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  Abstract 9 

The dynamic interaction of adjacent buildings in cities and urban areas through the soil medium is inevitable. 10 

This fact has been confirmed by various analytical and numerical studies. However, very little research is 11 

available on the physical modelling of the Structure-Soil-Structure Interaction (SSSI) problem and its effect 12 

on the dynamics of adjacent structures. In this paper, a series of shaking table tests was conducted at the 13 

Earthquake and Large Structures Laboratory (EQUALS) at the University of Bristol to examine the effects of 14 

SSSI on the response of a model building when bordered by up to two other model buildings under dynamic 15 

excitation. The results indicated that depending on their height, the presence of one or two adjacent building 16 

could positively or negatively alter seismic power and peak acceleration responses of a building in 17 

comparison to when it is tested in isolation.  18 

 19 
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1 Introduction 22 

Interaction among adjacent buildings in cities and urban areas is considered one of the major unsolved 23 

problems in the field of earthquake engineering [1]. The phenomenon is mainly referred to as Structure-Soil- 24 

Structure Interaction (SSSI) and has been previously investigated although not nearly as extensively as the 25 

conventional Soil-Structure Interaction (SSI) problem. As a natural protraction, research techniques 26 

implemented in investigating SSSI are similar to those used in SSI analyses [2]. In fact, a real or complete 27 

SSI analysis must take into account the possible consideration of interaction with neighbouring structures 28 

[3]. 29 

Studies of SSSI have principally been focused on theoretical derivations and numerical simulations. Early 30 

imperative analytical studies, notably [4], [5], [6] and [7] have laid the cornerstone and led to a considerable 31 

understanding of the phenomenon. Interaction was found to be important in the low-frequency range 32 

associated with a resonance frequency of the complete SSSI system. The interaction effect was also found to 33 

be especially prominent if the structure of interest is smaller and lighter than its neighbours and that 34 

interaction between buildings of comparable sizes may cause the amplitude response to become large. 35 

Numerical studies are mainly based either on two or three dimensional finite element modelling (FEM) such 36 

as [8], [9], or the boundary element method (BEM) [10], [11] or hybrid FEM/BEM procedures [12], [13]. 37 

These studies have emphasized the scale of the problem and its importance for consideration in the dynamic 38 

analyses, including the identification of key factors that may control the degree of multi-structural 39 

interactions, for example: relative inertial and dynamic characteristics of adjacent buildings, separation 40 

building distances, soil type and the configuration of the buildings’ plan arrangements.  41 

The study in [14] analytically investigated the interaction of three different adjacent buildings utilising an 42 

equivalent linear model to approximately account for large shear strains in soil. It was found that the 43 

interaction could not be neglected if the buildings are spaced at a distance equal to half of the building base 44 

width. The reader may refer to the literature survey conducted in [2] for a more complete review on the 45 

history, status, research methods and future research trends of SSSI. Analytical studies in [15-18] employed 46 

simple discrete models and reduced the size of the interaction problem of two and three adjacent buildings to 47 

a meaningful set of characteristics of the structures, distance between them and soil type which allowed an 48 

insight into the effect of these parameters on SSSI. 49 

The least implemented method applied to the SSSI problem is physical modelling. Some early experimental 50 

studies such as the ones conducted by [19] and [20] reasonably represented the major SSSI problem. 51 

However, some significant discrepancies in results were found compared to analytical solutions. It was 52 

argued that as tests were conducted over several months, realising similarity to previously conducted tests 53 

was difficult and change in moisture content may have resulted in gradual compaction of soil.  54 

The study in [21] utilised shaking table model test results of dynamic interaction between two identical 55 

foundations made of aluminium resting on a silicon rubber ground model to calibrate 2D finite element and 56 

tcurtin
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3D boundary element models. The SSSI effect was found to be relatively small in terms of foundation 57 

displacement and acceleration but more significant in terms of soil pressure. Experimental studies of SSSI 58 

have gained a rapid development in Japan. For example, the study in [22] conducted forced vibration field 59 

tests of two adjacent “mock-up” foundations and a third simple building model supported on piles in sandy 60 

soil. Numerical comparisons using a 3D thin layer soil model showed a good agreement with the experiment. 61 

It was concluded that large mass foundations have strong effects (frequency response amplification) on 62 

foundations of smaller mass in the natural frequency vicinity of the large mass foundation.  63 

The Nuclear Power Engineering Corporation of Japan has conducted a series of experimentations on the 64 

Dynamic Cross Interaction problem in nuclear power plants [23-26]. The project consisted of field and 65 

laboratory tests. Different patterns were noticed in the Fourier Spectra of a single building compared to that 66 

after constructing an adjacent building, with attenuations in amplitude peaks. The study showed that the 67 

adjacency effect was stronger when the same type of building was closely adjacent in the direction of 68 

vibration. The project concluded that to obtain satisfactory results for precise seismic analysis SSSI effects 69 

cannot be neglected.  70 

An experimental study in [27] conducted a 1:15 scale model shaking table tests on the interaction of two 71 

identical adjacent 12 storey cast-in-place reinforced concrete frames supported by pile foundations. The SSSI 72 

was found to have no influence on the frequency and characteristics of the vibration modes but depending on 73 

the magnitude of the input excitation, the peak acceleration of the superstructure either decreased or 74 

increased compared to that of SSI. Peak acceleration within the soil and peak contact pressure along the pile-75 

soil interface was greater when compared to that of a single SSI system 76 

Some recent experimental studies on the topic [28, 29] have studied the inelastic structural response of two 77 

adjacent steel moment-resisting frames in a geotechnical centrifuge subjected to strong ground shaking in 78 

