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Abstract: With the eye-catching advances in sensing technologies, smart water networks1

have been attracting immense research interest in recent years. One of the most overarching2

tasks in smart water network management is the reduction of water loss (such as leaks3

and bursts in a pipe network). In this paper, we propose an efficient scheme to position4

water loss event based on water network topology. The state-of-the-art approach to this5

problem, however, utilizes the limited topology information of the water network, that is,6

only one single shortest path between two sensor locations.Consequently, the accuracy of7

positioning water loss events is still less desirable. To resolve this problem, our scheme8

consists of two key ingredients: First, we design a novel graph topology-based measure,9

which can recursively quantify the “average distances” forall pairs of senor locations10

simultaneously in a water network. This measure will substantially improve the accuracy11

of our positioning strategy, by capturing the entire water network topology information12

between every two sensor locations, yet without any sacrifice of computational efficiency.13

Then, we devise an efficient search algorithm that combines the “average distances” with14

the difference in the arrival times of the pressure variations detected at sensor locations.15

The viable experimental evaluations on real-world test bed(WaterWiSe@SG) demonstrate16

that our proposed positioning scheme can identify water loss event more accurately than the17

best-known competitor.18

Keywords: water loss event; graph topology; smart water network; sensing technologies19
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1. Introduction20

The advent of sensing technologies in water supply systems has led to an increasing need for the21

development of smart data technologies in water resource management. Today, water loss has become22

a serious problem for almost all urban areas around the world[1], and it can be even worse in areas23

with scarcity of water. As a statistical example, the water industry in England and Wales loses 3.3624

billion liters of water a day in leaks [2]. If those leaking locations were found as early as possible,25

sufficient water resources could be saved to supply 22.4 million people. However, it is often difficult to26

position such water loss events accurately as (a) the supplypipe is usually buried at least 3 feet below27

the ground surface, and (b) there are typically many paths connected by pipe sections between two pipe28

junctions. Therefore, it is imperative for us to devise an efficient model that can position water loss event29

automatically and accurately in a real water supply system.30

1.1. Prior Work31

Over the last decade, there have been several pioneering approaches proposed for water leak or32

burst localization, such as gradient intersection methods[3,4], wave propagation analysis [5], spectral33

clustering [6], and multiple hypotheses testing [7] (see [8] for a survey). Nonetheless, only a paucity of34

methods have been proposed in the context of a water network structure that explores graph topology.35

One excellent piece of work is due to Misiunaset al. [9] who leveraged a search-based technique to36

localize a burst point. Its main idea consists of two phases:in the first phase, the search is performed37

globally over all nodes in the network; in the second phase, if the burst is inferred to have occurred along38

the pipe, extra nodes are placed along each of the pipes and the global search is repeated. However, both39

steps of this method require to perform a global search over all sensor locations. Hence, its computational40

efficiency is cost-inhibitive especially when a water network has high density of nodes.41

Recently, Srirangarajanet al. [10] proposed an interesting technique that utilizes wave-based42

multiscale analysis of the pressure signal to detect burst transients. To identify the location of water burst43

events, they also exploited the Dijkstra’s algorithm [11] for calculating the shortest distance between44

every two sensor locations. Nevertheless, we observe that,when a burst occurs, its wave may travel in45

all the possible directions of the paths (rather than only the paths with the shortest distance) from the46

burst location to the measurement points. Thus, in order to accurately position water loss events, it seems47

not appropriate to rely on only the shortest travel time between every two sensor locations.48

1.2. Our Contributions49

To resolve the above limitations, in this paper, we propose an efficient scheme that can position water50

loss event more accurately based on water network topology.Our main contributions can be summarized51

as follows:52

• We first devise a novel graph topology-based measure, which can recursively quantify the “average53

distance” between every two senor locations simultaneously in a water network. This measure54

can significantly improve the accuracy of positioning waterloss events, in that it can capture the55
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Figure 1. Modelling a water network (left) as a weighted graph (right)based on topology

multi-faceted relationships among senor locations in a global manner, yet without any sacrifice of56

computational efficiency. (Section2.1)57

• We next propose a fast and accurate search algorithm to efficiently position water loss events,58

which utilizes our “average distance” measure to determinethe difference in the arrival times of59

the pressure variations detected at sensor locations. (Section 2.2)60

The viable experimental evaluations on a real-world test bed demonstrate that our proposed scheme61

can identify water loss event more accurately than the state-of-the-art competitor. (Section3)62

