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Exploiting the Achilles’ heel of membrane trafficking in
trypanosomes
Martin Zoltner1, David Horn1, Harry P de Koning2 and
Mark C Field1

Pathogenic protozoa are evolutionarily highly divergent from

their metazoan hosts, reflected in many aspects of their

biology. One particularly important parasite taxon is the

trypanosomatids. Multiple transmission modes, distinct life

cycles and exploitation of many host species attests to great

prowess as parasites, and adaptability for efficient, chronic

infection. Genome sequencing has begun uncovering how

trypanosomatids are well suited to parasitism, and recent

genetic screening and cell biology are revealing new aspects of

how to control these organisms and prevent disease.

Importantly, several lines of evidence suggest that membrane

transport processes are central for the sensitivity towards

several frontline drugs.
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African trypanosomes: novelty and
conservation
Trypanosomatids cause a very broad range of diseases

afflicting humans, animals, livestock, fish, plants and wild

animals. Evidence has emerged for preadaptation to

parasitism during evolution of the group and ongoing

genetic modifications to suit distinct modes of infection

and immune evasion [1��,2��]. Trypanosomes are classi-

fied as Excavata, and branched early from the eukaryotic

lineage [3]. This fuelled considerable optimism that

when the genomes of these organisms were characterized,

a wealth of drug and potential therapeutic targets would

emerge. Approximately forty percent of trypanosome

protein-coding genes appear either lineage-specific or

of such great divergence that they present a viable target,

despite having an ortholog in higher eukaryotes [4,5].

This promise has, however, failed to emerge for several

reasons, not least of which is translating initial hit com-

pound activity against specific protein targets to leads

with promising activity against whole cells, that is, try-

panocidal or trypanostatic activity. Consequently, many

efforts identifying new drugs remain focused on classical

approaches such as phenotypic screens and do not, at least

a priori, engage with either genetic divergence or those

cell biological aspects unique to the kinetoplastids [6�].
Even compounds emerging from various screening

efforts, with promising in vitro activity have experienced

low rates of translation into viable (pre)-clinical candi-

dates. However, serendipitously, it has emerged that

many drugs presently used against these parasites, and

specifically the African trypanosomes, do target rather

well known unique aspects of trypanosome cell biology,

and/or require these features, for their specificity and high

potency.

The trypanosome cell is elongated, with a morphology

supported by a sophisticated and elaborate subpellicular

microtubule array [7,8]. This feature essentially precludes

budding of conventional transport vesicles from the vast

majority of the plasma membrane, and all membrane flow

to and from the surface is restricted to the flagellar pocket.

Thus, drugs that do not effectively diffuse across mem-

branes, must reach their intracellular targets via the

flagellar pocket or cross the membrane via an alternate

mechanism, that is, a transporter or channel. The flagellar

pocket crucially is devoid of the microtubule array, and

while the membrane is continuous with the bulk plasma

membrane, it has a distinct protein and lipid composition

and is physically delineated by a complex collar surround-

ing the pocket neck, which likely also restricts fluid phase

diffusion [8,9].

Trypanosomes possess a conventional endomembrane

system, including a Golgi complex, early and recycling

endosomes, late endosomes incorporating the ESCRT/

multi-vesicular body system and a terminal endosome or

lysosome, albeit somewhat streamlined, with several of

these organelles probably present in interphase cells as

single copy [10,11]. Several features are highly unique, for

example, the mammalian-infective form of T. brucei has

an extreme rate of endocytosis, capable of turning over

the plasma membrane many times per hour, contributing

towards removal of surface-bound immune effectors,
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aiding immune evasion [12�]. The surface is dominated

by the variant surface glycoprotein (VSG), a GPI-an-

chored homodimer comprising 90% of surface protein.

Other surface proteins possess trans-membrane domains,

but, importantly, are often highly divergent and trypano-

some-specific [13�,14].

Trypanosome endocytosis is exclusively clathrin-

dependent, setting it apart from higher eukaryotes where

multiple modes of endocytosis operate [15]. Furthermore,

the widely conserved heterotetrameric (AP)-2 adaptin

complex is absent and is inversely correlated with the

presence of VSG and thus antigenic variation, the princi-

pal mechanism of immune evasion [16,12�]. Additional

clathrin adaptor proteins are present and include both

ENTH and ANTH-domain phosphoinositide-binding

proteins [17] and a cohort of trypanosomatid-specific

proteins [18]. Sorting surface trans-membrane proteins

requires ubiquitylation, likely performed by divergent

ubiquitin ligases, although these remain unidentified

[19��]. Whilst these details indicate a distinct endocytic

system, the level of conservation with, for example,

Saccharomyces cerevisiae, is considerable and the diver-

gence certainly appears less extreme than in Apicom-

plexan parasites, where entire compartments and

pathways have been repurposed [20,21�].

