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Abstract

Smoothed Particle Hydrodynamics (SPH) has been increasing in popularity rapidly in
recent years and is being used for an ever wider range of applications. Central to al-
most all of these application is the inclusion of accurate wall boundaries. We present
here a discussion of boundaries in SPH, in particular focusing on reflected ghost-particle
boundaries. We show how one can include curved shapes as geometrical objects and more
generally as parametric NURBS curves. By properly considering the reflection opera-
tion we derive a correction factor which demonstrably improves the accuracy of the SPH
solution and present examples to confirm this. NURBS are standard for representing
both 2D curves and 3D surfaces. We detail how they can be practically included in an
SPH implementation, including how to calculate various required quantities and reflect
particles in the NURBS object.

Keywords: Smoothed Particle Hydrodynamics, B-Splines, Wall Boundaries, Fluid
Dynamics, Particle Methods, Lagrangian

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is becoming an increasingly important and
robust numerical method for a wide range of technical and engineering applications [1–5].
It is a meshless and Lagrangian method for solving, amongst others, the Navier Stokes
(NS) equation.

SPH was developed to study the collapse of proto-stellar gas clouds [6, 7] meaning
originally wall boundary conditions were not considered. However, one of the major
challenges presented by the increasingly demanding engineering applications of SPH is
the ability to accurately include complex boundary geometries. In the finite element or
lattice Boltzmann methods the edge of the mesh or grid respectively, naturally defines
the boundary of the simulation domain and various quantities or their gradients can be
prescribed if desired. By contrast boundaries are relatively complicated to include in
SPH due to it being a particle based method. Though there has been some progress in
this area recently [8, 9]

Boundaries are typically handled in 3 main ways:
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Repulsive Walls A repulsive force is included in the equations of motion which acts to
push all particles away from the walls when they approach.

Ghost Particles Extra particles are placed outside the simulation domain which act
through pressure to repel fluid particles.

Kernel Correction The missing kernel support is accounted for explicitly in the SPH
equations.

Here we use a reflected particle form of ghost particle boundaries, see [10]. We present a
discussion of the issues involved in efficiently implementing such a boundary treatment
and present its application to surfaces represented by mathematical objects, e.g. spheres,
and a parametric representation; non-uniform rational B-splines (NURBS). NURBS’s are
the most common way of parametrically representing surfaces or curves in CAD packages
so their inclusion in an SPH implementation is a natural bonus.

1.1. SPH Interpolation and Gradients

The integration nodes (particles) in SPH are a set of N unconnected points in Rd, X.
Because of this unconnectedness one cannot use shape functions or similar to interpolate
a function’s value at each x ∈ X to the whole simulation domain. Instead an approximate
interpolation based solely on distance is used; the interpolated quantity A(x) is given by

A(x) =

N∑
j=1

AjWh(|xj − x|), (1)

where Wh(r) is the smoothing kernel, i.e. how much weight we give to a point based on
its distance away and Aj is the value of A at particle with position xj . One can show
[11] that the gradient of a smoothed quantity transfers onto the smoothing kernel giving

∇A(x) =

N∑
j=1

Aj∇Wh(|xj − x|). (2)

This is the most basic form of the SPH interpolation and gradient estimates. It is possible
to apply corrections which ensure zero order completeness [10, 12] or higher [11]. It is
also possible to derive symmetric forms of the gradients which yield conservative SPH
formulations [13]. The gradient used in this study is

∇Ai = σi

N∑
j=1

(
Aj
σ2
j

+
Ai
σ2
i

)
∇Wij , (3)

where

σi =

N∑
j=1

Wij (4)

is the weighted number density of particles around the point xi (see [10]) andWh(|xi−xj |)
has been written as Wij for clarity.
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In order to make the method computationally tractable the smoothing kernel is chosen
to have finite support. Typically the support of the smoothing kernel is defined to be a
ball of radius 2h. In this paper the quintic Wendland kernel [14] defined by

W (r, h) = C

{(
1− r

2h

)4 (
1 + 2r

h

)
if 0 ≤ r

h < 2

0 otherwise
, (5)

is used.