either an in-plane or out of plane orientations. A physical restraining effect was observed when a shorter 79 

frame with shallow foundations was placed near to a taller frame (approximately 3 times taller) with a 80 

basement. This lead to increased base shear and moments compared to the isolated case. Kinematic 81 

interaction, conventionally neglected in engineering design, was found to have a significant effect on 82 

structural response and caused reductions in higher frequency content and foundation level amplitudes. A 83 

similar result was also found by [30], using centrifuge modelling of similar and highly dissimilar buildings 84 

on shallow foundations (but without basements), where structural response was shown to either increase or 85 

decrease depending on the relative configurations (dynamic properties) of pairs of adjacent structures. The 86 

numerical and experimental study by [31, 32] proposed a novel vibration control strategy based on the SSSI 87 

phenomenon to reduce structural vibrations of monopile structures due to seismic waves. The proposed 88 

structural system, termed “Vibrating Barrier”, was found to cause a reduction in the displacement response 89 

of structures by up to 44%.  90 

More recently, Schwan et al [33] presented an experimental SSSI setup that comprised an idealized small-91 

scale site-city model with groups of 5, 9, 19 and 37 identical anisotropic model structures arranged in 92 
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resonance with an elastic layer on which surface they were adhered. The experimental results were validated 93 

against a theoretical city-impedance model (CIM) derived from a homogenization method and a numerical 94 

Boundary Elements (BE) model. A split in the city layer resonant peak was noticed in comparison to the 95 

single peak without the presence of the city. Increases in response amplitudes and city resonance frequency 96 

evidenced that the denser the city the stronger the interaction effect which could be detected when the 97 

number of adjacent structures is as low as 5. This experimental study was conducted at the Earthquake and 98 

Large Structures Laboratory (EQUALS) at the University of Bristol and have inspired the choice of the 99 

materials used in the current experimental work. 100 

Based on the discussion above, there is considerable scope for further parametric experimental studies to 101 

provide valuable insight into understanding the dynamic behaviour of multiple adjacent structures. The main 102 

aim of this test programme is to explore the effect of system dynamic parameters on coupled seismic 103 

structural responses.  Extending from this aim one of the objectives is to explore the effect of structural 104 

height (and hence period) on response magnitudes. Another objective is to use the results from this 105 

experimental study to validate analytical discrete models previously presented in [17, 18]. In the current 106 

paper, we present new experimental and finite element results for the case of two and three adjacent 107 

buildings. A comparison between this 1g test and a centrifuge model, [30], is also presented.  108 

The concept of the experimental investigation presented in this paper is to construct a linear elastic ‘plane 109 

strain’ physical model of Structure-Soil-Structure Interaction between up to three adjacent structures. In this 110 

system, scaled models of adjacent structures are placed upon a flexible base (i.e. a soil substitute) made of 111 

cellular Polyurethane foam while subjecting it to different ground motions conveyed via a shaking table. As 112 

the aim of the current study is to examine the SSSI problem within the linear response of buildings, the 113 

choice of the foam material instead of real soil is justified. Large amplitude dynamic excitation of granular 114 

soils on the shaking table can be challenging due to the soils nonlinear nature. Changes in the soil internal 115 

packing due to ground vibrations may lead to altering properties of subsequent tests, hence compromising 116 

repeatability. Soil (or soil substitute) in particular is aimed to be invariant during tests to enable the 117 

examination of different ground motions and building configurations under nominally identical initial 118 

conditions. In [33, 34] a block of the same foam material used in this study has proven to be a suitable soil 119 

representation for elasto-dynamic experimentation. 120 

Hence, the scope of this experimental study is restricted by the following: 121 

i- Linear elasticity for both building models and soil substitute. 122 

ii- Interaction between up to three adjacent buildings 123 

iii- Building models have an identical plan area  124 

iv- Buildings can be of different heights 125 

v- Buildings are equispaced at a fixed distance from each other  126 

The small-scale physical test programme reported herein has been carried out utilising the shaking table 127 

facility at EQUALS in the Earthquake Engineering Research Centre (EERC) at the University of Bristol. 128 
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 129 

2 Experiment 130 

2.1 Scaling down of the problem (design of a 1g model) 131 

In any small-scale experiment establishing parameter similitude laws between a prototype and an 132 

experimental model is the first step to undertake. For small scale shaking table testing, i.e. 1g conditions, 133 

maintaining this similitude while allowing testing repeatability could prove challenging. Studying and 134 

understanding the fundamental mechanics of the problem is one way of  designing model tests and achieving 135 

the appropriate similitude, [35]. It has been shown in previous studies, such as Veletsos and Nair [36] and 136 

Bielak [37], that among the most important non-dimensional parameters that control the Soil-Structure 137 

Interaction effects are: ratio of structure mass to the mass of soil; structure-to-soil stiffness ratio and 138 

structure-height-to-foundation-width ratio. Previous analytical studies by the authors [17, 18] introduced a 139 

structure-soil-structure system in which each structure-soil system consists of a two degree of freedom. The 140 

Appendix contains the derivation of the equation of motion, equation (13), for such a system. This system is 141 

governed by three non-dimensional parameters, namely: (i) a mass ratio ( , the ratio of soil-foundation 142 

mass to structure mass); (ii) a frequency ratio ( , the ratio of the soil-foundation frequency parameter to the 143 

fixed base structural frequency). This can be consider as an alternative to using a stiffness ratio. (iii) an 144 

aspect ratio ( , the ratio of structure’s height to the soil’s area radius of gyration). Therefore, if these non-145 

dimensional parameters are approximately the same in the prototype and the experimental models then a 146 

dynamic similitude is achieved for the given assumptions of the analysis.   147 

The main structure prototype is based on a three storey reinforced concrete structure resting on a site of loose 148 

sand where it has been demonstrated that SSSI effects may result in significant interaction [17]. The 149 

prototype building has a height h=9.6 m, an aspect ratio 3B BS h b  (building height to width ratio) of 3, 150 

an average density ρB of 600 kg/m3 resting on a loose sand profile of density ρs=1300 kg/m3, having a 151 