Membrane transport activity is rather different between

life stages and species of parasite, which may in part

explain the differential sensitivity to some front-line

drugs. Specifically, the bloodstream forms of T. brucei
have much greater endocytic transport rates compared

with the insect forms, and this correlates with sensitivity

to suramin and pentamidine for example, with procyclic

cells being much less sensitive to either drug, although

other changes to the surface composition are considerable

and may also contribute to the differential sensitivity.

Although pentamidine is almost exclusively used against

T. brucei gambiense, the West African form of the disease,

and suramin usually for the East African T. brucei rhode-
siense, both subspecies are fully sensitive to either drug.

Both drugs are used exclusively to treat early stage

(haemolymphatic) trypanosomiasis, because neither drug

penetrates sufficiently into the central nervous system; it

is not known how trypanosomes adapt after crossing the

blood–brain barrier, and whether this might impact drug

sensitivity.

In addition to endocytic mechanisms for entry into the

cell, trypanosomes also possess a considerable array of

surface nucleoside and nucleobase transporters, together

with hexose and amino acid permeases, plus a small

family of aquaporins [22]. These systems obviously also

present a potential mechanism for accumulation of drugs

as well as natural metabolites, whilst themselves also

being proteins that are subject to turnover by the endo-

cytic system. By contrast to many surface proteins, the

transporters appear to be more broadly conserved with

higher eukaryotes. Significantly, traffic focused at the

flagellar pocket, high rates of endocytosis, novel surface

protein composition and the presence of conserved trans-

porters all directly contribute towards sensitivity of

African trypanosomes to drugs that have been in clinical

use since the 1920s.

A grandfather therapeutic: suramin
Suramin emerged from early synthetic chemistry and

development of aniline dyes [23]. The trypanocidal diazo

dyes, trypan red and trypan blue, were developed by

Bayer in 1916 and led to suramin, still a frontline treat-

ment against some forms of trypanosomiasis [24]. High

molecular weight and negative charge prevent passive

membrane diffusion, suggesting specific uptake. A thou-

sand-fold reduced potency against insect stage parasites

suggested involvement of endocytosis, as endocytic traf-

ficking is much decreased in this life stage [25]. However,

extensive surface proteome remodelling between life

stages also suggests the possibility of bloodstream

stage-specific expression of a ‘suramin-receptor’ [14].

Genome-wide loss-of-function screens identified multi-

ple genes that sensitize trypanosomes to suramin [26��]
(Figure 2), many of which have roles and/or locations at

the endocytic pathway, for example, invariant surface

glycoprotein 75 (ISG75), two deubiquitylating enzymes

(DUBs) Usp7 and Vdu1, the AP-1 adaptin complex and

the lysosomal protein p67 [27]. An ISG75-dependent

pathway is required for lysosomal delivery of suramin

while an AP-1-dependent path is likely connected to

lysosomal composition and a requirement for transport

of p67 and other factors (Figure 1) [19��]. ISG75 stability

is regulated by ubiquitylation [28] and evidence that

trypanosome Usp7 and Vdu1 modulate ISG75 turnover

is consistent with this model [19��]. Significantly, the

suramin-uptake pathway is highly specific and does not

involve the closely related invariant surface glycoprotein

65 (ISG65) family.

Together these observations are consistent with a hy-

pothesis that ISG75 is the suramin receptor, but failure to

demonstrate binding in vitro to recombinant ISG75 (un-

published data, MZ, MCF) suggests that additional fac-

tors may be involved. Suramin binds various serum

proteins with high affinity, including Low Density Lipo-

protein (LDL), and the influence of LDL on suramin

uptake has led to a proposed model of an LDL-depen-

dent receptor-mediated pathway for suramin internaliza-

tion [29]. However, this was overturned by the mutation

of trafficking pathway components [25]. Formal proof of

receptor identity and precise mechanisms for suramin

uptake remain elusive, but what is clear is the essential

role for endocytosis and a protein with an itinerary that

includes transport through the endosomal system. Signif-

icantly, the lysosomal proteases CatL and CBP1 are also

implicated for suramin-sensitivity, and potentially these
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proteases are required for degradation of ISG75 to release

suramin into the lysosome [30]. Notably, recent evidence

indicates that CatL also degrades human serum trypano-

lytic factors and that a lysosomal inhibitor of a cysteine

peptidase, modulates this protease activity [31�].

