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Abstract 

Bile acids are synthesized from cholesterol in the liver and subjected to multiple metabolic 

biotransformations in hepatocytes, including oxidation by cytochromes P450 (CYP)s and 

conjugation with taurine, glycine, glucuronic acid, and sulfate. Mice and rats can hydroxylate 

chenodeoxycholic acid (CDCA) at the 6β-position to form α-muricholic acid (α-MCA), and 

ursodeoxycholic acid (UDCA) to form β-muricholic acid (β-MCA). However, MCA is not formed in 

humans to any appreciable degree and the mechanism for this species difference is not known. 

Comparison of several Cyp-null mouse lines revealed that α-MCA and β-MCA were not detected in 

the liver samples from Cyp2c-cluster null (Cyp2c-null) mice. Global bile acids analysis further 

revealed the absence of MCA and their conjugated-derivatives, and high concentration of CDCA, 

UDCA in Cyp2c-null mouse cecum and feces. Analysis of recombinant CYPs revealed that α-MCA 

and β-MCA were produced by oxidation of CDCA and UDCA by Cyp2c70. CYP2C9-humanized 

mice have similar bile acid metabolites as the Cyp2c-null mice, indicating that human CYP2C9 does 

not oxidize CDCA and UDCA thus explaining the species differences in production of MCA. Since 

humans do not produce MCA, they lack tauro-β-MCA, a farnesoid X receptor (FXR) antagonists in 

mouse, that modulates obesity, insulin resistance and hepatosteatosis.  

 

Supplementary key words: bile acid metabolism • chenodeoxycholic acid • cytochrome P450 • 

Cyp2c70 • enzyme kinetics • liver • muricholic acid • species difference • ursodeoxycholic acid  
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Introduction 

Bile acids are synthesized from cholesterol in the liver and secreted through the biliary tract into the 

small intestine, where they aid in the absorption of lipids and fat-soluble vitamins (1, 2). Greater than 

90% of bile acids produced in the liver are reabsorbed in the small intestine in the process of 

enterohepatic circulation. Bile acid synthesis and transport in the liver and intestine is regulated by the 

farnesoid X receptor (FXR, NR1H4), a member of the nuclear receptor superfamily (3, 4). Bile acids are 

subject to multiple metabolic biotransformations in hepatocytes, including conjugation with taurine, 

glycine, glucuronic acid, and sulfate (5). Mice and rats can hydroxylate chenodeoxycholic acid (CDCA) 

at the 6β-position to form α-muricholic acid (α-MCA), and ursodeoxycholic acid (UDCA) to form β-

muricholic acid (β-MCA). MCA is produced in both mouse and rat liver, but is not formed at significant 

levels in human liver, thus indicating a species difference in MCA synthesis. In addition, mice mainly 

produce taurine conjugates of bile acids, while humans produce both mostly glycine conjugates and some 

taurine conjugates (6); rats also carry out both taurine and glycine conjugation. This is of particular 

interest since the taurine conjugate of β-MCA, T-β-MCA, is an antagonist of FXR in the ileum that 

controls FXR signaling and metabolic disease in mouse models of obesity (7-9).  

While the hepatic cytochromes P450 (CYP) play a central role in the metabolism of drugs, toxins, 

and carcinogens, they also carry out key metabolic reactions in steroid hormone and bile acid synthesis. A 

number of CYPs participate in the synthesis of bile acid metabolites, with cholesterol 7α-hydroxylase 

(CYP7A1) generally considered the rate limiting enzyme in bile acid synthesis (10). Cyp7a1 is under 

control of FXR in the liver, and by FXR in the intestine through modulation of fibroblast growth factor 15 

(FGF15) produced in the intestine that suppresses Cyp7a1 expression in the liver (11). The mammalian 

CYPs have remarkable diversity between species, with 57 CYP genes identified in humans, and more than 

100 putatively functional Cyp genes described in the mouse (12). For example, while the CYP1A/Cyp1a 

genes are conserved between mice and humans, the CYP2C, CYP2D, and CYP3A gene clusters have 

markedly diverged between the two species (13). To overcome the differences that exist in the substrate 
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specificity, and multiplicity of CYPs between species, significant efforts have been made to develop and 

characterize Cyp-null and CYP-humanized mice, with the aim to determine the metabolic functions of 

CYPs and to provide mouse models that better predict human pathways of metabolism (14, 15). Viable 

knockout models of the mouse Cyp3a (16, 17), Cyp2d (18), Cyp1a (19) and  Cyp2c (20) gene clusters 

were described, which are associated with metabolic differences in the metabolism of xenobiotics as 

compared with wild-type controls.  

