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Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG

suli@maths.ox.ac.uk

Received (Day Month Year)

Revised (Day Month Year)
Communicated by (xxxxxxxxxx)

We prove the existence of global-in-time weak solutions to a general class of models that
arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids,

where the polymer molecules are idealized as bead-spring chains with finitely extensible

nonlinear elastic (FENE) type spring potentials. The class of models under consideration
involves the unsteady, compressible, isentropic, isothermal Navier–Stokes system in a

bounded domain Ω in Rd, d = 2 or 3, for the density ρ, the velocity u∼ and the pressure p of

the fluid, with an equation of state of the form p(ρ) = cpργ , where cp is a positive constant
and γ > 3

2
. The right-hand side of the Navier–Stokes momentum equation includes an

elastic extra-stress tensor, which is the sum of the classical Kramers expression and

a quadratic interaction term. The elastic extra-stress tensor stems from the random
movement of the polymer chains and is defined through the associated probability density

function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which

is the presence of a centre-of-mass diffusion term.

Keywords: Kinetic polymer models; FENE chain; compressible Navier–Stokes–Fokker–

Planck system; nonhomogeneous dilute polymer; variable density.
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1. Introduction

This paper establishes the existence of global-in-time weak solutions to a large class

of bead-spring chain models with finitely extensible nonlinear elastic (FENE) type

spring potentials, — a system of nonlinear partial differential equations that arises

from the kinetic theory of dilute polymer solutions. The solvent is a compressible,

isentropic, isothermal Newtonian fluid confined to a bounded Lipschitz domain Ω ⊂
Rd, d = 2 or 3, with boundary ∂Ω. For the sake of simplicity of presentation we shall

suppose that Ω has a ‘solid boundary’ ∂Ω, and the velocity field u∼ will be therefore

1
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assumed to satisfy the no-slip boundary condition u∼ = 0∼ on ∂Ω. The equations

of continuity and balance of linear momentum have the form of the compressible

Navier–Stokes equations (cf. Lions23, Feireisl18, Novotný & Straškraba24, or Feireisl

& Novotný19) in which the elastic extra-stress tensor τ
≈

(i.e., the polymeric part of

the Cauchy stress tensor) appears as a source term in the conservation of momentum

equation:
Given T ∈ R>0, find ρ : (x∼, t) ∈ Ω × [0, T ] 7→ ρ(x∼, t) ∈ R and u∼ : (x∼, t) ∈

Ω× [0, T ] 7→ u∼(x∼, t) ∈ Rd such that

∂ρ

∂t
+∇
∼
x · (u

∼
ρ) = 0 in Ω× (0, T ], (1.1a)

ρ(x
∼
, 0) = ρ0(x

∼
) ∀x

∼
∈ Ω, (1.1b)

∂(ρ u
∼

)

∂t
+∇
∼
x · (ρ u

∼
⊗ u
∼

)−∇
∼
x · S
≈

(u
∼
, ρ) +∇

∼
x p(ρ) = ρ f

∼
+∇
∼
x · τ
≈

in Ω× (0, T ], (1.1c)

u
∼

= 0
∼

on ∂Ω× (0, T ], (1.1d)

(ρ u
∼

)(x
∼
, 0) = (ρ0 u

∼
0)(x
∼

) ∀x
∼
∈ Ω. (1.1e)

It is assumed that each of the equations above has been written in its nondimen-

sional form; ρ denotes a nondimensional solvent density, u∼ is a nondimensional

solvent velocity, defined as the velocity field scaled by the characteristic flow speed

U0. Here S
≈

(u∼, ρ) is the Newtonian part of the viscous stress tensor defined by

S
≈

(u
∼
, ρ) := µS(ρ)

[
D
≈

(u
∼

)− 1

d
(∇
∼
x · u
∼

) I
≈

]
+ µB(ρ) (∇

∼
x · u
∼

) I
≈
, (1.2)

where I
≈

is the d × d identity tensor, D
≈

(v∼) := 1
2 (∇
≈ x v∼ + (∇

≈ x v∼)T) is the rate of

strain tensor, with (∇
≈ x v∼)(x∼, t) ∈ Rd×d and

(
∇
≈ x v∼

)
ij

= ∂vi
∂xj

. The shear viscosity,

µS(·) ∈ R>0, and the bulk viscosity, µB(·) ∈ R≥0, of the solvent are both scaled

and, generally, density-dependent. In addition, p is the nondimensional pressure

satisfying the isentropic equation of state

p(ρ) = cp ρ
γ , (1.3)

where cp ∈ R>0 and γ > 3
2 . For the compressible Navier–Stokes equations at least,

it is known that this condition on γ can be replaced by γ > d
2 for d = 2, 3. Although

the analysis presented herein covers both d = 2 and d = 3, our main interest is in

the physically relevant case of d = 3. For the sake of streamlining the exposition we

have therefore assumed that γ > 3
2 for both d = 2 and d = 3, instead of γ > d

2 .

Remark 1.1. Our analysis applies, without alterations, to some other familiar

monotonic equations of state, such as the (Kirkwood-modified) Tait equation of

state p(ρ) = A0 (ρ/ρ∗)
γ −A1, where γ > 3

2 , A0 and A1 are constants, A0−A1 = p∗
is the equilibrium reference pressure, and ρ∗ is the equilibrium reference density.

On the right-hand side of (1.1c), f
∼

is the nondimensional density of body forces

and τ
≈

denotes the elastic extra-stress tensor. In a bead-spring chain model, consist-

ing of K+1 beads coupled with K elastic springs to represent a polymer chain, τ
≈

is
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defined by a version of the Kramers expression depending on the probability density

function ψ of the (random) conformation vector q
∼

:= (q
∼

T
1 , . . . , q∼

T
K)T ∈ RKd of the

chain (see equation (1.11) below), with q
∼
i representing the d-component conforma-

tion/orientation vector of the ith spring. The Kolmogorov equation satisfied by ψ

is a second-order parabolic equation, the Fokker–Planck equation, whose transport

coefficients depend on the velocity field u∼, and the hydrodynamic drag coefficient

appearing in the Fokker–Planck equation is, generally, a nonlinear function of the

density ρ. The domain D of admissible conformation vectors D ⊂ RKd is a K-fold

Cartesian product D1 × · · · ×DK of bounded open d-dimensional balls Di centred

at the origin 0∼ ∈ Rd, i = 1, . . . ,K.

Let Oi := [0, bi2 ) denote the image of Di under the mapping q
∼
i ∈ Di 7→ 1

2 |q∼i|
2,

and consider the spring potential Ui∈C1(Oi;R≥0), i = 1, . . . ,K. We shall suppose

that Ui(0) = 0 and that Ui is unbounded on Oi for each i = 1, . . . ,K. The elastic

spring-force F∼ i : Di ⊆ Rd → Rd of the ith spring in the chain is defined by

F∼ i(q∼i) := U ′i(
1
2 |q∼i|

2) q
∼
i, i = 1, . . . ,K, (1.4)

and the partial Maxwellian Mi, associated with the spring potential Ui, is defined

by

Mi(q
∼
i) :=

1

Zi
e
−Ui( 1

2 |q∼i|
2)
, Zi :=

∫
Di

e
−Ui( 1

2 |q∼i|
2)

dq
∼
i, i = 1, . . . ,K.

The (total) Maxwellian in the model is then

M(q
∼
) :=

K∏
i=1

Mi(q
∼
i) ∀q

∼
:= (q

∼

T
1 , . . . , q

∼

T
K)T ∈ D :=

K×
i=1

Di. (1.5)

Observe that, for i = 1, . . . ,K,

M(q
∼

)∇∼ qi [M(q
∼

)]−1 = −[M(q
∼

)]−1∇∼ qiM(q
∼

) = ∇∼ qi
(
Ui(

1
2 |q∼i|

2)
)

= U ′i(
1
2 |q∼i|

2) q
∼i
, (1.6a)

and, by definition, ∫
D

M(q) dq
∼

= 1. (1.6b)

The associated bead-spring chain model is referred to as a FENE (finitely ex-

tensible nonlinear elastic) model; in the case of K = 1, the corresponding model is

called a FENE dumbbell model.

We shall assume that Di = B(0, b
1
2
i ) with bi > 0 for i = 1, . . . ,K, and that for

i = 1, . . . ,K there exist constants cij > 0, j = 1, 2, 3, 4, and θi > 1 such that the

spring potential Ui ∈ C1[0, bi2 ) and the associated partial Maxwellian Mi satisfy

ci1 [dist(q
∼
i, ∂Di)]

θi ≤Mi(q
∼
i) ≤ ci2 [dist(q

∼
i, ∂Di)]

θi ∀q
∼
i ∈ Di, (1.7a)

ci3 ≤ dist(q
∼
i, ∂Di)U

′
i(

1
2 |q∼i|

2) ≤ ci4 ∀q
∼
i ∈ Di. (1.7b)

It follows from (1.7a,b) that (if θi > 1, as has been assumed here,)∫
Di

[
1 + [Ui(

1
2 |q∼i|

2)]2 + [U ′i(
1
2 |q∼i|

2)]2
]
Mi(q

∼
i) dq

∼
i <∞, i = 1, . . . ,K. (1.8)
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Example 1.1. In the classical FENE dumbbell model, K = 1 and the spring force

is given by F∼ (q
∼
) = (1 − |q

∼
|2/b)−1 q

∼
, q
∼
∈ D = B(0∼, b

1
2 ), corresponding to U(s) =

− b
2 log

(
1− 2s

b

)
, s ∈ O = [0, b2 ), b > 2. More generally, in a FENE bead-spring

chain, one considers K + 1 beads linearly coupled with K springs, each with a

FENE spring potential. Direct calculations show that the partial Maxwellians Mi

and the elastic potentials Ui, i = 1, . . . ,K, of the FENE bead spring chain satisfy

the conditions (1.7a,b) with θi := bi
2 , provided that bi > 2, i = 1, . . . ,K. Thus, (1.8)

also holds when bi > 2, i = 1, . . . ,K.

The governing equations of the general nonhomogeneous bead-spring chain mod-

els with centre-of-mass diffusion considered here are (1.1a–e), where the extra-stress

tensor τ
≈

is defined by

τ
≈
(ψ)(x∼, t) := τ

≈1(ψ)(x∼, t)−
(∫

D×D
γ(q
∼
, q
∼

′)ψ(x∼, q∼, t)ψ(x∼, q∼
′, t) dq

∼
dq
∼

′
)
I
≈
, (1.9)

γ : D×D → R≥0 is a smooth, time-independent, x∼-independent and ψ-independent

interaction kernel, which we shall henceforth consider to be γ(q
∼
, q
∼

′) ≡ z, where

z ∈ R>0; thus,

τ
≈
(ψ) := τ

≈1(ψ)− z

(∫
D

ψ dq
∼

)2

I
≈
. (1.10)

Here, τ
≈1(ψ) is the Kramers expression; that is,

τ
≈1(ψ) := k

[(
K∑
i=1

C
≈ i

(ψ)

)
− (K + 1)

∫
D

ψ dq
∼
I
≈

]
, (1.11)

where k ∈ R>0, with the first term in the square brackets being due to the K

springs and the second to the K + 1 beads in the bead-spring chain representing

the polymer molecule. Further,

C
≈
i(ψ)(x

∼
, t) :=

∫
D

ψ(x
∼
, q
∼
, t)U ′i(

1
2 |q
∼
i|2) q

∼
i q
∼

T
i dq
∼
, i = 1, . . . ,K. (1.12)

The probability density function ψ satisfies the Fokker–Planck (forward Kol-

mogorov) equation

∂ψ

∂t
+∇
∼
x · (u

∼
ψ) +

K∑
i=1

∇
∼
qi ·
(
σ
≈

(u
∼

) q
∼
i ψ

)
= ε∆x

(
ψ

ζ(ρ)

)

+
1

4λ

K∑
i=1

K∑
j=1

Aij ∇
∼
qi ·
(
M ∇
∼
qj

(
ψ

ζ(ρ)M

))
in Ω×D × (0, T ], (1.13)

with σ
≈

(v∼) ≡ ∇
≈ x v∼ and a, generally, density-dependent scaled drag coefficient ζ(·) ∈

R>0. A concise derivation of the Fokker–Planck equation (1.13) can be found in

Section 1 of Barrett and Süli7. Let ∂Di := D1×· · ·×Di−1×∂Di×Di+1×· · ·×DK .
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We impose the following boundary and initial conditions on solutions of (1.13): 1

4λ

K∑
j=1

AijM ∇
∼
qj

(
ψ

ζ(ρ)M

)
− σ
≈

(u
∼

) q
∼
i ψ

· q∼i
|q
∼
i|

= 0

on Ω× ∂Di × (0, T ], for i = 1, . . . ,K, (1.14a)

ε∇
∼
x

(
ψ

ζ(ρ)

)
· n
∼

= 0 on ∂Ω×D × (0, T ], (1.14b)

ψ(·, ·, 0) = ψ0(·, ·) ≥ 0 on Ω×D, (1.14c)

where q
∼
i is normal to ∂Di, as Di is a bounded ball centred at the origin, and n∼ is

normal to ∂Ω.

The nondimensional constant k > 0 featuring in (1.11) is a constant mul-

tiple of the product of the Boltzmann constant kB and the absolute temper-

ature T. In (1.13), ε > 0 is the centre-of-mass diffusion coefficient defined as

ε := (`0/L0)2/(4(K + 1)λ) with L0 a characteristic length-scale of the solvent flow,

`0 :=
√
kBT/H signifying the characteristic microscopic length-scale and λ := ζ0U0

4HL0
,

where ζ0 > 0 is a characteristic drag coefficient and H > 0 is a spring-constant.

The nondimensional parameter λ ∈ R>0, called the Deborah number (and usu-

ally denoted by De), characterizes the elastic relaxation property of the fluid, and

A
≈

= (Aij)
K
i,j=1 is the symmetric positive definite Rouse matrix, or connectivity ma-

trix; for example, A
≈

= tridiag [−1, 2,−1] in the case of a (topologically) linear

chain. Concerning these scalings and notational conventions, we remark that the

factor 1
4λ in equation (1.13) above appears as a factor 1

2λ in the Fokker–Planck

equation in our earlier papers5,6,8,10. Two remarks are in order concerning (1.10).

Remark 1.2. The analysis in the present paper applies to a general class of extra

stress tensors (1.10), with Kramers type expressions of the form

τ
≈1(ψ) := k

[(
K∑
i=1

C
≈ i

(ψ)

)
− k

∫
D

ψ dq
∼
I
≈

]
, (1.15)

with k ∈ R and z > 0. Since the actual value of k is of no particular relevance in

our analysis, we took k = K + 1 in the second term in (1.15), yielding (1.11), as

this choice simplifies the expressions that arise in the course of the proof. As will be

shown below, if k ≥ K+1 and z ≥ 0 a formal energy identity holds, and if k < K+1

and z > 0, one can still prove a formal energy inequality. In contrast with this, in

the case of incompressible flows, k and z are of no relevance in the analysis and can

be any two real numbers; indeed, in Barrett & Süli6,8,9, k = K and z = 0 were the

values used in (1.15) and (1.10), respectively, resulting in τ
≈
(ψ) that is the classical

Kramers expression for the extra stress tensor.

Remark 1.3. Our second remark concerns the quadratic modification to τ
≈1(ψ)

appearing as the second term in (1.10). By defining the polymer number density

%(x∼, t) :=

∫
D

ψ(x∼, q∼, t) dq
∼
, (x∼, t) ∈ Ω× [0, T ], (1.16)
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formally integrating (1.13) over D and using the boundary condition (1.14a), we

deduce that

∂%

∂t
+∇∼ x · (u∼ %) = ε∆x

(
%

ζ(ρ)

)
on Ω× (0, T ], (1.17a)

together with the boundary and initial conditions (which result from integrating

(1.14b,c) over D)

ε∇∼ x

(
%

ζ(ρ)

)
· n∼ = 0 on ∂Ω× (0, T ] and %(x∼, 0) =

∫
D

ψ0(x∼, q∼) dq
∼

for x∼ ∈ Ω.

(1.17b)

In order to avoid potential confusion concerning our notational conventions, we

draw the reader’s attention to the fact that, here and throughout the rest of the

paper, the symbol ρ signifies the density of the solvent, while the symbol % denotes

the polymer number density, as defined in (1.16).

If ∇∼ x · u∼ ≡ 0 and %(·, 0) is constant, and either ε = 0 or ζ(ρ) is independent of ρ

(and therefore identically equal to a constant), then %(x∼, t) is constant (≡ %(·, 0)),

for all (x∼, t) ∈ Ω× (0, T ], and hence∫
D

ψ(x∼, q∼, t) dq
∼

=

∫
D

ψ0(x∼, q∼) dq
∼
∈ R>0 for all (x∼, t) ∈ Ω× (0, T ];

in other words, the polymer number density is constant. This conservation property

then guarantees complete control of % (when z = 0, and a fortiori, for z > 0) in terms

of the initial probability density function ψ0 in the course of the weak compactness

argument upon which the proof of existence of weak solutions rests (cf. Barrett &

Süli6 for the analysis in the case of ε > 0, constant ζ and z = 0). In particular,

the time derivative ∂ψ
∂t can be bounded in a sufficiently strong norm to enable

the application of an Aubin–Lions–Simon type compactness theorem that ensures

strong convergence of the sequence of approximations to the probability density

function ψ.

In the present paper, in order to focus on the essential new difficulty — the lack

of the divergence-free property of u∼ — we shall suppose that the drag coefficient

in the Fokker–Planck equation is identically equal to a constant, which we shall

henceforth, without loss of generality, assume to be equal to 1, i.e., ζ(ρ) ≡ 1. Setting

z = 0 in this context results in the loss of a bound on the L1(0, T ;X′) norm of the

time derivative of the probability density function ψ, for any reasonable choice of

the function space X. Failure to control ∂ψ
∂t or a time-difference of ψ in even such

a weak sense brings into question the meaningfulness of the model in the case of

compressible flows for solutions of as low a degree of regularity as is guaranteed

by the formal energy bound in the case of z = 0, see Remarks 4.1 and 4.2 below.

Motivated by the papers of Constantin14, Constantin et al.15 and Bae & Trivisa3, we

have therefore included the quadratic term in (1.10), with z > 0. As we shall show

later on, inclusion of the quadratic term into (1.10) does not destroy energy balance

thanks to the fact that the polymer number density function % satisfies the initial-

boundary-value problem (1.17a,b), and has the beneficial effect of guaranteeing
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L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) norm control for %, rendering the time derivative

of the probability density function finite in the norm of L2(0, T ;X′), with a suitable

choice of X as a Maxwellian-weighted Sobolev space of sufficiently high order. This

then enables the application of Dubinskĭı’s extension of the Aubin–Lions–Simon

compactness theorem (cf. Dubinskĭı17 and Barrett & Süli11).

Definition 1.1. The collection of equations and structural hypotheses (1.1a–e)–

(1.14a–c) together with the assumption that the Rouse matrix A is symmetric and

positive definite (as is always the case, by definition,) will be referred to throughout

the paper as model (P), or as the compressible FENE-type bead-spring chain model

with centre-of-mass diffusion. It will also be assumed throughout the paper that the

shear viscosity, µS ∈ R>0, the bulk viscosity, µB ∈ R≥0, and the drag coefficient,

ζ ∈ R>0, are independent of the density ρ. For the ease of exposition we shall set

ζ ≡ 1.

For a survey of macroscopic models of compressible viscoelastic flow, the reader

is referred to the paper by Bollada & Phillips13. Closer to the subject of the present

paper, Bae & Trivisa3 have established the existence of global weak solutions to

Doi’s rod-model in three-dimensional bounded domains. The model concerns sus-

pensions of rod-like molecules in compressible fluids and involves the coupling of

a Fokker–Planck type equation with the compressible Navier–Stokes system. Also,

Jiang, Jiang & Wang21 have studied the existence of global weak solutions to the

equations of compressible flow of nematic liquid crystals in two dimensions.

Despite their importance, we shall, for the sake of simplicity, neglect all thermal

effects and will focus instead on mechanical properties of the fluid in the isothermal

setting. Since the argument is long and technical, we give a brief overview of the

main steps of the proof.

At the heart of the proof is a formal energy identity, which we shall state under

the assumption that u∼, ρ, ψ and % are sufficiently smooth, and, at least for our

purposes in this introductory section, ρ is nonnegative, and ψ and % are positive.

Instead of (1.11), used in the rest of the paper, we shall adopt for the moment the

more general formula (1.15), in order to explain the admissible range of k alluded to

in Remark 1.2 as well as our reasons for choosing k = K + 1 in (1.11). The formal

energy identity satisfied by u∼, ρ, ψ and %, upon letting

P (ρ) :=
p(ρ)

γ − 1
and F(s) := s(log s− 1) + 1 for s > 0 and F(0) := 1,

is (cf. Barrett & Süli12):

d

dt

∫
Ω

[
1

2
ρ |u∼|

2 + P (ρ) + z %2 + k (k− (K + 1))F(%) + k

∫
D

M F
(
ψ

M

)
dq
∼

]
dx∼

+µS
∫

Ω

∣∣∣∣D≈ (u∼)− 1

d
(∇∼ x · u∼) I

≈

∣∣∣∣2 dx∼ + µB
∫

Ω

|∇∼ x · u∼|
2 dx∼

+2ε z

∫
Ω

|∇∼ x%|2 dx∼ + 4ε k (k− (K + 1))

∫
Ω

|∇∼ x
√
%|2 dx∼



August 28, 2015 13:51 WSPC/INSTRUCTION FILE newcompressible-
journal-revised˙new

8 John W. Barrett and Endre Süli

+ 4ε k

∫
Ω×D

M

∣∣∣∣∣∇∼ x

√
ψ

M

∣∣∣∣∣
2

dq
∼

dx∼

+
k

λ

K∑
i=1

K∑
j=1

Aij

∫
Ω×D

M ∇∼ qj

√
ψ

M
· ∇∼ qi

√
ψ

M
dq
∼

dx∼ =

∫
Ω

ρ f
∼
· u∼ dx∼. (1.18)

The integral over Ω of the expression in the square brackets in the first line of

(1.18) is the total energy, and the sum of the terms on the second, third and fourth

line of (1.18) is the dissipation of the total energy; recall that the Rouse matrix

A = (Aij)
K
i,j=1 is, by definition, symmetric and positive definite. While, as an energy

identity, (1.18) is meaningful for all z ≥ 0 and all k ≥ K + 1, it will transpire in

the course of the proof that z > 0 is necessary in order to ensure control of ∂ψ
∂t or

of a time-difference of ψ (cf. Remarks 1.3 and 4.2). Once z has been chosen to be

positive, the two terms in (1.18) that include the factor (k− (K + 1)) are of lower

order and contribute no additional information; we have therefore, for the sake of

simplicity, set k = K+1 in (1.15), yielding (1.11). If k < K+1 and z > 0, then upon

moving the two terms containing the factors (k− (K + 1)) from the left-hand side

of (1.18) to the right, Gronwall’s inequality yields a formal energy inequality ; since

the ultimate outcome of the analysis is no different from the one with k = K + 1

and z > 0, we shall not discuss this case further.

The main idea of the proof is to construct a sequence of approximating solutions,

whose existence one can prove, and then pass to the limit. Available results in the

literature concerning the existence of weak solutions to the compressible Navier–

Stokes equations are based on considering sequences of approximating problems

that are defined by spatial Galerkin discretization, using bases of smooth functions.

Our construction of a sequence of approximating problems for the compressible

Navier–Stokes–Fokker–Planck system will be based on discretizing the problem with

respect to the temporal variable. For a similar approach, in the case of a coupled

compressible Navier–Stokes–Cahn–Hillard system, we refer the reader to the work

of Abels and Feireisl1 and to Remark 3.1 below, which explains the aspects in which

our temporal approximation differs from the one in Abels & Feireisl1. The inclusion

of the Fokker–Planck equation into the analysis is nontrivial, the main hurdle being

to ensure that the presence of the extra stress term τ
≈

(cf. (1.9)) on the right-hand

side of the Navier–Stokes momentum equation does not destroy the Lions–Feireisl

compactness argument for the compressible Navier–Stokes equations. We have only

been able to achieve this for z > 0. As the same requirement on z has been found

to be necessary in the, related, Doi model for suspensions of rod-like molecules in

a compressible fluid, considered by Bae and Trivisa3, we are confident that the

condition z > 0 is not a byproduct of our time-discrete approach to the proof of

existence of weak solutions.

The proof of the central theorem in the paper, Theorem 6.1, stating the existence

of global bounded-energy weak solutions to problem (P), consists of six steps, which

are outlined below.
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Step 1. Following the approach in Barrett & Süli4,6,7,8,9 we observe that if ψ
M

is bounded above then, for L ∈ R>0 sufficiently large, the third term in (1.13),

referred to as the drag term is equal to

K∑
i=1

∇∼ qi ·
(
σ
≈

(u∼) q
∼
iM βL

(
ψ

M

))
(recall that, by hypothesis, ζ ≡ 1), where βL ∈ C(R) is a cut-off function defined

as

βL(s) := min{s, L}. (1.19)

It then follows that, for L � 1, any solution ψ of (1.13), such that ψ
M is bounded

above by L, also satisfies

∂ψ

∂t
+∇∼ x · (u∼ ψ) +

K∑
i=1

∇∼ qi ·
(
σ
≈

(u∼) q
∼
iM βL

(
ψ

M

))

= ε∆xψ +
1

4λ

K∑
i=1

K∑
j=1

Aij ∇∼ qi ·
(
M ∇∼ qj

(
ψ

M

))
in Ω×D × (0, T ]. (1.20)

We impose the following boundary and initial conditions: 1

4λ

K∑
j=1

AijM ∇
∼
qj

(
ψ

M

)
− σ
≈

(u
∼

) q
∼
iM βL

(
ψ

M

)· q∼i
|q
∼
i|

= 0

on Ω× ∂Di × (0, T ], for i = 1, . . . ,K, (1.21a)

ε∇
∼
xψ · n

∼
= 0 on ∂Ω×D × (0, T ], (1.21b)

ψ(·, ·, 0) = M(·)βL(ψ0(·, ·)/M(·)) ≥ 0 on Ω×D. (1.21c)

The model with cut-off parameter L > 1 is further regularized, by introducing a

dissipation term of the form −α∆ρ, with α > 0, into the continuity equation (1.1a)

and supplementing the resulting parabolic equation with a homogeneous Neumann

boundary condition on ∂Ω×(0, T ]. In addition, the equation of state (1.3) is replaced

by a regularized equation of state, pκ(ρ) = p(ρ) + κ(ρ4 + ρΓ), where κ ∈ R>0 and

Γ = max{γ, 8}. The resulting problem is denoted by (Pκ,α,L).

Step 2. Ideally, one would like to pass to the limits κ→ 0+, α→ 0+, L→ +∞ to

deduce the existence of solutions to (P). Unfortunately, such a direct attack at the

problem is fraught with technical difficulties. Instead, we shall first (semi)discretize

the problem (Pκ,α,L) with respect to t, with step size ∆t. This then results in a

time-discrete version (P∆t
κ,α,L) of (Pκ,α,L).

Step 3. By using Schauder’s fixed point theorem, we will show in Section 3 the

existence of solutions to (P∆t
κ,α,L). In the course of the proof, for technical reasons,

a further cut-off, now from below, with a cut-off parameter δ ∈ (0, 1), is required.
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In addition, a fourth-order hyperviscosity term is added to the Navier–Stokes mo-

mentum equation (1.1c). We shall let δ pass to 0 to complete the proof of existence

of solutions to (P∆t
κ,α,L) in the limit of δ → 0+ in Section 3; cf. Lemma 3.3.

Step 4. In Section 4 we then go on to derive bounds on the sequence of solutions

to problem (P∆t
κ,α,L); in particular, we develop various bounds on the sequence of

weak solutions to (P∆t
κ,α,L) that are uniform in the time step ∆t and the cut-off

parameter L, and thus permit the extraction of weakly convergent subsequences, as

L→ +∞ and ∆t→ 0+, with ∆t = o(L−1), when L→ +∞. The weakly convergent

subsequences will then be shown to converge strongly in suitable norms. This will

allow us to pass to the limit as L → +∞, with ∆t = o(L−1). The main result of

Section 4 is Theorem 4.1, which summarizes the outcome of this limiting process.

Step 5. Section 5 is concerned with passage to the limit α → 0+ with the

parabolic regularization parameter that was introduced into the continuity equation

in Step 1. The main result of Section 5 is Theorem 5.1, which summarizes the

outcome of this limiting process.

Step 6. Finally, in Section 6 we pass to the limit κ→ 0+ with the regularization

parameter that was introduced into the equation of state in Step 1, which then leads

to our main result, Theorem 6.1, stating the existence of global, bounded-energy,

weak solutions to problem (P).

2. The polymer model (Pκ,α,L)

Let Ω ⊂ Rd be a bounded open set with a Lipschitz-continuous boundary ∂Ω,

and suppose that the set D := D1 × · · · ×DK of admissible conformation vectors

q
∼

:= (q
∼

T
1 , . . . , q∼

T
K)T in (1.13) is such that Di, i = 1, . . . ,K, is an open ball in Rd,

d = 2 or 3, centred at the origin, with boundary ∂Di and radius
√
bi, bi > 2; let

∂D :=

K⋃
i=1

∂Di, where ∂Di := D1 × · · · ×Di−1 × ∂Di ×Di+1 × · · · ×DK . (2.1)

Collecting (1.1a–e), (1.10), (1.11), (1.12), (1.20) and (1.21a–c), we then consider the

following regularized initial-boundary-value problem, dependent on the following

given regularization parameters κ > 0, α > 0 and L > 1. As has been already

emphasized in the Introduction, the centre-of-mass diffusion coefficient ε > 0 is a

physical parameter and is regarded as being fixed throughout.

(Pκ,α,L) Find ρκ,α,L : (x∼, t) ∈ Ω×[0, T ] 7→ ρκ,α,L(x∼, t) ∈ R and u∼κ,α,L : (x∼, t) ∈
Ω× [0, T ] 7→ u∼κ,α,L(x∼, t) ∈ Rd such that

∂ρκ,α,L
∂t

+∇
∼
x · (u

∼
κ,α,L ρκ,α,L)− α∆xρκ,α,L = 0 in Ω× (0, T ], (2.2a)

α∇
∼
x ρκ,α,L · n

∼
= 0 on ∂Ω× (0, T ], (2.2b)

ρκ,α,L(x
∼
, 0) = ρ0(x

∼
) ∀x

∼
∈ Ω, (2.2c)
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∂(ρκ,α,L u
∼
κ,α,L)

∂t
− α

2
(∆xρκ,α,L)u

∼
κ,α,L +∇

∼
x · (ρκ,α,L u

∼
κ,α,L ⊗ u

∼
κ,α,L)

−∇
∼
x · S
≈

(u
∼
κ,α,L, ρκ,α,L) +∇

∼
x pκ(ρκ,α,L)

= ρκ,α,L f
∼

+∇
∼
x · τ
≈
(ψκ,α,L) in Ω× (0, T ], (2.2d)

u
∼
κ,α,L = 0

∼
on ∂Ω× (0, T ], (2.2e)

(ρκ,α,L u
∼
κ,α,L)(x

∼
, 0) = (ρ0u

∼
0)(x
∼

) ∀x
∼
∈ Ω, (2.2f)

where ψκ,α,L : (x∼, q∼, t) ∈ Ω×D× [0, T ] 7→ ψκ,α,L(x∼, q∼, t) ∈ R. Here S
≈

(·, ·) and τ
≈
(·, ·)

are given by (1.2) and (1.10), and ρ0(α) is a regularization of ρ0, see (3.15) below.

In addition, pκ(·) is a regularization of p(·), (1.3), defined by

pκ(s) := p(s) + κ (s4 + sΓ), where κ ∈ R>0 and Γ = max{γ, 8}. (2.3)

The Fokker–Planck equation with microscopic cut-off satisfied by ψκ,α,L is:

∂ψκ,α,L
∂t

+∇
∼
x ·
(
u
∼
κ,α,LM βL

(
ψκ,α,L
M

))
+

K∑
i=1

∇
∼
qi ·
[
σ
≈

(u
∼
κ,α,L) q

∼
iM βL

(
ψκ,α,L
M

)]

= ε∆x ψκ,α,L +
1

4λ

K∑
i=1

K∑
j=1

Aij ∇
∼
qi ·
(
M ∇
∼
qj

(
ψκ,α,L
M

))
in Ω×D × (0, T ].

(2.4)

Here, for a given L > 1, βL ∈ C(R) is defined by (1.19), σ
≈

(v∼) ≡ ∇
≈ x v∼, and

A
≈
∈ RK×K is symmetric positive definite with smallest eigenvalue a0 ∈ R>0. (2.5)

We impose the following boundary and initial conditions: 1

4λ

K∑
j=1

AijM ∇
∼
qj

(
ψκ,α,L
M

)
− σ
≈

(u
∼
κ,α,L) q

∼
iM βL

(
ψκ,α,L
M

) · q∼i
|q
∼
i|

= 0

on Ω× ∂Di × (0, T ], i = 1, . . . ,K,

(2.6a)

ε∇
∼
x ψκ,α,L · n

∼
= 0 on ∂Ω×D × (0, T ], (2.6b)

ψκ,α,L(·, ·, 0) = M(·)βL(ψ0(·, ·)/M(·)) ≥ 0 on Ω×D, (2.6c)

where n∼ is the unit outward normal to ∂Ω. The boundary conditions for ψκ,α,L on

∂Ω×D × (0, T ] and Ω× ∂D × (0, T ] have been chosen so as to ensure that∫
Ω×D

ψκ,α,L(x
∼
, q
∼
, t) dq

∼
dx
∼

=

∫
Ω×D

ψκ,α,L(x
∼
, q
∼
, 0) dq

∼
dx
∼

∀t ∈ (0, T ]. (2.7)

Henceforth, we shall write

ψ̂κ,α,L =
ψκ,α,L
M

, ψ̂0 =
ψ0

M
.

Thus, for example, (2.6c) in terms of this compact notation becomes: ψ̂κ,α,L(·, ·, 0) =

βL(ψ̂0(·, ·)) on Ω×D.
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3. Existence of a solution to (P∆t
κ,α,L), a discrete-in-time

approximation of (Pκ,α,L)

For later purposes, we recall the following Lebesgue interpolation result (which is

a simple consequence of the Riesz–Thorin theorem) and the Gagliardo–Nirenberg

inequality. Let 1 ≤ r ≤ υ ≤ s <∞; then, for any bounded Lipschitz domain O,

‖η‖Lυ(O) ≤ ‖η‖1−ϑLr(O) ‖η‖
ϑ
Ls(O) ∀η ∈ Ls(O), (3.1)

where ϑ = s(υ−r)
υ(s−r) . Let r ∈ [2,∞) if d = 2, and r ∈ [2, 6] if d = 3 and ϑ = d

(
1
2 −

1
r

)
.

Then, there is a constant C = C(Ω, r, d), such that

‖η‖Lr(Ω) ≤ C ‖η‖1−ϑL2(Ω) ‖η‖
ϑ
H1(Ω) ∀η ∈ H1(Ω). (3.2)

We note also the generalized Korn’s inequality∫
Ω

[
|D
≈

(w
∼

)|2 − 1

d
|∇
∼
x · w
∼
|2
]

dx
∼

=

∫
Ω

|D
≈

(w
∼

)− 1

d
(∇
∼
x · w
∼

) I
≈
|2 dx

∼

≥ c0 ‖w
∼
‖2H1(Ω) ∀w

∼
∈ H
∼

1
0(Ω), (3.3)

where c0 > 0, see Dain16. We remark that the notation | · | will be used to signify

one of the following. When applied to a real number x, |x| will denote the absolute

value of the number x; when applied to a vector v∼, |v∼| will stand for the Euclidean

norm of the vector v∼; and, when applied to a square matrix A
≈

, |A
≈
| will signify the

Frobenius norm, [tr(A
≈

TA
≈

)]
1
2 , of the matrix A

≈
, where, for a square matrix B

≈
, tr(B

≈
)

denotes the trace of B
≈

.

Let F ∈ C(R>0) be defined by F(s) := s (log s−1)+1, s > 0. As lims→0+ F(s) =

1, the function F can be considered to be defined and continuous on [0,∞), where

it is a nonnegative, strictly convex function with F(1) = 0.

We assume the following:

∂Ω ∈ C2,θ, θ ∈ (0, 1); ρ0 ∈ L∞≥0(Ω); u
∼

0 ∈ L
∼

2(Ω);

ψ0 ≥ 0 a.e. on Ω×D with F(ψ̂0) ∈ L1
M (Ω×D) and

∫
D

ψ0(·, q
∼
) dq
∼
∈ L∞≥0(Ω);

µS ∈ R>0, µ
B ∈ R≥0; the Rouse matrix A

≈
∈ RK×K satisfies (2.5);

p, pκ ∈ C1(R≥0,R≥0) are defined by (1.3) and (2.3);

f
∼
∈ L2(0, T ;L

∼

∞(Ω)) and Di = B(0
∼
, b

1
2
i ), θi > 1, i = 1, . . . ,K, in (1.7a,b).

(3.4)

We introduce P, Pκ ∈ C1(R≥0,R≥0), for κ > 0, such that

s P ′(κ)(s)− P(κ)(s) = p(κ)(s) and P(κ)(0) = P ′(κ)(0) = 0

⇒ P (s) =
p(s)

γ − 1
=

cp
γ − 1

sγ and Pκ(s) = P (s) + κ

(
s4

3
+

sΓ

Γ− 1

)
. (3.5)
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Here, and throughout, the subscript “(·)” means: with and without the subscript

“ · ”. We adopt a similar notation for superscripts.

In (3.4), LrM (Ω×D), for r ∈ [1,∞), denotes the Maxwellian-weighted Lr space

over Ω×D with norm

‖ϕ‖LrM (Ω×D) :=

{∫
Ω×D

M |ϕ|r dq
∼

dx∼

} 1
r

.

Similarly, we introduce LrM (D), the Maxwellian-weighted Lr space over D. Letting

‖ϕ‖H1
M (Ω×D) :=

{∫
Ω×D

M
[
|ϕ|2 + |∇∼ xϕ|2 + |∇∼ qϕ|2

]
dq
∼

dx∼

} 1
2

, (3.6)

we then set

X ≡ H1
M (Ω×D) :=

{
ϕ ∈ L1

loc(Ω×D) : ‖ϕ‖H1
M (Ω×D) <∞

}
. (3.7)

It is shown in Appendix C of Barrett & Süli5 (with the set X denoted by X̂ there)

that

C∞(Ω×D) is dense in X. (3.8)

We have from Sobolev embedding that

H1(Ω;L2
M (D)) ↪→ Ls(Ω;L2

M (D)), (3.9)

where s ∈ [1,∞) if d = 2 or s ∈ [1, 6] if d = 3. In addition, we note that the

embeddings

H1
M (D) ↪→ L2

M (D), (3.10a)

H1
M (Ω×D) ≡ L2(Ω;H1

M (D)) ∩H1(Ω;L2
M (D)) ↪→ L2

M (Ω×D) ≡ L2(Ω;L2
M (D))

(3.10b)

are compact if θi ≥ 1, i = 1, . . . ,K, in (1.7a,b); see Appendix D of Barrett & Süli5.

We recall the Aubin–Lions–Simon compactness theorem, see, e.g., Simon25. Let

X0, X and X1 be Banach spaces with a compact embedding X0 ↪→ X and a contin-

uous embedding X ↪→ X1. Then, for ςi ∈ [1,∞), i = 0, 1, the embedding{
η ∈ Lς0(0, T ;X0) :

∂η

∂t
∈ Lς1(0, T ;X1)

}
↪→ Lς0(0, T ;X) (3.11)

is compact.

Let X be a Banach space. We shall denote by Cw([0, T ];X) the set of all functions

η ∈ L∞(0, T ;X) such that t ∈ [0, T ] 7→ 〈ϕ, η(t)〉X ∈ R is continuous on [0, T ] for

all ϕ ∈ X′, the dual space of X. Here, and throughout, 〈·, ·〉X denotes the duality

pairing between X′ and X. Whenever X has a predual, E, say, (viz. E′ = X), we

shall denote by Cw∗([0, T ];X) the set of all functions η ∈ L∞(0, T ;X) such that

t ∈ [0, T ] 7→ 〈η(t), ζ〉E ∈ R is continuous on [0, T ] for all ζ ∈ E.
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We note from Lemma 3.1(a) in Barrett & Süli12 and Lemma 6.2 in Novotný &

Straškraba24 (or Lemma E.1 in Appendix E in Barrett & Süli12) that if {ηn}n∈N is

such that

‖ηn‖L∞(0,T ;Lr(Ω)) +

∥∥∥∥∂ηn∂t
∥∥∥∥
Lς(0,T ;W 1,υ

0 (Ω)′)

≤ C, r, ς, υ ∈ (1,∞), (3.12a)

then there exists a subsequence (not indicated) of {ηn}n∈N and a function η ∈
Cw([0, T ];Lr(Ω)) such that

ηn → η in Cw([0, T ];Lr(Ω)). (3.12b)

Throughout we will assume that (3.4) hold, so that (1.8) and (3.10a,b) hold. We

note for future reference that (1.12) and (1.8) yield that, for ϕ ∈ L2
M (Ω ×D) and

i = 1, . . . ,K,∫
Ω

|C
≈
i(M ϕ)|2 dx

∼
=

∫
Ω

∣∣∣∣∫
D

M ϕU ′i q
∼
i q
∼

T
i dq
∼

∣∣∣∣2 dx
∼
≤ C

(∫
Ω×D

M |ϕ|2 dq
∼

dx
∼

)
,

(3.13)

where C is a positive constant.

