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Abstract

Multi-relational dynamics are ubiquitous in many complex systems like transportations,

social and biological. This thesis studies the two mathematical objects that encapsulate

these relationships — multiplexes and interval graphs. The former is the modern outlook in

Network Science to generalize the edges in graphs while the latter was popularized during

the 1960s in Graph Theory.

Although multiplexes and interval graphs are nearly 50 years apart, their motivations

are similar and it is worthwhile to investigate their structural connections and properties.

This thesis look into these mathematical objects and presents their connections.

For example we will look at the community structures in multiplexes and learn how

unstable the detection algorithms are. This can lead researchers to the wrong conclusions.

Thus it is important to get formalism precise and this thesis shows that the complexity of

interval graphs is an indicator to the precision. However this measure of complexity is a

computational hard problem in Graph Theory and in turn we use a heuristic strategy from

Network Science to tackle the problem.

One of the main contributions of this thesis is the compilation of the disparate literature

on these mathematical objects. The novelty of this contribution is in using the statistical

tools from population biology to deduce the completeness of this thesis’s bibliography. It

can also be used as a framework for researchers to quantify the comprehensiveness of their

preliminary investigations.

From the large body of multiplex research, the thesis focuses on the statistical prop-

erties of the projection of multiplexes (the reduction of multi-relational system to a single

relationship network). It is important as projection is always used as the baseline for many

relevant algorithms and its topology is insightful to understand the dynamics of the system.
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Chapter 1

Introduction

Complexity Theory studies the collective behavior of a system of interacting agents, and

a graph (network) is often an apt representation for such system. Typically the agents

are modeled as indistinguishable vertices, and the interactions between a vertex pair are

denoted with an edge in the graph. For example a social network maps people as vertices

and their acquaintanceships as edges of a graph.

Although the theories and algorithms had shown to be successful in many applications,

graphs occasionally trivialize the complex interactions between real-world entities. The

sophisticated relationships between people are more than acquaintanceship, i.e. they can

be colleagues, family, friends, etc.

Therefore it is important to refine the graphs such that we can encapsulate these rela-

tionships into our models. Broadly speaking this thesis studies the properties of a graph

when additional edges are introduced, as fine structures, to represent these relationships.

Although such multi-relational systems are currently the modern outlook in Network

Science, this thesis brings us back to the 1960s where Graph Theorists pondered about the

same problems but with a different type of fine structures. We will study the nature of these

fine structures and fill the gaps between Network Science and Graph Theory.
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1.1 In Search for Linear Fine Structures of Life

The vertices of an interval graph represent intervals over a real line where overlapping

intervals denote that their corresponding vertices are adjacent. This implies that the vertices

are measurable by a metric and there exists a linear structure in the system.

Interval graphs was first applied to deduce the linearity of genes when Benzer noticed

that the behavior of mutated strains of bacteriophage T4 (virus) forms an interval graph

[15] ∗. The vertices are the different mutated variants of T4 such that they do not have the

complete genome to kill bacterias independently. However two disabled viruses are able

to so together if their mutated regions do not overlap, since the information of the entire

genome of the original T4 is contained in the virus pair.

In the experiment, Benzer placed an edge between mutant pairs if the bacterias survived

to denote that the pairs’ mutated regions overlapped. The resultant graph was an interval

graph which lead him to conclude the linear structure of genes. On the contrary if the

resultant graph is not an interval graph, its topology can be determined in higher dimensions

(example in section 2.1.3). This is used in ecology and operations research to deduce the

“hidden” structures and stability of complex systems [50].

When these “hidden” structure are non-linear, it is the generalization of interval graphs

where the vertices are d-dimensional hyper-boxes such that intersecting boxes imply that

their corresponding vertices are adjacent in the graph G. This can be visualized by taking

the species in an ecology as boxes and each of the axes measures a different environmental

factor like temperature, soil acidity, amount of sunlight, etc. Each species are enclosed

in their unique environment phase space where they are adaptable, and hence intersecting

boxes imply that the species can coexist in a common environment.

Most of the research were published between the 1960s to 1980s where Graph Theo-

rists study the non-linearity of the different graph ensembles (section 2.1). The reason is

that to determine the dimensionality on general graphs is reducible to a NP-complete prob-

lem. Thus the research focus was shifted from a scientific framework to an analytical and

computational interests of mathematicians.

∗This thesis’s title in fact pays homage to Benzer’s paper, “On the topology of the genetic fine structure”
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1.2 A Distant Family in Network Science

Figure 1.1: The bottom figures are the different fine structures of the graph in the top figure.
The bottom left is the graph’s 2-dimensional hyperbox representation, whereas the bottom
right is the graph’s multiplex on two relationships (represented by dotted and solid lines).

After interval graph research went out of fashion in the 1980s, it was not revisited when

Network Science expressed interests with multi-relational† networks known as multiplex.

A multiplex generalizes the edge set of a network where a vertex pair can be connected

by multiple edges and each edge represents a different relationship. For example a social

multiplex refines the relationships between people from acquaintanceship to specific roles

like friends, colleagues or family (Fig. 1.1).

Multiplex research gain global populace in science as it is a natural transition from net-

works to preserve the rich relational data of the system [23, 95]. Hence multiplex research

are very similar to network research, albeit more complicated analytically. For instance

†This is also known as multi-“dimensional” by some researchers. For clarity the term “dimension” is
reserved for the hyper-boxes representations.
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similar to networks, we can extend the study to the structural properties [17], information

propagation [108], communities detection [111] and link prediction [56] of multiplexes.

Therefore there is no paradigm change from network to multiplex research, and hence

there are very few reasons for one to refer back to Graph Theory (the origins of Network

Science) for inspirations — many could have assumed that the change is equally small for

Graph Theory. However this assumption is wrong as the dimensionality of graphs can be

posed as a very different problem, i.e. interval graphs.

The connection is subtle as interval graphs and multiplexes are in fact a type of intersec-

tion graph [119], where vertex pairs are connected if they have overlapping attributes. For

instance in a social multiplex, two individuals are connect as schoolmates if they are in the

same school together (attribute); Similarly an interval graph of historical figures connects

two people as contemporaries if they exist in the same period (attribute).

1.3 Outline

There is a clear gap in the relevant research of multiplexes and interval graphs (chapter 2).

Thus chapter 3 detailed the structural properties found during the exploratory phase of this

research and the connections between these fine structures.

Chapter 4 studies the communities detection problem on multiplexes. It is one of the

main applications in Network Science to modularize a complex system into simpler com-

ponents. There are multiple contributions in this chapter, namely a comprehensive survey

and comparison of existing algorithms. New analytical bounds for the algorithms were also

found using Probabilistic Methods [2] from Extremal Graph Theory.

Chapter 5 presents interval graphs from the perspective of Network Science. Using

communities detection as a heuristic strategy, we are now able to determine the dimen-

sionality of graphs more efficiently. Furthermore interval graph is also a plausible model

to simulate the behavior of discontinuous flow of information in real world networks, i.e.

information flow between nonadjacent vertices.

The compilation of such a large body of research is such a challenging task that Chapter

6 is dedicated to describe the process. The novelty of the chapter is the application of

Mark-and-Recapture from population biology to estimate the minimum size of the essential



1.4 Research Trajectory and Contributions 16

literature, i.e. measuring the completenesses of the bibliography.

Finally Chapter 7 summarizes this thesis and shares some personal perspectives. It

highlights the challenges and uncertainties that arise during the investigations which in

turn shapes the research trajectory of this thesis.

1.4 Research Trajectory and Contributions

The history of this research may help to explain the unfolding of this thesis’s content and

direction. Initially the focus was on the communities detection problem for multiplexes

and chapter 4 was the phase to compare all the existing algorithms. However multiplex

research is still in its infancy and there was not many open dataset or synthetic multiplex

benchmarks for the study then.

Although new data can be collected, it is hard to support its quality and validity. Thus

the decision was to investigate if established real-world networks (e.g. Zachary Karate Club

Network) can be “reversed” such that we can derive the relationships for the multiplexes.

This allows us to verify if the conclusions from the networks’ algorithms are consistent

(to a certain degree) with the results from the multiplexes’ algorithms. I.e. since these

networks are well studied, they act as the “ground-truth” for multiplexes.

Therefore chapters 3 and 5 are part of the research to understand the fundamentals

of multiplexes with reference to networks. Unfortunately more research are still required

before the goal will be met, however at this stage we had learned much more structural

properties towards the transition from networks to its fine structures. Thus this thesis as its

title suggested studies “the topology of network fine structures”.

Finally we need to list down the main contributions in this thesis. The rational is that

the contributions are disparate and easily lost within the text of this thesis. This is an

interdisciplinary research where many somewhat unrelated ideas are interwoven together,

thus it might not be clear to identify the new materials.

• Chapter 3 is mainly some analytical properties of the resultant graph when we project

multiplexes on two relationships. All the materials are original except for Theorem

3.5.1, 3.5.2 and 3.6.1.
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• Many of the results in Chapter 3 are exploratory findings, and hence only some are

used in later chapters. I.e. section 3.4.1, 3.4.4 and 3.6 are foundations used in con-

structing some of our synthetic mathematical models in the later chapters.

• There are multiple contributions in Chapter 4:

– The literature review on multiplex communities detection is more comprehen-

sive and supplements the reviews by Boccaletti et al. and Kivelä et al.. [23, 95].

– Derived new analytical bounds (corollary 4.3.2 and 4.3.3) for multiplex com-

munities detection algorithms using probabilistic methods.

– Showed that all the proposed multiplex communities detection algorithms are

similar conceptually in ideal situations, but empirically very different when

tested against benchmark multiplexes (Section 4.7).

• One of the challenges in creating benchmarks for multiplex communities detection

algorithms is to determine the number of relationships in a multiplex. Many current

literature worked around this issue by prudent decisions and qualitatively argue their

choices. Section 5.1 shows that the connection between multiplexes and interval

graphs allows us to quantify the number of relationships in a system (multiplex).

• Section 5.1 also introduced a heuristic method from Network Science to optimize the

computation hard (graph theory) problem on interval graphs. More importantly this

method is tolerant to experimental errors, hence meaningful for scientific work.

• Another main challenge in multiplex research is that the literature is disparate and

thus it is difficult to consolidate the relevant research. Chapter 6 is an objective way

to support the completeness of this thesis’s bibliography using methodologies (i.e.

Mark-and-Recapture) from population biology.

• Lastly the additional novelty in Chapter 6 is to apply Mark-and-Recapture on search

engines to determine a stopping rule for research, i.e. how many entries in the search

results must we explore before there is diminishing return in knowledge gained.
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Chapter 2

Related Work

Interval graphs were actively studied during the 1960s and a comprehensive review can

easily covers two book volumes [63, 119]. Similarly to consolidate the literature on mul-

tiplexes is also a massive task [23, 95], as the research is disparate across the different

disciplines like Physics, Computer Science and Sociology. Hence to support the core ma-

terials of this thesis, only the relevant materials are presented in this review.

2.1 Interval Graphs

Definition 2.1.1 An Interval Graph I(V,E) maps a set of intervals {J1, . . . , Jn} as ver-

tices such that adjacent vertices (a, b) ∈ E denotes Ja ∩ J b 6= ∅ [63] (Fig. 2.1).

The sequential nature of the intervals implies that there is a linear ordering ≺ on the

vertices where for all vertex triples v1, v2, v3 ∈ V with v1 ≺ v2 and v2 ≺ v3, if (v1, v3) ∈ E
then (v1, v2) or (v2, v3) ∈ E. This colloquially means that there is no “shortcut” in the

graph, i.e. no independent vertex triples where every pair are connected by a path avoiding

all neighbors of the third. This property is known as Asteroid-Triple free (AT-free).

Theorem 2.1.2 An interval graph is chordal and AT-free [106].

The lack of “shortcut” in AT-free graphs restricts the number of paths among the ver-

tices in the graph and hence limits the search space for a variety of problems. Thus the

AT-free property presents useful algorithmic structure on interval graphs such that some

NP-complete graph problems are tractable in polynomial time [42].
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Figure 2.1: The duality of an interval graph (above) and a set of intervals (below). There
is a bijective map between the vertices of the graph and the intervals where overlapping
intervals denote the adjacency of their corresponding vertices. For example interval A
overlaps interval B implies that vertex A is adjacent to vertex B, vice versa.

2.1.1 Recognizing Interval Graphs

A sketch of the algorithm to identify interval graphs helps to illustrate the intrinsic beauty

of the AT-free property. It is similar to divide-and-conquer algorithms like quick-sort [81]

where a pivot is chosen so that the problem is divided into more manageable search space.

In this case we need to choose a clique as a pivot such that it divides the rest of the

vertices into two sets of intervals. Since there is no shortcut, the two sets of intervals are

disjoint. This pivot is chosen from the list of maximal clique in the graph.

For all vertices v, the final step is to order the cliques in the list such that cliques with

common v are arranged sequentially. If there is no such arrangement, then the graph is

not an interval graph. Specifically a graph is an interval graph if there exists a column

permutation on the incidence matrix between the cliques (columns) and vertices (rows)

such that the ones in every row appears consecutively.

This can be computationally expensive without the use of PQ-Trees [26]. Hence con-

sider the following simple example in Fig. 2.1: The list of maximal cliques of the graph is
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{{A,B,C}, {B,C, F}, {C,D,E}, {B,C,D}} and the incidence matrix is:

ABC BCF CDE BCD
A 1
B 1 1 1
C 1 1 1 1
D 1 1
E 1
F 1

Row B does not have consecutive ones, as there is a gap in the column {C,D,E}.
Hence by swapping the last two columns on the right, all the rows are in consecutive runs

of ones and thus demonstrate that Fig. 2.1 is an interval graph.

2.1.2 Interval Graphs As Hyper-Boxes

The graph from the intersection of interval graphs I i(V,Ei), i.e. G(V,E1 ∩ . . . ∩ Em)

forms a set of axis-parallel hyper-boxes as vertices in m dimensions, and adjacent vertices

imply that their corresponding hyper-boxes intersect. The minimum m interval graphs to

represent G is its boxicity and it is a measure of complexity (Fig. 2.2).

A competition graph in ecology connects two species (vertices) if they compete over

the same food. For instance in Fig. 2.2, vertices A and B are connected, hence in the

hyperbox representation (left of the graph) box A intersects box B. In the context of a

marine food web, the axes can be described by two factors — the size of the prey and the

depth of the water. I.e. the dynamics of the prey-and-predator can be modeled by the two

niches, where each species is enclosed in its unique position of environment niches.

For example suppose the horizontal axis refers the size of the prey and the vertical axis

refers to the depth of the water. Comparatively to species B, species A tends to be found

nearer to the surface of the water and prey on smaller food sources. However since the

boxes overlap, it means that at certain depth of the water we can find both species and food

source of size that both of them can prey on. Although ecology is generally known to be a

complex system, this hyperbox representation is conceptually much simpler. In fact Cohen

showed that many food webs are interval graphs (1-dimensional) where the ordering of the

intervals (as predators) correlates to the size of their preys [47].
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Figure 2.2: The set of 2-dimensional boxes A, . . . , F corresponds to the graph on its right,
and they are from the intersection of 2 interval graphs with vertex labels A′, . . . , F ′ (di-
mensional 1) and A′′, . . . , F ′′ (dimensional 2). Adjacent vertices are equivalent to saying
that their respective boxes intersect. However a graph constructed from m-dimensional
boxes does not necessary implies that it has boxicity m. For instance the top graph with
vertex labels X, . . . , Z is constructed with m = 2-dimensional boxes, but since it can be
represented with a 1-dimensional interval graph, its boxicity is one.
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However it is computationally hard to determine the boxicity of an arbitrary graph [140]

as there are more degrees of freedom to position the hyperboxes in d-space. For example to

test if the bottom graph in Fig. 2.2 can be embedded in 2 dimensions, the exhaustive search

algorithm is to iterate all pairs of interval graphs in hope that there is a pair such that their

(edge) intersection gives us the graph. Each possible candidate interval graph on n vertices

is first determined by the ordering of n disjoint intervals (e.g. A′B′C ′D′E ′F ′). Next the

intervals are extended such that the interval graph’s edge set is the superset of the graph’s

edge set. Since there are n! possible orderings in the first step, hence there are (n!)2 pairs

of candidate interval graphs solutions. If no solution is found, then the process is repeated

for all 3 (more if necessary) combinatorial tuples of interval graphs to check if the graph

can be embedded in 3 (or more) dimensions. Hence it was an active research to bound the

boxicity of graphs (Table 2.1) such that computation can be bounded:

Graph Boxicity
Cycle [140] = 2
Tree [41] = 2
Outerplanar graph [149] ≤ 2
Planar graph [162] ≤ 3

Bipartite graph with independent sets V1 and V2 [41] ≤ mind |V1|
2
e, d |V2|

2
e

Graph with minimum vertex cover of size t [41] ≤ b t
2

+ 1c
Turan graph on n vertices with n/2 partitions [41] = n/2
Split graph with clique K [41, 51] ≤ d |K|

2
e

Complete multipartite graph Kn1,...,np [140] = |i : ni > 1|
Graph with genus g [62] ≤ 5g + 3
Line graph of a multigraph with maximum degree d [43] ≤ 2d(dlog2(log2d)e+ 3) + 1
Graph on n vertices with average degree d [42] = O(d lnn)
Graph on n vertices with Maximum degree d [44] ≤ min(n/2, d2 + 2, d(d+ 2) lnne)
Graph on n vertices with Minimum degree d [1] ≥ n/(2(n− d− 1))

Table 2.1: Boxicity of different graphs ensembles.

However most of these bounds are not tight, e.g. a balance bipartite graph has boxicity

up to one quarter of the graph’s size. Amongst the list of analytical bounds, there is an

interesting relationship between boxicity and graph genus. The genus of a graph is defined

as the minimum number of holes on a surface such that the graph can be embedded without

crossing edges (planar). What is noteworthy is that the genus of a graph affects the scaling
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properties from large-world (small genus) to ultrasmall-world (large genus) networks [6].

Consequently a graph with large boxicity implies an ultrasmall-world network, although

conversely it is not true as low boxicity does not imply large-world network (e.g. a complete

graph has boxicity 1, but with genus = d(n− 3)(n− 4)/12e) [6].

Lastly the boxes are synonymous to embedding graphs in m dimensional Minkowski

r-metric space M r
m such that for all adjacent u, v ∈ V , their distance in the metric space is

bounded by some length [66]:

duv(〈f1(u), . . . , fm(u)〉, 〈f1(v), . . . , fm(v)〉) ≤ lu + lv, (2.1)

where lu and lv are length given for their respective vertices∗, and 〈f1(u), . . . , fm(u)〉 is a

vector mapping u to the metric space with the real-value functions f1, . . . , fm. In addition

the functions fi on all u, v ∈ V is conditioned by Minkowski r-metric space:

duv =
[ m∑
i=1

|fi(u)− fi(v)|r
]1/r

. (2.2)

The arbitrary constant r is a weighting parameter where all components |fi(u)− fi(v)|
are equally weighted for r = 1 (i.e. Manhattan Distance). For r = 2 (i.e. Euclidean

Distance), the components that are greater contribute more to the distance. Hence by letting

r = ∞ to complete the metric space, the greatest component will dominate i.e. duv =

maxmi=1 |fi(u)− fi(v)|, where each vertex is a hyper-box with sides parallel to the axes.

2.1.3 Topology of an Unknown Structure (Example)

How did Benzer deduced the linearity of genes with interval graphs (backstory in section

1.1)? And how is it different from a non-linear structure? Suppose there are two hypotheses

of a gene’s structure — linear and branched (Fig. 2.3).

∗Each vertex is given a distinct length that corresponds to its “volume” of the hyperbox. Suppose for all
u and v, their length are equal, i.e. lu = lv = l, then in r = 2 each vertex is a sphere with radius l. Vertex
pairs are adjacent if their corresponding spheres intersect. In the case of boxicity, the volume hyperboxes
varies in volume, hence lu do not necessarily equals to lv . Hence lu and lv are arbitrarily chosen such that
they are long enough to intersect with adjacent vertices’ hyperboxes, yet short enough to avoid intersecting
non-adjacent vertices’ hyperboxes.
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Figure 2.3: A comparison of a linear structure (left) and a branched structure (right). Ad-
jacent vertices denote that their respective segments overlap (e.g. vertex C is adjacent with
vertex F as segment C overlaps with segment F ). Since the graph on the left corresponds
to a linear structure, it is an interval graph. The graph on the right is not an interval graph
as vertices 3, 5 and 6 form an asteroid-triple — path 3-1-6 (3-4-5 and 5-2-6) avoids the
neighbors of vertex 5 (respectively 6 and 3).
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The vertices are the different mutated variants of a virus such that they do not have the

complete genome to kill bacterias independently. Let vertex A refers to the variant where

segment A of the virus is changed. Given that virus pairs with overlapping segments do not

have the complete information to kill the bacterias, an edge is placed between them. Since

the graph on the left is constructed from a linear structure, we get an interval graph.

However if genes were a branched structure, then the resultant graph will not be an

interval graph. In the same figure, vertices 3, 5 and 6 form an asteroid-triple — the path 3-1-

6 (3-4-5 and 5-2-6) avoids the neighbors of vertex 5 (respectively 6 and 3). It is noteworthy

to observe that by removing any of the vertices 1, 2 or 4 is sufficient to reduce the graph

to an interval graph. It is also possible to get an interval graph by removing edges {1, 3}
and {1, 4} from the original graph. Thus interval graphs only supports the hypothesis of a

linear structure, but it is insufficient to prove the linearity of a system.

Therefore interval graphs is a very sensitive to changes and experimental errors. Section

5.1.3 shows that communities detection can be used to identify graphs that can be expressed

as interval graphs with minor modifications.

2.1.4 Scale-Free Interval Graph

Miyoshi et al. proposed an interval graph ensemble that exhibits two real-world character-

istics — high clustering coefficient and power-law degree distribution. However due to the

Asteroid-Triple-Free property of interval graphs, it fails to be a small-world graph [121].

The construction (Fig. 2.4) is similar to a Barabási-Albert graph (section 2.3.1) where

the scale-free graph grows by iteratively adding new vertices to the graph. The number

of new vertices at each time step follows a Poisson distribution with mean λ and their

length L follows a power-law distribution Pr(L = k) = 1/ζ(α) · (k + 1)−α, where ζ(α)

is the Riemann’s zeta function. Hence the probability that a vertex has degree k follows a

power-law distribution P (k) ∼ λα−1

ζ(α)
k−α, and the clustering coefficient is bounded below

by

Pr(L = 0) + Pr(L = 1)e−Cλ
(

1 + Cλ +
1

2

∑
d≥2

d− 2

d− 1

Ck
λ

d!

