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Abstract

Background: Identifying different patterns of allergens and understanding their

predictive ability in relation to asthma and other allergic diseases is crucial for the

design of personalized diagnostic tools.

Methods: Allergen-IgE screening using ImmunoCAP ISAC� assay was performed at

age 11 yrs in children participating a population-based birth cohort. Logistic regression

(LR) and nonlinear statistical learning models, including random forests (RF) and

Bayesian networks (BN), coupled with feature selection approaches, were used to

identify patterns of allergen responses associated with asthma, rhino-conjunctivitis,

wheeze, eczema and airway hyper-reactivity (AHR, positive methacholine challenge).

Sensitivity/specificity and area under the receiver operating characteristic (AUROC)

were used to assess model performance via repeated validation.

Results: Serum sample for IgE measurement was obtained from 461 of 822 (56.1%)

participants. Two hundred and thirty-eight of 461 (51.6%) children had at least one of

112 allergen components IgE > 0 ISU. The binary threshold >0.3 ISU performed less

well than using continuous IgE values, discretizing data or using other data

transformations, but not significantly (p = 0.1). With the exception of eczema

(AUROC~0.5), LR, RF and BN achieved comparable AUROC, ranging from 0.76

to 0.82. Dust mite, pollens and pet allergens were highly associated with asthma, whilst

pollens and dust mite with rhino-conjunctivitis. Egg/bovine allergens were associated

with eczema.

Conclusions: After validation, LR, RF and BN demonstrated reasonable discrimina-

tion ability for asthma, rhino-conjunctivitis, wheeze and AHR, but not for eczema.

However, further improvements in threshold ascertainment and/or value transforma-

tion for different components, and better interpretation algorithms are needed to fully

capitalize on the potential of the technology.

Detection of allergen-specific IgE antibodies (sIgE) is associ-

ated with an increased risk of wheeze/asthma, and among

asthmatic patients with more severe disease and diminished

lung function (1–4). The level of sIgE to common inhalant

allergens offers more valuable information than a simple

detection of ‘positive sIgE’ (4, 5). Different allergen sources

(both indoor and outdoor) have been independently associated

with asthma and asthma-related symptoms (6–9). However, it

remains unclear how allergen sensitizations in toto contribute

towards clinical manifestations of different atopic diseases

(e.g., asthma vs. rhino-conjunctivitis vs. eczema).

The increasing availability of allergen components (purified

from natural source or produced as recombinant proteins)

marks the shift in allergy diagnosis that may lead to a

transition towards component-resolved diagnostics (10). For

example, the multiplex chip-based assay ImmunoCAP ISAC�

has been validated in terms of performance and reproducibility

(11), providing an opportunity to identify both allergen

patterns and their interactions in relation to different clinical

outcomes. Using ImmunoCAP ISAC� assay, the sIgE anti-

body profiles associated with asthma, exhaled nitric oxide and

airway hyper-reactivity (AHR) have been investigated, with

multiple sensitizations to several allergen groups increasing the

risk of asthma (12).

We hypothesized that different sIgE patterns are predictive

of different diseases commonly associated with atopy; also,

different interpretation algorithms, component threshold

ascertainment and/or value transformation may modify the
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association between such patterns and clinical symptoms. To

address these hypotheses, we investigated the ability and the

interpretability of different linear and nonlinear statistical

learning models in classifying contemporaneous asthma,

wheezing, AHR, rhino-conjunctivitis and eczema. Models were

fit on sIgE levels measured by the ISAC� among participants

in a population-based birth cohort at age 11 yrs. We used

machine learning methods such as decision trees (DTs) (that

divide study population into nested subgroups, based on

allergen thresholds and combinations, each with a specific

probability of manifesting clinical symptoms) and Bayesian

networks (BN) (graphs that represent causal dependencies of

variables), coupled with logistic regression (LR), to fully

exploit the large amount of information provided by the

microarray, and to associate it to clinical symptoms.

Methods

Study population and data sources

Manchester Asthma and Allergy Study is a population-based

birth cohort described in detail elsewhere (13). The study was

approved by a local ethics committee; informed consent

was obtained from all parents. All data in this manuscript

were ascertained at age 11 yrs. We administered validated

questionnaires to collect information on parentally reported

symptoms and physician-diagnosed illnesses. We measured

AHR using methacholine challenge (14).

