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Membrane potentials regulating GPCRs: insights from
experiments and molecular dynamics simulations
Owen N Vickery1,2, Jan-Philipp Machtens3 and
Ulrich Zachariae1,2

G-protein coupled receptors (GPCRs) form the largest class of

membrane proteins in humans and the targets of most present

drugs. Membrane potential is one of the defining

characteristics of living cells. Recent work has shown that the

membrane voltage, and changes thereof, modulates signal

transduction and ligand binding in GPCRs. As it may allow

differential signalling patterns depending on tissue, cell type,

and the excitation status of excitable cells, GPCR voltage

sensitivity could have important implications for their

pharmacology. This review summarises recent experimental

insights on GPCR voltage regulation and the role of molecular

dynamics simulations in identifying the structural basis of

GPCR voltage-sensing. We discuss the potential significance

for drug design on GPCR targets from excitable and non-

excitable cells.
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Introduction
Membrane proteins form important interfaces mediating

the exchange of matter and information between the cell

and the external world. They are encoded by about 26%

of the human genome [1] and represent a majority both of

present as well as potential future drug targets [2]. G-

protein coupled receptors (GPCRs) constitute the largest

superfamily of membrane proteins in humans with more

than 800 members [3]. They transmit binding informa-

tion of a broad spectrum of extracellular ligands into a

range of signalling pathways in the cell [4]. As a conse-

quence, they play a paramount role in therapeutic inter-

vention and are targeted by �30% of all presently

marketed drugs [5]. Structurally, GPCRs form a bundle

of seven transmembrane (TM) helices, which shape a

ligand binding site on the extracellular face and an

effector binding site on the intracellular side. Within

the transmembrane domain, a conserved pocket, which

is lined by polar residues and filled with water molecules

[6] and a Na+ ion [7,8��,9��] extends from the ligand

binding site towards the effector binding site and almost

completely bridges these regions (Figure 1a).

Although the complete mechanism of signal transduction

linking ligand binding to activation of the intracellular

effector proteins is not yet fully understood, essential

elements of this mechanism have been established.

There is, for example, ample evidence for conformational

changes in the TM domain of the receptors induced by

extracellular ligand binding [12]. The changes propagate

towards the intracellular side and facilitate the binding of

effector proteins, which include a variety of G-proteins

and b-arrestins [13]. In the G-protein-dependent signal

transduction pathways, ligand binding on the extracellu-

lar side leads to the exchange of the nucleotide GDP by

GTP in the bound effector G-protein complex. Nucleo-

tide exchange triggers complex dissociation, and the

activated G-protein components then transmit the signal

to targets residing on the intracellular side [13].

All plasma membranes exhibit a transmembrane potential

difference or voltage (Vm), generated by electrochemical

ion gradients across the bilayer [14]. Like all membrane

proteins, GPCRs are therefore located in an environment

in which strong electric fields of up to 107–108 V/m exist, as

the physiologically relevant voltage gradients drop across

the thin hydrophobic core of the membrane, which does

not exceed dimensions of �3 nm along the membrane

normal [15]. Electrically non-excitable cells maintain a

resting voltage, which is negative on the intracellular side

and undergoes slow oscillations during the cell cycle

[14]. In electrically excitable cells — for example, neurons

and muscle cells — the coordinated function of voltage-

gated ion channels generates action potentials, in which

the negative resting voltage displays rapid excursions

towards positive values (termed depolarisation). Thus

Vm typically adopts values between �90 and +50 mV;

however, Vm can reach physiological levels of up to

150 mV, as demonstrated by hair cells in the inner ear [16].
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The rapid Vm oscillations typical for action potentials are

known to influence the conformation and function of

some membrane proteins, an effect that is best under-

stood for voltage-gated ion channels. These channel

proteins contain specialised voltage-sensing domains,

which are capable of inducing large-scale conformational

transitions that gate the channels open or closed, even

under small changes of Vm [17]. By contrast, voltage-

related effects on other membrane proteins such as

GPCRs seem less intuitive, although a number of studies

have reported compelling evidence for a broad range of

Vm-induced phenomena in GPCRs [11,18��,19–21,22�]
(for review see Ref [23]). Many important class A GPCR