We state a simple integration-by-parts formula.

Lemma 3.1. Let ϕ ∈ H1
M (D) and suppose that B

≈
∈ Rd×d; then,∫

D

M

K∑
i=1

(B
≈
q
∼
i) ·∇∼ qiϕdq

∼
=

∫
D

M ϕ

[(
K∑
i=1

U ′i(
1
2 |q∼i|

2) q
∼
iq
∼

T
i

)
−K I

≈

]
: B
≈

dq
∼
. (3.14)

Proof. By Theorem C.1 in Appendix C of Barrett & Süli5, the set C∞(D) is dense

in H1
M (D); hence, for any ϕ̂ ∈ H1

M (D) there exists a sequence {ϕ̂n}n≥0 ⊂ C∞(D)

converging to ϕ̂ in H1
M (D). As M ∈ C1(D) and vanishes on ∂D, the same is true

of each of the functions Mϕ̂n, n ≥ 1. By replacing ϕ̂ by ϕ̂n on both sides of (3.14),

the resulting identity is easily verified by using the classical divergence theorem

for smooth functions, noting (1.6a) and that Mϕ̂n vanishes on ∂D. Then, (3.14)

itself follows by letting n→∞, recalling the definition of the norm in H1
M (D) and

hypothesis (1.8).

We now formulate our discrete-in-time approximation of problem (Pκ,α,L) for

fixed parameters κ, α ∈ (0, 1] and L > 1. For any T > 0 and N ≥ 1, let N ∆t = T

and tn = n∆t, n = 0, . . . , N . To prove existence of a solution under minimal

smoothness requirements on the initial data, recall (3.4), we regularize the initial

data in terms of the parameters α, ∆t and L. Specifically, we shall assign to ρ0 ∈
L∞≥0(Ω) the function ρ0 = ρ0(α) ∈ H1(Ω), appearing in (2.2c,f), defined as the

unique solution of the problem:∫
Ω

[
ρ0η + α∇

∼
xρ

0 · ∇
∼
xη
]

dx
∼

=

∫
Ω

ρ0 η dx
∼

∀η ∈ H1(Ω). (3.15)
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Hence,

ρ0(·) ∈ [0, ‖ρ0‖L∞(Ω)], (3.16a)

and ρ0 → ρ0 weakly-? in L∞(Ω), strongly in L2(Ω), as α→ 0+. (3.16b)

Therefore, by (3.1) and (3.16a,b), also

ρ0 → ρ0 strongly in Lp(Ω), as α→ 0+, p ∈ [1,∞). (3.16c)

Similarly, we assign to u∼0 ∈ L∼ 2(Ω) the function u∼
0 = u∼

0(α,∆t) ∈ H∼ 1
0(Ω), defined

as the unique solution of the problem:∫
Ω

[
ρ0u
∼

0 · v
∼

+ ∆t∇
≈
x u
∼

0 : ∇
≈
x v
∼

]
dx
∼

=

∫
Ω

ρ0u
∼

0 · v
∼

dx
∼

∀v
∼
∈ H
∼

1
0(Ω). (3.17)

Hence, it follows from (3.17) and (3.16a) that there exists a C ∈ R>0, independent

of ∆t, L, α and κ, such that∫
Ω

[
ρ0|u
∼

0|2 + ∆t |∇
≈
x u
∼

0|2
]

dx
∼
≤
∫

Ω

ρ0|u
∼

0|2 dx
∼
≤ C, (3.18a)

and

∫
Ω

ρ0(u
∼

0 − u
∼

0) · v
∼

dx
∼
→ 0 ∀v

∼
∈ L
∼

2(Ω), as ∆t→ 0+. (3.18b)

Analogously, we shall assign a certain ‘smoothed’ initial datum, ψ̂0 = ψ̂0(L,∆t) ∈
H1
M (Ω×D), to the given initial datum ψ̂0 = ψ0

M such that∫
Ω×D

M
[
ψ̂0 ϕ+ ∆t

(
∇
∼
xψ̂

0 · ∇
∼
xϕ+∇

∼
qψ̂

0 · ∇
∼
qϕ
)]

dq
∼

dx
∼

=

∫
Ω×D

M βL(ψ̂0)ϕdq
∼

dx
∼

∀ϕ ∈ H1
M (Ω×D). (3.19)

For r ∈ [1,∞), let

Zr :=
{
ϕ ∈ LrM (Ω×D) : ϕ ≥ 0 a.e. on Ω×D

}
. (3.20)

It is proved in the Appendix of Barrett & Süli10 that there exists a unique ψ̂0 ∈
H1
M (Ω×D) satisfying (3.19); furthermore, ψ̂0 ∈ Z2,∫

Ω×D
M F(ψ̂0) dq

∼
dx
∼

+ 4 ∆t

∫
Ω×D

M

[∣∣∇
∼
x

√
ψ̂0
∣∣2 +

∣∣∇
∼
q

√
ψ̂0
∣∣2] dq

∼
dx
∼

≤
∫

Ω×D
M F(ψ̂0) dq

∼
dx
∼

(3.21a)

and

ψ̂0 = βL(ψ̂0)→ ψ̂0 weakly in L1
M (Ω×D), as L→∞, ∆t→ 0+. (3.21b)

Finally, by choosing ϕ(x∼, q∼) = %0(x∼)⊗ 1(q
∼
) in (3.19), where

%0(x∼) :=

∫
D

M(q
∼
) ψ̂0(x∼, q∼) dq

∼
dx∼, x∼ ∈ Ω,
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yields, on noting (1.19) and (3.4), that

1

2

[
‖%0‖2L2(Ω) +

∫
Ω

(∫
D

M
(
ψ̂0 − βL(ψ̂0)

)
dq
∼

)2

dx
∼

]
+ ∆t ‖∇

∼
x%

0‖2L2(Ω)

=
1

2

∫
Ω

(∫
D

M βL(ψ̂0) dq
∼

)2

dx
∼

≤ 1

2

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼
≤ C. (3.22)

Next, we define

V
∼

:=
{
w
∼
∈ H
∼

1
0(Ω) : w

∼
∈ L
∼

∞(Ω), ∇
∼
x · w
∼
∈ L∞(Ω)

}
(3.23)

and

Y n := L2(tn−1, tn;H1(Ω)) ∩H1(tn−1, tn;H1(Ω)′)

∩ L∞(tn−1, tn;L
Γ
2 (Ω)) ∩ L

4Γ
3

≥0(Ω× (tn−1, tn)). (3.24)

We recall also that, for all v∼, w∼ ∈ H∼ 1(Ω),

(v
∼
⊗ v
∼
) : ∇
≈
x w
∼

= [(v
∼
· ∇
∼
x)w
∼

] · v
∼

= −[(v
∼
· ∇
∼
x)v
∼
] · w
∼

+ (v
∼
· ∇
∼
x)(v
∼
· w
∼

) a.e. in Ω.

(3.25)

Noting the above, our discrete-in-time approximation of (Pκ,α,L) is then defined as

follows.

(P∆t
κ,α,L) Let N ∈ N≥1 and set ∆t := T/N ; let us further suppose that ρ0

κ,α,L :=

ρ0 ∈ L∞≥0(Ω), u∼
0
κ,α,L := u∼

0 ∈ H∼ 1
0(Ω) and ψ̂0

κ,α,L := ψ̂0 ∈ Z2. For n = 1, . . . , N , and

given (ρn−1
κ,α,L, u∼

n−1
κ,α,L, ψ̂

n−1
κ,α,L) ∈ LΓ

≥0(Ω)×H∼ 1
0(Ω)× Z2, find

ρ
[∆t],n
κ,α,L ∈ Y

n with ρnκ,α,L(·) := ρ
[∆t],n
κ,α,L (·, tn) ∈ LΓ

≥0(Ω), u
∼

n
κ,α,L ∈ H

∼

1
0(Ω)

and ψ̂nκ,α,L ∈ X ∩ Z2, (3.26)

such that ρ
[∆t],n
κ,α,L (·, tn−1) = ρn−1

κ,α,L(·),

∫ tn

tn−1

〈∂ρ[∆t],n
κ,α,L

∂t
, η

〉
H1(Ω)

+

∫
Ω

(
α∇
∼
xρ

[∆t],n
κ,α,L − ρ

[∆t],n
κ,α,L u∼

n
κ,α,L

)
· ∇
∼
xη dx

∼

dt = 0

∀η ∈ L2(tn−1, tn;H1(Ω)), (3.27a)
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∫
Ω

[
ρnκ,α,L u∼

n
κ,α,L − ρ

n−1
κ,α,L u∼

n−1
κ,α,L

∆t
− 1

2

ρnκ,α,L − ρ
n−1
κ,α,L

∆t
u
∼

n
κ,α,L

]
· w
∼

dx
∼

+ 1
2

∫
Ω

ρn−1
κ,α,L

[
[(u
∼

n−1
κ,α,L · ∇∼ x)u

∼

n
κ,α,L] · w

∼
− [(u

∼

n−1
κ,α,L · ∇∼ x)w

∼
] · u
∼

n
κ,α,L

]
dx
∼

+

∫
Ω

S
≈

(u
∼

n
κ,α,L) : ∇

≈
x w
∼

dx
∼
−
∫

Ω

(
1

∆t

∫ tn

tn−1

pκ(ρ
[∆t],n
κ,α,L ) dt

)
∇
∼
x · w
∼

dx
∼

=

∫
Ω

ρnκ,α,L f
∼

n · w
∼

dx
∼
−
∫

Ω

τ
≈

1(M ψ̂nκ,α,L) : ∇
≈
x w
∼

dx
∼

− 2 z

∫
Ω

(∫
D

M βL(ψ̂nκ,α,L) dq
∼

)
∇
∼
x

(∫
D

M ψ̂nκ,α,L dq
∼

)
· w
∼

dx
∼

∀w
∼
∈ V
∼
,

(3.27b)∫
Ω×D

M
ψ̂nκ,α,L − ψ̂

n−1
κ,α,L

∆t
ϕdq

∼
dx
∼

+

K∑
i=1

∫
Ω×D

M

 1

4λ

K∑
j=1

Aij ∇
∼
qj ψ̂

n
κ,α,L − [σ

≈
(u
∼

n
κ,α,L) q

∼
i ]βL(ψ̂nκ,α,L)

 · ∇
∼
qiϕdq

∼
dx
∼

+

∫
Ω×D

M
[
ε∇
∼
xψ̂

n
κ,α,L − βL(ψ̂nκ,α,L)u

∼

n
κ,α,L

]
· ∇
∼
xϕdq

∼
dx
∼

= 0 ∀ϕ ∈ X;

(3.27c)

where, for t ∈ (tn−1, tn] and n = 1, . . . , N ,

f
∼

{∆t}(·, t) = f
∼

n(·) :=
1

∆t

∫ tn

tn−1

f
∼

(·, t) dt ∈ L
∼

∞(Ω). (3.28)

It follows from (3.4) and (3.28) that∫ tn

tn−1

‖f
∼

{∆t}‖2L∞(Ω) dt ≤
∫ tn

tn−1

‖f
∼
‖2L∞(Ω) dt, n = 1, . . . , N, (3.29a)

f
∼

{∆t} → f
∼

strongly in L2(0, T ;L
∼

r(Ω)), as ∆t→ 0+, (3.29b)

where r ∈ [1,∞].

Remark 3.1. A possible alternative to our temporal approximation scheme (3.27a)

for (2.2a), which is the weak formulation of a parabolic initial boundary-value prob-

lem posed over the time slab Ω×[tn−1, tn), n = 1, . . . , N , would have been to proceed

as in the work of Abels and Feireisl1 and approximate (2.2a) by an implicit finite

difference scheme with respect to t. That would have avoided the use of ρ
[∆t],n
κ,α,L here,

but would have had the disadvantage, from the point of view of constructive consid-

erations in numerical analysis at least, that nonnegativity of ρnκ,α,L will have been

guaranteed for ∆t ≤ ∆t0 only, where ∆t0 ∈ (0, T ] is sufficiently small, with the

value of ∆t0 not being easily quantifiable in terms of the data and its independence

of κ, α and L being less than obvious. In contrast with that, our ρ
[∆t],n
κ,α,L , and thereby
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also ρnκ,α,L, will be shown to be nonnegative for all ∆t = T
N and all n = 1, . . . , N ,

regardless of the choice of κ, α, L and N .

We rewrite (3.27a) as∫ tn

tn−1

〈∂ρ[∆t],n
κ,α,L

∂t
, η

〉
H1(Ω)

+ c(u
∼

n
κ,α,L)(ρ

[∆t],n
κ,α,L , η)

 dt = 0

∀η ∈ L2(tn−1, tn;H1(Ω)), (3.30)

where, for all v∼ ∈ H∼ 1
0(Ω) and ηi ∈ H1(Ω), i = 1, 2,

c(v
∼
)(η1, η2) :=

∫
Ω

(
α∇
∼
xη1 − η1 v

∼

)
· ∇
∼
xη2 dx

∼
. (3.31)

Similarly, on noting (1.2) and (1.11), we rewrite (3.27b) as

b(ρnκ,α,L)(u∼
n
κ,α,L, w∼ ) = `b(ρ

[∆t],n
κ,α,L , ψ̂

n
κ,α,L)(w∼ ) ∀w∼ ∈ V∼ ; (3.32)

where, for all η ∈ L2
≥0(Ω) and w∼ i ∈ H∼ 1

0(Ω), i = 1, 2,

b(η)(w
∼

1, w
∼

2) := 1
2

∫
Ω

(η + ρn−1
κ,α,L)w

∼
1 · w
∼

2 dx
∼

+ ∆t µS
∫

Ω

D
≈

(w
∼

1) : D
≈

(w
∼

2) dx
∼

+ ∆t

(
µB − µS

d

)∫
Ω

(∇
∼
x · w
∼

1) (∇
∼
x · w
∼

2) dx
∼

+ 1
2

∫
Ω

ρn−1
κ,α,L

[
[(u
∼

n−1
κ,α,L · ∇∼ x)w

∼
1] · w

∼
2 − [(u

∼

n−1
κ,α,L · ∇∼ x)w

∼
2] · w

∼
1

]
dx
∼

(3.33a)

and, for all η ∈ Y n with η(·, tn) ∈ L2
≥0(Ω), ϕ ∈ X and w∼ ∈ V∼ ,

`b(η, ϕ)(w
∼

)

:=

∫
Ω

[
ρn−1
κ,α,L u∼

n−1
κ,α,L · w∼ + ∆t η(·, tn) f

∼

n · w
∼
−∆t k

K∑
i=1

C
≈
i(M ϕ) : ∇

≈
x w
∼

]
dx
∼

+

∫
Ω

(∫ tn

tn−1

pκ(η) dt+ ∆t k (K + 1)

∫
D

M ϕdq
∼

)
∇
∼
x · w
∼

dx
∼

− 2 ∆t z

∫
Ω

(∫
D

M βL(ϕ) dq
∼

)
∇
∼
x

(∫
D

M ϕ dq
∼

)
· w
∼

dx
∼
. (3.33b)

It follows for fixed u∼
n−1
κ,α,L ∈ H∼ 1

0(Ω), ρn−1
κ,α,L ∈ LΓ

≥0(Ω) and η ∈ L2
≥0(Ω), and the gen-

eralized Korn’s inequality, (3.3), that the nonsymmetric bilinear functional b(η)(·, ·)
is a nonsymmetric continuous coercive bilinear functional on H∼

1
0(Ω) × H∼ 1

0(Ω). In

addition, for fixed u∼
n−1
κ,α,L ∈ H∼ 1

0(Ω), ρn−1
κ,α,L ∈ LΓ

≥0(Ω), η ∈ Y n with η(·, tn) ∈ L2
≥0(Ω)

and ϕ ∈ X, it follows, on recalling (3.13), (2.3) and (3.24), that `b(η, ϕ)(·) is a

continuous linear functional on V∼ .

It is also convenient to rewrite (3.27c) as

a(ψ̂nκ,α,L, ϕ) = `a(u
∼

n
κ,α,L, β

L(ψ̂nκ,α,L))(ϕ) ∀ϕ ∈ X, (3.34)
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where, for all ϕi ∈ X, i = 1, 2,

a(ϕ1, ϕ2)

:=

∫
Ω×D

M

[
ϕ1 ϕ2 + ∆t ε∇

∼
xϕ1 · ∇

∼
xϕ2 +

∆t

4λ

K∑
i=1

K∑
j=1

Aij ∇
∼
qjϕ1 · ∇

∼
qiϕ2

]
dq
∼

dx
∼

(3.35a)

and, for all v∼ ∈ H∼ 1(Ω), ξ ∈ L∞(Ω×D) and ϕ ∈ X,

`a(v
∼
, ξ)(ϕ) :=

∫
Ω×D

M

[
ψ̂n−1
κ,α,L ϕ+ ∆t ξ

(
K∑
i=1

[σ
≈

(v
∼
) q
∼
i ] · ∇

∼
qiϕ+ v

∼
· ∇
∼
xϕ

)]
dq
∼

dx
∼
.

(3.35b)

Clearly, a(·, ·) is a symmetric continuous coercive bilinear functional on X ×X. In

addition, it is easily deduced for fixed v∼ ∈ H∼ 1(Ω) and ξ ∈ L∞(Ω × D), on noting

(3.2), that `a(v∼, ξ)(·) is a continuous linear functional on X.

In order to prove existence of a solution, (3.26), to (P∆t
κ,α,L), ρ

[∆t],n
κ,α,L (·, tn−1) =

ρn−1
κ,α,L(·) and (3.27a–c), which is equivalent to (3.30), (3.32) and (3.34), we require

two convex regularizations of the entropy function

F : s ∈ R≥0 7→ F(s) = s(log s− 1) + 1 ∈ R≥0,

denoted by FL and FLδ .

For any L > 1, we define FL ∈ C(R≥0) ∩ C2,1
loc (R>0) by

FL(s) :=

{
s(log s− 1) + 1, 0 ≤ s ≤ L,
s2−L2

2L + s(logL− 1) + 1, L ≤ s.
(3.36)

Note that

[FL]′(s) =

{
log s, 0 < s ≤ L,
s
L + logL− 1, L ≤ s,

(3.37a)

and

[FL]′′(s) =

{
1
s , 0 < s ≤ L,
1
L , L ≤ s.

(3.37b)

Hence, on noting the definition (1.19) of βL, we have that

βL(s) = min{s, L} =
(
[FL]′′(s)

)−1
, s ∈ R≥0, (3.38a)

with the convention 1
∞ := 0 when s = 0, and

[FL]′′(s) ≥ F ′′(s) =
1

s
, s ∈ R>0. (3.38b)

We shall also require the following inequality, relating FL to F :

FL(s) ≥ F(s), s ∈ R≥0. (3.39)
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For 0 ≤ s ≤ 1, (3.39) trivially holds, with equality. For s ≥ 1, it follows from (3.38b),

with s replaced by a dummy variable σ, after integrating twice over σ ∈ [1, s], and

noting that [FL]′(1) = F ′(1) and FL(1) = F(1).

For L > 1 and δ ∈ (0, 1), the function FLδ ∈ C2,1(R) is defined by

FLδ (s) :=

{
s2−δ2

2 δ + s (log δ − 1) + 1, s ≤ δ,
FL(s), δ ≤ s.

(3.40)

Hence,

[FLδ ]′(s) =

{
s
δ + log δ − 1, s ≤ δ,
[FL]′(s), δ ≤ s,

(3.41a)

[FLδ ]′′(s) =

{
1
δ , s ≤ δ,
[FL]′′(s), δ ≤ s.

(3.41b)

We note that

FLδ (s) ≤ FL(s) ∀s ≥ 0, (3.42a)

FLδ (s) ≥

{
s2

2 δ , s ≤ 0,
s2

4L − C(L), s ≥ 0;
(3.42b)

and that [FLδ ]′′(s) is bounded below by 1
L for all s ∈ R. Finally, we set

βLδ (s) := ([FLδ ]′′)−1(s) = max{βL(s), δ}, (3.43)

and observe that βLδ (s) is bounded above by L and bounded below by δ for all

s ∈ R. Note also that both βL and βLδ are Lipschitz continuous on R, with Lipschitz

constants equal to 1.

In addition, we regularize the bilinear functional b(η)(·, ·), (3.33a), on X × X,

by introducing the Banach space

V
∼

:=
{
w
∼
∈ H
∼

2(Ω) ∩H
∼

1
0(Ω) : ∇

∼
x · w
∼
∈ H2(Ω)

}
, (3.44)

which is compactly embedded in V∼ , (3.23). We then define, for δ ∈ R>0, η ∈ L2
≥0(Ω)

and w∼ i ∈ V∼ , i = 1, 2,

bδ(η)(w
∼

1, w
∼

2) := b(η)(w
∼

1, w
∼

2)

+ ∆t δ
∑
|λ
∼
|=2

∫
Ω

 ∂
|λ
∼
|
w
∼

1

∂λ1
x1 · · · ∂λdxd

·
∂
|λ
∼
|
w
∼

2

∂λ1
x1 · · · ∂λdxd

+
∂
|λ
∼
|
(∇
∼
x · w
∼

1)

∂λ1
x1 · · · ∂λdxd

∂
|λ
∼
|
(∇
∼
x · w
∼

2)

∂λ1
x1 · · · ∂λdxd

 dx
∼
.

(3.45)

It follows that bδ(η)(·, ·) is a nonsymmetric continuous coercive bilinear functional on

V∼ ×V∼ for fixed η ∈ L2
≥0(Ω) and δ ∈ (0, 1). We also replace `b(η, ϕ)(·) by `b,δ(η, ϕ)(·),
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where βL(ϕ) in `b(η, ϕ)(·) is replaced by βLδ (ϕ); that is, for δ ∈ (0, 1),

`b,δ(η, ϕ)(w
∼

) := `b(η, ϕ)(w
∼

)

+ 2 ∆t z

∫
Ω

(∫
D

M [βL(ϕ)− βLδ (ϕ)] dq
∼

)
∇
∼
x

(∫
D

M ϕ dq
∼

)
· w
∼

dx
∼
. (3.46)

As for fixed η ∈ Y n with η(·, tn) ∈ L2
≥0(Ω) and ϕ ∈ X, `b(η, ϕ)(·) is a continuous

linear functional on V∼ , it follows that `b,δ(η, ϕ)(·), for δ ∈ (0, 1), is a continuous

linear functional on V∼ .

Next, we introduce

Υn := L2(tn−1, tn;H1(Ω)) ∩H1(tn−1, tn;H1(Ω)′) ∩ L∞≥0(Ω× (tn−1, tn)). (3.47)

We note that Υn ↪→ C([tn−1, tn];L2
≥0(Ω)) and Υn ⊂ Y n, (cf. (3.24)). Finally, we

regularize the initial datum for the problem posed in the time-slab Ω × [tn−1, tn)

by setting

ρn−1
κ,α,L,δ = βδ

−1

(ρn−1
κ,α,L), (3.48)

where βδ
−1

is given by (1.19) with L = δ−1.

We now consider the following regularized version of the coupled system (3.30),

(3.32) and (3.34) for a given δ ∈ (0, 1):

For (ρn−1
κ,α,L, u∼

n−1
κ,α,L, ψ̂

n−1
κ,α,L) ∈ LΓ

≥0(Ω) × H∼
1
0(Ω) × Z2, find (ρ

[∆t],n
κ,α,L,δ, u∼

n
κ,α,L,δ,

ψ̂nκ,α,L,δ) ∈ Υn × V∼ ×X such that ρ
[∆t],n
κ,α,L,δ(·, tn−1) = ρn−1

κ,α,L,δ(·),∫ tn

tn−1

〈∂ρ[∆t],n
κ,α,L,δ

∂t
, η

〉
H1(Ω)

+ c(u
∼

n
κ,α,L,δ)(ρ

[∆t],n
κ,α,L,δ, η)

 dt = 0

∀η ∈ L2(tn−1, tn;H1(Ω)), (3.49a)

bδ(ρ
[∆t],n
κ,α,L,δ(·, tn))(u

∼

n
κ,α,L,δ, w

∼
) = `b,δ(ρ

[∆t],n
κ,α,L,δ, ψ̂

n
κ,α,L,δ)(w

∼
) ∀w

∼
∈ V
∼
, (3.49b)

a(ψ̂nκ,α,L,δ, ϕ) = `a(u
∼

n
κ,α,L,δ, β

L
δ (ψ̂nκ,α,L,δ))(ϕ) ∀ϕ ∈ X. (3.49c)

The existence of a solution to (3.49a–c) will be proved by using a fixed-point

argument. Given (ũ∼, ψ̃) ∈ V∼ × L2
M (Ω ×D), let (ρ?, u∼

?, ψ?) ∈ Υn × V∼ ×X be such

that ρ?(·, tn−1) = ρn−1
κ,α,L,δ(·),∫ tn

tn−1

[〈
∂ρ?

∂t
, η

〉
H1(Ω)

+ c(ũ
∼

)(ρ?, η)

]
dt = 0 ∀η ∈ L2(tn−1, tn;H1(Ω)), (3.50a)

a(ψ?, ϕ) = `a(ũ
∼
, βLδ (ψ̃))(ϕ) ∀ϕ ∈ X, (3.50b)

bδ(ρ
?(·, tn))(u

∼

?, w
∼

) = `b,δ(ρ
?, ψ?)(w

∼
) ∀w

∼
∈ V
∼
. (3.50c)
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For fixed v∼ ∈ V∼ , it follows that c(v∼)(·, ·), (3.31), is a nonsymmetric continuous

bilinear functional on H1(Ω)×H1(Ω), and, moreover, for all η ∈ H1(Ω),

c(v
∼
)(η, η) = α ‖∇

∼
xη‖2L2(Ω) + 1

2

∫
Ω

(∇
∼
x · v
∼
) η2 dx

∼

≥ α ‖∇
∼
xη‖2L2(Ω) − 1

2 ‖∇∼ x · v
∼
‖L∞(Ω) ‖η‖2L2(Ω). (3.51)

Hence for any fixed ũ∼ ∈ V∼ , the existence of a unique weak solution

ρ? ∈ L2(tn−1, tn;H1(Ω)) ∩H1(tn−1, tn;H1(Ω)′) ↪→ C([tn−1, tn];L2(Ω)) (3.52)

satisfying ρ?(·, tn−1) = ρn−1
κ,α,L,δ(·) and (3.50a) is immediate; see, for exam-

ple, Wloka26, Thm. 26.1. Further, on choosing, for s ∈ (tn−1, tn], η(·, t) =

χ[tn−1,s] e−‖∇∼ x·ũ∼‖L∞(Ω) (t−tn−1) [ρ?(·, t)]− in (3.50a), where, for a set S ⊂ R, χS
denotes the characteristic function of S, and recalling (3.51), we obtain that

e
−‖∇
∼
x·ũ
∼
‖L∞(Ω) (s−tn−1)

‖[ρ?(·, s)]−‖2L2(Ω)

+ 2α

∫ s

tn−1

∫
Ω

e
−‖∇
∼
x·ũ
∼
‖L∞(Ω) (t−tn−1)

|∇
∼
x[ρ?(x

∼
, t)]−|2 dx

∼
dt ≤ 0, s ∈ (tn−1, tn].

(3.53)

Next, we define

R(t) := e
‖∇
∼
x·ũ
∼
‖L∞(Ω) (t−tn−1)

‖ρn−1
κ,α,L,δ‖L∞(Ω), t ∈ [tn−1, tn]; (3.54)

hence,∫ tn

tn−1

[〈
∂(ρ? −R)

∂t
, η

〉
H1(Ω)

+ c(ũ
∼

)(ρ? −R, η)

]
dt

= −
∫ tn

tn−1

R

∫
Ω

(
∇
∼
x · ũ
∼

+ ‖∇
∼
x · ũ
∼
‖L∞(Ω)

)
η dx
∼

dt ∀η ∈ L2(tn−1, tn;H1(Ω)).

(3.55)

Then, similarly to (3.53), on choosing

η(·, t) = χ[tn−1,s] e−‖∇∼ x·ũ∼‖L∞(Ω) (t−tn−1) [ρ?(·, t)−R(t)]+

in (3.55) for s ∈ (tn−1, tn], we obtain that

e
−‖∇
∼
x·ũ
∼
‖L∞(Ω) (s−tn−1)

‖[ρ?(·, s)−R(s)]+‖2L2(Ω)

+ 2α

∫ s

tn−1

∫
Ω

e
−‖∇
∼
x·ũ
∼
‖L∞(Ω) (t−tn−1)

|∇
∼
x[ρ?(x

∼
, t)−R(t)]+|2 dx

∼
dt ≤ 0,

s ∈ (tn−1, tn]. (3.56)

On noting (3.52), extending (3.53) and (3.56) from the interval (tn−1, tn] to [tn−1, tn]

by letting s → tn−1 in (3.53) and (3.56), and combining the resulting inequalities,

we deduce that

ρ∗(·, t) ∈ [0, R(t)] for t ∈ [tn−1, tn], and so ρ? ∈ Υn. (3.57)
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As a(·, ·) is a symmetric continuous coercive bilinear functional on X ×X and

`a(v∼, ξ)(·) is a continuous linear functional on X for fixed v∼ ∈ H∼
1(Ω) and ξ ∈

L∞(Ω×D), the Lax–Milgram theorem yields the existence of a unique solution ψ? ∈
X to (3.50b). Similarly, for δ ∈ (0, 1), as bδ(η)(·, ·) is a nonsymmetric continuous

coercive bilinear functional on V∼ × V∼ for fixed η ∈ L2
≥0(Ω), and `b,δ(η, ϕ)(·) is a

continuous linear functional on V∼ for fixed η ∈ Υn with η(·, tn) ∈ L2
≥0(Ω) and

ϕ ∈ X, the Lax–Milgram theorem yields the existence of a unique solution u∼
? ∈ V∼

to (3.50c). Therefore the overall procedure (3.50a–c) that, for ρn−1
κ,α,L ∈ LΓ

≥0(Ω) fixed,

maps (ũ∼, ψ̃) ∈ V∼ ×L2
M (Ω×D) to (ρ?, u∼

?, ψ?) ∈ Υn×V∼×X, with ρ∗(·, tn−1) = ρn−1
κ,α,L,

is well defined.

Lemma 3.2. Let T : V∼ × L2
M (Ω × D) → V∼ × X denote the nonlinear map

that takes the functions (ũ∼, ψ̃) to (u∼
?, ψ?) = T (ũ∼, ψ̃) via the procedure (3.50a–

c). Then, the mapping T has a fixed point. Hence, there exists a solution

(ρ
[∆t],n
κ,α,L,δ, u∼

n
κ,α,L,δ, ψ̂

n
κ,α,L,δ) ∈ Υn × V∼ ×X to (3.49a–c).

Proof. Clearly, a fixed point of T yields a solution of (3.49a–c). In order to show

that T has a fixed point, we apply Schauder’s fixed-point theorem; that is, we need

to show that: (i) T : V∼ × L2
M (Ω × D) → V∼ × L2

M (Ω × D) is continuous; (ii) T is

compact; and (iii) there exists a C? ∈ R>0 such that

‖ũ∼‖H1(Ω) + ‖ũ∼‖L∞(Ω) + ‖∇∼ x · ũ∼‖L∞(Ω) + ‖ψ̃‖L2
M (Ω×D) ≤ C? (3.58)

for every (ũ∼, ψ̃) ∈ V∼ × L2
M (Ω×D) and κ ∈ (0, 1] satisfying (ũ∼, ψ̃) = κ T (ũ∼, ψ̃).

(i) Let {ũ∼
(m), ψ̃(m)}m∈N be such that, as m→∞,

ũ
∼

(m) → ũ
∼

strongly in H
∼

1
0(Ω), ũ

∼

(m) → ũ
∼

strongly in L
∼

∞(Ω),

∇
∼
x · ũ
∼

(m) → ∇
∼
x · ũ
∼

strongly in L∞(Ω), ψ̃(m) → ψ̃ strongly in L2
M (Ω×D).

(3.59)

It follows immediately from (3.59), (3.43), (1.7a) and (3.1) that

M
1
2 βLδ (ψ̃(m))→M

1
2 βLδ (ψ̃) strongly in Lr(Ω×D) as m→∞ (3.60)

for all r ∈ [1,∞). In order to prove that T : V∼ × L2
M (Ω ×D) → V∼ × L2

M (Ω ×D)

is continuous, we need to show that (v∼
(m), ξ(m)) := T (ũ∼

(m), ψ̃(m)) is such that, as

m→∞,

v
∼

(m) → v
∼

strongly in H
∼

1
0(Ω), v

∼

(m) → v
∼

strongly in L
∼

∞(Ω),

∇
∼
x · v
∼

(m) → ∇
∼
x · v
∼

strongly in L∞(Ω), ξ(m) → ξ strongly in L2
M (Ω×D),

(3.61)

where (v∼, ξ) := T (ũ∼, ψ̃). We have from the definition of T , recall (3.50a–c), that,

for all m ∈ N, (v∼
(m), ξ(m)) ∈ V∼ ×X is the unique solution to

a(ξ(m), ϕ) = `a(ũ
∼

(m), βLδ (ψ̃(m)))(ϕ) ∀ϕ ∈ X, (3.62a)

bδ(ρ̃
(m)(·, tn))(v

∼

(m), w
∼

) = `b,δ(ρ̃
(m), ξ(m))(w

∼
) ∀w

∼
∈ V
∼
, (3.62b)
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where ρ̃(m) ∈ Υn is the unique solution to ρ̃(m)(·, tn−1) = ρn−1
κ,α,L,δ(·) and

∫ tn

tn−1

[〈
∂ρ̃(m)

∂t
, η

〉
H1(Ω)

+ c(ũ
∼

(m))(ρ̃(m), η)

]
dt = 0 ∀η ∈ L2(tn−1, tn;H1(Ω)).

(3.63)

It follows from (3.59) that ‖∇∼ x ·ũ∼
(m)‖L∞(Ω) ≤ C? for all m ∈ N. By choosing, for

s ∈ (tn−1, tn], the function η(·, t) = χ[tn−1,s] e−C? (t−tn−1)ρ̃(m)(·, t) in (3.63) yields,

on noting (3.51), the first two bounds in

‖ρ̃(m)‖2C([tn−1,tn];L2(Ω)) + α ‖ρ̃(m)‖2L2(tn−1,tn;H1(Ω))

+ ‖ρ̃(m)‖2L∞(tn−1,tn;L∞(Ω)) +

∥∥∥∥∂ρ̃(m)

∂t

∥∥∥∥2

L2(tn−1,tn;H1(Ω)′)

≤ C, (3.64)

where, here and below, C is independent of m. The third bound in (3.64) follows

from applying the bound (3.57) to (3.63) with ũ∼ in (3.54) replaced by ũ∼
(m) and

noting (3.59). The fourth bound in (3.64) follows immediately from the first two

bounds in (3.64), (3.59) and (3.63). Choosing ϕ = ξ(m) in (3.62a) yields, on noting

(3.35a,b) and (3.59), that

‖ξ(m)‖2H1
M (Ω×D) ≤ C. (3.65)

Choosing w∼ = v∼
(m) in (3.62b) yields, on noting (3.45), (3.46), (3.33a,b), ρ̃(m)(·, tn) ∈

L2
≥0(Ω), ρn−1

κ,α,L ∈ LΓ
≥0(Ω), (3.3), (1.6b), (3.13), (3.65), (2.3) and (3.64), that

‖v
∼

(m)‖2H2(Ω) + ‖∇
∼
x · v
∼

(m)‖2H2(Ω) ≤ C. (3.66)

It follows from (3.64), (3.65), (3.66), (3.11), (3.43), (1.7a), (3.1), (3.13) and the

compactness of V∼ in V∼ and X ≡ H1
M (Ω × D) in L2

M (Ω × D) that there exists a

subsequence {(ρ̃(mk), v∼
(mk), ξ(mk))}mk∈N and functions (ρ̃, v∼, ξ) ∈ Υn×V∼ ×X such

that, as mk →∞, for any r ∈ [1,∞),

ρ̃(mk) → ρ̃ weakly in L2(tn−1, tn;H1(Ω)),

strongly in Lr(tn−1, tn;Lr(Ω)), (3.67a)

∂ρ̃(mk)

∂t
→ ∂ρ̃

∂t
weakly in L2(tn−1, tn;H1(Ω)′), (3.67b)

ρ̃(mk)(·, tn)→ ρ̃(·, tn) weakly in L2(Ω), (3.67c)

v
∼

(mk) → v
∼

weakly in H
∼

2(Ω),

strongly in H
∼

1
0(Ω) ∩ L

∼

∞(Ω), (3.67d)

∇
∼
x · v
∼

(mk) → ∇
∼
x · v
∼

weakly in H2(Ω),

strongly in L∞(Ω), (3.67e)
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ξ(mk) → ξ weakly in H1
M (Ω×D),

strongly in L2
M (Ω×D), (3.67f)

M
1
2 βLδ (ξ(mk))→M

1
2 βLδ (ξ) strongly in Lr(Ω×D), (3.67g)

C
≈
i(ξ

(mk))→ C
≈
i(ξ) strongly in L2(Ω), i = 1, . . . ,K. (3.67h)

We deduce from (3.63), (3.67a,b) and (3.59) that ρ̃ ∈ Υn is the unique solution

to ρ̃(·, tn−1) = ρn−1
κ,α,L,δ(·) and∫ tn

tn−1

[〈
∂ρ̃

∂t
, η

〉
H1(Ω)

+ c(ũ
∼

)(ρ̃, η)

]
dt = 0 ∀η ∈ L2(tn−1, tn;H1(Ω)). (3.68)

Choosing η = 1 in (3.68), on noting (3.31) and (3.48), yields that∫
Ω

ρ̃(·, tn) dx
∼

=

∫
Ω

ρn−1
κ,α,L,δ dx

∼
≤
∫

Ω

ρn−1
κ,α,L dx

∼
. (3.69)

It follows from (3.62a), (3.35a,b), (3.67f), (3.59) and (3.60) that ξ, ψ̃ ∈ X and ũ∼ ∈ V∼
satisfy

a(ξ, ϕ) = `a(ũ
∼
, βLδ (ψ̃))(ϕ) ∀ϕ ∈ C∞(Ω×D). (3.70)

Then, noting that a(·, ·) is a continuous bilinear functional on X × X, that

`a(v∼, β
L
δ (ψ̃))(·) is a continuous linear functional on X, and recalling (3.8), we deduce

that ξ ∈ X is the unique solution of (3.70) for all ϕ ∈ X. It further follows from

(3.62b), (3.45), (3.46), (3.33a,b) and (3.67a,c,d,e,f,g,h) that v∼ ∈ V∼ is the unique

solution to

bδ(ρ̃(·, tn))(v∼, w∼ ) = `b,δ(ρ̃, ξ)(w∼ ) ∀w∼ ∈ V∼ . (3.71)

Combining (3.70) with ϕ ∈ X with (3.71) and (3.68), we have that (v∼, ξ) =

T (ũ∼, ψ̃) ∈ V∼ ×X. As (v∼, ξ) is unique for fixed (u∼, ψ̃), the whole sequence converges

in (3.67a–h), and so (3.61) holds. Therefore the mapping T : V∼ × L2
M (Ω × D) →

V∼ × L2
M (Ω×D) is continuous.

(ii) Since the embeddings V∼ ↪→ V∼ and X ↪→ L2
M (Ω×D) are compact, we directly

deduce that the mapping T : V∼ × L2
M (Ω × D) → V∼ × L2

M (Ω × D) is compact. It

therefore remains to show that (iii) holds.