)
, (2.3)

where Cλ = λ
(
ζ(α−1)
ζ(α)

+
)
− 1 [121].
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Figure 2.4: Visual description on the construction of scale-free interval graph with high
clustering coefficient. The underlying linear structure is time (axis at the bottom). It is
similar to Barabási-Albert graph where at time t, we add some new vertices/intervals. The
number of new vertices is determined by the Poisson distribution where in this example 3
new intervals are added (interval C, D and E). Next, the length of the new intervals are
determined by a power-law distribution and in this example length of interval D and E is
1 unit of time. The above is the interval graph from the set of intervals. In the complete
implementation in [121], there is an addition procedure that extends the length of intervals
generated before time t. At time t, intervals with end points at time t, e.g. interval A,
can be extended to time t + 1 probabilistically (determine by power-law distribution). In
this example, only interval B is extended. This procedure allows more intervals to have
longer length and hence more likely for the graph to be connected. Without this additional
procedure, most intervals will have unit length (since the length is power-law distributed)
and will have many instances like disjoint intervals A and D.
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2.1.5 Real World Examples

Besides in Bioinformatics [20, 87], interval graphs arise naturally in many time dependent

applications like task scheduling [39] or other linear structures like pavement deterioration

analysis [68] and food-webs in ecology [47].

Scheduling is one of the main problems in operation research where it optimizes the

process to complete a set of tasks, where every task is an interval with a specific start that

cannot be interrupted. Thus it can be modeled as an interval graph with the tasks as vertices

and two vertices are adjacent if their corresponding tasks overlap in time. For example if

each task can only be assigned to one machine, the basic interval scheduling problem

questions the minimum number of machines required to complete all the tasks. This can be

posed as a graph theory problem to determine the chromatic number of the interval graph,

where each color defines a distinct machine [96].

In ecology, a system is stable if few species will go extinct after random species are

removed from the ecology. It is believed that low complexity food-webs are generally less

stable [86], and boxicity is one of such measures [47, 158].

For example a food-web that is an interval graph usually orders the species according

to the size of their prey. If all the species of a particular size is removed from the ecology,

their predators which are usually slightly larger in size will in turn dies off. Since the

effects from the extinction of these predators will cascade to larger predators, thus causing

the instability of the ecology.

Therefore the boxicity of an ecology is of particular interests for ecologists. Eklöf et al.

analyzed 200 ecological networks and discovered that only 35 systems are interval graphs,

and almost all but four have boxicity < 6 [60]. The maximum boxicity is the Phrygana

Pollination network with boxicity = 9. It was also observed that the boxicity scales almost

linearly with the logarithm of the number of edges.
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Figure 2.5: The two different visual representations of the same multiplex M =
{G1, G2, G3}. The left figure shows 3 “layers” of graphs where G1, G2 and G3 are the
upper, mid and lower layer respectively. Each relationships is drawn with a distinct line
style. The figure on the right is a “flatten” representation of the same multiplex, where
parallel edges are drawn between vertex pairs to illustrate the multiple relationships. The
dotted vertical lines are just a way to visualize the alignment of the vertices in the layered
representation of the multiplex.

2.2 Multiplex

2.2.1 Disparate Terminology

Definition 2.2.1 (Multiplex) A multiplex is a finite set of m graphs,M = {G1, . . . , Gm},
where every graph Gi = (V,Ei) has a distinct edge set Ei ⊆ V × V (Fig.2.5).

Multiplex is a natural transition from graph for researchers as a model to preserve

the rich relational properties in the data. Hence there are concurrent and disparate in-

vestigations on multiplex which inevitably gave multiplex many synonymous names like:

Multigraph [49, 71], MultiDimensional Network[16, 17, 83, 92, 107, 146, 161], Multi-

Relational Network [33, 36, 115, 143, 153, 159], MultiLayer Network [28, 31, 52, 108,

123], PolySocial Networks [5], Multi-Modal Network [3, 103, 126], Heterogeneous

Networks [56] and Multiple Networks [117]. The fragmented nature of the literature will

be further discussed in Chapter 6.
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2.2.2 Projection Of Multiplex

Definition 2.2.2 (Projection) Given a multiplex M = {G1(V,E1), . . . , G
m(V,Em)}, its

projection is the graph G(V,E1 ∪ . . . ∪ Em).

One of the strategies to understand high dimensional systems is to map the system onto

lower dimensions. The projection of a multiplex is a simpler and more familiar representa-

tion to work on. For example Zachary Karate Club Network is a projection of eight social

relationships among the karate club members [167].

Although we can get more “sophisticated” by proposing similar graph metrics for mul-

tiplex, it only creates further fragmentation to the literature. For example the following are

alternative extensions for a multiplex to define the set of adjacent vertices of vertex v, i.e.

the neighbors of v:

Definition 2.2.3 (OR-Neighbors) LetM∗ ⊆M, the OR-neighbors of v ∈ V is the number

of vertices adjacent to v in at least one of the graph in M∗ [17, 146]:

OR-Neighbors(v,M∗) = {u|(u, v) ∈ Ei, Gi ∈M∗, u ∈ V }. (2.4)

Definition 2.2.4 (AND-Neighbors) Let M∗ ⊆ M, the AND-Neighbors of v ∈ V is the

number of adjacent vertices to v in all Gi ∈M∗ [19]:

AND-Neighbors(v,M∗) = {u|(u, v) ∈ ∩Gi∈M∗Ei, u ∈ V }. (2.5)

Definition 2.2.5 (XOR-Neighbors) Let M∗ ⊆ M, the XOR-Neighbors of v ∈ V is the

number of vertices adjacent to v in M∗ and not in the complement of M∗ [17]:

XOR-neighbors(v,M∗) =

{u|(u, v) ∈ ∪Gi∈M∗Ei \ ∪Gj∈M\M∗Ej, u ∈ V }.
(2.6)
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Definition 2.2.6 (MIN-Neighbors) The MIN-Neighbors of v ∈ V is the number of vertices

u ∈ V that are adjacent to v in at least α graphs [30]:

MIN-Neighbors(v, α) =
{
u
∣∣∣ ∑
Gi∈M

δ(u, v, Ei) ≥ α
}
, (2.7)

where δ(u, v, Ei) = 1 if (u, v) ∈ Ei, zero otherwise.

For example consider v to be the 3rd vertex in Fig. 2.5 and let M∗ = {G1, G2}. Thus

the OR-Neighbors, AND-Neighbors and XOR-Neighbors of v are {1, 4, 5}, {1, 4} and {4}
respectively. Also if α = |M∗| = 2, then the MIN-Neighbor of v is {1,4}.

Each of these definitions can be used as the building blocks to algorithmically extend

new metrics for multiplex [30, 31, 33, 107]. For instance the clustering coefficient of a

vertex v is the ratio of the number of triangles at v to the number of pairs of adjacent

vertices to v. Since a triangle is a cycle of 3 adjacent steps, the clustering coefficient of a

multiplex can be extended to any of the definitions of adjacency in multiplex [30, 53].

Although these new definitions might be meaningful to their respective applications,

they are too narrow to study multiplex purely as a general mathematical object, yet too

diverse if every combinations of the definitions are considered in this thesis. Thus this

thesis does not further investigate these alternative definitions.

2.2.3 Multiplex Communities

A community is broadly described as a set of interacting agents that collectively behaves

differently with non-community agents. The process to identify these communities mod-

ularizes a complex system into simpler representations so as to form the bigger picture of

the system. However there is no universally accepted formal definition as the construct of a

community often depends on its problem domain [64]. The relevant literature on multiplex

communities are presented in chapter 4 so that the chapter can be self-contained.
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2.2.4 Real World Examples

Depending on the level of abstraction, many applications can be disguised as multiplexes

[23, 95] or other generalized graph models (section 6.1). Thus to avoid introducing unnec-

essary technical terminologies, it will be more accessible to take commonplace examples

like social networks and transportation systems.

One of the early references of multiplexes in social networks was to describe the “mul-

tiplexity” social ties of the Medici family in the 1400s [133]. However only recently there

are scientific research on multiplexes to study the dynamics of people that may be con-

nected through more than one form of relationships, e.g. family, hobbies, work place and

so forth. Since it is a closer representation of the real world system, it is assumed that it will

be more accurate to determine the community structures [16, 18, 58, 105, 120, 134, 161]

or to predict future links between people [76, 109].

However the type and the number of relationships in a social multiplex is often arbitrar-

ily chosen by the researchers or limited by the quality of the data. For example the Zachary

Karate Club Network [167] was from the data of eight different types of relationships and

it was projected as a single-relational network. The granularity of these relationships is

important as it has effects on simple features like the centrality [13], yet there are very few

studies on it [55]. In fact many open dataset for social multiplexes [59, 141, 161] do not

critically justify their choice of relationships.

In contrast the relationships in transport multiplexes are often well defined by the phys-

ical infrastructure. Multiplexes in transportation networks are also known as multimodal

networks, where bus stops, train stations and terminals are indistinguishable locations (ver-

tices) to transit to a different mode of travel. Cardillo et al. modeled the data of European

Air Transportation (EAT) Network as a multiplex of airports where two of them are con-

nected if there is a direct flight between them [37, 38]. To define the multiplexity of the

data, each relationship maps the routes of a different airline.
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2.3 Preliminaries

The following are some essential basics that are mentioned throughout this thesis.

2.3.1 Graph Ensembles

Erdős-Rényi, Watts-Strogatz and Barabási-Albert models are some of the popular graph en-

sembles in Network Science for their simple constructions and useful mathematical prop-

erties. This thesis used different combinations of these graph ensembles as constructions

for multiplex.

Erdős-Rényi

A realization of an Erdős-Rényi graph [61] is selected with equal probability from the set

of all possible graphs with n vertices and |E| edges. However to generate a huge random

Erdős-Rényi is difficult. To circumvent this problem one may instead let the number of

edges fluctuate slightly and consider a Gn,p model in which every vertex pair is connected

with probability p where p = |E|/
(
n
2

)
. The difference is that Erdős-Rényi has precisely |E|

edges while Gn,p has approximately |E| edges with high probability.

The properties on the edges and vertices of a Gn,p graph can be easily expressed as

random variables of well known distributions, hence there are much more analytical results

on Gn,p than Erdős-Rényi graph. For example if limn→∞np → constant, then the degree

distribution of the graph follows a Poisson distribution with mean np. However the most

famous result among them is in the 1960 paper by Erdős and Rényi:

Theorem 2.3.1 (Sharp Threshold of Gn,p) Let Gn,p be a graph on n vertices where vertex

pairs are connected with probability p. The sharp threshold for connectedness is lnn/n

such that If p < lnn/n (respectively p > lnn/n), then with high probability Gn,p is

disconnected (respectively connected) [61].

Therefore many literature also refer Erdős-Rényi graph as Gn,p, although it was pro-

posed much earlier by Solomonoff, Rapaport and Gilbert in 1950s [69, 154].
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Watts-Strogatz

A Watts-Strogatz graph on n vertices, Wn,w,q is parameterized by w and q for its mean de-

gree and probability of rewiring respectively [164]. The construction begins with a regular

ring lattice where each vertex connects to w/2 neighbors on each side.

Let the vertices be ordered from v1, . . . , vn. For every vertex vi ∈ V and i < a, each

edge leaving vi is rewired with probability q. The rewiring process replaces {vi, va} with

{vi, vb} where vb is chosen uniformly in the set {va+1, . . . , vn} such that the resultant graph

remains a simple graph and every configuration has an equal chance to occur. This process

allows a Watts-Strogatz graph to evolve from a regular Ring Lattice to an Erdős-Rényi

graph, i.e. as q → 1, Wn,w,q → Gn,w/(n−1).

The distinctive property of a Watts-Strogatz graph is its high clustering coefficient that

decreases at the rate (1− q)3 for increasing value q. For q = 0, its clustering coefficient is

≈ 3/4 and it is independent to the size of the graph n [11].

Barabási-Albert

Barabási-Albert graph on n vertices [10] is denoted by Bn,s where s is the number of

new edges at each iteration. The construction begins with some arbitrary small number of

vertices connected at random.

At each iteration, one new vertex of degree s is added. The edges of the new vertex are

connected probabilistically with a probability pi proportional to the degree of the existing

vertices vi. This is referred to as the preferential attachment and is defined by:

pi =
degree(vi)∑
j degree(vj)

. (2.8)

This process yields a graph with power-law degree distribution with probability distri-

bution function ∼ 2s2k−3.
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2.3.2 Louvain Algorithm

Definition 2.3.2 (Modularity) Let Aij be the adjacency matrix of a graph with |E| edges

and ki is the degree of vertex i. Indicator function δ(vi, vj) = 1 if vi and vj are in the same

community, otherwise δ(vi, vj) = 0. The quality (modularity) of the communities is defined

by [130]:

Q =
1

2|E|
∑
ij

(
Aij −

kikj
2|E|

)
δ(vi, vj). (2.9)

The modularity of a partition of a graph measures how different the clusters of vertices

(communities) are from a random graph (Def. 2.3.2), and this global metric is simply the

summation of local information between all vertex pairs which will face resolution limits

[100]. The effectiveness of modularity function is limited by the size of the graph as local

information becomes less representative to the bigger picture by ignoring larger but more

meaningful subgraph structures. For example small and dense cliques that are loosely

connected will be grouped together as a community by the modularity function although

contextually it is preferred to identify these cliques as individual communities. Thus we

will fail to discover well-defined small communities in large graphs. This is not a main

concern in this thesis as the graphs in our experiments are usually small, within the order

of thousands of vertices.

Louvain Algorithm [22] is one of the many communities detection algorithms in the

literature to maximize the modularity function. It is a greedy algorithm that iterates a two-

steps process that first optimizes the modularity locally into communities and then merges

the vertices in the same community as vertices of a new (higher “hierarchy”) graph. Each

iteration is a hierarchy of partition and the hierarchy with the maximum modularity is

chosen as the solution.

In the communities detection problem for multiplex (chapter 4), some algorithms re-

quire a communities detection algorithm for graphs as an interim step to derive a partial

solution. Although it is assumed that any arbitrary algorithm is suffice, in some of the liter-

ature Louvain Algorithm was chosen [18, 166]. Hence to stay close to the experiments in

the literature, the other communities detection algorithms for graphs [64] were not consid-

ered in this thesis.



35

Chapter 3

Statistical and Structural Properties of

Multiplex and Interval Graph

The research presented in this chapter is published in [112, 113, 114].

3.1 Notations and Preliminaries

The following are the notations for the different graph ensembles in this thesis:

Notation Description

G(V,E) A graph on vertex set V and edge set E.

M A multiplex.

Gi The ith graph in the multiplex.

I i The ith interval graph.

J i The ith evolutionary interval graph.

Gn,p Erdős-Rényi Graph.

Bn,m Barabási-Albert graph.

Wn,w,q Watts-Strogatz graph.

Rn,d A d-regular graph.

Gn,α A random graph with maximum degree α.

GP The resultant graph from the projection ofM.

H The resultant graph from the intersection of the edge set ofM.
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In addition the following are the notations used exclusive for this chapter:

Notation Description

∪ The union of the edge sets (projection) of a multiplex.

∩ The intersection of the edge sets of a multiplex.

vimax The vertex with the greatest centrality in Gi.

vPmax The vertex with the greatest centrality in GP .

degi(v) Degree of vertex v in graph Gi.

degP (v) Degree of vertex v in projection graph.

T (v) The number of triangles incident to vertex v.

To ensure that none of the graphs in the multiplex dominate the behavior of the multi-

plex, the size of the edge sets has to be approximately equal, i.e. |Ei| ≈ |Ej|. Lastly the

following lemmas and concepts are useful in the later analysis.

Definition 3.1.1 (Hypergeometric Function) Suppose we have n urns. Choose a < n

urns and place one ball in each. Next choose b < n urns and place one ball in each. The

probability that exactly i urns contain two balls is defined by the hypergeometric function

H(i;n, a, b) =

(
a
i

)(
n−a
b−i

)(
n
b

) . (3.1)

Definition 3.1.2 (Overlaps) Let two edges from two different graphs inM be e(u, v) ∈ Ei
and e′(u′, v′) ∈ Ej , where i 6= j. Edges e and e′ overlap if and only if e = e′.

Lemma 3.1.3 Let E1 and E2 be the edge sets of two Gn,p. The probability that there are ε

overlapping edges is:

P (|E1 ∩ E2| = ε) = H
(
ε;

(
n

2

)
, |E1|, |E2|

)
. (3.2)

Proof Color |E1| edges blue out of the total possible
(
n
2

)
edges of a complete graph to

denote the edges of E1. Next color |E2| edges red to the same complete graph. The proba-

bility that ε blue edges are colored over by red is defined by the hypergeometric function.

Eq. 3.2 is the probability that there are ε overlapping edges between the two graphs on

the same vertex set. Thus the expected number of overlapping edges is given by:
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Corollary 3.1.4 Let E1 and E2 be the edge sets of two Gn,p. The expected number of

overlapping edges is the expectancy of the hypergeometric function in equation 3.2:

E[|E1 ∩ E2|] = E[H] =
|E1| · |E2|(

n
2

) . (3.3)

In fact we can generalize the above to compute the number of overlapping cliques in

the union. In particular it is useful to count the number of overlapping triangles (3-clique)

as it affects the accuracy of the clustering coefficient in the projection of two graphs.

Lemma 3.1.5 Let K1 and K2 be the sets of c-cliques of two Gn,p. The probability that

there are ε overlapping c-cliques is:

P (|K1 ∩K2| = ε) = H
(
ε;

(
n

c

)
, |K1|, |K2|

)
. (3.4)

Proof Color |K1| c-cliques clue out of the total possible
(
n
c

)
c-cliques of a complete graph.

Next choose |K2| c-cliques from the complete graph and color the edges red. The proba-

bility that ε blue c-cliques is colored over by red is defined by the hypergeometric function.

Corollary 3.1.6 Let K1 and K2 be the sets of c-cliques of two Gn,p. The expected number

of overlapping c-cliques is the expectancy of the hypergeometric function in equation 3.4:

E[|K1 ∩K2|] = E[H] =
|K1| · |K2|(

n
c

) . (3.5)

The above lemmas are some global measures on the projection of two Erdős-Rényi

graphs and can be inaccurate for special ensembles of graphs. For example in the projec-

tion of two star graphs, lemma 3.1.3 is not applicable to estimate the distribution of the

overlapping edges, since there are either n− 1 or 2 overlapping edges.

However to compute the degree distribution of the projection graph accurately, we have

to minimize the double counting of the overlapping edges. Although the global measures

might not be accurate for the projection of non-Erdős-Rényi graphs, the same methodology

can be applied at a local level such that the errors can be minimized.
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Lemma 3.1.7 Let vi,1 and vi,2 be the vertices of graphs G1 and G2 on n vertices respec-

tively. If d1 = deg(vi,G1) and d2 = deg(vi,G2), then the probability that there are ε over-

lapping edges between vi,1 and vi,2 is:

Po(ε|d1, d2) = H(ε;n− 1, d1, d2). (3.6)

Proof There are n − 1 vertices left for vi,1 and vi,2 to connect to. Similar to the argument

in Lemma 3.1.3, there are d1 blue edges and d2 red edges from vi,1 and vi,2 respectively.

Corollary 3.1.8 Let vi,1 and vi,2 be the vertices of graphs G1 and G2 on n vertices respec-

tively. Let d1 = deg(vi,1) and d2 = deg(vi,2), the expected number of overlapping edges

between vi,1 and vi,2 is:

E[H] =
|d1| · |d2|
n− 1

. (3.7)

3.2 The Intersection of Multiplex

The projection of a multiplex appears to be the counter-thesis of network fine structures

by reducing the problem back to a graph. However to understand the connection between

multiplexes and graphs, it is important to study the process from both directions. Hence

without compromising too much relational information for simplicity, the analysis of the

overlapping edges pivotal, i.e. the graph H(V,E1 ∩ . . . ∩ Em).

The distribution of the overlapping edges is an essential characteristic to distinguish

multiplex ensembles from random [19, 45, 104, 139]. For example a multiplex is corre-

lated if the expected number of overlapping edges deviates from the projection of random

Erdős-Rényi graphs (lemma 3.1.3) [19]. The degree of correlation in turn affects the phase

transition of its structural properties like the emergence of a giant component [104].

Since each graph in a multiplex is the intersection of interval graphs, i.e. Gi(V,Ei) ∈
M = I i1∩ . . .∩ I id, thus the set of overlapping edges is also the hyper-box representation of

the system. Specifically the set of overlapping edges form the graphH(V,E1∩ . . .∩Em) =

(I11 ∩ . . . ∩ I1d) ∩ . . . ∩ (Im1 ∩ . . . ∩ Imd′ ). Hence the boxicity of H is not more than the sum

of the boxicity of the graphs, i.e. boxicity(H) ≤ d+ . . .+ d′.
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3.3 Degree Distribution

The degree (or valency) of a vertex is a measure of its connectivity where the high degree

vertices are usually the important agents in a system, e.g. major airports. However a

vertex’s degree is insufficient to determine its relative value in a huge graph as it is a local

measure. Thus the degree distribution of a graph is more informative.

The degree distribution Pr(k) of a graph is the fraction of vertices with degree k. There-

fore it is easy to determine a vertex’s percentile ranking of its connectivity from the degree

distribution. In addition the degree distribution is a global indicator to measure how similar

a graph is to a real world system [10].

3.3.1 Erdős-Rényi with Erdős-Rényi

The null model of a multiplex is the set of Erdős-Rényi graphs, i.e.M = {Gn,p, . . . , Gn,p′}.
Since the probability that an edge exists is independent for all graphs in the multiplex, hence

the probability that an edge exists in the multiplex’s projection of intersection is simply the

product of probabilities. Hence the resultant graphs are also Erdős-Rényi graphs:

GP = Gn,p ∪ . . . ∪Gn,p′ ∼ Gn,1−(1−p)...(1−p′), (3.8)

and

H = Gn,p ∩ . . . ∩Gn,p′ ∼ Gn,p...p′ . (3.9)

Thus their degree distributions follow the Erdős-Rényi graph ensemble.

3.3.2 Erdős-Rényi with Watts-Strogatz

As q → 1, a Watts-Strogatz Wn,w,q can be approximated as an Erdős-Rényi [164], so in

this limit the union is described by Eq. (3.8). For q → 0, most of the vertices in W

have degree k. Neglecting the overlapping edges (assuming sparse system), a vertex in the

projection therefore will have degree k when the corresponding vertex in Erdős-Rényi has

degree k − w. Hence:

Pr(k) ∼ (np)(k−w)e−np

(k − w)!
. (3.10)
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3.3.3 Erdős-Rényi with Barabási-Albert

Barabási-Albert graphBn,m on n vertices is an error-free model to simulate the preferential

attachment phenomenon, where m new edges are added at each iteration [10]. Therefore

this combination is similar to Barabási-Albert variants with experimental noise [57, 136]

in which preferential and random uniform (noise) attachment are combined.