2. The Proposed Model for Positioning Water Loss Event63

We first devise a novel graph topology-based measure that caneffectively quantify the “average64

distance” between senor locations, and then propose our search algorithm to position water loss events.65

2.1. A Graph Topology-Based Measure66

A water network can be modelled as a graph. LetG = (VJ∪VS, E, A) be an attributed water network,67

whereVJ is a vertex set of pipe junctions,VS is a vertex set of deployed sensor locations,E denotes an68

edge set of pipe sections connecting two vertices, andA carries the length of each pipe section.69

To evaluate the average distance between every two verticesover graphG, we first introduce the70

notions ofthe distance matrixD andthe adjacency matrixA.71

Definition 1. Given a water networkG = (VJ ∪VS, E, A) with |V | = |VJ |+ |VS| vertices and|E| edges,

its distance matrixD is a |V | × |V | matrix, whose elementDu,v is defined as

Du,v =

{

the length of pipe section(u, v), if u 6= v and ∃ pipe section(u, v) ∈ E;

0, otherwise.

The adjacency matrix ofG, denoted asA, is defined by

Au,v =

{

1, if u 6= v and ∃ pipe section(u, v) ∈ E;

0, otherwise.
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Example 1. Consider the water networkG in Figure 1, whose edge weights carry the length of each

pipe section. By Definition1, its distance matrixD and adjacency matrixA are as follows:

D =




















a b c d e f g h i j

a 0 0 0 8 0 0 0 0 0 0

b 0 0 3 6 0 0 7 0 0 0

c 0 3 0 0 0 2 0 0 0 0

d 8 6 0 0 2 0 0 4 0 0

e 0 0 0 2 0 0 0 0 6 0

f 0 0 2 0 0 0 0 0 0 0

g 0 7 0 0 0 0 0 5 0 0

h 0 0 0 4 0 0 5 0 4 3

i 0 0 0 0 6 0 0 4 0 0

j 0 0 0 0 0 0 0 3 0 0




















A =




















a b c d e f g h i j

a 0 0 0 1 0 0 0 0 0 0

b 0 0 1 1 0 0 1 0 0 0

c 0 1 0 0 0 1 0 0 0 0

d 1 1 0 0 1 0 0 1 0 0

e 0 0 0 1 0 0 0 0 1 0

f 0 0 1 0 0 0 0 0 0 0

g 0 1 0 0 0 0 0 1 0 0

h 0 0 0 1 0 0 1 0 1 1

i 0 0 0 0 1 0 0 1 0 0

j 0 0 0 0 0 0 0 1 0 0




















Based on Definition1, we notice thatD andA are both symmetric matrices. LeveragingD andA,72

we are now ready to determine the “average distance” betweenevery two sensor locations on graphG.73

Let us first introduce a|V | × |V | matrix, W(d), whose element[W(d)](u,v) denotes the “average

distance” of all paths withd hops between verticesu andv. Then,[W(d)](u,v) can be represented as

[W(d)](u,v) =
the sum of the pipe section lengths over all paths withd hops between verticesu andv

the number of the paths withd hops between verticesu andv
. (1)

To obtain the denominator of Equation (1), we can directly use an elegant property in graph theory74

about the power of an adjacency matrix: the(u, v)-th element of thed-th power ofA, that is,[Ad](u,v),75

counts the number of the paths withd hops between verticesu andv.76

However, it is not easy to evaluate the nominator of Equation(1) as the power of a distance matrix77

can only evaluate theproduct(instead ofsum) of the pipe section lengths over all paths. As an example,78

in Figure1, to determine thesumof the pipe section lengths over all paths with2 hops between vertices79

d andg, the result of[D2](d,g) would produce theproductof the pipe section lengths as follows:80

[D2](d,g) = (thed-th row ofD)× (theg-th column ofD)