(iii) Let us suppose that (ũ∼, ψ̃) = κ T (ũ∼, ψ̃); then, (ρ̃, ũ∼, ψ̃) ∈ Υn×V∼×X satisfies

ρ̃(·, tn−1) = ρn−1
κ,α,L,δ(·) and∫ tn

tn−1

[〈
∂ρ̃

∂t
, η

〉
H1(Ω)

+ c(ũ
∼

)(ρ̃, η)

]
dt = 0 ∀η ∈ L2(tn−1, tn;H1(Ω)), (3.72a)

bδ(ρ̃(·, tn))(ũ
∼
, w
∼

) = κ `b,δ(ρ̃, ψ̃)(w
∼

) ∀w
∼
∈ V
∼
, (3.72b)

a(ψ̃, ϕ) = κ `a(ũ
∼
, βLδ (ψ̃))(ϕ) ∀ϕ ∈ X. (3.72c)
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Choosing w∼ = ũ∼ in (3.72b) yields, as κ ∈ (0, 1], that

κ
2

∫
Ω

[
ρ̃(·, tn) |ũ

∼
|2 + ρn−1

κ,α,L |ũ∼ − u∼
n−1
κ,α,L|

2 − ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2
]

dx
∼

+ ∆t µS
∫

Ω

|D
≈

(ũ
∼

)|2 dx
∼

+ ∆t

(
µB − µS

d

)∫
Ω

|∇
∼
x · ũ
∼
|2 dx

∼

+ ∆t δ
∑
|λ
∼
|=2

∫
Ω


∣∣∣∣∣∣∣

∂
|λ
∼
|
ũ
∼

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∂
|λ
∼
|
(∇
∼
x · ũ
∼

)

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2
 dx

∼

≤ κ ∆t

[∫
Ω

ρ̃(·, tn) f
∼

n · ũ
∼

dx
∼
− k

K∑
i=1

∫
Ω

C
≈
i(M ψ̃) : ∇

≈
x ũ
∼

dx
∼

]

+ κ
∫

Ω

(∫ tn

tn−1

pκ(ρ̃) dt+ ∆t k (K + 1)

∫
D

M ψ̃ dq
∼

)
∇
∼
x · ũ
∼

dx
∼

− 2κ ∆t z

∫
Ω

(∫
D

M βLδ (ψ̃) dq
∼

)
∇
∼
x

(∫
D

M ψ̃ dq
∼

)
· ũ
∼

dx
∼
. (3.73)

On recalling (3.5), we choose η(·, t) = χ[tn−1,s] P
′
κ(ρ̃(·, t) + ς) in (3.72a), for any

s ∈ (tn−1, tn] and any fixed ς ∈ R>0, to obtain, on noting (3.31), that∫
Ω

Pκ(ρ̃(·, s)) dx
∼

+ ακ

∫ s

tn−1

∫
Ω

(4 ρ̃2 + Γ ρ̃Γ−2) |∇
∼
xρ̃|2 dx

∼
dt

≤
∫

Ω

Pκ(ρ̃(·, s) + ς) dx
∼

+ α

∫ s

tn−1

∫
Ω

P ′′κ (ρ̃+ ς) |∇
∼
xρ̃|2 dx

∼
dt

=

∫
Ω

Pκ(ρn−1
κ,α,L,δ + ς) dx

∼
+

∫ s

tn−1

∫
Ω

ρ̃ ũ
∼
· ∇
∼
xP
′
κ(ρ̃+ ς) dx

∼
dt

=

∫
Ω

Pκ(ρn−1
κ,α,L,δ + ς) dx

∼
+

∫
Ω

(∫ s

tn−1

[Pκ(ρ̃+ ς)− ρ̃ P ′κ(ρ̃+ ς)] dt

)
∇
∼
x · ũ
∼

dx
∼
.

(3.74)

As ρn−1
κ,α,L,δ ∈ L∞≥0(Ω), ρ̃ ∈ L∞(tn−1, tn;L∞≥0(Ω)) and ũ∼ ∈ V∼ , one can pass to the

limit ς → 0+ in (3.74) using Lebesgue’s dominated convergence theorem to obtain,

for any s ∈ (tn−1, tn], that∫
Ω

Pκ(ρ̃(·, s)) dx
∼

+ ακ

∫ s

tn−1

[
‖∇
∼
x(ρ̃2)‖2L2(Ω) +

4

Γ
‖∇
∼
x(ρ̃

Γ
2 )‖2L2(Ω)

]
dt

≤
∫

Ω

Pκ(ρn−1
κ,α,L,δ) dx

∼
+

∫
Ω

(∫ s

tn−1

[Pκ(ρ̃)− ρ̃ P ′κ(ρ̃)] dt

)
∇
∼
x · ũ
∼

dx
∼
.

≤
∫

Ω

Pκ(ρn−1
κ,α,L) dx

∼
−
∫

Ω

(∫ s

tn−1

pκ(ρ̃) dt

)
∇
∼
x · ũ
∼

dx
∼
, (3.75)

where we have noted (3.48) and (3.5) for the final inequality. We remark that we

needed to choose P ′κ(ρ̃(·, t) + ς), as opposed to P ′κ(ρ̃(·, t)), in the testing procedure
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since P ′′κ (ρ̃), that would appear in (3.74), may not be well-defined for γ ∈ ( 3
2 , 2), as

we only know that ρ̃ is nonnegative as opposed to being strictly positive.

For a.e. x∼ ∈ Ω, let

%̃(x∼) :=

∫
D

M(q
∼
) ψ̃(x∼, q∼) dq

∼
and %n−1

κ,α,L(x∼) :=

∫
D

M(q
∼
) ψ̂n−1

κ,α,L(x∼, q∼) dq
∼
. (3.76)

Choosing ϕ(x∼, q∼) = %̃(x∼)⊗ 1(q
∼
) in (3.72c) yields that

κ
2

[
‖%̃‖2L2(Ω) + ‖%̃− %n−1

κ,α,L‖
2
L2(Ω)

]
+ ∆t ε ‖∇

∼
x%̃‖2L2(Ω)

=
κ
2
‖%n−1
κ,α,L‖

2
L2(Ω) + κ ∆t

∫
Ω

(∫
D

M βLδ (ψ̃) dq
∼

)
ũ
∼
· ∇
∼
x%̃ dx

∼
. (3.77)

Combining (3.73), (3.75) for s = tn and (3.77) yields, on noting (3.3), (3.4) and

(3.76), that, for all κ ∈ (0, 1],

κ
2

∫
Ω

[
ρ̃(·, tn) |ũ

∼
|2 + ρn−1

κ,α,L |ũ∼ − u∼
n−1
κ,α,L|

2
]

dx
∼

+ κ
∫

Ω

Pκ(ρ̃(·, tn)) dx
∼

+ κ ακ
∫ tn

tn−1

[
‖∇
∼
x(ρ̃2)‖2L2(Ω) +

4

Γ
‖∇
∼
x(ρ̃

Γ
2 )‖2L2(Ω)

]
dt+ ∆t µS c0 ‖ũ

∼
‖2H1(Ω)

+ ∆t δ
∑
|λ
∼
|=2

∫
Ω


∣∣∣∣∣∣∣

∂
|λ
∼
|
ũ
∼

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∂
|λ
∼
|
(∇
∼
x · ũ
∼

)

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2
 dx

∼

+ κ z
[
‖%̃‖2L2(Ω) + ‖%̃− %n−1

κ,α,L‖
2
L2(Ω)

]
+ 2 ∆t z ε ‖∇

∼
x%̃‖2L2(Ω)

≤ κ
2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+ κ
∫

Ω

Pκ(ρn−1
κ,α,L) dx

∼

+ κ ∆t

∫
Ω

ρ̃(·, tn) f
∼

n · ũ
∼

dx
∼

+ κ z ‖%n−1
κ,α,L‖

2
L2(Ω)

+ κ k∆t

[
(K + 1)

∫
Ω

%̃∇
∼
x · ũ
∼

dx
∼
−

K∑
i=1

∫
Ω

C
≈
i(M ψ̃) : ∇

≈
x ũ
∼

dx
∼

]
. (3.78)

Choosing ϕ = [FLδ ]′(ψ̃) in (3.72c) and noting (3.43) implies that∫
Ω×D

M

(
FLδ (ψ̃)−FLδ (κ ψ̂n−1

κ,α,L) +
1

2L
|ψ̃ − κ ψ̂n−1

κ,α,L|
2

)
dq
∼

dx
∼

+
∆t

4λ

K∑
i=1

K∑
j=1

Aij

∫
Ω×D

M ∇
∼
qj ψ̃ · ∇

∼
qi([FLδ ]′(ψ̃)) dq

∼
dx
∼

+ ∆t ε

∫
Ω×D

M ∇
∼
xψ̃ · ∇

∼
x([FLδ ]′(ψ̃)) dq

∼
dx
∼
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≤ κ ∆t

∫
Ω×D

M

[(
K∑
i=1

σ
≈

(ũ
∼

) q
∼
i

)
· ∇
∼
qi ψ̃ + ũ

∼
· ∇
∼
xψ̃

]
dq
∼

dx
∼

= κ ∆t

∫
Ω

[
K∑
i=1

C
≈
i(M ψ̃) : σ

≈
(ũ
∼

)− (K + 1) (∇
∼
x · ũ
∼

)

∫
D

Mψ̃ dq
∼

]
dx
∼
, (3.79)

where in the transition to the final line we applied (3.14) with B
≈

= σ
≈

(ũ∼) (on account

of it being independent of the variable q
∼
), and recalled (1.12). Combining (3.78) and

(3.79), and noting (2.5) and (3.43), yields, for all κ ∈ (0, 1] and ς ∈ R>0, that

κ
2

∫
Ω

[
ρ̃(·, tn) |ũ

∼
|2 + ρn−1

κ,α,L |ũ∼ − u∼
n−1
κ,α,L|

2
]

dx
∼

+ κ
∫

Ω

Pκ(ρ̃(·, tn)) dx
∼

+ κ ακ
∫ tn

tn−1

[
‖∇
∼
x(ρ̃2)‖2L2(Ω) +

4

Γ
‖∇
∼
x(ρ̃

Γ
2 )‖2L2(Ω)

]
dt

+ k

∫
Ω×D

M

(
FLδ (ψ̃) +

1

2L
|ψ̃ − κ ψ̂n−1

κ,α,L|
2

)
dq
∼

dx
∼

+ ∆t µS c0 ‖ũ
∼
‖2H1(Ω)

+ ∆t δ
∑
|λ
∼
|=2

∫
Ω


∣∣∣∣∣∣∣

∂
|λ
∼
|
ũ
∼

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∂
|λ
∼
|
(∇
∼
x · ũ
∼

)

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2
 dx

∼

+
∆t k a0

4λL

K∑
i=1

∫
Ω×D

M |∇
∼
qi ψ̃|2 dq

∼
dx
∼

+
∆t k ε

L

∫
Ω×D

M |∇
∼
xψ̃|2 dq

∼
dx
∼

+ κ z
[
‖%̃‖2L2(Ω) + ‖%̃− %n−1

κ,α,L‖
2
L2(Ω)

]
+ 2 ∆t z ε ‖∇

∼
x%̃‖2L2(Ω)

≤ κ
2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+ κ
∫

Ω

Pκ(ρn−1
κ,α,L) dx

∼
+ k

∫
Ω×D

MFLδ (κ ψ̂n−1
κ,α,L) dq

∼
dx
∼

+ κ z ‖%n−1
κ,α,L‖

2
L2(Ω) + κ ∆t

∫
Ω

ρ̃(·, tn) f
∼

n · ũ
∼

dx
∼

≤ κ
2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+ κ
∫

Ω

Pκ(ρn−1
κ,α,L) dx

∼
+ k

∫
Ω×D

MFLδ (κ ψ̂n−1
κ,α,L) dq

∼
dx
∼

+ κ z ‖%n−1
κ,α,L‖

2
L2(Ω) +

κ ∆t

2

[
ς

∫
Ω

ρ̃(·, tn) |ũ
∼
|2 dx

∼
+

1

ς
‖f
∼

n‖2L∞(Ω)

∫
Ω

ρn−1
κ,α,L dx

∼

]
,

(3.80)

where, in deriving the final inequality, we have noted (3.69). It is easy to see that

FLδ (s) is nonnegative for all s ∈ R, with FLδ (1) = 0. Furthermore, for any κ ∈ (0, 1],

FLδ (κ s) ≤ FLδ (s) if s < 0 or 1 ≤ κ s, and also FLδ (κ s) ≤ FLδ (0) ≤ 1 if 0 ≤ κ s ≤ 1.

Thus we deduce that

FLδ (κ s) ≤ FLδ (s) + 1 ∀s ∈ R, ∀κ ∈ (0, 1]. (3.81)

Hence, the bounds (3.80) and (3.81), on noting (3.42b) and, from (3.43) and (1.19),

that βLδ (·) ≤ L, give rise, for ς sufficiently small, to the desired bound (3.58) with

C∗ dependent only on δ, L, ∆t, M , k, µS , c0, a0, f
∼

, ρn−1
κ,α,L, u∼

n−1
κ,α,L and ψ̂n−1

κ,α,L.
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Therefore (iii) holds, and so T has a fixed point, proving existence of a solution to

(3.49a–c).

Similarly to (3.77), choosing ϕ(x∼, q∼) = %nκ,α,L,δ(x∼) ⊗ 1(q
∼
) in (3.49c), where

%nκ,α,L,δ(x∼) :=
∫
D
M(q

∼
) ψ̂nκ,α,L,δ(x∼, q∼) dq

∼
dx∼, yields that

1

2

[
‖%nκ,α,L,δ‖2L2(Ω) + ‖%nκ,α,L,δ − %n−1

κ,α,L‖
2
L2(Ω)

]
+ ∆t ε ‖∇

∼
x%
n
κ,α,L,δ‖2L2(Ω)

=
1

2
‖%n−1
κ,α,L‖

2
L2(Ω)

+ ∆t

∫
Ω

(∫
D

M βLδ (%nκ,α,L,δ) dq
∼

)
u
∼

n
κ,α,L,δ · ∇

∼
x%
n
κ,α,L,δ dx

∼
. (3.82)

Choosing w∼ = u∼
n
κ,α,L,δ in (3.49b) and η = P ′κ(ρ

[∆t],n
κ,α,L,δ) in (3.49a), and combining

with (3.82), yields, similarly to (3.78), that

1

2

∫
Ω

[
ρ

[∆t],n
κ,α,L,δ(·, tn) |u

∼

n
κ,α,L,δ|2 + ρn−1

κ,α,L |u∼
n
κ,α,L,δ − u

∼

n−1
κ,α,L|

2
]

dx
∼

+

∫
Ω

Pκ(ρ
[∆t],n
κ,α,L,δ(·, tn)) dx

∼

+ ακ

∫ tn

tn−1

[
‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

2]‖2L2(Ω) +
4

Γ
‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

Γ
2 ]‖2L2(Ω)

]
dt

+ ∆t µS c0 ‖u
∼

n
κ,α,L,δ‖2H1(Ω)

+ ∆t δ
∑
|λ
∼
|=2

∫
Ω


∣∣∣∣∣∣∣
∂
|λ
∼
|
u
∼

n
κ,α,L,δ

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∂
|λ
∼
|
(∇
∼
x · u
∼

n
κ,α,L,δ)

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2
 dx

∼

+ z
[
‖%nκ,α,L,δ‖2L2(Ω) + ‖%nκ,α,L,δ − %n−1

κ,α,L‖
2
L2(Ω)

]
+ 2 ∆t z ε ‖∇

∼
x%
n
κ,α,L,δ‖2L2(Ω)

≤ 1

2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+

∫
Ω

Pκ(ρn−1
κ,α,L) dx

∼

+ ∆t

∫
Ω

ρ
[∆t],n
κ,α,L,δ(·, tn) f

∼

n · u
∼

n
κ,α,L,δ dx

∼
+ z ‖%n−1

κ,α,L‖
2
L2(Ω)

+ k∆t (K + 1)

∫
Ω

%nκ,α,L,δ∇
∼
x · u
∼

n
κ,α,L,δ dx

∼

− k∆t

K∑
i=1

∫
Ω

C
≈
i(M ψ̂nκ,α,L,δ) : ∇

≈
x u
∼

n
κ,α,L,δ dx

∼
. (3.83)

Choosing ϕ = [FLδ ]′(ψ̂nκ,α,L,δ) in (3.49c), combining with (3.83) and noting (3.42a),

yields, similarly to (3.80), that, for ς ∈ R>0 sufficiently small, the solution
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(ρ
[∆t],n
κ,α,L,δ, u∼

n
κ,α,L,δ ψ̂

n
κ,α,L,δ) ∈ Υn × V∼ ×X of (3.49a–c) satisfies

1

2

∫
Ω

[
ρ

[∆t],n
κ,α,L,δ(·, tn) |u

∼

n
κ,α,L,δ|2 + ρn−1

κ,α,L |u∼
n
κ,α,L,δ − u

∼

n−1
κ,α,L|

2
]

dx
∼

+

∫
Ω

Pκ(ρ
[∆t],n
κ,α,L,δ(·, tn)) dx

∼

+ ακ

∫ tn

tn−1

[
‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

2]‖2L2(Ω) +
4

Γ
‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

Γ
2 ]‖2L2(Ω)

]
dt

+ k

∫
Ω×D

M

(
FLδ (ψ̂nκ,α,L,δ) +

1

2L
|ψ̂nκ,α,L,δ − ψ̂n−1

κ,α,L|
2

)
dq
∼

dx
∼

+ ∆t µS c0 ‖u
∼

n
κ,α,L,δ‖2H1(Ω)

+ ∆t δ
∑
|λ
∼
|=2

∫
Ω


∣∣∣∣∣∣∣
∂
|λ
∼
|
u
∼

n
κ,α,L,δ

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∂
|λ
∼
|
(∇
∼
x · u
∼

n
κ,α,L,δ)

∂λ1
x1 · · · ∂λdxd

∣∣∣∣∣∣∣
2
 dx

∼

+
∆t k a0

4λL

K∑
i=1

∫
Ω×D

M |∇
∼
qi ψ̂

n
κ,α,L,δ|2 dq

∼
dx
∼

+
∆t k ε

L

∫
Ω×D

M |∇
∼
xψ̂

n
κ,α,L,δ|2 dq

∼
dx
∼

+ z
[
‖%nκ,α,L,δ‖2L2(Ω) + ‖%nκ,α,L,δ − %n−1

κ,α,L‖
2
L2(Ω)

]
+ 2 ∆t z ε ‖∇

∼
x%
n
κ,α,L,δ‖2L2(Ω)

≤ 1

2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+

∫
Ω

Pκ(ρn−1
κ,α,L,δ) dx

∼
+ k

∫
Ω×D

MFLδ (ψ̂n−1
κ,α,L) dq

∼
dx
∼

+ z ‖%n−1
κ,α,L‖

2
L2(Ω) + ∆t

∫
Ω

ρ
[∆t],n
κ,α,L,δ(·, tn) f

∼

n · u
∼

n
κ,α,L,δ dx

∼

≤ 1

2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+

∫
Ω

Pκ(ρn−1
κ,α,L) dx

∼
+ k

∫
Ω×D

MFL(ψ̂n−1
κ,α,L) dq

∼
dx
∼

+ z ‖%n−1
κ,α,L‖

2
L2(Ω)

+
∆t

2

[
ς

∫
Ω

ρ
[∆t],n
κ,α,L,δ(·, tn) |u

∼

n
κ,α,L,δ|2 dx

∼
+

1

ς
‖f
∼

n‖2L∞(Ω)

∫
Ω

ρn−1
κ,α,L dx

∼

]
≤ C,

(3.84)

where C is independent of δ and ∆t.

On choosing, for any s ∈ (tn−1, tn], η(·, t) = χ[tn−1,s] [ρ
[∆t],n
κ,α,L,δ(·, t)]ϑ−1, for ϑ = 2

and Γ
2 , in (3.49a), we obtain, on noting (3.31), (3.48) and (3.84), that

1

ϑ
‖ρ[∆t],n
κ,α,L,δ(·, s)‖

ϑ
Lϑ(Ω) +

4α(ϑ− 1)

ϑ2

∫ s

tn−1

‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

ϑ
2 ]‖2L2(Ω) dt

=
1

ϑ

[
‖ρn−1
κ,α,L,δ‖

ϑ
Lϑ(Ω) + (ϑ− 1)

∫ s

tn−1

∫
Ω

u
∼

n
κ,α,L,δ · ∇

∼
x[(ρ

[∆t],n
κ,α,L,δ)

ϑ] dx
∼

dt

]
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≤ 1

ϑ

[
‖ρn−1
κ,α,L‖

ϑ
Lϑ(Ω) + ∆t ‖u

∼

n
κ,α,L,δ‖2L2(Ω)

+
(ϑ− 1)2

4

∫ tn

tn−1

‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

ϑ]‖2L2(Ω) dt

]
≤ C, (3.85)

where C is independent of δ and ∆t. On denoting by
∫
− η, the mean value of the

function η over Ω, it follows from a Poincaré inequality, (3.84) and (3.85) for ϑ = Γ
2

that

‖ρ[∆t],n
κ,α,L,δ‖

Γ
LΓ(tn−1,tn;LΓ(Ω)) = ‖(ρ[∆t],n

κ,α,L,δ)
Γ
2 ‖2L2(tn−1,tn;L2(Ω))

≤ 2‖(I −
∫
− )(ρ

[∆t],n
κ,α,L,δ)

Γ
2 ‖2L2(tn−1,tn;L2(Ω)) + 2 ‖

∫
− (ρ

[∆t],n
κ,α,L,δ)

Γ
2 ‖2L2(tn−1,tn;L2(Ω))

≤ C ‖∇
∼
x[(ρ

[∆t],n
κ,α,L,δ)

Γ
2 ]‖2L2(tn−1,tn;L2(Ω)) + C ∆t ‖ρ[∆t],n

κ,α,L,δ‖
Γ

L∞(tn−1,tn;L
Γ
2 (Ω))

≤ C.

(3.86)

Next, we obtain from (3.31), (3.2), (3.84) and (3.85) for ϑ = Γ
2 , on recalling that

Γ ≥ 8, that∣∣∣∣∣
∫ tn

tn−1

c(u
∼

n
κ,α,L,δ)(ρ

[∆t],n
κ,α,L,δ, η) dt

∣∣∣∣∣ ≤ α ‖ρ[∆t],n
κ,α,L,δ‖L2(tn−1,tn;H1(Ω)) ‖η‖L2(tn−1,tn;H1(Ω))

+

∣∣∣∣ ∫ tn

tn−1

‖ρ[∆t],n
κ,α,L,δ‖L3(Ω) ‖u

∼

n
κ,α,L,δ‖L6(Ω) ‖∇

∼
xη‖L2(Ω) dt

∣∣∣∣
≤ C ‖η‖L2(tn−1,tn;H1(Ω)) + C

∣∣∣∣ ∫ tn

tn−1

‖u
∼

n
κ,α,L,δ‖H1(Ω) ‖η‖H1(Ω) dt

∣∣∣∣
≤ C

[
1 +

(
∆t ‖u

∼

n
κ,α,L,δ‖2H1(Ω)

) 1
2

]
‖η‖L2(tn−1,tn;H1(Ω))

≤ C ‖η‖L2(tn−1,tn;H1(Ω)) ∀η ∈ L2(tn−1, tn;H1(Ω)). (3.87)

Hence, we deduce from (3.85) for ϑ = 2 and Γ
2 , (3.87), on noting (3.49a), (3.84),

(3.5) and (3.86) that ρ
[∆t],n
κ,α,L,δ ∈ Υn is such that

‖ρ[∆t],n
κ,α,L,δ‖L∞(tn−1,tn;L

Γ
2 (Ω))

+‖ρ[∆t],n
κ,α,L,δ‖

2
L2(tn−1,tn;H1(Ω))+‖ρ[∆t],n

κ,α,L,δ‖
2
H1(tn−1,tn;H1(Ω)′)

+ ‖ρ[∆t],n
κ,α,L,δ(·, tn)‖ΓLΓ(Ω) + ‖(ρ[∆t],n

κ,α,L,δ)
Γ
2 ‖2L2(tn−1,tn;H1(Ω)) ≤ C, (3.88)

where C is independent of δ and ∆t. Furthermore, we deduce from (3.2) and the

last bound in (3.88) that

‖ρ[∆t],n
κ,α,L,δ‖

Γ
LΓ(tn−1,tn;L3Γ(Ω)) = ‖(ρ[∆t],n

κ,α,L,δ)
Γ
2 ‖2L2(tn−1,tn;L6(Ω))

≤ C ‖(ρ[∆t],n
κ,α,L,δ)

Γ
2 ‖2L2(tn−1,tn;H1(Ω)) ≤ C. (3.89)

Finally, it follows from (3.1) with υ = 4Γ
3 , r = Γ

2 and s = 3Γ yielding ϑ = 3
4 , the
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first bound in (3.88) and (3.89) that

‖ρ[∆t],n
κ,α,L,δ‖

4Γ
3

L
4Γ
3 (tn−1,tn;L

4Γ
3 (Ω))

≤‖ρ[∆t],n
κ,α,L,δ‖

Γ
3

L∞(tn−1,tn;L
Γ
2 (Ω))

‖ρ[∆t],n
κ,α,L,δ‖

Γ
LΓ(tn−1,tn;L3Γ(Ω))

≤ C, (3.90)

where C is independent of δ and ∆t.

As the bounds (3.84), (3.89) and (3.90) are independent of δ, we are now ready

to pass to the limit δ → 0+ in (3.49a–c), to deduce the existence of a solution

{(ρ[∆t],n
κ,α,L , u∼

n
κ,α,L, ψ̂

n
κ,α,L)}Nn=1 to (P∆t

κ,α,L).

Lemma 3.3. There exists a subsequence (not indicated) of the sequence of func-

tions {(ρ[∆t],n
κ,α,L,δ, u∼

n
κ,α,L,δ, ψ̂

n
κ,α,L,δ)}δ>0, and functions ρ

[∆t],n
κ,α,L ∈ Y n with ρnκ,α,L(·) =

ρ
[∆t],n
κ,α,L (·, tn) ∈ LΓ

≥0(Ω), u∼
n
κ,α,L ∈ H∼ 1

0(Ω) and ψ̂nκ,α,L ∈ X ∩ Z2, n = 1, . . . , N , with

%nκ,α,L(·) :=

∫
D

M(q
∼
) ψ̂nκ,α,L(·, q

∼
) dq
∼
∈ H1(Ω), n = 1, . . . , N, (3.91)

such that, as δ → 0+,

ρ
[∆t],n
κ,α,L,δ → ρ

[∆t],n
κ,α,L weakly in L2(tn−1, tn;H1(Ω)),

weakly in H1(tn−1, tn;H1(Ω)′), (3.92a)

ρ
[∆t],n
κ,α,L,δ → ρ

[∆t],n
κ,α,L strongly in L2(tn−1, tn;Lr(Ω)),

strongly in Lυ(Ω× (tn−1, tn)), (3.92b)

ρ
[∆t],n
κ,α,L,δ(·, tn)→ ρnκ,α,L(·) weakly in LΓ(Ω), (3.92c)

(ρ
[∆t],n
κ,α,L,δ)

ϑ → (ρ
[∆t],n
κ,α,L )ϑ weakly in L2(tn−1, tn;H1(Ω)), ϑ = 2,

Γ

2
, (3.92d)

and

u
∼

n
κ,α,L,δ → u

∼

n
κ,α,L weakly in H

∼

1
0(Ω),

strongly in L
∼

r(Ω), (3.93a)

δ
∂
|λ
∼
|
u
∼

n
κ,α,L,δ

∂λ1
x1 · · · ∂λdxd

→ 0
∼

strongly in L
∼

2(Ω), ∀|λ
∼
| = 2, (3.93b)

δ
∂
|λ
∼
|
(∇
∼
x · u
∼

n
κ,α,L,δ)

∂λ1
x1 · · · ∂λdxd

→ 0 strongly in L2(Ω), ∀|λ
∼
| = 2, (3.93c)
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where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3, and υ ∈ [1, 4Γ
3 ); and

M
1
2 ∇
∼
qψ̂

n
κ,α,L,δ →M

1
2 ∇
∼
qψ̂

n
κ,α,L weakly in L

∼

2(Ω×D), (3.94a)

M
1
2 ∇
∼
xψ̂

n
κ,α,L,δ →M

1
2 ∇
∼
xψ̂

n
κ,α,L weakly in L

∼

2(Ω×D), (3.94b)

M
1
2 ψ̂nκ,α,L,δ →M

1
2 ψ̂nκ,α,L strongly in L2(Ω×D), (3.94c)

M
1
2 βLδ (ψ̂nκ,α,L,δ)→M

1
2 βL(ψ̂nκ,α,L) strongly in Ls(Ω×D), (3.94d)

C
≈
i(M ψ̂nκ,α,L,δ)→ C

≈
i(M ψ̂nκ,α,L) strongly in L

≈

2(Ω), i = 1, . . . ,K, (3.94e)

%nκ,α,L,δ → %nκ,α,L weakly in H1(Ω),

strongly in Lr(Ω), (3.94f)

where s ∈ [1,∞). Furthermore, (ρ
[∆t],n
κ,α,L , u∼

n
κ,α,L, ψ̂

n
κ,α,L) solves (3.27a–c) for n =

1, . . . , N . Hence, there exists a solution {(ρ[∆t],n
κ,α,L , u∼

n
κ,α,L, ψ̂

n
κ,α,L)}Nn=1 to (P∆t

κ,α,L).

Proof. The weak convergence results (3.92a,c,d) follow immediately from (3.88).

The strong convergence results (3.92b) follow from (3.92a), (3.11), (3.90) and the in-

terpolation result (3.1). Hence ρ
[∆t],n
κ,α,L ∈ Y n with ρnκ,α,L(·) = ρ

[∆t],n
κ,α,L (·, tn) ∈ LΓ

≥0(Ω)

as ρ
[∆t],n
κ,α,L,δ ∈ Υn. The weak convergence result (3.93a) and the strong convergence

results (3.93b,c) follow immediately from (3.84), and hence u∼
n
κ,α,L ∈ H∼

1
0(Ω) as

u∼
n
κ,α,L,δ ∈ V∼ . The strong convergence result (3.93a) follows as H∼

1(Ω) is compactly

embedded in L∼
r(Ω) for the stated values of r.

The weak convergence results (3.94a,b) follow from (3.84); the strong conver-

gence result (3.94c) and the fact that ψ̂nκ,α,L ≥ 0 a.e. on Ω×D follow from the fourth

bound in (3.84), (3.42b) and (3.10b). Hence ψ̂nκ,α,L ∈ X ∩ Z2. The desired results

(3.94d,e) follow from (3.94c), (3.43), (1.12) and (3.13). See the proof of Lemma 3.3

in Barrett & Süli6 for details of the results (3.94a–e). Finally, (3.94f) follows from

(3.84) and (3.94c).

It follows from (3.92a–c), (3.93a–c), (3.94a–f), (3.31), (3.45), (3.46), (3.33a,b),

(3.35a,b) and (3.8) that we may pass to the limit δ → 0+ in (3.49a–c) to obtain

that (ρ
[∆t,n]
κ,α,L , u∼

n
κ,α,L, ψ̂

n
κ,α,L) solves (3.30), (3.32), and (3.34); that is, (3.27a–c).

Finally, as (ρ0
κ,α,L, u∼

0
κ,α,L, ψ̂

0
κ,α,L) ∈ LΓ

≥0(Ω) × H∼
1
0(Ω) × Z2, performing the

above existence proof at each time level tn, n = 1, . . . , N , yields a solution

{(ρ[∆t],n
κ,α,L , u∼

n
κ,α,L, ψ̂

n
κ,α,L)}Nn=1 to (P∆t

κ,α,L) with ρnκ,α,L(·) = ρ
[∆t],n
κ,α,L (·, tn), n = 1, . . . , N ,

by noting that ρ
[∆t],n
κ,α,L thus constructed is an element of C([tn−1, tn];L2(Ω)), n =

1, . . . , N .

4. Existence of a solution to (Pκ,α)

Next, we derive bounds on the solution of (P∆t
κ,α,L), independent of ∆t and L.

Our starting point is Lemma 3.3, concerning the existence of a solution to the
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problem (P∆t
κ,α,L). The model (P∆t

κ,α,L) includes ‘microscopic cut-off’ in the drag

and convective terms of the Fokker–Planck equation, where L > 1 is a (fixed,

but otherwise arbitrary,) cut-off parameter. Our next objective is to pass to the

limits L → ∞ and ∆t → 0+ in the model (P∆t
κ,α,L), with L and ∆t linked by the

condition ∆t = o(L−1), as L→∞. To that end, we need to develop various bounds

on sequences of weak solutions of (P∆t
κ,α,L) that are uniform in the time step ∆t

and the cut-off parameter L, and thus permit the extraction of weakly convergent

subsequences, as L → ∞, through the use of a weak compactness argument. The

derivation of such bounds, based on the use of the relative entropy associated with

the Maxwellian M , is our main task in this section.

We define

ρ
[∆t]
κ,α,L := ρ

[∆t],n
κ,α,L , t ∈ [tn−1, tn], n = 1, . . . , N,

⇒ ρ
[∆t]
κ,α,L(·, tn) = ρnκ,α,L(·), n = 0, . . . , N, (4.1a)

ρ
{∆t}
κ,α,L(·, t) :=

1

∆t

∫ tn

tn−1

ρ
[∆t]
κ,α,L(·, s) ds, t ∈ (tn−1, tn], n = 1, . . . , N. (4.1b)

Further, we define the pressure variable

p
{∆t}
κ,α,L(·, t) :=

1

∆t

∫ tn

tn−1

pκ(ρ
[∆t]
κ,α,L(·, s)) ds, t ∈ (tn−1, tn], n = 1, . . . , N, (4.2)

and the momentum variable

m
∼

n
κ,α,L := ρnκ,α,L u

∼

n
κ,α,L, n = 0, . . . , N. (4.3)

We then introduce the following definitions:

u
∼

∆t
κ,α,L(·, t) :=

t− tn−1

∆t
u
∼

n
κ,α,L(·) +

tn − t
∆t

u
∼

n−1
κ,α,L(·),

t ∈ [tn−1, tn], n = 1, . . . , N, (4.4a)

u
∼

∆t,+
κ,α,L(·, t) := u

∼

n
κ,α,L(·), u

∼

∆t,−
κ,α,L(·, t) := u

∼

n−1
κ,α,L(·),

t ∈ (tn−1, tn], n = 1, . . . , N. (4.4b)

We shall adopt u∼
∆t(,±)
κ,α,L as a collective symbol for u∼

∆t
κ,α,L, u∼

∆t,±
κ,α,L. The corresponding

notations ψ̂∆t
κ,α,L, ψ̂∆t,±

κ,α,L and ψ̂
∆t(,±)
κ,α,L ; ρ∆t

κ,α,L, ρ∆t,±
κ,α,L and ρ

∆t(,±)
κ,α,L ; m∼

∆t
κ,α,L, m∼

∆t,±
κ,α,L and

m∼
∆t(,±)
κ,α,L , and %∆t

κ,α,L, %∆t,±
κ,α,L and %

∆t(,±)
κ,α,L are defined analogously. The notation ρ∆t

κ,α,L

signifying the piecewise linear interpolant of ρ
[∆t]
κ,α,L with respect to the variable t is

not to be confused with ρ
[∆t]
κ,α,L itself, which denotes the function defined piecewise,

over the union of time slabs Ω × [tn−1, tn], n = 1, . . . , N , solving (3.27a) subject

to the initial condition ρ
[∆t]
κ,α,L(·, tn−1) = ρn−1

κ,α,L(·), n = 1, . . . , N , with ρ0
κ,α,L := ρ0.

Using the above notation, (3.27a–c) summed for n = 1, . . . , N can be restated in the

form: find (ρ
[∆t]
κ,α,L(·, t), u∼∆t

κ,α,L(·, t), ψ̂∆t
κ,α,L(·, t)) ∈ H1(Ω)∩L

4Γ
3

≥0(Ω)×H∼ 1
0(Ω)×(X∩Z2),
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with
∂ρ

[∆t]
κ,α,L

∂t (·, t) ∈ H1(Ω)′, a.e. t ∈ (0, T ), such that m∼
∆t
κ,α,L is defined via (4.3) and

∫ T

0

〈
∂ρ

[∆t]
κ,α,L

∂t
, η

〉
H1(Ω)

dt+

∫ T

0

∫
Ω

(
α∇
∼
xρ

[∆t]
κ,α,L − ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L

)
· ∇
∼
xη dx

∼
dt = 0

∀η ∈ L2(0, T ;H1(Ω)), (4.5a)

∫ T

0

∫
Ω

[
∂m
∼

∆t
κ,α,L

∂t
− 1

2

∂ρ∆t
κ,α,L

∂t
u
∼

∆t,+
κ,α,L

]
· w
∼

dx
∼

dt+

∫ T

0

∫
Ω

S
≈

(u
∼

∆t,+
κ,α,L) : ∇

≈
x w
∼

dx
∼

dt

+
1

2

∫ T

0

∫
Ω

[[
(m
∼

∆t,−
κ,α,L · ∇∼ x)u

∼

∆t,+
κ,α,L

]
· w
∼
−
[
(m
∼

∆t,−
κ,α,L · ∇∼ x)w

∼

]
· u
∼

∆t,+
κ,α,L

]
dx
∼

dt

−
∫ T

0

∫
Ω

p
{∆t}
κ,α,L∇∼ x · w

∼
dx
∼

dt

=

∫ T

0

∫
Ω

[
ρ∆t,+
κ,α,L f

∼

{∆t} · w
∼
− τ
≈

1(M ψ̂∆t,+
κ,α,L) : ∇

≈
x w
∼

]
dx
∼

dt

− 2 z

∫ T

0

∫
Ω

(∫
D

M βL(ψ̂∆t,+
κ,α,L) dq

∼

)
∇
∼
x%

∆t,+
κ,α,L · w∼ dx

∼
dt

∀w
∼
∈ L2(0, T ;V

∼
), (4.5b)

∫ T

0

∫
Ω×D

M
∂ψ̂∆t

κ,α,L

∂t
ϕdq

∼
dx
∼

dt

+
1

4λ

K∑
i=1

K∑
j=1

Aij

∫ T

0

∫
Ω×D

M ∇
∼
qj ψ̂

∆t,+
κ,α,L · ∇∼ qiϕdq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂

∆t,+
κ,α,L − u∼

∆t,+
κ,α,L β

L(ψ̂∆t,+
κ,α,L)

]
· ∇
∼
xϕdq

∼
dx
∼

dt

−
∫ T

0

∫
Ω×D

M

K∑
i=1

[
σ
≈

(u
∼

∆t,+
κ,α,L) q

∼
i

]
βL(ψ̂∆t,+

κ,α,L) · ∇
∼
qiϕ dq

∼
dx
∼

dt = 0

∀ϕ ∈ L2(0, T ;X); (4.5c)

subject to the initial conditions ρ∆t
κ,α,L(0) = ρ0 ∈ L∞≥0(Ω), u∼

∆t
κ,α,L(0) = u∼

0 ∈ H∼ 1
0(Ω)

and ψ̂∆t
κ,α,L(0) = ψ̂0 ∈ X ∩ Z2, where we recall (3.17) and (3.19). We emphasize

that (4.5a–c) is an equivalent restatement of problem (P∆t
κ,α,L), for which existence

of a solution has been established (cf. Lemma 3.3). We are now ready to embark

on the derivation of the required bounds, uniform in the time step ∆t and the

cut-off parameter L, on norms of ρ
[∆t]
κ,α,L(t) ∈ H1

0 (Ω) ∩ L
4Γ
3

≥0(Ω), u∼
∆t,+
κ,α,L(t) ∈ H∼ 1

0(Ω),

ψ̂∆t,+
κ,α,L(t) ∈ X ∩ Z2 and %∆t,+

κ,α,L(t) ∈ H1(Ω), t ∈ (0, T ].
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4.1. L, ∆t-independent bounds on the spatial derivatives of u∼
∆t
κ,α,L

and ψ̂∆t
κ,α,L

We note that it is not possible to pass to the limit δ → 0+ in (3.84) to obtain

strong enough L-independent bounds due to the fourth, seventh and eighth of the

ten terms on the left-hand side. Similarly, it is not possible to pass to the limit in

these terms even before we use the bound [FLδ ]′′(·) ≥ 1
L ; recall its use in (3.79) to

obtain (3.80), and hence (3.84). However, it is a simple matter to pass to the limit

δ → 0+ in (3.83). Noting (3.92c,d), (3.93a), (3.94e,f) and the convexity of Pκ(·), we

may pass to the limit δ → 0+ in (3.83) to obtain for n = 1, . . . , N that

1

2

∫
Ω

[
ρnκ,α,L |u

∼

n
κ,α,L|2 + ρn−1

κ,α,L |u∼
n
κ,α,L − u

∼

n−1
κ,α,L|

2
]

dx
∼

+

∫
Ω

Pκ(ρnκ,α,L) dx
∼

+ ακ

∫ tn

tn−1

[
‖∇
∼
x[(ρ

[∆t],n
κ,α,L )2]‖2L2(Ω) +

4

Γ
‖∇
∼
x[(ρ

[∆t],n
κ,α,L )

Γ
2 ]‖2L2(Ω)

]
dt

+ ∆t µS c0 ‖u
∼

n
κ,α,L‖2H1(Ω)

+ z
[
‖%nκ,α,L‖2L2(Ω) + ‖%nκ,α,L − %n−1

κ,α,L‖
2
L2(Ω)

]
+ 2 ∆t z ε ‖∇

∼
x%
n
κ,α,L‖2L2(Ω)

≤ 1

2

∫
Ω

ρn−1
κ,α,L |u∼

n−1
κ,α,L|

2 dx
∼

+

∫
Ω

Pκ(ρn−1
κ,α,L) dx

∼
+ ∆t

∫
Ω

ρnκ,α,L f
∼

n · u
∼

n
κ,α,L dx

∼

+ z ‖%n−1
κ,α,L‖

2
L2(Ω) + k∆t (K + 1)

∫
Ω

%nκ,α,L∇
∼
x · u
∼

n
κ,α,L dx

∼

− k∆t

K∑
i=1

∫
Ω

C
≈
i(M ψ̂nκ,α,L) : ∇

≈
x u
∼

n
κ,α,L dx

∼
. (4.6)

