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A SPH numerical wave basin for modeling wave-structure 

interactions  

Hongjie Wen1, Bing Ren2, Ping Dong3, Yongxue Wang4 

Abstract: Based on a parallel SPH-LES model, a three dimensional numerical wave basin is 

developed to study wave interaction with coastal structures. The OpenMP programming 

technology combined with an existing MPI program contained in the parallel version of 

SPHYSICS code has been implemented to enable the simulation of hundred millions of particles 

running on a computer cluster. As part of the numerical basin development work an active 

absorbing wave maker and a sponge layer are introduced. The dynamic boundary conditions are 

also corrected to reduce the spurious effects. Wave generation and propagation in the numerical 

wave basin is first tested and confirmed with analytical results. Then, the model is applied to 

simulate wave interactions with a vertical breakwater and a vertical cylinder in order to further 

assess the capability of the numerical wave basin. The predicted free surface elevation near the 

vertical breakwater is compared with the experimental data while the horizontal forces and 

overturning moments acting on the vertical cylinder are verified with the analytical results. In all 

these cases the model results show excellent agreement with the validation data.  

Keywords: SPH-LES; Numerical wave basin; Wave-structure interaction; Domain decomposition; 

data decomposition  

1. Introduction

The hydraulic processes affecting wave interactions with coastal structures are essentially 

three-dimensional (e.g. wave reflection, wave transformation, overtopping and wave breaking). 

These processes are usually studied using a two-dimensional (2D) approach, while the flow 

characteristics and the consequent functional response of the structure are assessed by considering 

the three-dimensional effects [1]. In fact, some of the wave-induced processes such as wave 

diffraction around vertical cylinders and wave radiation at the breakwater head are essentially 

three dimensional and can only be properly described based on a 3D model. Therefore it is 

extremely important to develop an effective 3D numerical wave basin for modeling wave 

interaction with coastal structures.   

In the past decades, various types of numerical wave basin have been developed using different 

numerical methods. Most of these methods are based on the use of mesh, such as the boundary 

element method [2, 3], the finite difference method [4, 5] and the finite volume method [6, 7].  

Despite the great success, these grid based numerical methods suffer from various difficulties in 

dealing with problems with moving interface and with extremely large deformation. In addition, 
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for problems with complicated geometry, the generation of a quality grid is also a difficult and 

time-consuming process. To avoid these shortcomings of grid-based methods, considerable effort 

has been made in developing meshless methods in recent decades.    

Being a meshfree Lagrangian method, the SPH model does not require the explicit surface 

capturing scheme in treating strong nonlinear flows with large free surface deformation and 

enables the easy modeling of coastal structures with complex geometrical boundaries. Since 

Monaghan [8] pioneered the first simulation of a simple dam break problem using SPH, it has 

been successfully applied to fluid mechanics problems such as wave overtopping [9, 10] and wave 

slamming [11, 12]. Later it has been extended to solve fluid-structure interaction problems 

including wave interactions with caisson breakwaters [13, 14], with floating bodies [15-18] and 

with porous structures [19-22] as well as wave interactions with mound breakwater protected by 

armour blocks being discretized using SPH particles [23, 24]. Nevertheless, the studies mentioned 

above have all focused on two dimensional applications of SPH and few researches are 

confronting 3D problems due to the high computational cost of 3D SPH models except some 

applications concerned with dam break [25-27] and wave breaking [23, 28, 29]. 

Constructing a numerical wave basin usually requests a large fluid domain to avoid wave 

reflections from the boundaries, which means that a 3D SPH simulation would typically contains 

millions of particles. Therefore, a serial program is unfeasible in terms of both the memory and the 

simulation runtime. The parallelization of SPH code is essential for the simulation of 3D problem. 

