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ABSTRACT 

OBJECTIVE The mechanism causing gastrointestinal intolerance to metformin treatment is 

unknown. We have previously shown that reduced-function alleles of organic cation 

transporter 1 (OCT1) are associated with increased intolerance to metformin. Considering 

recent findings that serotonin transporter (SERT) might also be involved in metformin 

intestinal absorption, and serotonin role in gastrointestinal physiology, in this study we 

investigated the association between a common polymorphism in SERT gene and metformin 

gastrointestinal intolerance. 

RESEARCH DESIGN AND METHODS We explored the effect of composite SERT 5-

HTTLPR/rs25531 genotypes, L*L* (LALA), L*S*(LALG, LAS), and S*S* (SS, SLG, LGLG), in 

1,356 fully tolerant and 164 extreme metformin-intolerant patients by using logistic 

regression model, adjusted for age, sex, weight, OCT1 genotype, and concomitant use of 

medications known to inhibit OCT1 activity. 

RESULTS The number of low-expressing SERT S* alleles increased the odds of metformin 

intolerance (OR=1.31, 95% CI 1.02-1.67, P=0.031). Moreover, a multiplicative interaction 

between the OCT1 and SERT genotypes was observed (P=0.003). In the analyses stratified by 

SERT genotype, the presence of two deficient OCT1 alleles was associated with over a nine-

fold higher odds of metformin intolerance in patients carrying L*L* genotype (OR=9.25, 95% 

CI 3.18-27.0, P<10-4), however, it showed much smaller effect in L*S* carriers, and no effect 

in S*S* carriers.  

CONCLUSIONS Our results indicate that interaction between OCT1 and SERT genes might 

play an important role in metformin intolerance. Further studies are needed to replicate these 

findings and to substantiate the hypothesis that metformin gastrointestinal side-effects could 

be related to the reduced intestinal serotonin uptake.  
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Metformin is a first-line antihyperglycaemic agent, and the most widely used type 2 diabetes 

drug. It has major clinical advantages over other therapies due to its proven safety record, it 

does not induce hypoglycaemia or weight gain, and has possible cardiovascular benefits (1). 

The most common adverse effect of metformin treatment is gastrointestinal (GI) upset which 

occurs in approximately 30% of patients, limiting compliance. In 5% of patients treated with 

metformin, GI symptoms are intolerable and warrant the discontinuation of the drug (2). The 

mechanism of metformin GI side effects is not clear. Various pathophysiological hypotheses 

have been proposed, including metformin-induced release of serotonin in the intestinal 

mucosa (3), reduced absorption of bile salts (4), increase in glucagon-like peptide-1 (GLP-1) 

concentrations (5), and more recently, changes in the gut microbiome (6).  

Metformin side effects might be related to high concentration of metformin in the gut after 

oral administration (7). We have recently shown that reduced-function alleles of organic 

cation transporter 1 (OCT1), as well as concomitant treatment with medications known to 

inhibit OCT1 activity, are risk factors for metformin intolerance in a large cohort of type 2 

diabetes patients treated with metformin (8). OCT1 is one of the several cation-selective 

transporters expressed in the enterocytes, which could be involved in metformin absorption 

(9-11). Other potentially involved transporters are OCT3 and plasma membrane monoamine 

transporter (PMAT). Interestingly, a recent study showed that OCT1, PMAT, serotonin 

reuptake transporter (SERT, 5-HTT), and choline high-affinity transporter (CHT), and not 

OCT3, contribute to the apical uptake of metformin into Caco-2 cell monolayers, and thus, 

potentially to intestinal metformin absorption (11). The CHT is not expressed in human 

intestine (11), and there are no established common loss-of-function variants of PMAT. On 

the other hand, the expression of SERT is modulated by genetic variants, most notably the 

serotonin-transporter-linked polymorphic region (5-HTTLPR) variant, a well-established 43-

base pair insertion/deletion polymorphism in the promoter region. Moreover, a recent study 
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showed that metformin can inhibit serotonin uptake by OCT1, OCT3, and SERT, at 

concentrations that may be achieved in human intestine after oral administration (12). These 

findings contribute to the hypothesis of serotonin-mediated GI adverse effects following 

metformin treatment, as metformin inhibition of serotonin uptake could result in increased GI 

side effects (12). 