Definition of outcomes

Current asthma

Positive answer to all three of the following questions: (i) ‘Has

your child wheezed within the past 12 months?’, (ii) ‘Has your

child received asthma medication within the past 12 months?’

and (iii) ‘Has your child ever been diagnosed with asthma?’.

Current wheeze

Positive answer to the question ‘Has your child had wheezing

or whistling in the chest in the last 12 months?’.

Current eczema

Positive answer to the question ‘Has your child had eczema in

the last 12 months?’.

Current rhino-conjunctivitis

Positive answer to the question ‘In the past 12 months, has

your child ever had a problem with sneezing, or a runny nose,

or a blocked nose when he/she did not have a cold or the flu

which was accompanied by itchy-watery eyes?’.

Airway hyper-reactivity

Provocative concentration of methacholine causing a 20%

decline in FEV1 < 16 mg/ml.

All outcomes were encoded as binary variables. Other

variables considered in the descriptive statistics were FEV1,

FVC, FEV1/FVC ratio, eNO and methacholine dose-response

ratio.

Detection of IgE antibodies

The presence of sIgE to 112 allergen components was assessed

by the ImmunoCAP ISAC� (ThermoFisher Scientific, Upp-

sala, Sweden).

Transformation of sIgE values

In the analyses described below, we expressed sIgE values as

follows: (i) binarized using the threshold of 0.3 ISU; (ii)

discretized into four categories using the manufacturer’s

semiquantitative scale (<0.3 ISU, undetectable or very low;

≥0.3 and <1 ISU, low; ≥1 and <15 ISU, moderate to high;

≥15 ISU, very high); (iii) discretized using an automated

supervised discretization approach (15); (iv) continuous raw

values; (v) square-root or hyperbolic-arcsine transformation

(16); (vi) using other normalization methods such as quantile

normalization (17).

Statistical learning

For a detailed explanation of the methods, please see the

Supporting Information. Briefly, we analysed the discrimina-

tive ability of sIgE patterns in relation to clinical outcomes by

fitting a series of machine learning models. All analyses were

adjusted for gender. Statistical models were run on the subset

of patients with at least one sIgE > 0 ISU.

Logistic regression

We fitted main-effects LR using: (i) the sum of and the number

of positive sIgE values; and (ii) sIgE to all allergen components

(using different transformations). For the latter, due to the

high number of variables, LR was subject to feature selection

via LogitBoost (18).

Decision tree and random forest models

These models were fitted to investigate possible nonlinear/

interaction effects (19, 20). DTs are machine learning methods

that divide population into nested subgroups according to

values of the covariates, usually those that have the highest

discriminatory power with respect to the outcome. For

example, our study population could be divided into two using

Fel d 1 IgE below or above 0.3 ISU. Other tree-branching rules

can then be inferred on the two subpopulations, and so on

recursively until a stopping criterion is met (e.g., a minimum

number of subjects per subgroup). This progressive data

partition can be represented in the form of a tree (Fig. S1).

DTs are easy to interpret, but sometimes have poor predictive

power. RFs are an ensemble of several different DTs, fitted

with resampling/randomization, with the aim to improve

prediction performance by combining many decision pathways

(e.g., averaging across many DT predictions). DT and RF have

dedicated methods for measuring variable importance which

can capture complex interactions, without the need of explicitly

defining them.

Bayesian networks

Bayesian networks are graphs in which each node is a covariate,

and a link between two nodes represent a dependency. If no link
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is present between two nodes, they are conditionally indepen-

dent. For a comprehensive introduction to BN modelling for

biomedicine, please seeMill�an et al. (21). The na€ıve Bayes (NB),

a simpler model which assumes conditional independence

among variables, was also fit as a control to BN.

Model performance

Goodness-of-fit functions for assessing prediction performance

of models included as follows: accuracy (% correct), area under

the receiver operating characteristic (AUROC), sensitivity and

specificity. The ability to generalize on unseen data was assessed

through repeated validation, executing for 50 times a random-

ized training/test procedure (80%/20%) and comparing differ-

ences between models with a paired-corrected t-test. We also

assessed power of the sample in relation to covariate size.