Poisson’s ratio μs=0.3 and a shear wave velocity Vs =150 m/s, which corresponds to ground type D according 152 

to EC8 [38] or a site class E according to NEHRP provisions [39]. From [17] the prototype has a non-153 

dimensional mass ratio  as follows 154 

Prototype:       s2

1 B B

Soil-foundation mass 10.35 0.25
Building mass

m
m S

 (1) 155 

The fundamental angular frequency of the building prototype is taken as 1 200 Bh = 20.8 rad/s where hB is 156 

the building height [m]. This formula is derived based on an empirical result suggested in the SEAOC Blue 157 

Book [40] for the natural period of a structure on a rigid foundation in seconds is N/10 for N ≤12, where N is 158 

the number of storeys for an average storey height of 3.2 m. It is worth noting that f (which is the ratio of 159 

flexiable-base fundamental natural frequency 1f  to fixed-based fundamental natural frequency 1 ) is 160 
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functionally related to only the three system parameters, namely ,  and  (see equation (13) in the 161 

appendix); therefore f we are not mathematically required match this parameter for dynamic similitude.    162 

Using the definition in the Appendix (equation (10)), the soil-foundation frequency parameter 2  can be 163 

estimated using various emperical formulae discussed in [17] hence,   164 

Prototype:      
3 6

B2
2 s2 3 2 2

2 B B s B

0.5 1 13.1 10 224.95 rad/s
(0.35 )(0.33 ) (1 )

s

s

G bk V
m r b b b

 (2) 165 

where 2k  is rotation soil spring [41], 3Br b  is the radius of gyration of the soil-foundation mass, 0.35 bB
3 166 

is the volume of soil-foundation mass [42], Gs is the soil shear modulus, bB is the width of the building 167 

foundation and sV is a normalised soil shear wave velcoity (viz. the ratio of the soil shear wave velocity 168 

s s sV G [m/s] to a reference shear wave velocity of 1000 m/s (which is notionally the value in a stiff 169 

soil). Hence the prototype non-dimensional frequency ratio is 170 

Prototype:      2

1

10.8  (3) 171 

2.2 Soil Substitute (Polyurethane Foam) 172 

The Polyurethane foam block used is shown in Figure 1 and has dimensions of 1000x1000x750 mm3. In 173 

order to facilitate handling and clamping to the shaking table platform, a square wooden plate was firmly 174 

secured to the foam at its base with a contact adhesive, while its lateral sides were free of any constraints. 175 

During shaking the experimental model is positioned on the platform so that its principal axes are aligned 176 

with the driven axes of the shaking table. The elastic properties of the foam block are: elastic modulus 177 

Ef=120 kN/m2; Poisson’s ratio μf =0.11 and density ρf=50 kg/m3, [34]. 178 

 179 

Figure 1 Geometry of Polyurethane foam block 180 

 181 
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 182 

2.1.1 Dynamic Properties of foam block 183 

The dynamic properties of the foam block were obtained by performing a free vibration test. The foam was 184 

excited (i.e. hitting it on the top side with a steel rod) by a small amplitude arbitrary impulse  in the 185 

horizontal, x, direction and allowed to vibrate freely. The power spectrum of the signal revealed a natural 186 

frequency of 8 Hz and a damping ratio of 4.3 % calculated using the half- power bandwidth method (Figure 187 

2). The same natural frequency was obtained in the y direction.  188 

 189 
Figure 2 Natural frequency of foam block. 190 

2.3 Model Buildings 191 

In accordance with the values of the mass and frequency ratios stated in Equations (2) and (4) the main 192 

experimental building model was designed having the geometry shown in Figure 3 and is referred to as ‘B1’. 193 

Assuming an added mass associated with the vibration of structure (mf) that is approximately equivalent to 194 

half a cylinder (diameter of bm), [42], results in the following mass ratio for the experimental model 195 

Model:       f c2

1 a b

0.266m mm
m m m

 (4) 196 

where mf=0.014 kg, mc=0.26 kg is the building model base mass (component c in Figure 3), mb=0.1 kg is the 197 

mass of the aluminium part of the building model (component b) and ma=0.95 kg is the steel end mass 198 

(component a). The latter part was added to the top of the model in order to increase the mass of the building 199 

model so that prototype-model similitude is maintained. The mass of component d is negligible.  200 
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 201 
Figure 3 Cross-section of plane building model B1 (main building) 202 

The building model under fixed base conditions can be considered as a vertical cantilever beam of height 203 

h=hB=86.5 mm. The building model has a mass mb, an end mass ma and flexural rigidity EmIm=0.72 Nmm2. 204 

Based on the formula reported in [43], the theoretical fixed base natural frequency of the building modelled 205 

as a continuous cantilever beam is  206 

Model:      1 m m
1

31
a b m

3 57.8 rad/s33( )
144

k E I
m m m h

 (5) 207 

Also based on the study in [17] a frequency parameter is proposed for the foam-foundation as  208 

