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Abstract 

Background	  

Image registration algorithms are frequently used to align the reconstructed brain 

PET frames to remove subject head motion. However, in occupancy studies this is a 

challenging task where competitive binding of a drug can further reduce the available 

signal for registration. The purpose of this study is to evaluate two kinds of algorithms 

- a conventional frame-by-frame (FBF) registration and a recently introduced 

groupwise image registration (GIR), for motion correction of a dopamine D3/D2 

receptor occupancy study.  

Methods 

The FBF method co-registers all the PET frames to a common reference based on 

normalised mutual information as the spatial similarity. The GIR method incorporates 

a pharmacokinetic model and conducts motion correction by maximising a likelihood 

function iteratively on tracer kinetics and subject motion. Data from 8 healthy 

volunteers scanned with [11C]-(+)-PHNO pre- and post-administration of a range of 

doses of the D3 antagonist GSK618334 were used to compare the motion correction 

performance.  

Results 

The groupwise registration achieved improved motion correction results, both by 

visual inspection of the dynamic PET data and by the reduction of the variability in the 

outcome measures, and required no additional steps to exclude unsuccessfully 

realigned PET data for occupancy modelling as compared to frame-by-frame 

registration. Furthermore, for the groupwise method, the resultant binding potential 

estimates had reduced variation and bias for individual scans, and improved EC50 

estimates were obtained for the study as a whole. 

Conclusions 
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These results indicate that the groupwise registration approach can provide improved 

motion correction of dynamic brain PET data as compared to frame-by-frame 

registration approaches for receptor occupancy studies. 

 

Keywords: PET, motion correction, groupwise registration, pharmacokinetic 

modeling, receptor occupancy studies	  
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1. Background 

Dynamic PET brain scans are susceptible to head motion that distorts the tissue-to-

voxel mapping and this leads to degraded PET images from acquisitions that can last 

up to 2 hours. If uncorrected, motion induced attenuation correction mismatch, inter-

frame misalignment and intra-frame blurring in the PET data will make the 

quantification of the tracer kinetic data unreliable [1]. Previous approaches to the 

motion problem have included the use of head restraints or external motion tracking 

systems that have been developed to try to record the motion parameters [2-5]. 

However, these methods have limitations either due to patient discomfort, accuracy 

or ease of use. 	  

	  

Meanwhile, image-based computational methods have been developed to establish 

the spatial correspondences between PET data at different time frames [6-8], 

allowing for post-acquisition corrections to be applied. Such methods perform a rigid 

frame-by-frame (FBF) image registration of PET time frames to a common reference 

image, which is usually a PET image derived from a single frame, a weighted sum of 

frames or an associated magnetic resonance (MR) image for the subject. The FBF 

registration methods have been widely used for motion correction in recent studies 

[9-12] due to the ease of implementation based on existing publicly available image 

registration software packages, such as SPM (used in [13]), AIR (used in [14]), FLIRT 

(used in [15]), and the commercial software PMOD. FBF methods are shown to 

improve the integrity of PET data, but have potential limitations that need 

consideration. For example, the FBF registration is solely based on maximising the 

spatial similarities between images and it can converge to inaccurate solutions in the 

presence of noise [16].	  
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Recently, a groupwise image registration (GIR) framework for dynamic PET data has 

been introduced for motion correction [17, 18]. The GIR method enables noise 

modelling, and accounts for tracer kinetics by incorporating a pharmacokinetic model 

with either an arterial input function (AIF) [18], or a reference tissue input function [17]. 

Improved registration results as compared to FBF methods have been demonstrated 

in simulation-based validations. This work aims to evaluate the motion correction 

performance of these image-based methods on an occupancy study where the 

competitive binding can impose further challenges for conducting image registration 

on the PET images. Data from a dopamine D3/D2 receptor occupancy study with 

[11C]-(+)-PHNO were used. The study was designed to measure the half maximal 

effective concentration (EC50) of the D3 antagonist GSK618334. For the 

reconstructed PET time frames, three separate approaches to motion were applied: 

1) no motion correction, 2) frame-by-frame motion correction, and 3) groupwise 

image registration motion correction with a reference tissue input. Following motion 

correction, kinetic analysis was applied to each dataset to derive regional binding 

potential estimates for each scan and then modeling of the competitive binding of the 

drug to derive its EC50 was performed using all scans in the study. 

