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a b s t r a c t

Vision is one of the most important of the senses, and humans use it extensively during navigation. We

evaluated different types of image and video frame descriptors that could be used to determine distinctive

visual landmarks for localizing a person based on what is seen by a camera that they carry. To do this,

we created a database containing over 3 km of video-sequences with ground-truth in the form of distance

travelled along different corridors. Using this database, the accuracy of localization—both in terms of knowing

which route a user is on—and in terms of position along a certain route, can be evaluated. For each type of

descriptor, we also tested different techniques to encode visual structure and to search between journeys to

estimate a user’s position. The techniques include single-frame descriptors, those using sequences of frames,

and both color and achromatic descriptors. We found that single-frame indexing worked better within this

particular dataset. This might be because the motion of the person holding the camera makes the video too

dependent on individual steps and motions of one particular journey. Our results suggest that appearance-

based information could be an additional source of navigational data indoors, augmenting that provided by,

say, radio signal strength indicators (RSSIs). Such visual information could be collected by crowdsourcing

low-resolution video feeds, allowing journeys made by different users to be associated with each other, and

location to be inferred without requiring explicit mapping. This offers a complementary approach to methods

based on simultaneous localization and mapping (SLAM) algorithms.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Satellite-based global positioning systems (GPS) have been avail-

ble to consumers for many years. When combined with other sensor

ata, such as terrestrial-based radio signal strength indicators (RSSI),

he quality of pedestrian localization within cities, at street level, can

e quite reliable. Recently, interest has been gathering for the devel-

pment of systems for indoor position sensing: we might consider

his to be the next challenge in localization systems [15,17,28,33].

ndoor sensing is likely to require additional infrastructure, such as

luetooth-based RSSI, or time-of-flight systems. At the time of writ-

ng, both of these are reported to be under trial.

Despite this, vision-based navigation systems are under active de-

elopment. This might be because such systems do not require special

arkers to be embedded within the environment. However, another

eason could be that vision provides an immensely rich source of
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ata, from which estimating position is also possible. For example, in

merging applications [22] such as mobile domestic robots, merely

nowing where a robot is not enough: a robot often needs some infor-

ation about its immediate environment in order to take appropriate

ecisions. This includes navigating around obstacles and identifying

mportant objects (e.g. pets).

Systems and devices that are designed to help humans to navi-

ate would be improved by incorporating vision as one of the sensing

odalities. This is particularly true of systems that are designed to

elp visually impaired people to navigate (assistive navigation sys-

ems). However, for wearable or smartphone-based systems, accuracy

nd power consumption remain two of the challenges to the reliable

nd continuous use of computer vision techniques. Visual localization

ccuracy is affected by several factors, including the techniques used

o infer location from visual data. In the case of feature-based SLAM

9], for example, a lack of features, or a highly occluded environment,

an reduce accuracy.

Wang et al. [37] have recently suggested an interesting approach to

ocalization based on the principle of identifying landmarks in ambi-

nt signals. These ambient signals are acquired from a crowdsourcing-

ike approach, rather than explicitly mapping out signal strength and
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The idea behind searching across data from navigators of the same physical

path: after navigating the space twice, Juan’s visual path data (A, B) is indexed and

stored in a database. Mary enters the same space (unknown path), and the images ac-

quired as she moves are compared against the visual path of Juan, providing a journey-

centric estimate of location. With many journeys collated, location can be inferred with

respect to the pre-collected paths in the database.
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WiFi identifiers and appears to offer good performance, with median

absolute localization error of less than 1.7 m. Perhaps more impor-

tantly, it removes the need to change building infrastructure specifi-

cally for localization. One way to strengthen the landmark approach

would be to incorporate visual cues, automatically mined from the

video data. Theoretically speaking, such an approach might be lim-

ited by (i) the quality of the image acquisition, which could be af-

fected by blur, poor focusing, inadequate resolution or poor lighting;

(ii) the presence of occlusions to otherwise stable visual landmarks;

(iii) visual ambiguity: the presence of visually-similar structures, par-

ticularly within man-made environments.

We now consider something of an ideal situation in which we can

harvest visual signatures from several journeys down the same route;

the approach starts with the idea of collecting visual paths, and using

the data from these to localize the journeys of users relative to each

other, and to start and end points.