Model:      2 f
2 2 2

2 f c

688.17 rad/s
( )

k k
m r m m r

 (6) 209 

where kf=10.38x103 N.mm/rad is the rotational stiffness and is taken as the slope of the initial tangent of the 210 

moment-rotation curve, Figure 4(b), from a lateral load test shown in Figure 4 (a). The load test was 211 

performed on the foam prior to the main testing programme on the shaking table. Two square (80 mm x 80 212 

mm) Perspex plates representing adjacent foundations were glued firmly on the foam block. While an 213 

incremental moment is applied at one foundation plate, rotations at the centre of both plates were calculated 214 

from the vertical displacement measured. The term (mf+mc)r2 represents the mass rotational moment of 215 

inertia where r=bm/3 is the radius of gyration [42]. Hence the non-dimensional frequency ratio of the model 216 

is  217 

Model:      2

1

11.93   rad/s (7) 218 

Comparing values of the mass and frequency ratios resulting from Equations (1) and (3) to those from 219 

Equations (4) and (7), yield a similtude (Prototype:Model) as follows: for mass ratio (1:0.94) and (1:0.91) for 220 

frequency ratio, in adition to the aspect ratio (1:0.94). Hence, the analogy between the prototype and the 221 
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small scale model is judged to be acceptable. Despite the very good similitude achieved in the three main 222 

non-dimensional parameters for the prototype and the model, there are other dynamic parameters of the real 223 

system not capture by the idealisation in the Appendix. The shear wave velocity of the foam is significantly 224 

lower than that in the prototype. Therefore the probagation speed of body and surface waves is likely to 225 

differ in model and prototype. This causes different arrival times of waves between prototype and model 226 

which is noticable at large spacings between the structures. However, at large spacing the SSSI is very small 227 

and so the effect of this lack of similitude is neglected. Table 1 presents a summary of the model-prototype 228 

similitude.  229 

 230 

 231 
Figure 4 (a) Load test. (b) Moment-Rotation curve of loaded foundation plate on foam.  232 

 233 
  234 

(b) 

(a) 
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Table 1 Comparison of values of system parameters for prototype structure and scaled model B1. 235 
 Units Model Prototype Similitude 

(Prototype:Model) 
Mass ratio α [ ] 0.266 0.25 1:0.94 
Frequency ratio Ω [ ] 11.93 10.8 1:0.91 
Aspect ratio   [] 1.03 1 1:0.94 
Aspect ratio SB [ ] 3.2 3 1:0.94 
Structure’s flexible-
base to fixed-base 
frequency ratio Ωf  

[ ] 0.59 0.77 1:0.76 

Length [m] 0.103 9.6 1:100 
Period (fixed base) [s] 0.1 0.303 1:3 
Shear wave velocity 
Vs 

[m/s] 32.3 150 1:4.76 

Poisson’s ratio  μ [ ] 0.15 0.3 1:2 
Density ρ [kg/m3] 50 1300 1:26.3 

2.3.1 Dynamic Properties of the main model building (B1) and adjacent buildings 236 

Free vibration tests on the main building model B1 were performed under fixed base conditions and in 237 

flexible (on foam) base condition. Fixed and flexible B1 frequencies are shown in Figure 5. Building model 238 

B1 has a fixed base natural frequency of 9.03 Hz, which agrees with the value predicted from Equation (6) 239 

with a damping ratio of 1.5 %. When attached to the foam block, the equivalent single degree of freedom 240 

natural frequency is shortened to 5.25 Hz with an increase in equivalent viscous damping ratio to 3.9 %. 241 

Simulation of this free vibration test using a 2D Finite Element (PLAXIS2D) [44] model showed similar 242 

results as shown in Figure 5.  243 

 244 
Figure 5 Natural frequency of building B1 in fixed base and on foam conditions. Amplitude axis is normalised by 245 

maximum amplitude value. 246 

Models of adjacent buildings used in the experiment (referred to as B2, B3, B4, B5, B6 and B7) were 247 

constructed following the same approach to that used to construct B1. Each building model has the same 248 

base dimensions and end mass; the only difference is in the height of each model. A height ratio ɛx is 249 
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introduced to express the difference in height of the adjacent building models with respect to B1. So the 250 

components a and c, shown in Figure 3, are the same for all buildings models while component b is different 251 

per particular building model. It should be noted that as the central building B1 in the case of three adjacent 252 

buildings is flanked by two building models that are equal in height, ɛx refers to the height ratio in both two 253 

and three adjacent buildings cases. Table 2 summarises the characteristics of adjacent building models.   254 

Table 2 Properties of adjacent building models 255 
   

 
Period  

(fixed base) 
units: s 

Height 
ratio  
 ɛx 

Mass  
ratio 
α 

Frequency 
ratio 
Ω 

B2 0.028 0.5 0.28 4.4 
B3 0.063 0.75 0.27 6.3 
B4 0.09 0.9 0.269 9.4 
B5 0.128 1.1 0.263 19.8 
B6 0.222 1.5 0.25 34.2 
B7 0.357 2 0.23 55.2 

Figure 6 presents the variation of mass and frequency ratios of the adjacent building model as a function of 256 

the height of building model B1. As the height of the building model adjacent to B1 increases, its mass 257 

increases which yields a lower mass ratio, hence, less soil mass contribution. On the other hand, as the height 258 

of building models adjacent to B1 decreases, its frequency increases which in turn decreases the frequency 259 

ratio and vice-versa. 260 

 261 

Figure 6 Variation of experimental models mass ratio and frequency ratio with height ratio 262 