In present study, Cyp-null mice were used to determine which CYPs are responsible for the 

differences in production of bile acid metabolites between humans and mice, notably the hepatic synthesis 

of MCA. Individual BA concentrations were determined in wild-type, Cyp-null mice leading to the 

identification of Cyp2c70 as the CYP responsible for MCA synthesis in mice. This was confirmed by 

recombinant Cyp2c70 expression and Cyp2c70 siRNA inhibition in primary mouse hepatocytes. 

 

MATERIALS AND METHODS 
 

Animal maintenance and treatments 

All animal studies and procedure were carried out in accordance with Institute of Laboratory Animal 

Resources guidelines and approved by the National Cancer Institute Animal Care and Use Committee. 

Mice were housed in a pathogen-free animal facility under a standard 12-hour light/dark cycle and given 

pelleted NIH-31 chow diet and water ad libitum. Male mice between 8 and 12 weeks of age were used for 

isolation of primary hepatocytes and preparation of liver microsomes. Liver tissue, fecal samples and 

ileum/cecum contents for metabolomics analysis were collected in Dundee and shipped to the NCI for 

analysis. Adult Cyp1a-cluster null (Cyp1a-null) (19), Cyp2c-cluster null (Cyp2c-null) (20), Cyp2d-cluster 

null (Cyp2d-null)(18), Cyp3a-cluster null (Cyp3a-null) (16) and CYP2C9-humanized (hCYP2C9) (20) 

mice were housed singly in open-top cages with ad libitum 24 hours access to food and water. RM1A 

chow diet (Special Diets Services, Witham, UK) was removed for the final 4 hours before killing. After 

24 hours, fecal pellets were collected, mixed and 500 mg snap-frozen and stored at -80°C. Mice were 
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killed by CO2 asphyxiation and blood collected by cardiac puncture. Tissues were excised and 

immediately frozen in liquid nitrogen and serum and tissues were stored at -80°C until use.  

 

Measurement of mRNAs  

Total RNA of liver was extracted using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA). 

qPCR was performed using cDNA generated from 1 µg total RNA with qScript™ cDNA SuperMix 

(Quanta Biosciences, Gaithersburg, MD). qPCR reactions were carried out using SYBR green qPCR 

master mix (Biotools, Houston, TX) in an QuanStudioTM 7 Flex System. The primer pairs were designed 

using Primer-BLAST (National Center for Biotechnology Information), and was shown in Supplementary 

Table 1. Values were quantified with the comparative CT method and normalized to peptidylprolyl 

isomerase A (Ppia). 

 

Quantification of bile acid metabolites 

Twenty mg of liver, cecum and feces were homogenized with 200 µL of 100% acetonitrile containing 

1 µM d5-taurocholate (Sigma-Aldrich) as an internal standard and centrifuged twice at 15,000 × g for 25 

minutes at 4°C for removal of precipitated proteins and other particulates. The supernatant was diluted by 

an equal volume of HPLC grade water (Thermo Fisher Scientific, Waltham, MA) containing 0.1% formic 

acid. Quantification of bile acid metabolites were measured as described previously (7, 9). LC-MS was 

performed on a Waters Acquity H-Class UPLC system using a Waters Acquity BEH C18 column (2.1 × 

100 mm) coupled to a Waters Xevo G2 QTOFMS. UPLC was performed by the following protocol: A, 

0.1% Formic acid in water and B, 0.1% formic acid in acetonitrile. An initial gradient of 80% A for 4 

minutes, to 60% A at 15 minutes, to 40% A at 20 minutes, to 10% A at 21 minutes, followed by flushing 

for 1 minute, then equilibration under the initial conditions for 4 minutes. The flow rate was 0.4 

ml/minute, and the column temperature was maintained at 45°C. A Waters Xevo G2 QTOF was operated 

in negative mode, scanning m/z 50-1200 at a rate of 0.3 seconds/scan. The following instrument 

conditions were used: 1.5 kV capillary voltage, 150°C source temperature, 30 V sampling cove, and a 
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desolvation gas flow rate of 850 L/hour at 500°C. The chromatograms showing the separation of the 

various bile acid isomers is included in Supplemental Fig. S1 and S2. 