 

2. Methods	  

2.1. Human [11C]-(+)-PHNO PET study	  

The motion correction algorithms were evaluated on [11C]-(+)-PHNO PET occupancy 

data involving a range of doses of the antagonist GSK618334. Data from eight 

subjects, from a previously reported study [19], were used here. All subjects were 

healthy, male, drug-free, non-smoking volunteers, aged between 25 and 55 years, 

with body weights and BMI in the normal range. All subjects gave written informed 

consent, and their eligibility was confirmed via medical history, physical examinations 

and standard tests. Further details of the inclusion and exclusion criteria can be found 
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on www.clinicaltrial.gov by reference to NCT00814957, and the study was approved 

by East of England Hatfield REC (known as NRES Committee East of England - 

Welwyn at the time of the study).	  Each subject received a baseline PET scan, then a 

single oral dose of 5–550 mg of GSK618334 followed by two further PET scans 

performed between 1.5 and 29 hours post-administration of GSK618334. Venous 

blood was sampled for measurements of GSK618334 plasma concentration. The 

[11C]-(+)-PHNO PET scans were acquired using a Siemens Biograph 6 PET-CT with 

Truepoint gantry in 3D-mode, and then reconstructed using filtered back projection 

with corrections for dead time, random coincidences, variations in detector sensitivity, 

attenuation (based on a low-dose CT acquisition) and scatter. The reconstruction had 

the measured resolution of 9mm (transaxial) and 7mm (axial) in full width at half 

maximum at the centre of the field of view, and after reconstruction the PET images 

were filtered with a Gaussian filter of 5mm in full width at half maximum in the 3 

orthogonal planes. Dynamic data were acquired using 26 frames (durations: 8×15 s, 

3×1 min, 5×2 min, 5×5 min, 5×10 min). Arterial blood data was also acquired and 

enabled plasma input based modelling to be applied for determination of the final 

BPND regional outcome measures of interest.  Each subject also received a high 

resolution T1-weighted MR scan with a Siemens Tim Trio 3T scanner (Siemens 

Healthcare, Erlangen, Germany). A U-shaped head holder with foam padding 

designed to snugly hold the subject’s head in place laterally, with a soft Velcro strap 

across the forehead to aid as a reminder to the subject, was used in this study. 

2.2. Frame-by-frame (FBF) motion correction	  

The FBF method co-registers all the PET frames to a common reference based on 

spatial similarity. The PET frame acquired between 13-15 mins in the scan was used 

as the reference frame and normalised mutual information (NMI) was used as the 

cost function. The settings of the FBF method used in this work have been optimised 

in our previous internal investigations. Frame 13-15 min was selected based on 
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previous (unpublished) work which optimised the method by evaluating the 

performance using a range of possible reference frames for [11C]-(+)-PHNO. The 

image of [11C]-(+)-PHNO at this time in the scan contains features that are common 

to both early distribution and later binding phases. Although the duration of this frame 

(2 mins) is short, it balances the desire to select a frame with minimal motion whilst 

capitalising on the high imaging statistics at this time in conjunction with 

representation of all the key image features. The FBF algorithm was implemented in 

MATLAB 7.7, using functions available within Statistical Parametric Mapping (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/) with the default settings for the optimisation, 

interpolation, image smoothing and histogram smoothing.	  

2.3. Groupwise image registration (GIR) motion correction	  

The proposed GIR algorithm conducts motion correction by solving the maximum 

likelihood problem. Assuming the measurement is distributed as a multivariate 

Gaussian, the likelihood of the measured dynamic PET data 

€ 

Y can be formulated as	  

€ 

L(Φ,T;Y) =
1

2πσ 2(x j ,k)
exp −

(Y(Tk
−1(x j ), tk ) −YΦ(x j ,tk ))

2

2πσ 2(x j ,k)

& 

' 
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) 
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+ + 

k=1

F

∏
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M

∏         (1)	  

where 

€ 

YΦ is the predicted PET data determined by the tracer kinetic parameter 

€ 

Φ, 

€ 

Tk  is the spatial transformation that corrupts the voxel-to-tissue mapping for the k-th 

frame, 

€ 

σ 2(x j ,k) is the variance term describing the measurement noise level, 

€ 

M 	  

and 

€ 

F  are the numbers of voxels and time frames respectively.  

 

The unknown 

€ 

T and 

€ 

Φ can be optimised iteratively until convergence. For brain 

images, 

€ 

T describes the rigid head motion using three translations and three 

rotations. 

