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Abstract  
The work describes an assessment of subset simulation (SubSim) techniques to increase the 

computational efficiency for the predictions of probabilistic dynamic behaviour in mistuned bladed 

disc systems. SubSim is an adaptive stochastic procedure to efficiently compute small failure 

probabilities, which are expressed as a product of large conditional failures probabilities by 

introducing intermediate failure events. The original version of SubSim with a classical modified 

Markov chain Monte Carlo (MCMC) method is used in this work to generate samples related to 

intermediate failure events. A 2-DOFs model with lumped parameters identified from a high-fidelity 

finite element model is used to represent a bladed disc. The statistics associated to the maximum 

forced frequency response amplitudes are evaluated from different levels of the blade mistuning using 

stiffness perturbations of the blades. Direct Monte Carlo simulations (MCS) are used to benchmark 

the results from the SubSim. The proposed methodology is shown to capture efficiently the statistical 

properties of the mistuned blades with less than 5% samples compared to the direct MCS method. 

Trade-off parametric studies of the SubSim method indicate that 2000 samples at each level yield an 

overall good computational efficiency and accuracy for the bladed disk system considered in this 

work. The study confirms that SubSim techniques can be effectively used in stochastic analysis of 

bladed disc systems with uncertainty related to the blade configurations. 
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1. Introduction 

 

A bladed disk typically consists in a set of disk/blade sectors designed to be identical to each other. 

This is however an ideal situation, because uncertainties associated to manufacturing, assembly 

tolerances and wear and tear create uneven distributions of the mechanical properties in individual 

blades, as well as in the disk. Dimensional and material uncertainties lead to departures of the blade 

natural frequencies from their nominal design values. This phenomenon is generally denoted as blade 

mistuning. Mistuning in the free response splits the repeated natural frequencies associated with 

circumferential modes and distorts the corresponding mode shapes [1-5]. At the same time, the 

circumferential mode shapes increase the harmonic content of nodal diameters, leading to coupling 

with engine-induced vibrations [6]. In the worst case scenario, mistuning also causes mode 

localization phenomena, for which the vibrational energy is transferred and confined to only a few 

blades in the rotor. This may result in dynamic deformations significantly larger than those estimated 

at design stage [7, 8]. Mistuning therefore compromises the high-cycle fatigue resistance of bladed 

disks, reducing the endurance and reliability of the whole engine. It is therefore important to predict 

accurately the effects on the maximum dynamic response of any of the blades in the assembly due to 

the uncertainties described above [9]. The high-percentile blade forced response obtained from 

stochastic analysis can be effectively used as an indicator to quantify the influence of such 

uncertainties [9].  

Bladed disks in turbomachinery rotors are commonly represented using detailed finite element models 

with dimensions well in excess of millions of DOFs. The size of these models can make the dynamic 

analysis of bladed disks with uncertainties significantly expensive, even when considering the power 

of modern computational hardware facilities. A cyclical symmetry analysis is usually employed for 

the efficient evaluation of the free and forced structural responses in tuned systems. However, full-

scale finite element models have to be used for mistuned bladed discs due to the asymmetrical nature 

of the overall response. These models are essentially extremely CPU intensive for the stochastic 

analysis of mistuned systems in computational grids that are not exoscale. As a consequence, various 

FE-based reduced order methods (ROMs) have been developed during the last two decades. The 

current state of the art ROMs used in mistuning applications can be broadly classified into two groups 

based on the modal reduction techniques used in their development. The first group dating between 

1983 and 2000 consists essentially in Component Mode Synthesis (CMS) techniques [10-12]. CMS 

approaches assume that the blades and the disk are distinct sub-structural elements, thus their modes 

are separately calculated via deterministic FE analyses. The second group of ROMs was initially 

introduced by Yang and Griffin in 2001 [13], and they are denoted as System Mode based Methods 

(SMM). These include the Fundamental Mistuning Model [14], the Component Mode Mistuning [15] 

and the Integral Mode Mistuning [1]. Lumped parameter models made from cyclic chains of spring-
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mass oscillators are commonly used to represent bladed discs. These simple models have been widely 

employed during the design stage in preliminary mistuning analysis since they can capture the essence 

of the existing in the bladed discs and require lower CPU times to run [6]. The lumped parameter 

models has also shown their suitability to investigate the mistuned forced response characteristics of 

bladed disks with stochastic distributions of uncertainties within their parameters [6, 9] 