 

CDCA and UDCA oxidation activity  

The CDCA and UDCA oxidation was determined as follows. A typical incubation mixture (final 

volume of 0.1 ml) contained 100 mM potassium phosphate buffer, pH 7.4, and various enzyme sources 

(0.4 mg/ml mouse microsomal protein, 1.0 mg/ml S9 from liver tissues of Cyp2c-null, Cyp3a-null and 

wild-type mice). In a preliminary study, the rate of formation of α-MCA and β-MCA was found to be 

linear with respect to the protein concentrations (up to 0.5 mg/ml mouse microsomal protein and 

incubation time for 30 min). Chenodeoxycholic acid-2, 2, 4, 4-d4 (CDCA-d4, Toronto Research 

Chemicals, Inc., Toronto, Canada), ursodeoxycholic acid-2, 2, 4, 4-d4, (UDCA-d4, Cambridge Isotope 

Laboratories, Inc., Andover, MA) and 7-ethoxyresorufin (7-ER, Sigma-Aldrich) were dissolved in 

dimethyl sulfoxide (DMSO), and the final concentration of DMSO in the incubation mixture was 0.1%. 

The reaction was initiated by the addition of 4 to 100 µM CDCA, 40 to 1000 µM UDCA, and 1 µM 7- 

ER, after 7-min pre-incubation at 37°C. Following a 20-min incubation at 37°C, the reaction was 

terminated by the addition of 0.1 ml of ice-cold acetonitrile. After removal of the protein by 

centrifugation at 15000g, 4℃, 15 min, an equal volume of HPLC grade water containing 0.1% formic 

acid was added followed by centrifugation at 15000g, 4℃ , 15 min. 10 µL of the supernatant was 

subjected to UPLC-QTOFMS. The ions for α-MCA-d4 and β-MCA-d4 are m/z 411.3069 in the negative 

ion mode. 

 

Transfection of plasmids expressing mouse Cyp2c29 and Cyp2c70. 

HepG2 cells were maintained in RPMI 1640 medium with L-glutamine containing 10% fetal bovine 

serum with 5% CO2 at 37°C. The cells were transfected in 12-well plate with 1 µg of Cyp2c29 expression 

vector (MGC premier Expression-Ready cDNA clone for Cyp2c29 - pCS6, BC019908, transOMIC 
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technologies, Huntsville, AL), Cyp2c70 expression vector (MGC premier Expression-Ready cDNA clone 

for Cyp2c70 - pCS6, BC016494, transOMIC technologies) and mock vector using Lipofectamine 3000 

(Thermo Fisher Scientific). After incubation for 48 hours, the cells were treated with 25 µM CDCA-d4 or 

400 µM UDCA-d4. 

 

Preparation and treatment of mouse primary hepatocytes. 

Primary hepatocytes were isolated from C57BL/6J mice as described previously (21). Briefly, after 

killing mice by CO2 asphyxiation, the abdomen was incised and mesentery and intestine moved to expose 

the portal vein. A cannula was inserted into the portal vein and liver was perfused with 40 ml of Hank's 

buffered salt solution (HBSS) without magnesium or calcium (Thermo Fisher Scientific) containing 1 

mM EDTA at 4 ml/min. Blood was extravasated by cutting the inferior vena cava. After perfusion of the 

entire liver using 50 ml of HBSS containing collagenase I and II (0.6 mg/ml each, Thermo Fisher 

Scientific) and calcium chloride dehydrate (5 mM) at the speed of 4 ml/min, the digested liver was 

removed and placed in a sterile 10-cm Petri dish with 10 mM phosphate-buffered saline (PBS). The 

hepatic capsule was torn by fine-tip forceps and dispersed cells were filtered through 70-µm cell strainer 

(Becton Dickinson and Company) into a 50-ml tube and centrifuged at 200 × g, at 4 °C for 2 minutes. 