 

Considering that different expression or activity of SERT might contribute to high inter-

individual variability in GI intolerance to metformin, in this study we investigated the role of 

a common SERT tri-allelic 5-HTTLPR polymorphism in intolerance to metformin, and 

explored the potential interaction between SERT (SLC6A4) and OCT1 (SLC22A1) genes.  

 

RESEARCH DESIGN AND METHODS 

Study population and definition of intolerance  

The study population was previously described in detail (8). Briefly, the study included 

patients with type 2 diabetes from the Genetics of Diabetes Audit and Research Tayside Study 

(GoDARTS), who were prescribed metformin for the first time in the period from 1st January 

1994 to 1st June 2011. A surrogate phenotype of metformin intolerance was defined based on 

discontinuation of metformin within the first 6 months of treatment (immediate release form, 

IR), and switch to another oral hypoglycaemic agent, including metformin slow release forms, 

within 6 months of the last metformin IR prescription. Intolerant patients were compared with 

patients who were defined as tolerant based on treatment with ≥ 2000 mg of metformin IR 

form for more than 6 months.  

 

Clinical cofactors, including anthropometric and biochemical parameters, metformin daily 

dose and use of OCT1-inhibiting medications were defined previously (8). 
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Genotyping  

Genotyping of five OCT1 reduced-function variants (R61C, C88R, G401S, M420del, and 

G465R) and classification of individuals based on the number of haplotypes carrying reduced-

function alleles were described in our previous study (8). 

 

The 5-HTTLPR polymorphism in SERT gene (SLC6A4) is characterised by long (L) and short 

(S) alleles. The S allele has been associated with lower SERT expression and function (13). A 

single nucleotide polymorphism (SNP), rs25531 A>G, located within this region, further 

modulates SERT expression, with LA carriers having higher SERT expression, and LG lower 

SERT expression similar to that in S allele carriers (14). In this study, we predicted the 5-

HTTLPR polymorphism based on published machine learning method of vertex discriminant 

analysis validated for Northern European populations (15). This method uses eight variants in 

partial linkage disequilibrium with 5-HTTLPR, to predict three genotypes, LL, SL and SS 

(15). Seven out of eight SNPs, and rs25531, were imputed from existing genome-wide data on 

7,319 GoDARTS participants using the 1,000 Genome reference panel and software 

IMPUTE2. The imputation quality information values were between 0.88 and 1.00. All SNPs 

were in line with Hardy-Weinberg equilibrium (P > 0.05). Considering that LG allele has the 

same expression as the S allele, the tri-allelic 5-HTTLPR genotypes were coded as L*L* 

(LALA), L*S*(LALG, LAS), and S*S* (SS, SLG, LGLG).      

 

Statistical analysis 

Differences in quantitative variables between two groups were compared using a t test or 

Mann-Whitney U test, depending on the distribution normality, and categorical variables were 

compared using a χ2 test. For testing the significance of the additive genetic model, groups of 

quantitative variables were compared using ANOVA test for trend or Jonckheere's trend test, 
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depending on the distribution normality, and categorical variables were compared using the 

Cochran-Armitage trend test. The logistic regression model was used to analyse the 

association of genotypes with metformin intolerance, with age, sex, weight and the 

concomitant use of OCT1-inhibiting medications as covariates (8). Based on our previous 

study, the effect of two deficient OCT1 alleles was assessed (recessive model) (8), and for the 

tri-allelic 5-HTTLPR polymorphism, an additive genetic model was used. The multiplicative 

interaction was assessed by adding an interaction term to the regression model. Statistical 

analyses were conducted using the SAS 9.3 software (SAS Institute Inc., Cary, NC), and 

statistical significance level was set to P < 0.05. 

 

RESULTS 

A total of 1,356 tolerant and 164 intolerant patients with available OCT1 and SERT genotype 

data were included in the study (Table 1). Patients differed in baseline characteristics, in line 

with our previous study (8). The OCT1 or SERT genotypes were not associated with study 

participants’ baseline characteristics, with the exception of lower percentage of the 

antidiabetic drug-naïve patients in the group with two deficient OCT1 alleles compared to one 

or no deficient OCT1 allele carriers (Supplementary Table 1, P=0.003). 

