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Abstract.

So-called “non-parametric” statistical methods are often in fact based on pop-
ulation parameters, which can be estimated (with confidence limits) using the
corresponding sample statistics. This article reviews the uses of three such param-
eters, namely Kendall’s τa, Somers’ D and the Hodges-Lehmann median difference.
Confidence intervals for these are demonstrated using the somersd package. It is
argued that confidence limits for these parameters, and their differences, are more
informative than the traditional practice of reporting only P -values. These three
parameters are also important in defining other tests and parameters, such as the
Wilcoxon test, the area under the receiver operating characteristic (ROC) curve,
Harrell’s C, and the Theil median slope.
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1 Introduction

Rank-based statistical methods are sometimes called “non-parametric” statistical meth-
ods. However, they are usually in fact based on population parameters, which can be
estimated using confidence intervals around the corresponding sample statistics. Tra-
ditionally, these sample statistics are used for significance tests of the hypothesis that
the population parameter is zero. However, statisticians increasingly recommend con-
fidence intervals in preference to P -values alone, for rank-based parameters as well as
for regression parameters such as mean differences and relative risks.

Three important rank-based parameters are Kendall’s τa, Somers’ D (which is de-
fined in terms of Kendall’s τa), and the Hodges-Lehmann median difference (which is
defined in terms of Somers’ D). This review aims to summarize the use and estimation
of these parameters, and their links to methods possibly more familiar.

1.1 The somersd package

The methods will be demonstrated using the somersd package. In its present form,
the package contains two programs, somersd (which calculates confidence intervals for
Kendall’s τa and Somers’ D) and cendif (which calculates confidence limits for median
and other percentile differences). The original version of somersd was presented (with
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methods and formulae) in Newson (2000a) and updated by Newson (2000b, 2000c).
The original version of cendif (with methods and formulae) was presented in Newson
(2000d). The most up-to-date version of the somersd package at any time is down-
loadable from SSC. somersd offers a choice of normalizing and/or variance-stabilizing
transformations, notably the arcsine and the hyperbolic arctangent. It also offers a
cluster option.

2 Kendall’s τa and Somers’ D

Given two variables X and Y , sampled jointly from a bivariate distribution, the pop-
ulation value of Kendall’s τa (Kendall, 1938; Kendall and Gibbons, 1990) is defined
as

τXY = E [sign(X1 −X2) sign(Y1 − Y2)] , (1)

where (X1, Y1) and (X2, Y2) are bivariate random variables sampled independently from
the same population, and E[·] denotes expectation. The population value of Somers’ D
(Somers, 1962) is defined as

DY X =
τXY

τXX
. (2)

Therefore, τXY is the difference between two probabilities, namely the probabilities of
concordance and discordance between the X-values and the Y -values. The X-values
and Y -values are said to be concordant if the larger of the two X-values is associated
with the larger of the two Y -values, and they are said to be discordant if the larger
X-value is associated with the smaller Y -value. DY X is the difference between the two
corresponding conditional probabilities, given that the two X-values are not equal.

Kendall’s τa is the covariance between sign(X1 − X2) and sign(Y1 − Y2), whereas
Somers’ D is the regression coefficient of sign(Y1 − Y2) with respect to sign(X1 −X2).
The corresponding correlation coefficient between sign(X1 − X2) and sign(Y1 − Y2) is
known as Kendall’s τb, and is defined as

τ
(b)
XY = sign(τXY )×

√
DXY DY X , (3)

the geometric mean of the two regression coefficients DY X and DXY multiplied by their
common sign. Kendall’s τa and τb are both calculated by ktau, but τb is more commonly
quoted than either Kendall’s τa or Somers’ D. However, τa is more easily interpreted in
words to non-statisticians. For instance, if two medical statistics lecturers (Lecturer A
and Lecturer B) are double-marking exam scripts, and Kendall’s τa between their two
marks is 0.7, then this means that, given two exam scripts and asked which of the two is
better, the two statisticians are 70% more likely to agree than to disagree. (Agreement
and disagreement are defined in the strictest sense of concordance and discordance,
respectively, excluding cases where tied marks are awarded by either lecturer.)

Differences between concordance and discordance probabilities (such as Somers’ D
and Kendall’s τa) have the attractive property that they lie on a scale from −1 to
1, where values of 1, −1 and 0 signify a perfect positive relationship, a perfect neg-
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ative relationship, and no overall ordinal relationship at all, respectively. Concor-
dance/discordance ratios, on the other hand, are on a scale from 0 to ∞, with values
of 1 in the case of statistical independence. If both X and Y are binary, then their
concordance/discordance ratio is their odds ratio.