Hepatocytes were further washed and purified by gradient centrifugation using Percoll Plus (GE 

Healthcare, Buckinghamshire, UK). After washing with HBSS and trypan blue staining, the number of 

hepatocytes were counted and then seeded in collagen-coated 12-well plates (Becton Dickinson and 

Company) at a density of 4 × 105 cells/well. Primary hepatocytes were cultured in William’s E medium 

(Thermo Fisher Scientific) with 10% fetal bovine serum, and antibiotics (100 U/ml penicillin and 100 

µg/ml streptomycin). Four-to six hours after seeding, the cells were treated with 10 nM Cyp2c29 

Silencer® Select Pre-designed siRNA (Thermo Fisher Scientific), Cyp2c70 Silencer® Select Pre-designed 

siRNA (Thermo Fisher Scientific), and Silencer® Select Negative Control #1 (Thermo Fisher Scientific) 

using Lipofectamine® RNAiMAX (Thermo Fisher Scientific). Twenty-four hours after siRNA treatment, 

the cells were treated with medium containing CDCA-d4 or UDCA-d4 for 4 hours. At the prescribed time 
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points, medium and cells were harvested and subjected to measurement bile acids using QTOF-MS and 

qPCR respectively.  

 

Statistical Analysis. 

Statistical analysis was performed with Prism version 6 (GraphPad Software). Appropriate statistical 

analysis was applied, assuming a normal sample distribution. When comparing two groups, statistical 

significance was determined using two-tailed Student's t-test. When more than two groups were 

investigated, one-way ANOVA followed by Tukey’s post-hoc correction was applied for comparisons. A 

p value of less than 0.05 was considered as significant difference. Results are expressed as the mean value 

and SD values. 

 

 
RESULTS 

 
MCA and conjugated-MCA in the liver of Cyp-null mice  

To determine the influence of CYPs on the formation of α-MCA and β-MCA, bile acids were 

measured in livers of Cyp1a-null, Cyp2c-null, Cyp2d-null and Cyp3a-null mice. α-MCA and β-MCA 

were not detected in livers from Cyp2c-null mice, although they were present in other Cyp-null mouse 

lines (Figure 1A). Moreover, T-α-MCA and T-β-MCA were also not detected in Cyp2c-null mouse livers 

(Figure 1B). These results suggest that mouse Cyp2c might produce α-MCA and β-MCA.  

 

Kinetic analysis of MCA production in vitro 

To investigate MCA production from CDCA and UDCA, the activities of α-MCA and β-MCA 

production were measured using liver S9 fractions of wild-type, Cyp2c-null, and Cyp3a-null mice at 50 

µM CDCA-d4 or 500 µM UDCA-d4 (Figure 2A, 2B). α-MCA-d4 was detected in CDCA-d4-treated S9 

from wild-type and Cyp3a-null mice, but was not detected in S9 from Cyp2c-null mice (Figure 2A). β-

MCA-d4 was not detected in any of the CDCA-d4-treated groups. α-MCA-d4 was not detected in the 
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UDCA-d4 treated-group while β-MCA was detected in S9 from wild-type and Cyp3a-null mice but was 

undetected in Cyp2c-null mice (Figure 2B). As a control, it was confirmed that liver S9 fractions from all 

of mouse lines showed the 7-ethoxyresorufin (7-ER) O-deethylase activity, which is a marker activity of 

mouse Cyp1a2 (Figure 2C). Kinetic analyses using different concentrations of CDCA and UDCA were 

performed using liver microsomes to determine the Km and Vmax values for α-MCA and β-MCA 

productions from CDCA and UDCA, respectively. The Km and Vmax values for α-MCA production 

were 8.19 ± 0.24 µM and 0.58 ± 0.01 nmol/min/mg, and those for β-MCA production were 321 ± 46 µM 

and 0.418 ± 0.03 nmol/min/mg, respectively (Figure 2D). These data indicate that the catalytic efficiency 

for α-MCA production is higher than that for β-MCA production. 