We can apply Fokker-Planck approach to determine the asymptotic behavior. The out-

line is to begin with an Barabási-Albert graph and iteratively add a uniformly drawn random

edge to the graph. The new edges are taken from the non-overlapping edges of Erdős-

Rényi. Since there are nm edges in Barabási-Albert, hence there are nmp overlapping

edges or
(
n
2

)
p− nmp non-overlapping edges.

Let u(k, t) be the number of vertices of degree k at time step t. At each time step, a

new edge will change the degree of 2 vertices. With probability u(k − 1, t)/n, the number

of degree k vertices increases by one if the new edge attaches to a degree k − 1 vertex.

Similarly u(k, t) decreases by one if the new edge attaches to a degree k vertex. Thus

u(k, t+ 1) = u(k, t) + u(k − 1, t)/n− u(k, t)/n. (3.11)

By replacing t and k by continuous variables, we obtain a partial differential equation

which will be a good approximation for large values of k.

∂u

∂t
+

1

n

∂u

∂k
= 0. (3.12)

The initial condition is the degree distribution of Barabási-Albert, i.e. u(k, 0) ∼ 2nm2k−3.

Hence solve u(k, t) at t = T = 2 · (
(
n
2

)
p − nmp) (twice the number of non-overlapping

edges because there are two vertices that change at each time step) to find the degree dis-

tribution of the projection:

Pr(k) = u(k, T )/n =
2m2

(k + 2n(p− p2))3
. (3.13)

Fig. 3.1 compares the asymptotic expression againsts the analytic expression derived

by iterating Eq. (3.11) and the simulations. The continuum approximation of Eq. (3.12)
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Figure 3.1: The degree distribution of the projection of a Erdős-Rényi graph with a
Barabási-Albert graph. The solid line plots the iterative method, Eq. (3.11). The dot-
ted line plots the closed form Eq. (3.13). The crosses represent the distribution obtained
from simulations. The degree-distribution log-binning (base 10) of the crosses is plotted
with squares.

does not really have a region of validity since the finite number of vertices limits the size

of the degree and the asymptotic limit cannot be reach. However, the iterated solution of

the Fokker-Planck equation (3.11) matches the simulations.

For the intersection of this combination, if vertex v has degree k in Barabási-Albert

graph, then the number of overlapping edges incident to it is ≈ kp. Hence to derive the

degree distribution of this intersection, PrH(deg = x), group all the vertices in Barabási-

Albert that are most likely to have degree x after the intersection, i.e. bkpc = x. Thus:

PrH(deg = bkpc) ≈
b1/pc∑
i=0

PrB(deg = bkpc+ i), (3.14)
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or

PrH(deg = x) ≈
b1/pc∑
i=0

PrB(deg = dx/pe+ i), (3.15)

where PrB(deg = k) ∼ k−3 is the degree distribution of Barabási-Albert graph. Lastly

PrB(deg = dx/pe + i) ∼ dx/pe−3 as x/p � i for large x. Hence PrH(deg = x) ≈
b1/pc · dx/pe−3, implying that the subgraph is also scale-free (Fig. 3.2).

Figure 3.2: The degree distribution of the intersection of Erdős-Rényi and Barabási-Albert.

3.3.4 Watts-Strogatz with Watts-Strogatz

Let W 1
n,w,q and W 2

n,w′,q′ be two Watts-Strogatz graphs. If q ≈ q′ → 1, then the graphs can

be expressed as two Erdős-Rényi graphs and their projection was described in section 3.3.1.

In contrast the limit q → 1 and q′ → 0 is identical to the union of Erdős-Rényi graph and

Watts-Strogatz graph in section 3.3.2. Lastly for q ≈ q′ → 0, both graphs are almost regular

hence the degree distribution follows a hypergeometric function Pr(k) ∼ H(k;n,w,w′).



Chapter 3. Statistical and Structural Properties of Multiplex and Interval Graph 43

3.3.5 Barabási-Albert with Barabási-Albert

If power-law distribution are prevalent in real world systems, then it will be curious and

interesting to see the projection of scale-free systems. That is, to consider the projection of

the multiplexM = {B1
n,m, B

2
n,m′}.

The key feature of Barabási-Albert is that the degree distribution follows a power-law

function. Hence we want to know if the projection retain this characteristic. Let PrB(k) ∼
2nm2k−3 be the probability density function of Barabási-Albert, and to account for the ε

number of overlapping edges:

1. Probability that a vertex in B1, v1 has degree j, i.e. PrB(j);

2. Probability that a vertex in B2, v2 has degree k + ε− j, i.e. PrB(k + ε− j);

3. Probability Pro that there are ε overlapping edges between v1 and v2.

Then the combined probability is the given convoluted expression:

Pr(k) ∼
k∑
ε

k∑
j

Pro(ε|j, k + ε− j)PrB(j)PrB(k + ε− j) (3.16)

where Pro(ε) = H(ε;n− 1, d1, d2).

Unfortunately, the asymptotic behavior of Eq. 3.16 is unclear. Simulations (Fig. 3.3)

indicate a heavy-tailed distribution, but it is insufficient to suggests that the degree distri-

bution of the projection follows a power-law or log-normal distribution.

3.3.6 Watts-Strogatz with Barabási-Albert

LetWn,w,q andBn,m be Watts-Strogatz and Barabási-Albert graphs respectively, and for the

graphs to have equal number of edges, w ≈ 2m. When q → 1, Watts-Strogatz evolves to

an Erdős-Rényi graph and hence the results will be similar to the projection of Erdős-Rényi

and Barabási-Albert graphs in section 3.3.3.

For q → 0, since the probability of rewiring is low, most of the lattice edges in Watts-

Strogatz remain unchanged. Thus most of the vertices in Watts-Strogatz have degree ≈ w,
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Figure 3.3: The degree distribution of the projection of two Barabási-Albert graphs.

and hence contributes to an increase in the degree of the vertices of Baraási-Albert graph

by w. This gives the approximation for the asymptotic behavior (Fig. 3.4):

Pr(k) ∼ 2m2(k − w)−3. (3.17)

The degree distribution can be refined by considering the overlapping edge. However

the expression is in open form and provides little insights, similar to Eq. 3.16. Moreover

as k gets significantly greater than w, the overlapping edges at the high degree vertices of

Barabási-Albert graphs will be negligible. This implies that the behavior of the projection

follows a Barabási-Albert graph for large k, i.e. Pr(k) ∼ 2m2(k − w)−3 ∼ 2m2(k)−3.

However we are not able to analytically determine the degree distribution of the in-

tersection of Watts-Strogatz and Barabási-Albert graphs, although simulations suggests a

power-law-like degree distribution (Fig. 3.4).
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Figure 3.4: Top: The degree distribution of the projection of a Watts-Strogatz and Barabási-
Albert graph. Bottom: The degree distribution of the intersection of a Watts-Strogatz and
Barabási-Albert graph.
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3.4 Clustering Coefficient

Definition 3.4.1 (Clustering coefficient [164]) The local clustering coefficientCi of vertex

vi is the number of triangles incident to vi to the number of neighboring pairs of vi. Let E

be the edge set of the graph, and Ni be the set of neighboring vertices of vi, then:

clustering coefficient of a graph =
1

n

∑
Ci, (3.18)

where

Ci =
2|{(vj, vk) : vj, vk ∈ Ni, (vj, vk) ∈ E}|

deg(vi)(deg(vi)− 1)
. (3.19)

The clustering coefficient measures how likely the vertices tend to cluster. Similar to

the degree distribution of the projection, the distribution of the overlapping triangles affects

the accuracy of the clustering coefficient of the projection. However for sparse multiplexes,

the number of overlapping triangles can be taken to be negligible (lemma 3.1.6).

3.4.1 Watts-Strogatz with Barabási-Albert

Let vi,P be the ith vertex of the projection graph, and T (v) be the number of triangles at

vertex v. The clustering coefficient of the projection is given by:

Clustering Coefficient of GP =
1

n

n∑
i=0

Clustering Coefficient of vertex vi,P

=
1

n

n∑
i=0

T (vi,P )(
deg(vi,P )

2

) . (3.20)

Although there is no approximation to the number of triangles in a Barabási-Albert

graph, it is usually very small. Thus T (vi,P ) ≈ T (vi,ws) + T (vi,ba) where vi,ws and vi,ba are

the ith vertex of Watts-Strogatz and Barabási-Albert respectively, and hence

Clustering Coefficient of GP ≈ 1

n

n∑
i=0

T (vi,ws) + T (vi,ba)(
deg(vi,c)

2

)
≥ 1

n

n∑
i=0

T (vi,ws)(
deg(vi,c)

2

) . (3.21)
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Since we are considering q → 0, we can make the following observations: 1) The

number of triangles generated by Watts-Strogatz is much more than Barabási-Albert, hence

choosing T (vi,ws) will get a tighter bound. 2) Most of the vertices in Watts-Strogatz have

the same number of triangles attached due to the assumed low rewiring probability. Let τ

be the average number of triangles for any vertex in Watts-Strogatz given q. Thus:

Clustering Coefficient of GP ≥ 1

n

n∑
i=0

T (vi,ws)(
deg(vi,P )

2

)
≈ τ

n

n∑
i=0

1(
deg(vi,P )

2

)
=

τ

n

( 1(
2
2

) + · · ·+ 1(
2
2

) + · · ·+

1(
k
2

) + · · ·+ 1(
k
2

) + · · ·+

1(
n
2

) + · · ·+ 1(
n
2

))
= τ

(Pr(2)(
2
2

) + · · ·+ Pr(k)(
k
2

) + · · ·+ Pr(n)(
n
2

) )
= τ

n∑
k=2

Pr(k)
1(
k
2

) , (3.22)

where Pr(k) is the degree distribution of the projection graph (section 3.3.6).

From [11], the clustering coefficient of Watts-Strogatz decreases at the rate (1−q)3 and

τ ≈ (w/2)2 for q = 0. This is also equal to the rate of decrease to the number of triangles

since (1 − q)3 is the probability that none of the edges of a triangle is rewired. Thus we

have the following lower bound on the clustering coefficient of the projection:

Clustering Coefficient of GP ≥ (1− q)3w2

4

n∑
k=0

P (k)
1(
k
2

) . (3.23)

To obtain an upper bound on the clustering coefficient, we can round up the clustering
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Figure 3.5: The clustering coefficient of the projection of Watts-Strogatz and Barabási-
Albert graphs. The standard deviation error bar shows that the exact results are well within
the analytical bounds.

coefficient contribution originating from Barabási-Albert:

Clustering Coefficient of GP ≈ 1

n

n∑
i=0

T (vi,ws) + T (vi,ba)(
deg(vi,P )

2

)
=

1

n

n∑
i=0

T (vi,ws)(
deg(vi,P )

2

) +
1

n

n∑
i=0

T (vi,ba)(
deg(vi,P )

2

)
≤ 1

n

n∑
i=0

T (vi,ws)(
deg(vi,P )

2

) +
1

n

n∑
i=0

T (vi,ba)(
deg(vi,ba)

2

)
≈ (1− q)3w2

4

n∑
k=0

PGP (k)
1(
k
2

)
+ Clustering Coefficient of Bm. (3.24)
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3.4.2 Watts-Strogatz with Watts-Strogatz

Similar to the projection of two Barabási-Albert graphs, it is equally interesting to study

the projection of two Watt-Strogatz graphs W 1
n,w,q and W 2

n,w,q′ . Let vi,1 and vi,2 be the ith

vertices of W 1 and W 2 respectively, which are mapped to same the ith vertex (vi,P ) in the

projection graph.

In the limit q, q′ → 0 and q ≈ q′, almost every vertex of W 1 and W 2 are similar

in structure. i.e. T (vi,1) ≈ T (vi,2) and deg(vi,1) ≈ deg(vi,2) Hence even with random

pairing, every vertex of the projection will be similar. Furthermore for small w, there are

few overlapping edges. Hence T (vi,P ) = T (vi,1) + T (vi,2) ≈ 2T (vi,1) and deg(vi,P ) ≈
2deg(vi,1), then (Fig. 3.6):

Clustering Coefficient of GP ≈ 1

n

n∑
i=1

(
2T (vi,1)(
2deg(vi,1)

2

))

≈ 1

n

n∑
i=1

1

2

(
T (vi,1)(
deg(vi,1)

2

))
≈ 1

2
Clustering Coefficient of W 1. (3.25)

3.4.3 Watts-Strogatz with Erdős-Rényi

The clustering coefficient of the projection of Watts-Strogatz with Erdős-Rényi can be es-

timated in the same way as the previous sections. In the projection the maximum number

of triangles at vertex vi,P is
(
deg(vi,P )

2

)
. Among them, T (vi,ws) triangles are from the Watts-

Strogatz graph. The rest of the triangles exist if the edges of Erdős-Rényi connect the

neighbors of vi,P that are not connected from the edges of Watts-Strogatz.

With probability p from Erdős-Rényi, the number of neighbors pairs at vi,P that are

connected by the edges of Erdős-Rényi and not from Watts-Strogatz is:

((deg(vi,P )

2

)
− T (vi,ws)

)
p. (3.26)
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Figure 3.6: The clustering coefficient of the projection of two Watts-Strogatz graphs. Note
that as q gets further away from zero, the analytical estimate is many standard deviations
away from the empirical results. The reason is that Eq. 3.25 is applicable only for q that is
close to zero. For q → 1, the analytical bounds is similar to the projection of two Erdős-
Rényi graphs (section 3.3.1).

Hence together with similar approximation from Eq. 3.22 and Eq. 3.23,

Clustering Coefficient of GP ≈ 1

n

n∑
i=1

((
deg(vi,P )

2

)
− T (vi,ws)

)
p+ T (vi,ws)(

deg(vi,P )
2

)
=

1

n

n∑
i=1

(
deg(vi,P )

2

)
p+ T (vi,ws)(1− p)(
deg(vi,P )

2

)
= p+

(1− p)
n

n∑
i=0

T (vi,ws)(
deg(vi,P )

2

)
≈ p+

(1− p)(1− q)3w2

4

n∑
k=1

Pr(k)
1(
k
2

) , (3.27)

where Pr(k) is the degree distribution of the projection graph.
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3.4.4 General Observation

There is no analytical result to determine the clustering coefficient of the other combi-

nations of graph ensembles, although it can be numerically observed that their clustering

coefficients are generally low (Fig. 3.7). However it is possible to rank the projection of

the different combinations according to their clustering coefficients.

Let a/b, c/d and e/f be the clustering coefficient of the ith vertex of Erdős-Rényi,

Barabási-Albert and Watts-Strogatz respectively, where the numerator is the number of

triangles and the denominator is the number of triples. In general the relative ranking of

their clustering coefficient is given by:

a

b
<
c

d
<
e

f
. (3.28)

If the number of overlapping edges is small, then the clustering coefficient of the ith

vertex of the projection is the ratio of the total number of triangles to the total number of

triples. E.g. the clustering coefficient of the projection of Erdős-Rényi and Barabási-Albert

≈ (a+ c)/(b+ d). By the mediant inequality,

a

b
<
a+ c

b+ d
<
c

d
<
c+ e

d+ f
<
e

f
. (3.29)

Therefore analytically the projection with the lattice-like Watts-Strogatz (e.g. (c +

e)/(d+f)) yields higher clustering coefficient than other combinations. In fact from simu-

lations the clustering coefficient of {Watts-Strogatz∪Watts-Strogatz} > {Watts-Strogatz∪
Barabási-Albert} > {Watts-Strogatz ∪ Erdős-Rényi} (Fig. 3.7).

Lastly since the clustering coefficient of a subgraph is less than the graph itself, we

can deduce that their intersection has low clustering coefficient given that the clustering

coefficient of Barabási-Albert network is low.



3.4 Clustering Coefficient 52

Figure 3.7: Parameters: n = 1000, w = 10, m = 5 and p = k/(n−1). Let ER, WS and BA
be the abbreviation of Erdős-Rényi, Watts-Strogatz and Barabási-Albert graph. The x-axis
varies the rewiring probability (q) of Watts-Strogatz graph. For small q, combinations with
Watts-Strogatz graphs are high. Furthermore, the clustering coefficient of WS ∪ WS is
greater than WS ∪BA, which is greater than WS ∪ ER
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3.5 Centrality

The centrality of a network is the ranking of the vertices according to their relative impor-

tance when information flows through the network. A high centrality vertex is known as

the hub of the graph, where its absence could severely decrease the efficiency of communi-

cation. For example a high centrality vertex could be a major airport, city or a celebrity in

a social network. Therefore the interactions between the top centrality vertices of different

networks in a multiplex affect the dynamics of the system.

The different centrality metrics like Degree, Betweenness and Eigenvector Centrality

are used to reveal the different dynamics of information flow. However they are positively

well correlated in general [163], since the mechanics of the other two centrality measures

favor vertices with high Degree Centrality. Furthermore Betweenness and Eigenvector

Centrality are hard to compute efficiently for large networks, hence Degree Centrality is

often used to approximate these centrality rankings instead.

For example Eigenvector Centrality is the stable state of all vertices where a vertex’s

score is the sum of the centrality scores of its neighbors. Hence vertices with higher degree

(equivalently more neighbors) have more components in the sum, and this results in higher

Eigenvector Centrality score.

Similarly the Betweenness Centrality of a vertex v is the probability that the shortest

path between a randomly chosen vertex pair passes through v. A high degree vertex has

many edges leading into it and will therefore be more likely, than a low degree vertex, to

connect to a given shortest path between two arbitrarily chosen vertices.

The motivation of this research is that centrality is usually computationally expensive,

and it will be helpful to have some theoretical understanding on the stability of centrality

ranking. In short to extrapolate some information about the centrality without recomputing

the projection graph, specifically the probability that the top centrality vertex v1max in G1

remains top in the projection: Pr(v1max = vPmax).
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3.5.1 Distribution of Maximum Degree of Erdős-Rényi

Theorem 3.5.1 GivenGn,p, where 0 < p < 1 depends on n. If limn→∞ np(1−p)/(ln(n))3 →
∞ and x is a fixed real number, then from [24]:

lim
n→∞

Pr(Max Degree < a+ bx) = e−e
−x
,

where

a = np+
√

2p(1− p)n lnn
(

1− ln lnn

4 lnn
− ln (2

√
π)

2 lnn

)
;

b =

√
2np(1− p) lnn

2 lnn
.

Theorem 3.5.2 GivenGn,p, where 0 < p < 1 depends on n. If limn→∞ np(1−p)/ ln(n)→
∞ and x is a fixed real number, then from [8]:

lim
n→∞

Pr(Max Degree < a+
√
np(1− p)bx) = e−e

−x
,

where a and b defined similarly in Theorem 3.5.1.

These theorems determine the probability that the maximum degree of a random graph

is less than bound β1 = a + bx and β2 = a +
√
np(1− p)bx. If we express the expected

value of degP (v1max) as the same form as those bounds, then we can determine the proba-

bility that degP (v1max) is the maximum degree of the projection. For clarity Lemma 3.5.3

depends on β1 from Theorem 3.5.1, and Lemma 3.5.4 depends on β2 from Theorem 3.5.2.

3.5.2 Stability of The Top Degree Centrality Vertex I

Lemma 3.5.3 Let G1
n,p and G2

n,q be graphs in a multiplex, where 0 < p < 1 depends

on n. Given v1max and vPmax be the vertices with the highest Degree Centrality of G1 and

GP = G1 ∪ G2 respectively. If deg1(v1max) can be expressed in the same form as β1 in

Theorem 3.5.1, then:

lim
n→∞

Pr(v1max = vPmax)→ 0.
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Proof To simplify the algebra manipulations of deg1(v1max) = a + bγ, we group variable

n in each term together, i.e.

E(deg1(v
1
max)) = np+

√
p(1− p)C1 +

√
p(1− p)C2γ, (3.30)

where

C1 = C1(n) =
√

2n lnn
(

1− ln lnn

4 lnn
− ln (2

√
π)

2 lnn

)
;

C2 = C2(n) =

√
2n lnn

2 lnn
=

√
n

2 lnn
.

The expected number of edges incident at v1max in G2 (i.e. deg2(v1max)) is nq, thus the

expected number of overlapping edges incident at v1max is determined by lemma 3.1.4:

(np+
√
p(1− p)C1 +

√
p(1− p)C2γ) · (nq)/(n− 1)

≈ npq + q
√
p(1− p)C1 + q

√
p(1− p)C2γ. (3.31)

Let p′ = 1− (1− p)(1− q), the expected degree of v1max at GP is Eq. 3.30 + nq - Eq. 3.31:

E(degc(v
1
max)) = (np+

√
p(1− p)C1 +

√
p(1− p)C2γ) + nq

−(npq + q
√
p(1− p)C1 + q

√
p(1− p)C2γ)

= np′ + (1− q)
√
p(1− p)C1 +

√
p(1− p)(1− q)C2γ.

We now rearrange the right-hand-side of the expression of E(degP (v1max)) to bring it

into the same form as Eq. 3.30, with the probability p′ = 1− (1− p)(1− q) instead of p:

E(degP (v1max)) = np′ + (1− q)
√
p(1− p)C1 + (1− q)

√
p(1− p)C2γ

= np′ +
√
p′(1− p′)C1 + (1− q)

√
p(1− p)C2γ

−(
√
p′(1− p′)− (1− q)

√
p(1− p))C1

= np′ +
√
p′(1− p′)C1 +

√
p′(1− p′)C2

(
γ

√
p(1− q)

p′

)
−(
√
p′(1− p′)− (1− q)

√
p(1− p))C1

= np′ +
√
p′(1− p′)C1 +

√
p′(1− p′)C2x.
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Figure 3.8: The y-axis is the Pr(v1max = vPmax). The best-fit line shows the exponential
decay of the empirical simulations of the probability for increasing values of n.

And rewrite the equation such that the rest of the expression is in x:

x =
(
γ

√
p(1− q)

p′
−

(
√
p′(1− p′)− (1− q)

√
p(1− p))C1√

p′(1− p′)C2

)
(3.32)

=
(
γ

√
p(1− q)

p′
−
(

1−

√
p(1− q)

p′

)C1

C2

)
. (3.33)

Since limn→∞C1/C2 = limn→∞O(lnn) = ∞, this implies x → −∞. The proba-

bility that a random graph in the ensemble GP has maximum degree less than the bound

E(degP (v1max)) is given by Theorem 3.5.1, (exp(−exp(−x))) approaches zero.

This result is not particularly surprising since it can be suggested from simulations (Fig.

3.8), where the stability of the top Degree Centrality vertex decreases for increasing values

of n. However if we apply the same proof in Lemma 3.5.3 with Theorem 3.5.2 instead of

Theorem 3.5.1, then the probability converges to a non-zero limit:
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Lemma 3.5.4 Let G1
n,p and G2

n,q be graphs in a multiplex, where 0 < p < 1 depends

on n. Given v1max and vPmax be the vertices with the highest Degree Centrality of G1 and

GP = G1 ∪ G2 respectively. If deg1(v1max) can be expressed in the same form as β2 in

Theorem 3.5.2, i.e. a+
√
np(1− p)bγ then:

lim
n→∞

Pr(v1max = vPmax)→ e−e
−x
,

where x = γp
p−pq+q .