Results

Participants

We reviewed 822 children. Sample for IgE measurement was

obtained for 461 (56.1%); there was no difference in gender,

family history of allergic diseases, position in sibship, asthma,

sensitization (skin tests) or parental atopy between those with

and without IgE (data available on request). A total of 238 of

461 (51.6%) children tested positive (sIgE > 0.3 ISU) to at

least one allergen component. Characteristics of study partic-

ipants are shown in Table 1.

Distribution and transformation of sIgE values

The distribution of sIgE values was highly skewed; Fig. S2

shows the histograms upon several input transformations. In a

preliminary test on model performance (AUROC in relation to

asthma, using LR and RF), we found that the binary

discretization of sIgE values using the 0.3 ISU threshold was

performing less well compared with a continuous scale or a

multiple categorization. The manufacturer’s semiquantitative

scale performed better than the binary threshold, although not

significantly. The automated supervised discretization method

yielded the best results. Fig. S3 shows detailed box plots of

AUROC performance across all transformation methods.

Discriminative ability of sIgE patterns in relation to clinical

outcomes

Robustness of model performance

Average AUROC > 0.5 was achieved for asthma, wheeze,

rhino-conjunctivitis and AHR in all statistical learning models;

Table 1 Characteristics of the study population at age 11 (N = 426)

At least one IgE > 0

Median (IQR) or N
Missing

Male 154 Female 84 Total 238 N/A

N1 = 238 (51.6%)

Number of specific

positive IgE (>0.3 ISU)

7.5 (3.0–14.5) 7.0 (2.0–12.0) 7.0 (3.0–13.0) N/A

Sum of all IgE 34.0 (8.4–130.2) 38.9 (1.9–132.8) 36.4 (4.9–131.4) N/A

Asthma 33 15 48 4

Eczema 36 22 58 5

Mean eNO 14.6 (8.8–33.8) 19.9 (9.8–41.7) 17.6 (9.4–37.8) 62

FVC 2.7 (2.4–3.0) 2.5 (2.3–2.9) 2.6 (2.4–3.0) 3

% predicted FEV1 99.2 (91.0–107.4) 98.5 (92.2–103.7) 99.0 (91.6–106.0) 3

Current wheeze 48 25 73 3

AHR 62 31 93 59

Rhino-conjunctivitis 63 28 91 3

Methacholine dose-response ratio 3.20 (1.01–5.47) 3.48 (0.95–6.11) 0.98 (3.28–5.84) 57

FEV/FVC ratio 0.86 (0.81–0.90) 0.89 (0.84–0.92) 0.86 (0.82–0.91) 4

All IgE = 0 Male 101 Female 122 Total 223 N/A

N2 = 223 (48.4%)

Asthma 5 5 10 9

Eczema 15 14 29 7

Mean eNO 8.3 (6.9–10.7) 8.1 (6.5–10.4) 8.2 (6.6–10.6) 46

FVC 2.7 (2.5–3.1) 2.6 (2.3–2.9) 2.7 (2.4–3.0) 6

% Predicted FEV1 98.3 (93.0–106.1) 99.0 (91.8–106.6) 98.6 (92.5–106.5) 5

Current wheeze 8 10 18 2

Airway hyper-reactivity 23 18 41 50

Rhino-conjunctivitis 7 9 16 11

Methacholine dose-response ratio 4.69 (2.88–6.48) 5.13 (3.81–6.81) 4.99 (3.54–6.57) 53

FEV/FVC ratio 0.86 (0.82–0.90) 0.89 (0.85–0.93) 0.88 (0.83–0.92) 13
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in contrast, this was not achieved for eczema (AUROC~0.5).
However, although AUROC for eczema for all models was

poor, in the univariate analysis, sIgE to egg ovomucoid,

ovalbumin and ovotransferrin were significantly associated

with eczema (Gal d 1, p = 0.02; Gal d 2; p = 0.02; Gal d 3,

p = 0.02). We also observed a strong trend for bovine allergens

Bos d 4-5-6 (p = 0.06, p = 0.06, p = 0.04, respectively).

Overall, all models showed reasonable AUROC (0.76–0.82
for RF, 0.63–0.79 for LR, 0.56–0.77 for BN, 0.64–0.76 for NB)

and sensitivity (0.69–0.97 for RF, 0.54–0.95 for LR, 0.58–0.96
for BN, 0.62–0.92 for NB), but poor specificity (0.34–0.70 for

RF, 0.40–0.69 for LR, 0.32–0.54 for BN, 0.38–0.57 for NB),

except for the positive AHR (higher specificity, decreased

AUROC/sensitivity).