An alternative parameter used in defining rank methods is Spearman’s rS , defined as
the product-moment correlation coefficient between the respective cumulative distribu-
tion functions (CDFs) of the Xi and the Yi, and estimated by the correlation coefficient
of the corresponding ranks. rS is on a scale from −1 to 1, but is not interpretable as
a difference between probabilities. As Kendall and Gibbons (1990) argue, confidence
intervals for Spearman’s rS are less reliable and less interpretable than confidence in-
tervals for Kendall’s τ -parameters, but the sample Spearman’s rS is much more easily
calculated without a computer. This was an important consideration when Spearman’s
rS was originally advocated (Spearman, 1904). Kendall’s τ -parameters were introduced
under their present name by Kendall (1938), but parameters based on concordance
and discordance probabilities were discussed even earlier (e.g. Fechner (1897)). Kruskal
(1958) gives a good account of Kendall’s τa, Spearman’s rS and other ordinal correlation
measures, including historical references.

2.1 Confidence intervals vs. significance tests

The population parameters described above can be estimated by the corresponding
sample statistics, such as the sample Kendall’s τa (τ̂XY ) or the sample Somers’ D
(D̂Y X). Traditionally, however, these sample statistics are used only to test the null
hypothesis that the corresponding population parameter is zero. In Stata, ktau tests
the hypothesis that Kendall’s τa is zero, using the sample τa.

A confidence interval for Kendall’s τa (or Somers’ D) is more informative, for two
main reasons.

• If the null hypothesis is not compatible with the data, then we might ask which
hypotheses are compatible with the data. For instance, in the case of the two
lecturers double-marking exam scripts, it is not very helpful just to be told that
the Kendall’s τa between their marks is “significantly positive”, because this only
shows that, given two exam scripts and asked which is best, they are more likely
to agree than to disagree, and that the excess of agreement over disagreement
is too large to be explained by chance. It is more informative to be told that
their Kendall’s τa is 0.70 (95% CI, 0.67 to 0.72), because this shows, with 95%
confidence, that they are at least 67% more likely to agree than to disagree, and
possibly as much as 72% more likely to agree than to disagree.

• If the null hypothesis is compatible with the data, then we might ask what other
hypotheses are also compatible with the data. As a statistical referee, I find that
the most common single mistake made by naive medics is to carry out a “non-
parametric” test on a small sample, and to find a large P -value, and then to argue
that the high P -value proves the null hypothesis. This is definitely not the case
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if the two lecturers have double-marked a sample of 17 exam scripts, and their
Kendall’s τa is “non-significant” at 0.35 (95% CI, −0.11 to 0.69; P = 0.17).

2.2 Differences between τa or Somers’ D values

Given an outcome variable Y and two positive predictors W and X, we may want to
ask whether W or X is a better predictor of Y . This might be done by defining a
confidence interval for the difference τWY − τXY , or for half of that difference. For
instance, suppose three statisticians are treble-marking exam scripts, and W , X and
Y are the marks awarded by Lecturers A and B and Professor C respectively, and
τWY = 0.73, and τXY = 0.67. Then the difference between the τa values is 0.06, and
half that difference is 0.03. This means that, given two exam scripts to place in order,
Professor C is (approximately) 3% more likely to agree with Lecturer A and to disagree
with Lecturer B than she is to agree with Lecturer B and to disagree with Lecturer A.
This might be thought important if Professor C represents a “gold standard”.

To understand this point, suppose that trivariate data points (Wi, Xi, Yi) are sam-
pled independently from a common population, and define Con(X,Y ), Dis(X, Y ) and
Tie(X, Y ) as the events that (X1, Y1) and (X2, Y2) are concordant, discordant or nei-
ther, respectively, and similarly for Con(W,Y ), Dis(W,Y ) and Tie(W,Y ). Then the
difference between the two τa values is

τWY − τXY = 2 { Pr [Con(W,Y ) and Dis(X,Y )] − Pr [Con(X,Y ) and Dis(W,Y )] }
+ Pr [Tie(X, Y ) and Con(W,Y )]− Pr [Tie(X, Y ) and Dis(W,Y )]
− Pr [Tie(W,Y ) and Con(X,Y )] + Pr [Tie(W,Y ) and Dis(X,Y )] . (4)

In particular, if the marginal distributions of W and X are both continuous, then only
the first term (in the curly braces) is non-zero, and then we have

(τWY −τXY )/2 = Pr [Con(W,Y ) and Dis(X, Y )]−Pr [Con(X, Y ) and Dis(W,Y )] . (5)

Whether or not W and X are continuous, Kendall’s τa has the advantageous property
that a larger τa cannot be secondary to a smaller τa. That is to say, if a positive τXY

is caused entirely by a monotonic positive relationship of both variables with W , then
τWX and τWY must both be greater than τXY . If we can show that τXY − τWY > 0
(or, equivalently, that DXY −DWY > 0), then this implies that the correlation between
X and Y is not caused entirely by the influence of W . This feature is a good reason
for preferring Somers’ D and Kendall’s τa to other measures of ordinal trend. To
understand this point, suppose that the (Wi, Xi, Yi) have a discrete probability mass
function fW,X,Y (·, ·, ·) and a marginal probability mass function fW,X(·, ·). Define the
conditional expectation