MCS are commonly used in stochastic analysis of mistuned bladed disc systems for their 

computational robustness[16]. The main drawback of MCS is that it cannot yield small failure 

probabilities with a limited number of samples. Using MCS, failure probabilities smaller than 1/N 

cannot be evaluated with N samples, and a significantly higher number of samples have to be used to 

obtain a reliable estimation of a small probability event. For full-scale structures with a large number 

of degrees of freedom (DOFs), the computational costs increase significantly, sometimes reaching 

unacceptable levels. As a result, alternative simulations techniques have been used in mistuning, like 

traditional points-based methods (including both first and second reliability methods[17, 18]) and 

advanced mean value procedures [19]. However, these techniques fail to predict the distribution of 

maximum amplitudes from those associated with the stochastic variables, because of the non-convex 

performance function commonly used to define mistuning problems[9]. Alternatively, response 

surface methods are capable to approximate the highly nonlinear response surfaces in mistuning 

problems, but they require using very large numbers of sampling points [20]. Accelerated MCS has 

been widely used in mistuning analysis, its computational advantage being the fit to an assumed 

probabilistic distribution with few realizations from MCS [21]. Much debate has focused on the 

suitable type of distribution to represent the maximum blade forced response, being either a Weibull 

[22-24] or a Gaussian one [25]. Sanliturk et al have concluded that there is no unique distribution to 

describe blade amplitudes under different engine orders of excitation, and that accelerated MCS is 

therefore not a general approach to predict statistics in mistuning problems [26]. Importance Sampling 

(IS) is another effective technique to reduce the computational cost of stochastic predictions. The 

principle of this method is to shift the underlying distribution towards the failure region in order to 

gain information from rare events. The success of IS very depends on a careful choice of the 

importance sampling density distribution, which undoubtedly requires prior knowledge of the system 

in the failure region. The method works extremely well when applied to static and dynamic problems 

with a relatively low-dimensional structural problem. This is because when the dimension of the 

uncertain parameter space is not too large, the failure region is relatively simple to describe. However, 

for large structural problems, IS is generally shown to have poor efficiency, as demonstrated by Lee 

[9] using a radius-based IS method [27] for mistuning analysis. This is due to the large number of 

stochastic variables that influence the mistuning behaviour and the associated lack of “a priori” 

knowledge of the system failure region. Chan [28] recently proposed a new procedure to overcome 

the lack of such pre-knowledge for mistuning problems. He firstly used an optimisation analysis for 



	   4	  

identifying the failure region and then employed IS to characterise the corresponding conditional 

probabilities. The method is able to estimate very small conditional probabilities, but the identification 

step of the failure region is still computationally demanding.  

Regarding the reliability analysis of engineering systems, Au et.al [29] proposed the SubSim 

technique for efficiently computing small failure probabilities. The basic idea is to express the failure 

probability as a product of larger conditional failure probabilities by introducing intermediate failure 

events. With a proper choice of these intermediate events, the conditional failure probabilities can be 

made sufficiently large and thus estimated by means of simulations with a small number of samples. 

The advantage of the SubSim consists in its robustness with respect to dimension size and efficiency 

on small probabilities estimation. Most importantly, pre-knowledge of the system is not required [29], 

which makes this method a strong candidate for the stochastic analysis of mistuned bladed disc 

systems. The application of SubSim techniques in blade/disk assemblies requires the definition of a 

failure condition. In general, high-cycle fatigue endurance can be expressed using a power law of the 

vibration amplitudes [30]. Therefore failure can be considered to occur whenever the vibration 

amplitude associated to a characteristic mode in a mistuned system exceeds significantly the one of its 

tuned counterpart. In this paper, the focus is placed upon the estimation of the probability of large 

amplitude vibrations occurring in mistuned system, which will be considered as being the failure 

events, albeit no detailed fatigue endurance calculation will be carried out. This choice is motivated 

by the fact that, within the context of this paper, a lumped parameter model will is used to represent 

the overall rotor dynamics of the disk assembly, whereas endurance calculations would require detail 

knowledge of the local stress/strain field within the system. 

The original version of SubSim makes use of the MCMC [30] technique, based on the modified 

Metropolis-Hastings algorithm [31, 32], for generating conditional samples. Two newer variants to 

generate conditional samples have recently been developed for the causality exploration of dynamical 

systems. SubSim/Splitting is the first variant that is applicable to first-passage problems involving 

deterministic dynamical systems subjected to stochastic excitation. It makes use of trajectory splitting 

for generating conditional samples. Another variant, SubSim/Hybrid, uses a combined 

MCMC/Splitting strategy and so has the advantages of both MCMC and splitting; it is applicable to 

both uncertain and deterministic dynamical systems. These newer versions of SubSim use the same 

adaptive procedure as the original technique to generate conditional samples for higher levels based 

on those from lower levels. The performance of these three SubSim methods have been compared in 

Ref [17]. All three SubSim variants are proved effectively in problems with large numbers of 

stochastic values. The two variants using splitting are not considerably superior to the original version.  
 