drug targets are expressed in excitable tissue, for instance

the aminergic, opioid, adrenergic and purinergic recep-

tors. Other important excitable tissue GPCRs include the

class C metabotropic glutamate receptors, for instance in

brain, for which voltage-induced effects have also been

reported [24]. Class C GPCRs also have an extended

allosteric pocket inside their transmembrane domain, as

shown by recent crystal structures [25]. Currently, GPCR

voltage regulation has been best characterised for class A

GPCRs however, and therefore the focus of this review

will be placed on this group. Because of their expression

in excitable cells, effects related to Vm, and thus the

excitation state of the cell, could have an important

impact on the function of GPCRs and affect drug action

on the receptors. Similarly, slower changes of Vm which

have been reported to occur during the cell cycle could

play a role in receptor-based signal transduction [14]. The

aim of this review is therefore to summarise recent

insights on the regulation of GPCRs by Vm, discuss its

relevance for drug discovery, and highlight the important

role of molecular dynamics (MD) simulations in deci-

phering the dynamic mechanisms of GPCR voltage sens-

ing and their link to GPCR function.

Experimental evidence for voltage-induced
effects in GPCRs
In recent years, Vm has been experimentally demonstrat-

ed to affect the conformation, function and transmitted

signals of a range of GPCRs [18��,19,23,26,27]. Voltage-

related effects have, for instance, been reported for the

muscarinic, adrenergic, and purinergic receptor families

[18��,19,20]. In most of the earlier work, evidence for

voltage regulation was obtained indirectly, and measure-

ments often relied on ionic current through downstream

G-protein coupled inward rectifying potassium channels

(GIRK) [28] or the use of intracellular calcium-sensitive

dyes [26]. Voltage-induced conformational changes in

GPCRs have recently also been confirmed directly by

FRET-based reporters [18��]. Through both GIRK and

GPCR voltage sensitivity illuminated by MD simulation Vickery, Machtens and Zachariae 45
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The structural features of class A GPCRs as exemplified by the M2 muscarinic receptor. (a) The major structural characteristics of class A GPCRs

comprise seven transmembrane helices (green), an extracellular ligand binding site (blue circle), an internal hydrated pocket (black), and the

intracellular effector protein interaction site (magenta). As both the polar hydrated pocket (water shown in red) and a Na+ (purple) ion binding to

the charged residue D2.50 are conserved amongst class A GPCRs [9��], these features are highlighted. The locations of Na+ and water in the M2

receptor were inferred from MD simulations [10��], however the Na+ binding site is identical to that observed in crystal structures of other

receptors [7,8��]. (b) Distribution of charged residues within the M2 receptor (blue: positive; yellow: negative). Most residues, with the exception of

three aspartates (D2.50, D3.32, and D3.26) are located outside of the direct influence of the membrane voltage. (c) All M2 receptor residues that were

mutated in Ref [11] to probe the origin of voltage-sensing are shown in cyan. Mutation of these residues was demonstrated to have little or no

effect upon gating charges with the exception of D2.50A [11].
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FRET measurements, it has been shown that voltage can

have opposite effects on the transmitted signal induced

by agonist action on the receptors [11,18��,22�]. For

example, the GIRK current elicited by acetylcholine

binding to M2 receptors in rabbit or feline atrial myocytes

is reduced by depolarisation, while that caused by the

agonist pilocarpine is strongly enhanced [11,22�].

The most quantitative measure of voltage-induced

rearrangements in GPCRs are electrophysiological

recordings, through which gating currents have been

determined for several receptor types (Table 1). These

transient currents reveal movements of charged regions

in membrane proteins, which occur in response to

voltage changes. Their name stems from their first

observation, caused by the motion of Na+ channel

voltage sensing domains during the process of channel

gating [29]. The electric charge that resides on these

voltage sensing domains, usually carried by charged

amino acid side-chains, is multiplied by the fraction

of the electric field they traverse upon channel gating to

give the so-called gating charge. The gating charge can

be derived from the gating currents and is expressed in

terms of the elementary charge unit [30]. For instance, a

singly charged particle moving across 50% of the voltage

drop across the membrane would give rise to a gating

charge of 0.5e.