2. Visual paths

Consider two users, Juan and Mary, navigating at different times

along the same notional path. By notional path, we refer to a route

that has the same start and end points. An example of indoor notional

paths would be the navigation from one office to another, or from

a building entrance to a reception point. For many buildings, such

notional paths might allow different physical trajectories which could

diverge. For example, users might take either stairs or lifts, creating

path splits and merges. Such complex routes could be broken down

into route (or path) segments, and path segments could contribute to

more than one complete notional path.

For any notional path or path segment, both humans and au-

tonomous robots would “experience” a series of cues that are distinc-

tive when navigating along that path. In some instances, however,

the cues might be ambiguous, just as they might be for radio signal

strength indicators, audio cues and other environmental signals. A

vision-based system would need to analyze the visual structure in

sequences from hand-held or wearable cameras along path segments

in order to answer two questions: which notional path or segment

is being navigated, and where along a specific physical path, relative

to start and end point, a person might be. We addressed the first of

these questions in previous work [30].

Returning to the two-user scenario, let us assume that Juan has

been the first to navigate along the path, and has collected a sequence

of video frames during his successful navigation. As Mary makes her

way along the path, we wish to be able to associate the images taken

by Mary with those taken by Juan (see Fig. 1). The ability to do this

allows us to locate Mary relative to the journey of Juan from the vi-

sual data acquired by both. For only two users, this may seem an

uninteresting thing to do. However, imagine that this association is

done between not two, but multiple users, and is applied to several

physical paths that together form the navigable space of a building.

Achieving this association would enable some types of inference to

be performed. In particular:

• The visual path data would be a new source of data that could be

used for location estimation;
• The association of image locations would allow visual change de-

tection to be performed over many journeys along the same route,

made at different times;
• Through non-simultaneous, many-camera acquisition, one could

achieve more accurate mapping of a busy space, particularly

where moving obstructions might be present;
• Visual object recognition techniques could be applied to recognize

the nature of structures encountered along the route, such as exits,

doorways and so on.

Using continuously acquired images provides a new way for hu-

mans to interact with each other through establishing associations
etween the visual experiences that they have shared, independent

f any tags that have been applied. The concept is illustrated in

ig. 2(a). In this diagram, four users are within the same region of

building; however, two pairs of users (A,C) and (B,D) are associated

ith having taken similar trajectories to each other. With a sufficient

umber of users, one could achieve a crowdsourcing of visual nav-

gation information from the collection of users, notional paths and

rajectories.

One intriguing possibility would be to provide information to

isually-impaired users. For example, in an assistive system, the vi-

ual cues that sighted individuals experience along an indoor journey

ould be mined, extracting reliable information about position and

bjects (e.g. exit signs) that are of interest. While other sources of in-

oor positioning information, such as the locations of radio beacons,

an aid indoor navigation, some visual cues are likely to be stable

ver long periods of time, and do not require extra infrastructure be-

ond that already commonly installed. Collecting distinctive visual

ues over many journeys allows stable cues to be learned. Finally,

n contrast to signal-based methods of location landmarks [37], the

debugging” of this type of navigation data—i.e. images, or patches

ithin images—is uniquely human-readable: it can be done simply

hrough human observation of what might have visibly changed along

he path. Perhaps most compelling of all, visual path data can be ac-

uired merely by a sighted user sweeping the route with a hand-held

r wearable camera.

. Vision-based approaches to navigation

The current state-of-the-art methods for robot navigation make

se of simple visual features and realistic robot motion models in or-

er to map, then to navigate. For human navigation, the challenge is

lightly greater, due partly to the variability of human motion. Nev-

rtheless, recent progress in simultaneous localization and mapping

SLAM) [24] and parallel tracking and mapping (PTAM) [19] have

ielded stunning results in producing geometric models of a physical,
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(a) (b)

Visual Paths 

  Database

A

B

C

D

Fig. 2. In (a), we illustrate the concept of using the visual path database to establish rough correspondence in users’ locations through their visual experiences. Users (A,C) and (B,D)

experience similar visual paths (see the text for details). In (b), the current view captured by a camera and views from the best match paths that have been captured through that

space, to the immediate right. The first four bottom panels show current, historical, and predicted images, based on the query from the best matching visual path. The right, bottom

image shows the similarity scores from other journeys taken along the same notional path. The techniques that enable this type of match to be done are discussed in Section 5.
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ecovering geometry and camera pose simultaneously from hand-

eld devices.