To the best knowledge of the authors, the use of SubSim techniques in mistuning problem has not 

been investigated in open literature. This paper describes a feasibility study to assess the use of 
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SubSim simulation techniques to improve the computational efficiency of the prediction of 

probabilistic dynamic behaviour in mistuned bladed disc systems. The bladed disc is represented by a 

2-DOFs model with lumped parameters identified from a full-scale finite element model. The 

procedure to implement the original version of SubSim with classical MCMC techniques is then 

illustrated. After that, the direct MCS method using new convergent criteria, as the benchmark to the 

SubSim method, is described and applied in the mistuning problem. The statistics associated to the 

maximum forced frequency response amplitudes from both SubSim and MCS methods are then 

evaluated, compared and discussed, followed by a trade-off parametric study to choose the optimum 

conditional sample size in the SubSim method.  

 

2. Representative model for a bladed disc system 

Figure 1 show the case study used in this work, which consists in a bladed disc with 24 blades. The 

lumped parameter model of the disc is made with two DOFs per sector, as done in other uncertainty 

propagation analyses [18, 19]. Figure 2 shows the layout of the lumped parameter model used, with 

one DOF representing the blade motion and the other one representing the disc motion. The blade 

DOF is associated to the stiffness 𝑘! and mass  𝑚!. The parameters 𝑘! and 𝑚! represent the stiffness 

and mass of the disc, respectively. The stiffness 𝑘!   stands for the coupling between the blades through 

the disc. The generalised coordinates 𝑞!!, 𝑞!! are the dynamic responses of the blade and the disc at the 

𝑖!!  sector respectively. Engine order excitation is applied on the blade DOFs. If one assumes 

harmonic oscillations occurring to the whole system and the presence of structural damping, the 

equations of motions of the blade-disk system can be written in a matrix form as: 

−𝜔!𝑴 + 1 + 𝜂𝑖 𝑲 𝒒 = 𝑭 (1) 

In Eq. (1), 𝜂  is the structural damping factor, 𝑴, 𝑲 are the global mass and stiffness matrices, while 𝒒 

and 𝑭  represents the vectors of the dynamic displacements and external generalized forces 

respectively.  The formulation of these matrices is detailed in [6, 9].	  

This work associates the presence of uncertainty distributions only to the stiffness of the blade.The 

equation of motion of the system in Eq.(1) is therefore modified by introducing the nominal mass and 

stiffness matrices 𝑴𝟎,𝑲𝟎  and a global perturbation of the stiffness matrix ∆𝑲 , which can be 

expressed as: 

−𝜔!𝑴𝟎 + 1 + 𝜂𝑖 𝑲𝟎 + ∆𝑲 𝒒 = 𝑭	   (2)	  

∆𝑲 = ∆𝑲𝒃 −∆𝑲𝒃

−∆𝑲𝒃 ∆𝑲𝒃 ,	  ∆𝑲𝒃 = 𝑑𝑖𝑎𝑔(∆𝑘!! ,∆𝑘!! ,⋯ ,∆𝑘!!
! ),  ∆𝑘!! = 𝛿!!𝑘!	  

(3)	  
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∆𝑲𝒃 represents a perturbation matrix depending on the stiffness of the blades only, with δ!!  giving the 

perturbation of the stiffness for the ith blade from its nominal value 𝑘!. The values of the perturbation 

are randomly generated according to a log-normal distribution, which guarantees the presence of 

positive values of the spring stiffness. It is worth noticing that a normal distribution cannot be used 

because it may lead to the presence of negative spring stiffness, which may be misleading in a 

mistuning reliability analysis especially for cases focusing on the tail of the distribution (i.e., small 

probabilities). 

   
The reference finite element model of the bladed disc shown in Figure 1 is built using the commercial 

software ANSYS Rel. 11.0 (Ansys Inc.,2008). The model consists in 1344 3D SOLID95 8-node 

elements. Each node has three translational DOFs. The total number of DOFs is 10,752. The rotor is 

entirely made of titanium, considered as a homogenous and isotropic material (Young’s modulus of 

115 GPa, density of 4800 kg/m3 and Poisson’s ratio of 0.32). The blade has a high slenderness ratio 

(10), and a uniform rectangular cross section. The model is clamped at the inner circle of the disc by 

zeroing all DOFs. A modal analysis has been performed on the finite element model using a Block 

Lanczos method on using a PC with an Intel 3.2 GHz dual-core processor and 4 GB RAM.  