€ 

YΦ can be described by the generalised reference tissue model embedded 

in a basis function framework and solved by the method of basis pursuit denoising 

[20] as follows.	  
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Let 

€ 

CT (t)  be the tracer concentration time course in the target tissue, then 

€ 

CT (t)  

can be expressed as an expansion on a basis as

€ 

CT (t) = φ0CR (t) + φiψ ii=1

N
∑ , 

where 

€ 

ψ i = e−θ i t ⊗CR (t)  and 

€ 

CR (t)  is the tracer concentration time course in the 

reference tissue. A discrete set of values can be selected for 

€ 

θ i  from a 

physiologically plausible range spaced in a logarithmic manner to elicit a suitable 

coverage of the kinetic spectrum. The measured PET data 

€ 

Y(x,t)  corresponds to 

€ 

CT (t)  as 	  

Y(x j, tk ) =
1

tk
e − tk

s CT (t)dt =tk
s

tk
e

∫ Yk, j ,                             (2)	  

where 

€ 

tk
s and 

€ 

tk
e  are the start and end times for the k-th frame (  

€ 

k =1!F ). 

Accordingly, the basis functions can be written as	  

€ 

Ψ0,k =
1

tk
e − tk

s CR (t)dttk
s

tk
e

∫ 	  

€ 

Ψi,k =
1

tk
e − tk

s e−θ i t ⊗CR (t)dttk
s

tk
e

∫
,	  
  

€ 

i =1!N 	  	  	  	  	                    (3)	  

The unknown tracer kinetic parameter matrix of the image 

€ 

Φ can then be determined 

by solving 

€ 

Y ≅ΨΦ . In practice, to account for the uncertainty of the measurements, 

the weighted least squares problem 	  

W
1
2Y ≅W

1
2ΨΦ                                                     (4)	  

can be considered, where 

€ 

W 	  is the inverse of the covariance matrix corresponding 

to the noise variance term 

€ 

σ 2 in Equation 1. The noise variance for decay corrected 

PET data can be modeled as σ 2 (k) = Y(x j, tk )
j
∑ / (tk

e − tk
s )× dcf (k) , derived from 

the variance model 1 in	  [21], where dcf (k) = λ (tk
e − tk

s ) [exp(−λtk
s )− exp(−λtk

e )] 	  
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is the decay correction function and λ 	  is the decay constant of the isotope. Given 

the independence of the frames, W 	  is diagonal, and can be calculated as 

Wkk =1 σ
2 (k) . 

 

The basis is typically overcomplete (

€ 

N > F −1) leading to an under-determined set 

of equations that basis pursuit denoising solves with the addition of a 1-norm penalty 

term [20] 

€ 

minΦ W
1/ 2Y −W1/ 2ΨΦ

2

2
+ µ Φ 1	  	  	  	  	  	  	  	  	                              (5)	  

Here, 

€ 

µ > 0  is a regularisation parameter which balances the approximation error 

and sparseness of 

€ 

Φ and imposes a unique solution. To avoid the difference in the 

scales, the basis functions are normalised here so that Ψ i 2
=1  for all i . We 

previously proposed an efficient way to determine the value for 

€ 

µ 	  [17], and based 

on this approach we use a value of 

€ 

µ = 8.69 for [11C]-(+)-PHNO. 

	  

This general reference tissue kinetic model is used as the pharmacokinetic model in 

the GIR method. It constrains the registration in a groupwise fashion by using the 

temporal information. The complete algorithm is summarised in Figure 1. Step 1 

initialises the algorithm using the identity function for 

€ 

T. In Step 2, the discrete 

reference data is first extracted from the motion-corrected PET data 

€ 

Y(T−1(x),t) 	  as 

a regional time activity curve from the anatomical reference region of choice, and the 

reference input function 

€ 

CR (t)  is generated using linear interpolation. For the 

purpose of describing the tracer kinetics, rather than estimating the absolute 

parameters for binding or uptake, a region with low specific binding is mathematically 

appropriate for deriving the reference input. Step 3 calculates the basis functions 

which are convolutions of the reference tissue input and the pre-defined exponentials. 
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Step 4 solves the kinetic model fitting via basis pursuit denoising. In Step 5, the 

original motion-corrupted PET data 

€ 

Y(x,t) is registered to the model-predicted PET 

data 

€ 

YΦ to update the motion estimation 

€ 

T and motion-corrected PET data 

€ 

Y(T−1(x),t) . Steps 2-5 repeat until convergence, and the algorithm returns the 

motion-corrected PET data 

€ 

Y(T−1(x),t)  in Step 6. 