Despite these advances the mechanism of suramin tox-

icity remains elusive. Suramin exhibits considerable poly-

pharmacology and can bind and inhibit a wide variety of

distinct protein families (see e.g. [32–34]). Although

suramin inhibits all seven trypanosome glycolytic

enzymes plus cytosolic pyruvate kinase (PYK) in the

micromolar range [35], it inhibits bloodstream stage try-

panosome proliferation at nanomolar concentrations

[26��], making it unlikely that glycolysis represents the

primary target. However, endocytosis may accumulate

the drug to higher intracellular levels than the external

concentration; importantly the highly charged suramin

molecule, once internalized, cannot easily escape from

the cell. Again, this represents a remarkable impact from

unique aspects of trypanosome cell biology in enabling

specific toxicity, and is currently beyond the ability of

rational drug design to predict or replicate. However,

these features do indicate potential cellular aspects that

are exploitable.

Old and still in the clinic: pentamidine and
melarsoprol
Aromatic diamidine drugs including pentamidine, and

organic arsenicals like melarsoprol, are highly cytotoxic

to most cells they enter. Therefore toxicity is predomi-

nantly determined by uptake across the plasma mem-

brane, and selectivity rests on the expression of efficient

cell-surface transporters by the parasite. Conversely,

mutations in such transporters diminishing transport rates

or loss of substrate recognition can lead to drug resistance

[36]. Pentamidine and melarsoprol, despite very different

structures, exhibit cross-resistance in Trypanosoma brucei
[37]. Since pentamidine and melarsoprol have distinct

cellular targets, cross resistance may reside within the
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The trypanosome endosomal system. A simplified schematic of the trypanosome endomembrane system is shown, with the flagellar pocket at top

left. Teal and orange arrows indicate degradative and recycling trafficking routes, blue putative AP-1-mediated transport from the Golgi complex

to the lysosome and gray exocytic/biosynthetic pathways. The predominant locations of ISG75, ISG65, aquaglyceroporins and p67 (the major

lysosomal protein) are indicated by icons. Evidence suggests that ISG75 is ubiquitylated at, or close to the surface (magenta) and deubiquitylation

by TbUsp7 and/or TbVdu1 is proposed to take place before the sorting step at the early endosome that selects for the recycling or degradative

arm of the endocytic system. TbVdu1 is known to associate with structures in this region, whilst TbUsp7 is likely cytosolic. AQP2 localization is

restricted to the flagellar pocket, while AQP1 and AQP3 are predominantly on the flagellar membrane and plasma membrane, respectively. AQP2

has been recently described as high-affinity pentamidine receptor and this raises the possibility of endocytotic uptake.
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uptake mechanism. An unusual aminopurine transporter,

TbAT1/P2, a member of the highly conserved Equili-

brative Nucleoside Transporter family, facilitates uptake

of both [37]. Deletion or mutation of the TbAT1/P2 gene

reduces the sensitivity of T. brucei to diamidines, particu-

larly diminazene, and melaminophenyl arsenicals [38–
42].

Significantly, loss of TbAT1/P2 alone does not recreate

the high levels of melarsoprol-pentamidine cross-resis-

tance (MPXR) observed [39,43]. T. brucei expresses addi-

tional transport systems for pentamidine and a genome

wide RNAi screen identified the TbAQP2/AQP3 locus as

the genetic determinant for MPXR [26��,44�]. Further

analyses revealed that aquaglyceroporin 2 (AQP2) deter-

mines MPXR [44�,45�]. Further, re-introduction of a

wild-type TbAQP2 allele in even the most resistant strains

fully restores drug sensitivity [45�,46��,47�,41]. Indeed,

expressing TbAQP2 in Leishmania mexicana promastigotes

profoundly increases their sensitivity to both pentami-

dine and melarsoprol [45�].