Figure 3 shows the variations of the first six natural frequencies (NFs) against the nodal diameters 

(NDs) of the finite element model that characterizes the free vibration of a bladed disc. The fact that 

the disc itself becomes more rigid with the increasing NDs makes the NFs of the rotor gradually 

increase and finally approach the NFs of the blade alone. The horizontal lines at high NDs represent 

the blade-dominated modes, while the slope-varying lines at low NDs represent disk-dominated ones. 

The veering regions in between indicate some significant disk-blade interactions which have an 

important effect on the forced frequency response of mistuned systems[6]. From Figure 3, it is 

possible to observe that the 2nd and 3rd out-of-plane flapping modes exhibit significant changes of the 

NFs within specific intervals of the NDs. This suggests the existence of inter-blade coupling in these 

modes that facilitates the energy transfer between the blades through the disc. Therefore this 

mechanism can generate mode localization and extremely high forced frequency responses. Therefore, 

the 2nd and 3rd out of plane flapping modes are among the most interesting mode shapes for mistuning 

analysis.  

The parameters of the lumped model are identified from the response of the full scale FE model based 

on the geometric characteristics of the natural frequency curves in the veering region. It is worth 

noticing that this parametric identification is not aimed at capturing the specific modes from the full-

scale finite element model, but tends to identify the variation of the natural frequencies in the veering 

regions, which are more significant for mistuning analysis purposes. This fitting process follows the 

methodology proposed in [20] to identify the main lumped stiffness and mass parameters 
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(𝑘! , 𝑘! , 𝑘! ,𝑚! ,𝑚!). Setting the concentrated stiffness and mass parameters kb and mb to unity, the 

lumped parameter model is expressed in terms of non-dimensional stiffness and mass variables, as 

shown in Table 1.  A non-dimensional frequency ξ = ω/ω0 is also introduced, for which ω0 

corresponds to the natural frequency of mode of the blade alone in the lumped parameter model 

calculated with the values given in Table 1 and 2nd flap mode in the finite element model at 12th nodal 

diameter respectively. Making use of this non-dimensional frequency, Figure 4 shows the direct 

comparison of the variation of the NFs with respect to the NDs between the lumped parameter and the 

FE model. The two models show a general good agreement, in particular in the veering region at low 

NDs (as expected). It can be therefore concluded that the lumped parameter model is an adequate 

representation of the dynamic behaviour of the two dominating flapping modes in the bladed disc 

system. 

 

Early high cycle fatigue failure of blades is mainly attributed to extremely high dynamic responses in 

the bladed disc system [28]. Therefore, a physical quantity of great interest here is the maximum 

amplitude of the dynamic response for any of the blades across a specific frequency range. The 

maximum amplitude factor used in this case study is defined as the ratio between the largest responses 

of the forced vibration in a given mistuned bladed disc to the one found in a tuned counterpart under 

the same type of excitation. In the present analysis, the 2nd order engine excitation is selected so that 

the veering region can be excited. The non-dimensional frequency bandwidth used is normalized by 

the first natural frequency of the tuned rotor at the 2nd nodal diameter to include the resonance 

frequency point of the blade mode. The structural damping factor is set at 0.5% [20]. Figure 5 shows 

the frequency response of 24 blades in a mistuned system from the lumped parameter model, where 

the maximum amplification factor is about 1.4. Previous works have demonstrated that the 

distribution of the maximum amplitude factor is significantly dependent upon the distribution of the 

mistuning patterns on the blades [33]. The high percentile of the amplitude factor can be reliably 

predicted when one has a good knowledge of the distribution of the mistuned blades. However, in 

practice the statistical distribution associated to the properties of the blades is not well known, mainly 

due to the significant costs involved in the determination of these properties using full-scale bladed 

disc in a Design of Experiments (DoE) environment. Because of the level of uncertainties associated 

to the distribution of the blade properties, the focus of the estimated high percentile of the maximum 

amplitude factor is within the range between 95th and 99.5th [6, 9, 33, 34], i.e. at failure probability 

levels up to 10!!.  

 

 

 
3. Subset simulation with MCMC 
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As previously discussed, SubSim is an adaptive stochastic procedure that allows to compute 

efficiently small failure probabilities. This technique is based on the fact that a small failure 

probability can be expressed as a product of large values of conditional failure probabilities by 

introducing several intermediate failure events. The vibration-induced failure of the blade under high 

cycle fatigue  is here considered as the key reliability indicator for mistuning problem [33]. Therefore, 

the probability of exceeding some given vibration amplitude levels is considered as an indication of 

“failure” in the analysis that follows. 