Proof Similar to the proof of Lemma 3.5.3, we group variable n in each term together:

E(deg1(v
1
max)) = np+

√
p(1− p)C1(n) + p(1− p)C2(n)γ,

where

C1(n) =
√

2n lnn
(

1− ln lnn

4 lnn
− ln (2

√
π)

2 lnn

)
;

C2(n) =
n
√

2 lnn

2 lnn
=

n√
2 lnn

.

With the same chain of algebraic manipulations, we get to the step in Eq. 3.32 where

in this case limn→∞C1/C2 = limn→∞O(lnn/
√
n) = 0:

x =
( γp

p− pq + q
−

(
√
p′(1− p′)− (1− q)

√
p(1− p))C1(n)

p′(1− p′)C2(n)

)
=

( γp

p− pq + q

)
.

Finally since x does not converge to −∞, from Theorem 3.5.2:

lim
n→∞

Pr(Max Degree of GP < E(degP (v1max))) = e−e
−x
> 0.

Lemma 3.5.3 states that if the maximum degree of a G1 is comparatively “small”, then

limn→∞ Pr(v
1
max = vPmax) → 0. However on the other extreme, if the maximum degree

is close to the theoretical maximum i.e. deg1(v1max) ≈ n − 1, then it is likely that it will

remain the top degree centrality since no vertices would have degree greater than n− 1.

The latter extreme case is uninteresting, but it suggests that there is a phase where the
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probability falls between zero and one. Lemma 3.5.4 shows that if an ensemble of graphs

whose maximum degree are sufficiently large, they can be expressed in the same form as

β2. Thus the non-zero probability in Lemma 3.5.4 follows.

From experiments the classic Erdős-Rényi model is not apt to demonstrate the non-

zero probability via simulations. A random graph picked from a Gn,p model tends to fit the

conditions of Lemma 3.5.3. If p is small, then the probability that the realization of a graph

in Gn,p with maximum degree in the same form as β2 is negligible. However if p is large,

the graph will tend to be an almost a complete (and uninteresting) graph.

Therefore it will be more insightful if we parameterize the graphs by their maximum

degree and ensure the realization of each graph in the ensemble has equal probability.

3.5.3 Mathematical Properties of Gn,α

Definition 3.5.5 Let Gn,α be a family of graphs on n vertices. The maximum degree of this

ensemble is exactly dα(n− 1)e, where 0 ≤ α ≤ 1.

A Gn,α graph is simply a subgraph of a dα(n− 1)e-regular graph. Hence the first step

to algorithmically generate a Gn,α is to pick a random dα(n− 1)e-regular graph. Next we

choose a vertex to be the maximum degree vertex of the ensemble and fixed all the edges

incident to it. To uniformly pick all the subgraphs induced by the rest of the edges, remove

the edges with probability 0.5.

This algorithm reveals the ensemble’s relationship with other graph models, which we

can use to deduce further properties of Gn,α. If a vertex and its incident edges are not fixed,

then it is possible for the resultant graph to have maximum degree < dα(n − 1)e. Such

graphs are known as random f-graphs [9], where they are in the set of all graphs with a

bounded maximum degree. Combine with the fact that Gn,α is a subgraph of a regular

graph, we have the following relationship:

regular graph ⊂ Gn,α ⊂ f -graph.

Therefore certain properties like the degree distribution of Gn,α can be analyzed by the

bounds of f -graphs and regular graphs.
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For example Koponen found that almost no vertices in a huge random f -graph have

degree less than d−2 = dα(n−1)e−2, i.e. the degree distribution is almost a Dirac Delta

Function like a dα(n− 1)e-regular graph [98]. This implies that the degree distribution of

a Gn,α follows a Dirac Delta Function too.

Another example is that the exact number of d-regular graphs is hard to count, and

in some cases an open problem. Since Gn,α is a subgraph of a realization of a regular

graph Rn,d, the number of subgraphs allows us to determine |Gn,α|. Namely consider the

following algorithm: after we picked a vertex from n choices to be the maximum degree

and fixed the d edges incident to it, the remaining d(n/2−1) edges induce all the subgraphs.

Hence given a d = dα(n− 1)e-regular graph:

|Gn,α| = n2d(n/2−1)|Rn,d|. (3.34)

The fact that it is hard to count regular graphs suggests that it is difficult to prescribe

a procedure that algorithmically will uniformly generate all random regular graphs. Con-

sequently the original algorithm to pick a Gn,α graph is just as hard. Therefore a heuristic

algorithm will be useful for our simulations with large values of n and α.

The number of edges in Rn,d is nd/2, hence its subgraph Gn,α=d/(n−1) has edge set of

size between [d, nd/2]. Therefore the expected size of the edge set is 1
2
(nd

2
+ d) ≈ nd/4 =

αn(n − 1)/4. The naive method is repeatedly at random to pick a n-vertices graph with

n(n−1)/4 edges until one accidentally generates a graph with maximum degree α(n−1).

However the probability for this to happen is very small and thus highly inefficient.

The heuristic algorithm is to first find a random (n − 1)-vertices graph with (n(n −
1)/4− α(n− 1)) edges. Next we add the last vertex with degree dα(n− 1)e) and check if

the maximum degree of the resultant graph is exactly dα(n− 1)e. If the condition does not

hold, then discard the graph and repeat the algorithm.

A further optimization for our heuristic algorithm is to improve the first phase to find a

random (n− 1)-vertices graph with (n(n− 1)/4−α(n− 1)) edges. This can be done with

the Gn−1,p model with mean edge set size
(
n
2

)
p = αn(n − 1)/4 − α(n − 1), which gives

us p ≈ α/2. In short Gn,α is approximated with a random Gn−1,p=α/2 plus a vertex with

degree α(n− 1).



3.5 Centrality 60

3.5.4 Stability of The Top Degree Centrality Vertex II

Consider our main problem with the new ensemble: GP = G1
n,α∪G2

n,p. In the edge union of

two graphsG1 andG2, neither graphs’ edge set is to dominate the process, i.e. |E1| = |E2|.
Since the expected value of |E1| = dαn(n− 1)e/4, we have p = α/2 and the following:

Lemma 3.5.6 Let v1max and vcmax be the top degree centrality vertices of G1
n,α and GP

respectively, where 0 < α ≤ 1. Then for n→∞, Pr(v1max = vcmax)→ 1 (Fig. 3.9).

Figure 3.9: Given 0 < α ≤ 1, the y-axis plots the Pr(v1max = vcmax) given the maximum
degree of G1 = α(n − 1). For increasing values of n, smaller values of α is required for
the probability to be one.

The projection graph can be thought of as being generated from G1
n,α, and then follow

by adding some random edges in a way given by G2
n,p. For G2 to be significant enough to

affect the centrality rankings of G1, the top degree vertices of G2 have to be in the same

order of magnitude as α(n − 1). However these high degree vertices are many standard

deviation from the mean (to be shown next), and hence the realization of such G2 are

increasing negligible for n→∞.
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The degree distribution of Gn,p is approximately normal with mean and variance = np,

thus we can estimate the likelihood that a graph in Gn,p has a vertex with degree α(n− 1)

based on the number of standard deviation from the mean. That is if c is the number

of standard deviations from the mean, then we express the maximum degree of Gn,p as

np+ c
√
np.

ForGn,p to have vertices with degree in the order≈ α(n−1) = np+c
√
np, the number

of standard deviations from the mean is c ≈ n(α − p)/
√
np =

√
αn (since p = α/2).

Therefore for increasing value of n or α, the realization of such Gn,p (and consequently G2

in Lemma 3.5.6) approaches to zero.

Figure 3.10: Given 0 < α ≤ 1, the y-axis plots the Pr(v1max = vcmax) given the maximum
degree of G1 = α(n − 1). The log scale x-axis allows us to see that if α is inversely
proportionally to n, then the probability is constant.

In the special case where α = O(1/n), the maximum degree of G1
n,α is a constant

standard deviation from the mean of degree ofG2
n,p. Hence for increasing values of n, there

is a constant (and non-negligible) probability for G2
n,p to affect the top centrality ranking of

G1
n,α (Fig. 3.10).
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Finally to encapsulate the ideas of Lemma 3.5.3 and Lemma 3.5.4, we have to gener-

alize Lemma 3.5.6. Recall that for v1max = vcmax, the deg1(v1max) at G1 is many standard

deviations c from the mean degree of G2
n,p. Since limn→∞ c ≈ n(α − p)/√np → ∞, for

the probability to be less than one, c has to be a constant given by (α− p) = O(
√
n)−1.

If we do not want α or p to depend on n, then only at the threshold p = α where c

is a constant. For p < α as shown before, there is always a large enough n such that the

deg1(v
1
max) at G1 is many standard deviations c from the mean degree of G2

n,p. Conversely

for p > α, the mean degree of G2 is np > n(α), which is greater than the maximum degree

of G1. Hence our generalization:

Lemma 3.5.7 Let v1max and vcmax are the top degree centrality vertices of G1
n,α and Gc =

G1
n,α ∪G2

n,p respectively, where 0 < α, p ≤ 1 are constants. Then for n→∞,

Pr(v1max = vcmax)→

{
0 if p ≥ α,

1 otherwise.
(3.35)

3.6 Connectivity of Evolutionary Interval Graphs

The properties of interval graphs are usually based on the null model where the end points

of the intervals were chosen uniformly at random between [0, 1]. However this model

cannot be parameterized such that the graph is able to evolve from an empty graph to a

complete graph. Since connected graphs are usually more interesting, we would like to

parameterize the interval graphs such that the hyper-boxes are always connected.

An evolutionary interval graph Jr parameterized by variable r ≥ 0 (known as radius),

chooses its intervals’ mid-point uniformly at random between [0, 1], with random length

between [0, 2r] [150]. It is similar to the Erdős-Rényi graph where increasing r changes the

graph from an empty (sparse) graph to a complete (dense) graph. Scheinerman determined

the phase transition for the connectivity of evolutionary interval in [150]:

Theorem 3.6.1 Let Jr be an evolutionary interval graph where the intervals’ length are

chosen randomly from [0, 2r]. If c is a real constant where r = (log n+ c)/n, then:

Pr(Jr is connected)→ e−e
−c
. (3.36)
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Figure 3.11: The probability that G = J1
r ∩ . . . ∩ Jmr is connected for increasing r.

In this thesis we extend Theorem 3.6.1 for the case of the hyper-boxes: Since the edge

set of interval graph Ek ⊇ E, if G is connected then Jkr is connected for all k. Thus for

G to be connected, it is necessarily (but insufficient) that the set of evolutionary interval

graphs are connected (Corollary 3.6.2).

Corollary 3.6.2 Let graph G = J1
r ∩ . . . ∩ Jmr , where Jkr is the kth evolutionary interval

graph and its intervals’ length are chosen randomly from [0, 2r]. If c is a real constant

given r = (log n+ c)/n, then:

Pr(G is connected) < Pr(J1
r is connected) · · ·Pr(Jmr is connected)→ e−me

−c
. (3.37)

Since limm→∞ e
−me−c → 0, it is harder to generate a high dimensional connected graph

from a set of evolutionary interval graphs with fixed r. Hence in the experiments we in-

creased r incrementally such that the graph is connected for sufficiently large r (Fig. 3.11).
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Chapter 4

Multiplex Communities

Multiplex Communities Detection is a problem to modularize a multiplex into manageable

representations. It allows one to either focus on the communities as substructures of a

system or the coarse perspective of the system’s topology.

Although there are many relevant research on this problem, the foundation is still pre-

liminary. This is due to its disparate nature which causes many researchers to be unaware

of the existing research. As a result many of the research are not built upon existing ideas

but rather “redesigning” the wheel from scratch.

Therefore the first contribution is the attempt to consolidate the disparate literature on

the communities detection for multiplexes. The literature review organized the algorithms

and ideas such that there is a system to classify similar concepts.

The second contribution is to compare these algorithms quantitatively with 3 classes

of multiplex benchmarks — Random Multiplexes, Structured Multiplexes and Real World

Multiplexes. The goal is to illustrate that there are many perspectives of a multiplex com-

munity and the wrong choice of algorithm can deviate one from the desired outcome. In

fact the Structured Multiplex Benchmark is a proof of example that there can be more than

one “ground-truth” solutions in multiplexes.

The research presented in this chapter is published in [111].
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4.1 Preliminaries

4.1.1 Introduction to the Communities Detection Problem

The rational to partition a graph or multiplex is to modularize the system into manageable

representations. A partition allows one to study the communities as local subsystems and

the global interactions between the communities. For instance the user network of a Belgian

phone operator can be modularized into 261 communities in which almost everyone in their

local community uses a common language. In addition since the communities are weakly

tied, the partition also reveals the linguistic split of the Belgian population [22].

Therefore from empirical observations, vertices in the same communities tend to have

similar properties [64] and it is usually possible to locally assign meaningful labels to

uncharacterized vertices. This has applications to the link prediction problem where non-

adjacent community members are likely to be connected in the future (homophily) [155].

At the global level, the interactions between the communities is the course-grained per-

spective of the graph. Thus one should be able to predict the propagation when information

flow through the graph, since information tend to trap within the communities [147]. This

allows us to apply additional heuristics on NP-hard problems like Hamiltonian Walk, that

is to find the shortest closed path which visits every vertex at least once [34].

Graph partitioning extends beyond real world applications like VLSI (Very-large-scale

integration) circuit designs and task scheduling problem in operation research [4]. It is

also used as a strategy in proofs. For example Szemerédi Regularity Lemma [160] is a

fundamental tool in extremal graph theory that roughly states that all sufficiently large

graphs can be approximated by random-looking graphs. Hence theorems that are easy to

prove with random graphs are applicable to sufficiently large graphs [97].

In summary communities detection or graph partitioning is a tool that gives us a dif-

ferent level of abstraction to analyze large graphs/systems. Therefore its applications and

research are prevalent in many disciplines including but not limited to computer science,

social science, biology and physics. Hence the literature is disparate and there are exten-

sive efforts (including this thesis) to compile the literature on the communities detection

problem for graphs (or multiplexes) [64, 137].
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4.1.2 Terminologies

As the original communities detection problem is on networks rather than multiplexes,

there are many instances in this chapter where the context refers back to the original prob-

lem. Hence if there arise ambiguity to the content, we will distinguish the “community”

between a multiplex and a monoplex (one of the graphs in the multiplex) as multiplex-

community and monoplex-community respectively. This will avoid confusion when we

review the different multiplex communities detection algorithms.

Many of these multiplex-algorithms divide the multiplex problem into independent

communities detection problems on the monoplexes. The solutions for these monoplexes

are known as auxiliary-partitions, and they provide the supplementary information for the

multiplex-algorithm to aggregate. The principal solution from the aggregation forms the

multiplex-partition, which defines the communities in the multiplex.

Unfortunately the term overlapping is used in two different contexts in this chapter.

The first context refers to the overlapping edges as previously defined by Def. 3.1.2. How-

ever overlapping communities refers to the set of communities where there is at least a pair

of distinct communities with common vertices.

4.2 Definitions of a Multiplex-Community

4.2.1 Less Than Ideal Community

In Network Science, a maximal clique is an ideal model of a community as it is not a subset

of a larger clique. The community reaches its maximum density of edges and it implies that

the community members are tightly connected. However depending on the configuration

on the rest of the network, a community might deviate from a clique so as to maximize the

modularity of the partition. Even so, the less than ideal (but high quality) community is

highly likely to maintain a clique-like structure with high edge density.

Similarly an ideal multiplex-community is a set of vertices where they induce maximal

cliques on every graphs in the multiplex. This is also known as Dense Connected Commu-

nity Core [166]. However a less than ideal multiplex-community is harder to conceptualize

as it can deviate either in structure or relationship inclusive. For example suppose we
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have a multiplex on two relationships, M = {G1(V,E1), G
2(V,E2)} with a multiplex-

community on the set of vertices W ⊆ V . Let edge sets E ′1 ⊆ E1 and E ′2 ⊆ E2 be the

edges among the vertices in W induced by G1 and G2 respectively.

A multiplex-community that prioritizes in structural features will regard W as high

quality if W is clique-like in G1 and G2 simultaneously (section 4.2.3). For instance let E∗

be the set of edges such that it forms a clique with W . If E ′1 and E ′2 are random disjoint

halves of a clique, i.e. |E ′1| = |E ′2| with E ′1 ∪ E ′2 = E∗ and E ′1 ∩ E ′2 = ∅, then W is a high

quality multiplex-community.

On the other hand, a multiplex-community that prioritizes in relational features will

regard W as high quality if there are many overlapping edges (section 4.2.2). In the earlier

example, there is no overlapping edges in the multiplex community. Thus a contrasting

example is to let the subgraphs induced by W form the same star graphs in G1 and G2,

such that all the edges overlap i.e. E ′1 = E ′2. Although it is clear that star graphs are not

clique-like in structure, but some literature define it as a high quality multiplex-community.

In between these two extremes are definitions of multiplex-communities that are in the

gray area. The spectrum of definitions on multiplex-communities deviates the quality of

a given partition as the multiplex becomes less than ideal (Fig. 4.1). There is a level of

qualitative complexity in the decision to define a multiplex-community and hence there is

no obvious canonical total ordering to unify these alternative definitions.

4.2.2 Local Definition

From the assumption that a community has weak interactions with the rest of the graph,

the evaluation of a community can be isolated or localized. Thus it is possible to establish

a community from the perspective of the members in the community.

Consider each graphs in a multiplex as an independent mode of communication be-

tween the vertices, e.g. email, telephone, postal, etc. A high quality community should re-

sume high information flow amongst its members when one of the communication modes

fails (1 less graph). This is to model communities that demands high reliability like busi-

ness partners or emergency teams. Hence Berlingerio et al. proposed the redundancy of

the communities as a metric to the quality of a multiplex-community [16]:



4.2 Definitions of a Multiplex-Community 68

Figure 4.1: Let the multiplex on two relationships be visualized with dotted and solid lines.
The figure on the left is an interpretation of an ideal multiplex-community, and the figures
on the right are examples of “less-than-ideal” but still high quality multiplex-communities
that are based on different definitions in the literature. The top right figure prioritizes on
the structural properties and defines a high quality multiplex-community if each graph is
clique-like. In contrast figure on the bottom right prioritizes the relational properties of the
multiplex and defines a high quality multiplex-community if all the edges overlap. Sup-
pose the problem domain requires the multiplex-community to prioritize on the structural
property, but mistakenly uses an algorithm that maximizes the relational properties of a
multiplex-community. In that case the results will deviate away from the solution as the
multiplex becomes less ideal.
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Definition 4.2.1 (Redundancy) Given a multiplexM on vertex set V , a multiplex-community

is the subset of vertices W ⊆ V and R ⊆ W ×W be the set of vertex pairs in W that are

adjacent in ≥ 1 relationship. The set of redundant vertex pairs are R′ ⊆ R where vertex

pairs in W are adjacent in ≥ 2 relationships. The redundancy of W is determined by:

1

|M| × |R|
∑
Gi∈M

∑
{u,v}∈R′

δ(u, v, Ei), (4.1)

where δ(u, v, Ei) = 1 (zero otherwise) if {u, v} ∈ Ei.

Eq. 4.1 counts the number of overlapping edges in the multiplex-community W and

the sum is normalized by the maximum possible number of overlapping edges between

all adjacent vertex pairs, i.e. (|M| × |R|). Roughly speaking the quality of a multiplex-

community is a measure of how identical the subgraphs (induced by the vertices of the

multiplex-community) are across the graphs in the multiplex.

Thus the number of edges in the multiplex-community is not a necessary condition to

its quality. This can lead to an unusual situations where a community is low in density. For

instance a cycle of overlapping edges form a community of equal quality (redundancy) as

a complete clique of overlapping edges.

4.2.3 Global Definition

The global measure of a partition considers the quality of the communities and the interac-

tions among themselves. For instance the modularity function (Def. 2.3.2) for monoplex-

communities measures how far the communities are from a random graph.

Given a fixed partition on the vertex set, the modularity on each of the m graphs in the

multiplex differs. Therefore a good multiplex-community suggests that all the monoplex-

communities in the graphs have high modularity. This is analogous to a multi-objective

optimization problem where the modularity of each graph is maximized.

To quantify this concept, Tang et al. claim that if there exist latent communities in the

multiplex, then a subset of the multiplex,M′ ⊂M has sufficient information to determine

these communities [161]. For example in a social multiplex, when a group of people is
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found to have frequent communications via messaging or email, it is likely that their com-

munication in social media like Facebook is equally strong. If this hypothesis is true, then

the communities detected fromM′ should reflect high modularity on the rest of the graphs

in the multiplex, i.e.M\M′.

In the language of machine learning, pick a random graph G ∈M as the test data (e.g.

Facebook network) and letM′ = M \ G be the training data (e.g. email and messaging

network). The multiplex-partition P yielded from a communities detection algorithm on

M′ is evaluated with the modularity function on the test data G. P is a good multiplex-

partition if the modularity of partition P on the graph G is maximized.

Therefore unlike the local definition, the global perspective of a multiplex-community

does not have cases where the community is structurally different from the usual perspec-

tive of a monoplex-community. However the global definition have its own set of special

cases where it can be contextually unusual for multiplex-communities.

For instance it is possible for a highly modular multiplex-community to have no over-

lapping edges. This special case is technically still robust from the general idea of “redun-

dancy” in the previous section since the multiplex-community remains modular and tightly

connected even after one of the graphs in the multiplex is removed. The issue however is

if it is questionable for a multiplex-community to have less than average number of over-

lapping edges, i.e. pairs in the same community have quantitatively less relationships than

with those outside of the community. It concocts a contradicting idea that vertex pairs in

the same community have little common relationships.

4.2.4 Vertex Similarity

The concept of homophily is that two vertices belong to the same community if they are

similar by some measure. For example the Edge Clustering Coefficient [138] of a vertex

pair in a graph measures the (normalized) number of common neighbors between them. A

high Edge Clustering Coefficient implies that there are many common neighbors between

the vertex pair, thus suggesting that the two vertices should belong in the same commu-

nity. In the extension for multiplex, Brodka et. al introduced Cross-Layer Edge Clustering

Coefficient (CLECC) [28].



Chapter 4. Multiplex Communities 71

Definition 4.2.2 (Cross-Layer Edge Clustering Coefficient) Given a parameter α, the

MIN-Neighbors of vertex v, N(v, α) are the set of vertices that are adjacent to v in at

least α graphs. The Cross-Layer Edge Clustering Coefficient of two vertices u, v ∈ V

measures the ratio of their common neighbors to all their neighbors.