At the same time, being able to recognize certain objects while per-

orming SLAM could improve accuracy, reducing the need for loop clo-

ure and allowing better—more reliable—self-calibration [32]. Recog-

ition pipelines in computer vision have recently taken great strides,

oth in terms of scalability and accuracy. Thus, the idea of collabora-

ively mapping out a space through wearable or hand-held cameras

s very attractive.

Appearance-based navigation, closely related to navigation, has

een reported as one of many mechanisms used in biology, and has

een explored by various groups in different animals (see, for ex-

mple, [6,10,13]). Appearance-based approaches can add to the in-

ormation gained using SLAM-type algorithms. Indeed, in a robust

ystem, we might expect several sources of localization information

o be employed. Consider, for example, outdoor navigation in cities:

PS can be combined with WiFi RSSI. Doing so improves overall accu-

acy, because the errors in these two localization systems are unlikely

o be highly correlated over relatively short length scales (≈100 m),

nd would only be trivially correlated (but highly) over longer dis-

ances. Localization systems often rely on motion models embedded

nto tracking algorithms, such as Kalman, extended Kalman [9] filter-

ng, or particle-filtering [27], to infer position. More recently, general

urpose graphics processing units (GP-GPUs) have enabled camera

osition to be quickly and accurately inferred relative to a point cloud

y registering whole images with dense textured models [24].

Anecdotal evidence and conversations with UK groups support-

ng visually-impaired people suggests that no single source of data or

ingle type of algorithm will be sufficient to meet the needs of users

ho are in an unfamiliar space, or who might suffer from visual im-

airment. It is likely that a combination of sensors and algorithms is

alled for.

.1. A biological perspective

Research into the mechanisms employed by humans during

edestrian navigation suggests that multisensory integration plays

key role [25]. Indeed, studies into human spatial memory using vir-

ual reality and functional neuroimaging [3,4] suggest that the human

rain uses a combination of representations to self-localize that might

e termed as allocentric and egocentric. The egocentric representation

upports identifying a location based on sensory patterns recognized

rom previous experiences in a given location. Allocentric represen-

ations use a reference frame that is independent of one’s location.

he respective coordinate systems can, of course, be interchanged
ia simple transformations, but the sensory and cognitive processes

nderlying navigation in both cases are thought to be different.

The two forms of representation are typified by different types of

ells, and, in some cases, different neuronal signal pathways. Within

ome mammals, such as mice, it appears that a multitude of further

ub-divisions of computational mechanisms lie behind location and

irection encoding. For example, in the hippocampus, there are at

east four classes [14] of encoding associated with position and head-

ng. Hippocampal place cells display elevated firing when the animal

s in a particular location [11]. The environmental cues that affect hip-

ocampal place cells include vision and odour, so the inputs to these

ells are not necessarily limited to any one type of sensory input.

Grid cells, on the other hand, show increased firing rates when

he animal is present at a number of locations on a spatial grid; this

uggests that some form of joint neuronal encoding is at work, and,

ndeed, there is some evidence that place cell responses arise through

combination of grid cells of different spacing [23]. Boundary cells

n the hippocampus appear to encode just that: the distance to the

oundaries of a spatial region. This encoding seems to be relative

o the direction the animal is facing but independent of the relation

etween the animal’s head and body; they are therefore, examples of

n allocentric scheme.

In conclusion, biology seems to employ not only several sensory

nputs to enable an organism to locate itself relative to the environ-

ent, but also different computational mechanisms. The evidence

f these multiple strategies for localization and navigation [14,26]

otivates the idea for an appearance-based localization algorithm.

. The dataset

A total of 60 videos were acquired from six corridors of the RSM

uilding at Imperial College London. Two different devices were used.

ne was a LG Google Nexus 4 mobile phone running Android 4.4.2

KitKat”. The video data were acquired at approximately 24–30 fps

t two different acquisition resolutions, corresponding to 1280 × 720

nd 1920 × 1080 pixels. The other device was a wearable Google Glass

2013 Explorer edition) acquiring data at a resolution of 1280 × 720,

nd a frame rate of around 30 fps. A surveyor’s wheel (Silverline)

ith a precision of 10 cm and error of ±5% was used to record dis-

ance, but was modified by connecting the encoder to the general

urpose input/output (GPIO) pins of a Raspberry Pi running a number

f measurement processes. The Pi was synchronized to network time

sing network time protocol (NTP), enabling synchronization with

imestamps in the video sequence. Because of the variable frame rate

f acquisition, timestamp data from the video were used to align
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Table 1

Detailed summary of the RSM dataset: L length of the corridors and Fr number of

video frames. The single frames are representative images from hand-held videos of

selected corridors of the RSM building at Imperial College London. The dataset includes

both hand-held and wearable camera examples, all containing ground-truth location

relative to distance traversed along labelled paths. The grand totals are: L = 3042 km

and #Fr = 90,302 frames.