Gating currents in GPCRs were first recorded for the

wild-type (wt) M2 muscarinic receptor (M2 receptor) and

the M2 receptor single-mutant (D1203.49N)a by cut-open

oocyte electrophysiology. In these experiments, gating

charges between 0.66 and 0.85e were inferred from the

observed voltage dependence of the measured gating

current (Table 1) [32]. In a more recent study, a gating

charge of 0.55e on the wt M2 receptor was obtained by

using the same technique (Table 1 and Figure 1) [11]. In-

terestingly, a wide range of mutants in which residues of

particular interest were modified, including putative li-

gand binding contacts and conserved charged groups, did

neither abolish the recorded gating currents nor markedly

alter the observed gating charges [11]. The most promi-

nent exception was the fully conserved residue D692.50

(Figure 1c), which has been identified as the main Na+

interacting residue in class A GPCRs [9��]. However, it

was not clear if this finding, which was obtained before

high-resolution crystal structures revealed ion binding in

the TM section of GPCRs, resulted from lower surface

expression of the mutant or was caused by the mutation

itself [11].

Recently, it has been demonstrated by a combination of

voltage-clamp and FRET experiments that both G-pro-

tein and b-arrestin signalling is strongly modulated by Vm

in the muscarinic receptor family [18��]. The authors also

studied the interplay between ligand action and voltage-

induced effects. For instance, they showed that the effect

of depolarisation on the transduced signal caused by the

agonist carbachol in M3 receptors was inverted by a single

mutation (N6.52Q) within the orthosteric ligand binding

site, thereby demonstrating an interaction between the

voltage sensor and the ligand binding site. The authors

propose that the inversion in voltage sensitivity is due to a

changed binding pose of the ligand [18��]. Notably, the

magnitude of the voltage effect on the signal can be

similar to the size of the ligand-induced signal such as

in the case of acetylcholine acting upon the M1 receptor,

as determined by FRET assays probing the arrestin3

signal under depolarisation [18��].

Role of MD simulations in deciphering the
structural basis of GPCR voltage-sensing
Most GPCR structures so far have been resolved by X-ray

crystallography (for review, see [33�,34�]). To date, how-

ever, it has not yet been possible to experimentally

determine membrane protein structures in the presence

of a realistic transmembrane voltage. This also currently

precludes the direct structural investigation of conforma-

tional changes triggered by altered Vm.

Present atomistic simulation techniques are commonly

capable of modelling membrane proteins in model lipid

46 New technologies

Table 1

Measured and calculated gating charges of class A GPCRs.

Receptor Gating

charge (e)

Reporter method Refs

m1 muscarinic:

wt 0.72,

0.76a
FRET [18��]

m2 muscarinic:

wt 0.55 Electrophysiology [11]

wt 0.53

(Na+)

MD simulation [10��]

wt 0.52

(proton)

MD simulation [10��]

wt 0.7,

0.85

Electrophysiology [32]

D692.50A NR Electrophysiology [11]

W993.28A 0.8 Electrophysiology [11]

D1033.32A 0.5 Electrophysiology [11]

Y1043.33A 0.54 Electrophysiology [11]

S1073.36A 0.49 Electrophysiology [11]

D1203.49N 0.66 Electrophysiology [32]

D1203.49N-R1203.50N 0.52 Electrophysiology [11]

D1203.49N-R1203.50N NR Electrophysiology [32]

Y4036.51A 0.57 Electrophysiology [11]

a2A-adrenergic

wt 0.5 FRET [19]

d-opioid:

wt 0.42 (Na+) MD simulation [10��]

N1313.35V 0.63 (Na+) MD simulation [10��]

NR, not resolved.
a Precise value depends on methodology used.

a Superscripts refer to the Ballesteros–Weinstein generic residue

numbering nomenclature [31].

Current Opinion in Pharmacology 2016, 30:44–50 www.sciencedirect.com



bilayers over microsecond time spans, allowing MD stud-

ies to address many aspects of GPCR function in mecha-

nistic detail. MD simulations have, for instance, been

successfully used to shed light on the conformational

transition towards the activated receptor state, the role

of so-called micro-switches such as the DRY motif (ionic

lock), receptor G-protein coupling specificity, nucleotide

exchange in the effector complex, internal hydration of

the polar pocket, and the processes of ligand attraction

and binding [12,13,35,36,37��]. Voltages across the mem-

brane can be readily included in the MD simulations,

either by applying an external electric field [38,39] or,

similar to cells, by imposing TM electrochemical ion

gradients [40,41], as for instance implemented in the

Computational Electrophysiology (CompEL) protocol

[42�].