 

The numbers of individuals in each genotype group are shown in Supplementary Table 2. In 

addition to the association of the two deficient OCT1 alleles with intolerance (recessive 

model, P=0.001) in line with our previous report (8), there was a significant difference in the 

SERT genotype frequencies between the intolerant and tolerant group (additive model, 

P=0.019). 
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In the logistic regression analysis model adjusted for the clinical covariates age, sex and 

weight, the number of S* alleles was associated with higher odds of metformin intolerance 

(OR=1.28, 95% CI 1.01-1.63, P=0.040). This effect was greater after adding the OCT1 

genotype and OCT1-inhibiting medications to the model (Table 2, OR=1.31, 95% CI 1.02-

1.67, P=0.031). Furthermore, we tested the interaction between the OCT1 and SERT 

genotypes. A negative multiplicative interaction was observed between the two genes 

(P=0.003), which is visually presented in Figure 1. This shows the joint effects of OCT1 and 

SERT genotypes compared to the reference genotype group (the combination of one or no 

deficient OCT1 alleles and the L*L* genotype). In the analysis stratified by SERT genotypes, 

the presence of two deficient OCT1 alleles was associated with over a nine-fold higher odds 

of metformin intolerance (OR=9.25, 95% CI 3.18-27.0, P<10-4) in individuals with L*L* 

genotype, whereas there was no significant association in L*S* carriers (OR=2.11, 95% CI 

0.99-4.50, P=0.054) and the S*S* genotype group (OR=0.45, 95% CI 0.09-2.20, P=0.325) 

(Table 3). On the other hand, when patients were stratified according to the OCT1 genotypes, 

the number of S* alleles increased intolerance in carriers of one or no deficient OCT1 allele 

(OR=1.48, 95% CI 1.15-1.92, P=0.003), but showed opposite effect in two deficient OCT1 

allele carriers (OR=0.33, 95% CI 0.13-0.82, P=0.017) (Table 3). 

 

CONCLUSIONS 

In the first study of genetic and phenotypic determinants of metformin intolerance, we 

showed that variants of highly polymorphic OCT1 gene are associated with severe intolerance 

leading to discontinuation of metformin therapy (8). We hypothesised this based on the 

possible role of OCT1 in metformin intestinal absorption. Our later prospective study 

demonstrated the relationship between OCT1 deficient alleles and common GI side effects of 

metformin, thus replicating earlier findings and extending them also to the milder intolerance 
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phenotype (16). The mechanism for this association, however, was unclear. Based on the 

recent findings that metformin may alter serotonin uptake by gut transporters (12), and 

considering the role of serotonin in GI physiology, here we focused on the effect of a common 

and well-established SERT 5-HTTLPR functional polymorphism on metformin intolerance.  

 

We found that the low-expressing S* allele of SERT gene is associated with increased 

intolerance to metformin, although this effect was smaller than that seen to be associated with 

two OCT1 deficient alleles. The 5-HTTLPR polymorphism has been extensively studied 

previously, and there is a possible association of 5-HTTLPR alleles with irritable bowel 

syndrome (17), psychiatric traits (18), and antidepressant drug response (19). Although results 

of the pharmacogenetic studies have been inconsistent, evidence from reviews and meta-

analyses suggest that the L allele is a predictor of better response to selective serotonin 

reuptake inhibitors (SSRIs) in Caucasian populations (19). On the other hand, in the meta-

analysis of nine studies, the S allele was significantly associated with more total adverse 

effects after SSRIs treatment, and showed a trend of association with GI side effects induced 

by SSRIs (20), in line with our results.  

 

In humans, serotonin is predominantly synthesised in the enterochromaffin cells of the gut 

mucosa. Here it mediates many gastrointestinal functions, including motility, secretion and 

vasodilation by activating afferent neurons in the lamina propria (21). Serotonin has been 

involved in the pathophysiology of a number of GI disorders, and drugs targeting serotonin 

receptors have been used in the treatment of GI symptoms (21). Previously it has been shown 

that metformin can induce serotonin release from the intestinal mucosa, in dose-dependent 

manner, without effect on 5-HT3 receptors (3). In this study, the effect of metformin on 

serotonin reuptake was not explored (3). However, recent in vitro findings showed that 
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metformin can inhibit serotonin uptake by SERT and other cation transporters (12). Thus, 

metformin could increase serotonin extracellular concentrations resulting in prolonged 

serotonergic signalling in the intestine and increased GI side effects (12). Although in this 

study, metformin inhibited serotonin uptake by OCT1 more strongly than by SERT (12), 

another in vitro study showed conversely that metformin is not a significant inhibitor of 