Summing the above over n, and adopting the notation (4.1a), (4.4a,b) and (3.22),

1

2

∫
Ω

ρ∆t,+
κ,α,L(tn) |u

∼

∆t,+
κ,α,L(tn)|2 dx

∼
+

1

2∆t

∫ tn

0

∫
Ω

ρ∆t,−
κ,α,L |u∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L|

2 dx
∼

dt

+

∫
Ω

Pκ(ρ∆t,+
κ,α,L(tn)) dx

∼
+ µSc0

∫ tn

0

‖u
∼

∆t,+
κ,α,L‖

2
H1(Ω) dt

+ ακ

∫ tn

0

[
‖∇
∼
x[(ρ

[∆t]
κ,α,L)2]‖2L2(Ω) +

4

Γ
‖∇
∼
x[(ρ

[∆t]
κ,α,L)

Γ
2 ]‖2L2(Ω)

]
dt

+ z ‖%∆t,+
κ,α,L(tn)‖2L2(Ω)

+ z

∫ tn

0

[
‖%∆t,+
κ,α,L − %

∆t,−
κ,α,L‖

2
L2(Ω) + 2 ε ‖∇

∼
x%

∆t,+
κ,α,L‖

2
L2(Ω)

]
dt

≤ 1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ z ‖%0‖2L2(Ω)

+

∫ tn

0

∫
Ω

ρ∆t,+
κ,α,L f

∼
· u
∼

∆t,+
κ,α,L dx

∼
dt

+ k (K + 1)

∫ tn

0

∫
Ω

%∆t,+
κ,α,L∇∼ x · u

∼

∆t,+
κ,α,L dx

∼
dt
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− k
K∑
i=1

∫ tn

0

∫
Ω

C
≈
i(M ψ̂∆t,+

κ,α,L) : ∇
≈
x u
∼

∆t,+
κ,α,L dx

∼
dt, n = 1, . . . N. (4.7)

We now require a suitable ψ̂nκ,α,L analogue of (3.79). The appropriate choice of

test function in (3.27c) for this purpose is ϕ = [FL]′(ψ̂nκ,α,L). While Lemma 3.3

guarantees that ψ̂nκ,α,L belongs to Z2, and is therefore nonnegative a.e. on Ω ×D,

there is unfortunately no reason why ψ̂nκ,α,L should be strictly positive on Ω ×D,

and therefore the expression [FL]′(ψ̂nκ,α,L) may in general be undefined. Similarly

to (3.74), we shall circumvent this problem by choosing ϕ = [FL]′(ψ̂nκ,α,L + ς) in

(3.27c), which leads, for any fixed ς ∈ R>0, to

0 =

∫
Ω×D

M
ψ̂nκ,α,L − ψ̂

n−1
κ,α,L

∆t
[[FL]′(ψ̂nκ,α,L + ς)] dq

∼
dx
∼

−
∫

Ω×D
M u
∼

n
κ,α,L ·

(
∇
∼
x[[FL]′(ψ̂nκ,α,L + ς)]

)
βL(ψ̂nκ,α,L) dq

∼
dx
∼

+
1

4λ

K∑
i=1

K∑
j=1

∫
Ω×D

AijM ∇
∼
qj ψ̂

n
κ,α,L · ∇

∼
qi [[FL]′(ψ̂nκ,α,L + ς)] dq

∼
dx
∼

+ ε

∫
Ω×D

M ∇
∼
xψ̂

n
κ,α,L · ∇

∼
x[[FL]′(ψ̂nκ,α,L + ς)] dq

∼
dx
∼

−
K∑
i=1

∫
Ω×D

M βL(ψ̂nκ,α,L)[σ
≈

(u
∼

n
κ,α,L) q

∼
i] · ∇
∼
qi [[FL]′(ψ̂nκ,α,L + ς)] dq

∼
dx
∼

=:

5∑
i=1

Ti. (4.8)

It follows from (3.38a) that

T1 ≥
1

∆t

∫
Ω×D

M
[
FL(ψ̂nκ,α,L + ς)−FL(ψ̂n−1

κ,α,L + ς)
]

dq
∼

dx
∼

+
1

2 ∆t L

∫
Ω×D

M (ψ̂nκ,α,L − ψ̂n−1
κ,α,L)2 dq

∼
dx
∼
. (4.9)

In addition, it follows from (3.38a) that

T2 = −
∫

Ω×D
M

βL(ψ̂nκ,α,L)

βL(ψ̂nκ,α,L + ς)
u
∼

n
κ,α,L · ∇

∼
xψ̂

n
κ,α,L dq

∼
dx
∼

=

∫
Ω

(∫
D

M ψ̂nκ,α,L dq
∼

)
∇
∼
x · u
∼

n
κ,α,L dx

∼

+

∫
Ω×D

M

[
1−

βL(ψ̂nκ,α,L)

βL(ψ̂nκ,α,L + ς)

]
u
∼

n
κ,α,L · ∇

∼
xψ̂

n
κ,α,L dq

∼
dx
∼
. (4.10)
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Thanks to (2.5), we have that

T3 ≥
a0

4λ

∫
Ω×D

M [[FL]′′(ψ̂nκ,α,L + ς)] |∇
∼
qψ̂

n
κ,α,L|2 dq

∼
dx
∼
, (4.11a)

T4 ≥ ε
∫

Ω×D
M [[FL]′′(ψ̂nκ,α,L + ς)] |∇

∼
xψ̂

n
κ,α,L|2 dq

∼
dx
∼
. (4.11b)

It is tempting to bound [FL]′′(ψ̂nκ,α,L + ς) below further by (ψ̂nκ,α,L + ς)−1 using

(3.38b). We have refrained from doing so as the precise form of (4.11b) will be

required to absorb the extraneous term that the process of shifting ψ̂nκ,α,L by the

addition of ς > 0 generates in the last term in (4.10). Similarly, (4.11a) is required

for the last line in (4.12) below. Finally, it follows from (3.38a) and (1.6a) that

T5 = −
K∑
i=1

∫
Ω

[ ∫
D

M [(∇
≈
x u
∼

n
κ,α,L) q

∼
i] · ∇
∼
qi ψ̂

n
κ,α,L dq

∼

]
dx
∼

+

∫
Ω×D

M

[
1−

βL(ψ̂nκ,α,L)

βL(ψ̂nκ,α,L + ς)

] K∑
i=1

[(∇
≈
x u
∼

n
κ,α,L) q

∼
i] · ∇
∼
qi ψ̂

n
κ,α,L dq

∼
dx
∼

= −
∫

Ω×D
M

K∑
i=1

U ′( 1
2 |q
∼
i|2) ψ̂nκ,α,L (q

∼
i q
∼

T
i ) : ∇

≈
x u
∼

n
κ,α,L dq

∼
dx
∼

+K

∫
Ω

(∫
D

M ψ̂nκ,α,L dq
∼

)
∇
∼
x · u
∼

n
κ,α,L dx

∼

+

∫
Ω×D

M

[
1−

βL(ψ̂nκ,α,L)

βL(ψ̂nκ,α,L + ς)

] K∑
i=1

[(∇
≈
x u
∼

n
κ,α,L) q

∼
i] · ∇
∼
qi ψ̂

n
κ,α,L dq

∼
dx
∼
.

(4.12)

Substituting (4.9)–(4.12) into (4.8), multiplying by ∆t, summing over n and adopt-

ing the notation (4.4a,b) yields, for n = 1, . . . , N , that∫
Ω×D

M FL(ψ̂∆t,+
κ,α,L(tn) + ς) dq

∼
dx
∼

+
1

2 ∆t L

∫ tn

0

∫
Ω×D

M (ψ̂∆t,+
κ,α,L − ψ̂

∆t,−
κ,α,L)2 dq

∼
dx
∼

dt

+

∫ tn

0

∫
Ω×D

M [[FL]′′(ψ̂∆t,+
κ,α,L + ς)]

[ a0

4λ
|∇
∼
qψ̂

∆t,+
κ,α,L|

2 + ε |∇
∼
xψ̂

∆t,+
κ,α,L|

2
]

dq
∼

dx
∼

dt

≤
∫

Ω×D
M FL(βL(ψ̂0) + ς) dq

∼
dx
∼

− (K + 1)

∫ tn

0

∫
Ω

(∫
D

M ψ̂∆t,+
κ,α,L dq

∼

)
∇
∼
x · u
∼

∆t,+
κ,α,L dx

∼
dt

+

∫ tn

0

∫
Ω×D

M

K∑
i=1

U ′i(
1
2 |q
∼
|2) ψ̂∆t,+

κ,α,L (q
∼
i q
∼

T
i ) : ∇

≈
x u
∼

∆t,+
κ,α,L dq

∼
dx
∼

dt
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−
∫ tn

0

∫
Ω×D

M

[
1−

βL(ψ̂∆t,+
κ,α,L)

βL(ψ̂∆t,+
κ,α,L + ς)

]
u
∼

∆t,+
κ,α,L · ∇∼ xψ̂

∆t,+
κ,α,L dq

∼
dx
∼

dt

−
∫ tn

0

∫
Ω×D

M

[
1−

βL(ψ̂∆t,+
κ,α,L)

βL(ψ̂∆t,+
κ,α,L + ς)

]
K∑
i=1

[
(∇
≈
x u
∼

∆t,+
κ,α,L) q

∼
i

]
· ∇
∼
qi ψ̂

∆t,+
κ,α,L dq

∼
dx
∼

dt,

(4.13)

where we have noted (3.21b). The denominator in the prefactor of the second in-

tegral on the left-hand side motivates us to link ∆t to L so that ∆t L = o(1), as

∆t→0+ (or, equivalently, ∆t = o(L−1), as L → ∞), in order to drive the integral

multiplied by the prefactor to 0 in the limit of ∆t → 0+, once the product of the

two has been bounded above by a constant, independent of ∆t and L.

Comparing (4.13) with (4.7), and noting (1.12), we see that after multiplying

(4.13) by k and adding the resulting inequality to (4.7) the last two terms on the

right-hand side of (4.7) are cancelled by k times the second and third terms on the

right-hand side of (4.13). Hence, for n = 1, . . . , N , we deduce that

1

2

∫
Ω
ρ∆t,+
κ,α,L(tn) |u

∼

∆t,+
κ,α,L(tn)|2 dx

∼
+

1

2∆t

∫ tn

0

∫
Ω
ρ∆t,−
κ,α,L |u∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L|

2 dx
∼

dt

+

∫
Ω
Pκ(ρ∆t,+

κ,α,L(tn)) dx
∼

+ k

∫
Ω×D

M FL(ψ̂∆t,+
κ,α,L(tn) + ς) dq

∼
dx
∼

+ ακ

∫ tn

0

[
‖∇
∼
x[(ρ

[∆t]
κ,α,L)2]‖2L2(Ω) +

4

Γ
‖∇
∼
x[(ρ

[∆t]
κ,α,L)

Γ
2 ]‖2L2(Ω)

]
dt

+ µSc0

∫ tn

0
‖u
∼

∆t,+
κ,α,L‖

2
H1(Ω) dt+

k

2 ∆t L

∫ tn

0

∫
Ω×D

M (ψ̂∆t,+
κ,α,L − ψ̂

∆t,−
κ,α,L)2 dq

∼
dx
∼

dt

+ k

∫ tn

0

∫
Ω×D

M [[FL]′′(ψ̂∆t,+
κ,α,L + ς)]

[ a0

4λ
|∇
∼
qψ̂

∆t,+
κ,α,L|

2 + ε |∇
∼
xψ̂

∆t,+
κ,α,L|

2
]

dq
∼

dx
∼

dt

+ z ‖%∆t,+
κ,α,L(tn)‖2L2(Ω) + z

∫ tn

0

[
‖%∆t,+
κ,α,L − %

∆t,−
κ,α,L‖

2
L2(Ω) + 2 ε ‖∇

∼
x%

∆t,+
κ,α,L‖

2
L2(Ω)

]
dt

≤ 1

2

∫
Ω
ρ0 |u
∼

0|2 dx
∼

+

∫
Ω
Pκ(ρ0) dx

∼
+ z ‖%0‖2L2(Ω)

+

∫ tn

0

∫
Ω
ρ∆t,+
κ,α,L f

∼
· u
∼

∆t,+
κ,α,L dx

∼
dt+ k

∫
Ω×D

M FL(βL(ψ̂0) + ς) dq
∼

dx
∼

− k
∫ tn

0

∫
Ω×D

M

1−
βL(ψ̂∆t,+

κ,α,L)

βL(ψ̂∆t,+
κ,α,L + ς)

u
∼

∆t,+
κ,α,L · ∇∼ xψ̂

∆t,+
κ,α,L dq

∼
dx
∼

dt

− k
∫ tn

0

∫
Ω×D

M

1−
βL(ψ̂∆t,+

κ,α,L)

βL(ψ̂∆t,+
κ,α,L + ς)

 K∑
i=1

[
(∇
≈
x u
∼

∆t,+
κ,α,L) q

∼
i

]
· ∇
∼
qi ψ̂

∆t,+
κ,α,L dq

∼
dx
∼

dt.

(4.14)

Similarly to (3.69), we have on choosing η = 1 in (3.27a) that∫
Ω

ρnκ,α,L dx
∼

=

∫
Ω

ρn−1
κ,α,L dx

∼
=

∫
Ω

ρ0 dx
∼
, n = 1, . . . , N. (4.15)
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Noting (4.15) and (4.4b), we have that∣∣∣∣∫ tn

0

∫
Ω

ρ∆t,+
κ,α,L f

∼
· u
∼

∆t,+
κ,α,L dx

∼
dt

∣∣∣∣
≤ 1

2

[∫ tn

0

∫
Ω

ρ∆t,+
κ,α,L |u∼

∆t,+
κ,α,L|

2 dx
∼

dt+

∫ tn

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
. (4.16)

Next we recall from Barrett & Süli6 the bound∫
Ω×D

M FL(βL(ψ̂0) + ς) dq
∼

dx
∼
≤ 3ς

2
|Ω|+

∫
Ω×D

M F(ψ̂0 + ς) dq
∼

dx
∼
. (4.17)

Let b∼ := (b1, . . . , bK), recall (3.4), and b := |b∼|1 := b1 + · · ·+ bK ; then we can bound

the magnitude of the last term on the right-hand side of (4.14), on noting (3.38a)

and (1.6b), by

k a0

8λ

(∫ tn

0

∫
Ω×D

M [[FL]′′(ψ̂∆t,+
κ,α,L + ς)] |∇

∼
qψ̂

∆t,+
κ,α,L|

2 dq
∼

dx
∼

dt

)
+ ς

2k λ b

a0

(∫ tn

0

∫
Ω

|∇
≈
x u
∼

∆t,+
κ,α,L|

2 dx
∼

dt

)
, (4.18)

see Barrett & Süli8 for the details. Similarly, the second to last term on the right-

hand side of (4.14) can be bounded by

k ε

2

(∫ tn

0

∫
Ω×D

M [[FL]′′(ψ̂∆t,+
κ,α,L + ς)] |∇

∼
xψ̂

∆t,+
κ,α,L|

2 dq
∼

dx
∼

dt

)
+ ς

k

2 ε

(∫ tn

0

∫
Ω

|u
∼

∆t,+
κ,α,L|

2 dx
∼

dt

)
. (4.19)

Noting (4.14)–(4.19), and using (3.38b) to bound the expression [FL]′′(ψ̂∆t,+
κ,α,L + ς)

from below by

F ′′(ψ̂∆t,+
κ,α,L + ς) = (ψ̂∆t,+

κ,α,L + ς)−1

and (3.39) to bound FL(ψ̂∆t,+
κ,α,L + ς) by F(ψ̂∆t,+

κ,α,L + ς) from below yields, for n =

1, . . . , N , that

1

2

∫
Ω

ρ∆t,+
κ,α,L(tn) |u

∼

∆t,+
κ,α,L(tn)|2 dx

∼
+

1

2∆t

∫ tn

0

∫
Ω

ρ∆t,−
κ,α,L |u∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L|

2 dx
∼

dt

+

∫
Ω

Pκ(ρ∆t,+
κ,α,L(tn)) dx

∼
+ k

∫
Ω×D

M F(ψ̂∆t,+
κ,α,L(tn) + ς) dq

∼
dx
∼

+ ακ

∫ tn

0

[
‖∇
∼
x[(ρ

[∆t]
κ,α,L)2]‖2L2(Ω) +

4

Γ
‖∇
∼
x[(ρ

[∆t]
κ,α,L)

Γ
2 ]‖2L2(Ω)

]
dt
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+ µSc0

∫ tn

0

‖u
∼

∆t,+
κ,α,L‖

2
H1(Ω) dt

+
k

2 ∆t L

∫ tn

0

∫
Ω×D

M (ψ̂∆t,+
κ,α,L − ψ̂

∆t,−
κ,α,L)2 dq

∼
dx
∼

dt

+
k

2

∫ tn

0

∫
Ω×D

M

ψ̂∆t,+
κ,α,L + ς

[ a0

4λ
|∇
∼
qψ̂

∆t,+
κ,α,L|

2 + ε |∇
∼
xψ̂

∆t,+
κ,α,L|

2
]

dq
∼

dx
∼

dt

+ z ‖%∆t,+
κ,α,L(tn)‖2L2(Ω) + z

∫ tn

0

[
‖%∆t,+
κ,α,L − %

∆t,−
κ,α,L‖

2
L2(Ω) + 2 ε ‖∇

∼
x%

∆t,+
κ,α,L‖

2
L2(Ω)

]
dt

≤ 1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ z ‖%0‖2L2(Ω)

+
1

2

∫ tn

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

+ k

∫
Ω×D

M F(ψ̂0 + ς) dq
∼

dx
∼

+
3k ς

2
|Ω|

+ 2k ς max

{
λ b

a0
,

1

4ε

} ∫ tn

0

‖u
∼

∆t,+
κ,α,L‖

2
H1(Ω) dt+

1

2

∫ tn

0

∫
Ω

ρ∆t,+
κ,α,L |u∼

∆t,+
κ,α,L|

2 dx
∼

dt.

(4.20)

Passing to the limit ς → 0+ in (4.20), and then applying a discrete Gronwall

inequality yields, for n = 1, . . . , N , that

1

2

∫
Ω

ρ∆t,+
κ,α,L(tn) |u

∼

∆t,+
κ,α,L(tn)|2 dx

∼
+

1

2∆t

∫ tn

0

∫
Ω

ρ∆t,−
κ,α,L |u∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L|

2 dx
∼

dt

+

∫
Ω

Pκ(ρ∆t,+
κ,α,L(tn)) dx

∼
+ k

∫
Ω×D

M F(ψ̂∆t,+
κ,α,L(tn)) dq

∼
dx
∼

+ ακ

∫ tn

0

[
‖∇
∼
x[(ρ

[∆t]
κ,α,L)2]‖2L2(Ω) +

4

Γ
‖∇
∼
x[(ρ

[∆t]
κ,α,L)

Γ
2 ]‖2L2(Ω)

]
dt

+ µSc0

∫ tn

0

‖u
∼

∆t,+
κ,α,L‖

2
H1(Ω) dt+

k

2 ∆t L

∫ tn

0

∫
Ω×D

M (ψ̂∆t,+
κ,α,L − ψ̂

∆t,−
κ,α,L)2 dq

∼
dx
∼

dt

+ k

∫ tn

0

∫
Ω×D

M

[
a0

2λ

∣∣∣∣∇∼ q

√
ψ̂∆t,+
κ,α,L

∣∣∣∣2 + 2ε

∣∣∣∣∇∼ x

√
ψ̂∆t,+
κ,α,L

∣∣∣∣2
]

dq
∼

dx
∼

dt

+ z ‖%∆t,+
κ,α,L(tn)‖2L2(Ω) + z

∫ tn

0

[
‖%∆t,+
κ,α,L − %

∆t,−
κ,α,L‖

2
L2(Ω) + 2 ε ‖∇

∼
x%

∆t,+
κ,α,L‖

2
L2(Ω)

]
dt

≤ etn
[

1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ k

∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ z ‖%0‖2L2(Ω) +
1

2

∫ tn

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
≤ etn

[
1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ k

∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ z

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼

+
1

2

∫ tn

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
≤ C,

(4.21)
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where C is a positive constant, independent of the parameters ∆t, L, α and κ. Here,

we have noted (3.18a), (3.21a) and (3.22) for the penultimate inequality in (4.21),

and (3.16a) for the final inequality.

Next we bound the extra stress term (1.12). As we do not have a bound on

‖M 1
2 ψ̂∆t,+

κ,α,L‖L2(Ω×D) in (4.21), we will need a weaker bound than (3.13). First, we

deduce from (1.12), (1.6a) and as M = 0 on ∂D that

C
≈
i(M ϕ) = −

∫
D

(∇
∼
qiM) q

∼

T
i ϕ dq

∼
=

∫
D

M (∇
∼
qiϕ) q

∼

T
i dq

∼
+

(∫
D

M ϕdq
∼

)
I
≈
. (4.22)

Hence, for r ∈ [1, 2), on noting that ∇∼ qiϕ = ∇∼ qi(
√
ϕ)2 = 2

√
ϕ ∇∼ qi

√
ϕ for any

sufficiently smooth nonnegative function ϕ, we have that∫
Ω

‖C
≈
i(M ϕ)‖Lr(Ω)

≤ C

[∫
Ω

(∫
D

M ϕdq
∼

) r
2
(∫

D

M
∣∣∣∇
∼
qi

√
ϕ
∣∣∣2 dq

∼

) r
2

dx
∼

+

∫
Ω

(∫
D

M ϕdq
∼

)r
dx
∼

] 1
r

≤ C

[
‖∇
∼
qi

√
ϕ‖L2

M (Ω×D)

∥∥∥∥∫
D

M ϕdq
∼

∥∥∥∥ 1
2

L
r

2−r (Ω)

+

∥∥∥∥∫
D

M ϕdq
∼

∥∥∥∥
Lr(Ω)

]
. (4.23)

Therefore, for r ∈ [1, 2) and s ∈ [1, 2], it follows that, for any such function ϕ,

‖C
≈
i(M ϕ)‖Ls(0,T ;Lr(Ω))

≤ C
[
‖∇
∼
qi

√
ϕ‖L2(0,T ;L2

M (Ω×D))

∥∥∥∥∫
D

M ϕdq
∼

∥∥∥∥ 1
2

Lυ(0,T ;L
r

2−r (Ω))

+

∥∥∥∥∫
D

M ϕdq
∼

∥∥∥∥
Ls(0,T ;Lr(Ω))

]
, (4.24)

where υ = s
2−s if s ∈ [1, 2) and υ = ∞ if s = 2. We deduce from (4.24) and (4.21)

that, for i = 1, . . . ,K,

‖C
≈
i(M ψ̂∆t,+

κ,α,L)‖Ls(0,T ;Lr(Ω)) ≤ C if ‖%∆t,+
κ,α,L‖Lυ(0,T ;L

r
2−r (Ω))

≤ C, (4.25)

where r ∈ [1, 2), s ∈ [1, 2] and υ = s
2−s if s ∈ [1, 2) and υ =∞ if s = 2.

It follows from (4.21) and (3.2) that

‖%∆t,+
κ,α,L‖L 2

ϑ (0,T ;Lυ(Ω))
≤ C ‖%∆t,+

κ,α,L‖
1−ϑ
L∞(0,T ;L2(Ω)) ‖%

∆t,+
κ,α,L‖

ϑ
L2(0,T ;H1(Ω)) ≤ C, (4.26)

where ϑ = (υ−2)d
2υ , and υ ∈ (2,∞) if d = 2 and υ ∈ (2, 6] if d = 3. For example, we

have that

‖%∆t,+
κ,α,L‖L∞(0,T ;L2(Ω)) + ‖%∆t,+

κ,α,L‖
L

2(d+2)
d (ΩT )

+ ‖%∆t,+
κ,α,L‖L4(0,T ;L

2d
d−1 (Ω))

≤ C, (4.27)
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and hence we deduce from (4.25) and (1.11) that

‖C
≈
i(M ψ̂∆t,+

κ,α,L)‖
L2(0,T ;L

4
3 (Ω))

+ ‖C
≈
i(M ψ̂∆t,+

κ,α,L)‖
L

4(d+2)
3d+4 (ΩT )

≤ C, i = 1, . . . ,K,

(4.28a)

‖τ
≈

1(M ψ̂∆t,+
κ,α,L)‖

L2(0,T ;L
4
3 (Ω))

+ ‖τ
≈

1(M ψ̂∆t,+
κ,α,L)‖

L
4(d+2)
3d+4 (ΩT )

≤ C, (4.28b)

where C is independent of ∆t, L, α and κ.

Remark 4.1. We note from (4.21) and (4.26) that if z = 0, then the bounds (4.27)

and (4.28a,b) no longer hold. In this case, we have only the following weaker bounds.

Similarly to (4.15), we have on choosing ϕ = 1 in (3.27c), and noting (4.4b) and

(3.21b), that, for a.a. t ∈ (0, T ),∫
Ω

%∆t,+
κ,α,L dx

∼
=

∫
Ω×D

M ψ̂∆t,+
κ,α,L dq

∼
dx
∼

=

∫
Ω×D

M ψ̂0 dq
∼

dx
∼
≤ C. (4.29)

Next we deduce from (4.21) and (4.29) that

‖∇
∼
x%

∆t,+
κ,α,L‖

2
L2(0,T ;L1(Ω)) = 4

∥∥∥∥∫
D

M
√
ψ̂∆t,+
κ,α,L∇∼ x

√
ψ̂∆t,+
κ,α,L dq

∼

∥∥∥∥2

L2(0,T ;L1(Ω))

≤ 4 ‖%∆t,+
κ,α,L‖L∞(0,T ;L1(Ω))

∥∥∥∥∇∼ x

√
ψ̂∆t,+
κ,α,L

∥∥∥∥2

L2(0,T ;L2
M (Ω×D))

≤ C. (4.30)

It follows from Sobolev embedding, (4.30) and (4.29) that

‖%∆t,+
κ,α,L‖L2(0,T ;L

d
d−1 (Ω))

≤ C ‖%∆t,+
κ,α,L‖L2(0,T ;W 1,1(Ω)) ≤ C. (4.31)

Therefore, we obtain from (4.25), (4.31) and (1.11) that

‖τ
≈

1(M ψ̂∆t,+
κ,α,L)‖

L
4
3 (0,T ;L

2d
2d−1 (Ω))

≤ C, (4.32)

where C is independent of ∆t, L, α and κ.

4.2. L, ∆t-independent bounds on the spatial and temporal

derivatives of ρ
[∆t]
κ,α,L

In addition to the bounds on ρ
[∆t]
κ,α,L and ρ∆t,+

κ,α,L in (4.21), we establish further rel-

evant bounds here. Similarly to (3.85), on choosing, for any s ∈ (0, T ], η(·, t) =

χ[0,s] [ρ
[∆t]
κ,α,L(·, t)]ϑ−1, for ϑ = 2 and Γ

2 , in (4.5a), we obtain, on noting (4.21), that

1

ϑ
‖ρ[∆t]
κ,α,L(·, s)‖ϑLϑ(Ω) +

4α(ϑ− 1)

ϑ2

∫ s

0

‖∇
∼
x[(ρ

[∆t]
κ,α,L)

ϑ
2 ]‖2L2(Ω) dt

=
1

ϑ

[
‖ρ0‖ϑLϑ(Ω) + (ϑ− 1)

∫ s

0

∫
Ω

u
∼

∆t,+
κ,α,L · ∇∼ x[(ρ

[∆t]
κ,α,L)ϑ] dx

∼
dt

]
≤ 1

ϑ

[
‖ρ0‖ϑLϑ(Ω) +

∫ s

0

‖u
∼

∆t,+
κ,α,L‖

2
L2(Ω) dt+

(ϑ− 1)2

4

∫ s

0

‖∇
∼
x[(ρ

[∆t]
κ,α,L)ϑ]‖2L2(Ω) dt

]
≤ C, (4.33)
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where C is independent of ∆t and L. Similarly to (3.86), it follows from a Poincaré

inequality, (4.21) and (4.33) for ϑ = Γ
2 that

‖ρ[∆t]
κ,α,L‖

Γ
LΓ(0,T ;LΓ(Ω)) = ‖(ρ[∆t]

κ,α,L)
Γ
2 ‖2L2(0,T ;L2(Ω))

≤ C
[
‖∇
∼
x[(ρ

[∆t]
κ,α,L)

Γ
2 ]‖2L2(0,T ;L2(Ω)) + ‖ρ[∆t]

κ,α,L‖
Γ

L∞(0,T ;L
Γ
2 (Ω))

]
≤ C. (4.34)

Similarly to (3.87), we obtain from (3.31), (3.2), (4.21) and (4.33) for ϑ = Γ
2 that∣∣∣∣∣

∫ T

0

c(u
∼

∆t,+
κ,α,L)(ρ

[∆t]
κ,α,L, η) dt

∣∣∣∣∣ ≤ C ‖η‖L2(0,T ;H1(Ω))

+ C

∣∣∣∣∣
∫ T

0

‖u
∼

∆t,+
κ,α,L‖H1(Ω) ‖η‖H1(Ω) dt

∣∣∣∣∣
≤ C

[
1 + ‖u

∼

∆t,+
κ,α,L‖L2(0,T ;H1(Ω)

]
‖η‖L2(0,T ;H1(Ω))

≤ C ‖η‖L2(0,T ;H1(Ω)) ∀η ∈ L2(0, T ;H1(Ω)). (4.35)

Hence, similarly to (3.88), we deduce from (4.33) for ϑ = 2 and Γ
2 , (4.35), on noting

(4.5a) and (3.31), (4.21) and (4.34) that

‖ρ[∆t]
κ,α,L‖L∞(0,T ;L

Γ
2 (Ω))

+ ‖ρ[∆t]
κ,α,L‖

2
L2(0,T ;H1(Ω))

+ ‖ρ[∆t]
κ,α,L‖

2
H1(0,T ;H1(Ω)′) + ‖(ρ[∆t]

κ,α,L)
Γ
2 ‖2L2(0,T ;H1(Ω)) ≤ C, (4.36)

where C is independent of ∆t and L. Similarly to (3.89), we deduce from (3.2) and

the last bound in (4.36) that

‖ρ[∆t]
κ,α,L‖

Γ
LΓ(0,T ;L3Γ(Ω)) = ‖(ρ[∆t]

κ,α,L)
Γ
2 ‖2L2(0,T ;L6(Ω)) ≤ C ‖(ρ

[∆t]
κ,α,L)

Γ
2 ‖2L2(0,T ;H1(Ω)) ≤ C.

(4.37)

Next, similarly to (3.90), it follows from (3.1), the first bound in (4.36) and (4.37)

that

‖ρ[∆t]
κ,α,L‖

4Γ
3

L
4Γ
3 (0,T ;L

4Γ
3 (Ω))

≤ ‖ρ[∆t]
κ,α,L‖

Γ
3

L∞(0,T ;L
Γ
2 (Ω))

‖ρ[∆t]
κ,α,L‖

Γ
LΓ(0,T ;L3Γ(Ω)) ≤ C, (4.38)

where C is independent of ∆t and L. Finally, it follows from (4.2), (2.3) and (4.38)

that, with C independent of ∆t and L,

‖p{∆t}κ,α,L‖
4
3

L
4
3 (ΩT )

≤ ‖pκ(ρ
[∆t]
κ,α,L)‖

4
3

L
4
3 (ΩT )

≤ C ‖ρ[∆t]
κ,α,L‖

4Γ
3

L
4Γ
3 (ΩT )

≤ C. (4.39)

4.3. Passing to the limit ∆t → 0+ (L → ∞) in the continuity

equation (4.5a)

As noted after (4.13), we shall assume that

∆t = o(L−1) as ∆t→ 0+ (L→∞). (4.40)
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Requiring, for example, that 0 < ∆t ≤ C0/(L logL), L > 1, with an arbitrary (but

fixed) constant C0 will suffice to ensure that (4.40) holds. We have the following

convergence results.

Lemma 4.1. There exists a subsequence (not indicated) of the sequence of functions

{(ρ[∆t]
κ,α,L, u∼

∆t,+
κ,α,L, ψ̂

∆t,+
κ,α,L)}∆t>0, and functions

ρκ,α ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′) ∩ Cw([0, T ];L
Γ
2 (Ω)) ∩ L

4Γ
3

≥0(ΩT ) (4.41)

with ρκ,α(·, 0) = ρ0(·) and u∼κ,α ∈ L2(0, T ;H∼
1
0(Ω)) such that, as ∆t→ 0+ (L→∞),

ρ
[∆t]
κ,α,L → ρκ,α weakly in L2(0, T ;H1(Ω)),

weakly in H1(0, T ;H1(Ω)′), (4.42a)

ρ
[∆t]
κ,α,L → ρκ,α in Cw([0, T ];L

Γ
2 (Ω)),

weakly in L
4Γ
3 (ΩT ), (4.42b)(

ρ
[∆t]
κ,α,L

)Γ
2 → ρ

Γ
2
κ,α weakly in L2(0, T ;H1(Ω)), (4.42c)

ρ
[∆t]
κ,α,L → ρκ,α strongly in L2(0, T ;Lr(Ω)),

strongly in Lυ(ΩT ), (4.42d)

where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3, and υ ∈ [1, 4Γ
3 );

pκ(ρ
[∆t]
κ,α,L)→ pκ(ρκ,α) strongly in Ls(ΩT ), (4.43a)

p
{∆t}
κ,α,L → pκ(ρκ,α) weakly in Ls(ΩT ), (4.43b)

where s ∈ (1, 4
3 ); and

u
∼

∆t,+
κ,α,L → u

∼
κ,α weakly in L2(0, T ;H

∼

1
0(Ω)). (4.44)

Moreover, we have that∫ T

0

〈
∂ρκ,α
∂t

, η

〉
H1(Ω)

dt+

∫ T

0

∫
Ω

(
α∇
∼
xρκ,α − ρκ,α u

∼
κ,α

)
· ∇
∼
xη dx

∼
dt = 0

∀η ∈ L2(0, T ;H1(Ω)). (4.45)

Proof. The convergence results (4.42a,b) follow immediately from (4.36), (3.12a,b)

and (4.38). The strong convergence results (4.42d) follow from (4.42a), (3.11), (4.38)

and the interpolation result (3.1). The weak convergence result (4.42c) is then a

consequence of (4.36) and (4.42d). Therefore, we have the desired result (4.41). As

L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′) ↪→ C([0, T ];L2(Ω)), we obtain that ρκ,α(·, 0) =

ρ0(·).
Next, it follows from (2.3), for s ∈ [1, 4

3 ], that

‖pκ(ρκ,α)− pκ(ρ
[∆t]
κ,α,L)‖Ls(ΩT )

≤ C
[
‖ρκ,α‖Γ−1

LsΓ(ΩT )
+ ‖ρ[∆t]

κ,α,L‖
Γ−1
LsΓ(ΩT )

]
‖ρκ,α − ρ[∆t]

κ,α,L‖LsΓ(ΩT ). (4.46)
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Hence, the result (4.43a) follows from (4.46) and (4.42d).

It follows from (4.2) and (4.43a) that, for s ∈ (1, 4
3 ),∫

ΩT

p
{∆t}
κ,α,L η dx

∼
dt =

∫
ΩT

pκ(ρ
[∆t]
κ,α,L) η{∆t} dx

∼
dt ∀η ∈ L

s
s−1 (ΩT ), (4.47)

where

η{∆t}(·, t) :=
1

∆t

∫ tn

tn−1

η(·, t′) dt′, t ∈ (tn−1, tn], n = 1, . . . , N. (4.48)

We note that

lim
∆t→0+

‖η − η{∆t}‖Lr(ΩT ) = 0 ∀η ∈ Lr(ΩT ), r ∈ [1,∞). (4.49)

Therefore, the desired result (4.43b) follows from (4.47), (4.43a) and (4.49). Finally,

the weak convergence result (4.44) follows immediately from (4.21).

It is now a simple matter to pass to the limit ∆t → 0+ (L → ∞) for the

subsequence in (4.5a), on noting (4.42a–c) and (4.44), to obtain (4.45).

In order to pass to the limit ∆t → 0+ (L → ∞) in the momentum equation

(4.5b), we will need a strong convergence result for ∇∼ xρ
[∆t]
κ,α,L. First, it follows from

(4.4b), (3.18a), and (4.21) that

‖∇
≈
x u
∼

∆t,−
κ,α,L‖

2
L2(0,T ;L2(Ω)) = ∆t ‖∇

≈
x u
∼

0‖2 +

∫ T

∆t

‖∇
≈
x u
∼

∆t,−
κ,α,L‖

2 dt

≤
∫

Ω

ρ0|u
∼

0|2 dx
∼

+

∫ T−∆t

0

‖∇
≈
x u
∼

∆t,+
κ,α,L‖

2 dt ≤ C; (4.50)

hence, we obtain from (3.2), a Poincaré inequality, (4.21), (4.50) and (4.4a,b) that

‖u
∼

∆t(,±)
κ,α,L ‖L2(0,T ;L6(Ω)) ≤ ‖u

∼

∆t(,±)
κ,α,L ‖L2(0,T ;H1(Ω)) ≤ ‖∇

∼
xu
∼

∆t(,±)
κ,α,L ‖L2(0,T ;L2(Ω)) ≤ C,

(4.51)

where C is independent of ∆t, L, α and κ.

Lemma 4.2. There exists a C ∈ R>0, independent of ∆t and L, such that

‖ρ∆t(,±)
κ,α,L ‖L∞(0,T ;LΓ(Ω)) +

∥∥∥∥√ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L

∥∥∥∥
L∞(0,T ;L2(Ω))

+ ‖ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L‖L∞(0,T ;L

2Γ
Γ+1 (Ω))

+

∥∥∥∥√ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L

∥∥∥∥
L2(0,T ;L

6Γ
Γ+3 (Ω))

≤ C,

(4.52a)

‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖L∞(0,T ;L1(Ω)) + ‖ρ[∆t]

κ,α,L u∼
∆t,+
κ,α,L‖L2(0,T ;L

6Γ
Γ+12 (Ω))

+

∥∥∥∥√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L

∥∥∥∥
L2(0,T ;L

6Γ
Γ+6 (Ω))

+ ‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖Lυ(ΩT ) ≤ C, (4.52b)

‖∇
∼
xρ

[∆t]
κ,α,L‖Lυ(ΩT ) ≤ C, (4.52c)
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where υ = 8Γ−12
3Γ ≥ 13

6 as Γ ≥ 8.

Hence, in addition to (4.41), ρκ,α ∈ L∞(0, T ;LΓ(Ω)) and for a further subse-

quence of the subsequence of Lemma 4.1, it follows that, as ∆t→ 0+ (L→∞),

∇
∼
xρ

[∆t]
κ,α,L → ∇∼ xρκ,α weakly in Lυ(ΩT ),

strongly in L2(ΩT ), (4.53a)

ρ∆t,+
κ,α,L → ρκ,α weakly-? in L∞(0, T ;LΓ(Ω)),

strongly in L2(0, T ;H1(Ω)′), (4.53b)

and, for any nonnegative η ∈ C[0, T ],∫ T

0

(∫
Ω

Pκ(ρκ,α) dx
∼

)
η dt ≤ lim inf

∆t→0+ (L→∞)

∫ T

0

(∫
Ω

Pκ(ρ∆t,+
κ,α,L) dx

∼

)
η dt. (4.53c)

Proof. The first two bounds in (4.52a) follow immediately from (4.4a,b), (4.21),

(3.5), (3.16a) and (3.18a). The third bound in (4.52a) follows immediately from the

first two on noting that

‖ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L‖L 2Γ

Γ+1 (Ω)
≤
∥∥∥∥√ρ∆t,±

κ,α,L

∥∥∥∥
L2Γ(Ω)

∥∥∥∥√ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L

∥∥∥∥
L2(Ω)

. (4.54)

It follows from the first bound in (4.52a), (3.2) and (4.51) that∥∥∥∥√ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L

∥∥∥∥
L2(0,T ;L

6Γ
Γ+3 (Ω))

≤
∥∥∥∥√ρ∆t,±

κ,α,L

∥∥∥∥
L∞(0,T ;L2Γ(Ω))

‖u
∼

∆t,±
κ,α,L‖L2(0,T ;L6(Ω)) ≤ C, (4.55)

and hence the fourth bound in (4.52a).