1.2. Boundaries

A recent investigation by Cummins et al [15] found that of the boundary formulation,
the kernel used, kernel correction, time-stepping scheme and the compressibility of the
SPH fluid, the boundary formulation had the largest effect on the simulation results. The
earliest (and still widely used boundary conditions) are repulsive boundary conditions
[2, 3, 16, 17], in which a repulsive force is applied to any particles which approach the
wall boundary. Typically the repulsive force takes the form of a truncated Lennard-Jones
type force. The advantages of this type of boundaries are that it is simple to implement
and is good at ensuring particle containment within the domain.

One disadvantage, however, is that due to the stiff nature of the Lennard-Jones
potential it can need a very small time-step to ensure stability. Further, because it acts
only normal to the wall it cannot correctly capture shear stresses due to velocity gradients
parallel to the wall. This becomes an issue at smaller scales or higher viscosities. Worse
still because the force acts only outwards from the boundaries they cannot reproduce
any system under tension, for instance a hanging droplet.

The support of smoothing kernels for particles near the boundaries extends out of
the domain leading to so-called ‘kernel boundary deficiency’. The deficiency leads to
mis-estimation of quantities near the boundaries. While repulsive boundaries contain
the particles in the domain they do not attempt to remedy this problem; unlike so-called
‘ghost particle’ boundaries.

Ghost particles are SPH particles which sit outside the domain, up to a distance of
2h, thereby eliminating the kernel support deficiency. Their positions are fixed but they
interact with the fluid through the usual pressure and viscosity forces. This method is
usually preferable to the repulsive boundaries as it is possible to capture shear-stresses
and since the interaction with the fluid particles is through the usual equations of motion
the time-step is not unduly affected. There are two different methods which are classed
as using ghost particles; static and reflected.

For the static type, the ghost particles are placed on a regular grid outside the fluid
domain and their positions remain fixed for the entirety of the simulation (barring the
movement of any boundaries with time). Examples of their application can be found
in [4, 5]. This method is useful as it is also computationally efficient and is a simple
extension to any SPH code. However, while it enforces some shear at the boundaries it is
not capable of properly enforcing no-slip conditions. To see why this is the case consider
the smoothed velocity field 〈u〉(x), as we sit on a boundary the smoothing operation
sees the fluid with a linear velocity profile, but on the other side the ghost particles
by definition have velocity zero. This means the averaged velocity at the boundary is
non-zero.
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To counter this non-zero smoothed velocity at the boundaries, one can use reflected
ghost-particles [10, 18]. The method works much like the static ghost-particle method,
i.e. by extending the computational domain by 2h outwards to overcome the lack of
kernel support, but instead of static ghost particles the fluid particles are reflected across
the wall-boundary at each time-step. The velocity of each particle is also reflected to
become −u. This requires slightly more computational effort but it ensures the velocity
profile is correctly reproduced at the wall. In this paper we use the reflected ghost particle
boundary condition and consider its applications.

Recent work has taken another approach which involves correcting the kernel bound-
ary deficiency without extending the domain [9, 19, 20]. These look a promising way to
capture boundary behaviour and are an active area of development.