CLECC(u, v, α) =
|N(u, α) ∩N(v, α)|

|N(u, α) ∪N(v, α) \ {u, v}|
. (4.2)

A pair of vertices in a social multiplex with low CLECC suggests that the individuals

do not share a common clique of friends through at least α social networks. Therefore it

is unlikely that they form a community together. The local and global definition are the

extreme ends of the spectrum of the less-than-ideal multiplex-community (Fig. 4.1), and

the multiplex-communities defined by vertex similarity tend to fall within the gray areas.

4.3 Theoretical Bounds

The Max-Cut problem finds a partition of a graph such that the number of edges induced

across the clusters are maximized. Thus the same partition over the complement graph

minimizes the number of edges between the clusters. This is known as the Balanced-Min-

Cut Problem and it is closely related to the communities detection problem, where the

number of edges induced between the communities are minimized.

Therefore to extend our understanding for the communities detection of multiplex, we

begin with a known result for the Max-Cut problem. It allows us to prove a corollary for the

Balanced-Min-Cut problem on multiplex, which serves as a baseline for the communities

detection algorithm.

4.3.1 Maximum Cut Problem on Multiplex

Theorem 4.3.1 Consider the graphs G1, . . . , Gm on the same vertex set V . There exists

a k-partition of V into k ≥ 2 equal-sized communities C1, . . . , Ck such that for all i =

1, . . . ,m:

# edges cut in Gi ≥ (k − 1)|Ei|
k

−
√

2m|Ei|/k. (4.3)
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Proof Sketch [99]: The proof for k ≥ 3 is similar to k = 2, hence we will only prove the

latter. WLOG, the vertex set of G1 is partitioned into 2 equal sets, A and B. Define Xi

be an indicator function where Xi = 1 if the ith edge is induced from A to B, Xi = 0 if

otherwise. Since Pr(Xi) = 1/2 and with linearity of expectation, we get E[Xi] = |Ei|/2
and E[X2

i ] = |Ei||Ei + 1|/4. By the use of Chebyshev’s Inequality, we get the probability

that a given partition fail the inequality 4.3 for G1. Since the probability sum of all graphs

to fail is < 1, thus there exists a partition such that all the graphs fulfill inequality 4.3.

Further developments on the bounds were made by imposing additional conditions

where the maximum degree is bounded [99] and in cases where k = m = 2 [135]. Since

the solution for Max-Cut on graphs is NP-complete, the extension to simultaneously Max-

Cut all the graphs in a multiplex is naturally NP-complete too. Thus this also implies that

balanced minimum bisection is NP-complete too [67].

4.3.2 Balanced Minimum Cut Problem on Multiplex

Corollary 4.3.2 Consider the graph G1, . . . , Gm on the same vertex set V . There exists a

k-partition of V into k ≥ 2 equal-sized communities C1, . . . , Ck (i.e. |Ci| ≈ |Cj|) such that

for all i = 1, . . . ,m:

# edges cut in Gi ≤
(
n

2

)
−
((k − 1)|Ē|

k
−
√

2m|Ē|/k
)
, (4.4)

where |Ē| =
(
n
2

)
− |Ei|.

Proof Let Ḡi be the complement graph of Gi, and its edge set is denoted by Ēi. Since the

maximum number of edges in a graph is
(
n
2

)
, hence |Ēi| =

(
n
2

)
− |Ei|. Apply (Max-Cut)

Theorem 4.3.1 on the set of complement graphs Ḡi and substitute |Ē|i into the result, the

expression in the corollary follows. The proof in Theorem 4.3.1 ensures that the communi-

ties are equal in size.

Using the same proof, we can improve the result for k = m = 2 [135] with



Chapter 4. Multiplex Communities 73

Corollary 4.3.3 Consider the graphs G1 and G2 on the same vertex set V . There exists a

partition of V into 2 equal-sized communities C1 and C2 such that for all i = 1, 2:

# edges cut in Gi ≤
(
n

2

)
−
( |Ē|

2
−
√
|Ē|/2

)
, (4.5)

where |Ē| =
(
n
2

)
− |Ei|.

A partition that fulfills Eq. 4.4 or Eq. 4.5 is not necessarily a good community defined

in Section 4.2, vice versa. However the edges induced between partition classes are often

perceived as bottlenecks when information flows through the network/multiplex. They are

similar to the bridges between cities and communities. Therefore communities detection

algorithms tend to minimize the number of edges between different communities.

Unfortunately none of the algorithms in section 4.4 guarantees communities of equal

size, thus there is no reasonable way to measures the quality of the algorithms with Eq.

4.3.2. However in the cases where it can be applied, a solution that is greater than the

bound implies that the algorithm performs worse than randomization. This is due to the

proof in Theorem 4.3.1.

4.4 Communities Detection Algorithms for Multiplex

The general strategy for existing multiplex communities detection algorithm is to extract

features from the multiplex and reduce the problem to a more familiar representation. In

solving the reduced representation, the multiplex-communities are then deduced from the

auxiliary solutions of the reduced problems.

Therefore many multiplex algorithms rely on existing monoplex-communities detection

algorithms to derive the auxiliary-partitions for the interim steps. The choice of algorithms

is often independent of their extension for multiplex, and hence any communities detection

algorithm in theory can be chosen to solve the interim steps. In this thesis our experi-

ments used Louvain Algorithm (section 2.3.2) to generate the auxiliary-partitions as it is

the common choice of algorithm in the literature.
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4.4.1 Projection

The naive method is to project the multiplex as a weighted graph and then apply monoplex-

communities detection algorithm for weighted graphs as the solution. I.e. let Ai be the

adjacency matrix of Gi ∈ M, then the adjacency matrix of the weighted projection ofM
is given by Ā = 1

m

∑m
i=1A

i. We will call this the Projection-Average of a multiplex.

It has been independently proposed as a baseline for more sophisticated multiplex al-

gorithms as the performance is often “sub-par”∗ [16, 92, 128, 146]. In our experiments we

will also compare with the unweighted variant, that is the Projection-Binary of a multiplex,

i.e. G(V,E1 ∪ . . . ∪ Em).

An alternative weight assignment between vertex pair is to consider the connectivity of

their neighbors, where a high ratio of common neighbors implies stronger ties [16]. This

is based on the idea that members of the same community tend to interact over the same

subset of relations, which was also independently proposed by Brodka et al. in Def. 4.2.2

[28]. This alternative will be known as Projection-Neighbors.

4.4.2 Consensus Clustering

The previous strategy aggregates the graphs first, and then it performs the communities

detection algorithm over the resultant graph. It is a poor strategy as it neglects the rich

information of the relationships [161]. Therefore the consensus clustering strategy is to first

apply the monoplex-communities detection algorithm on the graphs separately as auxiliary

partitions, and then the principal partition (the set of multiplex communities) is derived by

aggregating the auxiliary partitions in a meaningful manner.

The key concept behind consensus clustering is to measure the frequency with which

two vertices are found in the same auxiliary-communities. Vertices that are frequently in

the same monoplex-communities are more likely to be in the same multiplex-community.

Therefore the communities detection algorithm on the individual graphs in the multiplex

determines the structural properties of multiplex-communities, whereas consensus cluster-

ing determines the communities’ relational properties.

∗The projection is merely a different perspective of a community rather than a bad solution.
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Frequent Closed Itemsets Mining

Data-mining tends to find a set of items that occurs frequently together in a series of trans-

actions. For example items like milk, cereal and fruits are frequently bought together as a

set in supermarkets based on a series of sales transactions. These sets are known as item-

sets. Berlingerio et al. translate the consensus clustering of the auxiliary-partitions as a

data-mining problem to discover the multiplex-communities [18].

The vertices in the multiplex define the |V | transactions for the data-mining, and the

items are tuples (c, d) where the respective vertex belongs in auxiliary-community c in

relationship d. For example suppose vertex vi belongs to auxiliary-communities c1, c5 and

c2 in relationships d1, d2 and d3 respectively, then the ith transaction is the set of items

{(c1, d1), (c5, d2), (c2, d3)}. Finally data-mining methods like Frequent Closed Itemsets

Mining identifies the frequent itemsets as multiplex-communities.

Members in the same multiplex-community (itemsets) are frequently found in the same

auxiliary-communities (transaction). E.g. each vertex is a customer’s transaction in a su-

permarket, and a community is a target market (of size e.g. 1000 customers) that the

supermarket wants to discover. The Frequent Closed Itemsets Mining takes the customers’

transactions as the auxiliary-solutions to extract the multiplex-communities on at least e.g.

1000 vertices, where each customer’s transaction is a subset of the target market’s itemsets.

Cluster-based Similarity Partitioning Algorithm

Cluster-based Similarity Partitioning Algorithm [161] averages the number of instances

vertex pairs are in the same auxiliary-communities. For example in a multiplex with 5

relationships, if there are 3 instances where vertices vi and vj are in the same auxiliary-

community, then the similarity value of the vertex pair (vi, vj) is 3/5.

Once the similarity is measured for all the vertex pairs, the principal cluster (partition) is

determined with k-means clustering — vertices with the closest similarity at each iteration

are grouped together. Therefore vertex pairs that are frequently in the same auxiliary-

communities will have high similarity value, and hence more likely to be clustered together

in the same principal-community. This is similar to the projection-average except that the

principal clustering do not necessarily follow a high modularity structure.
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Generalized Canonical Correlations

Each of the auxiliary-partitions maps the vertices as points in a l-dimensional† Euclidean

space. The points are positioned in a way that the shorter the shortest path between two

vertices are, the closer they are in the Euclidean space. One of such mapping can be

achieved by concatenating the top eigenvectors of the adjacency matrix. Thus given d

graphs in a multiplex, there are d structural feature matrices S(i) of size l × n where the

column in each matrix is the position of a vertex in the l-dimensional Euclidean space.

Tang et al. want to aggregate the structural feature matrices to a principal structural

feature matrix S̄ such that the principal partition can be determined from S̄ [161]. The

“average” S̄ = 1
d

∑d
i=1 S

(i) however does not result in a sensible principal structural feature

matrix since S(i) and S(j) are independent and not in the same Euclidean space.

A solution to fix this problem is to transform the S(i) such that they are in the same space

and thus their “average” is sensible. That is the same vertex in the l different Euclidean

spaces are aligned to the same point in a common Euclidean space. Specifically we need

a set of linear transformations wi such that they maximize the pairwise correlations of the

S(i), and Generalized Canonical Correlations Analysis is one of such standard statistical

tools [94]. This allows us to “average” the structures as:

S̄ =
1

d

d∑
i=1

S(i)wi, (4.6)

and the principal partition is determined via k-mean clustering of S̄.

4.4.3 Bridge Detection

A bridge in a graph refers to an edge with high information flow, like the congested roads

between two cities, where the absence of these roads separates the cities into isolated com-

munities. One way to do this is to project the multiplex M to a weighted network and

determine the bridges from the projection. Alternatively one can remove them by the defi-

nition of a multiplex-bridge to get the desired partitions.

†this dimension is different from the dimensions used in multiplex/hyper-box
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In social networks, strong ties (edges) are desirable within the communities and weak

ties are the bridges between the communities. Hence to identify weak ties between vertex

pairs, Brodka et. al proposed CLECC (Eq. 4.2) as a metric.

In each iteration, all connected vertex pairs are recomputed and the pair with the lowest

CLECC score will be disconnected in all the graphs. The algorithm halts when the desired

number of communities is yielded greedily [28]. This is the same strategy presented by

Girvan and Newman, where the bridges of a graph are identified by their betweenness

centrality score [70]. In the experiments, we let α = |M|/2 for the CLECC computation.

4.4.4 Tensor Decomposition

Algebraic Graph Theory is a branch of Graph Theory where algebraic methods like linear

algebra are used to solve the problems on graph. Hence the natural representation for a

multiplex is a 3rd-order tensor (as a multidimensional array) instead of a matrix (2nd-order

tensor). The set of m graphs in a multiplex is a set of m n × n adjacency matrices, which

can be represented as a m × n × n multidimensional array (tensor) [143]. This allows us

to leverage on the existing tensor arithmetics like tensor decomposition.

Tensor decompositions are analogues to the Singular Value Decomposition and Lower-

Upper Decomposition in matrices, where they express the tensor into simpler components.

For example a PARAFAC tensor decomposition [78] is the rank-k approximation of a tensor

T as a sum of rank-one tensors (vectors ū(i), v̄(i) and w̄(i)), i.e.:

T ≈
k∑
i=1

ū(i) ◦ v̄(i) ◦ w̄(i). (4.7)

where ā◦ b̄ denotes the vector outer product. The components in the ith factor, ū(i), v̄(i) and

w̄(i), suggest that there are strong ties (possibly a cluster/community) between the top few

elements in ū(i) and v̄(i) via the relationship of the top component in w̄(i).

For instance suppose the jth element in w̄(i) is the largest element. This suggests that in

the ith community, the top 10 (or any predefined threshold) elements in ū(i) are in the same

cluster as the top 10 elements in v̄(i) via the jth dimension/relationship [58, 105, 120, 134].
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4.5 Multiplex Benchmarks

An Erdős-Rényi Graph is a graph where vertex pairs are connected with a fixed probability.

The random nature of this construction usually does not have any meaningful communities

structures in them. Hence it is usually not used as a benchmark graph for Communities

Detection Algorithms.

A benchmark graph should be similar to the Girvan and Newman Model [70] where

some random edges are induced between a set of dense subgraphs (as communities) to

form a single connected component. The set of dense subgraphs acts as the “ground-truth”

communities of the graph for Communities Detection Algorithms to discover and hence it

is apt as a benchmark. This section’s goal is to design similar benchmarks for multiplex.

The main challenge is that there is no well accepted definition of a good multiplex com-

munity, and hence there is no methodology for us to construct a benchmark such that it does

not favor any of the algorithms. Therefore the objective of the following benchmark graphs

is to study the (dis)similarity between the different multiplex-communities detection

algorithms. This allows us to use a collection of highly uncorrelated algorithms to study

different perspectives of a multiplex-community.

4.5.1 Unstructured Synthetic Random Multiplex

The simplest construction of a random multiplex is to generate a set of independent graphs

on the same vertex set. However many communities detection algorithms are based on

some observations of real world multiplexes and these algorithms do not yield interest-

ing results on such random construction. Such random multiplexes is denoted as Unstruc-

tured Synthetic Random Multiplex (USRM), and they are analogous to Erdős-Rényi Graphs

where one should not find any meaningful communities in them.

For simplicity in the numerical experiments there are only two relationships in the mul-

tiplexes such that we can easily generate all six combinations of Erdős-Rényi, Watts Stro-

gatz and Barabási-Albert graphs (Table 4.1). See chapter 3 for their statistical properties.

In the experiments there are 128 vertices‡ and it is important that the number of edges

‡chosen to be similar with Girvan and Newman Model in reference [70]



Chapter 4. Multiplex Communities 79

Name Graph 1 Graph 2
USRM1 Erdős-Rényi Erdős-Rényi
USRM2 Erdős-Rényi Watts Strogatz
USRM3 Erdős-Rényi Barabási-Albert
USRM4 Watts Strogatz Watts Strogatz
USRM5 Watts Strogatz Barabási-Albert
USRM6 Barabási-Albert Barabási-Albert

Table 4.1: Different combinations of multiplexes

in both graphs are equal so that neither graph dominate the interactions in the multiplex.

Furthermore to ensure that the Erdős-Rényi graph is connected with high probability, vertex

pairs are connected with probability = ln 128/128. Therefore the number of edges in the

Erdős-Rényi graph (as well as the other graphs in the multiplex) is ≈
(
128
2

)
2 ln 128/128.

For higher dimensional USRMs, we will only consider the combinations of Watts Stro-

gatz and Barabási-Albert graphs as their projections exhibit real-world characteristics like

high clustering coefficient and power-law like degree distribution [114]. Thus let USRM-

Rdi refers to a multiplex on d relationships with i Watts Strogatz graphs and (d − i)

Barabási-Albert graphs.

4.5.2 Structured Synthetic Random Multiplex

This construction is similar to the Girvan and Newman Model where independently gen-

erated communities are connected in a way such that the “ground-truth” communities re-

mains. However since there are different perspectives of a multiplex communities (section

4.2), we want to encapsulate all the ideas into a single multiplex benchmark. This is to

illustrate the possibility that there could be multiple solutions to the same system.

Structured Synthetic Random Multiplex (SSRM) is a construction where the differ-

ent definitions of high quality multiplex-communities are found in different multiplex-

partitions. Moreover at the same time each of the different multiplex-partition has to be

of “poor” quality from the perspective of the other definitions of multiplex-communities.

We begin by generating some subgraphs that are of high quality with respective to

the different definitions of multiplex-communities. Next these multiplex-communities are
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Figure 4.2: To aid visualization, the edges in this SSRM with two relationships are drawn
with solid and dashed lines. Let clusters c1 and c3 be dense subgraphs where there are more
solid edges than dashed edges. Similarly c2 and c4 are dense subgraphs with more dashed
edges than solid edges. I: The solid edges between c1 & c4 imply that there are only solid
edges between them. This applies the same to the dashed edges between c2 & c3. II: All
the edges between c1 and c2 overlaps. III: None of the edges between c1 & c3 (or c2 & c4)
overlaps. We denote {[c1, c2], [c3, c4]} as a partition with 2 communities where clusters 1
and 2 form a community and clusters 3 and 4 form the second community. This partition
has high redundancy, low modularity and low CLECC multiplex-communities.

modified such that it remains good in one of the three multiplex-communities definitions

and poor in quality by the other definitions. The final step is to combine these multiplex-

communities into a single multiplex as our SSRM benchmark.

Fig. 4.2 shows {[c1, c2], [c3, c4]} as a partition with 2 multiplex-communities where

clusters 1 and 2 form the first multiplex-community and clusters 3 and 4 form the second

multiplex-community. This partition has high redundancy, but low modularity and low

CLECC multiplex-communities. The second partition {[c1, c3], [c2, c4]} has the commu-

nities of high modularity, but poor by the rest of the metrics. Lastly {[c2, c3], [c1, c4]} is

the final partition where the multiplex-communities have high CLECC vertex pairs. This

synthetic multiplex expresses the multi-perspective nature of a multiplex communities.
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High Modularity, Low Redundancy & Low CLECC Multiplex-Communities

To create a high modularity multiplex-community, we begin with clusters 1 and cluster 3

as cliques in both relationships (The same construction applies to clusters 2 and 4 respec-

tively). For these clusters to be low in redundancy, remove some edges in both clusters such

that there are very few overlapping edges in the clusters while maintaining high modularity.

This can be done by making the first graph in both clusters to be the complement of the

graph in the second relationship.

The next step is to add random edges between clusters 1 and 3 such that the resultant

cluster is a single connected component. We denote [c1, c3] as the component connected of

cluster 1 and cluster 3. To maintain a low redundancy, the new edges cannot overlap.

Finally tweak the clusters such that the CLECC score is low between many vertex pairs

in the combined component of cluster 1 and 3. Specifically the vertex pairs connected

by the new edges in the previous step to have low CLECC scores. This is possible if

cluster 1 has more edges in the first relationship whereas cluster 3 has more edges in the

second relationship. In doing so the neighbors of the vertex in cluster 1 will be significantly

different from the neighbors of vertex in cluster 3, thus a low CLECC score.

High CLECC, Low Modularity & Low Redundancy Multiplex-Communities

Since all 4 clusters do not have overlapping edges, the redundancy remains low for any

partition on the multiplex. Therefore this section focuses on increasing the CLECC scores.

The first step is to make cluster 1 and 4 to be high in CLECC score.

Currently clusters 1 and 4 are similar and hence the neighbors of any given vertex in

each cluster is similar too. Therefore by adding new edges between cluster 1 and 4 will

not affect the CLECC score. However these new edges should only be drawn in the first

relationship, since it is the dominant relationship in [c1, c4]. This simultaneously reduces

the modularity of [c1, c4] in the second relationship, since the clusters are not connected and

the graph in the second relationship is sparse. This gives multiplex-communities [c1, c4] a

low modularity while maintaining the high CLECC score.

The construction is similar for clusters 2 and 3, with the exception that only edges in

the second relationship connects the clusters together.
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High Redundancy, Low Modularity & Low CLECC Multiplex-Communities

Given [c1, c3] have low CLECC score and that clusters 2 and 3 are similar, the CLECC

score for [c1, c2] should be similar to [c1, c3]. Thus this section is to find a way to connect

clusters 1 and 2 such that the redundancy of [c1, c2] is high. Redundancy is measured by Eq.

4.1, where it a function to the number of overlapping edges. Since there is no overlapping

edges at this point of the construction, the redundancy increases when new overlapping

edges between clusters to form the multiplex-communities [c1, c2] and [c3, c4].

Although [c1, c2] and [c3, c4] have relatively high redundancy as compared to other par-

tition in the multiplex, it is plausible that they have lower redundancy than a random com-

munity in USRM1. To nudge the redundancy higher, it is necessary to add new edges such

that there are overlaps in the four clusters. However this might increase the modularity of

[c1, c2] which we want to avoid. Therefore this final step has to be done incrementally.

Evaluation of the different ground truth partitions

{[c1, c2], [c3, c4]}, {[c2, c3], [c1, c4]} and {[c1, c3], [c2, c4]} are the different “ground-truth”

multiplex-partitions, where each of them represents a different “ideal-partition”. However

simultaneously they are poor from the perspective of the other metrics.

Redundancy *CLECC **Modularity
[c1, c2] 0.0492 0.1142 -0.0287
[c3, c4] 0.0537 0.1087 -0.0332
[c2, c3] 0 0.1541 0.007
[c1, c4] 0 0.1642 0.012
[c1, c3] 0 0.1113 0.0317
[c2, c4] 0 0.1083 0.0245
Random 0.0217 0.1056 0.0033

Table 4.2: The rows (except the last row) are paired up such that they implies a common
partition. E.g. the first two rows are communities of the partition {[c1, c2], [c3, c4]}. The
redundancy and CLECC score of community [c1, c2] are 0.0492 and 0.1142 respectively.
*CLECC: Average CLECC score between all vertex pairs in the community. **Modu-
larity: The two values in the partition refers to the modularity of the two graphs in the
multiplex. E.g. partition {[c1, c2], [c3, c4]} has modularity -0.0287 and -0.0332 for the first
and second relationships respectively. A partition is “poor” if its measurement is closer to
a random partition (last row) than the maximum (values in bold).
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For example Table 4.2 shows that the partition {[c1, c2], [c3, c4]} has communities with

the maximum redundancy. However it has multi-modularity and CLECC scores similar to

a random partition, suggesting that it is poor relative to other metrics. This shows that these

metrics are conceptually different.

4.5.3 Real World Multiplex

The issue with synthetic multiplex is that it does not truly reflects the real-world systems.

The relationships between vertices are artificially imposed such that we can distinguish the

different communities detection algorithms. However real-world communities do not be-

have in such a systematic manner, therefore we have to compare the multiplex-communities

detection algorithms with real-world multiplexes from open dataset.