L̄(m) 57.9 31.0 52.7 49.3 54.3 55.9∑
L 585.6 312.4 524.2 497.7 562.0 560.4

F̄r 2157 909 1427 1583 1782 1471∑
Fr 19,379 9309 14,638 15,189 16,823 14,964
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ground-truth measurements with frames. This data are used to as-

sess the accuracy of estimating positions, and not for any form of

training.

In total, 3.05 km of data are contained in this dataset, at a natural

indoor walking speed. For each corridor, 10 passes (i.e. 10 separate vi-

sual paths) are obtained; five of these are acquired with the hand-held

Nexus, and the other five with Glass. Table 1 summarizes the acqui-

sition. As can be seen, the length of the sequences varies within some

corridors; this is due to a combination of different walking speeds

and/or different frame rates. Lighting also varied, due to a combi-

nation of daylight/nighttime acquisitions, and occasional windows

acting as strong lighting sources in certain sections of the building.

Changes were also observable in some videos from one pass to another

due to the presence of changes (path obstructions being introduced

during a cleaning activity) and occasional appearances of people.

In total, more than 90,000 frames of video were labelled with po-

sitional ground-truth. The dataset is publicly available for download

at http://rsm.bicv.org [29].

5. Methods: Indexing

We evaluated the performance of different approaches to query

images taken from one visual path against others stored in the

database. In order to index and query visual path datasets, we used

the steps illustrated in Fig. 3. The details behind each of the steps (e.g.

gradient estimation, spatial pooling) are described in the remainder

of this section. They include techniques that operate on single frames

as well as descriptors that operate on multiple frames, at the frame

level and at the patch level. All the performance evaluation experi-

ments were carried out at low-resolution (208×117 pixels) versions

of the sequences, keeping bandwidth and processing requirements

small.
Visual Path
(Database)

Gradients Pooling

Visual Path
(Query)

p

Gradients Pooling

Desc
Sam

Desc
Sam

Fig. 3. This diagram illustrates the stages in processing the sequences in the database and

ground-truth for the experiments, which is described separately in Section 4. Variants of the g

in Section 5.
.1. Frame-level descriptor

Based on the use of optical flow in motion estimation [39] and

pace-time descriptors in action recognition [38] we estimated in-

lane motion vectors using a simple approach. We first applied

erivative filters along (x, y, t)dimensions, yielding a 2D+t, i.e. spatio-

emporal, gradient field. To capture variations in chromatic content

rom the visual sequence, we computed these spatio-temporal gra-

ients separately for each of the three RGB channels of the pre-

rocessed video sequences. This yielded a 3 × 3 matrix at each point

n space. Temporal smoothing was applied along the time dimension,

ith a support of 11 neighbouring frames. Finally, the components of

he matrix were each averaged (pooled) over 16 distinct spatial re-

ions, not very dissimilar to those to be described later in this paper.

or each visual path, this yielded 144 signals, of length approximately

qual to the video sequences. An illustration of the time series for one

isual path is shown in Fig. 4.

At each point in time, the values over the 144 signal channels

re also captured into a single space-time descriptor per frame:

W_COLOR. Our observations from the components of this descriptor

re that (a) relative ego-motion is clearly identifiable in the signals;

b) stable patterns of motion may also be identified, though changes

n the precise trajectory of a user could also lead to perturbations in

hese signals, and hence to changes in the descriptor vectors. Minor

hanges in trajectory might, therefore, reduce one’s ability to match

escriptors between users. These observations, together with the pos-

ibility of partial occlusion, led us to the use of patch based descriptors,

o that multiple descriptors would be produced for each frame. These

re introduced next.

.2. Patch-level descriptors

The patch descriptors can be further divided into two categories:

hose produced from patches of single frames, and those that are

ased on patches acquired over multiple frames; the latter are space-

ime patch descriptors. We explored two distinct single-frame de-

criptors, and three distinct space-time descriptors. We first describe

he single-frame descriptors.