Table 2 Performance of statistical learning models by means of 50 independent validation runs, stratified by different outcomes

Outcome Method Feature set Feature/topology selection AUROC (s.d.)

Sensitivity

(s.d.)

Specificity

(s.d.)

Asthma Majority

class

N/A N/A 0.50 (0.00)* 1.00 (0.00) 0.00 (0.00)*

LR Number of positive

IgE + sum of all IgE

N/A 0.71 (0.10)* 0.96 (0.03) 0.20 (0.12)*

LR 112 IgE + gender Cross-validated LogitBoost 0.79 (0.08) 0.95 (0.03)* 0.40 (0.15)

DT 112 IgE + gender Embedded (information gain, pruning) 0.59 (0.10)* 0.96 (0.06) 0.14 (0.16)

RF 112 IgE + gender Embedded (Gini index, random subset) 0.82 (0.06) 0.97 (0.04) 0.34 (0.13)

NB 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.76 (0.08) 0.91 (0.05)* 0.38 (0.15)

BN 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.77 (0.07) 0.96 (0.03)* 0.32 (0.15)

Wheeze Majority

class

N/A N/A 0.50 (0.00)* 1.00 (0.00) 0.00 (0.00)*

LR Number of positive

IgE + sum of all IgE

N/A 0.67 (0.06)* 0.93 (0.04)* 0.13 (0.08)*

LR 112 IgE + gender Cross-validated LogitBoost 0.72 (0.07) 0.94 (0.05) 0.37 (0.12)

DT 112 IgE + gender Embedded (information gain, pruning) 0.61 (0.08)* 0.90 (0.09) 0.29 (0.20)

RF 112 IgE + gender Embedded (Gini index, random subset) 0.78 (0.06) 0.91 (0.05)* 0.45 (0.12)

NB 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.69 (0.06)* 0.92 (0.06)* 0.30 (0.12)

BN 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.65 (0.07)* 0.93 (0.10) 0.29 (0.12)

Rhino-

conjunctivitis

Majority

class

N/A N/A 0.50 (0.00)* 1.00 (0.00) 0.00 (0.00)*

LR Number of positive

IgE + sum of all IgE

N/A 0.80 (0.07) 0.84 (0.07)* 0.44 (0.11)*

LR 112 IgE + gender Cross-validated LogitBoost 0.73 (0.07)* 0.79 (0.09)* 0.53 (0.13)

DT 112 IgE + gender Embedded (information gain, pruning) 0.66 (0.06)* 0.81 (0.11)* 0.47 (0.17)

RF 112 IgE + gender Embedded (Gini index, random subset) 0.78 (0.07) 0.80 (0.08)* 0.57 (0.11)

NB 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.75 (0.07) 0.88 (0.06)* 0.41 (0.12)*

BN 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.73 (0.07)* 0.82 (0.08)* 0.50 (0.12)

AHR Majority

class

N/A N/A 0.50 (0.00)* 1.00 (0.00) 0.00 (0.00)*

LR Number of positive

IgE + sum of all IgE

N/A 0.57 (0.11)* 0.70 (0.19)* 0.39 (0.20)*

LR 112 IgE + gender Cross-validated LogitBoost 0.64 (0.05)* 0.55 (0.18)* 0.70 (0.23)

DT 112 IgE + gender Embedded (information gain, pruning) 0.64 (0.10)* 0.55 (0.18)* 0.70 (0.21)

RF 112 IgE + gender Embedded (Gini index, random subset) 0.76 (0.07) 0.69 (0.11)* 0.70 (0.10)

NB 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.64 (0.10)* 0.62 (0.20)* 0.57 (0.25)

BN 112 IgE + gender Cross-validated wrapper

(best-first search, K2)

0.56 (0.06)* 0.58 (0.21)* 0.54 (0.29)

AHR, airway hyper-reactivity; AUROC, area under the receiver operating characteristic; BN, Bayesian networks; DT, Decision tree; LR, Logistic

regression; NB, na€ıve Bayes; RF, random forests.