=
[

a b c d e f g h i j

8 6 0 0 2 0 0 4 0 0
]
·
[

a b c d e f g h i j

0 7 0 0 0 0 0 5 0 0
]
T

= 6×7 + 5×4 6= (6+7)
︸ ︷︷ ︸

d→b→g

+ (5+4)
︸ ︷︷ ︸

d→h→g

(2)

We notice that, if the “×” sign in Equation (2) were changed into “+” sign, the result would desirably81

turn into thesumof the pipe section lengths over all paths (d → b → g andd → h → g) with 2 hops82

between verticesd andg. To obtain the correct “+”-based results, can we still take good advantage of83

the power of a distance matrix while changing its “×” sign (in Equation (2)) into “+” sign ?84

To address this question, our technique is to introduce an element-wise operatorexp(∗). We construct

the element-wiseexponential distance matrix, denoted asexp(tD), as follows:

[exp(tD)]u,v =

{

exp (tDu,v), if Du,v 6= 0;

0, if Du,v = 0.
wheret ∈ R denotes an arbitrary scalar.

Intuitively, the matrixexp(tD) is formed by replacing every nonzero element inD, sayx, with ex,85

and keeping the zero elements ofD unchanged.86
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Then, to assess thesumof the pipe section lengths over all paths with2 hops between verticesd and87

g, we compute the(d, g)-th element of(exp(tD))2, that is,88

[(exp(tD))2](d,g) = (thed-th row of exp(tD))× (theg-th column ofexp(tD))

=
[

a b c d e f g h i j

e8t e6t 0 0 e2t 0 0 e4t 0 0
]
·
[

a b c d e f g h i j

0 e7t 0 0 0 0 0 e5t 0 0
]
T

= e6t×e7t + e5t×e4t = e(6+7)t + e(5+4)t (3)

In contrast to Equation (2), we can see that, by utilizing the operatorexp(∗), Equation (3) converts all

“×” signs into “+” signs. In light of Equation (3), our next step is to find out an “inverse” operator that

can mape(6+7)t + e(5+4)t back into(6 + 7) + (5 + 4). Our key observation is that

lim
t→0

2

t
log

(
1

2

(
ext + eyt

)
)

= x+ y (4)

Thus, applying the “inverse” operatorlim
t→0

2
t
log

(
1
2
(∗)

)
(in Equation (4)) into Equation (3) produces

lim
t→0

2

t
log

(
1

2

(

[(exp(tD))2](d,g)

))

= lim
t→0

2

t
log

(
1

2

(
e(6+7)t + e(5+4)t

)
)

= (6 + 7) + (5 + 4), (5)

whose result gives thesumof the pipe section lengths over all paths (d → b → g andd → h → g) with89

2 hops between verticesd andg.90

Equations (3)–(5) provide an effective technique to obtain the nominator of[W(d)](u,v) in Equation (1).91

To generalize our above result for any arbitrary element of(exp(tD))2, we need to extend the “inverse”92

operator in Equation (4) as follows.93

Theorem 1. For any positive integerN = 1, 2, · · · , the following equation holds:

lim
t→0

N

t
log

(
1

N

(
ex1t + ex2t + · · ·+ exN t

)
)

= x1 + x2 + · · ·+ xN . (6)

As a special case whenN = 2, Theorem1 reduces to the result in Equation (4). Theorem1 is used94

for generalizing the result of Equation (3) for anyarbitrary element of(exp(tD))k. More specifically,95

in our aforementioned example, we choose Equation (4) (that is,N = 2 in Equation (6)) to “inverse”96