1.3. Equations of Motion

SPH is used here to solve the Navier-Stokes equation, which in Lagrangian form and
for incompressible Newtonian fluids, reads

ρ
du

dt
= −∇P + µ∇2u + f , (6)

with pressure P , fluid velocity u, density ρ, dynamic viscosity µ and any addition body
forces f for example gravity. Conservation of mass is captured by the incompressible
continuity equation

∇ · u = 0. (7)

The density of a particle is calculated by multiplying the weighted number density by
the mass associated with each particle;

ρi = mi

∑
j

Wij = miσi. (8)

This can be seen to be the case because σi ≈ 1/Vi, giving ρi = mi/Vi. Equation (8) has
the advantage over the normal SPH density estimate, ρi =

∑
jmjWj , that any density

jumps across fluid interfaces are not smoothed out.
We use a weakly compressible form of SPH where the pressure Pi is directly related

to the density ρi by the equation of state

Pi =
c20ρ0

γ

((
ρ

ρ0

)γ
− 1

)
+ P0, (9)

where c0 is the numerical speed of sound, γ is a constant equal to 7 and ρ0 is the reference
density of the fluid. P0 is a background pressure which is found to improve stability and
remove tensile issues. If there are any free surfaces in the system, however, P0 must
equal 0. Equation (9) is called the Tait equation. The speed of sound should be set to be
approximately 10 times the maximum velocity of the fluid in the system so as to ensure
density fluctuations are no larger than 1% of the reference density [21].

The gradient of pressure at a particle i is then given by

∇Pi = σi

N∑
j=1

(
Pj
σ2
j

+
Pi
σ2
i

)
∇Wij . (10)
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1.3.1. Viscosity

To compute the viscosity a finite difference approximation is combined with the SPH
gradient giving

µ∇2ui = µσi

N∑
j=1

(
1

σ2
j

+
1

σ2
i

)
uij
rij

dWij

drij
, (11)

with uij = ui − uj and rij = |xi − j|. To see why (11) has this form, consider ∇2u =
∇ · (∇u). We can approximate this with the SPH divergence estimate of the velocity
gradient tensor, i.e.

∇ · (∇)u ≈
∑
j

∇Wij · ∇u, (12)

but

∇Wij = eij
dWij

drij
(13)

giving

∇ · (∇)u ≈
∑
j

eij · ∇u
dWij

drij
. (14)

physically the vector eij · ∇u can be thought of as the rate of change of the velocity
vector in the direction eij which can clearly be approximated as

eij · ∇u ≈
uij
rij

, (15)

Combining this with equation (14) and symmetrizing yields equation (11).

2. Geometric Objects

While faceted geometries present a very general and portable solution to including
wall-boundaries in SPH simulations, allowing complex and arbitrary shapes, they are
not without issues [22]. In many situations simplified or idealized geometries suffice to
elucidate salient elements of the flows at hand. For this reason we also consider the
inclusion of basic geometric objects into our SPH code.

By geometric objects we mean objects whose shapes are easily representable as equa-
tions, such as spheres, cylinders, torii, etc. Such objects have several advantages over
faceted surfaces; firstly the only values which need to be stored in memory are the relevant
parameters. For instance for a sphere we need only store four floating point numbers,
the radius R and the 3D centre rc. While not generally an issue for CPU based imple-
mentations this could be considered a benefit for GPU based codes which have access,
relatively, to less RAM.

The second and primary advantage is that such simulations are robust to changes in
resolution. For a complex faceted geometry it is often necessary to coarsen an initially fine
mesh so that the extent of the facets roughly matches the resolution of the simulation.
If the resolution then changes, further processing might be required. Since geometric
objects are purely defined by their parameters this is clearly not an issue.

These geometric objects, in general, have curved surfaces. This fact should be taken
into account to ensure the correct interpolation of quantities over the boundary. Consider
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reflecting a particle in a circular boundary with radius R and centre rc. The signed
distance of the particle to the circle is d. The sign of d indicates whether we are inside
the circle or not; d > 0 means inside and d < 0 means outside. If the fluid particle is at
r then d = R− |r− rc| and the reflected particle will be placed at

r′ = r +
(r− rc)

|r− rc|
2d. (16)