Recently, voltage-induced conformational changes and

the observation of GPCR gating currents have been

addressed by using MD simulations. First, a range of

supra-physiological Vm were probed by CompEL simula-

tions, followed by a further characterisation of the effects

of physiological Vm by free energy calculations. The

simulations showed that, in accordance with mutation

experiments (Figure 1b,c) [11], none of the charged

groups within or near the transmembrane region display

substantial voltage-induced motions on the simulation

timescales [10��]. By contrast, extensive voltage-induced

movements of the Na+ ion, which binds internally in class

A GPCRs to the highly conserved residue D2.50 [9��],
along the water-filled pocket were observed (Figure 2).

The movement of this single charge is triggered by

depolarised voltages, facilitated by the hydration level

of the pocket, and occurs directly within the transmem-

brane section of the receptor.

Na+ has been detected in a range of high-resolution

crystal structures of GPCRs [8��,43,44,45�]. Because of

the conservation level of D2.50 and the polar pocket in

general, it is assumed that Na+ binding to D2.50 is a

general feature of class A GPCRs [9��]. In addition,

Na+ is known to have an allosteric effect on the function

of most GPCRs [9��].

The expected gating charge for the observed movement

of a cation from D2.50 towards the extracellular entrance of

the receptor ligand binding pocket was determined from

these MD simulations, and lies in the region of �0.53–
0.63e for Na+ in M2 receptor and d-OR variants [10��] (see

Table 1). Both the observation that ion movement is

triggered by depolarisation of Vm and the magnitudes

of the gating charges are thus in excellent agreement

with the experiments. Moreover, previous MD studies on

the d-OR without applied voltage have demonstrated the

internal Na+ ion to be mobile, and able to leave the

receptor under the influence of an applied force [46]. Im-

portantly, it has also been shown that small organic cations

such as amiloride can replace Na+ in the pocket under low

Na+ concentration, exerting an allosteric effect similar to

Na+ [47��]. It is therefore possible that other cations can

undergo analogous movements within the pocket upon

depolarisation, depending on experimental conditions,

and give rise to comparable gating charges [32]. This

includes potential protonation changes of the side chain

of D2.50, during which a proton could be exchanged with

the external solution [10��] (Table 1).

Implications for GPCR physiology and
pharmacology
Na+ plays a central role in GPCR function, shifting the

equilibrium between active and inactive receptors, regu-

lating agonist binding, and biasing downstream signals

[8��,9��]. Any voltage-dependence of the occupancy of

the GPCR allosteric pocket with Na+ or its position

within the receptors could therefore have major function-

al implications for signal transduction and signal bias.

Alongside its potential structural basis, voltage-depen-

dence of GPCR conformation or signalling has now been

established for a range of GPCRs and deserves the

attention of drug designers and pharmacologists alike.

As shown by Rinne et al. [18��], voltage can either

GPCR voltage sensitivity illuminated by MD simulation Vickery, Machtens and Zachariae 47
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Structural and mechanistic basis of a potential GPCR voltage sensor

as derived by MD simulations. Depolarised Vm drives outward

migration of an internal cation bound near D2.50 towards the

extracellular space, crossing the ligand binding pocket. The observed

gating charges for this transition are in excellent agreement with

experimental values. Upon repolarisation or hyperpolarisation, the

cation is attracted back into the allosteric binding pocket. The

trajectory of a cation under depolarisation is colour-coded according

to the simulation time, proceeding from red to blue.
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enhance or attenuate the transmitted agonist signal

depending on the ligand and precise environment of

the binding site. In addition, ligand binding affinity has

been shown to be voltage-dependent [32].

