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Abstract: With the eye-catching advances in sensing technologieartsmater networks
have been attracting immense research interest in recard.y@ne of the most overarching
tasks in smart water network management is the reductionabémtoss (such as leaks
and bursts in a pipe network). In this paper, we propose aciesfti scheme to position
water loss event based on water network topology. The sfafee-art approach to this
problem, however, utilizes the limited topology infornwatiof the water network, that is,
only one single shortest path between two sensor locatidnasequently, the accuracy of
positioning water loss events is still less desirable. Toike this problem, our scheme
consists of two key ingredients: First, we design a noveplgriopology-based measure,
which can recursively quantify the “average distances” dfirpairs of senor locations
simultaneously in a water network. This measure will suttsafly improve the accuracy
of our positioning strategy, by capturing the entire watetwork topology information
between every two sensor locations, yet without any saerdfccomputational efficiency.
Then, we devise an efficient search algorithm that combinesdverage distances” with
the difference in the arrival times of the pressure varistidetected at sensor locations.
The viable experimental evaluations on real-world test (WedterWiSe@SG) demonstrate
that our proposed positioning scheme can identify watey éognt more accurately than the
best-known competitor.

Keywords: water loss event; graph topology; smart water network;iagriechnologies
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1. Introduction

The advent of sensing technologies in water supply systeasddd to an increasing need for the
development of smart data technologies in water resourceganent. Today, water loss has become
a serious problem for almost all urban areas around the Waflcdand it can be even worse in areas
with scarcity of water. As a statistical example, the watetuistry in England and Wales loses 3.36
billion liters of water a day in leaks2]. If those leaking locations were found as early as possible
sufficient water resources could be saved to supply 22.4omitleople. However, it is often difficult to
position such water loss events accurately as (a) the sygpdyis usually buried at least 3 feet below
the ground surface, and (b) there are typically many patheected by pipe sections between two pipe
junctions. Therefore, itis imperative for us to devise ditient model that can position water loss event
automatically and accurately in a real water supply system.

1.1. Prior Work

Over the last decade, there have been several pioneeringaabes proposed for water leak or
burst localization, such as gradient intersection methidd$, wave propagation analysiS][ spectral
clustering p], and multiple hypotheses testing] [[see B] for a survey). Nonetheless, only a paucity of
methods have been proposed in the context of a water netwadtge that explores graph topology.

One excellent piece of work is due to Misiuretsal. [9] who leveraged a search-based technique to
localize a burst point. Its main idea consists of two phageshe first phase, the search is performed
globally over all nodes in the network; in the second phdskeeiburst is inferred to have occurred along
the pipe, extra nodes are placed along each of the pipes amgththal search is repeated. However, both
steps of this method require to perform a global search dv&zasor locations. Hence, its computational
efficiency is cost-inhibitive especially when a water natiioas high density of nodes.

Recently, Srirangarajaet al. [10] proposed an interesting technique that utilizes wavetbas
multiscale analysis of the pressure signal to detect bianssients. To identify the location of water burst
events, they also exploited the Dijkstra’s algorithii][for calculating the shortest distance between
every two sensor locations. Nevertheless, we observevihan a burst occurs, its wave may travel in
all the possible directions of the paths (rather than onéyghths with the shortest distance) from the
burst location to the measurement points. Thus, in orderdorately position water loss events, it seems
not appropriate to rely on only the shortest travel time leemvevery two sensor locations.

1.2. Our Contributions

To resolve the above limitations, in this paper, we propasefficient scheme that can position water
loss event more accurately based on water network topo@gymain contributions can be summarized
as follows:

e We first devise a novel graph topology-based measure, whithecursively quantify the “average
distance” between every two senor locations simultangdansh water network. This measure
can significantly improve the accuracy of positioning wabss events, in that it can capture the
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Figure 1. Modelling a water network (left) as a weighted graph (ridgig$ed on topology

multi-faceted relationships among senor locations in &@lmanner, yet without any sacrifice of
computational efficiency. (Sectiéhl)

e We next propose a fast and accurate search algorithm toeettfigiposition water loss events,
which utilizes our “average distance” measure to deterrthealifference in the arrival times of
the pressure variations detected at sensor locationsid8ec?)

The viable experimental evaluations on a real-world tedtdmmonstrate that our proposed scheme
can identify water loss event more accurately than the-stiatiee-art competitor. (Sectias)

2. The Proposed Model for Positioning Water Loss Event

We first devise a novel graph topology-based measure thaeffactively quantify the “average
distance” between senor locations, and then propose oratsalgorithm to position water loss events.