Next we note, for any η ∈ L2(0, T ;H1(Ω)) and for a.a. s ∈ (tn−1, tn], that∣∣∣∣ ∫
Ω

[
ρ

[∆t]
κ,α,L(x

∼
, s)− ρ∆t,+

κ,α,L(x
∼
, s)
]
η(x
∼
, s) dx

∼

∣∣∣∣ =

∣∣∣∣ ∫ tn

s

∫
Ω

η(x
∼
, s)

∂ρ
[∆t]
κ,α,L

∂t
(x
∼
, t) dx

∼
dt

∣∣∣∣
≤ ‖η(·, s)‖H1(Ω)

∫ tn

tn−1

∥∥∥∥∂ρ[∆t]
κ,α,L

∂t

∥∥∥∥
H1(Ω)′

dt. (4.56)

It follows from (4.56) with η = |u∼
∆t,+
κ,α,L|, (4.52a), (4.36) and (4.21) that

‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖L∞(0,T ;L1(Ω)) ≤ ‖ρ∆t,+

κ,α,L u∼
∆t,+
κ,α,L‖L∞(0,T ;L1(Ω))

+
1

2

[∥∥∥∥∂ρ[∆t]
κ,α,L

∂t

∥∥∥∥2

L2(0,T,H1(Ω)′)

+ ‖u
∼

∆t,+
κ,α,L‖

2
L2(0,T ;H1(Ω))

]
≤ C, (4.57)
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and hence the first desired bound in (4.52b). Similarly to (4.55), it follows from

(4.36), (3.2) and (4.51) that

‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖L2(0,T ;L

6Γ
Γ+12 (Ω))

≤ ‖ρ[∆t]
κ,α,L‖L∞(0,T ;L

Γ
2 (Ω))

‖u
∼

∆t,+
κ,α,L‖L2(0,T ;L6(Ω)),

(4.58a)∥∥∥∥√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L

∥∥∥∥
L2(0,T ;L

6Γ
Γ+6 (Ω))

≤
∥∥∥∥√ρ[∆t]

κ,α,L

∥∥∥∥
L∞(0,T ;LΓ(Ω))

‖u
∼

∆t,+
κ,α,L‖L2(0,T ;L6(Ω)),

(4.58b)

and hence the second and third bounds in (4.52b). It follows from (3.1) with υ =
8Γ−12

3Γ , r = 1 and s = 6Γ
Γ+12 that υ ϑ = 2 (with ϑ ∈ (0, 1) for Γ ≥ 8) and so

‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖Lυ(ΩT ) ≤ ‖ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖

1−ϑ
L∞(0,T ;L1(Ω)) ‖ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖

ϑ
L2(0,T ;Ls(Ω)).

(4.59)

Thus, (4.59) and the first two bounds in (4.52b) yield the fourth bound in (4.52b).

On noting this bound and recalling from (3.4) that ∂Ω ∈ C2,θ, θ ∈ (0, 1), and

ρ0 ∈ L∞(Ω) satisfying (3.16a), we can now apply the parabolic regularity result,

Lemma 7.38 in Novotný & Straškraba24 (or Lemma G.2 in Appendix G in Barrett

& Süli12), to (4.5a) to obtain that the solution ρ
[∆t]
κ,α,L satisfies the bound (4.52c).

The first desired result in (4.53a) follows immediately from (4.52c). Next we

obtain from (4.33) for ϑ = 2 that, for any s ∈ (0, T ],

1

2
‖ρ[∆t]
κ,α,L(·, s)‖2L2(Ω) + α

∫ s

0

‖∇
∼
xρ

[∆t]
κ,α,L‖

2
L2(Ω) dt

=
1

2

[
‖ρ0‖2L2(Ω) −

∫ s

0

∫
Ω

(∇
∼
x · u
∼

∆t,+
κ,α,L) (ρ

[∆t]
κ,α,L)2 dx

∼
dt

]
. (4.60)

Integrating (4.60) over s ∈ (0, T ), and performing integration by parts, yields that

1

2
‖ρ[∆t]
κ,α,L‖

2
L2(ΩT ) + α

∫ T

0

(T − t) ‖∇
∼
xρ

[∆t]
κ,α,L‖

2
L2(Ω) dt

=
1

2

[
T ‖ρ0‖2L2(Ω) −

∫ T

0

(T − t)
∫

Ω

(∇
∼
x · u
∼

∆t,+
κ,α,L) (ρ

[∆t]
κ,α,L)2 dx

∼
dt

]
. (4.61)

Similarly, on choosing for any s ∈ (0, T ], η(·, t) = χ[0,s] ρκ,α(·, t) in (4.45), and

integrating over s ∈ (0, T ) yields that

1

2
‖ρκ,α‖2L2(ΩT ) + α

∫ T

0

(T − t) ‖∇
∼
xρκ,α‖2L2(Ω) dt

=
1

2

[
T ‖ρ0‖2L2(Ω) −

∫ T

0

(T − t)
∫

Ω

(∇
∼
x · u
∼
κ,α) (ρκ,α)2 dx

∼
dt

]
. (4.62)

We deduce from (4.61), (4.62), (4.42d) (with υ = 4) and (4.44) that

lim
∆t→0+ (L→∞)

∫ T

0

(T − t) ‖∇
∼
xρ

[∆t]
κ,α,L‖

2
L2(Ω) dt =

∫ T

0

(T − t) ‖∇
∼
xρκ,α‖2L2(Ω) dt.

(4.63)
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By applying the elementary identity |a∼ − b∼|2 = |a∼|2 − |b∼|2 − 2(a∼ − b∼) · b∼ with

a∼ = ∇∼ xρ
[∆t]
κ,α,L and b∼ = ∇∼ xρκ,α,L, it follows from (4.63) and (4.42a) that

lim
∆t→0+ (L→∞)

∫ T

0

(T − t) ‖∇
∼
x(ρκ,α,L − ρ[∆t]

κ,α,L)‖2L2(Ω) dt = 0, (4.64a)

and hence, for a.a. t ∈ (0, T ),

‖∇
∼
x(ρκ,α,L − ρ[∆t]

κ,α,L)(·, t)‖2L2(Ω) → 0, as ∆t→ 0+ (L→∞). (4.64b)

Therefore, we obtain the second desired result (4.53a) from (4.64b), (4.52c) and

Vitali’s convergence theorem. The details of the argument are as follows. With υ ≥
13
6 > 2, the bound (4.52c) implies that |∇∼ xρ

[∆t]
κ,α,L|2 is equi-integrable in L1(ΩT ), i.e.,

∇∼ xρ
[∆t]
κ,α,L is 2-equi-integrable. Further, thanks to (4.64a), a subsequence of ∇∼ xρ

[∆t]
κ,α,L

is a.e. convergent on ΩT (cf. Theorem 2.20 (iii) in Fonseca & Leoni20), and thus

by Egoroff’s theorem (cf. Theorem 2.22 in Fonseca & Leoni20) it also converges in

measure. Hence, by Vitali’s convergence theorem (cf. Theorem 2.24 in Fonseca &

Leoni20, with p = 2,) we have strong convergence of the subsequence (not indicated).

The first stated convergence result in (4.53b) follows directly from the first bound

in (4.52a). Next, it follows from (4.56) and (4.36) that

‖ρ[∆t]
κ,α,L − ρ

∆t,+
κ,α,L‖

2
L2(0,T ;H1(Ω)′) ≤ (∆t)2

∥∥∥∥∂ρ[∆t]
κ,α,L

∂t

∥∥∥∥2

L2(0,T ;H1(Ω)′)

≤ C (∆t)2. (4.65)

Hence the desired convergence results (4.53b) follow immediately from (4.65) and

(4.42d) with r > 2d
d+2 (to ensure that Lr(Ω) ⊂ H1(Ω)′).

Finally, it follows for any nonnegative η ∈ C[0, T ], on noting the convexity of

Pκ(·), that∫ T

0

(∫
Ω

Pκ(ρ∆t,+
κ,α,L) dx

∼

)
η dt

≥
∫ T

0

(∫
Ω

[
Pκ(ρκ,α) + P ′κ(ρκ,α) (ρ∆t,+

κ,α,L − ρκ,α)
]

dx
∼

)
η dt. (4.66)

This yields the desired result (4.53c) on noting (4.53b) and that P ′κ(ρκ,α) ∈
L1(0, T ;L

Γ
Γ−1 (Ω)) by (4.41).

The following result is also required to pass to the limit ∆t → 0+ (L → ∞) in

the momentum equation (4.5b).

Lemma 4.3. There exists a C ∈ R>0, independent of ∆t and L, such that

‖∇
∼
x · (ρ[∆t]

κ,α,L u∼
∆t,+
κ,α,L)‖Ls(ΩT ) +

∥∥∥∥∥∂ρ
[∆t]
κ,α,L

∂t

∥∥∥∥∥
Ls(ΩT )

+ ‖∆x ρ
[∆t]
κ,α,L‖Ls(ΩT ) ≤ C, (4.67)
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where s = 8Γ−12
7Γ−6 ≥

26
25 as Γ ≥ 8. In addition, we have that

lim
∆t→0+ (L→∞)

‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L − ρ

∆t,−
κ,α,L u∼

∆t,−
κ,α,L‖L2(ΩT ) = 0, (4.68a)

lim
∆t→0+ (L→∞)

‖ρ∆t,+
κ,α,L u∼

∆t,+
κ,α,L − ρ

∆t,−
κ,α,L u∼

∆t,−
κ,α,L‖L2(ΩT ) = 0. (4.68b)

Proof. It follows from (4.34) and (4.52c) that

‖ρ[∆t]
κ,α,L‖L 8Γ−12

3Γ (ΩT )
+ ‖∇

∼
xρ

[∆t]
κ,α,L‖L 8Γ−12

3Γ (ΩT )
≤ C, (4.69)

where we have noted that 8Γ−12
3Γ < Γ, with Γ ≥ 8. Hence, (4.69) and (4.51) yield

that

‖ |∇
∼
xρ

[∆t]
κ,α,L| |∇

≈
x u
∼

∆t,+
κ,α,L| ‖Ls(ΩT ) ≤ ‖∇

∼
xρ

[∆t]
κ,α,L‖L 8Γ−12

3Γ (ΩT )
‖∇
≈
x u
∼

∆t,+
κ,α,L‖L2(ΩT ) ≤ C,

(4.70)

where s = 8Γ−12
7Γ−6 . From the first bound in (4.69) and (4.70), we obtain the first

bound in (4.67). As ∂Ω ∈ C2,θ, θ ∈ (0, 1), it follows from (3.15), (3.16a) and elliptic

regularity that, for all r ∈ [1,∞),

‖ρ0‖W 2,r(Ω) ≤ C(α) ‖ρ0 − ρ0‖L∞(Ω) ≤ C(α) and ∇
∼
xρ

0 · n
∼

= 0 on ∂Ω.

(4.71)

On noting (4.71) and the first bound in (4.67), we can now apply to (4.5a) the

parabolic regularity result, Lemma 7.37 in Novotný & Straškraba24 (or Lemma G.1

in Appendix G in Barrett & Süli12), to obtain that the solution ρ
[∆t]
κ,α,L satisfies the

last two bounds in (4.67).

Next, we note that

‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L − ρ

∆t,−
κ,α,L u∼

∆t,−
κ,α,L‖

2
L2(ΩT ) =

∫ T

0

∫
Ω

|ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L − ρ

∆t,−
κ,α,L u∼

∆t,−
κ,α,L|

2 dx
∼

dt

=

∫ T

0

∫
Ω

∣∣∣∣√ρ[∆t]
κ,α,L ρ

∆t,−
κ,α,L

(
u
∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L

)
+

(√
ρ

[∆t]
κ,α,L −

√
ρ∆t,−
κ,α,L

) (√
ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L +

√
ρ∆t,−
κ,α,L u∼

∆t,−
κ,α,L

)∣∣∣∣2 dx
∼

dt

≤ 2

∫ T

0

∫
Ω

ρ
[∆t]
κ,α,L ρ

∆t,−
κ,α,L |u∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L|

2 dx
∼

dt

+ 2

∫ T

0

∫
Ω

∣∣∣∣√ρ[∆t]
κ,α,L −

√
ρ∆t,−
κ,α,L

∣∣∣∣2 ∣∣∣∣√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L +

√
ρ∆t,−
κ,α,L u∼

∆t,−
κ,α,L

∣∣∣∣2 dx
∼

dt

≤ 2

∫ T

0

∫
Ω

ρ
[∆t]
κ,α,L ρ

∆t,−
κ,α,L |u∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L|

2 dx
∼

dt

+ 2

∫ T

0

∫
Ω

∣∣∣ρ[∆t]
κ,α,L − ρ

∆t,−
κ,α,L

∣∣∣ ∣∣∣∣√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L +

√
ρ∆t,−
κ,α,L u∼

∆t,−
κ,α,L

∣∣∣∣2 dx
∼

dt.

(4.72)
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It follows from (4.36) and (4.21) that∥∥∥∥√ρ[∆t]
κ,α,L

√
ρ∆t,−
κ,α,L

(
u
∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L

)∥∥∥∥
L2(0,T ;L

2Γ
Γ+2 (Ω))

≤
∥∥∥∥√ρ[∆t]

κ,α,L

∥∥∥∥
L∞(0,T ;LΓ(Ω))

∥∥∥∥√ρ∆t,−
κ,α,L

(
u
∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L

)∥∥∥∥
L2(ΩT )

≤ C (∆t)
1
2 . (4.73)

Similarly, it follows from (4.51), (4.36) and (4.52a) and that∥∥∥∥√ρ[∆t]
κ,α,L

√
ρ∆t,−
κ,α,L

(
u
∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L

)∥∥∥∥
L2(0,T ;L

6Γ
Γ+9 (Ω))

≤
∥∥∥∥√ρ[∆t]

κ,α,L ρ
∆t,−
κ,α,L

∥∥∥∥
L∞(0,T ;L

2Γ
3 (Ω))

‖u
∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L‖L2(0,T ;L6(Ω))

≤ C
∥∥∥∥√ρ[∆t]

κ,α,L

∥∥∥∥
L∞(0,T ;LΓ(Ω))

∥∥∥∥√ρ∆t,−
κ,α,L

∥∥∥∥
L∞(0,T ;L2Γ(Ω))

≤ C. (4.74)

We deduce from (4.73), (4.74) and (3.1) as 6Γ
Γ+9 > 2 > 2Γ

Γ+2 that

lim
∆t→0+ (L→∞)

∥∥∥∥√ρ[∆t]
κ,α,L

√
ρ∆t,−
κ,α,L

(
u
∼

∆t,+
κ,α,L − u∼

∆t,−
κ,α,L

)∥∥∥∥
L2(ΩT )

= 0, (4.75)

and so the first term on the right-hand side of (4.72) converges to zero, as ∆t →
0+ (L→∞).

Next, we deal with the second term on the right-hand side of (4.72). It follows

from (4.67) that

‖ρ[∆t]
κ,α,L − ρ

∆t,−
κ,α,L‖Ls(ΩT ) ≤ ∆t

∥∥∥∥∥∂ρ
[∆t]
κ,α,L

∂t

∥∥∥∥∥
Ls(ΩT )

≤ C ∆t, (4.76)

and from (4.36) and (4.52a) that

‖ρ[∆t]
κ,α,L − ρ

∆t,−
κ,α,L‖L∞(0,T ;L

Γ
2 (Ω))

≤ C. (4.77)

Hence, the bounds (4.76) and (4.77) yield, on noting (3.1) and as Γ ≥ 8, that

lim
∆t→0+ (L→∞)

‖ρ[∆t]
κ,α,L − ρ

∆t,−
κ,α,L‖Lυ(0,T ;Lr(Ω)) = 0, for any υ ∈ [1,∞), r ∈ [1, 4).

(4.78)

As 6Γ
Γ+3 ≥

48
11 > 4 for Γ ≥ 8, it follows from (3.1) and (4.52a) that∥∥∥∥√ρ∆t,±

κ,α,L u∼
∆t,±
κ,α,L

∥∥∥∥
L3(0,T ;L3(Ω))

≤
∥∥∥∥√ρ∆t,±

κ,α,L u∼
∆t,±
κ,α,L

∥∥∥∥ 1
3

L∞(0,T ;L2(Ω))

∥∥∥∥√ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L

∥∥∥∥ 2
3

L2(0,T ;L4(Ω))

≤ C. (4.79)
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In addition, (4.52b) and (4.51) yield that∥∥∥∥√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L

∥∥∥∥
L4(0,T ;L

12
7 (Ω))

≤
∥∥∥ρ[∆t]

κ,α,L u∼
∆t,+
κ,α,L

∥∥∥ 1
2

L∞(0,T ;L1(Ω))

∥∥∥u
∼

∆t,+
κ,α,L

∥∥∥ 1
2

L2(0,T ;L6(Ω))
≤ C. (4.80)

As 6Γ
Γ+6 ≥

24
7 for Γ ≥ 8, it then follows from (3.1), (4.80) and (4.52b) that∥∥∥∥√ρ[∆t]

κ,α,L u∼
∆t,+
κ,α,L

∥∥∥∥
L

28
13 (0,T ;L3(Ω))

≤

(∫ T

0

∥∥∥∥√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L

∥∥∥∥ 4
13

L
12
7 (Ω)

∥∥∥∥√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L

∥∥∥∥ 24
13

L
24
7 (Ω)

dt

) 13
28

≤
∥∥∥∥√ρ[∆t]

κ,α,L u∼
∆t,+
κ,α,L

∥∥∥∥ 1
7

L4(0,T ;L
12
7 (Ω))

∥∥∥∥√ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L

∥∥∥∥ 6
7

L2(0,T ;L
24
7 (Ω))

≤ C. (4.81)

Combining (4.78), (4.79) and (4.81) yields that the second term on the right-hand

side of (4.72) converges to zero, as ∆t → 0+ (L → ∞). Therefore, we have the

desired result (4.68a).

We now adapt the argument above to prove the desired result (4.68b). The

bounds (4.72)–(4.75) remain true with ρ
[∆t]
κ,α,L replaced by ρ∆t,+

κ,α,L. Similarly, (4.76)

remains true with ρ
[∆t]
κ,α,L on the left-hand side of the inequality replaced by ρ∆t,+

κ,α,L.

Hence, the bounds (4.77) and (4.78) remain true with ρ
[∆t]
κ,α,L replaced by ρ∆t,+

κ,α,L.

Therefore, on combining all these modified bounds with (4.79), we obtain the desired

result (4.68b).

4.4. L, ∆t-independent bounds on the time-derivatives of m∼
∆t
κ,α,L

and ψ̂∆t
κ,α,L

On noting from (4.4a,b) that

m
∼

∆t
κ,α,L =

t− tn−1

∆t
m
∼

∆t,+
κ,α,L +

tn − t
∆t

m
∼

∆t,−
κ,α,L, t ∈ (tn−1, tn], n = 1, . . . , N, (4.82)

an elementary calculation yields, for any s ∈ [1,∞], that∫ T

0

‖m
∼

∆t
κ,α,L‖2Ls(Ω) dt ≤ 1

2

∫ T

0

(
‖m
∼

∆t,+
κ,α,L‖

2
Ls(Ω) + ‖m

∼

∆t,−
κ,α,L‖

2
Ls(Ω)

)
dt. (4.83)

In order to pass to the limit ∆t → 0+ (L → ∞) in the momentum equation

(4.5b), we require the following result.

Lemma 4.4. There exists a C ∈ R>0, independent of ∆t and L, such that

‖m
∼

∆t(,±)
κ,α,L ‖L∞(0,T ;L

2Γ
Γ+1 (Ω))

+ ‖m
∼

∆t(,±)
κ,α,L ‖L2(0,T ;L

6Γ
Γ+6 (Ω))

+ ‖m
∼

∆t(,±)
κ,α,L ‖Lυ(ΩT ) ≤ C,

(4.84a)

‖m
∼

∆t(,±)
κ,α,L ⊗ u∼

∆t(,±)
κ,α,L ‖L2(0,T ;L

6Γ
4Γ+3 (Ω))

≤ C, (4.84b)
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where υ = 10Γ−6
3(Γ+1) ≥

74
27 as Γ ≥ 8.

Proof. The first bound in (4.84a) for m∼
∆t,±
κ,α,L follows immediately from the third

bound in (4.52a). The corresponding bound for m∼
∆t
κ,α,L is a direct consequence of

(4.82). Similarly to (4.58a), it follows from (4.52a) and (4.51) that

‖ρ∆t,±
κ,α,L u∼

∆t,±
κ,α,L‖L2(0,T ;L

6Γ
Γ+6 (Ω))

≤ ‖ρ∆t,±
κ,α,L‖L∞(0,T ;LΓ(Ω)) ‖u

∼

∆t,±
κ,α,L‖L2(0,T ;L6(Ω)) ≤ C,

(4.85)

and hence the second bound in (4.84a) for m∼
∆t,±
κ,α,L. The corresponding bound for

m∼
∆t
κ,α,L is then a direct consequence of (4.83). Similarly to (4.59), it follows from

(3.1) with υ = 10Γ−6
3(Γ+1) , r = 2Γ

Γ+1 and s = 6Γ
Γ+6 that υ ϑ = 2 (with ϑ ∈ (0, 1) thanks

to Γ ≥ 8), and so

‖m
∼

∆t(,±)
κ,α,L ‖Lυ(ΩT ) ≤ ‖m

∼

∆t(,±)
κ,α,L ‖

1−ϑ
L∞(0,T ;Lr(Ω)) ‖m∼

∆t(,±)
κ,α,L ‖

ϑ
L2(0,T ;Ls(Ω)). (4.86)

Hence (4.86) and the first two bounds in (4.84a) yield the third bound in (4.84a).

Finally, combining the first bound in (4.84a) and (4.51) yields (4.84b).

Next, we need to bound the time-derivative of m∼
∆t
κ,α,L independently of ∆t and L.

It follows from (4.39) that we will need to choose at least w∼ ∈ L4(0, T ;W∼
1,4
0 (Ω)) in

(4.5b). We now rewrite the time-derivative of ρ∆t
κ,α,L in (4.5b) using (4.5a). Adopting

the notation (4.48), we have for any w∼ ∈ L4(0, T ;W∼
1,4
0 (Ω)) that u∼

∆t,+
κ,α,L · w∼ {∆t} ∈

L2(0, T ;H1(Ω)), and so (4.5b) yields that

−
∫ T

0

∫
Ω

∂ρ∆t
κ,α,L

∂t
u
∼

∆t,+
κ,α,L · w∼ dx

∼
dt = −

∫ T

0

〈
∂ρ

[∆t]
κ,α,L

∂t
, u
∼

∆t,+
κ,α,L · w∼

{∆t}

〉
H1(Ω)

dt

=

∫ T

0

∫
Ω

(
α∇
∼
xρ

[∆t]
κ,α,L − ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L

)
· ∇
∼
x(u
∼

∆t,+
κ,α,L · w∼

{∆t}) dx
∼

dt

= α

∫ T

0

∫
Ω

∇
∼
xρ

[∆t]
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · w∼

{∆t}) dx
∼

dt

−
∫ T

0

∫
Ω

ρ
[∆t]
κ,α,L u∼

∆t,+
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · w∼ ) dx

∼
dt

+

∫ T

0

∫
Ω

ρ
[∆t]
κ,α,L u∼

∆t,+
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · (w∼ − w∼

{∆t})) dx
∼

dt. (4.87)

Next we note that, for all w∼ ∈ L4(0, T ;W∼
1,4
0 (Ω)),∫ T

0

∫
Ω

ρ
[∆t]
κ,α,L u∼

∆t,+
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · w∼ ) dx

∼
dt

=

∫ T

0

∫
Ω

m
∼

∆t,−
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · w∼ ) dx

∼
dt

+

∫ T

0

∫
Ω

(
ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L − ρ

∆t,−
κ,α,L u∼

∆t,−
κ,α,L

)
· ∇
∼
x(u
∼

∆t,+
κ,α,L · w∼ ) dx

∼
dt. (4.88)
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Therefore, on combining (4.5b), (4.87) and (4.88), one can rewrite (4.5b) as

∫ T

0

∫
Ω

[∂m
∼

∆t
κ,α,L

∂t
· w
∼

+
α

2
∇
∼
xρ

[∆t]
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · w∼

{∆t})

−
[
(m
∼

∆t,−
κ,α,L · ∇∼ x)w

∼

]
· u
∼

∆t,+
κ,α,L

]
dx
∼

dt

+

∫ T

0

∫
Ω

S
≈

(u
∼

∆t,+
κ,α,L) : ∇

≈
x w
∼

dx
∼

dt−
∫ T

0

∫
Ω

p
{∆t}
κ,α,L∇∼ x · w

∼
dx
∼

dt

− 1

2

∫ T

0

∫
Ω

(
ρ

[∆t]
κ,α,L u∼

∆t,+
κ,α,L − ρ

∆t,−
κ,α,L u∼

∆t,−
κ,α,L

)
· ∇
∼
x(u
∼

∆t,+
κ,α,L · w∼ ) dx

∼
dt

+
1

2

∫ T

0

∫
Ω

ρ
[∆t]
κ,α,L u∼

∆t,+
κ,α,L · ∇∼ x(u

∼

∆t,+
κ,α,L · (w∼ − w∼

{∆t})) dx
∼

dt

=

∫ T

0

∫
Ω

[
ρ∆t,+
κ,α,L f

∼

{∆t} · w
∼
− τ
≈

1(M ψ̂∆t,+
κ,α,L) : ∇

≈
x w
∼

]
dx
∼

dt

− 2 z

∫ T

0

∫
Ω

(∫
D

M βL(ψ̂∆t,+
κ,α,L) dq

∼

)
∇
∼
x%

∆t,+
κ,α,L · w∼ dx

∼
dt

∀w
∼
∈ L4(0, T ;W

∼

1,4
0 (Ω)). (4.89)

We have the following result.

Lemma 4.5. There exists a C ∈ R>0, independent of ∆t and L, such that∥∥∥∥∥∂m∼
∆t
κ,α,L

∂t

∥∥∥∥∥
Ls(0,T ;W 1,4

0 (Ω)′)

≤ C, (4.90)

where s = 8Γ−12
7Γ−6 ≥

26
25 as Γ ≥ 8.

Proof. Let υ = 8Γ−12
3Γ ≥ 13

6 as in Lemma 4.2. Then for s′ = s
s−1 = 8Γ−12

Γ−6 >8, we

have that

1

s′
+

1

υ
+

1

2
= 1. (4.91)

It follows from (4.89), (4.91), W 1,4(Ω) ↪→ L∞(Ω), H1(Ω) ↪→ L6(Ω), (4.52a–c),

(4.51), (4.84a), on noting that 10Γ−6
3(Γ+1) ≥

8Γ−12
7Γ−6 , (4.39), (4.28b), (1.19), (4.21) and

(3.29a) that, for any w∼ ∈ Ls
′
(0, T ;W∼

1,4
0 (Ω)),∣∣∣∣∣

∫ T

0

∫
Ω

∂m
∼

∆t
κ,α,L

∂t
· w
∼

dx
∼

dt

∣∣∣∣∣
≤ C ‖∇

∼
xρ

[∆t]
κ,α,L‖Lυ(ΩT ) ‖u

∼

∆t,+
κ,α,L‖L2(0,T ;H1(Ω)) ‖w

∼

{∆t}‖Ls′ (0,T ;W 1,4(Ω))
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+ C
[
‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖Lυ(ΩT ) + ‖m

∼

∆t,−
κ,α,L‖Lυ(ΩT ) + 1

]
× ‖u

∼

∆t,+
κ,α,L‖L2(0,T ;H1(Ω)) ‖w

∼
‖Ls′ (0,T ;W 1,4(Ω))

+ C ‖ρ[∆t]
κ,α,L u∼

∆t,+
κ,α,L‖Lυ(ΩT ) ‖u

∼

∆t,+
κ,α,L‖L2(0,T ;H1(Ω)) ‖w

∼

{∆t}‖Ls′ (0,T ;W 1,4(Ω))

+ ‖p{∆t}κ,α,L‖L 4
3 (ΩT )

‖w
∼
‖L4(0,T ;W 1,4(Ω))

+ C ‖τ
≈

1(M ψ̂∆t,+
κ,α,L)‖

L2(0,T ;L
4
3 (Ω))

‖w
∼
‖L2(0,T ;W 1,4(Ω))

+ ‖%∆t,+
κ,α,L‖L∞(0,T ;L2(Ω)) ‖%∆t,+

κ,α,L‖L2(0,T ;H1(Ω)) ‖w
∼
‖L2(0,T ;L∞(Ω))

+ ‖ρ∆t,+
κ,α,L‖L∞(0,T ;L2(Ω)) ‖f

∼

{∆t}‖L2(0,T ;L∞(Ω)) ‖w
∼
‖L2(ΩT )

≤ C
[
‖w
∼
‖Ls′ (0,T ;W 1,4(Ω)) + ‖w

∼

{∆t}‖Ls′ (0,T ;W 1,4(Ω))

]
. (4.92)

The desired result (4.90) then follows immediately from (4.92) on noting, as s′ ≥ 4,

that, for any w∼ ∈ Ls
′
(0, T ;W∼

1,4
0 (Ω)),

‖w
∼

{∆t}‖s
′

Ls′ (0,T ;W 1,4(Ω))
= ∆t

N∑
n=1

∥∥∥∥∥ 1

∆t

∫ tn

tn−1

w
∼

dt

∥∥∥∥∥
s′

W 1,4(Ω)

≤ C ∆t

N∑
n=1

(
1

∆t

∫ tn

tn−1

‖w
∼
‖4W 1,4(Ω) dt

) s′
4

≤ C ‖w
∼
‖s
′

Ls′ (0,T ;W 1,4(Ω))
. (4.93)

That completes the proof.

Next, we bound the time derivative of ψ̂∆t
κ,α,L.

Lemma 4.6. There exists a C ∈ R>0, independent of ∆t and L, such that∥∥∥∥∥M ∂ψ̂∆t
κ,α,L

∂t

∥∥∥∥∥
L2(0,T ;Hs(Ω×D)′)

≤ C, (4.94)

where s > 1 + 1
2 (K + 1)d.

Proof. It follows from (4.5c), (4.21), (1.19) and (4.27) that, for any ϕ ∈
L2(0, T ;W 1,∞(Ω×D)),∣∣∣∣∣

∫ T

0

∫
Ω×D

M
∂ψ̂∆t

κ,α,L

∂t
ϕdq

∼
dx
∼

dt

∣∣∣∣∣
≤ 2ε

∣∣∣∣∣
∫ T

0

∫
Ω×D

M
√
ψ̂∆t,+
κ,α,L∇∼ x

√
ψ̂∆t,+
κ,α,L · ∇∼ xϕdq

∼
dx
∼

dt

∣∣∣∣∣
+

1

2λ

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

Aij

∫ T

0

∫
Ω×D

M
√
ψ̂∆t,+
κ,α,L∇∼ qj

√
ψ̂∆t,+
κ,α,L · ∇∼ qiϕdq

∼
dx
∼

dt

∣∣∣∣∣∣
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+

∣∣∣∣∣
∫ T

0

∫
Ω×D

M u
∼

∆t,+
κ,α,L β

L(ψ̂∆t,+
κ,α,L) · ∇

∼
xϕdq

∼
dx
∼

dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Ω×D

M

K∑
i=1

[
σ
≈

(u
∼

∆t,+
κ,α,L) q

∼
i

]
βL(ψ̂∆t,+

κ,α,L) · ∇
∼
qiϕ dq

∼
dx
∼

dt

∣∣∣∣∣
≤ C max

{
1, ‖%∆t,+

κ,α,L‖L∞(0,T ;L2(Ω))

}[
‖∇
∼
x

√
ψ̂∆t,+
κ,α,L‖L2(0,T ;L2

M (Ω×D))

+ ‖∇
∼
q

√
ψ̂∆t,+
κ,α,L‖L2(0,T ;L2

M (Ω×D)) + ‖u
∼

∆t,+
κ,α,L‖L2(0,T ;H1(Ω))

]
‖ϕ‖L2(0,T ;W 1,∞(Ω×D))

≤ C ‖ϕ‖L2(0,T ;W 1,∞(Ω×D)). (4.95)

The desired result (4.94) then follows on noting that Hs(Ω×D) ↪→W 1,∞(Ω×D)

for the stated bound on s.

Remark 4.2. We note that allowing z = 0 would impact on the proof of Lemma

4.5. As is already clear from the formal energy inequality (1.18), by setting z = 0 one

looses control over the L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) norm of %∆t,+
κ,α,L; instead,

one can only control weaker norms of %∆t,+
κ,α,L, leading to (4.32) in place of (4.28b).

While this weaker control is not sufficient to prove (4.90) as stated, one can prove

a weaker result by replacing the W∼
1,4(Ω) norm on the test function w∼ by the

W∼
1,2d(Ω) norm throughout the proof. Admitting z = 0 in Lemma 4.6, on the other

hand, results in unsurmountable difficulties: the proof of the lemma cannot be

completed without an Lr(0, T ;L2(Ω)) norm bound on %∆t,+
κ,α,L, with r > 2 at least; in

particular, we are unable to prove (4.94), or a weaker result on the time-difference

of ψ̂∆t
κ,α,L, when z = 0. Remark 4.1, and equation (4.31) in particular, indicate that

an Lr(0, T ;L2(Ω)) norm bound on %∆t,+
κ,α,L, with r > 2, is unlikely to hold without

requiring z > 0, regardless of the choice of k in (1.15).

4.5. Passing to the limit ∆t → 0+ (L → ∞) in the momentum

equation (4.5b) and the Fokker–Planck equation (4.5c)

We are now ready to pass to the limit ∆t→ 0+ (L→∞) in the momentum equation

(4.5b) and the Fokker–Planck equation (4.5c). We have the following convergence

results.

Lemma 4.7. We have that

m
∼
κ,α := ρκ,α u

∼
κ,α ∈ L

∼

υ(ΩT ) ∩W 1,s(0, T ;W
∼

1,4
0 (Ω)′) ∩ Cw([0, T ];L

2Γ
Γ+1 (Ω)), (4.96)

where υ = 10Γ−6
3(Γ+1) and s = 8Γ−12

7Γ−6 , with Γ ≥ 8. In addition, for a further subsequence
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of the subsequences of Lemmas 4.1 and 4.2 it follows that, as ∆t→ 0+ (L→∞),

m
∼

∆t(,±)
κ,α,L → m

∼
κ,α weakly in L

∼

υ(ΩT ), (4.97a)

m
∼

∆t
κ,α,L → m

∼
κ,α weakly in W 1,s(0, T ;W

∼

1,4
0 (Ω)′), (4.97b)

m
∼

∆t(,±)
κ,α,L → m

∼
κ,α strongly in L2(0, T ;H

∼

1(Ω)′), (4.97c)

m
∼

∆t(,±)
κ,α,L ⊗ u∼

∆t,+
κ,α,L → m

∼
κ,α ⊗ u

∼
κ,α weakly in L2(0, T ;L

≈

6Γ
4Γ+3 (Ω)), (4.97d)

m
∼

∆t(,±)
κ,α,L → m

∼
κ,α in Cw([0, T ];L

2Γ
Γ+1 (Ω)). (4.97e)

Proof. The weak convergence result (4.97a) for some limit function m∼ κ,α ∈
L∼
υ(ΩT ), which is the common limit of m∼

∆t
κ,α,L, m∼

∆t,+
κ,α,L and m∼

∆t,−
κ,α,L, follows im-

mediately from (4.84a), (4.68b), (4.3) and (4.82). The weak convergence result

(4.97b) and the strong convergence result (4.97c) for m∼
∆t
κ,α,L follow immediately

for m∼ κ,α ∈ L∼ υ(ΩT ) ∩W 1,s(0, T ;W∼
1,4
0 (Ω)′) from (4.84a), (4.90) and (3.11), on not-

ing that Lυ(Ω) is compactly embedded in H1(Ω)′, which is in turn continuously

embedded in W 1,4(Ω)′. The corresponding result (4.97c) for m∼
∆t,±
κ,α,L then follows

from (4.97c) for m∼
∆t
κ,α,L, and (4.68b). It follows from (4.53b), (4.44) and (4.97c) for

m∼
∆t,+
κ,α,L that m∼ κ,α = ρκ,α u∼κ,α, and hence (4.96). The result (4.97d) follows imme-

diately from (4.84b), (4.97c) and (4.44). Finally (4.97e) follows from the bound on

the first term in (4.84a), (4.90) and (3.12a,b).

Next, noting (4.4a,b), a simple calculation yields that [see (6.32)–(6.34) in Bar-

rett & Süli5 for details]:∫ T

0

∫
Ω×D

M
∣∣∇
∼
x

√
ψ̂∆t
κ,α,L

∣∣2 dq
∼

dx
∼

dt

≤ 2

∫ T

0

∫
Ω×D

M

[
|∇
∼
x

√
ψ̂∆t,+
κ,α,L|

2 + |∇
∼
x

√
ψ̂∆t,−
κ,α,L|

2

]
dq
∼

dx
∼

dt, (4.98)

and an analogous result with ∇∼ x replaced by ∇∼ q. Then, the bound (4.21), on noting

(3.21a), (4.98) and the convexity of F , imply the existence of a C ∈ R>0, indepen-

dent of ∆t and L, such that:

ess.supt∈[0,T ]

∫
Ω×D

M F(ψ̂
∆t(,±)
κ,α,L (t)) dq

∼
dx
∼

+
1

∆t L

∫ T

0

∫
Ω×D

M (ψ̂∆t,+
κ,α,L − ψ̂

∆t,−
κ,α,L)2 dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M
∣∣∇
∼
x

√
ψ̂

∆t(,±)
κ,α,L

∣∣2 dq
∼

dx
∼

dt+

∫ T

0

∫
Ω×D

M
∣∣∇
∼
q

√
ψ̂

∆t(,±)
κ,α,L

∣∣2 dq
∼

dx
∼

dt

≤ C. (4.99)

Lemma 4.8. For a further subsequence of the subsequences of Lemmas 4.1, 4.2
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and 4.7, there exists a function

ψ̂κ,α ∈ Lυ(0, T ;Z1) ∩H1(0, T ;M−1(Hs(Ω×D))′), (4.100a)

where υ ∈ [1,∞) and s > 1 + 1
2 (K + 1)d, with finite relative entropy and Fisher

information, i.e.,

F(ψ̂κ,α) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂κ,α ∈ L2(0, T ;H1

M (Ω×D)),

(4.100b)

such that, as ∆t→ 0+ (L→∞),

M
1
2 ∇
∼
x

√
ψ̂

∆t(,±)
κ,α,L →M

1
2 ∇
∼
x

√
ψ̂κ,α weakly in L2(0, T ;L

∼

2(Ω×D)), (4.101a)

M
1
2 ∇
∼
q

√
ψ̂

∆t(,±)
κ,α,L →M

1
2 ∇
∼
q

√
ψ̂κ,α weakly in L2(0, T ;L

∼

2(Ω×D)), (4.101b)

M
∂ψ̂∆t

κ,α,L

∂t
→M

∂ψ̂κ,α
∂t

weakly in L2(0, T ;Hs(Ω×D)′), (4.101c)

ψ̂
∆t(,±)
κ,α,L → ψ̂κ,α strongly in Lυ(0, T ;L1

M (Ω×D)), (4.101d)

βL(ψ̂
∆t(,±)
κ,α,L )→ ψ̂κ,α strongly in Lυ(0, T ;L1

M (Ω×D)), (4.101e)

τ
≈
(M ψ̂∆t,+

κ,α,L)→ τ
≈
(M ψ̂κ,α) strongly in L

≈

r(ΩT ), (4.101f)

where r ∈ [1, 4(d+2)
3d+4 ); and, for a.a. t ∈ (0, T ),∫

Ω×D
M(q

∼
)F(ψ̂κ,α(x

∼
, q
∼
, t)) dq

∼
dx
∼

≤ lim inf
∆t→0+ (L→∞)

∫
Ω×D

M(q
∼
)F(ψ̂∆t,+

κ,α,L(x
∼
, q
∼
, t)) dq

∼
dx
∼
. (4.101g)

In addition, we have that

%κ,α :=

∫
D

M ψ̂κ,α dq
∼
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (4.102)

and, as ∆t→ 0+ (L→∞),

%∆t,+
κ,α,L → %κ,α weakly-? in L∞(0, T ;L2(Ω)),

weakly in L2(0, T ;H1(Ω)), (4.103a)

%∆t,+
κ,α,L,

∫
D

M βL(ψ̂∆t,+
κ,α,L) dq

∼
→ %κ,α strongly in L

5ς
3(ς−1) (0, T ;Lς(Ω)), (4.103b)

for any ς ∈ (1, 6).

Proof. In order to prove the strong convergence result (4.101d), we will apply

Dubinskĭı’s compactness theorem (Theorem 3.1 in Barrett & Süli12) with X =

L1
M (Ω×D), X1 = M−1Hs(Ω×D)′ and

M =

{
ϕ ∈ Z1 :

∫
Ω×D

M
[
|∇
∼
q
√
ϕ|2 + |∇

∼
x
√
ϕ|2
]

dq
∼

dx
∼
<∞

}
. (4.104)
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See Section 5 in Barrett & Süli6 for the proof of the compactness of the embedding

M ↪→ X, and the continuity of the embedding X ↪→ X1. Hence, the desired result

(4.101d) for ψ̂∆t
κ,α,L and υ = 1 follows from Dubinskĭı’s compactness theorem (cf.