*The hypothesis of difference in means comparing against the best model (in bold) could not be rejected at p = 0.05.
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Random forest outperformed other approaches in terms of

AUROC in all but one outcome (rhino-conjunctivitis). LR

(model ii) ranked always as the best in terms of specificity. The

number of variables selected by LogitBoost yielded a median

(IQR) of 9 (7–18) covariates permodel across all validation runs.

In most cases, the hypothesis that there was no difference in the

mean performance among the RF, LR,NB and BN could not be

rejected at the 0.05 level. Performance of DT was consistently

inferior to that ofRF (p < 0.05), and the same held forLRmodel

i (encoding the number of positive IgE + sum of all IgE), except

for rhino-conjunctivitis. Table 2 summarizes prediction perfor-

mance obtained by the repeated validation; AUROC plots are

shown in Fig. 1. For this experiment, we used the square-root

transformed sIgE, but similar results were obtained for the other

transformation methods.

Variable importance in relation to clinical outcomes and their

dependencies

Fig. 2 shows RF feature importance plots with respect to

asthma and rhino-conjunctivitis across 1000 permutation runs.

The importance is expressed as rescaled decrease in accuracy

when randomizing a variable of interest. For asthma, there was

a broader set of top-scoring allergens belonging to different

sources including dust mite, cat, dog and pollens, whilst the

top-scoring allergens for rhino-conjunctivitis were all pollens

followed by dust mite. The order of variables may change when

randomizing permutations (22); indeed, variable ranks and

associated p-values for our data set were subject to a consistent

degree of variation.

There was partial consistency between the variables selected

by the stepwise heuristic for NB/BN with the top-scoring

variables output by the RF. Similarly, runs of stepwise LR with

different starting points led to different final sets, probably due

to a number of correlated variables. Fig. 3 shows the mutually

adjusted odds ratio from LogitBoost LR, including only

variables significant (p < 0.05) in univariate analysis. Supple-

mentary results give a more thorough explanation of the

relevant variables and their association into ‘equivalency’

groups (Figs S4–S6).
Fig. 4 depicts two optimized NB and BN structures for

asthma and rhino-conjunctivitis. The networks shown here are

representative of a single run; therefore, we cannot exclude the

possibility that there are other topologies and variable sets with

comparable performance.

Discussion

Key findings

We investigated the ability of linear and nonlinear statistical

learning models fit on ISAC� assay data, to identify asthma,

wheezing, AHR, rhino-conjunctivitis and eczema. In general,

all modelling techniques (excluding DRs) performed compa-

rably. With the exception of eczema, all outcomes could be

predicted with an AUROC > 0.5. Random forests (RF)

outperformed other approaches in terms of AUROC, whilst

LR ranked as the best in terms of specificity. We could not

clarify if a main-effect model or a model that hypothesizes

conditional independence among variables (LR/NB) was

performing as well as a model which accounts for interactions

or conditional dependencies (RF/BN). Based on these results,

one could argue that a simple linear score (LR) with fewer

allergen components (from 7 to 18) may be as effective as a

more complex model. However, we cannot rule out the

possibility that interactions among allergens may have a

potentially important role.
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Figure 1 Performance of statistical learning models in classifying the asthma and rhino-conjunctivitis outcomes, using the full feature set

(112 IgE + gender) by means of area under the receiver operating characteristic, across 50 independent validation (80%/20%) runs. Results are

out-of-sample predictions (i.e., on unseen data). Bars represent standard errors.
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Our data suggest that sIgE discretization and transforma-

tion policy may increase the model performance compared

with the single dichotomous threshold at 0.3 ISU. The number

of positive sIgEs and the sum of all sIgE levels were poorer

predictors of asthma, wheeze and AHR compared with the

information on all components, supporting the evaluation of

all specific components rather than an overall qualitative

assessment.

Limitations and interpretation

From a methodological point of view, one limitation of this

study lies within the procedures for feature/model selection.

A challenge within BN learning is the simultaneous estima-

tion of both node set and topology, limited here by the usage

of two nested heuristic searches. Reliability of the associa-

tions in the networks was not assessed, nor the stability of

selected feature sets. The selection of main effects and

interactions might be also dependent on the discretization

policy.