2.1. A Graph Topology-Based Measure

A water network can be modelled as a graph. &et (V;UVs, E, A) be an attributed water network,
whereV is a vertex set of pipe junctiongjy is a vertex set of deployed sensor locatiofigjenotes an
edge set of pipe sections connecting two vertices,Andrries the length of each pipe section.

To evaluate the average distance between every two vedigasgraphG, we first introduce the
notions ofthe distance matri¥> andthe adjacency matriA.

Definition 1. Given a water network' = (V;UVs, E, A) with |[V| = |V;| +|Vs| vertices and E| edges,
its distance matriD is a|V| x |V| matrix, whose elemeid, , is defined as

D - the length of pipe sectiofu, v), if u # v and 3 pipe section(u,v) € E;
“r o, otherwise

The adjacency matrix af, denoted as\, is defined by

A — 1, ifu# v and 3 pipe section(u,v) € E;
“"71 0, otherwise
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Example 1. Consider the water network in Figure 1, whose edge weights carry the length of each
pipe section. By Definitiof, its distance matriD and adjacency matriA are as follows:

a b ¢ d e f g h i 3J a b ¢ d e f g h i 3J

aO O 080 00O0O0 07 aJO O O0O1T0O0O0O0O0 07
10036007000 »|1 0011001000
¢ 0300020000 ¢ 0100010000
4186 00200400 ¢(1 100100100
D= ° 0002000O0GCG6O A= 00010O0O0OO0OT1PO0
T s|l0020000000 T sl 001T00O00O00O00O
g0 7000O0O0S5 00 g0 100000100
{0 004005043 0001001011
i 00006 00400 il 000O010O010O00

i 1000000030 0] i 1000000010 0]

Based on Definitiori, we notice thalD and A are both symmetric matrices. LeveragiDgand A,
we are now ready to determine the “average distance” betexsny two sensor locations on gra@h

Let us first introduce aV| x |V| matrix, W(®, whose elemenfW ] . denotes the “average
distance” of all paths witll hops between verticesandv. Then,[W(d)](u,U) can be represented as

_the sum of the pipe section lengths over all paths wiltops between verticesandv
uv) the number of the paths withhops between verticasandv )

(W), (1)

To obtain the denominator of Equatio)(we can directly use an elegant property in graph theory
about the power of an adjacency matrix: thev)-th element of thel-th power ofA, that is,[A¢]
counts the number of the paths witthops between verticesandwv.

However, it is not easy to evaluate the nominator of Equatiyras the power of a distance matrix
can only evaluate theroduct(instead ofsum) of the pipe section lengths over all paths. As an example,
in Figure1l, to determine theaumof the pipe section lengths over all paths withops between vertices
d andg, the result of D?| ) would produce th@roductof the pipe section lengths as follows:

(u,v)?

(d,g

D%, = (thed-throwofD) x (theg-th column ofD)
a b ¢ d e f g h 1 J a b ¢ d e f g h ¢ j
:[8600200400]-[07000005OO]T
= 6x7+5x4# (6+7)+ (5+4) (2)
——"

d—b—g d—h—g

We notice that, if the %” sign in Equation 2) were changed into+” sign, the result would desirably
turn into thesumof the pipe section lengths over all patlils b — ¢ andd — h — g) with 2 hops
between verticed andg. To obtain the correct+"-based results, can we still take good advantage of
the power of a distance matrix while changing its’sign (in Equation )) into “+” sign ?

To address this question, our technique is to introduceeaneht-wise operatap(x). We construct
the element-wisexponential distance matridenoted asxp(¢tD), as follows:

exp (tDuy), 1if Dy, # 0;

. wheret € R denotes an arbitrary scalar
0, if Dy, =0

[exp(tD)]u, = {

Intuitively, the matrixexp(¢D) is formed by replacing every nonzero elemenDinsayz, with €7,
and keeping the zero elementsIdfunchanged.
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Then, to assess tleimof the pipe section lengths over all paths withops between verticesand
g, we compute théd, g)-th element of exp(tD))?, that is,

[(exp(tD))?] 4, = (thed-th row ofexp(tD)) x (theg-th column ofexp(tD))
a b c d e f g h i j a b c d e f g h i j
— [ e 00 €e* 00 € 00]-[0e” 00000 00]7
_ €6t><e7t+€5t><e4t :e(6+7)t+€(5+4)t (3)