Z(w1, x1, w2, x2) = E [sign(Y2 − Y1)|W1 = w1, X1 = x1,W2 = w2, X2 = x2] (6)

for any w1 and w2 in the range of W -values and any x1 and x2 in the range of X-values.
If we state that the positive relationship between Xi and Yi is caused entirely by a
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monotonic positive relationship between both variables and Wi, then that is equivalent
to stating that

Z(w1, x1, w2, x2) ≥ 0 (7)

whenever w1 ≤ w2 and x2 ≤ x1. However, (4) can then be rewritten

τWY − τXY = 4
∑

w1<w2

∑
x2<x1

fW,X(w1, x1) fW,X(w2, x2)Z(w1, x1, w2, x2)
+2

∑
x

∑
w1<w2

fW,X(w1, x) fW,X(w2, x)Z(w1, x, w2, x)
+2

∑
w

∑
x2<x1

fW,X(w, x1) fW,X(w, x2)Z(w, x1, w, x2). (8)

This difference must be non-negative whenever the inequality (7) applies, and de-
pends on the ordering of Y -values in pairs of data points where the W -values are
non-concordant with the X-values.

The program somersd calculates Somers’ D or Kendall’s τa between one variable
X and a list of others Y (1) . . . Y (p), and saves the estimation results as for a model fit.
Confidence intervals for differences can then be calculated using lincom. For instance,
in the auto data set distributed with official Stata, we might generate a new variable
gpm=1/mpg to represent fuel consumption in gallons/mile, and use Kendall’s τa estimates
and their differences to find out if fuel consumption is predicted better by the weight of
the car (in pounds) or by its displacement (in cubic inches):

. somersd gpm weight displacement,taua
Kendall’s tau-a with variable: gpm
Transformation: Untransformed
Valid observations: 74

Symmetric 95% CI

Jackknife
gpm Coef. Std. Err. z P>|z| [95% Conf. Interval]

gpm .9470566 .0077145 122.76 0.000 .9319366 .9621767
weight .685672 .0445194 15.40 0.000 .5984156 .7729283

displacement .5942244 .0601971 9.87 0.000 .4762403 .7122085

. lincom (weight-displacement)/2

( 1) .5 weight - .5 displacement = 0.0

gpm Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0457238 .0229597 1.99 0.046 .0007236 .090724

We note that somersd, with the taua option, calculates the Kendall τa estimates
between gpm and three other variables, namely gpm itself, weight and displacement.
(The τa of gpm with itself is simply the probability that two independently-sampled
gpm values are not equal.) We find that it is 60% to 77% more likely that a heavier car
consumes more fuel per mile than less fuel per mile, and that it is 48% to 71% more likely
that a higher-volume car consumes more fuel per mile than less fuel per mile. Finally,
we use lincom to compute a confidence interval for the half-difference. As weight and
displacement are nearly continuous, we conclude that, if we sample two cars at random,
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then fuel consumption is (approximately) 0% to 9% more likely to be concordant with
weight (but not with displacement) than with displacement (but not with weight). It
therefore seems that heavier but less voluminous cars typically consume more fuel than
lighter but more voluminous cars. It follows that more massive cars consume more fuel,
and that this is not just because of their typically higher volume.

3 Kendall’s τa and product-moment correlations

Compared with the standard Pearson product-moment correlation ρXY , Kendall’s τa

is slightly easier to interpret in words, and is certainly a lot more robust to extreme
observations and to non-linearity. In particular, if X predicts Y by a perfectly monotonic
non-linear relationship, then τXY will be equal to ±1, whereas ρXY may have a lower
magnitude than ρWY if W is an imperfect linear predictor that is less useful in practice.
However, ρXY is much easier than τXY to calculate without a computer, and may be
more impressively large than τXY if the true relationship between X and Y is fairly
linear. In the case where X and Y are sampled from a bivariate normal distribution,
the two correlation measures are associated by Greiner’s relation

ρXY = sin
(π

2
τXY

)
. (9)
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Figure 1: Greiner’s relation between Pearson’s ρ and Kendall’s τa.

This relation is discussed in Kendall (1949) and depicted in Figure 1. Note that
Kendall’s τa-values of 0, ± 1

3 , ± 1
2 and ±1 correspond to Pearson’s correlations of 0, ± 1

2 ,
± 1√

2
and ±1, respectively. The Pearson ρ is therefore of greater magnitude than the

Kendall τ .

Greiner’s relation (or something similar) is expected to hold under a wide range
of continuous bivariate distributions, as well as under the bivariate normal. Kendall
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Table 1: τXY and ρXY for X and Y defined as sums and differences of “hidden variables”
U , V and W , sampled independently from any common continuous distribution.