Several open source codes that are specially designed for running on parallel machines have been 

reported, such as parallel SPHysics based on Message Passing Interface (MPI) [30] and 

DualSPHysics running on Graphics Processing Units (GPUs) [31, 32]. The DualSPHysics code is 

proven to be robust and efficient. The computing power is accelerated up to two orders of 

magnitude comparing with the serial version [32]. However, for large simulations that require 

several million particles it is essential to include an MPI implementation enabling the execution of 

Multi-GPUs.  

The MPI is a widely accepted standard for writing message passing programs and can be 

employed within and across several nodes. MPI provides the user with a programming model 

where processes communicate with other processes by calling library routines to send and receive 

messages. This means the MPI program can run on a computer cluster and does not rely on a 

single CPU performance. However, for the MPI program the larger ratio between communication 

and calculation costs could be a serious drawback when the number of processors becomes large 

for a given problem. OpenMP is an application program interface that can be used to explicitly 

direct multi-threaded and shared memory parallelism within a node. Although the GPUs are more 

powerful than many CPU cores, OpenMP programming is much more convenient to implement 

with the MPI FORTRAN programming due to the ease of programming with OpenMP and the use 

of programming language of FORTRAN,. A hybrid MPI-OpenMP programming technology is 

likely to have a better parallel performance for computer clusters where MPI is used for 

parallelism across nodes based on spatial domain decomposition and OpenMP is used for 

parallelism within a node based on data decomposition.  

In the present work, a viscous 3D numerical wave basin based on the SPH-LES (Large Eddy 

Simulation) model is established for simulating wave interaction with coastal structures. The 

corrective smoothed particle method (CSPM) is introduced to satisfy the normalization and 

symmetry conditions for boundary particles and/or irregularly distributed particles[33]. A 

modified dynamic boundary condition method is adopted to simulate the solid boundaries using 

two-layer particles in a staggered manner. In addition, The OpenMP programming technology 
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together with existing MPI program is developed and the computational efficiency is examined at 

the supercomputing center of the Chinese Academy of Sciences. The numerical wave basin is 

evaluated by simulating wave interaction with a vertical breakwater and with a vertical cylinder, 

respectively. The numerical results in terms of the free surface elevation near the vertical 

breakwater, the horizontal wave forces and overturning moments acting on the vertical cylinder 

are verified with the corresponding validation data. The characteristics of velocity and pressure 

field around the cylinder are also discussed. 

The paper is organized as follows. After the introduction section, the 3D SPH scheme is presented, 

including the governing equations and the boundary conditions. In Section 3, the parallel 

programming is briefly described and the parallel efficiency is also tested. Section 4 describes the 

validation of the numerical wave basin. Sections 5 and 6 give the results of wave interaction with 

a vertical breakwater and a vertical cylinder, respectively. In the final section, the main 

conclusions are drawn. 

2. Numerical model 

2.1 SPH approximation techniques 

In SPH, the state of a system is represented by a set of particles, which interact with each other 

within the range controlled by a smoothing function. Each particle carries a mass, a velocity and 

other properties depending on the problem, and moves according to the governing equations. Any 

given field function and its spatial derivative, A  and A , can be evaluated in the following 

discrete form through the kernel approximation and particle approximation [34]. 
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where N is the total number of particles within the support domain of particle i. 
jV is the volume 

associated with neighboring particle j. 

In Eqs. (1)-(2), 
ijW  and 

i ijW  are the kernel function and its derivatives, respectively. However, 

if the original kernel function is applied directly to the approximation process, it will be unable to 

satisfy the normalization and symmetry conditions for boundary particles and/or irregularly 

distributed particles. To overcome this problem, the Corrective Smoothed Particle Method (CSPM) 

proposed by Chen et al.[33] based on the Taylor series expansion is implemented in the present 

model. In the CSPM method, the modified kernel function and its derivatives (i.e. ijW  and 

i ijW  ) can be written as 
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where   is the tensor product and 
kr is the position corresponding to particle k. 

The performance of SPH model depends largely on the characteristic of the kernel function. The 
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quintic kernel introduced by Wendland [35] provides a higher-order interpolation at a moderate 

computational cost and therefore, it is chosen as the kernel function in the present model. 