In contrast to Equatior?], we can see that, by utilizing the operatap (), Equation 8) converts all
“x” signs into “+” signs. In light of EquationJ), our next step is to find out an “inverse” operator that
can map“*t 4 e+t pack into(6 + 7) + (5 + 4). Our key observation is that

: 2 1 xt yt o
lg%zlog(§(e +e ))—x+y (4)

Thus, applying the “inverse” operat?r% % log (% (*)) (in Equation §)) into Equation B) produces

lim % log (% ([(exp(tD))2] (d,g))) ~ lim 2 log G (e 4 e<5“>t)) =6+7)+(B+4), ((5)

t—0 ¢

whose result gives theumof the pipe section lengths over all patlis-¢ b — ¢ andd — h — g) with
2 hops between verticesandg.

Equations 8)—(5) provide an effective technique to obtain the nominatcﬁwf@](w) in Equation ().
To generalize our above result for any arbitrary elemeritof(tD))?, we need to extend the “inverse”
operator in Equatiord as follows.

Theorem 1. For any positive integeN = 1,2, - - -, the following equation holds:
limglo i(eg“tJreg”t—i—---—i—echt) =z +To+- -+ (6)
07 g N 1 2 N-

As a special case whel = 2, Theoreml reduces to the result in Equatiof) ( Theoreml is used
for generalizing the result of EquatioB)(for any arbitrary element of(exp(tD))*. More specifically,
in our aforementioned example, we choose Equatrithat is, N = 2 in Equation 6)) to “inverse”
[(exp(tD))?] ) because there ateo summandse(“** ande®47) in Equation 8). In general case,
we observe that the number of summandsdiditrary element(u, v) of (exp(tD))* in Equation 8)
should be consistent with (a) the choiceNdin Equation 6) and (b) the number of the paths witthops
between vertices andv (that is,[A7],, ).

Example 2. Consider the water network in Figufie To compute the sum of the pipe section lengths over

all paths withd = 3 hops between verticésand, we first obtain its distance matri® and adjacency
matrix A, as illustrated in Examplé. Next, we evaluate
3 _ 3 _ (6+2+6)t (6+4+4)t (T4+5+4)t
[A%]y =3 and [(exp(tD))"],, = ¢ +e +e

b—d—e—1i b—d—h—i b—g—h—1i
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Finally, choosingV = 3 in Theoreml, we can “inverse”[(exp(tD))3](bﬂ.) as follows:

3 1 3 (6+246)t | (6+4+4)t | (T+5+4)t
lim - log (g <[(exp(tD))3](b’i)>) = lim - log (e e 3 T )

t—0 ¢ t—0 ¢
= (6+246)+(6+4+4)+(T+5+4) =44

Hence, the sum of the pipe section lengths over all paths3withps between verticésandi is 44. [
After the nominator of Equatiorij is obtained, the “average distanqw(@](w) follows directly:

Theorem 2. The “average distance” of all paths witd hops between every two verticesand v,
(W] ., can be quantified as

€ex; d .

[W(d)](u v) = £50 ¢ [Ad](uﬁv)
’ 0, if [Ad](um) = 0;
As a special casd¥V") = D. This is because, wheh= 1 andu # v, [A9] , ., = 1. Then,

[W(l)](w) — lim log([exp(tD)](u.v) _ lim % =D ifu#v.

t—0 ¢ t—0

Example 3. Recall the result in Exampl2 Since[A?’](bﬂ.) = 3 and the sum of the pipe section lengths
over all paths withd = 3 hops between verticésandi is 44, the “average distance” is

(W&, =44/3. O

Theorem2 provides an efficient way of evaluating the “average disaearbw(d)](u’v) with the fixed
numberd of hops by using distance matrl@ and adjacency matriA. Based or{W(‘”](w), we can
obtain the “average distance” mat@x™) within L hops as follows.

Definition 2. Let0 < A < 1 be a user-controlled decay factor. Given a water netw@rkts “average
distance” matrixS~) within L hops(L = 2,3, - - -) is defined by

[S(L)] (u,0) — {

wherel{[ww](u’v)#o} is an indicator function, which returns 1 ﬁW(“](M) #£ 0, and 0 otherwise.

FAD+XWE 4. AW

0, (u=).