.2.1. Spatial patch descriptors (single-frame)

The spatial patch descriptors consist of the Dense-SIFT descriptor

20,21,34] and a tuned, odd-symmetric Gabor-based descriptor. The

IFT descriptor was calculated by dense sampling of the smoothed

stimate of �∇f (x, y; σ) where f (x, y; σ) represents the scale-space

mbedding of image f (x, y) within a Gaussian scale-space at scale σ .
VQ Histograms

Distance 
metrics

Path relative
osition estimate

VQ Histograms

riptor
pling

riptor
pling

for the queries. This diagram does not show the process behind the estimation of

radient operators, pooling operators, quantization and distance metrics are described

http://rsm.bicv.org
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Fig. 4. Four (of 144) representative signals acquired from a visual path; these signals encode changes in red and green channels as a user moves through space. The collection

of signal traces at one point in time can be used to build a simple frame-level space-time descriptor: LW_COLOR. The signal amplitudes are spatially pooled temporal and spatial

gradient intensities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Orientation selective masks are applied to the video frames by spatial convolu-

tion. The outputs of the masks are collected over space using the pooling functions. The

outputs of the poolers are sub-sampled over the image plane to produce descriptors

for indexing. See the text for further details.
e used a standard implementation of dense SIFT from VLFEAT [34]

ith scale parameter, σ ≈ 1, and with a stride length of 3 pixels. This

ielded around 2000 descriptors per frame, each describing a patch

f roughly 10 × 10 pixels in the frame.

We compared these with another single-frame technique devised

n our lab: we used filters that we previously tuned on PASCAL VOC

ata [12] for image categorization. These consisted of 8-directional,

× 9 pixels spatial Gabor filters (k = 1, . . ., 8; σ = 2). Each filter gives

ise to a filtered image plane, denoted Gk,σ . For each plane, we applied

patial convolution (∗) with a series of pooling functions:

k,σ ∗ �m,n (1)

here �m,n is computed by spatial sampling of the pooling

unction:

(x, y; m, n) = exp

{
−α

[
loge

(
x2 + y2

d2
n

)]2

− β|θ − θm|
}

(2)

ith α = 4 and β = 0.4. The values of m = 0, . . ., 7 and n = 0, 1, 2

ere taken to construct 8 regions at angles θm = m π
4 for each of two

istances d1 = 0.45, d2 = 0.6 away from the center of a spatial pool-

ng region in the image plane. For the central region, corresponding

o m = 0, there was no angular variation, but a log-radial exponential

ecay. This yielded a total of 17 spatial pooling regions. The resulting

7 × 8 fields were sub-sampled to produce a dense 136-dimensional

escriptors, each representing an approximately 10 × 10 pixels im-

ge region. This resulted in, again, approximately 2000 descriptors

er image frame after the result of Eq. (1) is sub-sampled. This is

llustrated in Fig. 5.

.2.2. Space-time patch descriptors

Given the potential richness available in the capture of space-

ime information, we explored three distinct approaches to generate

pace-time patch descriptors. These approaches all lead to multiple

escriptors per frame, and all take into account neighbouring frames

n time when generating the descriptor associated with each patch.

dditionally, all three densely sample the video sequence. The three

ethods are (i) HOG 3D, introduced by Kläser et al. [18]; (ii) our

pace-time, antisymmetric Gabor filtering process (ST_GABOR); and

iii) our spatial derivative, temporal Gaussian (ST_GAUSS) filter.

(i) The HOG 3D descriptor (HOG3D) [18] was introduced to ex-

tend the very successful two-dimensional histogram of ori-

ented gradients technique [8] to space-time fields, in the form
of video sequences. HOG 3D seeks computational efficiencies

by smoothing using box filters, rather than Gaussian spatial

or space-time kernels. This allows three-dimensional gradient

estimation across multiple scales using the integral video rep-

resentation, a direct extension of the integral image idea [36].

The gradients from this operation are usually performed across

multiple scales. We used the dense HOG 3D option from the

implementation of the authors [18], and the settings yielded

approximately 2000 descriptors per frame of video.

(ii) Space-time Gabor (ST_GABOR) functions have been used in

activity recognition, structure from motion and other applica-

tions [2]. We performed one dimensional convolution between

the video sequence and three one-dimensional Gabor func-

tions along either one spatial dimension i.e. x or y, or along

t. The one-dimensional convolution is crude, but appropriate

if the videos have been downsampled. The spatial extent of

the Gabor was set to provide one complete cycle of oscilla-

tion over approximately 5 pixels of spatial span, both for the x

and y spatial dimensions. The filter for the temporal dimension

was set to provide temporal support and one oscillation over

approximately 9 frames. We also explored symmetric Gabor
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Table 2

A summary of the different encoding methods and their relationships to different

descriptors. The number of elements of each descriptor is also reported (Dim).