X Y τXY ρXY

U ±V 0 0
V + U W ± U ± 1

3 ± 1
2

U V ± U ± 1
2 ± 1√

2

U ±U ±1 ±1

(1949) showed that Greiner’s relation is not affected by odd-numbered moments (such
as skewness). Newson (1987), using a simpler line of argument, examined the case where
the observed variables X and Y are defined as sums or differences of three hidden
variables U , V and W , sampled independently from the same arbitrary continuous
univariate distribution. It was shown that different definitions of X and Y implied
values of Kendall’s τXY and Pearson’s ρXY on various points on the Greiner curve.
These are listed in Table 1.

If X and Y are continuous and we expect Greiner’s relation to hold, we can then
calculate a confidence interval for τXY , and then define an “outlier-resistant” confidence
interval for ρXY by transforming the confidence interval for τXY using Greiner’s relation.
This is especially helpful if we expect X and Y to be transformed to a bivariate normal
form by a pair of monotonic transformations g(X) and h(Y ). We then no longer have to
hunt for such a pair of transformations, because, if such transformations exist, then it
follows that τg(X),h(Y ) = τXY , and therefore the correlation ρg(X),h(Y ) will be as implied
by Greiner’s relation (9).

In the case of the two lecturers double-marking exam scripts, their Kendall τa of 0.70
(95% CI, 0.67 to 0.72) could be transformed, using Greiner’s relation, to an “equivalent”
Pearson correlation of 0.89 (95% CI, 0.87 to 0.90). The latter form would be less
explicable in terms of probabilities of agreement and disagreement, but more impressive
when presented to an audience accustomed to Pearson correlations. Such an audience
might include the two lecturers’ superiors, or an external examiner.

4 Somers’ D for binary X-variables

The Somers’ D parameter DY X is defined whether X and/or Y are discrete or continu-
ous. However, in practice, it is most often used when X is discrete, and used most often
of all if X is a binary variable with values 0 (“negative”) and 1 (“positive”). DY X is then
equal to the difference between two probabilities. Given two individual Y -values Y1 and
Y0, randomly sampled from the populations with “positive” and “negative” X-values
respectively, Somers’ D is defined as

DY X = Pr(Y1 > Y0)− Pr(Y0 > Y1), (10)
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and is the parameter tested by a Wilcoxon test. If both X and Y are binary, then
Somers’ D is simply the difference between proportions

DY X = Pr(Y1 = 1)− Pr(Y0 = 1). (11)

4.1 Somers’ D and Wilcoxon tests

Traditionally, Somers’ D is usually used to define significance tests, using the sample
Somers’ D (D̂Y X) to test the hypothesis that the population Somers’ D (DY X) is zero.
In Stata (as in much other software), this is usually done using Wilcoxon tests. If X
is a binary variable and Y is a quantitative variable, then ranksum (implicitly) uses a
two-sample Wilcoxon test to test the hypothesis that DY X is zero, using the sample
Somers’ D. If there are two paired variables U and V , and we define X = sign(U − V )
and Y = |U −V |, then (implicitly) the Wilcoxon matched pairs signed rank test carried
out by signrank tests the hypothesis that DY X = 0.

It would be more informative to have confidence limits for the population Somers’ D
values themselves, and their differences. For instance, in the auto data, we might define
the binary X-variable us=!foreign, and compare weight, fuel consumption and price
in American and non-American cars, using ranksum:

. ranksum weight,by(us) porder

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

us obs rank sum expected

0 22 395.5 825
1 52 2379.5 1950

combined 74 2775 2775

unadjusted variance 7150.00
adjustment for ties -1.06

adjusted variance 7148.94

Ho: weight(us==0) = weight(us==1)
z = -5.080

Prob > |z| = 0.0000

P{weight(us==0) > weight(us==1)} = 0.125

(continued on the next page )
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. ranksum gpm,by(us) porder

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

us obs rank sum expected

0 22 563.5 825
1 52 2211.5 1950

combined 74 2775 2775

unadjusted variance 7150.00
adjustment for ties -36.95

adjusted variance 7113.05

Ho: gpm(us==0) = gpm(us==1)
z = -3.101

Prob > |z| = 0.0019

P{gpm(us==0) > gpm(us==1)} = 0.271

. ranksum price,by(us) porder

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

us obs rank sum expected

0 22 913 825
1 52 1862 1950

combined 74 2775 2775

unadjusted variance 7150.00
adjustment for ties 0.00

adjusted variance 7150.00

Ho: price(us==0) = price(us==1)
z = 1.041

Prob > |z| = 0.2980

P{price(us==0) > price(us==1)} = 0.577

We note that American cars are typically heavier, and consume more miles per
gallon, than cars from elsewhere, but we cannot conclude that, in the population of
car types at large, they are typically more or less expensive. Note also that we have
used the porder option, introduced into Stata 7 on 13 April 2001. The porder option
causes ranksum to output the sample value of Pr(Y0 > Y1), where Y0 is the Y -value of a
randomly-sampled non-US car and Y1 is the Y -value of a randomly-sampled US-made
car. This quantity appears in the formula for Somers’ D (10), and, for a continuous
Y -variable, is equal to (DY X +1)/2, where X is an indicator of non-US origin. However,
there are no confidence intervals of any kind.