Assuming a regular spacing of SPH particles we would expect that around the circle with
radius R − d there would be 2π(R − d)/∆x particles, where ∆x is the average particle
spacing in the domain. This means that around the reflected circle there will also be
2π(R−d)/∆x reflected particles. However the reflected circle has a radius of R+d so we
would instead expect 2π(R+d)/∆x particles to be present if the particles were regularly
spaced. Thus for each reflected particle expected we actually have (R − d)/(R + d)
reflected particles, meaning each reflected particle represents a different volume then its
matching fluid particle. The ratio of the reflected particle j’s volume to its matching
fluid particle’s volume is

βj =
R+ d

R− d
. (17)

This can be written in terms of the curvature κ = 1/R:

βj =
1 + κd

1− κd
. (18)

Writing Vf in this form allows us to apply this correction to any arbitrary shape. The
volume correction factor for the reflected particle is given by (18) where κ is the curvature
of the object at the reflection point. This is generalizable to three dimensions as

β3D
j =

(
1 + κ1d

1− κ1d

)(
1 + κ2d

1− κ2d

)
, (19)

where κ1 and κ2 are the two principle curvatures of the surface at the closest point to
the fluid particle.

Particle spacing is accounted for by σ which is inversely proportional to the volume
V . Because curved boundaries lead to either more or fewer reflected particles than would
otherwise be expected, we weight the contribution to the fluid particle’s σ value from
reflected particles by β. This gives a slightly modified form for calculating σ;

σi =
∑
j

W (rij)β
′
j . (20)

where

β′j =

{
1+κd
1−κd if j is a reflected particle

1 otherwise
, (21)

and similarly for 3D. This ensures σi is calculated correctly for fluid particles which are
within 2h of the boundary.

For reflected particles, σi must be copied from the particle from which it was reflected.
This is because we cannot calculate σ at the reflected location due to the lack of kernel
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(a) Standard Reflection
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(b) Volume Correction

Figure 1: The calculated density field using only reflection (1a) and reflection with volume
correction (1b). It is clear that the density is better estimated when using β.

support. If we are reflecting in a straight boundary simply setting σrefl = σfluid is correct
because the σ’s for the reflected and matching fluid particles will be equal. For curved
boundaries however we must weight the reflected particles’ σ’s because the spacing of
the reflected particles is different from that of the fluid particles from which σ is being
copied. The correct weighting is again given by the volume factor:

σrefl = σfluidβ. (22)

The correction becomes less important as the spatial resolution is increased. Since we
expect d ≈ ∆x (or ∆x/2 if not using boundary particles) as we decrease ∆x we have

lim
d→0

β = 1 (23)

as expected, however results show that even for moderately high resolutions this correc-
tion still confers a benefit over simply reflecting.

2.1. Example: Couette Flow

An example where curved boundaries are useful is that of a rotating flow between two
cylinders, known as Couette flow. In this example a fluid with density ρ = 1000kgm−3,
dynamic viscosity µ = 0.001Pas is contained between two cylinders of radius Ri = 2.5cm
and Ro = 4.0cm. For the hydrostatic case ω = 0s−1; figure 1 shows the relative density
at the zeroth timestep of two simulations, one with the volume correction factor applied
and one without. It is clear that the volume correction factor has improved the density
estimate significantly.

After a time T = 1.0s (Figure 2) in the volume corrected simulation the particles
maintain the correct spacing, whereas without this correction factor the particles rear-
range themselves to attempt to even out the density. Even with this rearrangement the
density has not fully corrected itself by 1s; the particles near the inner wall are pushed
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(a) Standard Reflection
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(b) Volume Correction

Figure 2: The calculated density field using only reflection (2a) and reflection with volume
correction (2b). It is clear that the density is better estimated when using β and that
the particles correctly maintain their spacing.
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Figure 3: 3a shows the analytical solution for the Couette flow compared to the SPH
solution showing good agreement. 3b shows the error shown as a function of time for
Couette flow. The solid line represents the solution with volume-factor correction and the
dotted line without. It is apparent that the correction improves the solution markedly.
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Figure 4: The error in the SPH solution as a function of spatial discretization length for
both the simple reflection and the corrected reflection. One can see that the correction
significantly improves the solution at low to moderate resolutions

away whereas the particles near the outer wall are pulled towards it. The effect is smaller
for the outer wall simply because it has a lower curvature.