 4

3
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where q=r/h, h is the smoothing length and r is the distance between particles i and j. 

2.2 Governing equations 

In this model, the fluid is assumed to be weakly compressible and the Large Eddy Simulation 

(LES) governing equations can be written as 

 
d

dt
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where u is the velocity vector, g is the gravitational acceleration. 
0  is the laminar kinetic 

viscosity (10-6 m2/s),   is sub-particle scale (SPS) turbulence stress which is equivalent of the 

sub-grid scale (SGS) in an Eulerian grid method. The concept of SPS is first put forward by Gotoh 

et al. [36] and incorporated into their Moving Particle Semi-implicit Method (MPS).  

In order to close the equation, the eddy viscosity assumption is used to model the sub-particle 

scale turbulence stress as 
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where 
t  is turbulence eddy viscosity; 

cdS  is the element of SPS strain tensor,
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, c and d refer to spatial coordinates; k is the SPS turbulence kinetic energy, 

cd  is the Kronecker sign function. 

A modified Smagorinsky model formulated by Bradbrook et al. [37] is used to calculate the 

turbulence eddy viscosity and it is written as follows 

  
2

min( , )t s vC dx l S   (9) 

where 
sC  is the Smagorinsky constant and is equal to 0.1 and κ is the von Karman constant 

(κ=0.4). 
vl  is the distance from the particle to the closest boundary. dx is the particle spacing and

 
1/2(2 )cd cdS S S . In Eq.(9), the first term in the bracket on the right-hand side of the equation 

governs flows far away from the solid boundary. The second term dominates for flows in the 

vicinity of the boundary and is used to overcome the drawback of the standard Smagorinsky 

model which were found to be over-dissipative near the boundary [38]. 

In the WCSPH method, the fluid is assumed to be weakly compressible and the pressure is 

calculated by the following equation of state [8]: 
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where
 
  is a constant and for water  = 7 is suggested,

 
3

0 =1000kg / m is the reference density. 

The parameter B can be taken as 2

0 0 /B c    where 0c  is the speed of sound at the reference 

density and its value must be at least ten times greater than the maximum fluid velocity to keep 

density variations within less than 1% [8]. 
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By writing Eqs. (6)-(7) in SPH form, the governing equations for particle i become 
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where uij =ui-uj, 0.1h  . 

2.3 Boundary conditions 

2.3.1 Solid boundary condition 

Particles near boundaries have a support domain truncated due to the absence of neighboring 

particles and therefore the conditions of consistency and normalization fail. Several solid 

boundary conditions can be found in the literature, such as ghost boundary condition [39], 

repulsive boundary condition [8, 40] and dynamic boundary condition (DBC) [41]. In ghost 

boundary condition, fluid particles within a distance from the solid boundary are mirrored across 

the boundary following their local normal and the characteristics of mirrored particles (such as 

velocity and pressure) are determined using the fluid particle ones. This method is robust except 

that special attention needs to be paid to boundaries with singular geometries such as sharp angles, 

where a systematic mirroring of fluid particles would result in some excess of ghost mass [42]. In 

repulsive boundary condition, the solid boundary particles exert control through local normal 

forces on the fluid particles to ensure that the fluid particles can never cross the solid boundaries. 

However, this method cannot ensure the conservation of momentum.  

In the DBC, the solid boundaries are treated by two layers of boundary particles. The boundary 

particles follow the same equations of continuity and state as the fluid particles, but not the 

momentum equations. This method is easy for specifying irregular boundaries and needs not 

additional programming, while a fluctuating pressure field would be produced near the solid 

boundaries because of the anomalously high density gradients between the fluid and boundary 

particles [9]. 