 

In this work, for kinetic modeling in the GIR motion framework, the reference input 

function was derived from grey matter of the cerebellum for the [11C]-(+)-PHNO PET 

data. The reference region was delineated via nonlinear registration using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm) of a predefined brain atlas22 to the subject’s MRI 

(aligned to the PET image) to propagate the segmentation. 

 

2.4. Regional calculation of [11C]-(+)-PHNO 

€ 

BPND 	  

Regional analysis of 

€ 

BPND  and occupancy analysis was performed after 1) no motion 

correction, 2) FBF motion correction, and 3) GIR motion correction with reference 

tissue input. The [11C]-(+)-PHNO kinetics were analysed for six regions-of-interest 

(ROIs): substantia nigra (SN), globus pallidus (GP), ventral striatum (VST), dorsal 

caudate (CD), dorsal putamen (PU), thalamus (TH). These target ROIs were defined 

manually according to guidelines described previously [22]. GP, VST, CD, PU, TH 

were drawn on each subject's structural T1-weighted magnetic resonance imaging 

(MRI). The MR T1-weighted image was registered to the time-weighted integral of the 

dynamic PET images following motion correction using the rigid registration function 

in SPM8 with a mutual information cost function. SN was defined on each subject's 

baseline PET integral image given the insufficient contrast available from MRI data. 

Regional time-activity curves (TACs) were then derived for each ROI.	  
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Subsequently,	  a two-tissue compartmental (2TC) plasma input model was applied to 

the regional time activity curves to appropriately quantify regional [11C]-(+)-PHNO 

volume of distribution (

€ 

VT ) estimates in the basal ganglia ROIs [19]. This included a 

fixed blood volume correction of 5%. Regional 

€ 

BPND
ROI 	  estimates were then derived 

for each of the target regions using cerebellum as the reference region,	  

BPND
ROI =

VT
ROI −VT

CER

VT
CER .	  

2.5. Competitive binding of drug and PHNO	  

The [11C]-(+)-PHNO occupancy study was designed to measure the dopamine D3 

and D2 receptor occupancy of GSK618334 and requires the application of a two-site 

competitive binding model [19]. Given the baseline binding potential, BPND
base , the 

binding potential following drug administration, 	  BPND
drug  and the plasma concentration 

of the drug (GSK618334), 

€ 

Cp
drug , then,	  

€ 

BPND
drug = BPND

base fPHNO
D3

1+
Cp

drug

EC50
drug,D3

+
1− fPHNO

D3

1+
Cp

drug

EC50
drug,D2

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

,                             (6)	  

where 

€ 

fPHNO
D3  is the regional fraction of baseline [11C]-(+)-PHNO 

€ 

BPND  

corresponding to D3 binding with values of 0.87 for SN, 0.66 for GP, 0.39 for VST, 

0.69 for TH, 0.21 for CD, 0.14 for PU [19], 

€ 

EC50
drug,D3and 

€ 

EC50
drug,D2  are the plasma 

concentrations of the drug (GSK618334) that would result in 50% occupancy of the 

D3 and D2 receptor respectively. 

	  

Recent work has demonstrated that for true quantification it is necessary to account 

for mass effects of [11C]-(+)-PHNO itself and a small displaceable specific signal in 

the cerebellum in addition to competitive binding of the drug at D3 and D2 sites [19]. 
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For the actual fitting of the [11C]-(+)-PHNO 

€ 

BPND  data, we used an extension of the 

competitive binding model in Equation 4 that includes corrections for PHNO mass 

dose effect at D3 sites and cerebellum specific binding [19]. This model is given in 

Supplementary Material. Note that when modelling the competitive binding, all 

regions were fitted simultaneously and the 

€ 

EC50
drug,D3  and 

€ 

EC50
drug,D2  parameters 

assumed constant across all regions and subjects [19].	  

	  

3. Results 

3.1. Motion correction of [11C]-(+)-PHNO data	  

The GIR and FBF motion correction algorithms were applied on reconstructed [11C]-

(+)-PHNO PET data to address inter-frame misalignment caused by subject motion. 