Youtube Social Network

Youtube is a video sharing website that allows interactions between the video creators

and their viewers. Tang et al. collected 15,088 active users to form a multiplex with 5

relationships where two users are connected if: 1) they are in the contact list of each other;

2) their contact list overlaps; 3) they subscribe to the same user’s channel; 4) they have

subscription from a common user; 5) they share common favorite videos [161].

Transportation Network

A multirelational transportation network is known as a multimodal network, where bus

stops, train stations and terminals are indistinguishable locations (vertices) to transit to a

different mode of transportation. Cardillo et al. constructed an air traffic multiplex from

the data of European Air Transportation (EAT) Network with 450 airports as vertices [37].

An edge is drawn between two vertices if there is a direct flight between them. Each of the

37 distinct airlines in the EAT Network forms a relationship between the airports.
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4.6 Comparing Partitions

Normalized Mutual Information (NMI) [118] is a popular similarity metric for the network

partition, with a real-value score between [0, 1] (1 implies identical). However NMI does

not measure overlapping communities that are yielded by Communities Detection Algo-

rithms like Frequent Closed Itemsets Mining and Tensor Decomposition.

Furthermore these algorithms also do not ensure that all vertices belong in at least

one community, i.e. “isolated” vertices with no community membership. Therefore even

variants of NMI [101] for overlapping communities are not applicable. Hence in such cases

we will use the Omega Index [48], a generalized variant of the Adjusted Rand Index [84].

4.6.1 Normalized Mutual Information

Mutual Information I(A;B) measures the information of the communities-membership

of all vertex-pairs in A given the communities-membership in B, vice versa. Roughly

speaking, given the information on B how well can we guess that a vertex pair is in the

same community in A? Formally this is defined as I(A;B) = H(A) − H(A|B) where

H(A) is the Shannon entropy:

H(A) = −
∑
k

P (ak) logP (ak), (4.8)

where P (ak) is the probability of a random vertex is in the kth community of partition A,

i.e. the ratio of the size of the kth community to the total number of vertices. Similarly

P (bk) denotes the case for partition B. Thus the Mutual Information is expressed as:

I(A;B) =
∑
j

∑
k

P (ak ∩ bj) log
P (ak ∩ bj)
P (ak)P (bj)

, (4.9)

where P (ak∩bj) is the probability that a random vertex is both in kth and jth communities.

Basically the larger the intersection of A and B is, the greater the Mutual Information.

Finally to normalize the score:

NMI(A,B) =
I(A;B)

[H(A) +H(B)]/2
. (4.10)
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4.6.2 Omega Index

The unadjusted Omega Index averages the number of vertex pairs that are in the same

number of communities. Such vertex pairs are known to be in agreement. Consider the

case with two partitions A and B, and the number of communities in them are |A| and |B|
respectively. The function tj(A) returns the set of vertex pairs that appears exactly in j ≥ 0

overlapping communities in A. Thus the unadjusted Omega Index:

ωu(A;B) =
1(
n
2

) max(|A|,|B|)∑
j=0

|tj(A) ∩ tj(B)|. (4.11)

To account for vertex pairs that are allocated into the same communities by chance, we

have to subtract it from expected omega index of a null model:

ωe(A;B) =
1(
n
2

)2 max(|A|,|B|)∑
j=0

|tj(A)| · |tj(B)|. (4.12)

Finally the Omega Index is given by:

ω(A;B) =
ωu(A;B)− ωe(A;B)

1− ωe(A;B)
. (4.13)

It is possible for the Omega Index to be negative, where there are less agreement than

pure stochastic coincidence would expect. It is regarded as uninteresting as it does not

suggests anything more than the fact that the partitions are not similar. Identical partitions

have Omega Index of 1.

4.6.3 Notations For Empirical Results

To simplify the results and figures from our experiments, we will use some shorthands to

denote the algorithms and partitions. For communities detection algorithms, we use A and

P to denote “Algorithm” and “SSRM Partition” respectively (Table 4.3).
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Notation Description
A1 Projection-Binary
A2 Projection-Average
A3 Projection-Neighbors
A4 Cluster-based Similarity Partition Algorithm
A5 Generalized Canonical Correlations
A6 CLECC Bridge Detection
A7 Frequent Closed Itemsets Mining
A8 PARAFAC, Tensor Decomposition
P1 {[c1, c2], [c3, c4]} of SSRM
P2 {[c2, c3], [c1, c4]} of SSRM
P3 {[c1, c3], [c2, c4]} of SSRM

Table 4.3: Shorthands for the different algorithms and “ground-truth” communities.

4.7 Empirical Comparison of the Algorithms

4.7.1 Algorithm Parameters

Some algorithms require additional parameters which are independent to the multiplex,

e.g. Frequent Closed Itemsets Mining need to define the minimum community size. In the

experiments, the value is chosen such that there are ≥ 2 communities in the solution.

The main parameter for CLECC Bridge Detection is the α in Def. 4.2.2, which the

neighbors of a vertex have to be adjacent in at least α graphs. We let α = d|M|/2e as there

was no consistent value such that it will always yield meaningful communities for all the

benchmarks.

PARAFAC is parameterized by the rank of the approximation and the threshold to de-

fine the top x components in the rank-one tensors. This is usually done by manually fine-

tuning [58, 105, 120, 134], however it is infeasible for our numerous random trials. Thus x

is chosen such that the difference between the xth and x + 1th element is greater than the

average difference among the elements in the rank-one tensor.

Lastly the final step for Cluster-based Similarity Partition and Generalized Canonical

Correlations is k-mean clustering. Since these algorithms maximize the modularity of every

graph in the multiplex, the best values of k are chosen such that it maximizes the multi-

modularity (section 4.2.3).
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4.7.2 Unstructured Synthetic Random Multiplex

Figure 4.3 shows the Omega Index of all the pairwise multiplex-communities detection

algorithms for the USRM benchmarks. The last 13 boxplots on the right are the pairwise

comparisons with the overlapping-communities algorithms, i.e. A7 and A8.

The first observation is that A8 (PARAFAC) is not similar to any of the algorithms.

One of the reasons is that it is hard to choose the right parameters for PARAFAC, i.e the k

approximation for Eq. 4.7 and the predefined threshold for the top few elements of the rank-

one tensors. There is no systematic method to choose the rank besides manual observation

for every given multiplex [58, 105, 120, 134].

However overlapping-communities algorithmA7 (Frequent Closed Itemsets Mining) is

similar to a class of non-overlapping algorithms, i.e. A1 to A4. Specifically A7 is similar

to the class of Projection algorithms A1 to A3. In fact the Omega Index and NMI scores

(Fig. 4.4) for all pairwise comparisons of the algorithm family F = {A1,A2,A3,A4,A7}
is generally greater than the other algorithm pairs.

The family of algorithms F has low pairwise Omega Index and NMI scores for USRM

1, 3 and 6. There is no fundamental reason to why the class of projection algorithms (A1

to A3) should produce non similar communities, therefore we deduce that USRM 1, 3 and

6 are not good multiplexes for benchmarking.

Since USRM1 is the combination of two Erdős-Rényi graphs, thus naturally there is

no community structure. Whereas USRM 3 and 6 are the combinations of Barabási-Albert

graph with Erdős-Rényi and Barabási-Albert respectively. Although Barabási-Albert has

structural properties, it has low Clustering Coefficient (similar to Erdős-Rényi), which

means that the vertices do not have the tendency to cluster together. Therefore the ver-

tices in USRM 3 and 6 do not form communities.

Lastly in higher dimension, the observations are different where Fig. 4.5 shows the

Omega Index of various parameters of USRM-Rdi. Firstly the family of algorithms F =

{A1,A2,A3,A4,A7} is no longer pairwise similar. Although Projection-Binary (A1) is

somewhat similar to Projection-Average, Projection-Neighbors and Cluster-based Similar-

ity Partition (A2,A3,A4), the rest of the algorithms are not pairwise similar.

The assignment of the weight on the edges for Projection-Average and Projection-
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Figure 4.3: The Omega Index of all pairwise multiplex-communities detection algorithms
for the different benchmark USRM. The tuple (i, j) on the x-axis refers to the pairwise com-
parison ofAi andAj . The tuples are arranged such that the comparisons with overlapping-
communities algorithms (13 tuples) are placed on the right. Note that the scale of the
figures on the left is different from the scale on the right.
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Figure 4.4: The NMI scores of all pairwise non-overlapping multiplex-communities de-
tection algorithms for USRM benchmarks. The tuples are arranged such that pairwise
comparisons of {A1,A2,A3,A4} are grouped to the left of the boxplots. The “interesting”
figures USRM 2, 4 and 5 are placed to the right for comparison.
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Figure 4.5: The Omega Index of all pairwise multiplex-communities detection algorithms
on USRM-R31, USRM-R32, USRM-R51, USRM-R53, USRM-R73 and USRM-R75. The
behavior of the algorithms is drastically different from the 2-dimensional cases.
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Neighbors are clearly different since the former concerns the connectivity between vertex

pairs whereas the latter concerns the connectivity between the neighbors of vertex pairs.

This difference is more apparent for higher dimensions. However this disparity does not

appear in real-world data (section 4.7.4).

It is particularly interesting that although Projection-Average and Cluster-based Simi-

larity Partition are not similar, they are both relatively similar to CLECC Bridge Detection.

Moreover only at higher dimensions Projection-Average is similar to Generalized Canon-

ical Correlations. There is no strong argument to this statistical observation besides that

these algorithms follow the general strategy to prefer vertex pairs that are similar locally.

4.7.3 Structured Synthetic Random Multiplex

In the previous section, the USRM suggests that {A1,A2,A3,A4} yields similar commu-

nities. However Fig. 4.6 shows that the SSRM communities from A4 (Cluster-based Simi-

larity Partition Algorithm) are distinct from the class of projection algorithms (A1 to A3).

Thus Cluster-based Similarity Partition Algorithm does provide an alternative perspective

for multiplex-communities, and it is not a projection algorithm in disguise.

Furthermore in the previous section, Fig. 4.3 and 4.4 show a high similarity variance

between A6 (CLECC Bridge Detection) with projection algorithms. USRM benchmark

(Fig. 4.6) is able to emphasize this observation as the score ranges from NMI = 0 to as high

as ≈ 0.8. This highlights the cons of the CLECC Bridge Detection algorithm.

CLECC occasionally yields the components prematurely, where one of the components

is a small cluster of vertices or even a single vertex as a community. Therefore it appears

that CLECC yields significantly different communities since the rest of the algorithms tend

not to return small communities. Hence if we exclude such cases, CLECC is quite similar

to the projection algorithms for SSRM.

Finally we will compare the algorithms with the “ground-truth” partitions P1, P2 and

P3. Table 4.4 shows that none of the algorithms were able to capture P1 sufficiently well,

which is the partition with high redundancy. Although A3 (Projection-Neighbors) was

proposed to extract high redundancy communities [16], it wasA4 (Cluster-based Similarity

Partition Algorithm) that has the best result.
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Figure 4.6: The NMI scores of all pairwise non-overlapping multiplex-communities detec-
tion algorithms for SSRM benchmarks.

P1 P2 P3

A1 0 0.983 0
A2 0.002 0.94 0.017
A3 0 0.978 0
A4 0.019 0.14 0.083
A5 0.004 0.002 0.158
A6 0.006 0.964 0.006

Table 4.4: The NMI scores between the algorithms and the different ground-truth partitions.
The entries in bold represent the algorithms that are closest to the ground-truth partition.
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4.7.4 Real World Multiplex

The results for the European Air Transportation Network are similar to the Youtube Social

Network (Fig. 4.7), hence the discussion on either one is sufficient. The general observation

is similar to USRM 2, 4 and 5 in Fig. 4.3, where the set of algorithms {A1,A2,A3,A4,A7}
are relatively similar with pairwise NMI score of ≈ 0.55.

In addition, Fig. 4.7 highlights that overlapping-communities detection algorithm A8

(PARAFAC) is relatively more similar to A5 (Generalized Canonical Correlations) than

the other non-overlapping communities detection algorithms. This observation was less

apparent in Fig. 4.3.

Unfortunately A6 (CLECC Bridge Detection) tends to halt prematurely despite differ-

ent parameter choices. Hence we did not manage to get any insight for CLECC Bridge

Detection in this experiment.

4.7.5 General Observations

The parameters in algorithms A6, A7 and A8 require manual fine-tuning to yield mean-

ingful communities for comparisons. Hence it is not practical to exhaustively test for all

configurations for these algorithms. However the analysis does not change in any essential

way when the experiments are made for different parameters choices.

From USRM benchmarks and real world multiplexes, {A1,A2,A3,A4,A7} tend to

generate relatively similar partitions. However SSRM benchmark demonstrate that A4 is

able to capture high redundancy communities and performed differently from the class of

projection algorithms.

Our experiments with USRM and SSRM benchmarks support that A6 (CLECC Bridge

Detection) is similar to the class of projection algorithms {A1,A2,A3} when the algo-

rithm does not infer small clusters of vertices as communities. Therefore CLECC Bridge

Detection is not particularly insightful and not very stable without careful and manual ad-

justments to the algorithm’s parameters.
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Figure 4.7: The Omega Index heatmap of all pairwise algorithms for the European Air
Transportation Network (top) and Youtube Network (bottom).
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4.8 Recent Developments

During the writing up and revisions of this thesis, more related research (in preprints) sur-

faced into the literature. Some are relatively new findings and some are from disciplines

that were not considered/explored during our investigations. Regrettably it is hard to in-

clude them without major rewriting, simulations and the time to review these preprints.

However for completeness the following is an outline of these research.

• Barzinpour et al. proposed a spectral approach to communities detection. It is similar

to Generalized Canonical Correlations (section 4.4.2) where the multiplex is mapped

to a Euclidean Space and communities are found using k-mean clustering. They have

also introduced closeness centrality of multiplexes from the communities [12].

• Multiplex communities detection can be presented as a heterogeneous data clustering

problem in computer science (database management). Thus using their specialized

tools like Relational Bayesian Networks, one can derive the communities [85].

• Hao et al. proposed a metric (impact-strength-index) to measure the influence of a

monoplex-community in one of the auxiliary-partitions has on the monoplex-communities

of the other auxiliary-partitions [77].

• Zhu and Li proposed a projection algorithm. The first step is to quantify the impor-

tance of every monoplex by measuring how correlated one monoplex is to the rest of

the multiplex. The measure of importance will be used for the weighted average in

the next step. Since every monoplex yields a similarity matrix between all pairwise

nodes, the projected network is the weighted average of these matrices [168].

• MutuRank by Wu et al. is also based on the strategy of projection. It uses both the

probability distributions that a vertex chooses its neighbors and relationship to form

a distribution on the frequency of the relationships. This frequency distribution is

then used to project the multiplex in a linear way [165].

• Infomap is a monoplex-communities detection algorithm that is based on the com-

pressibility of a random walk. Domenico et al. extended the idea by factoring the

probability of swapping relationship into the nodes’ transition probability [54].
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• Bródka and Grecki proposed a benchmark multiplex based on a well known network

benchmark — LFR Benchmark. [29].

• Nicosia et al. described two multiplex constructions that is based on preferential at-

tachment. Every new vertex that is introduced iteratively into the multiplex is given

a fixed number of edges in every relationship. However at the different monoplex,

the new edges will connect to the rest of the vertices at a different time [131]. Alter-

natively different relationships can have different preferential attachment behaviors

while maintaining certain correlations [132].

4.9 Summary

This chapter summarizes the different multiplex-communities in the literature and com-

pares the algorithms that are used to find these structures. The emphasis of this chapter is

to distinguish the different multiplex-communities and show how these solutions deviate

when we have less-than-ideal situations.

This is due to the limits of abstraction to model the relational structures like communi-

ties. The multifaceted definitions of multiplex-communities are based on anecdotal obser-

vations of real world data which can be hard to translate as a general framework. Ergo the

methodology of a case study cannot be easily transfer to other situations.

For example letM1 be a social-multiplex on {colleagues, family} andM2 be a citation-

multiplex on {references, common keywords}. If A1 and A2 are the algorithms that were

used to studyM1 andM2 respectively, then is there a systematic and objective way to de-

termine which of the two algorithms is better for a transportation-multiplex on {buses,trains}?
Moreover is it even possible to bootstrap the fact that A1 is the right algorithm forM1?

Given the subjective nature of relationships, it is difficult to suggest a convincing frame-

work to address the above issues. The appeal of a multiplex is that it preserves the fine

relational properties of a system, but the trade-off requires additional assumptions on the

model. Moreover since the multiplex-communities detection algorithms are very sensitive,

a slight error on any of the assumptions can easily lead to the wrong results.
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Chapter 5

The Network Science of Interval Graphs

There could be many reasons to why interval graph research lost traction. A probable

cause is that the computational challenges for interval graph algorithms (e.g. boxicity)

limits its application and hence losing the support from the natural sciences. Nevertheless

the mathematics of interval graphs are thoroughly researched for many years and hence

there is very little that this thesis can contribute to the study.

However given the obscurity of interval graph research, there is hardly any modern

perspectives to the problems and its applications. Thus in the first part of this chapter, we

look at a heuristic strategy to compute a graph’s boxicity by modularizing the problem with

communities detection algorithms. There are three reasons to do so: 1) It helps to reduce

the computational hard problem into simpler problems. 2) It gives us multiple perspectives

of complexity — the local complexity of the communities and the global complexity of

the general topology. 3) More importantly it addresses the practical issues in experimental

science where the noise in the data affects the boxicity of the network.

The second part of this chapter is a framework with interval graphs to model the discon-

tinuity of information propagation. The hyperbox representation of a graph is a determin-

istic model that is able to simulate information flow between non-adjacent vertices. This is

different from current models where the discontinuity effect is often obscured by random

processes. This is still in the preliminary phase and is left for future work.

The research presented in this chapter is published in [112].
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5.1 “Approximating” Boxicity Using Communities Detection

The boxicity of a network can be used as a measure of complexity. It determines the

minimum number of attributes to measure the vertices such that an adjacent vertex pair

implies that their attributes overlap. Given that an adjacent vertex pair in a multiplex is

connected by relationships, it suggests that the vertices must have common (overlapping)

attributes such that the relationship can be established. Therefore we posit that the number

of relationships in a multiplexM should be less than the boxicity of its projection.

The rational is that if we assume linear structures like interval graph as the simplest type

of relationship, then the complexity will unnecessarily increase when we introduce more

relationships to the multiplex. The assumption is that it takes at least one metric to measure

a relationship. Hence if d metrics is sufficient to describe a network, then a multiplex with

more than d relationships implies that there are some dependency among the relationships.

For example let the relationships in a multiplex be {Ra, Rb, Rc} and the metrics to mea-

sure these relationships be {a, b, c} respectively. Suppose the boxicity of the multiplex’s

projection is two. This implies that the metrics are not independent, e.g. let a be tempera-

ture and b is energy, thus Ra is redundant as temperature is a type of energy. Alternatively

there could be a better relationship to describe the system, e.g. let a be temperature and b be

the distance from the sea, hence a simpler metric is humidity. The difficulty is to establish

the identity of the relationship that is described by the metrics.

This simplification of multiplexes is the same motivation as De Domenico et al. in

[55]. The idea is to simplify the complexity of a multiplex by reducing the number of

relationships, while maximizing the information. However the applicability of boxicity

for real world systems will remain limited since to determine a network’s boxicity is a

NP-complete problem.

Although a network’s boxicity is bounded by a function on the graph’s properties (Table

2.1), the bound is generally not tight and thus it is still not very meaningful. In addition

the boxicity of a network is an unstable and non-monotonous function where it fluctuates

unpredictability when new edges/nodes are added to the network. Hence the intolerance to

experimental errors further challenges the applicability of boxicity. This section resolves

the above issues using communities detection to modularize the problem.
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5.1.1 Minimum Boxicity of Network from its Communities

We propose that communities detection is a key strategy to approximate the boxicity of

a network. It is similar to optimizing the Hamiltonian Walk problem by simplifying a

network into modular structures [35]. Clearly the boxicity of a community is a simpler

problem since it is a smaller graph. However more importantly we can bound the boxicity

of the entire network using the boxicity of the communities [140]:

Lemma 5.1.1 Boxicity(G) ≥ maxg∈CBoxicity(g), where C is the set of all the commu-

nities in graph G.

For instance there are two communities in the Zachary Karate Club Network with 17

vertices in community A and 16 vertices in community B (Top diagram in Fig. 5.1). The

network is not an interval graph as vertices {24, 25, 26, 28} is not chordal (theorem 2.1.2).

Since the communities are small, we are able to deduce (via exhaustive search described

in section 2.1.2) that community A and B has boxicity = 2 and > 2 (no solution found)

respectively.

Since community B is a planar graph, its boxicity ≤ 3 [162] or more specifically = 3.

Thus the boxicity of the Zachary Karate Club Network ≥ 3 (lemma 5.1.1). The bottom

diagram in Fig. 5.1 shows one of the possible hyperbox representations of the communities.

Since we have to eventually combine these partial solutions, it appears to be very helpful

to constrain the partial solutions such that the vertices of a community that connects to the

other communities have to be aligned along the boundaries of the hyperboxes.

Fig. 5.2 slightly rearranged the hyperboxes in Fig. 5.1 such that the boxes at the

boundaries the communities can be easily combined. From the figure, we can conclude that

it does not take more than 3-dimensions to combine the communities. Hence the boxicity

of Zachary Karate Club Network is 3.

5.1.2 Boxicity of the Communities’ Interaction Network

The communities also allows us to look at the broad overview to how information flows

from one community to another. That is the complexity (boxicity) of the modular structures

is important to understand the information propagation of a network (section 5.2).
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Figure 5.1: (Top) The Zachary Karate Club Network where communities A and B are the
shaded and non-shaded nodes respectively. (Bottom) The hyperbox representation of com-
munity A and B. The dashed line represents Community B in 2-dimension (boxicity = 2)
if vertex 34 is adjacent to vertex 26. Since it is not, hence we need the third dimension such
that the box 34 can overlap box 28 while “bridging over” (bypass) box 26. The boxes are
aligned in a way such that vertices that connects to the other communities are near the cen-
ter. For example the vertices in community A have to route via vertices {1, 2, 3, 9, 14, 20}
to get to community B. Similarly the vertices in community B have to route via vertices
{10, 28, 29, 31, 32, 33, 34} to reach community A. Since we divide the network into two
smaller communities, this constrain is more sensible when we try to “join” the communi-
ties’ hyperboxes.
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This is done by coarsening the network G with a new network H where the vertices in

H represents the communities of G, and the vertices in H are adjacent if and only if their

corresponding communities in G are connected. Again, since H is a smaller network than

G, the computation of the boxicity of H is easier. This process can be repeated on H until

we get the desired granularity.

In our previous example, the Zachary Karate Club Network, there are only two com-

munities and they are connected. Hence the coarse network is just a complete graph on two

vertices, i.e. an interval graph with boxicity = 1. This implies that the information flow

has low complexity where there is a linear flow from one community to another.