Electrophysiological properties such as resting Vm vary

substantially between different cell types. For example,

neurons display a markedly shifted Vm in various brain

regions and developmental stages [48]. The action of

GPCR ligands is therefore likely to depend on the

cellular context. In electrically excitable cells, the trans-

duced GPCR signal could also be altered by the excita-

tion state of the cell. It has for instance been

demonstrated that GPCR voltage sensing modulates

synaptic neurotransmission by reshaping the kinetics

of voltage-dependent transmitter release on the milli-

second timescale [49]. Therefore, it is conceivable that

GPCRs can establish dynamic feedback routes, by

which voltage information is transmitted back into a

range of intracellular signals on both fast and slow time-

scales. Notably, recent cancer research has revealed that

a range of malignant cell types possess a more depo-

larised resting voltage than quiescent cells [14,50�,51].

Although GPCRs have traditionally received less atten-

tion than other proteins as cancer drug targets, GPCRs

are known to be involved in cancer initiation and pro-

gression [52�]. The role of GPCR voltage regulation has,

to our best knowledge, however not yet been investigat-

ed in this context.

Similarly, it has recently been demonstrated that onco-

genic signalling pathways are influenced by Vm through

the redistribution of charged lipids in the inner leaflet of

the plasma membrane [50�]. Because membrane lipids

allosterically modulate GPCR activity [53�], Vm could

thus also have an indirect impact on receptor signal

transduction via an effect on lipid distribution. As we

only begin to appreciate the importance of Vm in regulat-

ing membrane proteins either directly or indirectly, much

further work is needed to fully understand the role of Vm

in GPCR signalling and its implications for the drug

design process, which could be wide-ranging.

Conclusions
Recent experimental and computational insights suggest

that the membrane voltage has an important impact on

GPCR pharmacology. In particular, MD simulations un-

der voltage are able to characterise functionally important

movements in GPCRs driven by potential differences.

Further simulations would be useful to investigate the

interplay of voltage-induced changes with ligand binding

and signal transduction. The fact that GPCRs are voltage-

sensitive, together with its possible structural underpin-

ning, should be taken into consideration during drug

development on GPCR targets, as especially in excitable

cell GPCRs, voltage-sensing could be an important

mechanism of feeding back voltage information into

intracellular signal transduction pathways. Thereby, the

signal that is actually induced by a ligand might depend

on the excitation state of the cell, which would have

important consequences for drug discovery on excitable

tissue GPCRs. It should also be investigated if agonists

can show variations in their effect on different cell types,

including non-excitable cells, owing to a difference in

resting Vm.
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25. Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K,
Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B et al.: Structure
of class C GPCR metabotropic glutamate receptor
5 transmembrane domain. Nature 2014, 511:557-562.

26. Martinez-Pinna J, Tolhurst G, Gurung IS, Vandenberg JI, Mahaut-
Smith MP: Sensitivity limits for voltage control of P2Y receptor-
evoked Ca2+ mobilization in the rat megakaryocyte. J Physiol
2004, 555:61-70 http://dx.doi.org/10.1113/jphysiol.2003.056846.

27. Ben Chaim Y, Bochnik S, Parnas I, Parnas H: Voltage affects the
dissociation rate constant of the m2 muscarinic receptor.
PLoS ONE 2013, 8:e74354 http://dx.doi.org/10.1371/
journal.pone.0074354.

28. Ben-Chaim Y, Tour O, Dascal N, Parnas I, Parnas H: The M2
muscarinic G-protein-coupled receptor is voltage-sensitive. J
Biol Chem 2003, 278:22482-22491 http://dx.doi.org/10.1074/
jbc.M301146200.

29. Armstrong CM, Bezanilla F: Currents related to movement of the
gating particles of the sodium channels. Nature 1973, 242:459-
461.

30. Bezanilla F: How membrane proteins sense voltage. Nat Rev
Mol Cell Biol 2008, 9:323-332.

31. Ballesteros JA, Weinstein H: Integrated methods for the
construction of three-dimensional models and computational
probing of structure-function relations in G protein-coupled
receptors. Methods Neurosci 1995, 25:366-428 http://dx.doi.org/
10.1016/S1043-9471(05)80049-7.

32. Ben-Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I,
Parnas H: Movement of ‘gating charge’ is coupled to ligand
binding in a G-protein-coupled receptor. Nature 2006, 444:106-
109 http://dx.doi.org/10.1038/nature05259.

33.
�

Shonberg J, Kling RC, Gmeiner P, Löber S: GPCR crystal
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