[(exp(tD))2](d,g) because there aretwo summands (e(6+7)t ande(5+4)t) in Equation (3). In general case,97

we observe that the number of summands forarbitrary element(u, v) of (exp(tD))k in Equation (3)98

should be consistent with (a) the choice ofN in Equation (6) and (b) the number of the paths withd hops99

between verticesu andv (that is,[Ad](u,v)).100

Example 2. Consider the water network in Figure1. To compute the sum of the pipe section lengths over

all paths withd = 3 hops between verticesb and i, we first obtain its distance matrixD and adjacency

matrixA, as illustrated in Example1. Next, we evaluate

[A3](b,i) = 3 and [(exp(tD))3](b,i) = e(6+2+6)t
︸ ︷︷ ︸

b→d→e→i

+ e(6+4+4)t
︸ ︷︷ ︸

b→d→h→i

+ e(7+5+4)t
︸ ︷︷ ︸

b→g→h→i
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Finally, choosingN = 3 in Theorem1, we can “inverse”[(exp(tD))3](b,i) as follows:101

lim
t→0

3

t
log

(
1

3

(

[(exp(tD))3](b,i)

))

= lim
t→0

3

t
log

(
e(6+2+6)t + e(6+4+4)t + e(7+5+4)t

3

)

= (6 + 2 + 6) + (6 + 4 + 4) + (7 + 5 + 4) = 44.

Hence, the sum of the pipe section lengths over all paths with3 hops between verticesb andi is 44.102

After the nominator of Equation (1) is obtained, the “average distance”[W(d)](u,v) follows directly:103

Theorem 2. The “average distance” of all paths withd hops between every two verticesu and v,

[W(d)](u,v), can be quantified as

[W(d)](u,v) =







lim
t→0

1
t
log

(
[(exp(tD))d ](u,v)

[Ad](u,v)

)

, if [Ad](u,v) 6= 0;

0, if [Ad](u,v) = 0;

As a special case,W(1) = D. This is because, whend = 1 andu 6= v, [Ad](u,v) = 1. Then,

[W(1)](u,v) = lim
t→0

log([exp(tD)](u,v))
t

= lim
t→0

[(tD)](u,v)
t

= D(u,v) if u 6= v.

Example 3. Recall the result in Example2. Since[A3](b,i) = 3 and the sum of the pipe section lengths

over all paths withd = 3 hops between verticesb andi is 44, the “average distance” is

[W(3)](b,i) = 44/3.

Theorem2 provides an efficient way of evaluating the “average distance” [W(d)](u,v) with the fixed104

numberd of hops by using distance matrixD and adjacency matrixA. Based on[W(d)](u,v), we can105

obtain the “average distance” matrixS(L) withinL hops as follows.106

Definition 2. Let 0 < λ < 1 be a user-controlled decay factor. Given a water networkG, its “average

distance” matrixS(L) withinL hops(L = 2, 3, · · · ) is defined by

[S(L)](u,v) =

{
1
β

[
λD+ λ2

W
(2) + · · ·+ λL

W
(L)

]

(u,v)
, (u 6= v);

0, (u = v).
with β =

L∑

i=1

λi · 1{[W(i)](u,v) 6=0} (7)

where1{[W(i)](u,v) 6=0} is an indicator function, which returns 1 if[W(i)](u,v) 6= 0, and 0 otherwise.107

Intuitively, [S(L)]u,v captures the weighted average distance withinL hops between verticesu and108

v. In Equation (7), the first termλD signifies that the paths of 1 hop have a contribution ofλ to S
(L);109

the second termλ2
W

(2) means that the paths of (longer) 2 hops have a (smaller) contribution of λ2 to110

S
(L), and so forth. The parameter1

β
is a normalization factor, which guarantees that the sum of all the111

weighted factors{λ, λ2, · · · , λL} in Equation (7) is 1.112

The constantλ is between 0 and 1, which can be thought of as a confidence level. Empirically, it is113

often set to 0.6–0.9, which gives the rate of decay as wave spreads across the pipe sections.114
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Example 4. Recall the water network in Figure1 and its distance matrixD and adjacency matrixA in

Example1. We chooseλ = 0.85 andL = 5. By Definition2, the “average distance” matrixS(5) can be

obtained as follows:

S
(5) =






















a b c d e f g h i j

a 0 17.9024 20.6098 14.9965 14.1626 19.0000 22.7073 15.7290 19.9024 18.7290

b 17.9024 0 9.6673 12.9995 12.2146 8.5122 13.9983 14.5122 18.4246 17.5122

c 20.6098 9.6673 0 12.6098 14.9734 6.1593 13.5122 17.3068 17.6667 17.0000

d 14.9965 12.9995 12.6098 0 9.3958 14.6098 14.7073 10.7929 11.9024 10.7290

e 14.1626 12.2146 14.9734 9.3958 0 13.0000 17.4650 11.4341 11.2714 14.4341

f 19.0000 8.5122 6.1593 14.6098 13.0000 0 15.5122 16.0000 19.6667 19.0000

g 22.7073 13.9983 13.5122 14.7073 17.4650 15.5122 0 11.8536 12.9024 11.7724

h 15.7290 14.5122 17.3068 10.7929 11.4341 16.0000 11.8536 0 10.2734 8.9514

i 19.9024 18.4246 17.6667 11.9024 11.2714 19.6667 12.9024 10.2734 0 10.3821

j 18.7290 17.5122 17.0000 10.7290 14.4341 19.0000 11.7724 8.9514 10.3821 0






















As opposed to the previous work [10] that considers only one single path of the shortest length,S
(L)

115

can capture multiple paths of different length between every two sensor locations by fully exploiting the116

network topology information. Thus, if the “average distance”S(L) is used to quantify the wave traveling117

distance from a burst location to a sensor location, water loss events can be positioned more accurately,118

as will be shown in the next section.119

2.2. Effectively Positioning Water Loss Event120

Having evaluated the “average distance” matrixS
(L), we next present an efficient algorithm to position

a water loss event with higher accuracy. We assume that the sensor points of the water network are time

synchronized. Our basic idea is to measure the difference in“average distance” to two sensor locations

that detect the burst transient at known times. Specifically, let ν̄ denote the average wave speed, and

let tu andtv be the time points when the burst transient event is detectedat sensor locationsu andv,

respectively. Note that the time of the burst eventtx is unknown in advance, but such a burst event must

occur beforemin{tu, tv} (earlier than either of the detected time at locationsu andv). We observe that

the time gap between(tu − tx) and (tv − tx) (which can be calculated as|tu − tv|) is mainly due to

the difference in “average distance” from the burst (source) locationx to both sensor locationsu andv.

Hence, ideally we have the following equations:

tu − tv = (tu − tx)− (tv − tx) ⇒ ν̄(tu − tv) = ν̄(tu − tx)
︸ ︷︷ ︸

dist(u,x)

− ν̄(tv − tx)
︸ ︷︷ ︸

dist(v,x)

which implies that

ν̄(tu − tv) = dist(u, x)− dist(v, x) ≈ [S(L)]u,x − [S(L)]v,x (8)

Then, we can enumerate each sensor location inV to find out the top-k (k is often set to 3–5 in practice)

best approximate solutionŝX ⊆ V of x to Equation (8), that is,

X̂ = arg (top-k)min
x∈V

{|ν̄(tu − tv)− ([S(L)]u,x − [S(L)]v,x)|} (9)
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M2

M3

M1

Water Loss Point

M2

M3

M1

Pipe Junction Point

Sensor Location Point

Figure 2. The real-life pipe network layout (left) and its heterogeneous graph (right), where

yellow vertices represent pipe junctions, blue vertices are sensor locations. In the left figure,

the green dotted lines denote the wave paths traversed by Srirangarajanet al.’s method [10],

whereas both green and red dotted lines are those traversed by our approach.

Thus, the elements in̂X form a “hyperbolic curve” with two focal pointsu andv. To determine the

precise location along this “hyperbolic curve”, we need to choose another pair of sensor locations, say

u andw, as two focal points, with the aim to produce the another “hyperbolic curve”, that is, to find out

another set of the top-k best approximate solutionŝY ⊆ V to the following equation:

Ŷ = arg (top-k)min
y∈V

{|ν̄(tu − tw)− ([S(L)]u,y − [S(L)]w,y)|} (10)

The intersection of the two “hyperbolic curves”̂X∩ Ŷ will produce a small number of possible locations121

where a water loss event may occur. Finally, we can search locally for the most likely water loss position122

along pipe sections connected to the closest sensor locations inX̂ ∩ Ŷ .123

3. Experimental Study124

In this section, we experimentally demonstrate the effectiveness of our water loss positioning scheme125

on the real test bed (WaterWiSe@SG) deployed on the water network system by Whittleet al. [12].126