somersd is more informative, allowing us to define confidence intervals for the pop-
ulation Somers’ D values, and for their differences (using lincom):

(continued on the next page )
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. somersd us weight gpm price
Somers’ D with variable: us
Transformation: Untransformed
Valid observations: 74

Symmetric 95% CI

Jackknife
us Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight .7508741 .0832485 9.02 0.000 .58771 .9140383
gpm .4571678 .135146 3.38 0.001 .1922866 .7220491

price -.1538462 .1496016 -1.03 0.304 -.4470598 .1393675

. lincom (weight-gpm)/2

( 1) .5 weight - .5 gpm = 0.0

us Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .1468531 .0442198 3.32 0.001 .0601838 .2335224

We note that, given a randomly-chosen American car and a randomly-chosen non-
American car, the American car is 59% to 91% more likely to be heavier than the
other car than to be lighter, 19% to 72% more likely to consume more gallons per mile
than to consume fewer, and 45% less likely to 14% more likely to be more expensive
than to be less expensive. Using lincom, we compare the association with weight with
the association with fuel consumption. As weight and fuel consumption are nearly
continuous, we can conclude that the American car is approximately 6% to 23% more
likely to move more mass with less gas than to move less mass with more gas. Therefore,
most of the time, American cars tend to be more efficient for their weight than cars
from elsewhere. This has been shown in stronger terms than would be possible using
a regression model, because the method does not use possibly contentious assumptions
such as linearity or additivity.

4.2 ROC curves and dominance diagrams

Sometimes, we may want to use a quantitative variable Y to predict a binary variable
X, rather than vice versa. For instance, in the medical world, we may want to use a
quantitative clinical diagnostic test result to give a binary answer to the effect that the
patient has tested positive or negative for a disease. Once again, DY X can be used as
a general measure of predictive power.

Typically, given a quantitative test result and asked for a binary prediction of disease,
a medical statistician defines a threshold and says that the test result is “positive” if
the quantitative result exceeds the threshold, and “negative” otherwise. The sensitivity
of the test is defined as the probability that a patient tests positive, assuming that the
said patient has the disease. The specificity of the test is defined as the probability that
the patient tests negative, assuming that the said patient does not have the disease.
Typically, the lower the threshold chosen, the higher the sensitivity and the lower the
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specificity. There is therefore a trade-off.

Medical statisticians visualize this trade-off using the sensitivity-specificity curve,
otherwise known as the receiver operating characteristic (ROC) curve (Hanley and Mc-
Neil, 1982). An example of such a curve is given in Figure 2, where the “patients”
are cars in the auto data, and they are being tested, using fuel consumption (gpm) as a
quantitative diagnostic test, for the “disease” of being made in the USA. By convention,
the vertical axis is sensitivity (true positive rate), and the horizontal axis is the quantity
(1−specificity), otherwise known as the false positive rate. The data points correspond
to candidate thresholds, equal to the values of gpm occurring in the data, and connected
in descending order from the highest to the lowest. The curve gives the true positive
rate that can be purchased at the price of each possible false positive rate. The lower
the threshold that must be exceeded for a car to be diagnosed as American, the greater
will be the false positive rate, but, on the other hand, the true positive rate will also
increase. The choice of a threshold depends on the perceived costs of mis-diagnosis in
each direction, and also on the perceived prior probability that a car suffers from the
“disease” of being American. For each candidate threshold ycrit, the corresponding
point on the population ROC curve has horizontal co-ordinate 1−F0(ycrit) and vertical
co-ordinate 1−F1(ycrit), where F0(·) and F1(·) are the cumulative distribution functions
of the diagnostic measure for the populations of non-diseased and diseased individuals,
respectively. For the sample ROC curve, the co-ordinates of the point corresponding to
ycrit are 1− F̂0(ycrit) and 1− F̂1(ycrit), where F̂0(·) and F̂1(·) are the sample cumulative
distribution functions.
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Figure 2: Receiver-operator characteristic (ROC) curve for gpm as a predictor of US
origin.

The area under the ROC curve is frequently viewed as a good robust “performance
indicator” for a quantitative diagnostic measure. If there are two quantitative diagnostic
measures to choose from, and one yields a higher sensitivity than the other for every



12 Parameters behind “non-parametric” statistics

possible false positive rate, then it is obviously to be preferred to the other, and obviously
will have a higher ROC curve and therefore a greater ROC area. Figure 3 shows the
ROC curves for gpm and weight as predictors of US origin. The ROC curve for weight
is higher than that for fuel consumption for most (but not all) false positive rates, and
the ROC area for weight is greater than that for fuel consumption.
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Figure 3: ROC curves for gpm and weight as predictors of US origin.