2.4 Shaking Table 263 

The large shaking table [45] at EQUALS at the University of Bristol (UK) has 6 degrees of freedom and 264 

consists of a 3 m by 3 m cast-aluminium platform capable of carrying a maximum load of 15 tonnes with an 265 

operating frequency range of 0-100 Hz and its platform has a first flexural natural frequency of 100 Hz. The 266

shaking table is operated via a digital controller which is controlled by a Personal Computer (PC). The PC 267 

provides motion control that allows the application of a wide range of real earthquakes, sinusoidal and 268 
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random signal forms. Data can be collected on up to 64 channels on a separate data acquisition computer 269 

system that is synchronised to the main control computer.  270 

2.5 Instrumentation and data acquisition 271 

Ten 3-axis ADXL335 Micro Electro Mechanical Systems (MEMS) [46] based accelerometers of 18x18x1.6 272 

mm3 size were used to measure acceleration responses. The MEMS accelerometers measure acceleration 273 

with a minimum full-scale range of ±3 g. They can measure the static acceleration of gravity in tilt-sensing 274 

applications, as well as dynamic acceleration resulting from motion, shock, or vibration. The accelerometers 275 

were calibrated against a standard piezoelectric accelerometer (manufactured by SETRA) having a 276 

calibration factor of 1 volt/g used at the EERC laboratory. Four accelerometers were attached at the foam’s 277 

surface using a strong epoxy adhesive, one at the middle edge and another at one corner, with the remaining 278 

two placed between building models, as illustrated in Figure 7(a). Building models were each instrumented 279 

with two accelerometers, one at the top and one at the base, as shown in Figure 7(b). In addition, three single 280 

axis piezoelectric accelerometers were also attached to the shaking table platform in each direction (x, y and 281 

z). Figure 8 (a), (b), (c) and (d) show examples for different cases of buildings on foam and for the 282 

experimental system on the shaking table. 283 

 284 

Figure 7 Transducer positions: (a) accelerometers on foam; (b) accelerometers on building. (Not to scale) 285 

(a) (b) 
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 286 

Figure 8 Overview of experiment: (a) single building; (b) two identical buildings; (c) three identical buildings; (d) 287 
experimental system mounted on the shaking table. 288 

After setting up and instrumenting the foam and building models, the foam was firmly clamped to the 289 

shaking table platform. Each accelerometer was connected to an amplifier to improve the signal to noise 290 

ratio. The amplifier in turn was connected to a low pass 80 Hz digital filter, then to the individual channels of 291 

the data acquisition system located in the EERC control room. A total of up to 30 channels of the data 292 

acquisition system were dedicated to any experiment. The acquired accelerometer data was subsequently 293 

post-processed using MATLAB [47].  294 

3 Experimental Program 295 

A single building case, uncoupled SSI system, was tested first, then its behaviour was used as a benchmark 296 

for further tests with adjacent buildings added to the system at a specified separation distance Z, at which 297 

point it became a coupled SSSI system. Broadly, there are two cases of adjacency herein, a case when B1 is 298 

flanked by one building model and another case when it is flanked by two building models, one on either 299 

side. In all cases, the adjacent buildings were separated at a distance equal to the width of building model 300 

Z=bm. The uncoupled and coupled systems were subjected to two types of excitations: (i) white noise for 301 

system identification; and (ii) a set of five earthquake records. 15 different configurations were tested under 302 

various conditions of adjacency categorised by the height ratio ɛx as tabulated in Table 3 and depicted in 303 

Figure 9. Each of these configurations was tested under the two types of excitations for a total of 90 304 

individual tests.  305 

 306 

(a) (b) 

(c) (d) 
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Table 3 Test configurations 307 
PART I PART II 

SINGLE BUILDING 
[B1-I] [B1-II] 

TWO ADJACENT BUILDINGS 

 [2B-1]  ɛx=0.5 Z=bm
 

[2B-2] ɛx=0.75 Z=bm
 

[2B-3] ɛx=0.9 Z=bm
 

 [2B-4]  ɛx=1  Z=bm
 

[2B-5] ɛx=1.1  Z=bm
 

 [2B-6] ɛx=1.5 Z=bm
 

[2B-7] ɛx=2 Z=bm
  

THREE ADJACENT BUILDINGS 

 [3B-1] ɛx=0.5 Z=bm
 

[3B-2] ɛx=0.75 Z=bm
 

[3B-3] ɛx=0.9 Z=bm
 

 [3B-4] ɛx=1 Z=bm
 

[3B-5] ɛx=1.1 Z=bm
 

 [3B-6] ɛx=1.5 Z=bm
 

[3B-7] ɛx=2 Z=bm
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 311 

Figure 9 Building models configurations, (a) single building, (b) two adjacent buildings, (c) three adjacent building. 312 

(b) 

(c)  

(a) 
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Due to the very busy schedule of the shaking table facility, the experimental program was conducted in two 313 

parts (Part I and Part II) separated by about one month in time. As preliminary analytical results from the 314 

study in [17] has suggested that the most extensive interaction effect would occur when adjacent buildings 315 

are of similar but not identical heights, in the first part of testing three height ratio variations were considered 316 

(ɛx=0.9, 1, 1.1). The remaining of height ratios were considered in the second part. Hence, the benchmark 317 

single building model B1 was tested twice at the beginning of each experimental part and therefore denoted 318 

by [B1-I] and [B1-II]. The difference between these two particular single buildings cases is that in the first 319 

case it was only the B1 model placed on the foam surface while in the latter test a number of building model 320 

bases (only component c, refer to Figure 3) were already present on the foam. The presence of these bases 321 

was inevitable due to the fact that they were already permanently attached to the foam from the previous 322 

testing in Part-I and their removal would have damaged the foam surface.  323 

3.1 Input Excitation 324 

The experimental SSSI system was subjected to two types of excitations, namely, a random white noise 325 

(with an RMS amplitude of ≈ 0.1g) and a set of uniaxial horizontal components of five earthquake events, as 326 

summarised in Table 4. The earthquake records were obtained from the PEER ground motion database [48]. 327 