 

Levels of individual Cyp2c mRNAs in wild-type mice 

There are 16 kinds of Cyp2c genes in mice, including Cyp2c53 that is a pseudogene, and their 

proteins are mainly expressed in the liver. The expression of each Cyp2c mRNA in liver was determined 

by RT-qPCR. The levels of Cyp2c29, Cyp2c50, Cyp2c67, Cyp2c69, and Cyp2c70 mRNAs were 5.3-, 1.8-, 

3.0-, 1.5- and 1.9-fold that of Cyp2c44 mRNA, which is the only Cyp2c gene not deleted in the Cyp2c-

null mice (Figure 3). The mouse Cyp2c cluster, with the exception of Cyp2c44, which is located 4 Mb 

away from the main Cyp2c gene cluster, was flanked with Cre recombinase recognition (loxP) sites using 

two consecutive rounds of targeting in mouse ES cells (20). 

 

CDCA and UDCA oxidation activity by recombinant mouse Cyp2c70 

To investigate which mouse Cyp2c isoform produces α-MCA from CDCA, Cyp2c29 and Cyp2c70 

were transiently expressed in HepG2 cells as revealed by mRNA expression (Figure 4A). Recombinant 

Cyp2c29 and Cyp2c70 showed the production of α-MCA-d4 from CDCA was only detected in cells 

expressing Cyp2c70. β-MCA was not detected in these groups (Figure 4B). In contrast, α-MCA-d4 was 
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not detected when UDCA-d4 was used as a substrate. Cyp2c70-expressing cells also showed β-MCA 

production from UDCA (Figure 4C). These results suggest that Cyp2c70 catalyzes CDCA and UDCA 

oxidations to α-MCA and β-MCA, respectively.   

  

Knockdown of Cyp2c70 reduces MCA production in mouse primary hepatocytes 

To further confirm whether Cyp2c70 produces MCA from CDCA or UDCA, siRNA against Cyp2c29 

(Si-Cyp2c29) and Cyp2c70 (Si-Cyp2c70) were transfected to mouse primary hepatocytes. Si-Cyp2c29 

and si-Cyp2c70 significantly decreased Cyp2c29 and Cyp2c70 mRNA levels, respectively, and did not 

affect Cyp2c44 mRNA expression (Figure 5A). In the presence of CDCA, α-MCA levels were 

specifically decreased in the si-Cyp2c70-treated cells, while β-MCA production was lowered in mouse 

primary hepatocytes in the presence of UDCA. This result reveals that Cyp2c70 is responsible for MCA 

production from CDCA and UDCA in mouse liver. 

 

Bile acids in the liver, cecum and feces from Cyp2c-null mice and CYP2C9-humanized mice 

To determine the consequence of loss of Cyp2c70 in the Cyp2c-null and CYP2C9-humanized mice, 

bile acids were measured in liver, cecum and feces of wild-type, Cyp2c-null, and CYP2C9-humanized 

mice. hCYP2C9 mice were generated from the Cyp2c-deleted ES cells described above by further Cre-

mediated insertion of an expression cassette in which the human CYP2C9 gene is under control of the 

liver-specific mouse albumin promoter (20). In this study, the CYP2C9-humanized mice were used for the 

human model, because among human CYP2C enzymes, CYP2C9 is most abundant in the liver and is 

involved in the metabolism of various kinds of endogenous and exogenous compounds.	   α-MCA and β-

MCA and their taurine conjugates were not detected in the liver, cecum and feces of Cyp2c-null and 

CYP2C9-humanized mice (Figure 6). Moreover, the contents of CDCA and UDCA, which are precursor 

substances of α-MCA and β-MCA in mice, respectively, in Cyp2c-null and CYP2C9-humanized mice 
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were significantly higher than those in wild-type mice. The contents of T-CDCA and T-UDCA were also 

high in Cyp2c-null and CYP2C9-humanized mice. In cecum and feces, lithocholic acid (LCA) was also 

significantly highly detected in Cyp2c-null and CYP2C9-humanized mice as compared with wild-type 

mice. In addition, tauro-LCA (T-LCA) was highly detected in these mice. 