PET data that had already been attenuation corrected was used due to the clinical 

pipeline and the use of PET data without attenuation correction will be considered in 

the Discussion. Firstly, visual inspection using the movie mode in FSLview 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) was performed on the 24 scans obtained from the 

8 healthy subjects without motion correction to derive an initial qualitative assessment 

of motion. In 4 scans, there was severe motion with up to 10 degree rotations or 40 

mm translations. In 8 scans there was motion at the level of the voxel size (2mm), 

and in 12 scans the motion was difficult to detect. For the motion correction 

algorithms, a metric summarising the displacement was calculated for each time 

frame by using the estimated translation and rotation parameters, 	  

displacement = 1
M

T(x j )− x jj=1

M
∑

2
,                              (7)	  

where 

€ 

T	  is the rigid transformation determined by the translations and rotations and 

€ 

M  is the number of all the voxels, and x j is the coordinate of voxel j . Figure 2 

shows a summary of the displacements introduced by both FBF and GIR motion 
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correction algorithms for the 24 scans. Whilst the individual reference frames for both 

the FBF and GIR methods may be different, we are interested in comparing the 

distributions of the displacements which should be insensitive to this.	  

The computation time of the GIR motion correction algorithm depended on the 

amplitude of the motion and the image noise. On a desktop workstation (CPU 

3.20GHz, 16GB RAM) with MATLAB 7.7, the GIR algorithm took between 20 and 90 

mins of computation time for each 26-frame dynamic image; the FBF algorithm took 

in general 60 mins. No GPU or parallel computing was applied in this work. 

	  

Figure 3 and Figure 4 illustrate the performance of the GIR and FBF algorithms 

when registering [11C]-(+)-PHNO PET data from subjects with visually obvious 

motion. The motion artefact was well corrected by the GIR algorithm as indicated by 

the sagittal view of the PET data. Furthermore, for the baseline scan, the voxel-based 

TACs from dorsal caudate and globus pallidus shown on the sagittal slice are 

displayed before and after GIR motion correction together with the normalised 

population TACs for these ROIs. The population TACs were generated by averaging 

the baseline [11C]-(+)-PHNO PET data after motion correction over the eight healthy 

subjects, and were scaled according to dose and subject weight. The consistency 

with the normalised population data after MC by the GIR algorithm provides 

supporting evidence for the successful removal of the inter-frame misalignment 

caused by motion. 

3.2. Binding potential of [11C]-(+)-PHNO	  

Regional estimates of [11C]-(+)-PHNO 

€ 

BPND  were derived for baseline and post-

GSK618334 PET scans for SN, GP, VST, CD, PU and TH before and after motion 

correction. During the 2TC kinetic parameter estimation, 2 unrealistically large 

€ 

VT  

values were obtained for the data with no motion correction, 3 unrealistically large 

€ 

VT  

values were obtained after motion correction by FBF, whereas none were obtained 
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after MC by GIR. For the scans where there were unrealistic values of 

€ 

VT , the motion 

correction error of FBF was not always visually detectable, suggesting that small 

residual motion can introduce significant errors into 

€ 

VT  particularly for regions with 

slower kinetics such as the globus pallidus and ventral striatum. Corresponding 

€ 

BPND  values for baseline and post-dose scans are shown in Figure 5A with 

unrealistic values shown above the line breaks. After excluding the unrealistic data 

points considered as convergence failure, the inter-subject variability was assessed 

on baseline 

€ 

BPND  by the coefficient of variation (CV )	  

CV =
σ (BPND )
µ(BPND )

                                                          (8)	  

where 

€ 

σ and 

€ 

µ  are the standard deviation and mean across the eight subjects. The 

CV  values before motion correction, after motion correction by the FBF algorithm 

and by the proposed GIR algorithm are shown in Table 1, together with the ROI size 

in cm3. These data provide further evidence for improved registration with GIR 

through the significant reduction in the CV  of baseline 

€ 

BPND 	  data across all regions. 

It was also apparent that the conventional FBF algorithm could lead to subsequent 

convergence problems in the kinetic fitting, whereas the proposed GIR algorithm 

avoided such problems, thus eliminating the need to subjectively exclude outliers due 

to unsuccessful motion correction. The conventional FBF algorithm produced less of 

a reduction in CV  (even after excluding unrealistic data). 