Let F denote the failure domain and  F!  , i = 1,… ,m are the intermediate events which can be 

expressed as: 

𝐹! = 𝐻 > ℎ! , 𝑖 = 1,… ,𝑚,  ℎ! < ℎ! < ⋯ < ℎ!  (4) 

In Eq.(4), H is the response function of the maximum amplitude factor; ℎ!, ℎ!,… , ℎ!  is a sequence of 

amplitude thresholds each representing an intermediate event. Accordingly, the intermediate failure 

region F!  can be arranged such that F! ⊃ F! ⊃ ⋯ ⊃ F! = F in order to form a decreasing sequence of 

failure events. The failure probability P!  can be evaluated as the conditional probability of the last 

subset F! given that for F!!! and the probability of the event belonging to the subset  F!!!.This 

process can be recursively repeated as:  

𝑃! = 𝑃 𝐹!|𝐹!!! 𝑃 𝐹!!! = ⋯ = 𝑃 𝐹! 𝑃 𝐹!|𝐹!!!

!

!!!

 
 
(5) 

Eq. (5) shows that P!  can be efficiently evaluated as the product of several conditional probabilities, in 

lieu of calculating P! directly. However, the optimum intermediate threshold values are difficult to 

determine for different conditional levels. Intermediate thresholds are therefore chosen “adaptively” 

so that each of the conditional probabilities is approximately equal to a common specified value.  

To evaluate P! in Eq. (11),  P F!  and P F!|F!!!  need to be computed. The unconditional probability 

P F!  for the first subset can be readily estimated using MCS. However, in order to reduce the 

computational effort involved in using MCS, a Markov Chain MCS technique based on the modified 

Metropolis–Hastings (M-H) algorithm is used herein to generate efficiently samples that satisfy the 

prescribed conditional probability. The modified M-H algorithm can overcome the difficulties of its 

original version to sample the rare evens in the high dimensional problems. More details regarding the 

modified M-H algorithm can be found in references [29, 31, 32]. It is worth noting that the probability 

distribution selected in the algorithm governs the choice of the candidate samples and, consequently, 

the overall computational cost of the M-H algorithm [29]. 

The parameters for the SubSim method have to be set before the actual simulation of the mistuning 

problem. These consist of the conditional probability  𝑃!, the number of levels m, and the number of 

samples for each level 𝑁!, as well as the probability density function (PDF) for the M-H algorithm. 
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𝑃!= 0.1 is chosen for the case study considered here and, as discussed by Au and Beck [29], this value 

of conditional probability is regarded as a reasonable choice. A constant number of samples N (1500 

in our case) is considered for each different conditional levels. The number of levels m is expressed as: 

m =
log  (P!)
log  (P!)

 
 

(6) 

The value of m is dependent on the chosen reliability level. In principle the level sample sizes 𝑁! 

cannot be determined “a priori”. However, a coarse initial estimation originally proposed in Ref [29] 

can be used:  

𝑁! ≈ 𝑚𝑁 = log  (P!) !×
(1 + 𝑟)(1 − 𝑝!)
P! log  (P!) !𝛿!

 
(7) 

 

 

In Eq. (7), the exponent r specifies the correlation of the 𝑃! for each individual subset, while 𝛿 is the 

variance coefficient associated with the failure probability𝑃!. A Log normal distribution with a much 

smaller standard deviation is used as the assumed PDF in the M-H algorithm. 

The procedure for adaptively generating samples of conditional levels is illustrated in Figure 6. For 

the mistuning problem, the method is implemented according to the following steps: 

Step 1: Randomly generate N samples of blade stiffness perturbation vectors by direct MCS for the 

first unconditional case; evaluate the corresponding maximum amplitude factors for each mistuning 

pattern; choose an appropriate conditional probability  p!. 

Step 2: Choose the failure threshold h! such that (1 − p!)N   responses fall outside the subset F! and 

p!N samples that belong to  F!; the samples inside F! are the original conditional samples at level 1. 

Step 3: Implement modified M-H algorithm with these original samples to simulate an additional 

(1 − p!)N  conditional samples at the conditional level 1. 

 

Step 4: Similarly, set h! so that (1 − p!)N  responses lie out of the subset  F!; the rest of the p!N 

samples provide seeds for applying the M-H algorithm to generate the samples for conditional level 2. 
 

Step 5: repeat the procedure above for higher conditional levels until the samples for the specified 

conditional level m have been generated; then the failure probability can be evaluated. 
 

4. Benchmark Monte Carlo Simulations 
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The MCS is used to benchmark the results obtained from the SubSim method. The true failure 

probability  𝑝 is approximately evaluated by direct MCS via calculating the event function 𝐻(𝑥!) for a 

number of samples N: 

𝑝 ≈ 𝑝!"# =
1
𝑁

𝐻(𝑥!)
!

!!!

 
 

 (8) 

 

In most cases, extremely large values of N have to be selected to ensure convergence, however this 

may lead to severe computational penalties.  