Next consider the case where the inner cylinder rotates with angular velocity ω =
1s−1. At steady state the analytical velocity profile as a function of radius - r - is

vr = 0, vθ =
ω

1− η2

(
R2
i r
−1 − η2 r

)
, (24)

where η = Ri/Ro, see [23]. The error of the SPH solution is

ε =

√√√√ 1

N

N∑
i=1

(vθ,i − vθ(ri)), (25)

where the sum is over SPH fluid particles only. Figure 3b shows the error in the solution
against time for both the standard reflection and volume-corrected reflection. It is clear
that the correction leads to large improvement in the solution demonstrating that this
is not something which can be ignored. Figure 4 shows the error for both corrected and
uncorrected reflection as a function of the spatial discretization length ∆x. It shows that,
as expected, the correction makes less difference as we increase the resolution. However,
except for at the very highest resolution (>85,000 particles) the correction still provides
a noticeable improvement to the solution. Since the domain (and hence fluid flow) for
this example is curved, a pressure gradient is set up which depends on r. Because of
this pressure gradient a small background pressure of P0 = 2.5 is added to improve the
stability and avoid tensile instability. For consistency this pressure gradient was kept
constant at 2.5 across all ∆x, which leads to a slightly strange rate of convergence since
at higher resolutions the pressure required to avoid tensile instability actually decreases.

3. B-Splines Curves

Non-uniform rational B-splines (NURBSs) are a superset of the perhaps better known
Bezier curves. They have become well established as the de facto standard for represent-
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i for k = 2, 3 with the non-periodic knot vector

T = [0 0 0 1 2 3 4 4 4 ].

ing and drawing curves and surfaces in CAD packages. The ability to natively include
them in a CFD simulation would be therefore very useful.

A NURBS curve is defined by its control points P = {Pi, i = 1...n}, their weights Ω =
{wi, i = 1...n} and the so-called knot vector T ∈ Rk+n. The curve is then parameterized
as

C(t) =

∑n
i=1 wiNi,k(t)Pi∑n
i=1 wiNi,k(t)

=

n∑
i=1

Ri,k(t)Pi, (26)

where k is the order of the B-spline interpolation, k = 1 being piecewise constant, 2 being
piecewise linear, and so on. Where we have set

Ri,k(t) =
wiNi,k(t)∑n
j=1 wjNj,k(t)

(27)

for brevity. The B-spline basis function of order k for control point i is defined by the
recursive relationship [24, 25]

Ni,k(t) = Ni,k−1(t)
t− Ti

Ti+k−1 − Ti
+Ni+1,k−1(t)

Ti+k − t
Ti+k − Ti+1

(28)

for k > 1 and for k = 1

Ni,1(t) =

{
1 if t ∈ [Ti, Ti+1)

0 otherwise
(29)

The basis functions satisfy the partition of unity property meaning
∑
iNi,k(t) = 1 ∀k, t.

A similar relation holds for defining a NURBS surface in 3D as a function of two param-
eters

S(t, u) =

∑p
i=1

∑q
j=1N

1
i,k(t)N2

j,l(u)wi,jPi,j∑p
i=1

∑q
j=1N

1
i,k(t)N2

j,l(u)wi,j
, (30)

where in 3D the control points have the form of a regular grid with the number of points
in the t and u directions respectively being p and q. The basis functions N1 and N2 are
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different in the two directions only by virtue of having possibly different knot vectors.
Figure 5 shows an example of the basis functions Ni,k for k = 2 and 3.

For ease of discussion in all examples presented here the weights wi are set equal to
unity. This simplifies the maths but retains the key aspects for application to SPH. For
the full derivations and expressions we refer the interested reader to [26] for example.