Theorem 3.1 in Barrett & Süli12). The desired result (4.101d) for ψ̂∆t,±
κ,α,L and υ = 1

then follows from (4.101d) for ψ̂∆t
κ,α,L and υ = 1, (4.82) with m∼

∆t(,±)
κ,α,L replaced by

ψ̂
∆t(,±)
κ,α,L , the second bound in (4.99) and (4.40). The desired result (4.101d) for

υ ∈ (1,∞) then follows from (4.101d) for υ = 1, the first bound in (4.99) (note

that F(s) ≥ [s − e + 1]+ for all s ≥ 0, since F(s) ≥ 0 and, by convexity of F ,

F(s) ≥ F(e) + (s− e)F ′(e) = s− e + 1) and an interpolation result, see Lemma 5.1

in Barrett & Süli6. The weak convergence result (4.101c) follows immediately from

(4.94). The weak convergence results (4.101a,b) follow immediately from the last

two terms in (4.99), on noting an argument similar to that in the proof of Lemma

3.3 in Barrett & Süli6 in order to identify the limit. The result (4.101e) follows

from (4.101d) and the Lipschitz continuity of βL, see (5.8) in Barrett & Süli9 for

details. The result (4.101g) follows from (4.101d) and Fatou’s lemma, see (6.46) in

Barrett & Süli6 for details. In addition, the convergence results (4.101a–d,g) yield

the desired results (4.100a,b).

The results (4.103a) for some limit function %κ,α follow immediately from the

bounds on %∆t,+
κ,α,L in (4.21). The fact that %κ,α =

∫
D
M ψ̂κ,α dq

∼
follows from (3.91),

(4.4b) and (4.101d), and hence the desired result (4.102). The strong convergence re-

sults (4.103b) follow from noting the embedding H1(Ω) ↪→ L6(Ω), (1.19), (4.101d,e)

and (3.1).

Finally, we need to prove (4.101f). Similarly to (4.25)–(4.28a,b), we deduce from

(4.100b), (4.102), (3.2) and (4.24) that

‖%κ,α‖
L

2(d+2)
d (ΩT )

+ ‖τ
≈

1(M ψ̂κ,α)‖
L

4(d+2)
3d+4 (ΩT )

≤ C. (4.105)

On recalling (1.11) and (4.22), we have that

τ
≈

1(M ϕ) = k

∫
D

M

(
K∑
i=1

∇
∼
qiϕ⊗ q

∼
i

)
dq
∼
− k

(∫
D

M ϕdq
∼

)
I
≈
. (4.106)

Let D0 ⊂ D0 ⊂ D be an arbitrary Lipschitz subdomain of D, then (4.106) yields

that ∫
ΩT

|τ
≈

1(Mψ̂∆t,+
κ,α,L)− τ

≈
1(Mψ̂κ,α)|dx

∼
dt ≤ C[T |Ω \ Ω0|]

d+4
4(d+2)

≤ k |b
∼
|
1
2
1

∫ T

0

∫
Ω

∫
D\D0

M

K∑
i=1

(
|∇
∼
qψ̂

∆t,+
κ,α,L|+ |∇∼ qψ̂κ,α|

)
dq
∼

dx
∼

dt

+ k

∫ T

0

∫
Ω

∣∣∣∣∣
∫
D0

M

K∑
i=1

q
∼
i ⊗∇

∼
qi(ψ̂

∆t,+
κ,α,L − ψ̂κ,α) dq

∼

∣∣∣∣∣ dx
∼

dt

+ k d
1
2

∫ T

0

∫
Ω×D

M |ψ̂∆t,+
κ,α,L − ψ̂κ,α|dq

∼
dx
∼

dt =: T1 + T2 + T3, (4.107)
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where we have recalled (3.4). Further, we deduce from (4.101b,d) that

M ∇
∼
qi ψ̂

∆t,+
κ,α,L = 2M

√
ψ̂∆t,+
κ,α,L∇∼ qi

√
ψ̂∆t,+
κ,α,L → 2M

√
ψ̂κ,α∇

∼
qi

√
ψ̂κ,α = M ∇

∼
qi ψ̂κ,α,

for i = 1, . . . ,K,

weakly in L1(0, T ;L∼
1(Ω×D)) = L∼

1(ΩT×D) as ∆t→ 0+ (L→∞). By the Dunford–

Pettis theorem the sequence {M ∇∼ qψ̂
∆t,+
κ,α,L}∆t>0 is therefore equi-integrable in

L∼
1(ΩT × D); hence, for any δ > 0 there exists a δ0 = δ0(δ) such that for any

set D0 ⊂ D with T |Ω| |D \D0| < δ0,

k |b∼|
1
2
1

∫ T

0

∫
Ω

∫
D\D0

M

K∑
i=1

(
|∇∼ qψ̂

∆t,+
κ,α,L|+ |∇∼ qψ̂κ,α|

)
dq
∼

dx∼ dt <
δ

3
.

We therefore select D0 ⊂ D0 ⊂ D to be a Lipschitz subdomain of D such that

T |Ω| |D \ D0| < δ0, which implies that 0 < T1 <
δ
3 ; that, now, fixes our choice of

D0.

Next, we bound T2. By performing partial integration over D0, we have that

T2 = k

∫ T

0

∫
Ω

∣∣∣∣∣
∫
D0

M

K∑
i=1

q
∼
i ⊗∇

∼
qi(ψ̂

∆t,+
κ,α,L − ψ̂κ,α) dq

∼

∣∣∣∣∣ dx
∼

dt

≤ k
∫ T

0

∫
Ω

∣∣∣∣∣−
∫
D0

K∑
i=1

(
∇
∼
qiM ⊗ q

∼
i

)
(ψ̂∆t,+
κ,α,L − ψ̂κ,α) dq

∼

∣∣∣∣∣ dx
∼

dt

+ k

∫ T

0

∫
Ω

∣∣∣∣−K [∫
D0

M (ψ̂∆t,+
κ,α,L − ψ̂κ,α) dq

∼

]
I
≈

∣∣∣∣ dx
∼

dt

+ k

∫ T

0

∫
Ω

∣∣∣∣∣
∫
∂D0

K∑
i=1

M (n
∼
i ⊗ q

∼
i)(ψ̂

∆t,+
κ,α,L − ψ̂κ,α) dσ(q

∼
)

∣∣∣∣∣ dx
∼

dt,

where the d-component column vector n∼i is the ith component of the Kd-component

unit outward (column) normal vector n∼ = (n∼
T
1 , . . . , n∼

T
K)T to the boundary ∂D0 of

D0. As the closure of the Lipschitz subdomain D0 is a strict subset of the open

set D, we have, on noting (1.6a) and (1.7a,b), that supq
∼
∈D0

(
1

M(q
∼

) |∇∼ qM(q
∼
)|
)
≤

C(δ0) <∞. Hence,

T2 ≤ k
∫ T

0

∫
Ω

∫
D0

[
|b
∼
|
1
2
1 |∇∼ qM |+K d

1
2 M

]
|ψ̂∆t,+
κ,α,L − ψ̂κ,α|dq

∼
dx
∼

dt

+ k |b
∼
|
1
2
1

∫ T

0

∫
Ω

∫
∂D0

M |ψ̂∆t,+
κ,α,L − ψ̂κ,α|dσ(q

∼
) dx
∼

dt

≤ k
(
|b
∼
|
1
2
1 C(δ0) +K d

1
2

) ∫ T

0

∫
Ω

∫
D0

M |ψ̂∆t,+
κ,α,L − ψ̂κ,α|dq

∼
dx
∼

dt

+ k |b
∼
|
1
2
1 ‖M‖L∞(D)

∫ T

0

∫
Ω

∫
∂D0

|ψ̂∆t,+
κ,α,L − ψ̂κ,α|dσ(q

∼
) dx
∼

dt

=: T21 + T22. (4.108)
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Thus, thanks to (4.101d) with υ = 1, there exists a ∆t0 such that for all ∆t ≤ ∆t0,

we have that 0 < T21 <
δ
6 and 0 < T3 <

δ
3 .

Finally, we shall show that, for ∆t0 sufficiently small, also 0 < T22 <
δ
6 . In the

process of doing so we shall repeatedly use the following result. As the closure of

D0 is a compact subset of D, we have from (1.7a) that

sup
q
∼
∈D0

[M(q
∼
)]−1 ≤ C(D0) <∞. (4.109)

We begin by noting that (4.99) and (4.109) imply that {
√
ψ̂∆t,+
κ,α,L}∆t>0 is a bounded

sequence in L2(0, T ;H1(Ω×D0)); hence, by Sobolev embedding, it is also a bounded

sequence in L2(0, T ; L
2(K+1)d

(K+1)d−2 (Ω×D0)). Further, by (4.99) and (4.109) we have that

{
√
ψ̂∆t,+
κ,α,L}∆t>0 is a bounded sequence in the function space L∞(0, T ;L2(Ω×D0)).

It then follows from (3.1) that {
√
ψ̂∆t,+
κ,α,L}∆t>0 is a bounded sequence in the space

L
2((K+1)d+2)

(K+1)d (0, T ;L
2((K+1)d+2)

(K+1)d (Ω×D0)); thus,∫ T

0

∫
Ω×D0

|ψ̂∆t,+
κ,α,L|

(K+1)d+2
(K+1)d dq

∼
dx
∼

dt ≤ C(D0), (4.110)

where the constant C(D0) is independent of ∆t and L. Now, for any s ∈ (1, 2),

we have by Hölder’s inequality, (4.99), (4.109) and the inequality (a
s
2 + b

s
2 ) ≤

21− s2 (a + b)
s
2 with a, b ≥ 0, which follows from the concavity of the function x ∈

[0,∞) 7→ x
s
2 ∈ [0,∞), that∫ T

0

∫
Ω×D0

(
|∇
∼
xψ̂

∆t,+
κ,α,L|

s + |∇
∼
qψ̂

∆t,+
κ,α,L|

s
)

dq
∼

dx
∼

dt

= 2s
∫ T

0

∫
Ω×D0

|ψ̂∆t,+
κ,α,L|

s
2

(∣∣∣∣∇∼ x

√
ψ̂∆t,+
κ,α,L

∣∣∣∣s +

∣∣∣∣∇∼ q

√
ψ̂∆t,+
κ,α,L

∣∣∣∣s) dq
∼

dx
∼

dt

≤ 2
s
2 +1

(∫ T

0

∫
Ω×D0

|ψ̂∆t,+
κ,α,L|

s
2−s dq

∼
dx
∼

dt

) 2−s
2

×

(∫ T

0

∫
Ω×D0

∣∣∣∣∇∼ x

√
ψ̂∆t,+
κ,α,L

∣∣∣∣2 +

∣∣∣∣∇∼ q

√
ψ̂∆t,+
κ,α,L

∣∣∣∣2 dq
∼

dx
∼

dt

) s
2

≤ C

(∫ T

0

∫
Ω×D0

|ψ̂∆t,+
κ,α,L|

s
2−s dq

∼
dx
∼

dt

) 2−s
2

.

Comparing this with (4.110) indicates that s ∈ (1, 2) should be chosen so that

s

2− s
≤ (K + 1)d+ 2

(K + 1)d
.

The largest such s is s = (K+1)d+2
(K+1)d+1 ; using this value of s, we then deduce on noting

(4.110) that

‖ψ̂∆t,+
κ,α,L‖Ls(0,T ;W 1,s(Ω×D0)) ≤ C(D0). (4.111)
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Note further that, thanks to (4.109) and (4.101d), we have, for any υ ∈ [1,∞), that

‖ψ̂∆t,+
κ,α,L − ψ̂κ,α‖Lυ(0,T ;L1(Ω×D0)) → 0, as ∆t→ 0+ (L→∞). (4.112)

We shall now use (4.111) and (4.112) to show that T22 converges to 0 as ∆t→ 0+

(L → ∞). To this end, we shall make use of the following sharp trace inequality,

established recently by Auchmuty (cf. Theorem 6.3 inequality (6.3) in Auchmuty2):

suppose that O is a bounded Lipschitz domain and let r ∈ (1, 2); then, the following

inequality holds for all ϕ ∈W 1,r(O):∫
∂O
|ϕ|2− 1

r dσ ≤ |∂O|
|O|
‖ϕ‖2−

1
r

L2− 1
r (O)

+

(
2− 1

r

)
kO ‖ϕ‖

1− 1
r

L1(O) ‖∇ϕ‖Lr(O), (4.113)

where kO is a positive constant, which depends on O only. We deduce from (4.113)

and (3.1) for any r ∈ (1, 2) that∫
∂O
|ϕ|2− 1

r dσ ≤ C(O, r) ‖ϕ‖1−
1
r

L1(O) ‖ϕ‖W 1,r(O) ∀ϕ ∈W 1,r(O). (4.114)

We apply (4.114) with O = D0, integrate the resulting inequality over (0, T ) ×
Ω and apply Hölder’s inequality; this yields for any r ∈ (1, 2) and for all ϕ ∈
Lr(0, T ;W 1,r(Ω×D0)) that∫ T

0

∫
Ω×∂D0

|ϕ|2− 1
r dσ(q

∼
) dx
∼

dt

≤ C(D0, r) ‖ϕ‖
1− 1

r

L1(0,T ;L1(Ω×D0)) ‖ϕ‖Lr(0,T ;W 1,r(Ω×D0)). (4.115)

Motivated by the bound (4.111), we fix

r = s =
(K + 1)d+ 2

(K + 1)d+ 1
∈ (1, 2)

in (4.115). It follows from (4.115), (4.111) and (4.112) that∫ T

0

∫
Ω×∂D0

|ψ̂∆t,+
κ,α,L − ψ̂κ,α|

2− 1
s dσ(q

∼
) dx
∼

dt→ 0, as ∆t→ 0+ (L→∞).

(4.116)

Since 2 − 1
s > 1, it follows from (4.116) that T22 converges to 0, as ∆t → 0+

(L → ∞). We thus deduce that there exists a ∆t0 such that for all ∆t ≤ ∆t0, we

have that 0 < T22 <
δ
6 . Finally, by recalling the inequalities (4.107) and (4.108) and

the bounds on T1, T21, T22 and T3, it then follows that for each δ > 0 there exists a

∆t0 such that for all ∆t ≤ ∆t0, we have that∫
ΩT

|τ
≈

1(Mψ̂∆t,+
κ,α,L)− τ

≈
1(Mψ̂κ,α)|dx

∼
dt < δ.

Thus we have proved that

τ
≈1(Mψ̂∆t,+

κ,α,L)→ τ
≈1(Mψ̂κ,α) strongly in L1(ΩT ), as ∆t→ 0+ (L→∞).
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This, together with (4.28b), (4.105) and (3.1), implies that, as ∆t→ 0+ (L→∞),

τ
≈

1(Mψ̂∆t,+
κ,α,L)→ τ

≈
1(Mψ̂κ,α) strongly in Lr(ΩT ) for all r ∈

[
1, 4(d+2)

3d+4

)
. (4.117)

We note further that, according to (4.103b) with ς = 2, %∆t,+
κ,α,L → %κ,α strongly

in L
10
3 (0, T ;L2(Ω)) as ∆t → 0+ (L → ∞); therefore (%∆t,+

κ,α,L)2 → %2
κ,α strongly

in L
5
3 (0, T ;L1(Ω)), and thus strongly in L1(0, T ;L1(Ω)) = L1(ΩT ), as ∆t → 0+

(L → ∞). Also, by (4.27), since 8(d+2)
3d+4 < 2(d+2)

d for d ∈ {2, 3}, we have that

{(%∆t,+
κ,α,L)2}∆t>0 is a bounded sequence in L

4(d+2)
3d+4 (ΩT ); consequently from (4.105)

and (3.1), (%∆t,+
κ,α,L)2 → (%κ,α)2 strongly in Lr(ΩT ) for all r ∈

[
1, 4(d+2)

3d+4

)
. Combining

this with (4.117) we deduce (4.101f) thanks to (1.10).

We are now ready to pass to the limit with ∆t → 0+ (L → ∞) in (4.5a–c) to

prove the existence of a weak solution to the regularized problem (Pκ,α).

Theorem 4.1. The triple (ρκ,α, u∼κ,α, ψ̂κ,α), defined as in Lemmas 4.1 and 4.8, is

a global weak solution to problem (Pκ,α), in the sense that∫ T

0

〈
∂ρκ,α
∂t

, η

〉
H1(Ω)

dt+

∫ T

0

∫
Ω

(
α∇
∼
xρκ,α − ρκ,α u

∼
κ,α

)
· ∇
∼
xη dx

∼
dt = 0

∀η ∈ L2(0, T ;H1(Ω)), (4.118a)

with ρκ,α(·, 0) = ρ0(·),∫ T

0

〈
∂(ρκ,α u

∼
κ,α)

∂t
, w
∼

〉
W 1,4

0 (Ω)

dt+
α

2

∫ T

0

∫
Ω

∇
∼
xρκ,α · ∇

∼
x(u
∼
κ,α · w

∼
) dx
∼

dt

+

∫ T

0

∫
Ω

[
S
≈

(u
∼
κ,α)− ρκ,α u

∼
κ,α ⊗ u

∼
κ,α − pκ(ρκ,α) I

≈

]
: ∇
≈
x w
∼

dx
∼

dt

=

∫ T

0

∫
Ω

[
ρκ,α f

∼
· w
∼
−
(
τ
≈

1(M ψ̂κ,α)− z %2
κ,α I

≈

)
: ∇
≈
x w
∼

]
dx
∼

dt

∀w
∼
∈ Lr(0, T ;W

∼

1,4
0 (Ω)), (4.118b)

with (ρκ,α u∼κ,α)(·, 0) = (ρ0u∼0)(·) and r = 8Γ−12
Γ−6 , Γ ≥ 8, and∫ T

0

〈
M

∂ψ̂κ,α
∂t

, ϕ

〉
Hs(Ω×D)

dt

+
1

4λ

K∑
i=1

K∑
j=1

Aij

∫ T

0

∫
Ω×D

M ∇
∼
qj ψ̂κ,α · ∇

∼
qiϕ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂κ,α − u

∼
κ,α ψ̂κ,α

]
· ∇
∼
xϕ dq

∼
dx
∼

dt
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−
∫ T

0

∫
Ω×D

M

K∑
i=1

[
σ
≈

(u
∼
κ,α) q

∼
i

]
ψ̂κ,α · ∇

∼
qiϕ dq

∼
dx
∼

dt = 0

∀ϕ ∈ L2(0, T ;Hs(Ω×D)), (4.118c)

with ψ̂κ,α(·, 0) = ψ̂0(·) and s > 1 + 1
2 (K + 1) d.

In addition, the weak solution (ρκ,α, u∼κ,α, ψ̂κ,α) satisfies, for a.a. t′ ∈ (0, T ), the

following energy inequality:

1

2

∫
Ω

ρκ,α(t′) |u
∼
κ,α(t′)|2 dx

∼
+

∫
Ω

Pκ(ρκ,α(t′)) dx
∼

+ k

∫
Ω×D

M F(ψ̂κ,α(t′)) dq
∼

dx
∼

+ ακ

∫ t′

0

[
‖∇
∼
x(ρ2

κ,α)‖2L2(Ω) +
4

Γ
‖∇
∼
x(ρ

Γ
2
κ,α)‖2L2(Ω)

]
dt+ µSc0

∫ t′

0

‖u
∼
κ,α‖2H1(Ω) dt

+ k

∫ t′

0

∫
Ω×D

M

[
a0

2λ

∣∣∣∣∇∼ q

√
ψ̂κ,α

∣∣∣∣2 + 2ε

∣∣∣∣∇∼ x

√
ψ̂κ,α

∣∣∣∣2
]

dq
∼

dx
∼

dt

+ z ‖%κ,α(t′)‖2L2(Ω) + 2 z ε

∫ t′

0

‖∇
∼
x%κ,α‖2L2(Ω) dt

≤ et
′
[

1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ k

∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ z

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼

+
1

2

∫ t′

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
≤ C, (4.119)

where C ∈ R>0 is independent of α and κ.

Proof. The limit equation (4.118a) has already been established in Lemma 4.1,

see (4.45).

We now pass to the limit ∆t → 0+ (L → ∞), subject to (4.40), for the subse-

quence of {(ρ[∆t]
κ,α,L, u∼

∆t,+
κ,α,L, ψ̂

∆t,+
κ,α,L)}∆t>0 of Lemma 4.8 in (4.89) initially for a fixed

test function w∼ ∈ C∼ ∞0 (ΩT ). We consider first the five terms on the left-hand side

of (4.89). On noting (4.97b,d), (4.53a), (4.44), (4.52c) and (4.49), we obtain the

first two terms on the left-hand side of (4.118b) and the ρκ,α u∼κ,α⊗ u∼κ,α term from

the first term on the left-hand side of (4.89). The second and third terms on the

left-hand side of (4.89) give rise to the remaining terms on the left-hand side of

(4.118b), on noting (4.44) and (4.43b). The fourth and fifth terms on the left-hand

side of (4.89) converge to zero, on noting (4.68a), (4.51), (4.52b) and (4.49).

We now consider the two terms on the right-hand side of (4.89). The first term

gives rise to the f
∼

and τ
≈1 contributions on the right-hand side of (4.118b), on noting

(4.53b), (3.29b) and (4.101f). The second term on the right-hand side of (4.89)

converges to the %2
κ,α term on the right-hand side of (4.118b), on noting (4.103a,b)

and performing integration by parts. Therefore, we have obtained (4.118b) for any

w∼ ∈ C∼
∞
0 (ΩT ). The desired result (4.118b) for any w∼ ∈ Lr(0, T ;W∼

1,4
0 (Ω)) then

follows from the denseness of C∼
∞
0 (ΩT ) in Lr(0, T ;W∼

1,4
0 (Ω)), (4.96), (4.53a,b), (4.44),
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(4.91), (4.97d), (4.41), (3.5), (3.4), (4.101f), and finally (4.102), which with (3.2)

yields, similarly to (4.26) and (4.27), that %κ,α ∈ L4(0, T ;L
2d
d−1 (Ω)).

Similarly, we now pass to the limit ∆t → 0+ (L → ∞) for the subsequence in

(4.5c) initially for a fixed test function ϕ ∈ C([0, T ];C∞(Ω×D)). The first term

of (4.5c) converges to the first term of (4.118c), on noting (4.101c). For the second

term of (4.5c), we note that∫ T

0

∫
Ω×D

M ∇
∼
qi ψ̂

∆t,+
κ,α,L · ∇∼ qjϕdq

∼
dx
∼

dt

= 2

∫ T

0

∫
Ω×D

M

(√
ψ̂∆t,+
κ,α,L −

√
ψ̂κ,α

)
∇
∼
qi

√
ψ̂∆t,+
κ,α,L · ∇∼ qjϕdq

∼
dx
∼

dt

+ 2

∫ T

0

∫
Ω×D

M

√
ψ̂κ,α∇

∼
qi

√
ψ̂∆t,+
κ,α,L · ∇∼ qjϕdq

∼
dx
∼

dt =: T1 + T2. (4.120)

Next, on noting (4.99) and that |√c1 −
√
c2| ≤

√
|c1 − c2| for all c1, c2 ∈ R≥0, we

have that

|T1| ≤ C
∥∥∥∥√ψ̂∆t,+

κ,α,L −
√
ψ̂κ,α

∥∥∥∥
L2(0,T ;L2

M (Ω×D))

‖∇
∼
qjϕ‖L∞(0,T ;L∞(Ω×D))

≤ C ‖ψ̂∆t,+
κ,α,L − ψ̂κ,α‖

1
2

L1(0,T ;L1
M (Ω×D))

‖∇
∼
qjϕ‖L∞(0,T ;L∞(Ω×D)), (4.121)

and so (4.101d) yields that T1 converges to zero as ∆t → 0+. Similarly, as

M
1
2

√
ψ̂κ,α∇∼ qjϕ ∈ L2(0, T ;L∼

2(Ω×D)), it follows from (4.101b) that, as ∆t→ 0+,

T2 → 2

∫ T

0

∫
Ω×D

M

√
ψ̂κ,α∇

∼
qi

√
ψ̂κ,α · ∇

∼
qjϕdq

∼
dx
∼

dt

=

∫ T

0

∫
Ω×D

M ∇
∼
qi ψ̂κ,α · ∇

∼
qjϕdq

∼
dx
∼

dt. (4.122)

Hence the second term in (4.5c) converges to the second term in (4.118c). For the

fourth term in (4.5c), we note that∫ T

0

∫
Ω×D

M

[
σ
≈

(u
∼

∆t,+
κ,α,L) q

∼
i

]
βL(ψ̂∆t,+

κ,α,L) · ∇
∼
qiϕ dq

∼
dx
∼

dt

=

∫ T

0

∫
Ω×D

M

[
∇
≈
x u
∼

∆t,+
κ,α,L q

∼
i

](
βL(ψ̂∆t,+

κ,α,L)− ψ̂κ,α
)
· ∇
∼
qiϕ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
∇
≈
x u
∼

∆t,+
κ,α,L q

∼
i

]
ψ̂κ,α · ∇

∼
qiϕ dq

∼
dx
∼

dt =: T3 + T4. (4.123)

Next, on noting (4.51), (3.1), (1.19), (4.29) and (4.102), we have that

|T3| ≤ C
∥∥∥∥ ∫

D

M |βL(ψ̂∆t,+
κ,α,L)− ψ̂κ,α| dq

∼

∥∥∥∥
L2(0,T ;L2(Ω))

‖∇
∼
qiϕ‖L∞(0,T ;L∞(Ω×D))

≤ C ‖βL(ψ̂∆t,+
κ,α,L)− ψ̂κ,α‖

2
5

L2(0,T ;L1
M (Ω×D))

× ‖%∆t,+
κ,α,L + %κ,α‖

3
5

L2(0,T ;L6(Ω)) ‖∇∼ qiϕ‖L∞(0,T ;L∞(Ω)), (4.124)
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and so (4.101e) and (4.26) (with υ = 6 and ϑ = d
3 , d = 2, 3,) yield that T3 converges

to zero as ∆t → 0+. Similarly, as (4.102) yields that

∫
D

M ψ̂κ,α q
∼
i ⊗ ∇∼ qiϕ dq

∼
∈

L2(ΩT ), it follows from (4.44) that, as ∆t→ 0+,

T4 →
∫ T

0

∫
Ω×D

M
[
(∇
≈
x u
∼
κ,α) q

∼
i

]
ψ̂κ,α · ∇

∼
qiϕ dq

∼
dx
∼

dt. (4.125)

Hence the last term in (4.5c) converges to the last term in (4.118c). Similarly to

the second and last terms, the third term in (4.5c) converges to the third term in

(4.118c). Therefore, we have obtained (4.118c) for any ϕ ∈ C([0, T ];C∞(Ω×D)).

The desired result (4.118c), for any ϕ ∈ L2(0, T ;Hs(Ω × D)), then follows from

the denseness of the function space C([0, T ];C∞(Ω×D)) in L2(0, T ;Hs(Ω ×D)),

Hs(Ω×D) ↪→W 1,∞(Ω×D), (4.100a,b), (4.102) and (4.44).

Next we shall verify the attainment of the respective initial data by ρκ,α u∼κ,α and

ψ̂κ,α. We have already established that ρκ,α u∼κ,α ∈ Cw([0, T ];L
2Γ

Γ+1 (Ω)), see (4.96).

That ψ̂κ,α ∈ Cw([0, T ]; L1
M (Ω×D)) follows from F(ψ̂κ,α) ∈ L∞(0, T ;L1

M (Ω×D))

and ψ̂κ,α ∈ H1(0, T ;M−1(Hs(Ω×D))′) (cf. (4.100b) and (4.94)) with s > 1+ 1
2 (K+

1)d, by Lemma 3.1(b) in Barrett & Süli12 on taking X := LΦ
M (Ω×D), the Maxwellian

weighted Orlicz space with Young’s function Φ(r) = F(1 + |r|) (cf. Kufner, John &

Fučik22, Sec. 3.18.2) whose separable predual E := EΨ
M (Ω×D) has Young’s function

Ψ(r) = exp |r| − |r| − 1, and Y := M−1(Hs(Ω ×D))′ whose predual with respect

to the duality pairing 〈M ·, ·〉Hs(Ω×D) is F := Hs(Ω×D), with s > 1 + 1
2 (K + 1)d,

and noting the embedding Cw∗([0;T ];LΦ
M (Ω×D)) ↪→ Cw([0, T ];L1

M (Ω×D)). The

last embedding and that F ↪→ E are proved by adapting Def. 3.6.1. and Thm. 3.2.3

in Kufner, John & Fučik22 to the measure M(q
∼
) dq
∼

dx∼ to show that L∞(Ω×D) ↪→
LΞ
M (Ω×D) for any Young’s function Ξ, and then adapting Theorem 3.17.7 ibid. to

deduce that F ↪→ L∞(Ω×D) ↪→ EΨ
M (Ω×D) = E.

We are now ready to prove that ρκ,αu∼κ,α and ψ̂κ,α satisfy the initial con-

ditions (ρκ,αu∼κ,α)(·, 0) = (ρ0u∼0)(·) and ψ̂κ,α(·, ·, 0) = ψ̂0(·, ·) in the sense of

Cw([0, T ];L∼
2Γ

Γ+1 (Ω)) and Cw([0, T ];L1
M (Ω × D)), respectively. The desired result

for ρκ,αu∼κ,α follows immediately from (4.97e) and (3.18b). We now consider ψ̂κ,α.

According to (4.94), there exists a C ∈ R>0, independent of ∆t and L, such that,

for all ϕ ∈ L2(0, T ;Hs(Ω×D)),∣∣∣∣∣
∫ T

0

∫
Ω×D

M
∂ψ̂∆t

κ,α,L

∂t
ϕdq

∼
dx
∼

dt

∣∣∣∣∣ ≤ C ‖ϕ‖L2(0,T ;Hs(Ω×D)),

where s > 1+ 1
2 (K+1)d. Choosing, in particular ϕ(x∼, q∼, t) = φ(x∼, q∼)

(
1− t

δ

)
+

, with

φ ∈ Hs(Ω ×D), 0 < δ < T , integrating by parts with respect to t and using that

ψ̂∆t
κ,α,L(·, ·, 0) = ψ̂0(·, ·), we have that, for all φ ∈ Hs(Ω×D),∣∣∣∣∣1δ

∫ δ

0

∫
Ω×D

M ψ̂∆t
κ,α,L φdq

∼
dx
∼

dt−
∫

Ω×D
M ψ̂0 φdq

∼
dx
∼

∣∣∣∣∣ ≤ C δ 1
2 ‖φ‖Hs(Ω×D).
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For δ ∈ (0, T ) and φ fixed, we now pass to the limit ∆t → 0+ (L → ∞) in this

inequality using (4.101d) and (3.21b) to deduce that, for all φ ∈ Hs(Ω×D),∣∣∣∣∣1δ
∫ δ

0

∫
Ω×D

M ψ̂κ,α φ dq
∼

dx
∼

dt−
∫

Ω×D
M ψ̂0 φ dq

∼
dx
∼

∣∣∣∣∣ ≤ C δ 1
2 ‖φ‖Hs(Ω×D),

where we have recalled that Hs(Ω ×D) ↪→ W 1,∞(Ω ×D). Thus, noting the weak

continuity result ψ̂κ,α ∈ Cw([0, T ];L1
M (Ω × D)) established above, it follows on

passing to the limit δ → 0+ that∫
Ω×D

M ψ̂κ,α(0)φdq
∼

dx∼ =

∫
Ω×D

M ψ̂0 φdq
∼

dx∼ ∀φ ∈ Hs(Ω×D).

Hence, we have ψ̂κ,α(·, ·, 0) = ψ̂0 in L1
M (Ω×D).

It remains to prove the inequality (4.119). For t′ ∈ (0, T ] fixed, let n = n(t′,∆t)

be a positive integer such that 0 ≤ (n−1)∆t < t′ ≤ n∆t ≤ T . It follows from (4.21)

and (4.4b), on noting that the interval (0, t′] is contained in (0, tn], that

1

2

∫
Ω

ρ∆t,+
κ,α,L(t′) |u

∼

∆t,+
κ,α,L(t′)|2 dx

∼
+

∫
Ω

Pκ(ρ∆t,+
κ,α,L(t′)) dx

∼

+ k

∫
Ω×D

M F(ψ̂∆t,+
κ,α,L(t′)) dq

∼
dx
∼

+ ακ

∫ t′

0

[
‖∇
∼
x[(ρ

[∆t]
κ,α,L)2]‖2L2(Ω) +

4

Γ
‖∇
∼
x[(ρ

[∆t]
κ,α,L)

Γ
2 ]‖2L2(Ω)

]
dt

+ µSc0

∫ t′

0

‖u
∼

∆t,+
κ,α,L‖

2
H1(Ω) dt

+ k

∫ t′

0

∫
Ω×D

M

[
a0

2λ

∣∣∣∣∇∼ q

√
ψ̂∆t,+
κ,α,L

∣∣∣∣2 + 2ε

∣∣∣∣∇∼ x

√
ψ̂∆t,+
κ,α,L

∣∣∣∣2
]

dq
∼

dx
∼

dt

+ z ‖%∆t,+
κ,α,L(t′)‖2L2(Ω) + 2z ε

∫ t′

0

‖∇
∼
x%

∆t,+
κ,α,L‖

2
L2(Ω) dt

≤ etn
[

1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ k

∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ z

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼

+
1

2

∫ tn

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
≤ C, (4.126)

where C ∈ R>0 is independent of α and κ. Clearly n = n(t′,∆t) ≥ t′

∆t → ∞ as

∆t → 0+. Since t′ ∈ (tn−1, tn] and tn − tn−1 = ∆t, we deduce that as ∆t → 0+

(and, hence, n = n(t′,∆t)→∞) both tn−1 and tn converge to t′; hence

etn → et
′

and

∫ tn

0

‖f
∼
‖2L∞(Ω) dt→

∫ t′

0

‖f
∼
‖2L∞(Ω) dt, as ∆t→ 0+. (4.127)

We multiply (4.126) by any nonnegative η ∈ C∞0 (0, T ), integrate over (0, T ), and

pass to the limit ∆t→ 0+ (and L→∞) in the resulting inequality. It then follows

from (4.97d), (4.53c), (4.101g); weak lower-semicontinuity, via the weak convergence
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results (4.42a,c), (4.44), (4.101a,b) and (4.103a); and (4.127), that we obtain the

inequality (4.119) multiplied by η and integrated over (0, T ). The desired result

(4.119) then follows from the well-known variant of du Bois-Reymond’s lemma

according to which, if φ ∈ L1(0, T ), then∫ T

0

φ η dt ≥ 0 ∀η ∈ C∞0 (0, T ) with η ≥ 0 on (0, T ) ⇒ φ ≥ 0 a.e. in (0, T ).

(4.128)

That completes the proof of the theorem.

5. Existence of a solution to (Pκ)

It follows from the bounds on %κ,α in (4.119), similarly to (4.26) and (4.27), that

‖%κ,α‖L∞(0,T ;L2(Ω)) + ‖%κ,α‖
L

2(d+2)
d (ΩT )

+ ‖%κ,α‖
L4(0,T ;L

2d
d−1 (Ω))

≤ C, (5.1)

where throughout this section C is a generic positive constant, independent of α.

Hence, we deduce from (5.1), (4.24) and (4.119), similarly to (4.28b), that

‖τ
≈

1(M ψ̂κ,α)‖
L2(0,T ;L

4
3 (Ω))

+ ‖τ
≈

1(M ψ̂κ,α)‖
L

4(d+2)
3d+4 (ΩT )

≤ C. (5.2)

Similarly to (4.94), it follows from (5.1) and (4.119) that∥∥∥∥∥M ∂ψ̂κ,α
∂t

∥∥∥∥∥
L2(0,T ;Hs(Ω×D)′)

≤ C, (5.3)

where s > 1 + 1
2 (K + 1)d. We have the following analogue of Lemma 4.8.

Lemma 5.1. There exist functions

u
∼
κ ∈ L2(0, T ;H

∼

1
0(Ω)) and ψ̂κ ∈ Lυ(0, T ;Z1) ∩H1(0, T ;M−1(Hs(Ω×D))′),

(5.4a)

where υ ∈ [1,∞) and s > 1 + 1
2 (K + 1)d, with finite relative entropy and Fisher

information,

F(ψ̂κ) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂κ ∈ L2(0, T ;H1

M (Ω×D)), (5.4b)

and a subsequence of {(ρκ,α, u∼κ,α, ψ̂κ,α)}α>0 such that, as α→ 0+,

u
∼
κ,α → u

∼
κ weakly in L2(0, T ;H

∼

1
0(Ω)), (5.5)
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and

M
1
2 ∇
∼
x

√
ψ̂κ,α →M

1
2 ∇
∼
x

√
ψ̂κ weakly in L2(0, T ;L

∼

2(Ω×D)), (5.6a)

M
1
2 ∇
∼
q

√
ψ̂κ,α →M

1
2 ∇
∼
q

√
ψ̂κ weakly in L2(0, T ;L

∼

2(Ω×D)), (5.6b)

M
∂ψ̂κ,α
∂t

→M
∂ψ̂κ
∂t

weakly in L2(0, T ;Hs(Ω×D)′), (5.6c)

ψ̂κ,α → ψ̂κ strongly in Lυ(0, T ;L1
M (Ω×D)), (5.6d)

τ
≈
(M ψ̂κ,α)→ τ

≈
(M ψ̂κ) strongly in L

≈

r(ΩT ), (5.6e)

where r ∈ [1, 4(d+2)
3d+4 ), and, for a.a. t ∈ (0, T ),∫

Ω×D
M(q

∼
)F(ψ̂κ(x

∼
, q
∼
, t)) dq

∼
dx
∼
≤ lim inf

α→0+

∫
Ω×D

M(q
∼
)F(ψ̂κ,α(x

∼
, q
∼
, t)) dq

∼
dx
∼
.

(5.6f)

In addition, we have that

%κ :=

∫
D

M ψ̂κ dq
∼
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (5.7)

and, as α→ 0+,

%κ,α → %κ weakly-? in L∞(0, T ;L2(Ω)),

weakly in L2(0, T ;H1(Ω)), (5.8a)

%κ,α → %κ strongly in L
5ς

3(ς−1) (0, T ;Lς(Ω)), (5.8b)

for any ς ∈ (1, 6).

Proof. The convergence result (5.5) and the first result in (5.4a) follow immediately

from the bound on u∼κ,α in (4.119). The remainder of the results follow from the

bounds on ψ̂κ,α and %κ,α in (4.119) in the same way as those of Lemma 4.8.

We have the following analogue of Lemmas 4.2 and 4.4.

Lemma 5.2. Let Γ ≥ 8; then, there exists a C ∈ R>0, independent of α, such that

‖ρκ,α‖L∞(0,T ;LΓ(Ω)) + ‖u
∼
κ,α‖L2(0,T ;H1(Ω)) +

∥∥∥√ρκ,α u
∼
κ,α

∥∥∥
L∞(0,T ;L2(Ω))

+ ‖ρκ,α u
∼
κ,α‖

L∞(0,T ;L
2Γ

Γ+1 (Ω))
+ ‖ρκ,α u

∼
κ,α‖

L2(0,T ;L
6Γ

Γ+6 (Ω))

+ ‖ρκ,α u
∼
κ,α‖

L
10Γ−6
3(Γ+1) (ΩT )

+
∥∥∥ρκ,α |u

∼
κ,α|2

∥∥∥
L2(0,T ;L

6Γ
4Γ+3 (Ω))

≤ C, (5.9a)

√
α ‖∇

∼
xρκ,α‖L2(ΩT ) + α ‖∇

∼
xρκ,α‖

L
10Γ−6
3(Γ+1) (ΩT )

+ α ‖(∇
∼
xρκ,α · ∇

∼
x)u
∼
κ,α‖

L
5Γ−3

4Γ (ΩT )

+ α ‖∇
∼
xρκ,α ⊗ u

∼
κ,α‖

L
5Γ−3

4Γ (ΩT )
≤ C, (5.9b)∥∥∥∥∂ρκ,α∂t

∥∥∥∥
L2(0,T ;H1(Ω)′)

≤ C. (5.9c)
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Hence, there exists a function ρκ ∈ Cw([0, T ];LΓ
≥0(Ω)) ∩H1(0, T ;H1(Ω)′), and

for a further subsequence of the subsequence of Lemma 5.1, it follows that, as α→
0+,

ρκ,α → ρκ in Cw([0, T ];LΓ(Ω)),

weakly in H1(0, T ;H1(Ω)′), (5.10a)

ρκ,α → ρκ strongly in L2(0, T ;H1(Ω)′), (5.10b)

α∇
∼
xρκ,α → 0

∼
strongly in L

∼

r(ΩT ), r ∈ [1, 10Γ−6
3(Γ+1) ), (5.10c)

α (∇
∼
xρκ,α · ∇

∼
x)u
∼
κ,α → 0

∼
weakly in L

∼

5Γ−3
4Γ (ΩT ), (5.10d)

α∇
∼
xρκ,α ⊗ u

∼
κ,α → 0

≈
weakly in L

≈

5Γ−3
4Γ (ΩT ),

strongly in L1(0, T ;L
≈

3
2 (Ω)), (5.10e)

and, for any nonnegative η ∈ C[0, T ],∫ T

0

(∫
Ω

Pκ(ρκ) dx
∼

)
η dt ≤ lim inf

α→0+

∫ T

0

(∫
Ω

Pκ(ρκ,α) dx
∼

)
η dt. (5.10f)

Proof. The first three bounds in (5.9a) follow directly from (4.119). The last four

bounds in (5.9a) follow, similarly to (4.84a,b), from the first two bounds in (5.9a).