3.3. Occupancy and estimation of the EC50 of GSK618334	  

The 

€ 

BPND  of [11C]-(+)-PHNO measured in the follow up PET data, after dosing with 

GSK618334, was modelled using the extension of Equation 6 that is provided in the 

supplementary material. The two-site competitive binding model, including correction 

for PHNO mass on D3 binding and a small specific signal in the cerebellum, was 

applied to the measured data before and after motion correction. The 

€ 

BPND  values 
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obtained before motion correction, and after applying the FBF and GIR algorithms, 

are shown in Figure 5A for each of the six target ROIs, together with the competitive 

binding model fits. Motion correction using the proposed GIR algorithm avoided the 

convergence problems that led to data points with unrealistic values, which occurred 

with uncorrected and FBF corrected PET data. 	  

	  

In practice, to maintain the integrity at the study level, it is possible (though not ideal) 

to remove the outliers with appropriate testing. Here we considered 

€ 

BPND 	  values 

greater than 10 as outliers. In Figure 5B, the competitive binding model fits are 

shown using 

€ 

BPND  before motion correction with outliers excluded, 

€ 

BPND  after FBF 

with  

outliers excluded, and 

€ 

BPND  estimates obtained directly from the GIR algorithm with 

no exclusions. Even with all this extra help for the other methods, GIR still produces 

the best fit to the competitive binding data as judged by its ability to achieve the 

smallest SSQ.  

	  

The primary outcome measures of this study, 

€ 

EC50
drug,D3and 

€ 

EC50
drug,D2  of 

GSK618334, estimated using Equation 6, are presented along with 95% confidence 

intervals in Table 2. 

 

The 

€ 

EC50 	  estimates obtained following GIR are in the range of the values obtained 

before motion correction with the removal of unrealistic 

€ 

BPND  data points (the ones 

with significant subject motion) and have smaller confidence intervals. 

	  

4. Discussion	  
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Image based registration methods are frequently used in brain PET studies to 

minimise the impact of subject movement on the outcome measures derived from 

tracer kinetic analysis. In this work we have investigated and evaluated the 

applicability of two such motion correction algorithms for dynamic PET data obtained 

as part of a clinical dopamine D3/D2 receptor occupancy study with GSK618334.  

 

This involved a more traditional FBF approach along with a novel GIR method that 

we have recently introduced. The GIR approach incorporates a pharmacokinetic 

model into the registration process so as to provide additional temporal constraints in 

the registration process over and above just spatial image similarity maximisation. 

The input function for the pharmacokinetic model is derived directly from the 

tomographic PET data using a reference region and therefore the GIR method does 

not necessarily require any arterial blood sampling.  We hypothesised that the 

application of a spatio-temporal (GIR) method that makes better use of the available 

data would lead to improved results over the purely spatial (FBF) method. 

	  

The performance of the FBF and GIR methods was evaluated using data from a 

dopamine D3/D2 receptor occupancy study in humans with [11C]-(+)-PHNO. In the 

PET data there were different levels of subject motion and a range of signal-to-noise 

ratios (SNR) due to competitive binding of the drug at varying doses. The 

performance was assessed directly by visual inspection of the PET data, and 

indirectly by assessing the inter-subject variability in baseline 

€ 

BPND , convergence 

and residuals of the competitive binding modelling, as well as the drug 

€ 

EC50estimation. In addition to the visually improved removal of subject motion, the 

GIR method led to more reliable 

€ 

BPND  estimates with reduced variation and bias at 

baseline and when modelling competitive binding of GSK618334 as compared to the 

FBF method. It also provided estimates of GSK618334 

€ 

EC50 	  that were consistent 
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with a previously published study that had employed outlier removal techniques, but 

with reduced confidence intervals [19]. These convergent data all provide evidence 

that the proposed GIR method yields improved registration for dynamic PET data. On 

the study level, it increases the statistical power by reducing the motion-introduced 

variability, and in practice less PET scans would be required to achieve the same 

outcome parameter precision once the motion correction is accurately conducted 

using the GIR method.  