5.1.3 Boxicity with Experimental Noise

The conclusion from the previous example is trivial since there are only two communities.

However it is interesting and important to note that the conclusion remains the same when

we remove or add (a small number of) edges from/to the network. These modifications can

represent the noise in the experiments and hence more relevant for scientific applications.

Quasi-Interval Graph, Q is a graph with boxicity > 1 that can be expressed as an

interval graph by adding or subtracting some edges as experimental errors from Q. It

is useful for systems where there are strong qualitative evidences that they have linear

structure [40, 122, 158]. This can be done by finding the minimum number of edges to 1)

add to Q [88, 89, 127], 2) remove from Q [72] or 3) a mixture of both types of errors [116].

For example community B in the Zachary Karate Club Network will have boxicity = 2

(instead of 3) if vertices 26 and 34 are adjacent (Fig. 5.1).

However it is still a hard problem to minimize the number of modification over the

entire network such that its boxicity is also minimized. Thus is more intuitive and easier

to understand the general dynamics of a system with the coarsen network than the precise

boxicity of the network.
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5.2 Information Propagation of Interval Graphs (Future Work)

Information propagation is the behavior in which a property on the vertices is spread across

the graph. In the infection model, a vertex passes the property to its neighbors probabilis-

tically at each iteration. This models the behavior of a virus epidemic where there is a

probability for an entity to catch the virus from its neighbor [7, 80].

Alternatively a vertex adopts the property under the influence of its neighbors when the

ratio of its neighbors with the property exceeds a threshold. This is the influence model and

it is used to describe the nature of social trends like product recommendations [21, 73, 75].

In general terms, vertices with the information (e.g. infection) are known as active vertices,

and if otherwise they are known as inactive vertices.

A common notion with these models is that information flow along the edges of the

network. However it is not possible to consider all the relationships in the system to map

the full topology of the network. Thus it is possible for information to flow between non-

adjacent vertices. This discontinuous flow of information is often assumed to be the actions

of some confounding variables in the system and is simulated by passing the information

probabilistically to a random non-adjacent vertex [124, 144]. This section as future work,

proposes the hyper-boxes representation of a graph as a deterministic linear framework to

model the discontinuous flow of information.

5.2.1 Outline

The linear fine structures of a graphG is the set ofm interval graphs {I1(V,E1), . . . , I
m(V,Em)}

as hyper-boxes where G(V,E) = (V,E1 ∩ . . . ∩ Em). The set of edges from the intervals

graphs that are not in G, i.e. Ec = (E1 ∪ . . . ∪ Em) \ E, are the confounding edges un-

observed from the graph G. Thus when information flow through the edges in Ec, it will

appear from G that there is a discontinuous flow of information (Fig. 5.3).

For example in a marine food web, a predator feeds on two environment niches/metrics

— the size of the prey and the depth of the ocean where the predator hunts. Hypothetically

suppose there is toxin deposits in the ecology and via bioaccumulation the toxin level of a

fish is proportional to its size. Thus the spread of the toxin will appear discontinuous from

the food web since the feeding patterns in deep water is different from the surface.
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Figure 5.3: (Note: the same diagram in Fig. 2.1.2) The box representation (middle) of a
graph (right) with boxicity 2, where the label of the boxes correspond to the vertices of
the graph. The box (graph) is the intersection of the bottom and left intervals, where box
A is enclosed by intervals A′ and A′′. Suppose interval A′ (vertex A) is active and infects
adjacent interval F ′. Although A′ and F ′ are adjacent, their respective boxes (vertex) are
not adjacent, i.e. A is not adjacent to F . Hence from the perspective of the graph, there is
a discontinuous flow of infection between non-adjacent vertices.
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This framework does not obscure the context of the propagation’s dynamics by ran-

dom process, i.e. the flow of information is well defined either via the edges of E or Ec.

However the trade-off is the computational intractability to derive the hyper-box represen-

tation from a given graph. Thus in the experiments, the random interval graphs are first

constructed and then their intersection forms the observable graph G.

For simplicity we will only consider the case where the G is connected. This condition

can be met by varying the radius of evolutionary interval graphs (section 3.6). In addition

we can parameterize the radius so that we can observe different rates of discontinuity.

5.2.2 Propagation Models

Given a connected graph G = J1
r ∩ . . . ∩ Jmr , the propagation dynamics are applied to

one of the evolutionary interval graphs Jkr . For example in the infection model, the active

vertices in Jkr infects their neighbors with fixed probability. Since the neighbors in Jkr are

not necessarily adjacent in G, the discontinuity of information flow can be observed from

the perspective of G, which means that information flow is disrupted in G.

Infection Model

The framework of a typical infection model (SIR: susceptible-infectious-recovered) is the

process where active vertices can transmit the infection to inactive vertices with a fixed

probability per unit time. Concurrently active vertices can recover at a constant rate. The

ratio between the infection rate and the recovery rate determines the spread of the infection

(epidemic) across the network [46].

However the rate of recovery is not required to observe the discontinuous flow of in-

formation. This simplification is analogous to the spread of news or gossips across social

networks via word of mouth [152]. The rate of infection follows the assumption that an

inactive vertex v is more susceptible to be infected if most of its neighbors are active. Thus

Pr(v will be infected) =
No. of active neighbors

No. of neighbors
, (5.1)

and discontinuity is defined when a vertex is infected with zero probability.
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Influence Model

In the influence process, an inactive vertex in a network becomes active if a sufficient ratio,

τ of its adjacent vertices are active. It is similar to the behavior of fashion trends in social

networks where “non-adopters” (inactive) vertices follows the style under the influence of

their peers. Hence much more active vertices are required to influence a high degree vertex

than a vertex with fewer neighbors. Therefore it is possible to reach an equilibrium when

information no longer spread across the network, where there are insufficient active vertices

to influence remaining inactive high degree vertices [93].

In the experiments, a vertex will be active if at least half of the neighbors have to be

active, i.e. τ = 0.5. From the perspective of the graph G, if an inactive vertex becomes

active when half of its neighbors are inactive, then this situation is defined as an instance of

discontinuity in the information flow. Conversely, discontinuity is also defined if a vertex

remains inactive even when it is above the threshold.

5.2.3 Experimental Results

Fig. 5.4 shows a proof of concept that it is possible to simulate any rate of discontinuity

with evolutionary interval graphs. We define the rate of discontinuity = 1 when the graph

is disconnected so that the plot fits a Sigmoid-like function. Furthermore as r increases,

the graph becomes denser and every vertex has an edge connecting to most of the other

vertices. Thus the effects of discontinuity is less apparent, although the observed frequency

is different from the expectation probability of Eq. 5.1.

In real-world systems, interval graphs do not necessarily belong to the ensemble of

evolutionary interval graphs. This experiment is simply to show that the framework is able

to model the discontinuity in network propagation. The advantage of a deterministic model

is that the simulation behaviors are repeatable once the general direction of the flow is fixed.

The emphasis is that this framework is an alternative and not a replacement for existing

models. Given that intervals graphs have meaningful contexts in complex systems like

Ecology and Bioinformatics, future work is to find valid applications in the broader scope

of Network Science such that this framework aptly models the system. For example time

dependent systems like the EEG or fMRI time series of brain networks.
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Figure 5.4: The rate of discontinuity observed inG = J1
r ∩ . . .∩Jmr when the infection (top

plot) dynamics is applied to a random interval graph Jkr . Similarly the bottom plot shows
the rate of discontinuity when the influence dynamics is applied to a random evolutionary
interval graph.
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5.3 Summary

Interval graphs are well-studied in ecology to understand the stability of complex systems.

However to relate this to the broader applications in Network Science has yet to be at-

tempted. For instance the simulations show that as a proof of concept, interval graphs are

viable linear fine structures to model the real world characteristic of discontinuous infor-

mation propagation. The advantage of this framework is that the intuitions of the dynamics

are not obscure by random processes.

In addition we show that the methodologies in Network Science can help in the com-

putational challenges of interval graph — modularize a network such that the computation

problem of boxicity can be simplified. Furthermore the communities allow us to focus on

the complexity of the general network topology rather than the details within the commu-

nities which are prone to experimental errors.

Given the growing interests for multi-relational networks, interval graphs provide an

alternative model for scientists in their research. In addition the modern methodologies and

tools from Network Science can address the computational challenges of interval graphs

problems.
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Chapter 6

Disparate Literature

Section 2.2.1 briefly mentioned the disparate nature of this study, which posed a huge chal-

lenge to sieve through the synonymous names in the literature. Moreover these names are

interchangeably used to describe other generalized graph models that are vaguely similar

but mathematically different.

For example multilayer networks is one of the synonymous names in the literature,

where the name can also refer to a set of graphs (as layers of graphs) that is not necessarily

on the same vertex set with an interlayer edge set to connect the graphs in the set. This is

used to model a set of somewhat independent systems that has subtle dependency between

them, e.g. a power-grid network failure will disrupt the power required for a communica-

tion network [145].

Therefore for the completeness of this thesis, this chapter introduces these mathematical

objects as a broad overview of the disparate layered-network research and then applied

Mark-and-Recapture from population biology to estimate the number of publications that

were overlooked in the current literature reviews.

Finally we will look into further applications of Mark-and-Recapture as a stopping

rule for the results from search engines. This also allows us to measure the similarity of

truncated-rankings using the idea from the Least Square Error.

The research presented in this chapter is published in [110].
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6.1 Formal Definitions of Other Generalized Models

Definition 6.1.1 The most general form of a layered network is a finite set of m graphs as

layers G = {G1(V1, E1), . . . , G
m(Vm, Em)} with

C = {Ēab ⊆ Va × Vb; a, b ∈ {1, . . . ,m}, a 6= b} (6.1)

as the set of crossed layers elements to connect the vertices of one layer to the vertices of

another, i.e. interlayer connections [23, 95].

The most general form of a layered network is a set of graphs as layers and the graphs

are connected by interlayer edges (Def. 6.1.1). For instance a multiplex is the variant where

the graphs are on the same vertex set V and do not have interlayer connections (C = ∅).
Similarly the other variants can be defined as follows:

1. An ordered (with respect to time) set of the graphs in a multiplex is known as a

temporal network where it models the change of the connectivity in a system.

2. A strikingly similar variant to multiplex is the case where the graphs are on the same

copy of vertex set V , i.e. V1 = . . . = Vm = V , and the graphs are connected by

interlayer edges Ēab = {(v, v); v ∈ V }.

3. A multilevel network is a set of graphs {G1(V1, E1), . . . , G
m(Vm, Em)} on vertex V

where the vertex sets Vi are subsets of the copies of V such that V = ∪m1 Vi. The

interlayer edges are Ēab = {(v, v); v ∈ V ; v ∈ Va ∩ Vb}.

4. A hypergraph is a generalization of a graph in which a hyperedge ēi connects multi-

ple vertices. It is a type of multilevel network {G1(V1, E1), . . . , G
m(Vm, Em)}, where

each edge ēi forms a complete graph Gi on all the vertices connected by ēi.

It is hard to determine which model best describes a system since under certain condi-

tions the models can be expressed interchangeably with little or no loss of information, e.g.

a hypergraph as a multilevel network. Thus literature reviews like [23, 95] present these

variants of layered networks as a unified framework.
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6.2 Population Estimation

It is highly probable that the bibliography of the literature reviews on layered networks are

incomplete. Just like population biology, it is not possible to capture all the animals to

determine the population of an animal species. Instead a mark-and-recapture methodol-

ogy can be used to approximate the population by multiple samplings of the species and

discount for the number of instances that were caught previously.

6.2.1 Mark-And-Recapture

Animals are captured and marked before releasing them back in the wild. After enough

time has passed to allow a complete mixing, the population is sampled for the second time.

In the second sample, the ratio of marked animals (from the first capture) to the number of

captured animals is approximately the ratio of captured animals in the first sample to the

total population, hence by Peterson method [156]:

Total population ≈ N1N2

R
, (6.2)

with standard deviation

σ =

√
(N1 + 1)(N2 + 1)(N1 −R)(N2 −R)

(R + 1)2(R + 2)
, (6.3)

whereN1,N2 are the number of captures in the 1st and 2nd sample respectively, andR is the

number of marked animals (individuals that were captured in both samplings). Furthermore

Mark-And-Recapture can be extended to multiple captures by a weighted average of Eq.

6.2 known as Schnabel Index [151]:

Total population ≈
∑m

i=1NiMi∑m
i=1Ri

, (6.4)

where Ni is the number of captures in the ith sample, Mi is the total number of marked

animals in the population before the ith sample, and Ri is the number of marked captures

in the ith sample.
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6.2.2 Assumptions in the Estimation

To apply the same methods to scientific literature citation analysis, the assumptions have

to be parallel to biology population. The mixing period for population biology has to be

long enough such that the second sampling is independent from the first, yet short enough

to minimize the effects of population changes or the death of the tagged animals, i.e. a

closed population. Since the literature review of [23, 95] were independent efforts and were

completed approximately at the same time, the sampling is well mixed and it is reasonable

to assume that the number of relevant literature is fixed (i.e. closed).

However the probability that a paper is found and referenced is not equal [14]. There are

many factors that affects the visibility of a publication, e.g. quality of research, keywords,

publication date, authors, etc. This is a common violation of assumption in wildlife as

some individuals have a higher tendency to be captured again, i.e. “trap-happy”. In such

cases, the result will be the lower bound figure to the true population size.

6.2.3 Methodology

There are two sources that throughly review the literature on multilayer networks — The

structure and dynamics of multilayer networks by Boccaletti et al. [23] and Multilayer Net-

works by Kivelä et al. [95]. The bibliographies were filtered so that only the publications

on layered networks were analyzed. The population is estimated using Eq. 6.2 since the

sample size is sufficiently large, i.e. Chapman estimator is similar to Peterson method.

It is important to manually curate the bibliographies as the references might be misla-

beled or not up to date. E.g. Kivelä et al. referenced the arXiv link to the paper Metrics

for the analysis of multiplex networks (2013) whereas Boccaletti et al. updated the publi-

cation in Physical Review E. There are also cases where the authors’ names are wrong, e.g.

Saramaäki is missing in Physics Reports article Temporal networks (2012).

In the event that there are more literature surveys on layered networks, Schnabel in-

dex (Eq. 6.4) can be applied to increase the accuracy. Although it is important that the

subsequent surveys built upon of the reviews by Kivelä et. al and Boccaletti et. al. The

mechanics of Mark-And-Recapture is a sequence of capturing and marking the animals,

hence the number of marked animals is dependent on the prior captures.
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6.3 Empirical Results

As a proof of concept, we have to apply this methodology on a different context first. This

is to increase our confidence if there are other independent experimental support. Hence

we will first apply this idea on the literature on the community of graph (not multiplex).

6.3.1 Literature on the Communities of Graphs

There are several reviews on the community of graphs — Newman 2004 [129], Fortunato

and Castellano 2007 [65], Schaeffer 2007 [148], Porter et al. 2009 [137], and Fortunato

2010 [64]. Although it is tempting to apply Schnabel Index to sample the body of literature

repeatedly, it violates many assumptions of the estimator.

The first violation is that these surveys are not independent sampling of the literature

as almost all of them cited the earlier reviews. Secondly the population in question is not

closed as there are many research on communities detection since year 2004. There are

only 44 references in Newman 2004 review versus the 457 references by Fortunato 2010.

Thus the results will be meaningless even if the numbers support the methodology.

Therefore to minimize the violation of the assumptions, the reviews must be published

approximately the same year and the latter did not cite the earlier review. Hence Schaeffer

2007 will be the first sample and the review by Fortunato and Castellano 2007 will be

the second. Finally the result will be compared against the bibliography of the review by

Fortunato 2010 to gauge the accuracy of this methodology.

Out of the 249 references in Schaeffer 2007, only 43 articles are directly relevant to

communities detection. Most of the excluded references are on graph cutting from graph

theory or clustering algorithms from machine learning, since they do not connote the idea

of modularity of communities in the articles. Similarly only 55 articles were chosen from

97 references in the review by Fortunato and Castellano 2007.

Finally there are 20 citations that were listed in both reviews, thus Eq. 6.2 and Eq.

6.3 suggest that there are ≈ 118 ± 14 publications on graph communities by 2007. In

comparison, there are 112 articles before 2008 on graph communities in the bibliography of

Fortunato 2010. This is a close estimate and supports the framework to study the disparate

literature on generalized graphs in the next section.
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6.3.2 Literature on Generalized Graphs

There are 376 entries in the bibliography in the review by Kivelä et al. and among them

233 papers are directly related to layered networks. The review by Boccaletti et al. is more

comprehensive in describing the background of the problems, hence it has 520 articles in

the bibliography but only 214 of them are on the layered networks.

Both surveys did a thorough review on the formalism and the relationships amongst

the different generalized graphs. However Kivelä et al. has more coverage on the multi-

plex communities whereas Boccaletti et al. is more comprehensive on the synchronization

problem and provides more examples in real-world applications.

Therefore approximately 60% of the bibliographies overlap, specifically 143 common

relevant articles. Thus from Eq. 6.2, the lower bound to the number of articles on layered

networks is 233 · 214/143 = 348.68 ≈ 350 with standard deviation of σ ≈ 10. The total

number of articles from both review is 233 + 214 − 143 = 304, hence there is potentially

at least 350 − 304 = 46 relevant literature that were overlooked in the process. Although

there are much more “missing-relevant” articles in Graph Theory (i.e. interval graphs), it

is reasonable that most of them are not directly relevant to the applications of multiplexes.

6.4 Application in Bibliographic Search

Since literature reviews are well curated, the estimate from Mark-And-Recapture suggest

the size of the body of literature on a given topic. It gives new researchers a level of

confidence in their preliminary investigations.

However the conditions for this methodology are hard to meet (section 6.2.2) for most

research topics. Furthermore it begs the question, is the bibliography of the literature

reviews complete?. Since academic search engines are the basic sources of information for

researchers, it would be interesting to apply Mark-And-Recapture to compare the results

from the different search engines.

The preliminary process of a research is the task of searching and re-searching the

relevant publications to have an overview on the topic. There is no optimal stopping rule to

determine if one has collected sufficient relevant articles, and prolonged search will tend to
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have diminishing returns. This is a foremost challenge for any researchers and one of the

reasons for peer reviewing publications (i.e. to avoid duplicated research).

For instance although there is a huge body of research in medical science, there is an

urgency to provide the proper medical care. Thus the time spent on research has to be

optimized. However the citation network for clinical trials is disconnected, which reflects

the possibility that the “different camps” of clinical researchers use different research tools.

Hence many of them are unaware of the relevant literature from the other camps [142].

Thus Mark-And-Recapture methodology was proposed as a stopping rule for medical

research [25, 90, 91, 102, 157]. For example the empirical evaluation on osteoporosis dis-

ease management publications estimates approximately 592 articles are missing from the

four main bibliographic databases for medical science — MEDLINE, EMBASE, CINAHL,

and EBM Reviews [90].

6.4.1 Comparing Search Engines

Experiment Methodology

Unlike in the medical field, many keywords in science have multiple meanings in different

contexts, for example the word graph can be defined as a plot of a function or an abstract

mathematical object (i.e. network). Hence there can be many unrelated results and causes

the search engine to return millions of articles.

One way to sieve through the articles is to accept the top “relevant” articles suggested by

the search engine until there is no new significant information is gained [32]. However there

is no measure of information gain and we depend mainly on our subjective gut feelings.

This section shows that Mark-And-Recapture on academic search engines (e.g. Google

Scholar, Microsoft Academic Search, and Web of Science) can be used to quantify the

“information gain”.

The web-crawler/database of these search engines are the “traps” for the entire body of

literature, and the ordering of the results is a reflection of the (search engine) algorithms’

unique perspectives of the keywords. Suppose the top nth results of two search engines,

E1 and E2, have R number of common articles. Eq. 6.2 suggests that there is at least

T = n2/R publications on this topic. To avoid the division by zero, we initialized R = 1.
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If we assumed that one stops at the nth entry ofE1 andE2, then the coverage of the body

of literature is at most C = (2n − R)/T . Therefore the rate of change of C with respect

to n estimates the information gained during the time spent with the search engines. A low

rate of change implies low information gain and quantifies a stop to the search.

For simplicity, this thesis only compares two search engines at a time where each of

them is independent sampling over the body of literature. The ordering of the results is

sorted by “relevance” which is ranked by the different search engine algorithms.

Lastly only the top 500 results from each search engine are collected in the experiments

since Web of Science limits that number of articles to be exported at each time. Moreover

if the sampling is too large it will trigger Google Scholar to temporarily ban users from

accessing its database. The software used to extract from Google Scholar and Microsoft

Academic Search is Publish or Perish [79].

Formalism

Some papers are published in multiple sources, e.g. arXiv and peer-review journals and it

will cause the search engines to return the same paper as distinct publications. Since there

is no information gain for repeated articles, we have to adjust our equations.

The coverage of a literature is a time series where the nth unit of time refers to the nth

article of the search engines. Let Ni,n be the number of unique articles returned by search

engine Ei at time n. Then the estimated total number of publications on this topic is

T = N1,nN2,n/R, (6.5)

where R is the number of articles found in both search engine. Hence the coverage,

C = (N1,n +N2,n −R)/T. (6.6)

In most cases N1,n = N2,n ≈ n. If R → constant, then limn→∞C ≈ 1/n → 0.

This implies there is a diminishing return to the information gain when one continues the

search. From another perspective the total number of publications limn→∞ T ≈ n2 → ∞.

This means that the given keyword is so imprecise that the results from the different search
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engines diverge as there is almost no common articles between the search engines.

If R ≈ n, then it implies that E1 and E2 are so similar and it is analogous to using one

search engine. In such case we are back to the original situation where there is no quantified

method to stop the search. Fortunately R generally does not grow in a fixed manner for the

entire time series. There are instances when the derivative of C is zero and it usually infers

an optimal stopping rule.

After a local maximum ofC, the information gain is negative as the search engines’ per-

spectives of the keyword begin to diverge. Hence the reason to stop is that the subsequent

articles are less relevant from the perspective of the other search engines.

After a local minimum of C, the stopping rule is slightly counter-intuitive. Although

the coverage increases, R increases rapidly too. This means that the subsequent articles are

already returned in (much) earlier results, and hence no information gain.

Types of Stopping Rule

Type I (Convergence to Zero)

The quality of a search depends on how specific the keywords are, for example many dis-

ciplines like physics, chemistry and engineering have subfields that research on improving

rechargeable batteries. Hence the results from the different search engines are drastically

different with keywords like “rechargeable batteries” (Fig. 6.1).

Therefore if a keyword has similar figure, then it suggests that one should refine the

keyword to be more specific. The keyword is either too ambiguous like “Phase Transition”

and “Communities Detection”, or the topic is studied in many branches of science like

“Genetic Algorithm” and “Ising Model”. In such cases, there is no good stopping rule.

Type II (Local Max and Min)

When T grows quadratically, it means that the search results are drastically different. This

usually implies that the choice of keywords is bad and one should discard the search results.