OCT1-mediated serotonin transport (22). Beside this, SERT has much higher expression than 

OCT1 in the human intestine (11, 23), implying that although metformin is a weak SERT 

inhibitor, it could inhibit SERT at the high concentrations achieved in the gut after oral 

administration (24). In addition, it has been proposed that inhibition of intestinal SERT may 

contribute to GI adverse effects commonly observed with SSRIs treatment (25), and possibly 

also to side effects of other drugs which may act as SERT inhibitors (26). 

 

As we observed a significant interaction between OCT1 and SERT genotypes, we performed 

analyses stratified by each genotype. Interestingly, in the analyses stratified by SERT 

genotype, two OCT1 deficient alleles had high effect in patients carrying L*L* genotype, 

much smaller effect in L*S* carriers, and no effect in the S*S* genotype carriers. Furthermore, 

the low-expressing S* allele was associated with intolerance only in patients with one or no 

deficient OCT1 allele, and showed opposite direction in carriers of two deficient OCT1 

alleles. It can be hypothesised that low activity of OCT1, possibly the main intestinal 

transporter of metformin, results in increased metformin concentrations in the gut, which can 

inhibit SERT and thus cause high extracellular serotonin levels and GI intolerance. On the 

other hand, although the number of low-expressing SERT S* alleles was associated with 

intolerance per se presumably also due to higher serotonin extracellular levels, the S* allele 

showed protective effect in the presence of two low-activity OCT1 alleles. This contradictory 

finding could be possibly explained by desensitization of serotonin receptors, which may 
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occur as a consequence of greatly increased interstitial serotonin concentrations, in the case of 

low SERT expression (27) and high SERT inhibitor concentrations (28). However, the small 

numbers of patients especially in some of these genotype-stratified analyses preclude drawing 

strong conclusions about the observed interaction. SERT is expressed at both apical and 

basolateral membranes of the enterocytes, with predominant apical expression (11). However, 

there is ambiguity around the localisation of the OCT1 in the enterocytes, as it has been 

suggested to be located basolaterally (9, 29), and conversely, in a recent study, apically (10). 

Thus, it is unclear whether increased mucosal or luminal metformin concentrations could 

contribute to the GI adverse effects. Nevertheless, the results of our study suggest a plausible 

hypothesis for GI intolerance of metformin, which should be explored further.  

 

In addition to the small sizes of groups in the stratified analyses, there are several other 

limitations of our study which need to be acknowledged. Firstly, we used a surrogate 

phenotype for metformin gastrointestinal intolerance based on discontinuation of metformin 

in the first months of treatment. We ensured that patients were switched to another oral 

hypoglycaemic agent, thus the cessation of metformin was not due to improvement in 

glycaemic control. However, there could be other reasons for stopping metformin, including 

other side effects or other reasons not related to drug intolerance. This could result in some 

imprecision in the definition of phenotype categories, although GI intolerance represents the 

most common adverse effect of metformin treatment. Furthermore, it would be interesting to 

explore the effect of concomitant treatment of SSRIs on metformin intolerance, and their 

interaction with SERT as well as OCT1 genotypes. However, we were not able to do this due 

to the small number of patients who were treated with SSRIs. In addition, SSRIs could also 

act as OCT1 inhibitors, and citalopram has been included in the overall OCT1-inhibiting 

drugs. Finally, considering the relatively small size of our study, the novel findings of our 
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study should considered preliminary and require independent replication. Beside this, as 

clearly genetic studies alone cannot infer molecular mechanisms of drug effects, further in 

vitro and in vivo studies are needed to explore the proposed hypothesis of metformin GI 

intolerance. 

 

In conclusion, our results indicate that SERT genotype and the interaction between OCT1 and 

SERT genes might play an important role in GI intolerance to metformin. Further studies are 

needed to replicate our preliminary findings as well to substantiate the proposed interaction 

between metformin and serotonin disposition in the intestine, and elucidate the exact 

mechanisms of GI intolerance to metformin. 
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Table 1. Baseline characteristics of metformin intolerant and tolerant group. 