3.1. Gradients and Curvature

Because B-Spline curves are defined mathematically it is easy to calculate quantities
such as normal vectors, tangents and curvatures given a parameter value t. The gradient
of the curve C(t) is just the tangent vector and is given by

dC

dt
=

n∑
i=1

N ′i,k(t)Pi, (31)

with

N ′i,k(t) =
Ni,k−1(t) + (t− Ti)N ′i,k−1(t)

Ti+k−1 − Ti
+

(Ti+k − t)N ′i+1,k+1(t)−Ni+1,k−1(t))

Ti+k − Ti+ 1
, (32)

for k > 2. For k = 2

N ′i,2(t) =
Ni,1(t)

Ti+1 − Ti
− Ni+1,1(t)

Ti+2 − Ti+1
. (33)

Similarly the second derivative is

d2C

dt2
=

n∑
i=1

N ′′i,k(t)Pi. (34)

with

N ′′i,k(t) =
2N ′i,k−1(t) + (t− Ti)N ′′i,k−1(t)

Ti+k−1 − Ti
+

(Ti+k − t)N ′′i+1,k−1(t)− 2N ′i+1,k+1(t)

Ti+k − Ti+1
(35)

for k > 3. For k = 3

N ′′i,3(t) = 2

(
N ′i,2(t)

Ti+2 − Ti
−

N ′i+1,2(t)

Ti+3 − Ti+1

)
. (36)

In 2 dimensions the normal to the curve can be found by taking the cross product
with a unit vector pointing along the third (z) axis, i.e.

n(t) =
t(t)× ẑ

|t(t)|
, (37)

and the curvature at any point is given by

κ(t) =
|t(t)×C′′(t)|
|t(t)|3

. (38)
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3.2. Computational Issues

There are several computational factors to consider before using NURBS with re-
flected boundaries in SPH. Foremost amongst these is the ability to quickly reflect the
fluid particle accurately across the NURBS curve or surface. To perform this operation
we need to know the normal, closest point to the surface and, to properly account for
the curved nature of these boundaries, the curvature. Given the parameter value which
corresponds to the closest point we can calculate all these auxiliary quantities directly
from the analytical forms (37), (26) and (38). The difficulty lies in quickly yet accurately
calculating the value tmin which locates the closest point on a curve to an arbitrary point
x in Rd.

It is the experience of the authors that in order to obtain satisfactory containment of
SPH particles within the domain it is necessary to place a stationary layer of particles
along the boundary. We utilize these boundary particles to quickly locate tmin.

Each boundary particle stores the value of t which corresponds to its location. When
reflecting a fluid particle, a nearby boundary particle can be located quickly using the
linked-cell-grid method used in SPH codes and its value of t is taken as an initial guess
for tmin.

We use the Newton-Raphson method to find the minimum of the function ∆ with
respect to t.

∆(t) = ||x−C(t)||2 (39)

= (x−C(t)) · (x−C(t)) . (40)

∆(t) gives the squared distance between a point x and the point on the NURBS curve
defined by parameter value t.

To perform Newton-Raphson optimization we need to know both the first and second
derivatives of ∆. By expanding the dot product in (40) it is simple to show that

d∆

dt
= 2 (C− x) · dC

dt
. (41)

The quantity dC
dt represents the tangent vector to the curve at t, so at any extrema the

fact d∆
dt = 0 implies that the vector between the point x and the extremum is normal to

the curve as expected. By differentiating again we get the second derivative

d2∆

dt2
= 2

[
t · t + (C− x) · d2C

dt2

]
(42)

where we have set dC
dt = t for conciseness. The iterative sequence for optimizing t is

given by

tn+1 = tn −
∆′(tn)

∆′′(tn)
, (43)

which, using the results above, is

tn+1 = tn −
(C− x) · t

t · t + (C− x) · dt
dt

. (44)

The iterative scheme (44) is only useful if it converges quickly. In typical SPH simulations
12
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Figure 6: An example NURBS curve. If the location x to which the closest point on the
curve xnp is desired is near a region of high curvature, then finding xnp using Newton-
Raphson can fail due to a local minimum appearing in the function ∆(t).

it is found that with a tolerance of 0.01∆x (44) always converges within 10 iterations
and usually with as few as 3. This is partly due to the strength of the Newton-Raphson
method for the function ∆(t) and partly due to the initial guesses for t0 being close to
tmin.