The test bed consists of sensors measuring hydraulic (pressure, flow) and water quality parameters.127

The pipe network layout is depicted in Figure2 covering an area of 1km2. It consists of|V | = 8 vertices128

(|VS| = 3 pressure sensorsM1,M2,M3 that can detect the burst transients, and|VJ | = 5 pipe junctions).129

The measurement points are time synchronized using the GPS pulse per second (PPS) signal leading to130

a distance error of±2m [10]. To detect burst events, we also implement the CUSUM changedetection131

test by Misiunaset al. [13].132

The following parameters are used by default: (a) the decay factorλ = 0.6; (b) the total number of133

hopsL = 5; (c) the top-k sizek = 3.134

Ten burst events are created during the evening from 21:00 to23:00 hours. The results are reported in135

Table1. For each burst event, we compute the arrival time difference for every pair of sensor locations.136

To estimate its burst location, we compare the localizationerrors of our proposed scheme with those137

of Srirangarajanet al.’s shortest distance-based method [10]. It can be discerned that, for every burst138

event, our method consistently exhibits 13.5%–62.7% higher accuracy than Srirangarajanet al.’s. The139
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Table 1. Results of Positioning Water Loss Events

Burst
Event

Difference in Arrival Time (sec) Water Loss Positioning Error (m) Improved
Ratio (%)tM2 − tM1 tM3 − tM1 Shortest Path Method [10] Our Scheme

1 0.27897 0.58687 42.07 32.49 62.70%
2 0.31484 0.52347 34.51 29.14 32.72%
3 0.32334 0.64109 43.42 33.53 56.30%
4 0.30235 0.55671 30.76 29.57 17.92%
5 0.33241 0.50157 26.11 25.33 13.50%
6 0.28782 0.57702 37.05 30.52 58.44%
7 – 0.58347 – – –
8 0.27647 0.47209 23.51 20.73 24.51%
9 0.32780 – – – –
10 0.31478 0.52631 31.19 25.94 26.49%

Average 0.30653 0.55207 32.73 28.25 36.57%

average error of our water loss positioning method is 28.25 meters, which has 36.57% improvement140

over the Srirangarajanet al.’s approach. This is because our graph-based topology distance measure141

can comprehensively take into account the weighted contributions of paths with different hops between142

two sensor locations, whereas Srirangarajanet al.’s distance measure accommodates only one path of143

the shortest length in a biased manner. In addition, our techniques can produce the top-k (k = 5) best144

approximate solutions along a “hyperbolic curve”, thus producing a better candidate set for local search.145

Notice that 2 out of 10 burst events are not positioned, denoted as “–” in Events 7 and 9 of Table1,146

due to the missing reading of sensors. Thus, in the above experiment, the percentage of burst events147

positioned by this method is∼80%. Ideally, this percentage can be improved further if thesensors148

readings are good enough.149

Currently, our algorithm is highly efficient to position burst events rather than long-term leakage, as150

the detection algorithm we adopted is based on a rate of sudden change criterion.151

4. Conclusions152

In this paper, an efficient scheme has been investigated to position water loss event more accurately153

by taking advantage of the water network topology. First, a novel graph topology-based measure is154

proposed, which can recursively quantify the “average distances” between every two senor locations155

simultaneously in a water network. Then, based on this measure, an efficient search algorithm is156

devised, which can integrate our “average distances” measure with the difference in the arrival times157

of the pressure variations detected at sensor locations. The viable experimental study on real-life test158

bed (WaterWiSe@SG) demonstrates that our proposed positioning scheme can position water loss event159

more reliably with an improvement of up to 62.7% accuracy over the best-known algorithm.160

For future work, we aim to develop optimization techniques that can substantially accelerate the161

computation of our proposed scheme, aiming to position water loss events very quickly on a large-scale162

water supply system. Another interesting problem is to reduce its memory usage. We will incorporate163

some of our preliminarily results on graph analysis [14–19] into the water flow and pressure behavior, to164

achieve the scalability of our proposed algorithm.165
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