All ground motions were recorded on weak soils, which correspond to sites of an average shear wave 328 

velocity of less than 180 m/s. These records were scaled down in amplitude and duration in accordance to the 329 

similitude factors in Table 1. The time-scaling factor is SFT=TM/TP≈0.33, where TM and TP are the fixed base 330 

periods of the building model and prototype respectively. The length-scaling factor is SFL=LM/LP≈0.01, 331 

where LM and LP are the total heights of building model and prototype respectively. So for accelerations to 332 

be scaled in amplitude, they should be multiplied by SFT/SFL
2=0.09 (i.e. dimensionless Length/Time2). 333 

Figure 10 shows the original unscaled and scaled signals. The number of data points of scaled signals was 334 

kept the same as the original PEER signals (dt = 0.005s i.e. a sampling frequency of 200 Hz). The elastic 335 

response spectra for nominal 5% damping of the amplitude and time scaled earthquake ground motions show 336 

that all building model natural periods lie within the region of interest (Figure 11).  337 

Table 4 Earthquake records, retrieved from Pacific Earthquake Engineering Research Center (PEER) Database (2000) 338 
[48] and their scaled magnitudes. 339 

Earthquake 
Event 

Duration 
 
s 

Closest 
Distance 

to 
Rupture 

Plane 
(km) 

Scaled 
Duration 

s 

Peak Ground 
Acceleration 

PGA m/s2 

Scaled PGA 
 

m/s2 

Morgan Hill P0459 
04/24/84 35.99 9.87 11.99 0.45 0.041 

Loma Prieta P0790 
10/18/89 39.95 87.87 13.32 0.98 0.089 

Imperial Valley P0175 
10/15/79 39.54 17.94 13.18 2.612 0.23 

Duzce P1536 
11/12/99 86.16 188.7 28.37 0.376 0.034 

WestmorlandP0320 
04/26/81 28.74 19.37 9.58 1.952 0.175 
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 340 
Figure 10 Un-scaled and scaled earthquake signals, (1) white noise, (2) Morgan Hill, (3) Loma Prieta, (4) Imperial 341 

Valley, (5) Duzce and (6) Westmorland. 342 

 343 

Figure 11 Elastic response spectra of scaled earthquake records. 344 

4 Results 345 

As has been stated earlier, the single building model case (uncoupled SSI case) was tested twice, in [B1-I] 346 

and [B1-II]. In order to conduct consistent assessments i.e. uncoupled (SSI) vs. coupled (SSSI); comparisons 347 

of spectral power were made with respect to the relevant uncoupled case in each part. Figure 12 compares 348 

the transfer functions (base to top of building model B1) which resulted from subjecting it to the white noise 349 

excitation for both cases. There is a slight increase in the response power (10.6%) and natural frequency 350 

(3.7%) of B1 in Part-II, which might be attributed to the stiffening effect imposed on the foam by the 351 

presence of building model bases along its surface.  352 
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As a primary system performance measure, the change in total acceleration power (spectral power) of 353 

building model B1 caused by its interaction with adjacent building models has been calculated. Transfer 354 

function TF(ω) estimates have been calculated for all interaction cases considered. TF(ω) is defined as the 355 

quotient of the power spectral density (PSD) of an output signal and the power spectral density of an input 356 

signal. In this study, the input signal is taken as the acceleration response recorded at base level of B1 while 357 

the output signal is taken as the acceleration response at the top of B1. 358 

The percentage change in total acceleration power denoted by B1  between uncoupled and coupled cases of 359 

building model B1 is calculated as the difference in the area under each transfer function curve as 360 

 (coupled) (uncoupled)
B1

(uncoupled)

TF d TF d
100.

TF d
 (8) 361 

The total power of a time-series, which is based on all data points, is a more robust statistical estimator of 362 

performance than the signal peak which is based on one point [49]. Additionally, the use of transfer function 363 

as a means of assessing the change in power of the response of B1 due to its interaction with other buildings 364 

is advantageous in the sense that any possible effect of the foam in amplifying the response of B1 would be 365 

excluded, i.e. site amplification.  366 

 367 

Figure 12 Transfer functions of single building mode B1 during testing parts [B1-I] and [B1-II]. 368 

4.1 Response under White Noise Excitation 369 

For the two adjacent buildings case, Figure 13 (a) and (b) show transfer functions for the uncoupled B1 370 

building in comparison to the coupled B1 case for the particular configurations obtained experimentally in 371 

part I and part II. Figure 14 (a) and (b) show similar plots for the case of three adjacent buildings. As 372 
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suggested in former analytical studies [17, 18] the worst interaction effect occurs when a building is adjacent 373 

to similar (not less than 10% difference in height) but not identical buildings. In the case when B1 is 374 

adjoined by slightly taller building model(s) B5, i.e. ɛx=1.1, it suffers the highest amplification in spectral 375 

power. This amplification is approximately 16% and 21% respectively when one and two adjacent B5 376 

buildings are present. On the other hand, the presence of one or two adjacent shorter building models B3 at 377 

ɛx=0.75 respectively causes the highest attenuation of B1’s spectral power by approximately 6% and 16%. 378 

When adjacent buildings are identical, ɛx=1, there is an increase in spectral power of up to 10%. Very small 379 

effects of interaction, < 5%, are observed for greater and lower height ratios (i.e. ɛx≥1.5 and ɛx≥0.5). It is also 380 

noted that there is a slight increase in the estimated natural frequency of B1 compared to that measured from 381 

free vibration tests but the damping ratio remains as previously measured at around 3.9%.  382 

   383 
Figure 13 Uncoupled and coupled frequency of B1- case of two adjacent buildings (a) Part I, (b) Part II. 384 
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 385 