In this paper, the modified DBC method proposed is adopted. The pressure of solid boundary 

particle pk is corrected by the following equation: 

 , (1 )k k f kp p p       (13) 
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 kjj j jp p    g r   (15) 

where j represents the fluid particle in the support of boundary particle k; ,k fp is the pressure of 

boundary particle k calculated by interpolation of the fluid particles in its support domain; 
kp  is 

the boundary pressure calculated according to the equation of state. β=0.7 is adopted in the present 

simulations based on extensive calibration tests. A detail discussion of the value of β can be found 

in Ren et al. [20].  
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2.3.2 Wave maker boundary condition 

The wave maker boundary is simulated by a numerical plate-type wave maker that induces the 

motion of water to generate the required waves as well as actively absorb the energy of the 

reflected waves approaching the wave make that may be generated from the interior of the 

numerical wave basin. As shown in Fig.1, the wave maker is composed of multiple push-plates. 

Each push-plate is 5 times of initial particle space both in x-direction and in y-direction. The 

treatment of wave maker particles is the same as that of fixed boundary particles except that their 

positions get updated according to an external wave maker function. The numerical absorbing 

wave maker is developed based on the linear wave-maker theory [43]. The horizontal velocity of 

the wave maker can be expressed as 

    02i iU t
W


    (16) 

where   are the frequency of the wave maker, 
0  is the target wave surface and 

i is the 

instantaneous wave surface at the push-plate i. W is the transfer function and can be written as 

24sinh

2 sinh 2

kd
W

kd kd



，where k is the wave number and d is the water depth. 

2.3.3 Downstream boundary condition 

The downstream boundary condition is designed to remove the unwanted waves during wave 

simulating and implemented through introducing an artificial viscosity sponge layer or damping 

zone at the far end of the basin. An additional artificial viscosity term is added to the momentum 

equation for the damping zone and the momentum equation becomes  

 21 1
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where ij  is the added viscosity term and can be discretized to the following form  
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where xi, x0, and Ls are the abscissa of particle i, the abscissa of the initial position of the sponge 

layer, and the length of sponge layer, respectively. Moreover, ( ) / 2ij i jc c c  , ( ) / 2ij i j    . 

α is a free parameter that needs to be carefully adjusted to achieve the desired wave damping 

effects. If the value of α is too small, the wave energy would not be absorbed completely and a 

reflecting wave would form from the far end of the sponger layer. If the value of α is too large, the 

damping zone would act in a similar way as the wall boundary and the wave would reflect from 

the upstream edge of the sponge layer. Following Ren et al.[20], α =0.6 is used as it gives the best 

wave damping results.   

2.3.4 Periodic open boundary condition  

There are two methods for simulating the lateral boundaries of the numerical wave basin. One is 

taking the lateral boundary as the solid boundary and using the DBC to calculate the pressure of 

solid boundary particles, and the other is using the periodic open boundary. In this work, periodic 

open boundary is implemented at the lateral boundaries of the wave basin. As can be seen in Fig.2, 

using the period open boundary, the support domain of fluid particle a lying near the lateral 
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boundary will extend beyond the lateral boundary. The missing support domain for particle a is 

continued through to the other lateral boundary. This means the fluid particles near a lateral 

boundary interact with the fluid particles near the complementary lateral boundary on the other 

side of the domain[44]. 

3. Parallel algorithm 

The WCSPH model is solved explicitly so it lends itself for parallel programming. However, due 

to the Lagrangian nature of SPH method, the positions of SPH particles can change constantly. 

During the computation some particles may leave the resident processor and enter the neighbor 

processor. Compared with the parallelization strategy of mesh-based methods for which a fixed 

grid is employed, the parallelization of SPH model has the difficulty in accomplishing the 

necessary transfer of information between adjacent processors. 

The parallelization strategy used in this paper combines spatial domain decomposition and data 

decomposition[29]. The spatial domain decomposition is performed on different processors 

through MPI programming. The data decomposition is implemented on each processor with 

shared memory architectures using OpenMP directives. Fig.3 gives the hierarchical structure of 

hybrid MPI-OpenMP programming. 