 

The proposed GIR method uses the full dynamic data in addition to spatial similarity 

and from a theoretical point of view it should perform better than the FBF method. For 

brain D3/D2 images, whilst there is limited binding data outside the striatum, there is 

still information available from the delivery and washout to regions just containing free 

and non-specifically bound tracer. Similarly, for other tracers with different 

distributions, areas of relatively low signal may still contribute usefully to the motion 

correction process. The pharmacokinetic model employed by the GIR approach is 

generic allowing for different compartmental topologies at individual voxels and thus 

should not only handle the kinetics displayed by a broad range of tracers, but even 

different kinetic behaviour in different regions of the image. Furthermore, it is not 

necessary for the reference region to be devoid of the target biology, as the data can 

be quantified subsequently, and a region with the fastest kinetics could be used as 

the reference region. Thus, the method should be generally applicable to dynamic 

brain PET data (except perhaps when significant metabolite components contribute 

to the data). The generalised reference tissue model employed is able to describe a 

range of different behaviours, which will likely include regions outside the brain. 

Qualifying how well it is able to describe such data is not strictly necessary in order to 

assess the performance of the approach (for instance it would not matter if it did not 

describe these regions particularly well if the algorithm provides improved 
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performance in image registration over existing approaches). Future studies will 

explore the utility of the approach with other tracers and further extension to the 

deformation motion model could also allow application to dynamic imaging outside 

the brain as well.	  

	  

In this paper we have employed filtered back projection (FBP) for reconstruction of 

the dynamic image sequence. We fully acknowledge that the application of iterative 

reconstruction algorithms could have improved the performance of both the FBF and 

GIR approaches but an assessment of this was beyond the scope of this paper. 

Future studies will evaluate the impact of the reconstruction algorithm in more detail. 

Our hypothesis is firstly that the application of iterative reconstruction algorithms to 

the FBF method would bring its performance closer to that of the current GIR (FBP) 

method and secondly that the application of iterative reconstruction to the GIR 

method would further increase its performance. 

 

The reconstructed PET data used in this work represents a very common clinical 

workflow. In practice the subject motion introduces mismatched attenuation and 

scatter correction in the reconstruction, which are theoretically challenging to 

eliminate with post reconstruction approaches. Addressing these issues, however, 

requires access to the raw PET emission data and extra fast-processing 

hardware/software that would impose an undesirable cost for clinical use. The 

approach proposed in this work is directly based on the reconstructed PET images 

and in the presence of intra-frame motion artefacts (attenuation, scatter etc), it 

demonstrates an improvement in the kinetic analysis of dynamic data compared to 

alternative image-based methods. Further extension of this approach to fully account 

for attenuation/scatter mismatch in the PET reconstruction framework will be explored 

and evaluated in future work. 
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Besides the image-based motion correction methods discussed in this work, which 

estimate and eliminate the subject motion using only the measured PET data, subject 

motion can also be tracked and corrected using additional hardware. However such 

motion-tracking systems are not always available in typical clinical settings, and 

additional processing and calibration are required to ensure the mapping of the 

motion parameters from the motion-tracking space into the PET image space is 

accurate. The image-based methods presented provide a more accessible and less 

demanding way to remove the subject motion in the majority of PET studies. 

In summary, we have demonstrated the applicability of a novel groupwise based 

imaged registration for improving the quality of data obtained from PET receptor 

occupancy studies, using only measured PET data. The generic nature of the 

incorporated pharmacokinetic model means that this should have wide utility across 

PET neuroimaging studies.  

5. Conclusions	  

Groupwise image based registration of dynamic brain PET data provides an 

improved method to correct for subject motion. Incorporation of a reference input-

based general pharmacokinetic model that requires no arterial blood sampling allows 

for wide applicability of the technique. The approach has value for increasing the 

integrity of both individual scan data and outcome measures from clinical studies 

involving a series of scans enabling increased precision or reduction in the required 

number of scans.	  
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Table 1. The inter-subject variability (CV ) in baseline 

€ 

BPND  before and after 

motion correction (MC). Unrealistically large VT values due to unsuccessful 

convergence in 2TC kinetic parameter estimation as a result of uncorrected motion 

artefacts were removed. ROI sizes are given in cm3. 

Region	  

(ROI size)	  

SN 	  

(0.3 cm3)	  

GP 	  

(0.8 cm3)	  

VST 	  

(1.0 cm3)	  

CD	  

(2.8 cm3)	  

PU 	  

(4.2 cm3)	  

TH 	  

(5.3 cm3) 

CV  before MC1 0.3699         	  0.3405 	   0.6345	   0.2825   	   0.2627 	   0.5172	  

CV  after FBF2 0.1785	   0.7411 	   0.2857 	   0.1173	   0.0848  	   0.1630	  

CV  after GIR	   0.1523           	  0.0896 	   0.1822  	   0.0962  	   0.0772    	   0.1606	  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  2 outlier values removed	  
2	  3 outlier values removed	  
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Table 2. 