() (U F0); i ﬁ—iki-l | @
we - {W®](, )70}

i=1

Intuitively, [S)],,, captures the weighted average distance withinops between vertices and
v. In Equation 7), the first term\D signifies that the paths of 1 hop have a contribution ad S(2);
the second term>W ) means that the paths of (longer) 2 hops have a (smaller)ibatitm of A% to
S, and so forth. The parametgris a normalization factor, which guarantees that the sunil dhe
weighted factord A\, A%, - - -, AL} in Equation {) is 1.

The constana is between 0 and 1, which can be thought of as a confidence IEugpirically, it is
often set to 0.6—-0.9, which gives the rate of decay as wawadpracross the pipe sections.
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Example 4. Recall the water network in Figureand its distance matri¥d and adjacency matriA in
Examplel. We choose = 0.85 and L = 5. By Definition2, the “average distance” matri$® can be
obtained as follows:

a b d e f g h i i

a0 17.9024 20.6098 14.9965 14.1626 19.0000 22.7073 15.7290 19.9024 18.7290 7
b | 17.9024 0 9.6673 12.9995 12.2146 8.5122 13.9983 14.5122 18.4246 17.5122
¢ | 20.6098 9.6673 0 12.6098 14.9734 6.1593 13.5122 17.3068 17.6667 17.0000
d | 14.9965 12.9995 12.6098 0 9.3958 14.6098 14.7073 10.7929 11.9024 10.7290
e | 14.1626 12.2146 14.9734 9.3958 0 13.0000 17.4650 11.4341 11.2714 14.4341
7| 19.0000 8.5122 6.1593 14.6098 13.0000 0 15.5122 16.0000 19.6667 19.0000
g | 227073 13.9983 13.5122 14.7073 17.4650 15.5122 0 11.8536 12.9024 11.7724
ho| 157290 14.5122 17.3068 10.7929 11.4341 16.0000 11.8536 0 10.2734 8.9514
i | 19.9024 18.4246 17.6667 11.9024 11.2714 19.6667 12.9024 10.2734 0 10.3821
j [ 187290 17.5122 17.0000 10.7290 14.4341 19.0000 11.7724 8.9514 10.3821 0

As opposed to the previous work(] that considers only one single path of the shortest lergjth,
can capture multiple paths of different length betweenetw@o sensor locations by fully exploiting the
network topology information. Thus, if the “average distahS(“) is used to quantify the wave traveling
distance from a burst location to a sensor location, wats &vents can be positioned more accurately,
as will be shown in the next section.

2.2. Effectively Positioning Water Loss Event

Having evaluated the “average distance” ma®i%, we next present an efficient algorithm to position
a water loss event with higher accuracy. We assume that tls®spoints of the water network are time
synchronized. Our basic idea is to measure the differentaverage distance” to two sensor locations
that detect the burst transient at known times. Specifickdtyy denote the average wave speed, and
let ¢, andt, be the time points when the burst transient event is detexttednsor locations and v,
respectively. Note that the time of the burst eviens unknown in advance, but such a burst event must
occur beforanin{t,, t,} (earlier than either of the detected time at locatiorandv). We observe that
the time gap betweeft, — t,) and (¢, — t.) (which can be calculated a5, — ¢,|) is mainly due to
the difference in “average distance” from the burst (soul@eationx to both sensor locationsandwv.
Hence, ideally we have the following equations:

te =ty = (te — 1) — (to —ta) =  Dtu—ts) = D(te — o) — #(ty — t)

Vv Vv
dist(u,z) dist(v,z)

which implies that

Oty —t,) = dist(u, ) — dist(v,z) =~ [SP)] — [S(L)]U’x (8)

uU,x

Then, we can enumerate each sensor locatidnto find out the topk (k is often set to 3-5 in practice)
best approximate solutiod$ C V of z to Equation g), that is,
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Sensor Location Point\
M,
Pipe Junction Point M
M,

Figure 2. The real-life pipe network layout (left) and its heterogene graph (right), where
yellow vertices represent pipe junctions, blue verticessansor locations. In the left figure,
the green dotted lines denote the wave paths traversed tayn§arajaret al's method [L(],
whereas both green and red dotted lines are those traversed bpproach.

Thus, the elements iX form a “hyperbolic curve” with two focal points andv. To determine the
precise location along this “hyperbolic curve”, we needioase another pair of sensor locations, say
u andw, as two focal points, with the aim to produce the another dnigplic curve”, that is, to find out
another set of the top-best approximate solutios C V' to the following equation:

Y = arg (top+) min{[7(ty — tw) - (8", = [S¥1,,)1 (10)

The intersection of the two “hyperbolic curveE"nY” will produce a small number of possible locations
where a water loss event may occur. Finally, we can searettiydor the most likely water loss position
along pipe sections connected to the closest sensor losdtick N'Y .