The area under the ROC curve for a quantitative clinical measure Y to predict a
binary disease indicator X can be defined as

AY X = Pr(Y0 < Y1) +
1
2
Pr(Y0 = Y1), (12)

and the area over the ROC curve is equal to

1−AY X = Pr(Y0 > Y1) +
1
2
Pr(Y0 = Y1), (13)

where Y0 and Y1 are values of the diagnostic measure sampled at random from the
populations of negatives and positives, respectively. The corresponding Somers’ D is

DY X = Pr(Y0 < Y1)− Pr(Y0 > Y1) = 2AY X − 1. (14)

Therefore, the ROC area is a performance indicator equivalent to Somers’ D, and the
difference between two ROC areas is half the difference between the corresponding
Somers’ D values, which we measured for weight and gpm in the previous sub-section.
Somers’ D has the advantage that a perfect positive predictor, a perfect negative predic-
tor and a completely useless predictor have Somers’ D values of 1, −1 and 0, respectively,
whereas their ROC areas are 1, 0 and 0.5. (A completely useless predictor is defined as
a predictor whose ROC curve is the diagonal line from (0,0) to (1,1).)

The derivation of (12) and (13) can be made clearer by looking at Figure 4, which
is a dominance diagram of the relation between US origin and fuel consumption. The



Roger Newson 13

dominance diagram is essentially a re-invention of the ROC curve for the behavioral
sciences, discussed in Fisher (1983), Cliff (1993) and Cliff (1996). The vertical axis is
the gpm rank (highest values first) of an American car within the set of 52 American
cars, whereas the horizontal axis is the gpm rank of a non-American car within the
set of 22 non-American cars. The graphical area is therefore divided into a matrix of
52 × 22 = 1144 cells, and the cell (i, j) is assigned a plus-sign, a minus-sign or a zero,
depending on whether the jth American car consumes more, less or the same amount of
fuel, respectively, compared with the ith non-American car. The experiment of sampling
a car at random from each group and measuring their fuel consumption is equivalent
to sampling a point at random from the area of Figure 4. If we superimpose Figure 2
on Figure 4, then we will find that the area covered by plus-signs is below the ROC
curve, the area covered by minus-signs is above the ROC curve, and the areas covered
by zeros are bisected diagonally by the ROC curve. This implies that the areas below
and above the ROC curve are given by (12) and (13).
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Figure 4: Dominance diagram for the relationship between fuel consumption and US
origin.

Figure 2 was generated by roctab, whereas Figure 3 was generated by roccomp.
Both of these programs belong to the roc package of official Stata, documented in
[R] roc. roctab and roccomp calculate confidence intervals for ROC areas by a method
similar to that used in default by somersd to calculate confidence intervals for Somers’ D,
due to DeLong, DeLong and Clarke-Pearson (1982). roccomp also gives chi-squared
tests (but not confidence intervals) for the differences between ROC areas. The roc
package is complementary to the somersd package, just as, in the regression statistics
field, specialist programs such as logit are complementary to glm. The roc package is
a specialist package for a special case, whereas somersd is a “grand unified solution”,
which offers the user extra options. These include a choice of normalizing and variance-
stabilizing transformations for more accurate confidence intervals, such as the hyperbolic
arctangent or z-transformation recommended by Edwardes (1995), and a cluster op-
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tion for the case where there are multiple measurements per primary sampling unit,
as discussed in Obuchowski (1997) and Beam (1998). Figure 4 was generated by the
program domdiag, written by Nicholas J. Cox (who very kindly sent me a copy) and
soon to be downloadable from SSC (at the time of writing). domdiag is complementary
to the other two packages, and is especially useful for teaching purposes.

5 Extensions to survival data

Kendall’s τa and Somers’ D can be generalized to the case where the X-variable, the
Y -variable, or both are possibly-censored lifetimes, rather than known values. The
most general case is discussed extensively in Newson (1987). In general, given possibly-
censored survival times X and Y , and censorship indicator variables R and S set to 1
if the lifetime terminates from the cause of interest and 0 if the lifetime is censored, we
proceed as follows. For ri and si equal to 0 or 1, and numbers xi and yi, we define

t(x1, r1, y1, s1, x2, r2, y2, s2) =





1 if x1 < x2, r1 = 1, y1 < y2 and s1 = 1,
1 if x2 < x1, r2 = 1, y2 < y1 and s2 = 1,

−1 if x1 < x2, r1 = 1, y2 < y1 and s2 = 1,
−1 if x2 < x1, r2 = 1, y1 < y2 and s1 = 1,

0 otherwise.