€ 

EC50
drug,D3 	  and 

€ 

EC50
drug,D2 	  for GSK618334 estimated before and after 

motion correction (MC). Values in parentheses indicate 95% confidence intervals 

associated with the parameter estimates. 

MC Method Removal of unrealistic 

€ 

BPND  data points	  

€ 

EC50
drug,D3  of 

GSK618334 (ng/ml) 

€ 

EC50
drug,D2  of 

GSK618334 (ng/ml) 

No MC	   Required 15 (-6, 37) 529 (206, 852) 

MC by FBF	   Required 4 (0, 8) 492 (327, 658) 

MC by GIR	   Not necessary 10 (5, 15) 539 (419, 660) 
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Titles and legends to figures 

 

Figure 1. Schematic illustration of the proposed groupwise image registration 

(GIR) algorithm for motion correction. With the initialisation in Step 1, the 

algorithm repeats Step 2-5 until convergence and returns the final motion corrected 

dynamic PET data in Step 6. 

 

Figure 2. Summary of displacements introduced by FBF and GIR MC methods 

for [11C]-(+)-PHNO PET occupancy study data. In each box, the central mark 

denotes the median, the edges of the box are the 25th and 75th percentiles, the 

whiskers extend to the most extreme data points not considered to be outliers, and 

outliers are plotted individually using the symbol +. Subjects (S1-S8) exhibited 

various degrees of motion during the scans. The scans marked with grey background 

had visually negligible motion following assessment by an observer viewing the data 

in the movie mode in FSLview. For these scans the FBF method introduced up to 5 

mm displacement, whereas the displacement introduced by the GIR method was at a 

sub-voxel level. Plasma concentration of GSK618334 is also shown for each scan.
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Figure 3. Selected temporal frames from a sagittal slice from subject 2’s 

baseline [11C]-(+)-PHNO data. Times are mid-frame times. (A) before motion 

correction, (B) after motion correction by the conventional FBF algorithm, and (C) 

after motion correction by the proposed GIR algorithm. Units are kBq/ml. (D) TACs 

from voxels in dorsal caudate and globus pallidus, depicted in colours corresponding 

to the voxels shown in A), B) and C), which are spatially fixed to demonstrate the 

displacement. The subject exhibited obvious rotation of ~10 degree, as shown on the 

sagittal slices in A), which was corrected by the proposed method, as shown in C). 

The TACs for these regions were also obtained from all eight healthy subjects’ 

baseline data after motion correction, and the population TACs were generated by 

averaging TACs normalised for [11C]-(+)-PHNO dose and subject weight. These 

population TACs were scaled to match subject 2’s baseline data and are shown in D). 

The tracer kinetics showed consistency with the population data after GIR motion 

correction. The scan had no GSK618334 taken and the [11C]-(+)-PHNO injected 

activity was 384.9 MBq (injected mass 4.24 ug). 

 

Figure 4. Selected temporal frames from a sagittal slice from subject 2’s follow-

up [11C]-(+)-PHNO data. Times are mid-frame times. (A) before motion correction, 

(B) after motion correction by the conventional FBF algorithm, and (C) after motion 

correction by the proposed GIR algorithm. Units are kBq/ml. The GSK618334 plasma 

concentration in the scan was 58.2 ng/ml, and the [11C]-(+)-PHNO injected activity 

was 139.8 MBq (injected mass 2.35 ug). 
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Figure 5.  Competitive binding analysis of [11C]-(+)-PHNO data. (A) Fits (shown 

as curves) to the baseline and post-dose data before and after motion correction by 

FBF and GIR (shown as circles, crosses and stars) using a competitive binding 

model with unweighted BPND  data. The unweighted sum of squared differences 

(SSQ) of the competitive model fitting was calculated for each BPND 	  data set, and 

was then scaled to the SSQ of data before motion correction so that SSQ_motion=1. 

Other than for the GIR approach all methods resulted in some unrealistic estimates of 

BPND  that affected the fits. (B) Competitive model fits of 

€ 

BPND  data points derived 

from PET data before MC with removal of unrealistic values; after MC by FBF with 

removal of unrealistic values; after only MC by the proposed GIR. 
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Figure 5A 
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