 
DISCUSSION 

 
An earlier study revealed that mice with hepatocyte-specific deletion of NADPH–cytochrome P450 

reductase (22), which decreased all CYPs activities, were found to have marked differences in a bile acid 

compositions including lower MCA and taurine-conjugated MCA as compared to their wild-type 

counterparts (23). However, this study could not distinguish which CYP isoform produced MCA. The 

current work demonstrated that mouse Cyp2c70 is responsible for production of MCA from CDCA or 

UDCA. Cyp2c-null mice and CYP2C9-humanized mice did not produce any MCA, in contrast to wild-

type mice and mouse lines lacking expression of Cyp1a, Cyp2d and Cyp3a isoform. Cyp2c-null mice also 

have high concentration of CDCA and UDCA (and their taurine conjugates), the substrates for α-MCA 

and β-MCA, respectively.  

LCA is produced from CDCA in the human and mouse large intestine. LCA is present in only trace 

levels in mouse liver, likely due to the low concentrations of CDCA. LCA and T-LCA, which are present 

in very low levels in wild-type mice, were found at significant concentrations in Cyp2c-null and CYP2C9-

humanized mouse livers. The hepatic Cyp7a1 and Cyp8b1 mRNA levels were not significantly different 

between wild-type, Cyp2c-null and hCYP2C9 mice (Supplemental Fig. S3). The increased concentrations 

of CDCA in livers of Cyp2c-null mice led to the production of LCA through a 7-dehydroxylation reaction 

by gut bacteria (24). LCA is then reabsorbed to the liver where it is conjugated with taurine. This is of 

particular interest, since LCA is considered a toxic bile acid (25). Thus, the lack of MCA production 

indirectly causes an increase in LCA. However, LCA is efficiently conjugated in mice leading to 

decreased potential for hepatotoxicity. Indeed, the homozygous CYP2C9-humanized and Cyp2c-null mice 

appeared normal, could not be distinguished from wild-type mice, they had normal body weights, liver 
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weights, and fertility (Supplemental Fig. S4A). The Cyp2c-null mice show no evidence for liver damage 

as compared to wild-type mice, although an increase in ALT and AST was observed in some mice due to 

inter-animal variability this change was not significant. The only significant phenotypic change in the 

CYP2C9-humanized mice was a decrease in alkaline phosphatase activity, while the Cyp2c-null mice 

exhibited a similar change and a small but significant decrease in plasma high-density lipoprotein and 

cholesterol (20). 

T-β-MCA was identified as a potent FXR antagonist in mice (9, 26). Inhibition of intestinal FXR 

resulted in the alleviation of metabolic disease including obesity, insulin resistance and hepatic steatosis 

(7-9). However, the question arises whether humans bile acids would have similar effects on FXR since 

humans do not produce MCA and thus T-β-MCA due to a lack of a CYP2C enzyme activity similar to 

mouse Cyp2c70. It is also noteworthy that UDCA is elevated in the Cyp2c-null mice and shows potential 

FXR antagonist activity in humans (27). FXR signaling in mice is dependent on the relative local 

concentration of endogenous agonist and antagonist that result from bile acid metabolism in the liver and 

intestine. Body weights and hepatic lipid concentrations (triglyceride, total cholesterol, phospholipid and 

non-esterified fatty acid) were not significant changed in wild-type, Cyp2c-null and hCYP2C9 mice 

(Supplemental Fig. S4B). The impact of these changes on the susceptibility to metabolic disease in the 

Cyp2c-null mice is an area of great interest and will require analysis of high-fat diet-induced obesity, 

insulin resistance and fatty livers (7, 9). 

The mouse and the human CYP2C cluster differ significantly in their genomic organization, with 15 

functional genes described in mice compared with only four genes in humans. Analysis of hepatic 

mRNAs revealed that Cyp2c29 is the most abundant while Cyp2c50, Cyp2c67, Cyp2c69, and Cyp2c70 

mRNAs were expressed at similar levels (12). Humans do not have an obvious homolog of Cyp2c70, at 

least at the level of primary amino acid sequence comparison (CYP2C8. 76%; CYP2C9, 79%; CYP2C18, 

79%; CYP2C19, 79%).However, there is significant protein homology between Cyp2c70 and CYP2C22 

which is the rat homolog of Cyp2c70 (Table 1). This is noteworthy because rats also have MCA similar to 
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mice (28). Murine Cyp2c37/38/39 and Cyp2c40 genes are endogenous female specific Cyp2c genes. 