However, certain situations can lead to difficulty for the location of tmin. If there
are areas of high positive curvature there can exist two local minimia for the distance
function. Figure 6 illustrates this and shows how this causes the optimization to converge
to the incorrect value for tmin.

For certain choices of t0 the method diverges. There are two possible causes for this;
either it is spurious or the closest point is truly one of the end points. This can be
checked by comparing tn to our initial guess t0. Since we know t0 must be close to the
true value for tmin we check to see if our point is close to either end. If this is the case
we can assume the method has not spuriously diverged.

If, however, we hit either t = 0 or t = (N − K + 1) and t0 is not close to either
end we assume this divergence is spurious, move t0 slightly and then try again. In these
situations we define t0 to be close to the endpoints if it is within (N −K + 1)/(2N) of
either limit. If there are control points bunched near either end point this might be a
poor definition but in practice it was found to be adequate to distinguish the cases.

An additional check which was found to improve stability is to look at the gradient.
For all cases except those of high curvature, the function ∆(t) is observed to be quasi-
convex meaning we always wish to be moving in the direction of negative gradient. If a
Netwon-Raphson step is hit which would move up the gradient it is instead moved the
same distance in the direction of negative gradient.

The boundary particles must be placed at regular intervals of ∆x along the curve. If
the control points for the B-spline curve are all the same distance apart, and the knot
vector intervals are equal (i.e. Ti+1 − Ti = Ti+2 − Ti+1 for all i = 1, ...(N + K − 3))
then moving a set distance in t will move a set amount along C in Rd at all points along
C. However, this is quite a strict requirement on the curve which would significantly
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Figure 7: An example of a NURBS surface S(t, u) in 3D. It has 16 control points and
K = 3. Also shown in the squared distance from the red point ∆(t, u) as a function of
the two parameter values.

reduce its usefulness. For this reason we numerically integrate the arc-length s(t) along
the curve and place boundary particles at regular intervals.

s(t) =

∫ t

0

dC

dt′

∣∣∣∣
t′=t

dt′ (45)

≈
n∑
i=1

|Ci −Ci−1| (ti − ti−1). (46)

While this is a relatively slow operation, it only needs to be performed once at the very
beginning of the simulation and placing boundary particles in this manner removes any
restrictions on the control-points and knot-vector.

3.3. Application in Three Dimensions

The examples and methods shown in this paper focus on 2D NURBS curves, but,
as mentioned above, it is also possible to define NURBS surfaces in 3D. The Newton-
Raphson method used to locate closest points also works for a two-dimensional parameter
space. The function ∆ is still well behaved for a NURBS surface meaning the Newton-
Raphson method should be easily applicable to 3D simulations. Figure 7b shows the
behaviour of ∆ over the parameter space for the example NURBS surface shown in 7a.

The larger issue in 3D comes when placing the boundary particles. In 2D it is possible
to simply numerically integrate the arc length along the curve with a fine step size and
place particles at regular intervals of ∆x. Because the mapping between (t, u) and the
position on the surface is non-trivial it is difficult to say what pattern one must follow in
(t, u) space to give an even distribution of boundary particles. This does not mean that
the NURBS surfaces cannot be used as boundaries in SPH. It is reasonable to expect that
the distances between neighbouring control points be similar. By taking a relatively fine
grid in (t, u) this would allow us to place points onto the surface with a good coverage.
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magnitude.