However it is not true in general, e.g. consider the keyword “Kauffman Model” in Fig. 6.2.

The local minimum of C (for dotted and dashed line) is approximately at n = 20 where

T appears to be linear in log-scale (i.e. polynomial growth). The rapid increase of coverage

plateaued approximately at n = 50 is the effect that the subsequent articles after n = 20 in
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Figure 6.1: Keyword: Rechargeable Batteries. GS, MA and WS are abbreviations
for Google Scholar, Microsoft Academic Search and Web of Science respectively. T is
quadratic for all pairwise comparisons (R grows so slowly that it is almost constant), hence
linear in the inserted figure. This implies that a search on general keywords like “recharge-
able batteries” are unfocused and can be found in many different fields of research.

one of the search engines were already listed in the search result of the other search engine.

Thus there is little information gain and it is a reasonable to stop at n = 20.

The local maximum of C plateaued until n ≈ 70, where it is an alternative stopping

point for the search. It is an indicator that the search engines’ suggestions begin to deviate

and hence subsequent articles are less relevant.

Keywords with graphs that are similar to Fig. 6.2 are unfortunately not very common.

Out of the 50 keywords selected for our experiments, only the graphs of “Kauffman model”

and “Tangled Nature Model” have both local minimum and maximum.

Type III (Local Min)

There are many examples that fall into this category, especially for keywords that are less

ambiguous and found in very specialized topics. For example “Skyrmion” has approxi-
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Figure 6.2: Keyword: Kauffman Model. At n ≈ 70, the rate of change of coverage
shifted from zero to negative. This implies one should stop around this point as further
search has negative returns. An alternative stopping point is at n ≈ 20 (local minimum)
where it implies that the subsequent articles are already found by the other search engine.

mated 9000 articles in Google Scholar and most of the publications are also in the database

of the other search engines. However every search engines have their own unique algo-

rithms to rank the most relevant articles.

Fig. 6.3 shows that the results by the Web of Science initially deviates from Google

Scholar and Microsoft Academic Search until n ≈ 100 and n ≈ 180 respectively. After

which T converges for all pairwise comparisons. This implies that the initial ordering of

“relevance” by Web of Science is partially the reverse of the other search engines.

More precisely after the local minimum, the subsequent articles by Web of Science are

found in the earlier results of Google Scholar and Microsoft Academic Search. Therefore

the coverage increases and there is little information gained.

Type IV (No Significant Feature)

There are many instances where the graphs do not fit into any of the above models. There
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Figure 6.3: Keyword: Skyrmion. For Web of Science and Google Scholar, their local
minimum is at n ≈ 100. The subsequent articles in Web of Science matches the earlier
articles in Google Scholar, vice versa.

is no significant minimum or maximum point for one to suggest a meaningful stop to the

search. For example the solid line (Google Scholar versus Microsoft Academic Search)

in Fig. 6.4 is the graph for “Causality Measures”. There is no general rule to identify

keywords that fall into this category.

6.4.2 Measure of Truncated-Ranking Similarities

The ordering from a search engine is determined by the relevance of the articles. For in-

stance Google’s algorithm has roots from Eigenvector Centrality where it ranks the quality

of an article via the behavior of “word-of-mouth” recommendations. I.e. high ranking

articles are either referred by other high ranking articles or by many independent articles.

Thus the growth ofR in essence is also a measure of similarity for the centrality ranking

of vertices. Specifically a linearRwith slope 1 indicates high similarity while slow growing
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Figure 6.4: Keyword: Causality Measures. There is no significant reference point such
that one can suggest a reasonable stop to the search.

(e.g. sublinear) indicates a lower degree of similarity. This is closely related to Spearman’s

Correlation and Kendall-tau Distance as ways to measure the similarity of ranked variables.

Spearman’s Correlation is the variant of Pearson’s Correlation for ranked variables

where it measures how monotonically two rankings are related. Although it is relevant

to our application, the model cannot be used for truncated dataset, i.e. comparing the top

few elements of two rankings. Thus it is also not applicable for dynamical systems where

the size of the network fluctuates and only the top centrality vertices are interesting.

Definition 6.4.1 (Kendall-tau Distance): Given two ordered sets X = {x1, . . . , xn} and

Y = {y1, . . . , yn}, the set of n observation is (x1, y1), . . . , (xn, yn). A pair of observations

(xi, yi) and (xj, yj) are in agreement if both xi > xj and yi > yj or if both xi < xj and

yi < yj . The pair is in disagreement if xi > xj and yi < yj or if both xi < xj and yi > yj .
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Hence the Kendall-tau Distance is:

τ =
(no. of agreement pairs)− (no. of disagreement pairs)

n(n− 1)/2
. (6.7)

Kendall-tau Distance measures how likely the order of two rankings agree. It handles

truncated-ranking by ignoring elements that do not exists in both rankings. It is sensitive

to the orderings of the elements and two rankings are independent (dissimilar) if they are

random permutation of each other.

It is a good metric until one considers the size of the entire system. It is highly unlikely

that in a large system that the top elements of two rankings are in common. Thus even

though the ordering of two truncated-rankings might not agreeable in general, its effect is

small relative to the fact that the elements are in common.

Squared Error as a Metric

The intuition of this metric is based on the observation that when two truncated-rankings are

identical, R is a straight line with slope 1 intersecting zero. However when two truncated-

rankings are totally dissimilar (no common elements), R is a straight line with slope 0.

Thus the similarity between two truncated-rankings is the Squared Error difference

between R and the line with slope 1 intersecting zero. The smaller the Squared Error,

the more similar two rankings are. This is based on the best fit line algorithm where the

Squared Error between the data and line is minimized.

The maximum Squared Error is the difference between the lines y = x and y = 0,

hence to normalize the measure:

S = 1− E(I, R)

E(I, Z)
, (6.8)

where for the top n elements, I = {1, 2, . . . , n} is the ideal case (y=x) and Z = {0, . . . , 0}
(n zeros) is the case where there is no similarity. The Squared Error E is defined as:

E(X, Y ) =
n∑
j=0

|xj − yj|2. (6.9)
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Experiments Methodology

To simulate a dynamic network that varies in size, we construct a process that adds and

removes random vertices from a network in each time step. Between each iteration, the

Eigenvector Centrality of the vertices are computed and only the top 1000 vertices are

compared. For example let Gt and Gt+1 be the networks at time t and t+ 1 respectively. If

Qt and Qt+1 are the ordered lists of the top centrality vertices of Gt and Gt+1 respectively,

thenR is derived by comparingQt andQt+1 in the same way as we did with search engines.

Begin with a network on 10000 vertices constructed using Barabási-Albert’s construc-

tion. In each iteration, xr random vertices are removed and xa vertices are added to the net-

work where xr and xa are drawn from a normal distribution with mean 1000 and standard

deviation 100. The new xa vertices are added into the network using the same mechanism

from Barabási-Albert’s construction.

Empirical Results

Synthetic Network

Let Q1 and Q2 be two truncated-rankings on the index of vertices of a network. The simi-

larity S has a mean of 0.8831 with standard deviation of 0.0697. It is highly correlated to

the size of the set Q1 ∩Q2 with a Pearson’s Coefficient of 0.984.

In contrast S is less correlated (Pearson’s Coefficient of 0.2443) to Kendall-tau Dis-

tance as there are significant changes to the ordering of the top centrality vertices. More

importantly the mean Kendall-tau Distance is 0.0332. This implies that Kendall-tau Dis-

tance claims that the two truncated-rankings are dissimilar. The reason is that there are

many vertex pairs in one ranking that are not in the ranking of the other.

For example let vi, vj ∈ Q1 where vi is ranked higher than vj in Q1. Suppose vi ∈ Q2

and vj 6∈ Q2, then there is neither agreement nor disagreement between Q1 and Q2 on the

pair (vi, vj). If there are many instances of such pairs, then the Kendall-tau Distance will

be close to zero and implies that Q1 and Q2 are independent. However considering the size

of the system, it would be unlikely to find many common top centrality vertices (e.g. vi).

Thus it is counter-intuitive to suggest that the two rankings are not similar.
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Special Cases

Although |Q1 ∩ Q2| is highly correlated to our similarity metric S, this section presents

some special cases of Q1 and Q2 to further distinguish S from the existing metrics.

Reverse Ranking: When Q1 is the reverse of Q2, |Q1 ∩ Q2| = 1 and S = 0.7492.

It will be particularly strange to state that the two truncated-rankings are identical given

that |Q1 ∩ Q2| = 1. Therefore our similarity metric distinguishes itself from the naive

approximation of |Q1 ∩Q2| by considering the order of the elements in the rankings.

Random Permutation: LetQ1 be a random permutation ofQ2 and as before it is strange

that both truncated-rankings are identical since |Q1 ∩ Q2| = 1. Whereas from 1000 trials,

the mean value of S and Kendall-tau Distance is 0.8993 and -0.0016 respectively. Thus S

is able to encapsulate the significance of the orderings in the rankings.

Asymmetry: Our metric places more emphasis on the top positions of the truncated-

ranking. For example let Q1 = {va, vb, . . . , vy, vz}, Q2 = {vb, va, . . . , vy, vz} and Q3 =

{va, vb, . . . , vz, vy} where the “. . .” is identical for all three truncated-rankings. For the

other measures, the similarity between (Q1, Q2) is the same as the similarity of (Q1, Q3).

However S shows that (Q1, Q2) is less similar than (Q1, Q3).

Let |Q1 ∩ Q2| = |Q1|/2 = |Q2|/2 where the first halves of Q1 and Q2 are random

permutations of each other. Thus there is no common element between the second halves

of Q1 and Q2. From 1000 trials, the mean score for S and Kendall-tau Distance is 0.8629

and 0.7523 respectively.

If the situation is reversed, i.e. there is no common element between the first halves of

Q1 and Q2, and the second halves are random permutation of each other, then the mean

score of S and Kendall-tau Distance is 0.3616 and 0.7519 respectively. Since Kendall-

tau Distance just counts the number of agreement/disagreement to the element pairs, it

does not matter if the missing elements are positioned at the beginning or the end of the

ranking. This is different from S as the agreement of the top rankings is more important

the agreement at the bottom of the rankings.

Real World Data

The observation from our real world data (results from search engine) is similar to the

results with the synthetic network in the previous experiments. Specifically our metric is
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positively correlated to the size of |Q1 ∩Q2| with a Pearson’s Coefficient of > 0.95 for all

pairwise comparisons of the search engines. In addition our metric is almost independent

to Kendall-tau Distance with Pearson’s Coefficient ≈ −0.1.

However it is the absolute score of the metrics that is particularly interesting. For

instance between the search results of Google Scholar and Microsoft Academic Search,

their mean similarity score for |Q1 ∩ Q2| and Kendall-tau Distance are 0.2799 and 0.0068

respectively. This implies that their results are not similar by those measures. In contrast,

S has a score of 0.464 with standard deviation of 0.2347.

Since the score is normalized between 0 and 1, suppose we let the arbitrary threshold

between similarity and dissimilarity to be 0.5. Thus our metric suggests that there is a huge

variation between the closeness of the results of Google Scholar and Microsoft Academic

Search. This supports the diverging conclusions from other empirical studies that they are

both similar and dissimilar in general. Therefore our metric is normalized in a way such

that it is good for measuring truncated-rankings like search engines’ results.

6.5 Summary

Mark-And-Recapture is a methodology in population biology that can be used to estimate

the breadth of a research from its literature reviews. However since prominent papers

are more likely to be cited by others, the estimate is only sufficient to bound the minimum

number of relevant literature. This gives one a general overview of the topic and to evaluate

the completeness of his research.

This is particularly useful to assess disparate research like generalized graph models

where there are many concurrent research from different disciplines. Furthermore it is also

coincident that two independent literature reviews by Kivelä et al. and Boccaletti et al.

were published around the same time.

This chapter summarizes one of the main research challenges of this thesis and the so-

lutions derived to overcome them. It describes the process to improve the completeness of

this thesis’s bibliography and to quantify the time spent to consolidate the relevant research

materials. Thus there is relevance to compile these ideas as a general research methodology

despite that this chapter is slightly off tangent to the title of this thesis.
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Chapter 7

End Notes

7.1 Summary

Interval graphs and multiplexes are network fine structures to encapsulate the relational

properties of a system. Interval graph is well studied in Graph Theory, but the intractability

to compute the boxicity limits its potential in many applications. On the other hand, multi-

plex is prevalent in many fields of science, but its literature is disparate and unorganized.

Chapter 3 presents the structural properties that was observed during the exploratory

phase. Not only it describes their topologies, it helps us to draw the boundaries and map

the direction for future work. Unlike many studies that look forward to formalize ways

to understand and measure multiplexes [13, 30, 31, 33, 107], the chapter looks back at

networks to hypothesize the types of relationships it might have. For example does the pro-

jection of a multiplex with Barabási-Albert and Watts-Strogatz graphs statistically similar

to a scale-free network that exhibits high clustering coefficient?

The problem with current approaches to formalize multiplex metrics is that there is a

huge degree of freedoms for subjective inputs from anecdotal perspectives. For instance

in the ideal case, the different definitions of a multiplex-community are pretty similar con-

ceptually. However as we deviate from the ideal situations (as in real-world systems), the

solutions deviate and the opinions can be inconsistent (chapter 4).

Therefore in chapter 5 we look into interval graphs as a way formalize multiplex more

objectively. For example the boxicity of the multiplex’s projection determines the minimum
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number of metrics to measure the vertices such that it describes the system. For simplicity

we always want to minimize the number of relationships while preserving information,

hence by occam’s razor principle there are little reason to opt for a multiplex with more

relationships than the hyperbox representation of its projection.

Finally to illustrate the challenges in compiling the disparate literature, chapter 6 de-

scribes a scientific process to organize the material. The novelty was the application of

Mark-and-Recapture from population biology to gauge the completeness of this study and

extends the idea as a quantitative measure for research.

7.2 Main Contributions in a Nutshell

This section is similar to the introduction (section 1.4) except that it is paraphrased differ-

ently as the technical details are now better understood. Hence this section will highlight

this thesis’s contributions to a greater context in Network Science and other applications.

The contributions of this research are disparate and easily lost within the text of this

thesis. The reason is that there are many challenges and gaps in our current understanding

of multiplexes that we have to bring in many somewhat unrelated ideas from other dis-

ciplines. Therefore in reading this thesis, the contributions are interwoven between prior

research so that the flow of the writing is smooth and coherent. Hence the following lists

down the contributions in a clear and concise manner:

• Chapter 3 is mainly some analytical properties of the resultant graph when we project

multiplexes on two relationships. All the materials are original except for Theorem

3.5.1, 3.5.2 and 3.6.1.

• There are multiple contributions in Chapter 4:

– The literature review on multiplex communities detection is more comprehen-

sive and supplements the reviews by Boccaletti et al. and Kivelä et al..

– Derived new analytical bounds (corollary 4.3.2 and 4.3.3) for multiplex com-

munities detection algorithms using probabilistic methods.

– Structured Synthetic Random Multiplex is a new benchmark multiplex to high-

light the multiple different definitions of communities in the same multiplex.
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– Showed that all the proposed multiplex communities detection algorithms are

similar conceptually in ideal situations, but empirically very different as there

are many non-ideal cases of a multiplex-community (Section 4.7).

• Another challenge in creating benchmarks for multiplex communities detection al-

gorithms is to determine the number of relationships in a multiplex. Many current

literature worked around this issue by prudent decisions and qualitatively argue their

choices. However this research proposed an objective guideline using boxicity, a

graph theory research that was active around 50 years ago (Section 5.1).

• Chapter 5 are some of the new work done on boxicity. For example in Section 5.1

we applied a heuristic method from Network Science (i.e. community detection to

modularize the problem) to improve the computation hardness of boxicity. More

importantly this heuristic method is more tolerant to experimental errors.

• Chapter 6 is a quantitative way to support the completeness of this thesis’s bibliog-

raphy using Mark-and-Recapture methods from population biology. For example we

are able to show the materials that are lacking in the reviews by Boccaletti et al. and

Kivelä et al. (Section 6.3.2). Since this is a generic method, its application can be

easily extended to other research topics.

• Finally the additional novelty in Chapter 6 is to apply Mark-and-Recapture on search

engines to determine a stopping rule for research, i.e. how many entries in the search

results must we explore before there is diminishing return in knowledge gained.

7.3 Perspectives

Introspectively it is critical to question the necessity of these fine structures in practice, i.e.

is it insightful to trade off simplicity for the additional relational information. It appears

that in some situations the pursuit of high dimensionality in networks is like forcing a

square peg in a round hole. The fact that it is mathematically coherent does not imply that

it is conceptually significant. As a saying goes: “for every debate in science there is an

isomorphic debate in the methodology of science” [82].
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There is a degree of subjectivity when we translate a real-world problem into a multi-

relational mathematical model. For example unlike a transportation multiplex where the

relationships are well defined by the physical infrastructure, the relationships in a social

systems are often assumed by the researchers’ subjective understandings. Hence the cor-

rectness of the model is hard to verify. This is diametrically opposed to the objectivity and

the issue is beyond the scientific inquiry [125].

This implies that the validity of a multi-relational model can be just as subjective and

one is not erroneous to claim that all the models are useful in their own way. I.e. “all

models are wrong; the practical question is how wrong do they have to be to not be useful.”

[27]. Although it demonstrates the rich perspectives of the model, it can also lead one to

reach conclusions to support his self-confirmation bias.

More importantly there are very little we can learn from the previous studies. For in-

stance the formalism (e.g. multiplex-communities) of a social multiplex do not necessarily

share the same ideas as a transportation multiplex. Hence the literature tends to be a col-

lection of ad hoc methods that do not have a unifying theme or connection.

This is not a vitriol on the current literature, but to highlight how different its workings

are from many scientific fields. The nature of multiplex research does not “stand on the

shoulders of giants” such that the problems can be built upon the previous ideas. This is

analogous to how combinatorics is placed along with the rest of mathematics [74].

The analogy is that multiplex research in general is a problem-solving discipline rather

than theory-building. This is similar to combinatorics where typically the research do not

to have a long chain of logical dependences [74]. This awareness helps to direct multiplex

research in a more meaningful manner. I.e. one should emphasize on solving individual

applications as a self-contained problem, rather than establishing a grand unified theory or

a general-purpose tool for all multiplexes.

Therefore the conclusion is that multiplex research is still at its infancy, where there are

many gaps in our understanding to apply it readily in practice. Specifically every applica-

tion requires rigorous evaluation from its formalism to the tools for the analysis. Ergo the

potential errors from the additional assumptions in multiplexity easily outweigh its benefits.

Therefore there is a need to tie up some of the loose ends of the research with mathematical

models like interval graphs that depends on different or less assumptions.
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Glossary

Adjacent Vertices u and v are adjacent if they are in the edge set E,

i.e. (u, v) ∈ E. 29

Asteroid-Triple Three independent vertices where every pair are connected

by a path avoiding the neighbourhood of the third. 18

Barabási-Albert A scale-free graph generated by the preferential attachment

mechanism. 33

Boxicity The minimum dimension to embed a graph as an intersec-

tion of axis-parallel boxes. 20

Centrality A metric of the most important vertices. 53

Chordal A graph with no cycle of length greater than 3. 18

Chromatic number The minimum number of colors needed to color the vertices

such that no adjacent vertices have the same color. 27

Clique A complete subgraph. 19

Clustering coefficient Average ratio of all vertex pairs who are neighbors of each

other to all pairs of neighbors. 46

Community A dense cluster of vertices that is sparsely connected to the

rest of the graph. 30

Complement graph The complement of a graph G(V,E) is the graph where its

edges is the set of all possible edges that are not in E. 72

Complete A graph is complete if all vertex pairs are adjacent. 58

Component A connected subgraph. 78
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Connected There exists a path between all vertex pairs. 32

Cycle A closed path of distinct edges with the same starting and

ending vertex. 30

Degree The number of edges incident to the vertex. 39

Edge An unordered pair of vertices. 12

Erdős-Rényi A random graph where vertex pairs are connected with fixed

probability. 32

Graph A pair of disjoint sets G(V,E) where E ⊆ V ×V . V and E

are known as the vertex set and the edge set respectively. 12

Independent A set of non adjacent vertices. 18

Interval Graph A duality of a graph and a set of intervals, where overlapping

intervals denote the adjacency of the vertices. 18

Loop An edge that connects a vertex to itself. 132

Louvain Algorithm An optimization algorithm to partition a graph and maxi-

mizes its modularity. 34

Modularity A metric to measure how different the communities are from

a random graph. 34

Multiplex A set of graphs on the same vertex set. 28

Neighbors The the set of all adjacent vertices. 18

Network see graph. 12

Overlap Edges e(u, v) and e′(u′, v′) overlap if u = u′ and v = v′. 36

Parallel edge A pair of vertices with multiple edges between them. 132

Path A sequence of edges connecting a set of vertices. 18

Preferential attachment The process where new vertices are more likely to be adja-

cent to higher degree vertices. 33

Projection The graph from the union of the edge sets in a multiplex. 29
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Regular A graph where all the vertices are of the same degree. 35

Ring Lattice A cycle of vertices. 33

Scale-free The property that a graph’s degree distribution follows a

power-law. 130

Simple graph An undirected graph with no loop or parallel edge. 33

Small-world The property that a high clustering coefficient graph has av-

erage path length that grows proportionally to the logarithm

of the size of the graph. 132

Star graph A tree on n vertices with one vertex having degree n−1 and

the rest of the vertices having degree 1. 37

Subgraph A subgraph of graph G is a graph whose vertex set or edge

set is a subset of those in G. 130

Tree A connected simple graph with no cycles. 132

Vertex Fundamental unit of a graph. 12

Watts-Strogatz A small-world graph constructed by randomly rewiring the

edges of a lattice. 33
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Porter, and Y. Moreno. Clustering Coefficients in Multiplex Networks. preprint

arXiv:1307.6780, 2013.

[54] M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall. Identifying mod-

ular flows on multilayer networks reveals highly overlapping organization in social

systems. arXiv:1408.2925, 2014.

[55] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora. Layer aggregation and

reducibility of multilayer interconnected networks. preprint arXiv:1405.0425, 2014.

[56] Y.X. Dong, J. Tang, S. Wu, J.L. Tian, N.V. Chawla, J.H. Rao, and H.H. Cao. Link

prediction and recommendation across heterogeneous social networks. ICDM, 2012.



REFERENCES 138

[57] S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin. Structure of growing net-

works with preferential linking. Phys. Rev. Lett., 85(21):4633, 2000.

[58] D.M. Dunlavy, T.G. Kolda, and W.P. Kegelmeyer. Multilinear algebra for analyzing

data with multiple linkages. Graph Algo. in the Language of Linear Algebra, 2011.

[59] N. Eagle and A.S. Pentland. Reality mining: sensing complex social systems. Jour-

nal Personal and Ubiquitous Computing, 10, 2006.
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