On recalling (4.41), we choose η = ρκ,α in (4.45) to obtain, on noting (5.9a), that

1

2
‖ρκ,α(·, T )‖2L2(Ω) + α ‖∇

∼
xρκ,α‖2L2(ΩT )

=
1

2

[
‖ρ0‖2L2(Ω) −

∫ T

0

∫
Ω

(∇
∼
x · u
∼
κ,α) ρ2

κ,α dx
∼

]
≤ C

[
1 + ‖u

∼
κ,α‖L2(0,T ;H1(Ω)) ‖ρκ,α‖2L4(0,T ;L4(Ω))

]
≤ C. (5.11)

Hence the first bound (5.9b). On noting the sixth bound in (5.9a) and recalling

from (3.4) that ∂Ω ∈ C2,θ, θ ∈ (0, 1), and ρ0 ∈ L∞(Ω) satisfying (3.16a), we can

now apply the parabolic regularity result, Lemma 7.38 in Novotný & Straškraba24

(or Lemma G.2 in Appendix G in Barrett & Süli12), to (4.118a) to obtain that the

solution ρκ,α satisfies the second bound in (5.9b). The third and fourth bounds in

(5.9b) follow from the second bounds in (5.9a,b), similarly to (4.70). The bound

(5.9c) follows immediately from (4.118a), the fifth bound in (5.9a) and the first

bound in (5.9b).

The convergence results (5.10a,b) follow immediately from the first bound in

(5.9a,c), (3.12a,b) and (3.11). The first two bounds in (5.9b) and (3.1) yield the

desired result (5.10c). The convergence result (5.10d) and the first result in (5.10e)

follow from the final two bounds in (5.9b), the second bound in (5.9a) and (5.10c).

The second result in (5.10e) also follows from the second bound in (5.9a) and (5.10c)
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with r = 2 on noting that, for all η1 ∈ L2(ΩT ) and η2 ∈ L2(0, T ;H1(Ω)),

‖η1 η2‖
L1(0,T ;L

3
2 (Ω))

≤‖η1‖L2(ΩT ) ‖η2‖L2(0,T ;L6(Ω))≤C ‖η1‖L2(ΩT ) ‖η2‖L2(0,T ;H1(Ω)).

(5.12)

Finally, the result (5.10f) follows, similarly to (4.66), from (5.10a) and the convexity

of Pκ.

Next, we set υ = 10Γ−6
3(Γ+1) ≥

74
27 , which appears in Lemma 5.2, and s′ = 5Γ−3

Γ−3 ≥ 5

so that (4.91) holds. Then, similarly to (4.92), it follows from (4.118b), (4.91),

W 1,4(Ω) ↪→ L∞(Ω), H1(Ω) ↪→ L6(Ω), (5.9a,b), (5.1), on noting that 2d
d−1 > 8

3 ,

(5.2), and (3.4) that, for any w∼ ∈ Ls
′
(0, T ;W∼

1,4
0 (Ω)),∣∣∣∣∣∣

∫ T

0

〈
∂(ρκ,α u

∼
κ,α)

∂t
, w
∼

〉
W 1,4

0 (Ω)

dt−
∫ T

0

∫
Ω

pκ(ρκ,α)∇
∼
x · w
∼

dx
∼

dt

∣∣∣∣∣∣
≤ C

[
α ‖∇
∼
xρκ,α‖Lυ(ΩT ) + ‖ρκ,α u

∼
κ,α‖Lυ(ΩT ) + 1

]
× ‖u

∼
κ,α‖L2(0,T ;H1(Ω)) ‖w

∼
‖Ls′ (0,T ;W 1,4(Ω))

+ C

[
‖τ
≈

1(M ψ̂κ,α)‖
L2(0,T ;L

4
3 (Ω))

+ ‖%κ,α‖2
L4(0,T ;L

2d
d−1 (Ω))

]
‖w
∼
‖L2(0,T ;W 1,4(Ω))

+ ‖ρκ,α‖L∞(0,T ;L2(Ω)) ‖f
∼
‖L2(0,T ;L∞(Ω)) ‖w

∼
‖L2(ΩT ) ≤ C ‖w

∼
‖Ls′ (0,T ;W 1,4(Ω)). (5.13)

For r, s ∈ (1,∞), let

Lr0(Ω) := {ζ ∈ Lr(Ω) :

∫
Ω

ζ dx
∼

= 0}, E
∼

r,s(Ω) := {w
∼
∈ L
∼

r(Ω) : ∇
∼
x · w
∼
∈ Ls(Ω)}

and E
∼

r,s
0 (Ω) := {w

∼
∈ E
∼

r,s(Ω) : w
∼
· n
∼

= 0 on ∂Ω}. (5.14)

The equality w∼ ·n∼ = 0 on ∂Ω should be understood in the sense of traces of Sobolev

functions, with equality in W 1− υ
υ′ ,υ

′
(∂Ω)′, where 1

υ + 1
υ′ = 1 and υ = min{r, s}; cf.

Lemma 3.10 in Novotný & Straškraba24.

We now introduce the Bogovskĭı operator B∼ : Lr0(Ω) → W∼
1,r
0 (Ω), r ∈ (1,∞),

such that ∫
Ω

(
∇
∼
x · B
∼

(ζ)− ζ
)
η dx

∼
= 0 ∀η ∈ L

r
r−1 (Ω); (5.15)

which satisfies

‖B
∼

(ζ)‖W 1,r(Ω) ≤ C ‖ζ‖Lr(Ω) ∀ζ ∈ Lr0(Ω), (5.16a)

‖B
∼

(∇
∼
x · w
∼

)‖Lr(Ω) ≤ C ‖w
∼
‖Lr(Ω) ∀w

∼
∈ E
∼

r,s
0 (Ω), (5.16b)

see Lemma 3.17 in Novotný & Straškraba24 (or Lemma C.1 in Appendix C in

Barrett & Süli12).
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Lemma 5.3. There exists a C(α) ∈ R>0 such that

‖∇
∼
x · (ρκ,α u

∼
κ,α)‖Ls(ΩT ) +

∥∥∥∥∂ρκ,α∂t

∥∥∥∥
Ls(ΩT )

+ ‖∆x ρκ,α‖Ls(ΩT ) ≤ C(α), (5.17)

where s = 5Γ−3
4Γ . In addition, there exists a C ∈ R>0, independent of α, such that

‖ρκ,α‖LΓ+1(ΩT ) ≤ C. (5.18)

Proof. We prove (5.17), similarly to (4.67). The first bound in (5.17) follows from

(5.9b). On noting (4.71) and the first bound in (5.17), we can now apply the

parabolic regularity result, Lemma 7.37 in Novotný & Straškraba24 (or Lemma

G.1 in Appendix G in Barrett & Süli12), to (4.118a) to obtain that the solution

ρκ,α satisfies the last two bounds in (4.67). It follows from (5.17), (5.9a,b) and

(4.118a) that

∂ρκ,α
∂t

= ∇
∼
x ·
(
α∇
∼
xρκ,α − ρκ,α u

∼
κ,α

)
∈ Ls(ΩT )

with
(
α∇
∼
xρκ,α − ρκ,α u

∼
κ,α

)
· n
∼

= 0 on ∂Ω× (0, T ), (5.19)

and hence, on recalling (5.14) and that s = 5Γ−3
4Γ < 10Γ−6

3(Γ+1) = r, we have that

α∇
∼
xρκ,α − ρκ,α u

∼
κ,α ∈ Ls(0, T ;E

∼

r,s
0 (Ω)). (5.20)

Therefore (5.19), (5.20), (5.16b) and (5.9a,b) yield that

∥∥∥∥B∼
(
∂ρκ,α
∂t

)∥∥∥∥
Ls(0,T ;Lr(Ω))

= ‖B
∼

(∇
∼
x · (α∇

∼
xρκ,α − ρκ,α u

∼
κ,α))‖Ls(0,T ;Lr(Ω))

≤ C ‖α∇
∼
xρκ,α − ρκ,α u

∼
κ,α‖Ls(0,T ;Lr(Ω)) ≤ C. (5.21)

On recalling the notation used in (3.86), then, similarly to (4.15), we obtain, on

choosing η = 1 in (4.118a) and noting (3.16a), that, for all t ∈ [0, T ],

0 ≤
∫
− ρκ,α(t) =

∫
− ρ0 ≤ ‖ρ0‖L∞(Ω). (5.22)

We now choose w∼ = η B∼ ((I −
∫
− )ρκ,α) in (5.13), where η ∈ C∞0 (0, T ), to obtain, on
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noting (2.3), (1.3), (5.22), (5.16a), (5.21) and (5.9a) that, for s′ = 5Γ−3
Γ−3 ,∣∣∣∣∣

∫ T

0

η

∫
Ω

(
cp ρ

γ+1
κ,α + κ

(
ρ5
κ,α + ρΓ+1

κ,α

))
dx
∼

dt

∣∣∣∣∣
≤ C ‖η‖L∞(0,T )

×
[
‖
∫
− ρκ,α‖L∞(0,T ) ‖pκ(ρκ,α)‖L1(ΩT ) + ‖B

∼
((I −

∫
− )ρκ,α)‖Ls′ (0,T ;W 1,4(Ω))

]
+

∣∣∣∣∣
∫ T

0

∫
Ω

ρκ,α u
∼
κ,α ·

[
dη

dt
B
∼

((I −
∫
− )ρκ,α) + η B

∼

(
∂ρκ,α
∂t

)]
dx
∼

dt

∣∣∣∣∣
≤ C ‖η‖L∞(0,T )

[
‖ρκ,α‖ΓLΓ(ΩT ) + ‖ρκ,α‖Ls′ (0,T ;L4(Ω))

]
+ ‖ρκ,α u

∼
κ,α‖

L∞(0,T :L
2Γ

Γ+1 (Ω))

∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

‖B
∼

((I −
∫
− )ρκ,α)‖

L∞(0,T ;L
2Γ

Γ−1 (Ω))

+ ‖ρκ,α u
∼
κ,α‖

L∞(0,T :L
2Γ

Γ+1 (Ω))
‖η‖L∞(0,T )

∥∥∥∥B∼
(
∂ρκ,α
∂t

)∥∥∥∥
L1(0,T ;L

2Γ
Γ−1 (Ω))

≤ C

[
‖η‖L∞(0,T ) +

∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

]
. (5.23)

We now consider (5.23) with η = ηm ∈ C∞0 (0, T ), m ∈ N, where ηm ∈ [0, 1] with

ηm(t) = 1 for t ∈ [ 1
m , T −

1
m ] and ‖dηm

dt ‖L∞(0,T ) ≤ 2m yielding ‖dηm
dt ‖L1(0,T ) ≤ 4.

As ηm → 1 pointwise in (0, T ), as m→∞, we obtain (5.18).

We have the following analogue of Lemmas 4.5 and 4.7.

Lemma 5.4. Let Γ ≥ 8; then, there exists a C ∈ R>0, independent of α, such that∥∥∥∥∥∂(ρκ,α u
∼
κ,α)

∂t

∥∥∥∥∥
L

Γ+1
Γ (0,T ;W 1,Γ+1

0 (Ω)′)

≤ C. (5.24)

Hence, for a further subsequence of the subsequence of Lemma 5.2, it follows

that, as α→ 0+,

ρκ,α u
∼
κ,α → ρκ u

∼
κ weakly in L

∼

10Γ−6
3(Γ+1) (ΩT ),

weakly in W 1,Γ+1
Γ (0, T ;W

∼

1,Γ+1
0 (Ω)′), (5.25a)

ρκ,α u
∼
κ,α → ρκ u

∼
κ in Cw([0, T ];L

2Γ
Γ+1 (Ω)),

strongly in L2(0, T ;H
∼

1(Ω)′), (5.25b)

ρκ,α u
∼
κ,α ⊗ u

∼
κ,α → ρκ u

∼
κ ⊗ u

∼
κ weakly in L2(0, T ;L

≈

6Γ
4Γ+3 (Ω)), (5.25c)

ρκ,α → ρκ weakly in LΓ+1(ΩT ), (5.25d)

pκ(ρκ,α)→ pκ(ρκ) weakly in L
Γ+1

Γ (ΩT ), (5.25e)

where pκ(ρκ) ∈ L
Γ+1

Γ

≥0 (ΩT ) remains to be identified.
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Proof. We deduce from (5.13), (5.18) and as 4 < s′ < Γ + 1 that∣∣∣∣∣∣
∫ T

0

〈
∂(ρκ,α u

∼
κ,α)

∂t
, w
∼

〉
W 1,Γ+1

0 (Ω)

dt

∣∣∣∣∣∣
≤ C ‖w

∼
‖LΓ+1(0,T ;W 1,Γ+1(Ω)) ∀w

∼
∈ LΓ+1(0, T ;W

∼

1,Γ+1
0 (Ω)), (5.26)

and hence the desired result (5.24).

The results (5.25a–c) follow similarly to (4.97a–e) from (5.9a), (5.24), (3.12a,b),

(3.11), (5.10b) and (5.5). The results (5.25d–f) follow immediately from (5.18), (2.3)

and (1.3).

We have the following analogue of Theorem 4.1.

Lemma 5.5. The triple (ρκ, u∼κ, ψ̂κ), defined as in Lemmas 5.1 and 5.2, satisfies∫ T

0

〈
∂ρκ
∂t

, η

〉
H1(Ω)

dt−
∫ T

0

∫
Ω

ρκ u
∼
κ · ∇
∼
xη dx

∼
dt = 0 ∀η ∈ L2(0, T ;H1(Ω)),

(5.27a)

with ρκ(·, 0) = ρ0(·),∫ T

0

〈
∂(ρκ u

∼
κ)

∂t
, w
∼

〉
W 1,Γ+1

0 (Ω)

dt

+

∫ T

0

∫
Ω

[
S
≈

(u
∼
κ)− ρκ u

∼
κ ⊗ u

∼
κ − pκ(ρκ) I

≈

]
: ∇
≈
x w
∼

dx
∼

dt

=

∫ T

0

∫
Ω

[
ρκ f
∼
· w
∼
−
(
τ
≈

1(M ψ̂κ)− z %2
κ I
≈

)
: ∇
≈
x w
∼

]
dx
∼

dt

∀w
∼
∈ LΓ+1(0, T ;W

∼

1,Γ+1
0 (Ω)), (5.27b)

with (ρκ u∼κ)(·, 0) = (ρ0 u∼0)(·), and

∫ T

0

〈
M

∂ψ̂κ
∂t

, ϕ

〉
Hs(Ω×D)

dt+
1

4λ

K∑
i=1

K∑
j=1

Aij

∫ T

0

∫
Ω×D

M ∇
∼
qj ψ̂κ · ∇

∼
qiϕ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂κ − u

∼
κ ψ̂κ

]
· ∇
∼
xϕ dq

∼
dx
∼

dt

−
∫ T

0

∫
Ω×D

M

K∑
i=1

[
σ
≈

(u
∼
κ) q
∼
i

]
ψ̂κ · ∇

∼
qiϕ dq

∼
dx
∼

dt = 0

∀ϕ ∈ L2(0, T ;Hs(Ω×D)), (5.27c)

with ψ̂κ(·, 0) = ψ̂0(·) and s > 1 + 1
2 (K + 1)d.
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In addition, the triple (ρκ, u∼κ, ψ̂κ) satisfies, for a.a. t′ ∈ (0, T ),

1

2

∫
Ω

ρκ(t′) |u
∼
κ(t′)|2 dx

∼
+

∫
Ω

Pκ(ρκ(t′)) dx
∼

+ k

∫
Ω×D

M F(ψ̂κ(t′)) dq
∼

dx
∼

+ µSc0

∫ t′

0

‖u
∼
κ‖2H1(Ω) dt

+ k

∫ t′

0

∫
Ω×D

M

[
a0

2λ

∣∣∣∣∇∼ q

√
ψ̂κ

∣∣∣∣2 + 2ε

∣∣∣∣∇∼ x

√
ψ̂κ

∣∣∣∣2
]

dq
∼

dx
∼

dt

+ z ‖%κ(t′)‖2L2(Ω) + 2 z ε

∫ t′

0

‖∇
∼
x%κ‖2L2(Ω) dt

≤ et
′
[

1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

Pκ(ρ0) dx
∼

+ k

∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ z

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼

+
1

2

∫ t′

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
≤ C, (5.28)

where C ∈ R>0 is independent of κ.

Proof. Passing to the limit α→ 0+ for the subsequence of Lemma 5.4 in (4.118a)

yields (5.27a) subject to the stated initial condition, on noting (5.10a,c), (5.25a)

and (3.16b).

Similarly to the proof of (4.118b), passing to the limit α → 0+ for the subse-

quence of Lemma 5.4 in (4.118b) yields (5.27b) subject to the stated initial condi-

tion, on noting (5.5), (5.10a,d,e), (5.25a–c,e), (5.6e), (5.8b) and (3.16b). Similarly

to the proof of (4.118c), passing to the limit α→ 0+ for the subsequence of Lemma

5.4 in (4.118c) yields (5.27c) subject to the stated initial condition, on noting (5.5),

(5.6a–d), (5.7) and (3.2). Similarly to the proof of (4.119), we deduce (5.28) from

(4.119) using the results (5.25c), (5.10f), (5.6a,b,f), (5.5), (5.8a) and (3.16c).

Finally, to obtain the complete analogue of Theorem 4.1, we have to identify

pκ(ρκ), which appears in (5.27b) and (5.25e), by establishing that pκ(ρκ) = pκ(ρκ).

Due to the presence of the extra stress term in the momentum equation, we require

a modification of the effective viscous flux compactness result, Proposition 7.36 in

Novotný & Straškraba24. Such results require pseudodifferential operators identified

via the Fourier transform F. We briefly recall the key ideas, and refer to Section

4.4.1 in Novotný & Straškraba24 for the details. With

S(Rd) :=

{
η ∈ C∞(Rd) : sup

x
∼
∈Rd

∣∣∣∣xς11 · · ·xςdd ∂
|λ
∼
|
η

∂λ1
x1 · · · ∂λdxd

∣∣∣∣ ≤ C(|ς
∼
|, |λ
∼
|) ∀ς

∼
, λ
∼
∈ Nd

}
,

(5.29)

the space of smooth rapidly decreasing (complex-valued) functions, we introduce

the Fourier transform F : S(Rd) → S(Rd), and its inverse F−1 : S(Rd) → S(Rd),
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defined by

[F(η)](y
∼
) =

1

(2π)
d
2

∫
Rd

e
−ix
∼
·y
∼ η(x

∼
) dx
∼

and [F−1(η)](x
∼

) =
1

(2π)
d
2

∫
Rd

e
ix
∼
·y
∼ η(y

∼
) dy
∼
.

(5.30)

These are extended to F, F−1 : S(Rd)′ → S(Rd)′, where S(Rd)′, the dual of S(Rd),
is the space of tempered distributions, via

〈F(η), ξ〉S(Rd) = 〈η,F(ξ)〉S(Rd) ∀ξ ∈ S(Rd)
〈F−1(η), ξ〉S(Rd) = 〈η,F−1(ξ)〉S(Rd) ∀ξ ∈ S(Rd).

(5.31)

We now introduce the inverse divergence operator Aj : S(Rd) → S(Rd)′, j =

1, . . . , d, such that

Aj(η) = −F−1

(
i yj
|y
∼
|2

[F(η)](y
∼
)

)
. (5.32)

It follows from Theorems 1.55 and 1.57 in Novotný & Straškraba24 (or Lemmas

B.1 and B.2 in Appendix B in Barrett & Süli12) and Sobolev embedding that, for

j = 1, . . . d,

‖∇
∼
xAj(η)‖Lr(Rd) ≤ C(r) ‖η‖Lr(Rd) ∀η ∈ S(Rd), r ∈ (1,∞), (5.33a)

‖Aj(η)‖
L

dr
d−r (Rd)

≤ C(r) ‖η‖Lr(Rd) ∀η ∈ S(Rd), r ∈ (1, d). (5.33b)

Hence, we deduce from (5.33a,b) that Aj can be extended to Aj : Lr(Rd) →
D1,r(Rd) for r ∈ (1,∞), j = 1, . . . , d, where D1,r(Rd) is a homogeneous Sobolev

space; see Section 1.3.6 in Novotný & Straškraba24 (or Appendix A in Barrett &

Süli12). In addition, by duality, Aj can be extended to Aj : D1,r(Rd)′ → D1,r(Rd)
for r ∈ (1,∞), j = 1, . . . , d, see (4.4.4) in Novotný & Straškraba24. Moreover, as

Aj(η) is real, for a real-valued function η, and from the Parseval–Plancherel formula

we have, for all η ∈ Lr(Rd) and ξ ∈ L
r
r−1 (Rd), r ∈ (1,∞), having compact support

that ∫
Rd
Aj(η) ξ dx

∼
= −

∫
Rd
ηAj(ξ) dx

∼
, j = 1, . . . , d. (5.34)

Finally, we introduce the so-called Riesz operator Rkj : Lr(Rd) → Lr(Rd), r ∈
(1,∞), defined by

Rkj(η) =
∂

∂xk
Aj(η), j, k = 1, . . . , d. (5.35)

We note for all η ∈ Lr(Rd) and ξ ∈ L
r
r−1 (Rd), r ∈ (1,∞), that

d∑
j=1

Rjj(η) =

d∑
j=1

∂

∂xj
Aj(η) = η, (5.36a)

Rkj(η) = Rjk(η) and

∫
Rd
Rjk(η) ξ dx

∼
=

∫
Rd
ηRjk(ξ) dx

∼
, j, k = 1, . . . , d.

(5.36b)
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Below we use the notation A∼ (·) and R
≈

(·) with components Ai(·) and Rij(·), i, j =

1, . . . , d, respectively. We shall adopt the convention that whenever any of these

operators is applied to a function or a distribution that has been defined on Ω

only, it is tacitly understood that the function or distribution in question has been

extended by 0 from Ω to the whole of Rd.
We now have the following modification of Proposition 7.36 in Novotný &

Straškraba24, which is adequate for our purposes.

Lemma 5.6. Given {(gn, u∼n,m∼ n, pn, τ≈n, fn, F∼ n)}n∈N, we assume for any ζ ∈
C∞0 (Ω) that, as n→∞,

gn → g in Cw([0, T ];Lq(Ω)),

weakly (-?) in Lω(ΩT ), (5.37a)

u
∼
n → u

∼
weakly in L2(0, T ;H

∼

1
0(Ω)), (5.37b)

m
∼
n → m

∼
in Cw([0, T ];L

∼

z(Ω)), (5.37c)

pn → p weakly in Lr(ΩT ), (5.37d)

τ
≈
n → τ

≈
strongly in L1(0, T ;L

≈

q
q−1 (Ω)), (5.37e)

fn → f weakly in L2(0, T ;H1(Ω)′), (5.37f)

A
∼

(ζ fn)→ A
∼

(ζ f) strongly in L2(0, T ;L
∼

z
z−1 (Ω)), (5.37g)

F
∼
n → F

∼
weakly in L

∼

s(ΩT ), (5.37h)

where q ∈ (d,∞), r, s ∈ (1,∞), ω ∈
[
max{2, r

r−1},∞
]

and z ∈
(

6q
5q−6 ,∞

)
.

In addition, suppose that

∂gn
∂t

+∇
∼
x · (u

∼
n gn) = fn in C∞0 (ΩT )′, (5.38a)

∂m
∼
n

∂t
+∇
∼
x · (m

∼
n ⊗ u

∼
n)− µ∆x u

∼
n − (µ+ λ)∇

∼
x (∇
∼
x · u
∼
n) +∇

∼
x pn

= F
∼
n +∇

∼
x · τ
≈
n in C

∼

∞
0 (ΩT )′. (5.38b)

Then it follows that, for any ζ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ),

lim
n→∞

∫ T

0

η

(∫
Ω

ζ gn [pn − (2µ+ λ)∇
∼
x · u
∼
n] dx

∼

)
dt

=

∫ T

0

η

(∫
Ω

ζ g [p− (2µ+ λ)∇
∼
x · u
∼

] dx
∼

)
dt. (5.39)

Proof. We adapt the proof of Proposition 7.36 in Novotný & Straškraba24, by just

pointing out the key differences. As q > d, then q?, the Sobolev conjugate of q in

the notation (1.3.64) of Novotný & Straškraba24, is such that q? = ∞. Hence our

restrictions on r, s, ω and z satisfy the restrictions of Proposition 7.36 in Novotný &
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Straškraba24. With any ζ̃ ∈ C∞0 (Ω), it follows from (5.38a) and properties (5.34)–

(5.36a,b) of Aj and Rkj that, for i = 1, . . . , d,

∂

∂t
Ai(ζ̃ gn) +

d∑
j=1

Rij(ζ̃ gn ujn) = Ai(ζ̃ fn) +Ai(gn u
∼
n · ∇
∼
x ζ̃) in C∞0 (ΩT )′, (5.40)

where we adopt the notation ujn for the jth component of u∼n. With any ζ, ζ̃ ∈
C∞0 (Ω) and η ∈ C∞0 (0, T ), we now consider η ζ A∼ (ζ̃ gn) as a test function for

(5.38b). It follows from (5.37a) and (5.33a,b) that A∼ (ζ̃ gn) ∈ L∞(0, T ;W∼
1,q(Ω)) ∩

Lω(0, T ;W∼
1,ω(Ω)), and hence A∼ (ζ̃ gn) ∈ L∼

∞(ΩT ) as q > d. Similarly to (5.9a),

gn u∼n ∈ L2(0, T ;L∼
6q
q+6 (Ω)) and m∼ n⊗u∼n ∈ L2(0, T ;L

≈

6z
z+6 (Ω)). As z ∈ ( 6q

5q−6 ,∞), and

therefore z
z−1 ∈ (1, 6q

q+6 ) and 6z
z+6 ∈ ( q

q−1 , 6), it follows from (5.40), (5.33a,b), (5.35)

and (5.37g) that

∂

∂t
A∼ (ζ̃ gn) ∈ L2(0, T ;L∼

z
z−1 (Ω)).

Noting the above and (5.37b–e,h), we see that η ζ A∼ (ζ̃ gn) is a valid test function for

(5.38b), and we obtain, on using integration by parts several times and properties

(5.34)–(5.36a,b) of Aj and Rkj , that

∫ T

0
η

(∫
Ω
ζ ζ̃ gn [pn − (2µ+ λ)∇

∼
x · u
∼
n] dx

∼

)
dt

= µ

∫ T

0
η

(∫
Ω

(
∇
≈
x u
∼
n : A
∼

(ζ̃ gn)⊗∇
∼
x ζ − u

∼
n ⊗∇

∼
x ζ : R

≈
(ζ̃ gn) + ζ̃ gn u

∼
n · ∇
∼
x ζ

)
dx
∼

)
dt

+

∫ T

0
η

(∫
Ω

((
τ
≈
n −m

∼
n ⊗ u

∼
n

)
: A
∼

(ζ̃ gn)⊗∇
∼
x ζ

− [pn − (µ+ λ)∇
∼
x · u
∼
n]A
∼

(ζ̃ gn) · ∇
∼
x ζ

)
dx
∼

)
dt

+

∫ T

0
η

(∫
Ω
ζ

((
τ
≈
n −m

∼
n ⊗ u

∼
n

)
: R
≈

(ζ̃ gn)− F
∼
n · A
∼

(ζ̃ gn)

)
dx
∼

)
dt

−
∫ T

0

dη

dt

(∫
Ω
ζ m
∼
n · A
∼

(ζ̃ gn) dx
∼

)
dt

−
∫ T

0
η

(∫
Ω
ζ m
∼
n ·
[
A
∼

(ζ̃ fn) +A
∼

(gn u
∼
n · ∇
∼
x ζ̃)

]
dx
∼

)
dt

+

∫ T

0
η

(∫
Ω
ζ̃

d∑
i=1

d∑
j=1

gn u
j
nRij(ζ mi

n) dx
∼

)
dt. (5.41)

The equation (5.41) is exactly the same as (7.5.12) in Novotný & Straškraba24,

except for the extra τ
≈n

terms and the change of notation. We will therefore just

concentrate on the terms involving τ
≈n

, as the other terms are dealt with as in

Novotný & Straškraba24.
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It follows from (5.37a), (5.33a,b), see equations (7.5.18)–(7.5.20) in Novotný &

Straškraba24 for the details, that

A
∼

(ζ̃ gn)→ A
∼

(ζ̃ g) weakly in L∞(0, T ;W
∼

1,q(Ω)),

strongly in L
∼

υ(ΩT ), (5.42a)

R
≈

(ζ̃ gn)→ R
≈

(ζ̃ g) weakly in L∞(0, T ;L
≈

q(Ω)),

strongly in Lυ(0, T ;H
≈

−1(Ω)), (5.42b)

where υ ∈ [1,∞). It follows from (5.37e) and (5.42a,b) that, as n→∞,∫ T

0

η

(∫
Ω

τ
≈
n :
[
A
∼

(ζ̃ gn)⊗∇
∼
x ζ +R

≈
(ζ̃ gn) ζ

]
dx
∼

)
dt

→
∫ T

0

η

(∫
Ω

τ
≈

:
[
A
∼

(ζ̃ g)⊗∇
∼
x ζ +R

≈
(ζ̃ g) ζ

]
dx
∼

)
dt. (5.43)

Combining (5.43) with the convergence, as n → ∞, of other terms in (5.41) as in

the proof of Proposition 7.36 in Novotný & Straškraba24, which involves the use

of the crucial ‘commutator lemma’ (Lemma 4.25 in Novotný & Straškraba24, or

Lemma D.3 in Appendix D in Barrett & Süli12), we obtain

lim
n→∞

∫ T

0

η

(∫
Ω

ζ ζ̃ gn [pn − (2µ+ λ)∇
∼
x · u
∼
n] dx

∼

)
dt

= µ

∫ T

0

η

(∫
Ω

(
∇
≈
x u
∼

: A
∼

(ζ̃ g)⊗∇
∼
x ζ − u

∼
⊗∇
∼
x ζ : R

≈
(ζ̃ g) + ζ̃ g u

∼
· ∇
∼
x ζ
)

dx
∼

)
dt

+

∫ T

0

η

(∫
Ω

((
τ
≈
−m
∼
⊗ u
∼

)
: A
∼

(ζ̃ g)⊗∇
∼
x ζ

−[p− (µ+ λ)∇
∼
x · u
∼

]A
∼

(ζ̃ g) · ∇
∼
x ζ
)

dx
∼

)
dt

+

∫ T

0

η

(∫
Ω

ζ
((
τ
≈
−m
∼
⊗ u
∼

)
: R
≈

(ζ̃ g)− F
∼
· A
∼

(ζ̃ g)
)

dx
∼

)
dt

−
∫ T

0

dη

dt

(∫
Ω

ζ m
∼
· A
∼

(ζ̃ g) dx
∼

)
dt

−
∫ T

0

η

(∫
Ω

ζ m
∼
·
[
A
∼

(ζ̃ f) +A
∼

(g u
∼
· ∇
∼
x ζ̃)
]

dx
∼

)
dt

+

∫ T

0

η

∫
Ω

ζ̃

d∑
i=1

d∑
j=1

g uj Rij(ζ mi) dx
∼

 dt, (5.44)

which is exactly the same as (7.5.25) in Novotný & Straškraba24, except for the

extra τ
≈

terms and the change of notation.

In addition, the equations (5.38a,b) are exactly the same as in (7.5.7)–(7.5.8)

in Novotný & Straškraba24 except for the extra τ
≈n

term. One can use (5.37a–h) to
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pass to the limit n→∞ in (5.38a,b) to obtain

∂g

∂t
+∇
∼
x · (u

∼
g) = f in C∞0 (ΩT )′, (5.45a)

∂m
∼

∂t
+∇
∼
x · (m

∼
⊗ u
∼

)− µ∆x u
∼
− (µ+ λ)∇

∼
x (∇
∼
x · u
∼

) +∇
∼
x p

= F
∼

+∇
∼
x · τ
≈

in C
∼

∞
0 (ΩT )′, (5.45b)

see Novotný & Straškraba24 for details. Clearly, the τ
≈n

term in (5.38b) is easily

dealt with using (5.37e). Similarly to (5.40), we deduce that η ζ A∼ (ζ̃ g) is a valid

test function for (5.45b), for any ζ, ζ̃ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ), and we obtain

(5.41) without the subscript n. Combining this with (5.44), we deduce that, for any

ζ, ζ̃ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ),

lim
n→∞

∫ T

0

η

(∫
Ω

ζ ζ̃ gn [pn − (2µ+ λ)∇
∼
x · u
∼
n] dx

∼

)
dt

=

∫ T

0

η

(∫
Ω

ζ ζ̃ g [p− (2µ+ λ)∇
∼
x · u
∼

] dx
∼

)
dt. (5.46)

Hence we arrive at (5.39) by taking ζ̃ ∈ C∞0 (Ω) such that ζ̃ ≡ 1 on the support of

the function ζ.

We need also the following variation of Lemma 5.6 for later use in Section 6.

Corollary 5.1. The results of Lemma 5.6 hold with the assumptions (5.37f,g) re-

placed by

fn → f weakly in L2(ΩT ), as n→∞. (5.47)

Proof. One can still pass to the limit n → ∞ in (5.38a) to obtain (5.45a) using

(5.47) in place of (5.37f,g). We deduce from (5.47), (5.33b) and (5.34) that

A
∼

(ζ fn)→ A
∼

(ζ f) weakly in L2(0, T ;L
∼

6(Ω)), as n→∞. (5.48)

As z
z−1 < 6q

q+6 < 6, (5.48) ensures that one can still conclude from (5.40) that

η ζ A∼ (ζ̃ gn) is a valid test function for (5.38b). Similarly, one can deduce that

η ζ A∼ (ζ̃ g) is a valid test function for (5.45b). The only other place where (5.37f,g)

are used in the proof of Lemma 5.6 is in dealing with the term involving fn on the

right-hand side of (5.41); that is, the term

−
∫ T

0

η

(∫
Ω

ζ m
∼
n · A
∼

(ζ̃ fn) dx
∼

)
dt =

∫ T

0

η

(∫
Ω

ζ̃ fn

d∑
i=1

Ai(ζ mi
n) dx

∼

)
dt, (5.49)

where we have noted (5.34). Similarly to (5.42a), it follows from (5.37c), (5.33a,b)

and Sobolev embedding, as z > 6
5 , that

A
∼

(ζ̃ mn)→ A
∼

(ζ̃ m) weakly in L∞(0, T ;W
∼

1,z(Ω)), strongly in Lυ(0, T ;L
∼

3(Ω)),

(5.50)
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where υ ∈ [1,∞). Therefore, (5.50), (5.47) and (5.34) imply that we can pass to

the limit n→∞ in (5.49) to obtain the term involving f on the right-hand side of

(5.44).

In order to identify pκ(ρκ) in (5.27b) and (5.25e), we now apply Lemma 5.6 with

(5.38a,b) being (4.118a,b) so that µ = µS

2 and λ = µB − µS

d , gn = ρκ,α, u∼n = u∼κ,α,

m∼ n = ρκ,α u∼κ,α, pn = pκ(ρκ,α), τ
≈n

= τ
≈
(M ψ̂κ,α)+ α

2 (u∼κ,α⊗∇∼ x ρκ,α), fn = α∆x ρκ,α

and F∼ n = ρκ,α f
∼
− α

2 (∇∼ x ρκ,α · ∇∼ x)u∼κ,α. With {(ρκ,α, u∼κ,α, ψ̂κ,α)}α>0 being the

subsequence (not indicated) of Lemma 5.4, we have that (5.37a–d) hold with g = ρκ,

u∼ = u∼κ, m∼ = ρκ u∼κ and p = pκ(ρκ), and q = Γ, ω = Γ + 1, z = 2Γ
Γ+1 and r = Γ+1

Γ

on recalling (5.10a), (5.25b,d,e) and (5.5). We note that ω = Γ + 1 = r
r−1 > 2 and,

as Γ ≥ 8, z = 2Γ
Γ+1 ≥

16
9 > 24

17 ≥
6Γ

5Γ−6 = 6q
5q−6 . Hence, the constraints on q, r, ω

and z hold. The results (5.37e,h) hold with τ
≈

= τ
≈
(M ψ̂κ), F∼ = ρκ f

∼
and s = 5Γ−3

4Γ ,

on recalling (5.6e), (5.10d,e) and (5.25d), and noting that 4(d+2)
3d+4 ≥

20
13 >

8
7 ≥

q
q−1 .

Finally, the results (5.37f,g) hold with f = 0 on recalling (5.10c) and the properties

of A∼ and R
≈

, on noting that z
z−1 = 2Γ

Γ−1 < 10Γ−6
3(Γ+1) , see (7.9.21) in Novotný &

Straškraba24 for details. Hence, we obtain from (5.39) for the subsequence of Lemma

5.4 that, for all ζ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ),

lim
α→0+

∫ T

0

η

(∫
Ω

ζ ρκ,α [pκ(ρκ,α)− µ?∇
∼
x · u
∼
κ,α] dx

∼

)
dt

=

∫ T

0

η

(∫
Ω

ζ ρκ [pκ(ρκ)− µ?∇
∼
x · u
∼
κ] dx

∼

)
dt, (5.51)

where µ? := (d−1)
d µS + µB . The first two bounds in (5.9a) yield that

‖ρκ,α∇
∼
x · u
∼
κ,α‖

L2(0,T ;L
2Γ

Γ+2 (Ω))
≤ C, (5.52)

and hence there exists a ρκ∇∼ x · u∼κ ∈ L2(0, T ;L
2Γ

Γ+2 (Ω)) such that for a subsequence

(not indicated)

ρκ,α∇
∼
x · u
∼
κ,α → ρκ∇

∼
x · u
∼
κ weakly in L2(0, T ;L

2Γ
Γ+2 (Ω)), as α→ 0+. (5.53)

It follows from the monotonicity of pκ(·) that

ρκ,α pκ(ρκ,α) = (ρκ,α − ρκ) (pκ(ρκ,α)− pκ(ρκ)) + (ρκ,α − ρκ) pκ(ρκ) + ρκ pκ(ρκ,α)

≥ (ρκ,α − ρκ) pκ(ρκ) + ρκ pκ(ρκ,α) a.e. in ΩT . (5.54)

We deduce from (5.51), (5.54), (5.53) and (5.25d,e) that for all nonnegative ζ ∈
C∞0 (Ω) and η ∈ C∞0 (0, T ),∫ T

0

η

(∫
Ω

ζ [ρκ∇
∼
x · u
∼
κ − ρκ∇

∼
x · u
∼
κ] dx

∼

)
dt ≥ 0

⇒ ρκ∇
∼
x · u
∼
κ ≥ ρκ∇

∼
x · u
∼
κ a.e. in ΩT , (5.55)

where we have noted (4.128) with (0, T ) replaced by ΩT for the final implication.
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Next, we introduce L(s) = s log s for s ∈ [0,∞). On recalling (3.16a,b), we have

for a subsequence (not indicated), via Lebesgue’s dominated convergence theorem,

that

lim
α→0+

∫
Ω

L(ρ0) dx
∼

=

∫
Ω

L(ρ0) dx
∼
. (5.56)

We can now follow the discussion in Section 7.9.3 in Novotný & Straškraba24 to

deduce that pκ(ρκ) = pκ(ρκ). For the benefit of the reader, we briefly outline the

argument. One deduces from (5.27a) as ρκ ∈ Cw([0, T ];LΓ
≥0(Ω)), via renormalization

and noting that sL′(s)− L(s) = s for s ∈ [0,∞), that, for any t′ ∈ (0, T ],∫
Ω

[L(ρκ)(t′)− L(ρ0)] dx
∼

= −
∫ t′

0

∫
Ω

ρκ∇
∼
x · u
∼
κ dx

∼
dt. (5.57)

On noting (5.17), one can choose, similarly to (4.8), η = χ[0,t′] [log (ρκ,α + ς) − 1],

where ς ∈ R>0, in (4.118a), and on passing to the limit ς → 0+ obtain that, for any

t′ ∈ (0, T ],∫
Ω

[
L(ρκ,α)(t′)− L(ρ0)

]
dx
∼
≤ −

∫ t′

0

∫
Ω

ρκ,α∇
∼
x · u
∼
κ,α dx

∼
dt. (5.58)

Subtracting (5.57) from (5.58), and passing to the limit α→ 0+, one deduces from

(5.56), (5.53) and (5.55) that, for any t′ ∈ (0, T ],∫
Ω

[
L(ρκ)(t′)− L(ρκ)(t′)

]
dx
∼
≤
∫ t′

0

∫
Ω

[
ρκ∇
∼
x · u
∼
κ − ρκ∇

∼
x · u
∼
κ

]
dx
∼

dt ≤ 0, (5.59)

where, by noting (5.10a),

L(ρκ,α)(t′)→ L(ρκ)(t′) weakly in Lr(Ω), for any r ∈ [1,Γ), as α→ 0+. (5.60)

As L(s) is continuous and convex for s ∈ [0,∞), it follows from (5.10a) and (5.60),

see e.g. Corollary 3.33 in Novotný & Straškraba24 (or Lemma D.1 in Appendix D in

Barrett & Süli12), that L(ρκ)(t′) ≥ L(ρκ)(t′) a.e. in Ω for any t′ ∈ (0, T ]. Hence, we

deduce from (5.59) that L(ρκ)(t′) = L(ρκ)(t′) a.e. in Ω for any t′ ∈ (0, T ]. Therefore,

on applying Lemma 3.34 in Novotný & Straškraba24 (or Lemma D.2 in Appendix D

in Barrett & Süli12), we conclude from the above, (5.60) and (5.10a) that ρκ,α(t)→
ρκ(t) strongly in L1(Ω) for any t ∈ (0, T ], as α → 0+. It immediately follows from

this, (5.18), (3.1) and (5.25e), on possibly extracting a further subsequence (not

indicated), that, as α→ 0+,

ρκ,α → ρκ strongly in Lr(ΩT ), for any r ∈ [1,Γ + 1), (5.61a)

pκ(ρκ,α)→ pκ(ρκ) weakly in L
Γ+1

Γ (ΩT ), that is, pκ(ρκ) = pκ(ρκ). (5.61b)

Finally, we have the following complete analogue of Theorem 4.1.