Figure 14 Uncoupled and coupled frequency of B1- case of three adjacent buildings (a) Part I, (b) Part II. 386 

The aforementioned effects of variation in adjacent buildings heights on B1 spectral power could collectively 387 

be seen in the S shape curves shown in Figure 15. The dashed horizontal line at zero % represents the case of 388 

no interaction effect and values of. B1  above the dashed line represent a detrimental SSSI effect (increase of 389 

spectral power) while the beneficial values (decrease of spectral power) are below the dashed line. Clearly, 390 

the presence of two buildings has a greater interaction impact than the presence of only one building. In 391 

addition, the experimental data points compare well with the lines from analytical studies using low order 392 

discrete models for the case of two [17] and three [18] adjacent buildings.  393 

 394 
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 395 

Figure 15 Change of B1 spectral power with the variation in height of adjacent buildings subjected to white noise and 396 
comparison to analytical results. 397 

4.2 Response under Earthquake Excitation 398 

For the selected range of earthquake records, power spectra were evaluated for different configurations of 399 

two and three building cases and compared to that of a single building case B1. For every configuration the 400 

mean of the percentage change in spectral power (denoted by B1  to be distinguished from B1  of the white 401 

noise excitation) resulting from the five earthquake records was calculated.  402 

Figure 16 shows the variation in the percentage change in spectral power against the change in height ratio 403 

for the case of two adjacent buildings and three adjacent buildings. The S shape of the curves shown in this 404 

figure are comparable to those shown in Figure 15 for the case of white noise excitation, though in the case 405 

of earthquake motions the magnitude of the change in power is larger. Each of the data points shown 406 

represents an average across the 5 earthquake motions. The range of maximum and minimum values of B1  407 

measured for each height ratio is also depicted. For the case of two buildings, a maximum amplification up 408 

to 56% at a height ratio ɛx=1.1 and a maximum attenuation up to 18% at ɛx=0.75 could be observed. 409 

Similarly at the height ratio ɛx=1.1 for the case of three buildings a maximum amplification up to 40% and a 410 

maximum attenuation up to 31% at ɛx=0.75 are observed. No significant change in the spectral power of B1 411 

was observed at height ratios greater than 1.1. 412 
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 413 
Figure 16 Change of B1 average spectral power with the variation in height of adjacent buildings subjected to several 414 

earthquake motions. 415 

Another system performance measure is introduced to complement the earlier stated observations and 416 

provide a comparison with results from a previous experimental study conducted using centrifuge testing of 417 

two adjacent structures having shallow foundations resting on sand [30]. Figure 17 shows the peak 418 

acceleration response of building model B1 averaged across the 5 motions in various two adjacent buildings 419 

cases normalised by that of single B1 case. So here the dashed horizontal line at 100% is the “no SSSI 420 

effect” line. The horizontal axis represents the fixed base period ratio, that is the period of adjacent building 421 

models (B1 to B7) to the period of building model B1. Peak acceleration may be expected to correlate more 422 

directly to the peak demand force that the structural elements must resist, in contrast to spectral power which 423 

may be a better indicator of total energy input and therefore cumulative damage. 424 

Again the interaction effect across different buildings appears to be governed by the S shape curve, despite 425 

representing a different interaction effect measure. It can be seen that the most significant detrimental 426 

interaction effect occurs at a period ratio of approximately 1.17 which corresponds to a height ratio ɛx=1.1. In 427 

this case the peak acceleration response of B1 increases by about 26%. Conversely, the most beneficial effect 428 

occurred at period ratio of 0.58 which is the case when ɛx=0.75 where the peak acceleration response 429 

decreased by approximately 25 %. 430 

In Knappett et al.[30], two cases of similar (period ratio of 1) and dissimilar (period ratio of 1.475) model 431 

buildings were tested in the centrifuge under the Kobe 1995 ground motion. The ground motion was rescaled 432 

and applied in a series of shocks; a 0.1g small pre-shock; a 0.5g main shock and a final 0.1g motion to 433 

provide a recharacterisation of the behaviour at smaller strains following the substantial changes imparted to 434 

the soil fabric by the preceding motions. Data for the smaller of the two structures was used, having a 435 
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prototype fixed base natural period of 0.33 s, as this was closest to the natural period of B1 in the shaking 436 

table tests (0.303 s). Although the results for the case of similar buildings shows a similarity with the result 437 

from current study, there is a noticeable difference in the case of dissimilar buildings.  438 

This difference is understandable as the centrifuge study was conducted using real granular soil which is 439 

highly non-linear and inelastic while the current study is limited to purely linear elastic behaviour. The non-440 

linearity within the centrifuge tests appeared to attenuate the detrimental SSSI effect on peak acceleration 441 

response. This suggests that analytical solutions based on a linear elastic subgrade idealisation (e.g.[17]) may 442 

provide conservative estimates of SSSI effects, though this requires further verification through further 443 

experimental and numerical studies.  444 

 445 

Figure 17 Effect of SSSI on the peak acceleration of B1 and comparison to a centrifuge study in [30].  446 

5 Comparison to Finite Element simulation 447 

In order to have further confidence in the experimental measurements and their reliability, a series of 448 

analogous plane strain Finite Element models were created using PLAXIS2D to numerically replicate some 449 

of the experimental configurations. Three cases were considered: (i) single B1 (config. [1B]-I), (ii) two 450 

adjacent identical B1 models (config. [2B-4]) and (iii) three adjacent identical B1 models (config [3B-4]) 451 

under white noise excitation (duration = 80 seconds). The excitation applied at the bottom of the finite 452 

element mesh was the horizontal acceleration component in the direction of shaking recorded at the shaking 453 

table platform level. An example of the finite element model is depicted in Figure 18 for the case of a single 454 

building and models for the rest of the cases considered were created in a similar manner.  455 
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 456 