(15)

We can then define Kendall’s τa as

τX,R,Y,S = E [t(X1, R1, Y1, S1, X2, R2, Y2, S2)] , (16)

where (X1, R1, Y1, S1) and (X2, R2, Y2, S2) are sampled independently from the same
(X, R, Y, S) vector population distribution, the Ri and Si must have values 0 or 1, and
E[·] denotes expectation. We can define Somers’ D as

DY,S,X,R = τX,R,Y,S/τX,R,X,R. (17)

In principle, X, Y or both of them may be censored, and the latter might be the case
if they are lifetimes of related organisms, as with the data analysed in Newson (1987).
However, more attention has usually been paid to the case where only Y is a lifetime,
whereas X is an uncensored predictor. Two common applications of Somers’ D, avail-
able in Stata, are the Gehan test and Harrell’s C. The Gehan test (Gehan, 1965),
available as output from sts test, is similar to the Wilcoxon test, and tests the hy-
pothesis that DY,S,X,1 = 0 in the case where X is a binary variable. William Gould’s
program stcstat, downloadable from SSC, calculates Harrell’s C (Harrell et al., 1982;
Harrell et al., 1996). If X is a continuous predictor variable, then Harrell’s C is related
to Somers’ D by

DX,1,Y,S = 2C − 1 or C = (DX,1,Y,S + 1)/2. (18)
Comparing this formula with (14), we see that Harrell’s C is a reparameterization of
Somers’ D similar to the ROC area, but measures the ability of a continuous X to
predict survival, rather than the ability of a continuous Y to predict disease. Note that
the Gehan test is based on the Somers’ D of Y with respect to X, whereas Harrell’s C
is based on Somers’ D of X with respect to Y . The somersd package has not yet been
extended to the case of possibly censored variables.
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6 Median differences and slopes

Kendall’s τa and Somers’ D may be useful purely for scientific inference, in order to
show that an association exists and that some associations are stronger than others.
However, to be able to make economic or other practical decisions, we usually need
to estimate a difference in units of the outcome variable. For instance, if we wish to
know whether the difference in blood pressure between patients on Treatment A and
Treatment B is large enough to justify the increased cost of Treatment B, then we need
to have a difference in blood pressure units (e.g. millimetres of mercury) and a cost
difference in dollars, rather than a Somers’ D between treatment groups.

Fortunately, Somers’ D (and the somersd package) can help us here as well. Somers’
D is used in the definition of median differences and slopes, and can be used to define
confidence limits for these.

6.1 The Hodges-Lehmann median difference

The Hodges-Lehmann median difference was introduced by Hodges and Lehmann (1963),
and popularized by Conover (1980), Campbell and Gardner (1988) and Gardner and
Altman (1989). Given two sub-populations A and B, the Hodges-Lehmann median
difference is the median value of Y1 − Y2, where Y1 is a value of an outcome variable Y
sampled at random from Population A and Y2 is a value of Y sampled at random from
Population B. As Newson (2000d) pointed out, it can be defined in terms of Somers’ D.
In general, for 0 < q < 1, a 100qth percentile difference in Y can be defined as a value
θ satisfying

DY ∗(θ),X = 1− 2q, (19)

where X is a binary variable equal to 1 for Population A and 0 for Population B, and
Y ∗(θ) is defined as Y if X = 1 and as Y + θ if X = 0. In particular, if q = 0.5, then
the 100qth percentile difference is known as a Hodges-Lehmann median difference, and
satisfies

DY ∗(θ),X = 0. (20)

Confidence intervals for the general 100qth percentile difference (including the median
difference) can be calculated using the program cendif, which is part of the somersd
package. The statistical methods used, and the program cendif itself, are summarized
in detail by Newson (2000d).

In the special case where the distributions of Y in Populations A and B differ only
in location, the median difference is also the mean difference, which is the difference
between the two population means, and also the difference between the two population
medians. Traditionally, confidence intervals for the Hodges-Lehmann median difference
have been calculated assuming that the two distributions differ only in location, so that
the confidence interval is also a confidence interval for the difference between medians.
In Stata, this is done using the STB program npshift (Wang, 1999) or by Patrick
Royston’s program cid, downloadable from SSC. The method used by cendif does not
make this assumption, as the confidence interval is intended to be robust to the possi-
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bility that the two populations differ in ways other than location. For instance, Y might
be unequally variable between the two populations. Therefore, the difference between
the method used by cendif and the method used by npshift is very similar to the
difference between the unequal-variance t-test and the equal-variance t-test. npshift,
like the equal-variance t-test, assumes that you can use data from the larger of two
samples to estimate the population variability of the smaller of two samples.

I have carried out a few simulations of sampling from two normal populations, with
a view to finding coverage probabilities of the confidence intervals generated by cendif
and npshift. I have found that, even with small sample sizes, cendif gives coverage
probabilities closer to the nominal ones when variances are unequal, in which case the
traditional method gives confidence intervals either too wide or too narrow, depending
on whether the larger or the smaller sample has the greater population variance, re-
spectively. Usually, the difference between coverage probabilities has been small (2% or
less), so the traditional method does not perform badly, in spite of its false assumption.
However, if a sample of 20 is compared with a sample of 10, and the population standard
deviation of the smaller sample is three times that of the larger sample, then the nomi-
nal 95% confidence interval has a true coverage probability of 90% using the traditional
method and 94% using the cendif method. (Such a case is similar to sampling from
two lognormal income distributions from two different countries, and taking a sample
of 10 from a country whose 75th percentile is 8 times its 25th percentile, and a sample
of 20 from a country whose 75th percentile is only twice its 25th percentile.) On the
other hand, the two methods perform similarly when population variances are equal.
From the results so far, I would therefore recommend the cendif method.