Theorem 5.1. The triple (ρκ, u∼κ, ψ̂κ), defined as in Lemmas 5.1 and 5.2, is a

global weak solution to problem (Pκ), in the sense that (5.27a,c), with their initial
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conditions, hold and∫ T

0

〈
∂(ρκ u

∼
κ)

∂t
, w
∼

〉
W 1,Γ+1

0 (Ω)

dt

+

∫ T

0

∫
Ω

[
S
≈

(u
∼
κ)− ρκ u

∼
κ ⊗ u

∼
κ − pκ(ρκ) I

≈

]
: ∇
≈
x w
∼

dx
∼

dt

=

∫ T

0

∫
Ω

[
ρκ f
∼
· w
∼
−
(
τ
≈

1(M ψ̂κ)− z %2
κ I
≈

)
: ∇
≈
x w
∼

]
dx
∼

dt

∀w
∼
∈ LΓ+1(0, T ;W

∼

1,Γ+1
0 (Ω)), (5.62)

with (ρκ u∼κ)(·, 0) = (ρ0 u∼0)(·). In addition, the weak solution (ρκ, u∼κ, ψ̂κ) satisfies

(5.28).

Proof. The results (5.27a,c) and (5.28) have already been established in Lemma

5.5. Equation (5.62) was established in Lemma 5.5 with pκ(ρκ) replaced by pκ(ρκ),

see (5.27b). The desired result (5.62) then follows immediately from (5.27b) and

(5.61b).

6. Existence of a solution to (P)

It follows from the bounds on %κ in (5.28), similarly to (4.26) and (4.27), that

‖%κ‖L∞(0,T ;L2(Ω)) + ‖%κ‖
L

2(d+2)
d (ΩT )

+ ‖%κ‖L2(0,T ;L6(Ω)) + ‖%κ‖
L4(0,T ;L

2d
d−1 (Ω))

≤ C,

(6.1)

where throughout this section C is a generic positive constant, independent of κ.

Hence, we deduce from (6.1), (4.24) and (5.28), similarly to (4.28b), that

‖τ
≈

1(M ψ̂κ)‖
L2(0,T ;L

4
3 (Ω))

+‖τ
≈

1(M ψ̂κ)‖
L

4(d+2)
3d+4 (ΩT )

+‖τ
≈

1(M ψ̂κ)‖
L

4
3 (0,T ;L

12
7 (Ω))

≤ C.

(6.2)

Similarly to (4.94), it follows from (6.1) and (5.28) that∥∥∥∥M ∂ψ̂κ
∂t

∥∥∥∥
L2(0,T ;Hs(Ω×D)′)

≤ C, (6.3)

where s > 1 + 1
2 (K + 1)d. We have the following analogue of Lemma 5.1.

Lemma 6.1. There exist functions

u
∼
∈ L2(0, T ;H

∼

1
0(Ω)) and ψ̂ ∈ Lυ(0, T ;Z1) ∩H1(0, T ;M−1(Hs(Ω×D))′),

(6.4a)

where υ ∈ [1,∞) and s > 1 + 1
2 (K + 1)d, with finite relative entropy and Fisher

information,

F(ψ̂) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂ ∈ L2(0, T ;H1

M (Ω×D)), (6.4b)
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and a subsequence of {(ρκ, u∼κ, ψ̂κ)}κ>0 such that, as κ→ 0+,

u
∼
κ → u

∼
weakly in L2(0, T ;H

∼

1
0(Ω)), (6.5)

and

M
1
2 ∇
∼
x

√
ψ̂κ →M

1
2 ∇
∼
x

√
ψ̂ weakly in L2(0, T ;L

∼

2(Ω×D)), (6.6a)

M
1
2 ∇
∼
q

√
ψ̂κ →M

1
2 ∇
∼
q

√
ψ̂ weakly in L2(0, T ;L

∼

2(Ω×D)), (6.6b)

M
∂ψ̂κ
∂t
→M

∂ψ̂

∂t
weakly in L2(0, T ;Hs(Ω×D)′), (6.6c)

ψ̂κ → ψ̂ strongly in Lυ(0, T ;L1
M (Ω×D)), (6.6d)

τ
≈
(M ψ̂κ)→ τ

≈
(M ψ̂) strongly in L

≈

r(ΩT ), (6.6e)

where r ∈ [1, 4(d+2)
3d+4 ), and, for a.a. t ∈ (0, T ),∫

Ω×D
M(q

∼
)F(ψ̂(x

∼
, q
∼
, t)) dq

∼
dx
∼
≤ lim inf

κ→0+

∫
Ω×D

M(q
∼
)F(ψ̂κ(x

∼
, q
∼
, t)) dq

∼
dx
∼
. (6.6f)

In addition, we have that

% :=

∫
D

M ψ̂ dq
∼
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (6.7)

and, as κ→ 0+,

%κ → % weakly-? in L∞(0, T ;L2(Ω)),

weakly in L2(0, T ;H1(Ω)), (6.8a)

%κ → % strongly in L
5ς

3(ς−1) (0, T ;Lς(Ω)), (6.8b)

for any ς ∈ (1, 6).

Proof. The convergence result (6.5) and the first result in (6.4a) follow immediately

from the bound on u∼κ in (5.28). The remainder of the results follow from the bounds

on ψ̂κ and %κ in (5.28) in the same way as the results of Lemma 4.8.

We have the following analogue of Lemma 5.2.

Lemma 6.2. Let Γ ≥ 8; then, there exists a C ∈ R>0, independent of κ, such that,

for any γ > 3
2 as in (1.3),

‖ρκ‖L∞(0,T ;Lγ(Ω)) + ‖u
∼
κ‖L2(0,T ;H1(Ω)) + κ

1
Γ ‖ρκ‖L∞(0,T ;LΓ(Ω))

+
∥∥∥√ρκ u

∼
κ

∥∥∥
L∞(0,T ;L2(Ω))

+ ‖ρκ u
∼
κ‖
L∞(0,T ;L

2γ
γ+1 (Ω))

+ ‖ρκ u
∼
κ‖
L2(0,T ;L

6γ
γ+6 (Ω))

+
∥∥∥ρκ |u

∼
κ|2
∥∥∥
L2(0,T ;L

6γ
4γ+3 (Ω))

≤ C, (6.9a)∥∥∥∥∂ρκ∂t
∥∥∥∥
L2(0,T ;W 1,6(Ω)′)

≤ C. (6.9b)
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Hence, there exists a function ρ ∈ Cw([0, T ];Lγ≥0(Ω))∩H1(0, T ;W 1,6(Ω)′), and for

a further subsequence of the subsequence of Lemma 6.1, it follows that, as κ→ 0+,

ρκ → ρ in Cw([0, T ];Lγ(Ω))

weakly in H1(0, T ;W 1,6(Ω)′), (6.10a)

ρκ → ρ strongly in L2(0, T ;H1(Ω)′), (6.10b)

and, for any nonnegative η ∈ C[0, T ],∫ T

0

(∫
Ω

P (ρ) dx
∼

)
η dt ≤ lim inf

κ→0+

∫ T

0

(∫
Ω

P (ρκ) dx
∼

)
η dt. (6.10c)

Proof. The first four bounds in (6.9a) follow immediately from (5.28). The last

three bounds in (6.9a) follow, similarly to (4.84a,b), from the first two bounds

in (6.9a). The bound (6.9b) follows immediately from (5.27a), the sixth bound in

(6.9a), on noting that 6γ
γ+6 >

6
5 as γ > 3

2 . The convergence results (6.10a,b) follow

immediately from (6.9a,b), (3.12a,b) and (3.11). The result (6.10c) follows, similarly

to (4.66), from (6.10a) and the convexity of P .

Similarly to (5.13), it follows from (5.27b), (6.9a), (6.1), (6.2), (3.4), on noting

that γ > 3
2 , and (3.2) that, for any w∼ ∈ L∞(0, T ;W∼

1,r
0 (Ω)) with r = max{Γ + 1, υ}

and υ = max{ 3γ
2γ−3 ,

12
5 },∣∣∣∣ ∫ T

0

〈∂(ρκ u
∼
κ)

∂t
, w
∼

〉
W 1,Γ+1

0 (Ω)

dt−
∫ T

0

∫
Ω

pκ(ρκ)∇
∼
x · w
∼

dx
∼

dt

∣∣∣∣
≤ C ‖ρκ‖L∞(0,T ;Lγ(Ω)) ‖u

∼
κ‖2L2(0,T ;L6(Ω)) ‖w∼ ‖L∞(0,T ;W

1,
3γ

2γ−3 (Ω))

+ C ‖u
∼
κ‖L2(0,T ;H1(Ω)) ‖w

∼
‖L2(0,T ;H1(Ω))

+ C
[
‖τ
≈

1(M ψ̂κ)‖
L

4
3 (0,T ;L

12
7 (Ω))

+ ‖%κ‖2L2(0,T ;L6(Ω))

]
‖∇
≈
xw
∼
‖
L∞(0,T ;L

12
5 (Ω))

+ ‖ρκ‖L∞(0,T ;Lγ(Ω)) ‖f
∼
‖L2(0,T ;L∞(Ω)) ‖w

∼
‖L2(0,T ;L3(Ω))

≤ C ‖w
∼
‖L∞(0,T ;W 1,υ(Ω)). (6.11)

We deduce from (6.11) with w∼ = η v∼, where η ∈ C∞0 (0, T ) and v∼ ∈
L∞(0, T ;W∼

1,υ
0 (Ω))∩H1(0, T ;L∼

6γ
5γ−6 (Ω)) with υ = max{ 3γ

2γ−3 ,
12
5 }, on noting (6.9a)

and (3.2) as 2γ
γ−1 < 6 for γ > 3

2 , that∣∣∣∣ ∫ T

0

η

∫
Ω

pκ(ρκ)∇
∼
x · v
∼

dx
∼

dt

∣∣∣∣
≤
∣∣∣∣ ∫ T

0

∫
Ω

ρκ u
∼
κ ·

∂(η v
∼
)

∂t
dx
∼

dt

∣∣∣∣+ C ‖η‖L∞(0,T ) ‖v
∼
‖L∞(I;W 1,υ(Ω))

≤ C ‖ρκ u
∼
κ‖
L∞(0,T ;L

2γ
γ+1 (Ω))

∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

‖v
∼
‖
L∞(I;L

2γ
γ−1 (Ω))
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+ C ‖η‖L∞(0,T )

[
‖ρκ u

∼
κ‖
L2(0,T ;L

6γ
γ+6 (Ω))

∥∥∥∥∂v∼∂t
∥∥∥∥
L2(I;L

6γ
5γ−6 (Ω))

+ ‖v
∼
‖L∞(I;W 1,υ(Ω))

]

≤ C
[ ∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

+ ‖η‖L∞(0,T )

][
‖v
∼
‖L∞(I;W 1,υ(Ω)) +

∥∥∥∥∂v∼∂t
∥∥∥∥
L2(I;L

6γ
5γ−6 (Ω))

]
,

(6.12)

where I = supp(η) ⊂ (0, T ). With υ = υ(γ) thus defined, let

ϑ(γ) :=
γ

υ(γ)
=

{
2γ−3

3 for 3
2 < γ ≤ 4,

5
12γ for 4 ≤ γ.

(6.13)

With ϑ(γ) ∈ R>0 defined as above and ` ∈ N, we now introduce b : R≥0 → R≥0

and b` : R≥0 → R≥0 such that

b(s) := sϑ and b`(s) :=

{
b(s) for 0 ≤ s ≤ `,
b(`) for ` ≤ s.

(6.14)

We note from (6.14), (6.9a) and (3.2) that, for υ(γ) := max{ 3γ
2γ−3 ,

12
5 } as in (6.12)

and ϑ(γ) as in (6.13), we have that

‖b`(ρκ)‖L∞(0,T ;Lυ(Ω)) ≤ ‖ρϑκ‖L∞(0,T ;Lυ(Ω)) ≤ ‖ρκ‖ϑL∞(0,T ;Lγ(Ω)) ≤ C,

(6.15a)

‖b`(ρκ)u
∼
κ‖
L2(0,T ;L

6γ
γ+6ϑ (Ω))

≤ ‖ρκ‖ϑL∞(0,T ;Lγ(Ω)) ‖u∼κ‖L2(0,T ;L6(Ω)) ≤ C,

(6.15b)

‖b`(ρκ)∇
∼
x · u
∼
κ‖
L2(0,T ;L

2γ
γ+2ϑ (Ω))

≤ ‖ρκ‖ϑL∞(0,T ;Lγ(Ω)) ‖u∼κ‖L2(0,T ;H1(Ω)) ≤ C,

(6.15c)

where C ∈ R>0 is independent of κ, ϑ and `.

As Γ > 2, it follows from (6.9a) and (5.27a), on extending ρκ and u∼κ from Ω to

Rd by zero, that

∂ρκ
∂t

+∇
∼
x · (ρκ u

∼
κ) = 0 in C∞0 (Rd × (0, T ))′, (6.16)

see Lemmas 6.8 in Novotný & Straškraba24 (or Lemma F.1 in Appendix F in Barrett

& Süli12). Applying Lemma 6.11 in Novotný & Straškraba24 (or Lemma F.3 in

Appendix F in Barrett & Süli12) to (6.16), we have the renormalized equation, for

any ` ∈ N,

∂b`(ρκ)

∂t
+∇
∼
x · (b`(ρκ)u

∼
κ) + (ρκ (b`)

′
+(ρκ)− b`(ρκ) )∇

∼
x · u
∼
κ = 0

in C∞0 (Rd × (0, T ))′, (6.17)

where (b`)
′
+(·) is the right-derivative of b`(·) satisfying

(b`)
′
+(s) =

{
b′(s) for 0 ≤ s < `,

0 for ` ≤ s.
(6.18)
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For any δ ∈ (0, T2 ), we now introduce the Friedrichs mollifier, with respect to the

time variable, Sδ : L1(0, T ;Lq(Ω))→ C∞(δ, T − δ;Lq(Ω)), q ∈ [1,∞],

Sδ(η)(x
∼
, t) =

1

δ

∫ T

0

ω

(
t− s
δ

)
η(x
∼
, s) ds a.e. in Ω× (δ, T − δ), (6.19)

where ω ∈ C∞0 (R), ω ≥ 0, supp(ω) ⊂ (−1, 1) and
∫
R ω ds = 1. It follows from (6.17)

and (6.19) that

∂Sδ(b`(ρκ))

∂t
+∇
∼
x · Sδ(b`(ρκ)u

∼
κ) + Sδ([ρκ (b`)

′
+(ρκ)− b`(ρκ) ]∇

∼
x · u
∼
κ) = 0

in C∞0 (Rd × (δ, T − δ))′. (6.20)

In addition, it follows from (6.19), (6.14), (6.9a), (3.2), (6.18) and (6.20) that

Sδ(b`(ρκ)) ∈ C∞(δ, T − δ;L∞(Rd)), Sδ(b`(ρκ)u
∼
κ) ∈ C∞(δ, T − δ;L

∼

6(Rd)),

Sδ([ρκ (b`)
′
+(ρκ)− b`(ρκ) ]∇

∼
x · u
∼
κ), ∇

∼
x · [Sδ(b`(ρκ)u

∼
κ)] ∈ C∞(δ, T − δ;L2(Rd)).

(6.21)

One can deduce from u∼κ ∈ L2(0, T ;H∼
1
0(Ω)) and (6.21) that

Sδ(b`(ρκ)u
∼
κ) ∈ C∞(δ, T − δ;E

∼

6,2
0 (Ω)), (6.22)

where we recall (5.14). We note from (5.16a), (6.19), (6.14) and (6.15a) that

B∼ ([Sδ(b`(ρκ))]) ∈ L∞(δ, T−δ;W∼
1,r
0 (Ω)), r ∈ [1,∞), and, for υ(γ) := max{ 3γ

2γ−3 ,
12
5 }

as in (6.12), that

‖B
∼

((I −
∫
− )[Sδ(b`(ρκ))])‖L∞(δ,T−δ;W 1,υ(Ω)) ≤ C ‖Sδ(b`(ρκ))‖L∞(δ,T−δ;Lυ(Ω))

≤ C ‖b`(ρκ)‖L∞(0,T ;Lυ(Ω)) ≤ C, (6.23a)

and from (6.20), Sobolev embedding, (6.22), (5.16a,b), (6.19), (6.14), (6.18) and

(6.15b,c) with ϑ as in (6.13) that

∥∥∥∥ ∂∂tB∼((I −
∫
− )[Sδ(b`(ρκ))])

∥∥∥∥
L2(δ,T−δ;L

6γ
γ+6ϑ (Ω))

≤ ‖B
∼

(∇
∼
x · [Sδ(b`(ρκ)u

∼
κ)])‖

L2(δ,T−δ;L
6γ

γ+6ϑ (Ω))

+ ‖B
∼

((I −
∫
− )[Sδ([ρκ (b`)

′
+(ρκ)− b`(ρκ) ]∇

∼
x · u
∼
κ)])‖

L2(δ,T−δ;L
6γ

γ+6ϑ (Ω))

≤ ‖B
∼

(∇
∼
x · [Sδ(b`(ρκ)u

∼
κ)])‖

L2(δ,T−δ;L
6γ

γ+6ϑ (Ω))

+ ‖B
∼

((I −
∫
− )[Sδ([ρκ (b`)

′
+(ρκ)− b`(ρκ) ]∇

∼
x · u
∼
κ)])‖

L2(δ,T−δ;W 1,
2γ

γ+2ϑ (Ω))

≤ C
[
‖b`(ρκ)u

∼
κ‖
L2(0,T ;L

6γ
γ+6ϑ (Ω))

+‖[ρκ (b`)
′
+(ρκ)− b`(ρκ) ]∇

∼
x · u
∼
κ‖
L2(0,T ;L

2γ
γ+2ϑ (Ω))

]
≤ C

[
‖b`(ρκ)u

∼
κ‖
L2(0,T ;L

6γ
γ+6ϑ (Ω))

+ ‖b`(ρκ)∇
∼
x · u
∼
κ‖
L2(0,T ;L

2γ
γ+2ϑ (Ω))

]
≤ C, (6.23b)
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where C ∈ R>0 in (6.23a,b) is independent of κ, ϑ, ` and δ. We now have the

following analogue of Lemma 5.3.

Lemma 6.3. With ϑ(γ) as defined in (6.13), we have that

‖ρκ‖Lγ+ϑ(ΩT ) + κ
1

4+ϑ ‖ρκ‖L4+ϑ(ΩT ) + κ
1

Γ+ϑ ‖ρκ‖LΓ+ϑ(ΩT ) ≤ C. (6.24)

Proof. For any ` ∈ N and δ ∈ (0, T2 ), we choose

v∼ = B∼ ((I −
∫
− )[Sδ(b`(ρκ))]) ∈ L∞(δ, T − δ,W∼

1,r
0 (Ω)),

any r ∈ [1,∞), and η ∈ C∞0 (0, T ), with supp(η) ⊂ (δ, T − δ), in (6.12) to obtain,

on noting (6.23a,b), 6γ
5γ−6 ≤

6γ
γ+6ϑ as ϑ ≤ 2γ

3 − 1, (6.9a) and (2.3), that

∣∣∣∣ ∫ T

0

η

∫
Ω

pκ(ρκ)Sδ(b`(ρκ)) dx
∼

dt

∣∣∣∣
≤ C

[∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

+ ‖η‖L∞(0,T )

][
1 + ‖pκ(ρκ)‖L1(ΩT ) ‖

∫
−Sδ(b`(ρκ))‖L∞(δ,T−δ)

]
≤ C

[∥∥∥∥dη

dt

∥∥∥∥
L1(0,T )

+ ‖η‖L∞(0,T )

]
. (6.25)

We now consider (6.25) with η = η` ∈ C∞0 (0, T ) with supp(η`) ⊂ ( 1
` , T −

1
` ), ` ∈

N with ` > 4
T , where η` ∈ [0, 1] with η`(t) = 1 for t ∈ [ 2

` , T −
2
` ] and ‖dη`

dt ‖L∞(0,T ) ≤
2` yielding ‖dη`

dt ‖L1(0,T ) ≤ 4. For a fixed `, we now let δ → 0 in (6.25) and using the

standard convergence properties of mollifiers we obtain that

∣∣∣∣ ∫ T

0

η`

∫
Ω

pκ(ρκ) b`(ρκ) dx
∼

dt

∣∣∣∣ ≤ C, (6.26)

where C ∈ R is independent of ` and κ. Letting ` → ∞ in (6.26), and noting that

η` → 1 pointwise in (0, T ), b`(ρκ) → b(ρκ) = ρϑκ pointwise in ΩT and Fatou’s

lemma, we obtain that

∫ T

0

∫
Ω

pκ(ρκ) ρϑκ dx
∼

dt ≤ C, (6.27)

where C ∈ R is independent of κ. Hence the desired result (6.24) follows from (6.27),

(2.3) and (1.3).

Similarly to (6.11), it follows from (5.27b), (6.9a), (6.1), (6.2) and (3.4), on
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noting γ > 3
2 , that, for any w∼ ∈ LΓ+1(0, T ;W∼

1,υ
0 (Ω)) with υ = max{Γ + 1, 6γ

2γ−3},∣∣∣∣ ∫ T

0

〈∂(ρκ u
∼
κ)

∂t
, w
∼

〉
W 1,Γ+1

0 (Ω)

dt−
∫ T

0

∫
Ω

pκ(ρκ)∇
∼
x · w
∼

dx
∼

dt

∣∣∣∣
≤ C

[
‖ρκ |u

∼
κ|2‖

L2(0,T ;L
6γ

4γ+3 (Ω))
+ ‖u

∼
κ‖L2(0,T ;H1(Ω))

]
‖w
∼
‖
L2(0,T ;W

1,
6γ

2γ−3 (Ω))

+ C

[
‖τ
≈

1(M ψ̂κ)‖
L2(0,T ;L

4
3 (Ω))

+ ‖%κ‖2
L4(0,T ;L

2d
d−1 (Ω))

]
‖∇
≈
x w
∼
‖L2(0,T ;L4(Ω))

+ ‖ρκ‖L∞(0,T ;Lγ(Ω)) ‖f
∼
‖L2(0,T ;L∞(Ω)) ‖w

∼
‖L2(0,T ;L3(Ω)) ≤ C ‖w

∼
‖L2(0,T ;W 1,s(Ω)),

(6.28)

where s = max{4, 6γ
2γ−3}. We now have the following analogue of Lemma 5.4.

Lemma 6.4. There exists a C ∈ R>0, independent of κ, such that∥∥∥∥∂(ρκ u
∼
κ)

∂t

∥∥∥∥
L

Γ+ϑ
Γ (0,T ;W 1,r

0 (Ω)′)

≤ C, (6.29)

where ϑ(γ) is defined as in (6.13), r = max{s, Γ+ϑ
ϑ } and s = max{4, 6γ

2γ−3}.
Hence, for a further subsequence of the subsequence of Lemma 6.2, it follows

that, as κ→ 0+,

ρκ u
∼
κ → ρ u

∼
weakly in W 1,Γ+ϑ

Γ (0, T ;W
∼

1,r
0 (Ω)′), (6.30a)

ρκ u
∼
κ → ρ u

∼
in Cw([0, T ];L

∼

2γ
γ+1 (Ω)),

strongly in L2(0, T ;H
∼

1(Ω)′), (6.30b)

ρκ u
∼
κ → ρ u

∼
weakly in L2(0, T ;L

∼

6γ
γ+6 (Ω)), (6.30c)

ρκ u
∼
κ ⊗ u

∼
κ → ρ u

∼
⊗ u
∼

weakly in L2(0, T ;L
≈

6γ
4γ+3 (Ω)), (6.30d)

ρκ → ρ weakly in Lγ+ϑ(ΩT ), (6.30e)

ργκ → ργ weakly in L
γ+ϑ
γ (ΩT ), (6.30f)

κ (ρ4
κ + ρΓ

κ)→ 0 weakly in L
Γ+ϑ

Γ (ΩT ), (6.30g)

where ργ ∈ L
γ+ϑ
γ

≥0 (ΩT ) remains to be identified.

Proof. It immediately follows from (6.28), (2.3) and (6.24) that, for all functions

w∼ ∈ L
Γ+ϑ
ϑ (0, T ;W∼

1,r
0 (Ω)), we have that∣∣∣∣ ∫ T

0

〈∂(ρκ u
∼
κ)

∂t
, w
∼

〉
W 1,r

0 (Ω)

dt

∣∣∣∣
≤ C ‖w

∼
‖L2(0,T ;W 1,s(Ω)) + ‖pκ(ρκ)‖

L
Γ+ϑ

Γ (ΩT )
‖w
∼
‖
L

Γ+ϑ
ϑ (0,T ;W 1,

Γ+ϑ
ϑ (Ω))

≤ C ‖w
∼
‖
L

Γ+ϑ
ϑ (0,T ;W 1,r(Ω))

, (6.31)
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where we have noted from (6.13) that Γ+ϑ
ϑ ≥ γ+ϑ

ϑ ≥ 2. The desired result (6.29)

then follows from (6.31).

The results (6.30a–d) follow similarly to (4.97a–e) from (6.9a), (6.29), (3.12a,b),

(3.11), (6.10b), and (6.5). The results (6.30e–g) follow immediately from (6.24) and

(2.3).

We now have the following analogue of Lemma 5.5.

Lemma 6.5. The triple (ρ, u∼, ψ̂), defined as in Lemmas 6.1 and 6.2, satisfies

∫ T

0

〈
∂ρ

∂t
, η

〉
W 1,6(Ω)

dt−
∫ T

0

∫
Ω

ρ u
∼
· ∇
∼
xη dx

∼
dt = 0 ∀η ∈ L2(0, T ;W 1,6(Ω)),

(6.32a)

with ρ(·, 0) = ρ0(·),

∫ T

0

〈
∂(ρ u

∼
)

∂t
, w
∼

〉
W 1,r

0 (Ω)

dt+

∫ T

0

∫
Ω

[
S
≈

(u
∼

)− ρ u
∼
⊗ u
∼
− cp ργ I

≈

]
: ∇
≈
x w
∼

dx
∼

dt

=

∫ T

0

∫
Ω

[
ρ f
∼
· w
∼
−
(
τ
≈

1(M ψ̂)− z %2 I
≈

)
: ∇
≈
x w
∼

]
dx
∼

dt

∀w
∼
∈ L

γ+ϑ
ϑ (0, T ;W

∼

1,r
0 (Ω)), (6.32b)

with (ρ u∼)(·, 0) = (ρ0 u∼0)(·), ϑ(γ) defined as in (6.13) and r = max{4, 6γ
2γ−3}, and

∫ T

0

〈
M

∂ψ̂

∂t
, ϕ

〉
Hs(Ω×D)

dt+
1

4λ

K∑
i=1

K∑
j=1

Aij

∫ T

0

∫
Ω×D

M ∇
∼
qj ψ̂ · ∇

∼
qiϕ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂ − u

∼
ψ̂
]
· ∇
∼
xϕ dq

∼
dx
∼

dt

−
∫ T

0

∫
Ω×D

M

K∑
i=1

[
σ
≈

(u
∼

) q
∼
i

]
ψ̂ · ∇

∼
qiϕ dq

∼
dx
∼

dt = 0

∀ϕ ∈ L2(0, T ;Hs(Ω×D)), (6.32c)

with ψ̂(·, 0) = ψ̂0(·) and s > 1 + 1
2 (K+ 1)d. In addition, the triple (ρ, u∼, ψ̂) satisfies,
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for a.a. t′ ∈ (0, T ),

1

2

∫
Ω

ρ(t′) |u
∼

(t′)|2 dx
∼

+

∫
Ω

P (ρ(t′)) dx
∼

+ k

∫
Ω×D

M F(ψ̂(t′)) dq
∼

dx
∼

+ µSc0

∫ t′

0

‖u
∼
‖2H1(Ω) dt

+ k

∫ t′

0

∫
Ω×D

M

[
a0

2λ

∣∣∣∣∇∼ q

√
ψ̂

∣∣∣∣2 + 2ε

∣∣∣∣∇∼ x

√
ψ̂

∣∣∣∣2
]

dq
∼

dx
∼

dt

+ z ‖%(t′)‖2L2(Ω) + 2 z ε

∫ t′

0

‖∇
∼
x%‖2L2(Ω) dt

≤ et
′
[

1

2

∫
Ω

ρ0 |u
∼

0|2 dx
∼

+

∫
Ω

P (ρ0) dx
∼

+ k

∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ z

∫
Ω

(∫
D

M ψ̂0 dq
∼

)2

dx
∼

+
1

2

∫ t′

0

‖f
∼
‖2L∞(Ω) dt

∫
Ω

ρ0 dx
∼

]
. (6.33)

Proof. Passing to the limit κ → 0+ for the subsequence of Lemma 6.4 in (5.27a)

yields (6.32a) subject to the stated initial condition, on noting (6.10a), (6.30c) and

that 6γ
γ+6 >

6
5 as γ > 3

2 .

Similarly to the proof of (4.118b), passing to the limit κ → 0+ for the

subsequence of Lemma 6.4 in (5.62) for any w∼ ∈ C∞0 (ΩT ) yields (6.32b) for

any w∼ ∈ C∞0 (ΩT ) subject to the stated initial condition, on noting (6.5),

(6.10a), (6.30a,b,d,f,g), (6.6e) and (6.8b). The desired result (6.32b) for any w∼ ∈
L
γ+ϑ
ϑ (0, T ;W∼

1,r
0 (Ω)) then follows from (6.28), (6.30f) and noting from (6.13) that

r ≥ γ+ϑ
ϑ ≥ 2. Similarly to the proof of (4.118c), passing to the limit κ → 0+ for

the subsequence of Lemma 6.4 in (5.27c) yields (6.32c) subject to the stated ini-

tial condition, on noting (6.5), (6.6a–d), (6.7) and (3.2). Similarly to the proof of

(4.119), we deduce (6.33) from (5.28) using the results (6.30d), (6.10c), (6.6a,b,f),

(6.5) and (6.8a).

We need to identify ργ in (6.32b) and (6.30f). Similarly to (6.14), with ` ∈ N,

we now introduce t : R≥0 → R≥0 and t` : R≥0 → R≥0 such that

t(s) := s and t`(s) :=

{
t(s) for 0 ≤ s ≤ `,
t(`) for ` ≤ s.

(6.34)

Then, similarly to (6.17), we have the renormalized equation, for any ` ∈ N,

∂t`(ρκ)

∂t
+∇
∼
x · (t`(ρκ)u

∼
κ) + (ρκ (t`)

′
+(ρκ)− t`(ρκ) )∇

∼
x · u
∼
κ = 0

in C∞0 (Rd × (0, T ))′, (6.35)

where (t`)
′
+(·) is defined similarly to (6.18). It follows from (6.34), (5.28) and (6.35)
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that, for any fixed ` ∈ N,

‖t`(ρκ)‖L∞(ΩT ) + ‖(ρκ (t`)
′
+(ρκ)− t`(ρκ))∇

∼
x · u
∼
κ‖L2(ΩT )

+

∥∥∥∥∂t`(ρκ)

∂t

∥∥∥∥
L2(0,T ;H1(Ω)′)

≤ C(`). (6.36)

In order to identify ργ in (6.32b) and (6.30f), we now apply Corollary 5.1 with

(5.38a,b) being (6.35) and (5.62) so that µ = µS

2 and λ = µB − µS

d , gn = t`(ρκ)

for a fixed ` ∈ N, u∼n = u∼κ, m∼ n = ρκ u∼κ, pn = pκ(ρκ), τ
≈n

= τ
≈
(M ψ̂κ), fn =

−(ρκ (t`)
′
+(ρκ) − t`(ρκ))∇∼ x · u∼κ and F∼ n = ρκ f

∼
. With {(ρκ, u∼κ, ψ̂κ)}κ>0 being the

subsequence (not indicated) of Lemma 6.4, we have that (5.37a–d) hold with g =

t`(ρ), u∼ = u∼, m∼ = ρ u∼ and p = cp ργ , and q <∞, ω =∞, z = 2γ
γ+1 and r = Γ+ϑ

Γ on

recalling (6.36), (3.12a,b), (6.5), (6.30b) and (6.30f,g). We note that z = 2γ
γ+1 >

6
5 as

γ > 3
2 . Hence, the constraints on q, r, ω and z hold. The results (5.37e,h) hold with

τ
≈

= τ
≈
(M ψ̂), F∼ = ρ f

∼
and s = γ+ϑ, on recalling (6.6e) and (6.30e), and noting that

4(d+2)
3d+4 ≥

q
q−1 . Finally, the result (5.47) holds with f = −(ρ (t`)′+(ρ)− t`(ρ))∇∼ x · u∼

on recalling (6.36). Hence, we obtain from (5.39) for the subsequence of Lemma 6.4

that, for any fixed ` ∈ N and for all ζ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ),

lim
κ→0+

∫ T

0

η

(∫
Ω

ζ t`(ρκ) [pκ(ρκ)− µ?∇
∼
x · u
∼
κ] dx

∼

)
dt

=

∫ T

0

η

(∫
Ω

ζ t`(ρ) [cp ργ − µ?∇
∼
x · u
∼

] dx
∼

)
dt, (6.37)

where µ? := (d−1)
d µS + µB .

We deduce from (6.37), (6.34), (2.3), (1.3), (6.30f,g) and (6.5) that, for any fixed

` ∈ N,

cp

[
t`(ρ) ργ − t`(ρ) ργ

]
= µ?

[
t`(ρ)∇

∼
x · u
∼
− t`(ρ)∇

∼
x · u
∼

]
a.e. in ΩT , (6.38)

where, as κ→ 0+,

t`(ρκ) ργκ → t`(ρ) ργ weakly in L
γ+ϑ
γ (ΩT ), (6.39a)

and t`(ρκ)∇
∼
x · u
∼
κ → t`(ρ)∇

∼
x · u
∼

weakly in L2(ΩT ). (6.39b)

We can now follow the discussion in Sections 7.10.2–7.10.5 in Novotný &

Straškraba24 to deduce that p(ρ) = p(ρ). For the benefit of the reader, we briefly

outline the argument. First, it follows from (6.30f) and (6.39a) that, for any fixed

` ∈ N,∫
ΩT

[
t`(ρ) ργ − t`(ρ) ργ

]
dx
∼

dt

= lim
κ→0+

[∫
ΩT

(t`(ρκ)− t`(ρ)) (ργκ − ργ) dx
∼

dt+

∫
ΩT

(t`(ρ)− t`(ρ)) (ργ − ργ) dx
∼

dt

]
≥ lim sup

κ→0+

∫
ΩT

|t`(ρκ)− t`(ρ)|γ+1 dx
∼

dt, (6.40)
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where we have noted that the second term on the second line is nonnegative as t`(s)

is concave and sγ is convex for s ∈ [0,∞).

We now introduce L` : R≥0 → R≥0, ` ∈ N, such that sL′`(s)− L`(s) = t`(s) for

all s ∈ [0,∞), so that

L`(s) :=

{
L(s) := s log s for 0 ≤ s ≤ `,
s log `+ s− ` for ` ≤ s.

(6.41)

Similarly to (5.57) and (6.17), one deduces, via renormalization, from (6.32a) and

(5.27a) that, for any fixed ` ∈ N and for any t′ ∈ (0, T ],∫
Ω

[L`(ρ)(t′)− L`(ρ0)] dx
∼

= −
∫ t′

0

∫
Ω

t`(ρ)∇
∼
x · u
∼

dx
∼

dt, (6.42a)∫
Ω

[L`(ρκ)(t′)− L`(ρ0)] dx
∼

= −
∫ t′

0

∫
Ω

t`(ρκ)∇
∼
x · u
∼
κ dx

∼
dt. (6.42b)

Although establishing (6.42b) is straightforward as ρκ ∈ Cw([0, T ];LΓ
≥0(Ω)), proving

(6.42a) is not, since ρ ∈ Cw([0, T ];Lγ≥0(Ω)), and so ρ may not be in L2(ΩT ) as

γ > 3
2 . Nevertheless, (6.42a) can still be established, see Lemma 7.57 in Novotný &

Straškraba24. We note that our ϑ(γ), recall (6.13), differs from the ϑ(γ) in Novotný

& Straškraba24 for γ ≥ 4, due to the presence of the extra stress term in the

momentum equation for our polymer model. However, as ρ ∈ L2(ΩT ) for γ ≥ 4,

Lemma 7.57 in Novotný & Straškraba24 is not required for such γ. Subtracting

(6.42a) from (6.42b), and passing to the limit κ → 0+, one deduces from (6.39b)

that, for any fixed ` ∈ N and for any t′ ∈ (0, T ],∫
Ω

[
L`(ρ)(t′)− L`(ρ)(t′)

]
dx
∼

=

∫ t′

0

∫
Ω

[
t`(ρ)∇

∼
x · u
∼
− t`(ρ)∇

∼
x · u
∼

]
dx
∼

dt, (6.43)

where, on noting (6.10a) and the convexity of L`,

L`(ρκ)(t′)→ L`(ρ)(t′) ≥ L`(ρ)(t′) weakly in Lγ(Ω), as κ→ 0+. (6.44)

It follows from (6.40), (6.38), (6.43), (6.44) and (6.4a) that, for any fixed ` ∈ N,

lim sup
κ→0+

‖t`(ρ)− t`(ρκ)‖γ+1
Lγ+1(ΩT ) ≤

µ?

cp

∫
ΩT

[
t`(ρ)∇

∼
x · u
∼
− t`(ρ)∇

∼
x · u
∼

]
dx
∼

dt

≤ µ?

cp

∫
ΩT

[
t`(ρ)− t`(ρ)

]
∇
∼
x · u
∼

dx
∼

dt

≤ C ‖t`(ρ)− t`(ρ)‖L2(ΩT )

≤ C lim sup
κ→0+

‖t`(ρ)− t`(ρκ)‖L2(ΩT )

≤ C lim sup
κ→0+

‖t`(ρ)− t`(ρκ)‖Lγ+1(ΩT ), (6.45)

where C ∈ R>0 is independent of ` and κ. It follows from (6.24), (6.30e) and (6.34)

that, for all ` ∈ N, κ > 0 and r ∈ [1, γ + ϑ),

‖ρκ − t`(ρκ)‖Lr(ΩT ) + ‖ρ− t`(ρ)‖Lr(ΩT ) + ‖ρ− t`(ρ)‖Lr(ΩT ) ≤ C `1−
γ+ϑ
r , (6.46)
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where C ∈ R>0 is independent of ` and κ. It follows from (6.45), (6.46) and (3.1)

that

lim
`→∞

lim sup
κ→0+

‖t`(ρ)− t`(ρκ)‖Lγ+1(ΩT ) = 0. (6.47)

It follows from (6.46), (6.47), (6.24), (3.1) and (6.30f), on extracting a further sub-

sequence (not indicated), that, as κ→ 0+,

ρκ → ρ strongly in Ls(ΩT ), for any s ∈ [1, γ + ϑ(γ)), (6.48a)

ργκ → ργ weakly in L
γ+θ
γ (ΩT ), that is, ργ = ργ . (6.48b)

Finally, we have the analogue of Theorem 5.1.

Theorem 6.1. The triple (ρ, u∼, ψ̂), defined as in Lemmas 6.1 and 6.2, is a global

weak solution to problem (P), in the sense that (6.32a,c), with their initial condi-

tions, hold and, letting r = max{4, 6γ
2γ−3},∫ T

0

〈
∂(ρ u

∼
)

∂t
, w
∼

〉
W 1,r

0 (Ω)

dt+

∫ T

0

∫
Ω

[
S
≈

(u
∼

)− ρ u
∼
⊗ u
∼
− cp ργ I

≈

]
: ∇
≈
x w
∼

dx
∼

dt

=

∫ T

0

∫
Ω

[
ρ f
∼
· w
∼
−
(
τ
≈

1(M ψ̂)− z %2 I
≈

)
: ∇
≈
x w
∼

]
dx
∼

dt

∀w
∼
∈ L

γ+ϑ
ϑ (0, T ;W

∼

1,r
0 (Ω)), (6.49)

with (ρ u∼)(·, 0) = (ρ0 u∼0)(·), ϑ(γ) defined as in (6.13). In addition, the weak solution

(ρ, u∼, ψ̂) satisfies (6.33).

Proof. The results (6.32a,c) and (6.33) have already been established in Lemma

6.5. Equation (6.49) was established in Lemma 6.5 with ργ replaced by ργ , see

(6.32b). The desired result (6.49) then follows from (6.32b) and (6.48b).
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