Method ST Dense Dim Encoding Metric

SIFT No Yes 128 HA-4000 χ2

VLAD-256 Hellinger

SF-GABOR No Yes 136 HA-4000 χ2

VLAD-256 Hellinger

LW-COLOR Yes No 144 N/A

ST_GABOR Yes Yes 221 HA-4000 χ2

VLAD-256 Hellinger

ST_GAUSS Yes Yes 136 HA-4000 χ2

VLAD-256 Hellinger

HOG3D Yes Yes 192 HA-4000 χ2

VLAD-256 Hellinger
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Fig. 6. Example of a χ2 kernel produced by hard assignment and using the SF_GABOR

descriptors when querying with pass 1 of corridor 2 against a database comprised of

passes 2–10.
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functions, but found them less favorable in early performance

tests.

After performing three separate filtering operations, each pixel

of each frame was assigned a triplet of values corresponding

to the result of the each filtering operation. The three values

were treated as being components of a 3D vector. Over a spatial

extent of around 16 × 16 pixels taken at the central frame of

the 9-frame support region, these vectors contribute weighted

votes into 13 histogram bins according to their azimuth and

elevations, with the weighting being given by the length of

the vector. The votes were also partitioned into 17 regions

according to the approximate spatial lobe pattern illustrated

in Fig. 5, yielding a 221-dimension descriptor.

(iii) A final variant of space-time patch descriptor was designed.

This consisted of spatial derivatives in space, combined with

smoothing over time (ST_GAUSS). In contrast to the strictly

one-dimensional filtering operation used for the space-time

Gabor descriptor, we used two 5 × 5 gradient masks for the x

and y directions based on derivatives of Gaussian functions, and

an 11-point Gaussian smoothing filter in the temporal direction

with a standard deviation of 2. Eight-directional quantization

was applied to the angles of the gradient field, and a weighted

gradient magnitude voting process was used to distribute votes

across the 8 bins of a 136-dimensional descriptor. Like the

ST_GABOR descriptor, pooling regions were created, similar to

those shown in Fig. 5.

5.3. Frame-level encoding

Our initial conjecture was that whole frames from a sequence

could be indexed compactly, using the single-frame descriptor

(LW_COLOR). This was found to lead to disappointing performance

(see Section 6). For the case of many descriptors-per-frame i.e. de-

scriptors that are patch-based, we have the problem of generating

around 2000 descriptors per frame, if dense sampling is used. Thus,

we applied vector quantization (VQ) to the descriptors, then used his-

tograms of VQ descriptors, effectively representing each frame as a

histogram of words [7]. The dictionary was always built by excluding

the entire journey from which queries are to be taken.

Two different approaches to the VQ of descriptors were taken, one

based on standard k-means, using a Euclidean distance measure (hard

assignment, “HA”), and one corresponding to the Vector of Locally Ag-

gregated Descriptors (VLAD) [16]. For VLAD, a k-means clustering was

first performed. For each descriptor, sums of residual vectors were

used to improve the encoding. Further advances to the basic VLAD,

which include different normalizations and multiscale approaches,

are given by [1]. To compare encodings, either χ2 or Hellinger dis-

tance metrics [35] were used to retrieve results for HA and VLAD

encoding approaches respectively. Distance comparisons were per-
ormed directly between either hard assigned Bag-of-Words (BoW)

r VLAD image encodings arising from collections of descriptors for

ach frame.

. Experiments and results: Performance evaluation

The methods for (a) describing spatial or space-time structure,

b) indexing and comparing the data are summarized in Table 2. The

hoice of parameters was selected to allow (a) as consistent a combi-

ation of methods as possible, allowing fair comparisons of the effect

f one type of encoding or spatio-temporal operator to be isolated

rom others (b) to select parameter choices close to other research in

he area, e.g. for image categorization, dictionary sizes of ≈256 and

4000 words are common.