Figure 18 An example of  2D Finite Element mesh of the experimental model for the case [1B]-I.  457 

Figure 19 and Figure 20 respectively show normalised (with respect to the uncoupled single B1 case) 458 

frequency responses of the uncoupled B1 building in comparison to the coupled B1 model for the case of 459 

two and three adjacent buildings. The figures also compare results obtained experimentally and numerically. 460 

Observations from the two figures show a very good agreement, with the average percentage difference 461 

between the experimental and numerical models being less than 7% in terms of frequency estimation and 462 

less than 28% in terms of change in spectral power estimation. 463 

 464 

Figure 19 Experimental and numerical uncoupled and coupled responses of building model B1, two identical adjacent 465 
buildings case.  466 

Foam FE mesh 

B1 model 

Applied ground motion 



24 

 467 
Figure 20 Experimental and numerical uncoupled and coupled responses of building model B1, three identical adjacent 468 

buildings case.  469 

6 Conclusion 470 

This paper reported a small-scale parametric shaking table experimental investigation to study the problem 471 

of Structure-Soil-Structure interaction. Buildings were modelled using plates made of aluminium with steel 472 

end strips mounted on an elastic soil substitute material. Different parametric configurations of groups of two 473 

and three adjacent buildings were tested under the excitation of white noise and earthquake ground motions.  474 

As indicated by previous low order analytical modelling [17, 18] by the authors, the current work showed 475 

that the interaction effect could be beneficial or detrimental on the structural response depending on the 476 

geometrical characteristics of the adjacent buildings, specifically their height. The experiments conducted 477 

herein have also validated those low order models and their applicability for the cases of two and three 478 

adjacent buildings. Interestingly, for the adjacency cases considered in this study, it appears that there is a 479 

predominant S shape function governing the relationship between the interaction effect and the variation of 480 

height of adjacent buildings. This alternate relationship existed regardless of the number of buildings (2 or 3 481 

adjacent buildings) or the system performance measure used.  482 

A building appears to undergo the most detrimental interaction effect when flanked by either one or two 483 

longer period buildings which are 10% greater in height or 20% different in fixed base natural period. This 484 

effect is apparent in both the spectral power and peak acceleration response of the structure as a result of its 485 

interaction via the mutual ground connecting it with adjacent buildings. On the other hand, the highest 486 

reduction or beneficial effect is observed when the building is flanked by neighbouring structures with 487 

shorter periods or 10-25% shorter in height. In comparison to another experimental SSSI study on centrifuge, 488 

results showed that spectral power change could be utilised as a very good indication to the beneficial and 489 
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detrimental SSSI effects in terms of the change in acceleration response which would correspondingly affect 490 

the demands on base shear and overturning moments acting on the structure. Changes of up to ± 25% in peak 491 

acceleration could result from the adjacent buildings’ mutual interaction. Finite Element replica models of 492 

selected experimental configurations provided confidence in the results presented.  493 

Undoubtedly there are a considerable number of structural and soil parameters involved in the study of such 494 

a complex interaction problem; this experimental work tried to simplify the problem while maintaining the 495 

important features of the problem without oversimplification. Results of the current study could serve as a 496 

first order estimate for the seismic power, i.e. risk, which could be transferred to and from a certain structure 497 

as a result of its interaction with up to two neighbouring structures under dynamic excitation.  498 
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Appendix, Theoretical formulation of idealised 2dof soil-structure system 617 

 618 

Figure 21 Idealised two degree of freedom model.  619 

Assuming linear elasticity and small angles, the Lagrangian (kinetic minus potential energy) of the above 620 

system is  621 

 
2 2 2 2 21 1 1 1

1 2 1 22 2 2 2gm x x h m r k x k2 12 1
2 2 21 2 2 22

2 12 1
1 12 2 22

2 12 12 1m r k xm r k x1 12 2 2
2 12 12 122gx x h

2
                                  (8) 622 

where 1m  and 1k  are the building’s mass and stiffness respectively, 2
2m r  and 2k  are the foundation/soil’s 623 

rotational mass and stiffness respectively, r is the radius of gyration of the foundation/soil mass and h is the 624 

building height. Hence the Euler-Lagrange equations of motion are  625 

 2
1 1 2 1 20, 0g gm x x h k x m r hm x x h k2 0222k22g g1 2 11 2x x hx hx 1 2 12 1

2
1 2 111 2 12 1k h h kk h h20 2k xk x11 0 2

2 12 1111 2 12 1                            (9) 626 

By introducing the following parameters   627 

 2 22 2 1 2
1 2 2

1 1 1 2

, , , ,m k kh
m r m m r

                                (10) 628 

and non-dimensional variables,  629 

 
1
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where  is scaled time, u is scaled relative displacement and gu is scaled ground displacement we can 631 

therefore re-expresses the Euler-Lagrange equations of motion, equation (9), in a dimensionless form as 632 

follows 633 
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0 g
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u                                          (12) 634 

where primes indicate derivatives with respect to scaled time 2 2 .  Hence the system reduces to 635 

one containing just three non-dimensional parameters: (i) a mass ratio  (ii) an aspect ratio  and (iii) a 636 

frequency ratio .   637 

The flexible-base fundamental natural circular frequency 1f  of the above system can be determined by 638 

solving the resultant homogenous eigenvalue problem. Hence the ratio of flexible-base 1f  to fixed-base 1  639 

fundamental natural circular frequencies f can be stated as follows 640 
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