However, a much smaller gender difference in expression characterized Cyp2c29 and Cyp2c70 when 

comparing wild-type males and wild-type females (29). These findings support the view that Cyp2c70 is a 

primary enzyme responsible for MCA production. No other specific substrates for Cyp2c70 have been 

reported.  

In mice, β-MCA and T-β-MCA appear to be more abundant than α-MCA and T-α-MCA. However, 

kinetic studies revealed a higher affinity of Cyp2c70 for CDCA than UDCA. These results suggest that α-

MCA production is higher than that of β-MCA due to increased catalytic efficiency toward CDCA in 

mouse. The microbiota is involved in the metabolism of bile acids, particularly dehydroxylation and 

deconjugation reactions (9, 30, 31). Epimerization from α-MCA to β-MCA might occur in mouse 

intestine by microbiome metabolism through enzymes other than CYPs. Oxidation and epimerization of 

the 7-hydroxy groups of bile acids in the intestine are carried out by hydroxysteroid dehydrogenase 

expressed by intestinal bacteria (32). 

Some studies have investigated whether bile acid concentrations might be useful to differentiate 

among various liver diseases (33-35). Bile acids also act agonists or antagonists for nuclear receptor such 

as FXR, pregnane X receptor (NR1I2), vitamin D receptor (NR1I1) and the G protein-coupled bile acid 

receptor, TGR5 (36). However, it is known that bile salt composition markedly differs between various 

species (37). As noted above, T-β-MCA is an FXR antagonist in mouse intestine, but humans do not 

produce MCA (26).  

In addition, humans make glycine conjugates of bile acids while mice only make taurine conjugates. 

Thus, mice are a poor model to investigate and predict the influence of bile acid metabolites in human 

disease. Mice lacking expression of the Cyp2c cluster showed similar bile acids profiling to humans, but 

still made taurine conjugates. Perhaps humanizing the bile acid conjugating enzymes bile acid-CoA ligase 

and bile acid-CoA:amino acid N-acyltransferase would make a more complete bile acid-humanized 

mouse line. Further, the bile acid profiles indicate that the gut microbiota of the Cyp2c-null mice may not 
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optimally hydrolyze the taurine conjugates of CDCA and LCA since T-CDCA and T-LCA accumulate in 

the cecum and feces. Since mouse gut microbiota seldom encounter these conjugates, the Cyp2c-null mice 

may not be an accurate model for human bile acid metabolism. Therefore, a mouse model that is optimal 

to study human diseases related to bile acids may have to be colonized with human gut microbiota. Taken 

together, the present study revealed that Cyp2c70 is the principal enzyme involved in MCA production 

and is responsible for the differences in bile acid metabolite profile between humans and mice.  
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Table 1. Primary amino acid sequence comparison 
between mouse Cyp2c and human CYP2C 

Mouse   Protein  homology  (%)   Human  
Cyp2c29 83 CYP2C8 
Cyp2c37 - - 
Cyp2c38 84 CYP2C8 
Cyp2c39 73 CYP2C8 
Cyp2c40 - - 
Cyp2c44 - - 
Cyp2c50 - - 
Cyp2c54 - - 
Cyp2c55 88 CYP2C18 
Cyp2c65 86 CYP2C9 
Cyp2c66 85 CYP2C9 
Cyp2c67 - - 
Cyp2c68 - - 
Cyp2c69 - - 
Cyp2c70 - - 
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Table 2. Primary amino acid sequence comparison 
between mouse Cyp2c and rat CYP2C 

Mouse   Protein  homology  (%)   Rat  
Cyp2c29 82 CYP2C7 
Cyp2c37 - - 
Cyp2c38 82 CYP2C7 
Cyp2c39 82 CYP2C7 
Cyp2c40 - - 
Cyp2c44 95 CYP2C23 
Cyp2c50 - - 
Cyp2c54 - - 
Cyp2c55 95 CYP2C24 
Cyp2c65 84 CYP2C11 
Cyp2c66 84 CYP2C11 
Cyp2c67 - - 
Cyp2c68 - - 
Cyp2c69 - - 
Cyp2c70 94 CYP2C22 
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FIGURE LEGENDS 
 
Fig. 1. Determination of MCA in various Cyp-null mice. Concentrations of MCA and conjugated-MCA 

in the liver extracts from Cyp1a-, Cyp2c-, Cyp2d-, Cyp3a- and wild-type mice. The mice, on a RM1A 

chow diet, were killed in the late morning after a 4 h fast. (A) α-MCA and β-MCA in liver samples. (B) 

T-α-MCA and T-ß-MCA in liver samples. Data are presented as the mean ± S. D. (n = 4-5). 