To quantify the convergence properties of direct MCS methods, in this paper it is used the concept of 

confidence interval. A  100 1 − α %  confidence interval means that there is 100 1 − α % chance 

that the “true” probability will fall within a range  2∆p wide from the estimated value, i.e.: 

P 𝑝!"# − ∆𝑝 ≤ 𝑝 ≤ 𝑝!"# + ∆𝑝 = 1 − α  (9) 

 

In Eq. (9), the half-width of the confidence interval ∆p can be evaluated using the sample variance 

𝜎!"#!     and sample size N: 

∆𝑝 = 𝑧!!!,!!!/!
𝜎!"#!

𝑁
 

 

(10) 

 

 In (10), the term z is the number of DOFs in the student’s t-distribution that is dependent on the 

sample size and the required confidence level.  Typically, a 95% confidence level is taken for 

reliability analysis, so that z approaches 1.96 when N approaches infinity [27]. On the other hand, one 

can estimate the total number of samples N from Eq. (10) for any given failure probability and 

confidence level. 

By virtue of the law of large numbers, the sample variance 𝜎!"#!   can be approximated using the 

following: 

        𝜎!"#! ≈ 𝑝!"#(1 − 𝑝!"#) (11) 

 

Figure 7 shows the variations of the relative half width (∆!
!
)% with the sample size for different 

failure  probability  levels. The relative half width for p = 0.05 and p = 0.01  levels is smaller than 25% 

when using 10,000 samples. Considering the same number of samples,  (∆!
!
)% significantly widens, 
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reaching 40% and 60% respectively for p = 0.005 and p = 0.001 levels. If one assumes that the 

convergence criterion of the MCS method is satisfied when the relative half width of the 95% 

confident interval is less than 20%, the number of samples for p = 10!!, 10!!,can be estimated at 

  10!, 10! respectively. In other words, when using the same convergence criterion for each of the 

MSC runs, the sample size must be one order of magnitude larger than the associated inverse 

probability.  

Figure 8 shows the probability density function (PDF) of the maximum amplitude factors calculated 

with the representative lumped parameter model using the MCS and considering a 0.5% coefficient of 

variance of the blades stiffness for 10,000 samples. By using a log normal distribution to generate 

blade stiffness perturbations, the perturbation is always larger than−100%. The maximum amplitude 

factors vary from 1 to 2.5, with a mean of about 1.8017 and standard deviation of 0.1592. The 

distribution of the maximum amplitude factors has been then fitted using Lognormal, Weibull and a 

generalized extreme value distribution. The log likelihoods of these three fitting distributions are 

4331.4, 3285.02 and 4380.84, respectively. As the higher value of log likelihood indicates better fit, 

these low values of likelihood indicate the maximum amplitude factors do not accurately follows 

either the Normal, Webull distributions or Generalized extreme value distribution, a feature that has 

been already observed by Sanliturk [26]. It can be however noticed that the Generalized extreme 

value distribution provides the best fitting of the maximum amplitude factors amongst the three 

distributions used.  

The failure distribution of the responses is shown in Figure 9, together with the upper and lower 

bounds of the 95% confidence interval. As expected, the half width range gradually expands with 

decreasing failure probability. The 95% confidence interval for 10!! failure probability of mistuning 

is between 0.0008 and 0.0012 (the relative half width is 20%, i.e. the MCS convergence criterion is 

satisfied). However, to estimate small failure probability below   10!! , the relative half width 

percentage of ‘true’ probability widens, reaching about 100%. If the current sample size were used, 

one would obtain highly unreliable failure probability estimations. Therefore, a sample size at least 

one order of magnitude larger would be needed to estimate the one order smaller failure probability 

level (see Figure 7).  

 

 

5. Main results and discussions 

Figure 10 shows the failure probability distributions as estimated from the SubSim method and the 

MCS for the mistuned bladed disc systems. As stated above, a failure probability up to 10!!   is 
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considered because of the uncertainties associated to the distribution of the blade properties in 

practical cases. Three conditional levels and 1500 samples in each level are used to compute the 

failure probability using the SubSim technique. The result from the MCS with 100,000 samples 

provides the benchmark for the SubSim method. The relative half width of the estimated failure 

probability on the level of  10!!    is close to 20%.  

