis for implant design. 

4. Protein-containing fluids (SF, BCS) aggregate in shear flow to high viscosity phases which 

are entrained into the contact zone to form separating films. We consider this to be an 

important film formation mechanism which we have termed PAL.  

5. PAL shear-aggregation is the origin of the precipitates found in simulator tests and the 

deposits formed on implant surfaces. 
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Lubricant type Total Protein 

(g/l) 

Albumin 

(g/l) 

Globulin 

(g/l) 
pH 

Healthy SF 18-20 7-18 5-29 7.3-7.43 

Periprosthetic SF 30-50 20-39 5-15 7.5-8.5 

Osteoarthritis 30-32 18-19 13-13.5 7.4-8.1 

Rheumatoid arthritis  35-45 16-26 15-25 6.6-7.6 

Bovine Calf Serum 58-72 4 6 7-8.1 

 

Table 1 Synovial fluid composition (Kitano et al., 2001; Wang et al., 2004) 

 

Implant Factors EHL Boundary PAL 

Design 

Reduced pressure 

Increased sliding speed 

Materials 

Mechanical  

Surface chemistry  

Synovial fluid properties 

Chemistry 

Bulk Viscosity  

 

Positive 

Positive 

 

Important 

Less important 

 

Less important  

Important 

 

Positive 

Negative 

 

Less important 

Important 

 

Important 

Less important 

 

Positive 

Negative 1 

 

Less important 

Important2 

 

Important 

Less important  

 

1 Depends on protein concentration,  2 Adherence  

 

Table 2 Implication of MoM design and patient factors on film formation with different lubrication 

mechanisms 
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Figures 

 

 

(a) Simple representation of a Stribeck curve for an oil (solid line = no boundary additive, dashed 

line = boundary additive) and different lubrication regimes 

 

 

(b) Representation of a sliding contact 

 

Figure 1. Lubrication fundamentals: Stribeck curve and regions of a lubricated contact 
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(a) Explanted femoral head – scratches and deposited protein films at the edge of wear zone [for 

further example see Burgett 2013]     

 

 

 

(b) Wear scar and protein deposit from reciprocating ball-on-flat test.  Deposited protein films are 

seen at either end of the stroke. 

 

Figure 2. Images from (a) explanted metal femoral head (b) wear scar and protein deposits from 

laboratory test. 
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Figure 3. Calculated film thickness (Eq. 2) plotted against mean speed for different viscosity simple 

fluids. 
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Figure 4. Predicted film thickness values over several gait cycles (Jalali-Vahid et al., 2006). 

  



 

24 

 

 

 

Figure 5. Optical interferometric film thickness measurements against speed for 25% w/w BCS 

solution (black markers) theoretical predictions (black line) from Eq. 2 are also plotted for a simple 

Newtonian fluid (η = 0.01 Pas).  
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Figure 6. Formation of a new phase in the inlet zone of a sliding contact  
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Figure 7.  Sketch of contact flow lines 

  

Majority of proteins flow 
around the contact periphery

Proteins on the central flow 
line aggregate in the inlet Proteins are then dragged 

into the contact; sheared and 
denatured
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Figure 8. Optical interference images of the contact zone at U = 10 (LHS) and 50 (RHS) mm/s.  The 

inlet is at the top of the contact zone.  The protein rich inlet region is visible above the main contact 

region by the discontinuity in the interference fringes. 
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Figure 9. The effect of radial clearance (half of diametral clearance) upon lubrication and λ ratio in 

metal-on-metal total hip implants and resurfacing prostheses (ASR, DePuy Int.). (Tipper et al., 2005). 

 