In the auto data, we might compare weight between American and non-American
cars, using npshift and cendif to calculate a Hodges-Lehmann median difference:

. npshift weight,by(foreign)

Hodges-Lehmann Estimates of Shift Parameters
-----------------------------------------------------------------
Point Estimate of Shift : Theta = Pop_2 - Pop_1 = -1095
95% Confidence Interval for Theta: [-1350 , -720]
-----------------------------------------------------------------

. cendif weight,by(foreign) tdist
Y-variable: weight (Weight (lbs.))
Grouped by: foreign (Car type)
Group numbers:

Car type Freq. Percent Cum.

Domestic 52 70.27 70.27
Foreign 22 29.73 100.00

Total 74 100.00
Transformation: Fisher’s z
Degrees of freedom: 73
95% confidence interval(s) for percentile difference(s)
between values of weight in first and second groups:

Percent Pctl_Dif Minimum Maximum
r1 50 1095 750 1330

We note that npshift and cendif estimate the same median difference, although
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npshift gives the negative difference (−1,095 lb) between non-American and American
cars, whereas cendif gives the positive difference (1,095 lb) between American and non-
American cars. However, cendif gives slightly narrower confidence limits, because the
larger group (52 American cars) is more variable in weight than the smaller group (22
non-American cars). A similar difference in confidence interval width is seen if we use
ttest to calculate equal-variance and unequal-variance confidence limits for the mean
difference (not shown).

As well as median differences, cendif can calculate median ratios, using logged data
and the eform option:

. gene logwt=log(weight)

. cendif logwt,by(foreign) tdist eform
Y-variable: logwt
Grouped by: foreign (Car type)
Group numbers:

Car type Freq. Percent Cum.

Domestic 52 70.27 70.27
Foreign 22 29.73 100.00

Total 74 100.00
Transformation: Fisher’s z
Degrees of freedom: 73
95% confidence interval(s) for percentile ratio(s)
between values of exp(logwt) in first and second groups:

Percent Pctl_Rat Minimum Maximum
r1 50 1.4806389 1.3090908 1.6323524

We note that an American car typically has 131% to 163% of the weight of a non-
American car.

6.2 The Theil median slope

The Theil median slope is a generalization of the Hodges-Lehmann median difference
to the case of a non-binary X-variable. It was first defined by Theil (1950), and a
good account of it appears in Sprent and Smeeton (2001). Supposing that (X1, Y1) and
(X2, Y2) are sampled independently from a common bivariate distribution, the Theil
median slope is usually defined as the median value of the slope (Y1 − Y2)/(X1 −X2),
or at least as its conditional median, assuming that X1 6= X2. Sen (1968) argued that
the Theil slope could be defined in terms of Kendall’s τ , so the use of the Theil slope
is often referred to as the Theil-Kendall method. The population Theil median slope is
usually estimated using the sample Theil median slope, which is less affected by outliers
than the ordinary least squares linear regression slope.

The Theil slope can also be defined in terms of Somers’ D. In the general case, a
100qth percentile slope can be defined as a value β such that

DY−βX,X = 1− 2q. (21)
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In the case of q = 0.5, β is a median slope, such that

DY−βX,X = 0. (22)

If (X1, Y1) and (X2, Y2) are sampled from the same bivariate (X,Y )-distribution, then
(22) is equivalent to

Pr [(Y1 − Y2)/(X1 −X2) > β |X1 > X2] = Pr [(Y1 − Y2)/(X1 −X2) < β |X1 > X2] ,
(23)

where Pr[· | ·] denotes conditional probability. This is a property we would expect of a
median slope.

It is possible to generalize the method of cendif to calculate a sample Theil median
slope, with confidence limits for the population Theil median slope, but I have not
yet implemented this method in Stata. Traditionally, confidence intervals for the Theil
median slope have been calculated assuming that the “residual” Y − βX is not only
“Kendall-uncorrelated” with X, but also independent of X. This, of course, implies
that the “residual” Y − βX has the same conditional variance regardless of X. A
confidence interval for the Theil slope based on a modified cendif method would not
use this assumption. It would therefore be robust to heteroskedasticity, like the Huber
confidence interval for the least-squares regression slope.

Given that rank methods can be used to define confidence intervals for between-group
differences and for linear quasi-regression slopes, it is natural to ask whether they could
be used to define confidence intervals for anything similar to multivariate regression
coefficients. Hussain and Sprent (1983) explored this question. They concluded that, if
there were k different X-variables, then, instead of calculating the median of the slopes
for all pairs of data points with different X-values, we would have to calculate median
adjusted slopes for all sets of k +1 data points. This would use an amount of computer
time of the order of nk+1, where n is the sample number. This suggests that regression-
based methods, such as generalized linear models, will remain in business, at least for
the important work of multivariate modelling.
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