Based on the characteristics of the numerical wave basin, the fluid domain is divided into parallel 

sub-domains along the direction of wave propagation (see Fig.3). In this way there is just one 

direction of communication between adjacent processors and the parallelization algorithm is 

greatly simplified. For more details about MPI parallel design the readers can refer to User guide 

for parallelSPHYSICS v2.0 [30]. 

Fig.4 displays the parallel efficiency (Ef) obtained by increasing the number of MPI processors for 

different problem sizes. The problem size is represented by the number of particles (n). The 

parallel efficiency is defined as 1

* N

T

N T
, where 

1T  is the time taken for serial code and 
NT  is 

the time taken using N  cores. The cases tested in this section are for the problem of wave 

propagation in the rectangular basins with different length. The simulations shown in this section 

have been performed at the supercomputing center of the Chinese Academy of Sciences. Each 

blade node contains two ten-core Intel Xeon E5-2680 V2 processors with a clock speed of 2.8 

GHz and 64.0 GB RAM.  

It can be seen from Fig.4 a smaller problem size corresponds to a lower parallel efficiency for the 

same number of MPI processors and a large number of MPI processors also correspond to lower 

parallel efficiency for the same problem size. It can be concluded that the parallel efficiency 

declines with the smaller sub-domain because under this condition the ratio between 

communication cost and calculation cost is larger. Therefore for a given case, it will lead to the 

waste of computing resource by purely increasing the number of MPI processors. It is worth 

mentioning that the parallel efficiency is greater than 100% for the case of n=4.0×106 when the 

number of cores is 20 or 40, which indicates the super-linear speedup. One possible reason for the 

super-linear speedup is the cache effect resulting from the different memory hierarchies of a 

modern computer: in parallel computing, not only do the numbers of processors change, but so 

does the size of accumulated caches from different processors. With the larger accumulated cache 

size, more or even all of the working set can fit into the caches and the memory access time can 

reduce dramatically, which results in the extra speedup in addition to that from the actual 
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computation[45]. 

OpenMP is a parallel programming language for multi-thread with shared memory architectures 

and has an advantage in treating interaction loops that represents the largest part of the 

computational costs in SPH scheme. In this paper, the data decomposition of particle interaction 

loops through OpenMP directives is implemented on each MPI processors. 

The comparisons of parallel efficiency for the varying combination between MPI processors and 

OpenMP threads using 80 cores are shown in Fig.5. NMPI  and NOpenMP  represent the number of 

MPI processors and OpenMP threads used in the test, respectively. NOpenMP =1 means the pure 

MPI programming is enabled. From Fig.5 it can be seen that the hybrid OpenMP-MPI 

implementation can get better parallel efficiency than the pure MPI programming model and there 

is a positive correlation between the parallel efficiency and the number of OpenMP threads within 

a processor.  

4. Validation of the numerical wave basin 

This section is to verify the developed numerical wave basin. The length of the numerical wave 

basin is 12.0 m and the width is 2.0 m. The initial still water depth is 0.5 m. The wave maker is 

located at x=0.2 m and an artificial viscosity sponge layer of 3.0 m long is placed on the right end 

of the basin as shown in Fig.1. The incident wave height and wave period are H=0.12 m and T=1.2 

s. A uniform particle spacing dx=2 cm and a constant smoothing length h=1.5dx are used. The 

fluid domains are modeled using nearly 1.5 million particles. The simulated time is 17 s and the 

computation time on 64 CPUs is about 2 days.  

Fig.6 exhibits a 3D snapshot of the numerical wave basin at t = 8 s. Fig.7 shows the time-history 

profiles of wave surface collected at a series of measuring points. The coordinates of the 

measuring points are displayed in Table.1. Fig.7(a)-(c) can be seen that the waves rapidly reach a 

steady state and the wave surface profiles maintain a uniform shape in both the x and y directions. 