.1. Error distributions

Error distributions allow us to quantify the accuracy of being able

o estimate locations along physical paths within the RSM dataset

escribed in Section 4. To generate the error distributions, we did the

ollowing:

We started by using the kernels calculated in Section 5.3. One ker-

el is shown in Fig. 6, where the rows represent each frame from

he query pass, and the columns represent each frame from one of

he remaining database passes of that corridor. The values of the

ernel along a row represent a “score” between a query and different

atabase frames. In this experiment, we associated the position of the

est match to the query frame, and calculated the error between this

nd the ground truth ε, in cm. In order to characterize the reliability

f such scores, we performed bootstrap estimates of error distribu-

ions using 1 million trials. The distribution of the errors gives us a

robability density estimate, from which we can get the cumulative

istribution function (CDF) P(x ≤ |ε|). The outcome is shown in Fig. 8,

here only the average across all the randomized samples is shown.

By permuting the paths that are held in the database and randomly

electing queries from the remaining path, we were able to assess the

rror distributions in localization. Repeated runs with random selec-

ions of groups of frames allowed the variability in these estimates

o be obtained, including that due to different numbers of paths and

asses being within the database.
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Fig. 7. Estimated location vs. ground truth. Illustrative examples of good/bad location

estimation performance (a) uses the best descriptor and a single-device dataset, (b)

uses the best descriptor and a cross-device dataset and (c) uses the worst descriptor,

and a multiple-device dataset.
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If we consider the idea of crowdsourcing journey information from

any pedestrian journeys through the same corridors, this approach

o evaluating the error makes sense: all previous journeys could be

ndexed and held in the database; new journey footage would be

ubmitted as a series of query frames (see Fig. 1).
.2. Localization error vs ground-truth route positions

As described in the previous section, by permuting the database

aths and selecting, randomly, queries from the remaining path that

as left out in the dictionary creation, we can assess the errors in

ocalization along each corridor for each pass, and calculate, also, the

verage error in localization on a per-corridor basis, or per-path ba-

is. For these, we used the ground-truth information acquired as de-

cribed in Section 4. Fig. 7 provides some examples of the nature of the

rrors, showing evidence of those locations that are often confused

ith each other. As can be seen, for the better method (top trace of

ig. 7) while average errors might be small, there are, occasionally,

arge errors due to poor matching (middle trace). Errors are signifi-

antly worse for queries between different devices (see Fig. 7(c)).

Note that we did not use any tracking algorithms, and so there is

o motion model or estimate of current location given the previous

ne. Incorporating a particle filter or Kalman filter should reduce the

rrors, particularly where there are large jumps within small intervals

f time. This deliberate choice allows us to evaluate the performance

f different descriptor and metric choices independently.

.3. Performance summaries

We calculated the average of the absolute positional error (in cm)

nd the standard deviation of the absolute positional error in a subset

f the complete RSM dataset (Table 3). We used a leave-one-journey-

ut approach (all the frames from an entire journey are excluded

rom the database). Using bootstrap sampling, we also estimated the

umulative density functions of the error distributions in position,

hich are plotted in Fig. 8. The variability in these curves is not shown,

ut is summarized in the last two columns of Table 3 through the area-

nder-curve (AUC) values. In the best case (SF_GABOR), AUCs of the

rder of 96% would mean errors generally below 2 m; in the worst

HOG3D), AUCs ≈ 90% would mean errors of around 5 m. These mean

bsolute error estimates are obtained as we permute the queries, the

ictionary and the paths in the database.

Finally, we applied one implementation of the SLAM to this

ataset, at the same frame resolution as for the appearance-based
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Table 3

Summaries of average absolute positional errors and standard deviation of positional

errors for different descriptor types and for different encoding methods (labelled by

the corresponding metric used: χ2 for HA and Hellinger for VLAD). με is the average

absolute error, and σε is the standard deviation of the error in cm. Single device case

and in bold: best and worst AUC.

Method Metric Error summary (cm) AUC (%)

με σε Min Max

SF_GABOR χ2 130.6 38.8 96.40 96.75

SF_GABOR Hellinger 135.1 46.5 96.29 96.71

ST_GAUSS χ2 135.4 44.1 93.61 94.30

ST_GAUSS Hellinger 144.1 52.4 92.69 93.47

ST_GABOR χ2 235.9 86.3 93.97 94.66

ST_GABOR Hellinger 179.5 62.3 93.98 94.60

SIFT χ2 137.5 46.3 94.57 95.14

SIFT Hellinger 132.7 41.4 94.34 94.95

HOG3D χ2 419.6 133.3 90.89 91.83

HOG3D Hellinger 366.5 120.3 91.49 92.37

LW_COLOR N/A 363.9 113.2 91.42 92.25
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localization discussed in this paper. We chose the “EKF Mono SLAM”

[5], which uses an extended Kalman filter (EKF) with 1-point RANSAC.