However, the translocation mechanism of TbAQP2 is less

obvious as aquaglyceroporins are not known to allow

passage of molecules of high molecular weight like mel-

arsoprol or pentamidine. TbAQP2 does have a unique

selectivity filter; several large, aromatic amino acids that

normally restrict the pore are replaced by smaller side

chain residues, and a key arginine is replaced with leucine

[44�]. These changes are expected to enlarge the pore size

and thus allow passage of cations, including the highly

flexible pentamidine molecule [36]. However, an alter-

native model, in which AQP2 binds pentamidine and

mediates internalization via receptor-mediated endocy-

tosis, was recently proposed [48��]. This is an attractive

alternative, marrying the implausibility of large-molecule

transport by TbAQP2, an unusually high affinity for

pentamidine, the high endocytosis of bloodstream trypa-

nosomes [12�] and localization of TbAQP2 to the flagellar

pocket [44�]. The flagellar pocket localization is consis-

tent with uptake by endocytosis (Figure 1). Thus, uptake

of both suramin and pentamidine, and potentially even

melarsoprol, may depend upon their affinities for surface

receptors, with subsequent membrane trafficking

(Figure 2).

The genes identified through genome-wide screens

[26��] for pentamidine/melarsoprol and suramin sensitiv-

ity do feature a significant overlap but this does not

implicate common endocytic components. However, ad-

ditional evidence from these screens is consistent with

involvement of trafficking factors downstream of AQP2
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Mode of action of trypanocidal drugs. Summary of biochemical pathways linked to drug action for suramin, pentamidine and melarsoprol. Proteins

sensitizing to the respective drug, as identified in a genome-wide loss-of-function screen [26��] are drawn in red. (Pi: inorganic phosphate, Ub:

ubiquitin).
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[26��]. Indeed, for both pentamidine and melarsoprol, the

screens identified proteins likely involved in phosphor-

ylation (Phosphatase 2C) and ubiquitylation (Cullin1)

(Figure 2), post-translational modifications implicated

in regulating endocytosis of mammalian AQP [49]. This

is reminiscent of the DUBs that sensitize trypanosomes to

suramin and regulate ISG75 [19��]. However, if these

proteins are involved in the promotion of AQP2 internal-

ization and turnover, knockdown could change pentami-

dine sensitivity regardless of whether the drug binds the

channel or translocates through it. Finally, the endocyto-

sis model does not explain all previous observations on

pentamidine uptake in T. brucei, such as a 10-fold higher

rate of high-affinity pentamidine uptake in procyclic

forms than in bloodstream forms [50] despite TbAQP2

distribution across the entire procyclic cell surface [44�],
or the high uptake rate when TbAQP2 is expressed

in Leishmania promastigotes [45�]. Both procyclic and

promastigotes have much lower endocytosis than the

bloodstream T. brucei [25,51], and further study is essen-

tial to settle the mechanism of TbAQP2-mediated drug

transport.

Perspectives
Serendipity will always be an important component of

discovery, and drug uptake is a good exemplar. Recognis-

ing the specific binding properties of aniline dyes to

fabrics in the early years of synthetic chemistry was

rightly interpreted as representing specificity, and ulti-

mately evolved into Ehrlich’s concept of the ‘magic

bullet’ that kills a pathogen but not the host. Ehrlich

also reported on the activities of trypan blue and trypan

red, two trypanocidal compounds leading to the develop-

ment of suramin. The unique features of the flagellar

pocket and high endocytic rate have long been considered

as potential routes to therapy and demonstrations that

innate immune mechanisms also rely on endocytic traf-

ficking has strengthened this [52]. Many experimental

interventions compromising endocytic trafficking lead to

the rapid death of African trypanosomes [53], and it is

rather a curious realisation that the properties of this

system were being exploited by highly effective thera-

peutic agents developed almost a century ago. There is

much scope for exploiting these drug uptake mechanisms

to deliver new drugs, especially given the surprising

variety of compounds that they internalize. Notably,

drug-loaded nanoparticles, coated with a nanobody spe-

cifically targeting the trypanosome surface, can be used to

bypass the usual delivery route altogether and deliver

drugs via endocytosis [47�]. Indeed, this approach actually

increases the efficacy of pentamidine, and a similar ap-

proach is likely to be effective for delivering other drugs.

Harnessing these features represents attractive and trac-

table opportunities, as does direct screening for inhibitors

of the novel components that control trafficking and

surface protein transport. Finally, there are at least two

components required for trypanocidal activity, entry and

activity against a target; rather unexpectedly it is emerg-

ing that it is the former that may be more crucial for

specificity, at least for current drugs.
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Alkhaldi AAM, McDonald F, Still J, Alzahrani KJ, Settimo L et al.:
Functional analysis of drug resistance-1 associated mutations
in the Trypanosoma brucei Adenosine Transporter 1 (TbAT1)
and the proposal of a structural model for the protein. Mol
Microbiol 2015, 96:887-900.

43. Bridges D, Gould MK, Nerima B, Mäser P, Burchmore RJS, De
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