Moreover, the wave surface profiles exhibit the typical non-linear features, such as higher and 

narrower crests as well as smaller and flatter troughs. The analytical wave surface profiles of 2nd 

order Stokes waves are also displayed for comparison. As can be seen in Fig.7, the computed 

results have a good agreement with the analytical results. The computed wave heights at x=11.5 m 

are very small with most of the wave energy being damped out by the artificial viscosity sponge 

layer. 

Besides the wave heights, the wave pressures and wave velocity are also calculated to verify the 

numerical wave basin. Fig.8 and Fig.9 show the computed wave pressure and wave velocity 

profiles compared with the analytical results at different measuring points. Table.1 displays the 

coordinates for the measuring points of pressures and it is noted the measuring points displayed in 

Fig.8 (c) are located at the free surface. The comparison clearly shows that the computed wave 

pressure and wave velocity profiles agree well with the analytical results.  

5. Wave interaction with vertical breakwater 

In the present section, the 3D SPH model is verified by considering a vertical breakwater test in a 

wave basin. The numerical setup follows Lara et al.'s [46] experiment as showed in Fig.10. The 

wave basin is 14.0 m long and 0.585 m wide with the water depth of 0.25 m. The wave maker is 

located at x=0.3 m and an artificial viscosity sponge layer of 3.0 m long is placed towards the end 

of the basin. An impervious vertical breakwater was placed in the basin. The breakwater is 0.24 m 

javascript:void(0);
javascript:void(0);
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in the x-direction and 0.3 m in the y-direction. The seaward face of the breakwater is located 8.3 m 

away from the left boundary of the basin. Following the experimental setup, the modified dynamic 

boundary rather than the periodic open boundary condition is implemented at the front and back 

boundaries of the basin in this case. 

The regular wave used in the test has a wave height 6 cm and wave period 2 s. An initial particle 

spacing of dx =1 cm is used and the fluid domains are modeled using nearly 2.1 million particles. 

The simulated time is 15 s and the computation time on 64 CPUs is nearly 4 days. 

Totally ten measuring points are set near the breakwater in order to capture the three dimensional 

effects of the waves around the breakwater better. The locations of the measuring points are shown 

in Fig.11. The comparison of free surface elevation between the experimental data and SPH results 

at different measuring points are given in Fig.12. As can be observed in Fig.12, except a slight 

overestimation of wave crest in WG.3, the SPH results compare with the experimental data well. 

Wave reflection and diffraction caused by the breakwater, can be seen from the free surface 

profiles of WG.4 and WG.7, respectively. A local increase of wave height is observed clearly in 

WG.4, which is caused by the reflection of the incident wave on the seaward side of the 

breakwater. The wave diffraction around the breakwater head is also well captured, which can be 

seen from the surface profile of WG.7. 

6. Wave interaction with a vertical cylinder 

6.1 Computational setup 

As a further demonstration of the capability of the wave numerical basin, the interactions between 

waves and a vertical cylinder are also presented here. The numerical setup is shown as Fig.13. The 

numerical wave basin is 12.0 m long and 5.0 m wide. The wave maker is located at x=0.3 m and 

an artificial viscosity sponge layer of 3.0 m long is placed on the right end of the basin. The radius 

of the vertical cylinder is a=0.23 m. The center of the cylinder is 6.6 m away from the left 

boundary and in the middle of the y-direction. 

Two different incident wave conditions are tested with the wave height being H=6 cm for case A 

and H=10 cm for case B. The wave period is 1.2 s and the water depth is 0.5 m for both cases. The 

parameter 2 / 0.225a L  > 0.2 means the wave diffraction is important, where L is the wave 

length. An initial particle spacing of dx =2 cm is used for both cases and the fluid domains are 

modeled using nearly 4 million particles. The simulated time is 20 s and the computation time on 

64 CPUs is nearly 5 days. 

6.2 Model verification with case A 

For case A, the parameter 
2 ( )

Hk

th kd
 is equal to 0.1, where k is the wave number. The influence of 

nonlinearity effect is weak and therefore the linear diffraction theory of MacCamy and Fuchs [47] 

can be used to verify the SPH results for case A.  