 

Fig. 2. Kinetic analyses of MCA oxidation activities in mouse liver S9 and microsomes. (A) α-MCA-d4 

and β-MCA-d4 production from CDCA-d4 by liver S9 from Cyp2c-, Cyp3a-null mice and wild-type 

(WT) mice. (B) α-MCA-d4 and β-MCA-d4 production from UDCA-d4 by liver S9 from Cyp2c-, Cyp3a-

null mice and WT mice. (C) Resorufin production from 7-ethoxyresorufin by liver S9 from Cyp2c-, 

Cyp3a-null mice and WT mice. (D) Kinetics of α-MCA-d4 and β-MCA-d4 production from CDCA-d4 

and UDCA-d4 by mouse liver microsomes, respectively. The kinetic parameters were estimated from the 

fitted curve using the computer program GraphPad Prism designed for nonlinear regression analysis. Each 

data point represents the mean ± S.D. of triplicate determinations. 

 

Fig 3. Expression levels of mouse Cyp2c mRNA. Relative mRNA expression levels of mouse Cyp2c 

mRNAs in liver were determined by RT-qPCR analysis. Levels are relative to Cyp2c44 mRNA. Each 

column represents the mean ± S.D. (n = 5). 

 

Fig. 4. MCA production in HepG2 cells expressing recombinant Cyp2c70. (A) Cyp2c29 and Cyp2c70 

mRNA levels in HepG2 cells transfected with Cyp expression vectors. (B) α-MCA-d4 and ß-MCA-d4 

production in HepG2 cells transfected with Cyp2c29 and Cyp2c70 expression vectors Cells were 

incubated with 50 µM CDCA-d4. (C) α-MCA-d4 and β-MCA-d4 production in n HepG2 cells 

transfected with Cyp2c29 and Cyp2c70 expression vectors. Cells were incubated with 500 µM UDCA-d4. 

Data are presented as the mean ± S. D. (n = 3). 
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Fig. 5. MCA production in siRNA for Cyp2c70-transfected mouse primary hepatocytes. (A) Cyp2c29 and 

Cyp2c70 mRNA levels in mouse primary hepatocytes transfected with siRNAs against Cyp2c29 (Si-

Cyp2c29) and Cyp2c70 (Si-Cyp2c70). (B) α-MCA-d4 and β-MCA-d4 production in mouse primary 

hepatocytes transfected with Si-Cyp2c29 and Si-Cyp2c70. Hepatocytes were incubated with 50 µM 

CDCA-d4. (C) α-MCA-d4 and β-MCA-d4 production in mouse primary hepatocytes transfected with Si-

Cyp2c29 and Si-Cyp2c70. Hepatocytes were incubated with 500 µM UDCA-d4. Data are presented as the 

mean ± S. D. (n = 3). 

 

Fig. 6. Bile acids profile in the liver, cecum, and feces from wild-type, Cyp2c-null mice and CYP2C9-

humanized mice. (A) Unconjugated-bile acids and taurine-conjugated-bile acids in liver samples of 

Cyp2c-null mice, CYP2C9-humanized (hCYP2C9), and wild-type (WT) mice. (B) Unconjugated-bile 

acids and taurine-conjugated-bile acids in cecum samples of Cyp2c-null mice, hCYP2C9, and wild-type 

mice. (C) Unconjugated-bile acids and taurine-conjugated-bile acids in feces samples of Cyp2c-null mice, 

hCYP2C9, and wild-type mice. Data are presented as the mean ± S. D. (n = 3). N means not detected. 
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FIGURE  1  

 

     

 by guest, on S
eptem

ber 26, 2016
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


	   23	  

FIGURE  2  
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FIGURE  3  
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FIGURE  4  
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FIGURE  5  
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FIGURE  6  
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