3. Experimental Study

In this section, we experimentally demonstrate the effeaiss of our water loss positioning scheme
on the real test bed (WaterWiSe@SG) deployed on the wateoriesystem by Whittleet al.[12].

The test bed consists of sensors measuring hydraulic (pesdtow) and water quality parameters.
The pipe network layout is depicted in Figuteovering an area of 1kt consists of V| = 8 vertices
(|Vs| = 3 pressure sensord,, M-, M; that can detect the burst transients, #rid = 5 pipe junctions).
The measurement points are time synchronized using the GBS8 jper second (PPS) signal leading to
a distance error of-2m [10]. To detect burst events, we also implement the CUSUM chaegection
test by Misiuna®t al.[13].

The following parameters are used by default: (a) the deaetpf\ = 0.6; (b) the total number of
hopsL = 5; (c) the top#k sizek = 3.

Ten burst events are created during the evening from 21:P8:G0 hours. The results are reported in
Tablel. For each burst event, we compute the arrival time diffeezdbc every pair of sensor locations.
To estimate its burst location, we compare the localizatioors of our proposed scheme with those
of Srirangarajaret al’s shortest distance-based methdd][ It can be discerned that, for every burst
event, our method consistently exhibits 13.5%—62.7% higloeuracy than Srirangarajab al’s. The
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Table 1. Results of Positioning Water Loss Events

Burst | Difference in Arrival Time (sec Water Loss Positioning Error (m) Improved
Event | ¢y, —tary \ tas — tany Shortest Path Method (] \ Our Scheme Ratio (%)
1 0.27897 0.58687 42.07 32.49 62.70%
2 0.31484 0.52347 34.51 29.14 32.72%
3 0.32334 0.64109 43.42 33.53 56.30%
4 0.30235 0.55671 30.76 29.57 17.92%
5 0.33241 0.50157 26.11 25.33 13.50%
6 0.28782 0.57702 37.05 30.52 58.44%
7 - 0.58347 - - -
8 0.27647 0.47209 23.51 20.73 24.51%
9 0.32780 - - - -
10 0.31478 0.52631 31.19 25.94 26.49%
Average| 0.30653 | 0.55207 | 32.73 | 2825 | 3657%

average error of our water loss positioning method is 28.2%ms, which has 36.57% improvement
over the Srirangarajaat al’s approach. This is because our graph-based topologyndistaeasure
can comprehensively take into account the weighted cartioibs of paths with different hops between
two sensor locations, whereas Srirangaragtal’s distance measure accommodates only one path of
the shortest length in a biased manner. In addition, oumigades can produce the tdptk = 5) best
approximate solutions along a “hyperbolic curve”, thusdurcing a better candidate set for local search.

Notice that 2 out of 10 burst events are not positioned, aghas “—” in Events 7 and 9 of Table
due to the missing reading of sensors. Thus, in the aboveiexga, the percentage of burst events
positioned by this method is80%. Ideally, this percentage can be improved further ifsaesors
readings are good enough.

Currently, our algorithm is highly efficient to position lstievents rather than long-term leakage, as
the detection algorithm we adopted is based on a rate of sutldage criterion.

4. Conclusions

In this paper, an efficient scheme has been investigatedsitigpgpwater loss event more accurately
by taking advantage of the water network topology. Firstoaeh graph topology-based measure is
proposed, which can recursively quantify the “averageadists” between every two senor locations
simultaneously in a water network. Then, based on this nmeasn efficient search algorithm is
devised, which can integrate our “average distances” meagith the difference in the arrival times
of the pressure variations detected at sensor locations.viltble experimental study on real-life test
bed (WaterWiSe@SG) demonstrates that our proposed puosiischeme can position water loss event
more reliably with an improvement of up to 62.7% accuracyrdhre best-known algorithm.

For future work, we aim to develop optimization techniquieattcan substantially accelerate the
computation of our proposed scheme, aiming to positionmass events very quickly on a large-scale
water supply system. Another interesting problem is to cedts memory usage. We will incorporate
some of our preliminarily results on graph analy4ié{19] into the water flow and pressure behavior, to
achieve the scalability of our proposed algorithm.
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