The advantage of coupling machine learning methods with

classical statistical models is that more complex mechanistic

hypotheses can be investigated and that large, sparse, hetero-

geneous data sets can be analysed. Furthermore, by comparing

performance of nonlinear and linear methods, one can ascertain

whether the unexplained variability (e.g., poor prediction of the

outcome) can be reduced by measuring other potentially

important variables, permitting formulation of new hypotheses.

Our data suggest that a careful and informed sIgE discret-

ization/transformation may increase the performance,

although the differences in AUROC of various approaches

could not be always confirmed at the formal 0.05 signifi-

cance level. The semiquantitative coding suggested by the

manufacturer performed better than using the binary threshold

at 0.3 ISU (albeit not significantly). In our data set, the

automated supervised discretization method yielded the best

Asthma - mean decrease in accuracy

Rhino-conjunctivitis - mean decrease in accuracy

Der f 2
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Figure 2 Feature importance plots

for the asthma outcome (upper

panel) and for the rhino-

conjunctivitis outcome (lower panel)

measured as mean decrease in

accuracy from fitting a random

forest and performing an outcome

permutation test (1000 runs). Green

intervals represent rescaled average

(�standard deviation) decrease in

accuracy, whilst box plots represent

the null distribution (randomized

outcomes); p-values are highlighted

in red. Only the first 10 variables

shown.
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results, supporting the notion that a range of population-

specific (and perhaps age-specific) expected values should be

established for different populations. Given the multimodal

and skewed nature of sIgE distributions and relatively modest

sample size, further analyses in larger data sets are warranted.

We cannot exclude the possibility that different thresholds are

applicable to different components.

The heuristic algorithms for attribute selection yielded

compact sets of predictors (from hundreds to a dozen,

confirmed when applying the automated supervised discretiza-

tion approach), which simplifies the interpretation of the

results. Not surprisingly, we confirmed previous findings (12)

that mite, pollen and pet allergens are top-scoring predictors of

asthma, whilst pollens (and mite) are for rhino-conjunctivitis.

However, execution of the feature selection algorithms multiple

times led to variations in the sets and scores. This may be in

part due to highly correlated variables, but also other latent

causes. Such variability does not permit identification of one

unique model, and therefore, a unique pathway. Our results

suggest that pre-clustering of allergens into relevant families

may help stabilize the feature selection phases and may

potentially be more useful than standard classifications by

source (e.g., pollen or mite).

The prediction models for eczema had poor performance,

suggesting either that disruption in skin barrier function may

be more important in the pathogenesis of eczema than IgE-

mediated mechanisms or that other allergens not available on

the chip may be predictive of eczema (e.g., Staphylococcus

aureus enterotoxins) (23).

Conclusions

Component-resolved diagnostic tests may offer a more

accurate assessment of allergic diseases. However, further
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Figure 3 Multivariable logistic regression for asthma and rhino-conjunctivitis outcomes (upper and lower panel, respectively), showing mutually

adjusted odds ratios and associated p-values from the LogitBoost algorithm (run on the whole data set). Only variables significant in the

univariate analysis were included (p < 0.05).
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improvements in threshold ascertainment and/or value trans-

formations for different allergen components, well-thought-out

interpretation algorithms and selection of components are

needed to fully capitalize on the potential of the technology.
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Additional Supporting Information may be found in the online

version of this article:

Figure S1. Example of a decision tree, classifying an

outcome of interest (1/2) based on the values of variables x,

y and z.

Figure S2. Distribution of IgE values from the ISAC chip

(ISU scale) by selecting all (left panels) and strictly positive (>0,
right panel) values.

Figure S3. Performance of RF and LR models by varying

the input IgE transformation function, specifically (from left to

right): binary 0.3 ISU threshold (blue colour), column-wise

quartile discretisation, matrix-wise quartile discretisation,

square-root transform, raw values, supervised discretisation,

matrix-wise standardisation, quantile normalisation, and man-

ufacturer’s semi-quantitative scale.

Figure S4. Correlation plots for allergen IgEs. Spearman

rank-correlation was used, and the correlation matrix has been

sorted to group highly-correlated allergen groups.

Figure S5. Hierarchical clustering of allergen IgEs. Man-

hattan (L1 norm) distance was used, aggregating instances

progressively with the complete linkage method.

Figure S6. Thresholded adjacency graph of allergen IgE,

based on Spearman’s rank-correlation.
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