 Intolerant group (n=164) Tolerant group (n=1356) P 

Age (years) 68.8 ± 9.7 58.4 ± 10.6 <0.001 

Age at diagnosis (years) 63.5 ± 9.9 55.2 ± 10.3 <0.001 

Females/Males (Females %) 94/70 (57.3%) 545/811 (40.2%) <0.001 

Weight (kg) 81.7 ± 15.5 92.1 ± 18.3 <0.001 

BMI (kg/m2) 30.4 ± 5.4 32.6 ± 6.1 <0.001 

HbA1c (%) 

           (mmol/mol) 

8.1 (7.7-9.2) 

65 (61-77) 

8.8 (7.8-9.9) 

73 (62-85) 

<0.001 

Creatinine (µmol/l) 87.4 ± 14.4 87.2 ± 14.4 0.831 

Creatinine clearance (ml/min) 74.4 (57.4-91.4) 97.7 (77.0-120.7) <0.001 

Antidiabetic drug-naive 86 (52.4%) 831 (61.3%) 0.029 

Use of OCT1 inhibiting drugs* 83 (50.6%) 450 (33.2%) <0.001 

Metformin daily dose (mg) 1000 (1000-1000) 1000 (1000-1500) <0.001 

P values refer to the significance of t test, Mann-Whitney U test or a χ2 test for data presented 
as means ± SD, medians (interquartile range), or numbers (percentages), respectively. 
*Number of individuals concomitantly treated with OCT1 inhibiting drugs, including proton 
pump inhibitors, tricyclic antidepressants, citalopram, verapamil, diltiazem, doxazosin, 
spironolactone, clopidogrel, rosiglitazone, quinine, tramadol and codeine. 
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Table 2. Results of logistic regression model for metformin intolerance. 

 

 OR (95% CI) P 

Age 1.11 (1.08-1.13) <0.001 

Sex (Females vs. Males) 1.82 (1.26-2.65) 0.002 

Weight 0.99 (0.97-1.00) 0.031 

Use of OCT1 inhibiting drugs 1.75 (1.22-2.49) 0.002 

Two reduced-function OCT1 alleles 2.27 (1.31-3.92) 0.003 

Number of SERT S* alleles 1.31 (1.02-1.67) 0.031 

OR, odds ratio for intolerance. Logistic regression analysis included 164  
intolerant and 1356 tolerant patients.  
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Table 3. Stratified analyses according to OCT1 and SERT genotypes. 

Effect of two deficient OCT1 alleles - analysis stratified for SERT genotype 

SERT genotype OR (95% CI) P 

L*L* carriers* 9.25 (3.18-27.0) <0.0001 

L*S* carriers†  2.11 (0.99-4.50) 0.054 

S*S* carriers‡  0.45 (0.09-2.20) 0.325 

Effect of the number of SERT S* alleles - analysis stratified for OCT1 genotype 

OCT1 genotype OR (95% CI) P 

0 or 1 deficient alleles carriers§ 1.48 (1.15-1.92) 0.003 

2 deficient alleles carriers||  0.33 (0.13-0.82) 0.017 

OR, odds ratio for intolerance. Analyses were adjusted for age, sex, weight, and use of  
OCT1-inhibiting medications.* 34 intolerant and 382 tolerant patients; † 81 intolerant and  
656 tolerant patients; ‡ 49 intolerant and 318 tolerant patients; § 141 intolerant and  
1265 tolerant patients; ||23 intolerant and 91 tolerant patients. 
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Figures 

Figure 1 Joint effects of OCT1 and SERT genotypes on metformin intolerance. The 

combination one or no deficient OCT1 alleles/ L*L* is used as a reference group. The 

numbers in each genotype group are presented for the intolerant and tolerant individuals as 

‘Intolerant/Tolerant’. 

 

 

 

 

 

 

 





Supplementary Table 1. Baseline characteristics of study participants according to OCT1 and SERT genotypes. 