The green curve in the figure represents the average value of 10 independent SubSim simulations. The 

SubSim and MSC results (in blue) agree quite well within the range of probability considered, except 

for the case of extremely low failure probabilities (below  10!!). This is mainly due to the large 

uncertainty associated to the MCS results, which are not converging for probability values below 10-4 

with the current sample size and the insufficient conditional levels used in the SubSim method. It is 

worth remarking that the SubSim technique allows estimating the probability down to a value of 10-4, 

which indicates that the estimation of the sample size for each conditional level from Eq. (7) is 

conservative. Nonetheless, the number of samples used in the SubSim method is less than 5% the one 

required by using the MCS. This demonstrates the very significant improvement of the computational 

efficiency provided by the SubSim approach. The results of the SubSim method are also compared 

with the ones from the MCS with the same sample size (in red). Compared to SubSim, the range of 

the converged failure probabilities obtained by the MCS is limited to less than   10!! . In the 

probability range from   10!!  to   10!!  the MCS with a reduced sample size of 4500 shows a 

significant difference with the benchmark case (100,000 samples).  

Figure 11 shows the different percentile amplitude factor of the PDF between the MCS (100,000 

samples) and the SubSim (3 levels, 1500 samples each) for different perturbation levels of the blade 

stiffness. In the SubSim method, the ratio between the standard deviation of the PDF used in modified 

M-H algorithm and the variance of the mistuning levels is kept constant at 20% through the whole 

sensitivity study.  The percentile amplitude factors increase rapidly for a low perturbation level, i.e. 

below 0.5%. With a further increase of the mistuning level the amplitude factors slightly decrease and 

then remain virtually constant. The variations of the amplitude factors is qualitatively similar to the 

one reported in [21], which further confirms the applicability of the current lumped parameter model 

for statistical investigations of mistuning patterns. Figure 11 also shows that the predictions of the 

amplitude factor from the SubSim method are always larger than the one predicted by the MCS on the 

99 percentile and 99.5 percentile amplitude factors. This fact can be mainly attributed to the large 

standard deviation of the PDF used for the modified M-H algorithm to generate samples in the 

conditional levels. There is an excellent agreement between the three types of percentiles response 

from the MCS and the SubSim method, especially on the 95th percentile amplitude factor. With the 

mistuning level varying from 0.01% to 2%, the average differences of the amplitude factors between 

SubSim and MCS for the 99.5th, 99th and 95th percentiles are 0.8%, 0.4% and 0.2% respectively.  
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Figure 12 also shows the comparison between the relative errors for these four sets of amplitude 

factors against the MCS results at different mistuning levels. The largest relative errors for the 99.5th 

and 99th percentiles occur within the most sensitive range of the variance of the amplitude factor 

perturbation levels (between 0.0006 and 0.004). 

 

When the variance varies from 0.06% to 0.5% the amplitude factor of the mistuned system is sharply 

increased with the glowing mistuning level. The ratio of standard deviation of proposed PDF in 

modified M-H algorithm to variance of the mistuning level however remains the same during the 

whole range. This leads to relatively large standard deviation in this sensitive range, and therefore 

slightly large amplitude factors in difference percentiles – from here the explanation about the larger 

amplitude factors predicted by SubSim compared to the ones calculated by MCS. Smaller errors 

would be obtained by decreasing the standard deviation of the proposed PDF in modified M-H 

algorithm. The standard deviation used in M-H algorithm should be adjusted in an adaptive manner 

with respect to the sensitivity of the amplitude factors versus the mistuning levels 

 

The dependence of the coefficient of variation (c.o.v.) versus the failure probability from 10 sets of 

independent SubSim runs (4 levels, 6000 samples) is shown in Figure 13. For the comparison, the 

c.o.v of the MCS estimate are illustrated at a particular failure probability level using the same total 

number of sample as in SubSim (N=1500, 3000, 4500, 6000 for 𝑃!= 10!!, 10!!, 10!!, 10!!, 

respectively). Therefore, the variability between the two methods can be compared at approximately 

the same computational effort. The c.o.v. for SubSim almost decreases linearly with the increasing 

failure probability, while the c.o.v. for MCS decreases almost exponentially. The c.o.v. calculated by 

the SubSim and MCS methods are almost the same within the ‘large’ failure probability region (from 

10!!  to   10!!), mainly because the SubSim procedure for relatively large failure probability is 

computed from an initial MCS run. However, when the failure probability is smaller than 10-2 one can 

observe a marked difference between the SubSim results and the MCS simulations. The latter do not 

converge in probability, while the former do. This is a further indication of the huge computational 

advantage of the SubSim technique over the MCS when the assumed failure probability becomes 

smaller. SubSim method would obviously stand out and have a better convergence than MCS if the 

interested failure probability is less than 0.01. 