We chose this implementation for three reasons: (a) it is a monocular

SLAM technique, so comparison with the single-camera approach is

fairer; (b) the authors of this package report error estimates—in the

form of error distributions; and (c) the errors from video with similar

resolutions (240 × 320) to ours were reported as being below 2 m for

some sequences [5] in their dataset.

The results of the comparison were surprising, and somewhat un-

satisfactory. The challenging ambiguity of the sequences in the RSM

dataset, and possibly the low resolution of the queries, might explain

the results. The feature detector, a FAST corner detector [31], pro-

duced a small number of features in its original configuration. We

lowered the feature detection threshold until the system worked on a

small number of frames from each sequence. Even with more permis-

sive thresholds, the average number of FAST features averaged only

20 across our experiments. This small number of features led to in-

accuracy in the position estimates, causing many of the experimental

runs to stop when no features could be matched. The small number

of features per frame is also not comparable with the feature density

of the methods described in this paper, where an average of 2000

features per frame was obtained for the “dense” approaches. Dense

SLAM algorithms might fare better.

7. Discussion

The performance comparisons shown in the cumulative error dis-

tributions of Fig. 8 would seem a fairly natural means of capturing

localization performance. Yet, they do not suggest large differences

in terms of the AUC metric (Table 3), given the large diversity in

the complexity of the indexing methods. However, absolute posi-

tion estimation errors tell a different story: average absolute errors

are as high as 4 m for the worst performing method (HOG3D), and

just over 1.3 m for the best performing method (SF_GABOR), if the

same camera is used. The best performance compares very favor-

ably with reported errors in positioning from multi-point WiFi signal

strength measurements using landmark-based recognition that em-

ploys multiple (non-visual) sensing [33]. Indeed, it is very likely that

the size of the errors we have observed can be reduced by incorpo-

rating simple motion models and a tracker, in the form of a Kalman

filter.

A surprising result was that good levels of accuracy were obtained

for images as small as 208 × 117 pixels. This suggests that relatively

low-resolution cameras can be used to improve the performance of

indoor localization systems. Being able to use such low resolutions
f image reduces the indexing time, storage, power and bandwidth

equirements.

. Conclusion and future work

The advent of wearable and hand-held cameras makes

ppearance-based localization feasible. Interaction between users

nd their wearable device would allow for new applications such

s localization, navigation and semantic descriptions of the environ-

ent. Additionally, the ability to crowdsource “visual paths” against

hich users could match their current views is a realistic scenario

iven ever improving connectivity.

We evaluated several types of descriptor in this retrieval-based

ocalization scenario, achieving errors as small as 1.30 m over a 50 m

istance of travel. This is surprising, given that we used low-resolution

ersions of our images, and particularly since our RSM dataset also

ontains very ambiguous indoor scenes.

We are currently working on enlarging the RSM database, by in-

luding larger numbers of journeys. A future goal will be to mitigate

he effects of partial occlusion between different views of the same

hysical location. For example, face-detection might be applied to

dentify when and where people are within the scene acquired along

users’ journey; we would avoid generating descriptors that covered

hese regions of image space. Other movable objects (chairs, trolleys)

ould also be actively detected and removed from indexing or queries.

The challenges associated with searching across video from mul-

iple devices would still need to be solved. We can see from

ection 6 that between-device queries have much higher error than

ithin-device queries. This problem can be solved by either capturing

nd indexing data from a variety of devices for the same journeys, or

y learning a mapping between devices. Another obvious strand of

ork would be to incorporate information from other sources, such

s RSSI indicators, to reduce localization error.

Finally, we are exploring ways to combine the appearance-based

echnique described in this paper with SLAM and its variants. Doing

his would allow geometric models from independent point-cloud

ets to be associated with each other, allowing the continuous updat-

ng of the models that describe a physical space. Multiple geometric

odels, acquired from otherwise independent journeys, would sup-

ort more detailed and reliable descriptions of an indoor, navigable

pace. It would also allow better interaction between the users of a

uilding with its features, and with each other.

Our long-term goal is to convey the information acquired by

ighted users to help people with visual impairment; this would re-

uire creating and updating rich descriptions of the visual and geo-

etric structure of a physical space. This could be used in the making

f indoor navigational aides, which would be rendered through hap-

ic or audio interfaces, making the planning of journeys easier for the

isually impaired.
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