 OCT1 genotype  SERT genotype  

 0 or 1 deficient OCT1 

alleles (n=1406) 

2 deficient OCT1 

alleles (n=114) 

 

P 

L*L* genotype 

(n=416) 

L*S* genotype 

(n=737) 

S*S* genotype 

(n=367) 

 

P 

Age (years) 59.5 ± 11.0 60.2 ± 10.5 0.486 59.6 ± 11.0 58.9 ± 10.7 60.7 ± 11.3 0.164 

Age at diagnosis (years) 56.1 ± 10.6 56.4 ± 9.7 0.714 56.0 ± 10.4 55.9 ± 10.4 56.7 ± 11.0 0.374 

Females/Males (Females %) 584/822 (41.5%) 55/59 (48.3%) 0.163 182/234 (43.8%) 317/420 (43.0%) 140/227 (38.2%) 0.121 

Weight (kg) 90.9 ± 18.4 91.2 ± 17.2 0.897 89.5 ± 17.8 91.8 ± 18.3 91.0 ± 18.7 0.238 

BMI (kg/m2) 32.3 ± 6.1 33.2 ± 5.8 0.133 32.0 ± 5.8 32.7 ± 6.1 32.0 ± 6.3 0.955 

HbA1c (%) 

           (mmol/mol) 

8.7 (7.8-9.8) 

72 (62-84) 

8.7 (7.8-9.6) 

72 (62-81) 

0.887 8.7 (7.8-9.7) 

72 (62-83) 

8.8 (7.8-9.9) 

73 (62-85) 

8.6 (7.7-9.6) 

70 (61-81) 

0.543 

Creatinine (µmol/l) 87.4 ± 14.2 85.3 ± 16.3 0.141 86.5 ± 14.3 87.3 ± 14.7 87.8 ± 13.7 0.231 

Creatinine clearance (ml/min) 94.7 (74.8-117.4) 97.7 (73.0-125.5) 0.679 91.7 (73.4-116.2) 96.1 (76.5-118.4) 94.6 (72.8-117.3) 0.806 

Antidiabetic drug-naive 863 (61.4%) 54 (47.4%) 0.003 266 (63.9%) 441 (59.8%) 210 (57.2%) 0.053 

Use of OCT1 inhibiting drugs* 488 (34.7%) 45 (39.5%) 0.305 133 (32.0%) 282 (38.3%) 118 (32.2%) 0.870 

Metformin daily dose (mg) 1000 (1000-1500) 1000 (1000-1500) 0.808 1000 (1000-1425) 1000 (1000-1500) 1000 (1000-1500) 0.088 

In comparison of two OCT1 genotype groups, P values refer to the significance of t test, Mann-Whitney U test or a χ2 test, and in comparison of three SERT genotype groups, 
P values refer to the significance of ANOVA trend test, Jonckheere's trend test and Cochran-Armitage trend test, for data presented as means ± SD, medians (interquartile 
range), or numbers (percentages), respectively. *Number of individuals concomitantly treated with OCT1 inhibiting drugs, including proton pump inhibitors, tricyclic 
antidepressants, citalopram, verapamil, diltiazem, doxazosin, spironolactone, clopidogrel, rosiglitazone, quinine, tramadol and codeine.



Supplementary Table 2. Number of intolerant and tolerant patients according to OCT1 and 
SERT genotypes. 

Intolerant group 

OCT1 genotype SERT genotype 

L*L* L*S* S*S* Total 

0 or 1 deficient alleles 

  

 

26 (15.9%) 68 (41.5%) 47 (28.7%) 141 (86.0%) 

2 deficient alleles 8 (4.9%) 13 (7.9%) 2 (1.2%) 23 (14.0%) 

Total 34 (20.7%) 81 (49.4%) 49 (29.9%) 164 

Tolerant group 

OCT1 genotype SERT genotype 

L*L* L*S* S*S* Total 

0 or 1 deficient alleles 

  

 

362 (26.7%) 605 (44.6%) 298 (22.0%) 1265 (93.3%) 

 2 deficient alleles 20 (1.5%) 51 (3.8%) 20 (1.5%) 91 (6.7%) 

Total 382 (28.2%) 656 (48.4%) 318 (23.5%) 1356 

There was a significant difference between the intolerant and tolerant group in the OCT1 
genotype frequencies (recessive model, P=0.001 for χ2 test) and the SERT genotype 
frequencies (additive model, P=0.019 for Cochran-Armitage trend test).  
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