The comparisons of the total forces and overturning moments acting on the vertical cylinder are 

shown in Fig.14. The total wave forces and overturning moments are normalized by 2 / 2gHa  

and 2 / 2gHda , respectively. It is noted that the total wave force on the structure is calculated by 

means of integrating the pressure around the cylinder. The shear force, which is normally two 

orders of magnitude smaller than the pressure force, is neglected. It can be seen that the SPH 

results agree well with the analytical solutions except some small oscillations at wave troughs, 
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which are likely caused by the slight pressure oscillations of fluid particles around the vertical 

cylinder. 

6.3 Model application with case B 

For case B, the parameter 
2 ( )

Hk

th kd
 is equal to 0.17. Fig.15 gives the comparisons of the total 

forces and overturning moments acting on the cylinder between the computed results and 

analytical solution. As can be seen in Fig.15, the maximum values of the computed wave forces 

and overturning moments exceed the linear analytical results of MacCamy and Fuchs [47] by 12% 

and 15% on average, respectively. The influence of nonlinear effect can not be ignored and the 

linear diffraction theory cannot be used in this case.  

Fig.16 depicts the time history of wave run-up on the seaward and leeward sides of the cylinder. 

The time history of the incident wave at the corresponding measured points (when there is no 

cylinder) is also displayed. From Fig.16 it can be observed that the time history of wave run-up is 

no longer a sinusoidal curve and the nonlinear effects are significant. The wave crest on the 

seaward side reaches the front location of the cylinder earlier but appears later at the location on 

its leeward side compared with the corresponding results when no cylinder is present. This means 

there is a time delay in wave propagation due to the presence of the cylinder and this phenomenon 

can also be observed from the free surface displacement plots at the centerline of the 

computational basin in the y-direction in Fig.17. To illustrate more clearly the deformed free 

surface associated with wave diffraction, the perspective and contour plots of computed 

free-surface displacement around the cylinder are displayed in Fig.18, from which it can be seen 

that the wave crest line is deformed markedly when passing through the cylinder. 

Fig.19 presents the velocity distributions around the cylinder during one wave period at the 

centerline of the computational basin in the y-direction. In order to show the velocity field more 

clearly, the velocity field is plotted by mapping the individual particle velocities onto a fixed grid 

of 0.04 m× 0.02 m using the interpolations of the standard 3D spline SPH kernel. On the seaward 

side of the cylinder, the incident wave interacts with the radiated wave generated at the surface of 

the cylinder, which makes the horizontal velocities of fluid particles decrease and the vertical 

velocities increase. These fluid particles rise up to form an upward jet and then fall back under the 

action of gravity. On the landward side, the velocities of fluid particles are smaller than that on the 

seaward side due to the shielding effect of the cylinder. 

The hydrodynamic characteristics are changed due to the presence of the cylinder. The knowledge 

of the velocity distributions near the seabed is helpful to understand the scouring and deposition 

patterns around the cylinder. Fig.20 shows the velocity and normalized turbulence eddy viscosity 

distributions around the cylinder at the cross section of z=0.05 m. As it can be seen in Fig.20, a 

fully 3D flow pattern is clearly identifiable around the cylinder. The flow velocities on the 

seaward and landward sides of the cylinder are smaller than that in the flank due to the blocking 

effect of the cylinder on the seaward side and the shielding effect on the landward side. The water 

particles near the seabed make a periodic reciprocating motion in the flank of the cylinder. The 

maximum velocity of water particles is 0.165 m/s in the flank but 0.12 m/s when no structure is 

present. In addition, it can be seen from Fig.20 that the normalized turbulence eddy viscosity in 

the flank of cylinder is greater than that on either seaward or landward side. Therefore, scouring is 

more likely to occur in the flank of the cylinder. 
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7. Conclusions 

The paper presents a 3D WCSPH model to simulate wave interaction with coastal structure. The 

OpenMP programming technology together with an existing MPI program has been utilized to 

parallelize the WCSPH code. Based on this parallel WCSPH code, a numerical basin is developed 

and a series of validation tests are carried out to evaluate its performance. 