 

 

6. Trade-off parametric study 

The number of samples in each conditional level is the key parameter governing the computational 

cost of the SubSim method. If the sample size is too large, then the computational cost will tend to 
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approach the MCS one, whilst an insufficient sample size would lead to poor accuracy in the 

probability estimation. The coarse estimate of the sample size yielded by Eq. (7) may indeed not be 

accurate, since it is dependent on the choice of the exponent𝑟. A trade-off study is therefore carried 

out to investigate the optimum number of samples for the mistuning problem in the case study of this 

paper. Figure 14 shows the comparisons between c.o.v. related to different sample sizes. The 

efficiency of the SubSim is strongly improved when the sample size increases from 500 to 2000 in the 

interested failure probability range from 0.01 to 0.001. However, for a number of samples above 2000, 

where the values of the variance cluster between 0.5 and 0.6 the increase of the sample size yields 

little benefit. Figure 15 shows the comparison of normalized computing time for different conditional 

sample sizes. The computational expense increases linearly with the sample size, and a sample 

population of 2000 is therefore chosen as a sensible choice for the case study considered in this paper. 

This however implies that Eq.(7) can underestimate slightly (20%) the sample size required for the 

high number of stochastic variables considered in this work. This problem may be further exacerbated 

if the number of DOFs is increased.        

7. Conclusions 

The main objective of this work is to investigate the feasibility of applying the SubSim method to 

mistuned bladed disc systems in order to reduce the computational costs associated to the analysis. 

The traditional MCS does provide a simple and robust approach for the stochastic analysis of 

mistuning problems, but the associated computational cost penalties are significant, especially when 

the estimation of relatively small failure probabilities is sought. The applicability of importance 

sampling techniques to MCS is limited by the required “a priori” knowledge of the system failure 

region, which is difficult to characterize in large-scale systems. SubSim is an adaptive stochastic 

procedure for computing efficiently small failure probabilities without the need of any “a priori” 

knowledge of the system, and provides the potential to reduce computational costs in mistuning 

problems. A 2-DOFs model with lumped parameters identified from a finite element model is 

developed to represent a bladed disc. The original version of SubSim with a classical modified 

MCMC method is used in this work to simulate samples related to intermediate failure events. The 

statistics associated to the maximum forced frequency response amplitudes are evaluated from 

different levels of the blade mistuning introducing stiffness perturbations in the blades.  

Direct MCS approaches are used to benchmark the results from the SubSim based analyses. The 

concept of confidence interval is introduced to quantify the uncertainty of MCS and determine an 

adequate sample size for convergence in probability. SubSim is shown to capture in an efficient way 

the statistical properties of the mistuned blades for a wide range of stiffness perturbation levels. The 

number of samples required by the SubSim approach is less than 5% of the one required by the MCS 

method. Considering the same sample size, the two methods have comparable computational costs for 
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failure probabilities ranging from   10!! to   10!! . However, when estimating failure probability 

between  10!! to  10!!, the SubSim method is at maximum twice as efficient as the benchmark MCS. 

It is also found that the largest relative errors of amplitude factors using SubSim method occur in the 

most sensitive range of mistuning levels. It suggests that the standard deviation of the probability 

density function in the modified M-H algorithm needs to be adaptively selected with respect to the 

sensitivity of amplitude factors to mistuning levels. Trade-off parametric studies further indicate that 

an overall conditional probability level of 0.1 combined with 2000 samples at each intermediate 

failure level yield an overall accurate solution of the mistuning problem considered here with greatly 

reduced computational costs. The study confirms that SubSim techniques can be effectively used in 

stochastic analysis of bladed disc systems with uncertainty dependent on the blades configuration.  
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Figures	  and	  Tables	  

  
Figure 1  finite element model of a bladed disc Figure 2. Two DOFs per sector model  

	  

	  

	  

Figure	  3	  	  Natural	  frequencies	  versus	  nodal	  diameters	  (FE)	  

	  

 

Table 1 Parameters identified for lumped parameter model 
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𝑚!/𝑚! 200 

	  

	  

Figure	  4	  Comparisons	  of	  natural	  frequencies	  against	  	  nodal	  diameters	  between	  the	  lumped	  

parameter	  and	  finite	  element	  models	  	  
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Figure 5 An example of blades frequency response from a mistuned bladed disc by the 

lumped parameter model  

 

 
Figure 6  Illustration of the subset simulation method (SubSim) 
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Figure 7 Variations of relative half width with sample size of MCS in different probability levels  

when 100 1 − α % = 95% 

 

 

 
Figure 8 Probability density function of maximum amplitude factors 
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Figure 9  Failure probability distribution  

 
Figure 10  Failure probability distribution comparison  between the SS and MCS 
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Figure  11 Maximum amplification factor for various coefficient of variance 

 

 
Figure 12 Relative error comparison for various coefficient of variance 
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Figure 13 Coefficient of variation of failure probability 

	  

 
Figure 14    Coefficient of Variation comparisons with different conditional sample size 
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Figure 15  Normalized computing time comparisons in different conditional sample size 
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