These points could then be used as in 2D to provide initial guesses for t and u when
locating closest points but they could not be used as boundary particles as their spacing
would be uneven.

4. Examples

4.1. Throttled Pipe Flow

As a simple example of using B-spline curves we show a variant of the plane Pousielle
flow in which fluid is driven through a pipe under a pressure gradient but where the pipe
has a contraction. Figure 8 shows the simulation setup with fluid particles shown in grey,
boundary particles in black and the reflected particles coloured by their volume-factor
correction. The size of the system is Lx = 0.024m, Ly = 0.01m and at the narrowest
point of the constriction the width is Ly/2, the pressure gradient applied is 50Pa and
the viscosity µ is chosen to be 0.01, this gives a Reynold’s number of Re ≈ 30. The
final velocity magnitude is shown in Figure 8b, we can see that as it should the velocity
goes to zero at the boundaries correctly and increases in the constriction. Defining the
half-width of the channel to be R(x) with R(0) = Ly/2 we have the flux

Q(x) =

∫ +R(x)

−R(x)

vx(x, y) dy. (47)

The flux Q(x) must be constant for all x due to conservation of mass. If we assume that
at each x in the system the velocity profile is quadratic, in line with standard Pousielle
flow, then we can relate the velocity at the each x to the velocity at x = 0 via equation
(47);

vx(x, y) =
R(0)

R(x)
vx(0, y

R(0)

R(x)
) (48)
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Figure 9: Velocity profiles for the x and y midlines, that is lines of constant y and x
respectively.

This is only an approximation since in reality we must have non-zero y components to
the velocity field. At the two midlines1, however, we would expect vy to be zero due
to symmetries. If we look at Figure 9b, which shows the profile of vx along the line
x = Lx/2, we can see that it closely matches the expected shape of a parabola. Similarly
figure 9a shows how vx varies along the line y = 0 we can see it nicely matches vx(x, 0)
given by (48) (R(x) is calculated numerically).

4.2. Interface Forces

In this example we show a droplet of fluid spreading along a boundary due to surface
forces, which are included by the continuum surface force model [10, 27]. The two fluids
have a density ratio of 10, with the droplet being heavier, and equal viscosities of 0.001 Pa
s. There is no gravity in this simulation. The droplet is partially wetting with a contact
angle θ = 30◦. We can see the that the surface tension forces at the NURBS boundary
pull the droplet from it’s initial configuration and it becomes held in an indentation with
the correct contact angle. This demonstrates that as well as shear-forces in single phase
flows the NURBS boundaries can handle additional body forces.

5. Conclusions

In this paper we have highlighted issues involved with implementing reflected bound-
ary conditions for curved objects in SPH. It was shown that when using geometric objects
care must be taken to correctly renormalize the weightings for both the fluid particle and
the corresponding reflected particle and that without accounting for the ‘volume-factor’
the simulations are demonstrably less accurate. Including objects as geometrical repre-
sentations is desirable as often one desires a simplified setup to mimic experiments or to

1Lines defined by x = Lx/2 and y = 0
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Figure 10: A multi-phase simulation of two fluids with contact angle of 30◦ and ρ1/ρ2 =
10

remove extraneous factors from consideration. Further this framework could easily be
extended to include more complicated objects such as superquadrics.

NURBS curves and surfaces are the industry standard for much CAD and technical
drawing work, therefore the fact that they can be directly included in a practical manner
into an SPH implementation is a very desirable feature. This paper examined the issues
involved with their application as boundaries in SPH using reflected particle boundaries.
It was shown that in 2D that the Newton-Raphson method provides a very quick way of
searching the parameter space and locating closest points, although care must be taken
to detect the occasional divergences which occur as part of the method. In 3D it is
expected that the same method should also work well.

It has been shown that the handling of boundaries in SPH has a large effect on the
simulation results [15], for this reason any improvement to SPH in this regard is a useful
addition.
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