The hybrid MPI-OpenMP implementation is shown to have much better parallel efficiency than 

the pure MPI programming model. The computational results also demonstrate a positive 

correlation between the parallel efficiency and the number of OpenMP threads within a processor.   

The new SPH code has enable the development of a powerful numerical wave basin which allows 

a much larger wave field to be simulated than ever achieved before using SPH models. The active 

absorbing wave maker and the sponger layer introduced in the numerical wave basin are shown to 

perform well in ensuring that the waves in the numerical basin are free from the artificial 

re-reflected waves either from the wave maker or the downstream boundary.  

In all validation tests performed excellent agreement between the numerical results and the 

analytical solutions or experimental data are achieved, which demonstrates that the present SPH 

model can be used as an effective tool to study the interactions of regular waves with impermeable 

marine/coastal structures. Work is currently under way to extend the model to deal with irregular 

waves and the permeable structures. 
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Figure captions 
 

Fig.1 Schematic plot of numerical wave basin 

Fig.2 Set of periodic lateral boundary 

Fig.3 Hierarchical structure of hybrid MPI-OpenMP programming. 

Fig.4 Comparison of parallel efficiency for different problem sizes, each MPI processor is made 

up of 20 OpenMP threads, n and N are the number of particles and cores 

Fig.5 Comparisons of parallel efficiency for the varying combination between MPI processors and 

OpenMP threads using 80 cores, n is the number of particles 

Fig.6 Schematic view of the 3D SPH numerical wave basin for regular wave (T=1.2 s, H=0.12 m, 

d=0.5 m) 

Fig.7 Comparisons of the computed and analytical water surface profiles at different measuring 

points (T=1.2 s, H=0.12 m, d=0.5 m) 

Fig.8 Comparisons of the computed and analytical wave pressure profiles at different measuring 

points (T=1.2 s, H=0.12 m, x=6 m) 

Fig.9 Comparisons of computed and theoretical wave velocity profiles at different measuring 

stations (T=1.2s, H=0.12m, x=6m) 

Fig.10 Schematic plot of the numerical setup for wave interaction with vertical breakwater (Unit: 

m) 

Fig.11 The distances between the measuring points for wave surface and the vertical breakwater 

(Unit: m) 

Fig.12 Comparison of free surface elevation between the experimental data and SPH numerical 

results at different wave gauges (H=6 cm, T=2 s, d=25 cm) 

Fig.13 Schematic plot of the numerical setup for wave interaction with vertical cylinder 

Fig.14 Comparisons of the total forces and overturning moments acting on the vertical cylinder for 

case A (H=6 cm, T=1.2 s, d=0.5 m) 

Fig.15 Comparisons of the total forces and overturning moments acting on the vertical cylinder for 
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case B (H=10 cm, T=1.2 s, d=0.5 m) 

Fig.16 Wave run-up on the cylinder at the centerline of the computational basin in the y-direction: 

(a) upstream side and (b) downstream side 

Fig.17 The free surface displacement and pressure distributions around the cylinder at the 

centerline of the computational basin in the y-direction (H=10 cm, T=1.2 s, d=0.5 m) 

Fig.18 Perspective and contour plots of computed free-surface elevation (H=10 cm, T=1.2 s, d=0.5 

m) 

Fig.19 Velocity distributions around the cylinder during one wave period at the centerline of the 

computational basin in the y-direction (H=10 cm, T=1.2 s, d=0.5 m) 

Fig.20 Velocity and normalized turbulence eddy viscosity distributions around the cylinder during 

one wave period at the cross section of z=0.05 m (H=10 cm, T=1.2 s, d=0.5 m)  

 

 

 

Table caption 

 

Table.1 The coordinates for measuring points of wave surface and pressure. 
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