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Abstract
While themajority of cells in an organism are static and remain relatively immobile in their tissue,
migrating cells occur commonly during developmental processes and are crucial for a functioning
immune response. Themode ofmigration has been described in terms of various types of random
walks. To understand the details of themigratory behaviour we rely onmathematicalmodels and their
calibration to experimental data.Here we propose an approximate Bayesian inference scheme to
calibrate a class of randomwalkmodels characterized by a specific, parametric particle re-orientation
mechanism to observed trajectory data.We elaborate the concept of transitionmatrices (TMs) to
detect randomwalk patterns and determine a statistic to quantify these TM tomake them applicable
for inference schemes.We apply the developed pipeline to in vivo trajectory data ofmacrophages and
neutrophils, extracted from zebrafish that had undergone tail transection.Wefind thatmacrophage
and neutrophils exhibit very distinct biased persistent randomwalk patterns, where the strengths of
the persistence and bias are spatio-temporally regulated. Furthermore, themovement ofmacrophages
is far less persistent than that of neutrophils in response towounding.

1. Introduction

Random walk models are often applied in biology to
investigate movement of particles, cells or whole
organisms (Codling et al 2008). They are often
described as uncorrelated random walks with diffu-
sion (Berg 1993) or Levy flights (Edwards et al 2007).
Recently it was reported that living mammary epithe-
lial cells in a tissue display a bimodal persistent random
walk (Potdar et al 2010). The intracellular and extra-
cellular signalling processes that lead to migration of
cells have been studied over the last few decades.
Examples include the PI3K signalling cascade as well
as the MAPK pathway with the latter investigated by
video microscopy of migrating neutrophils after p38
inhibition (?, Liepe et al 2012). In order to fully
understand the nature of such signalling processes we
need to link classical random walk descriptions via
biophysical parameters to experimental data. It is then

a necessity to be able to estimate parameters of random
walk models from experimental data. A typical exam-
ple is the estimation of the diffusion coefficient from
observations of spatial displacements over time (Wilke
and Lee 1955, Dohnal 1987, Neisyy 2008). In most
studies, such parameter estimation is restricted to
models of movement where the likelihood, i.e. the
probability of observing the data for a given parameter
set, can be calculated easily (typically because it is
available in closed form) or in approximation (Sim
et al 2015). However, as more realistic and complex
models emerge, such as multi-scale and agent-based
models (An et al 2009, Horstemeyer 2010, Dada and
Mendes 2011, Liepe et al 2012), obtaining these
likelihoods becomes either impossible or computa-
tionally prohibitive for the purposes of parameter
inference and model selection. For this reason, one is
then compelled to adopt likelihood-free methods,
such as the approximate Bayesian computation (ABC)
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framework (Toni et al 2009, Turner and van
Zandt 2012, Wilkinson 2013). The key challenge in
such ABC approaches is to define a statistic and its
accompanying distance function that most effectively
captures and quantifies the differences between simu-
lated data frommodels with different parameters.

To distinguish different types of random walk,
such as Brownian motion, biased random walks or
correlated (persistent) randomwalks, the most com-
monly used summary statistics are the distribution
of step lengths, the mean square displacement and
the autocorrelation function of the turning angles
(Berg 1993, Codling et al 2008). These statistics can
be applied in a straightforward manner when analy-
tic expressions of the expected statistics are known.
However, especially in biological contexts, the
movement of particles, cells or animals is highly
non-trivial and cannot be sufficiently well described
by any single standard random walk model. At the
very least, one needs to combine several such simple
models to form more realistic hybrid models, albeit
at the cost of a loss in analytic tractability. The com-
monly used statistics fail to capture the details of the
walks resulting from such models. Therefore we
need to define a statistic that is sufficient to describe
the dynamic behaviour of the model and easy to
compute. To do so we have developed transition
matrices (TMs) and established their usefulness in a
previous study (Taylor et al 2013). As we review in
greater detail in the next section, these TM are sum-
maries of the joint probabilities P ( , )t t 1α α + of the
random walk turning angles tπ α π− ⩽ < at all
times t. Even though the TMs are not analytically
tractable, they contain more information about the
random walk behaviour than previously used
statistics.

One attractive feature of TMs is their simple
visual representation as heat maps. For some random
walk models, one can often distinguish specific pat-
terns of movement and intuitively ascribe the
approximate parameters of the underlying random
walk model—all from a simple visual inspection of
these heat maps. For less obvious cases and formal
parameter inference purposes we need to define a
metric in the space of TMs that allows us to distin-
guish between the details of our chosen random walk
models. The choice of the metric is critical, because a
poorly performing metric can lose information that
was captured in the TMs.

In this study we explore different metrics for their
capability to discriminate different types of random
walks and evaluate their performances in an ABC
inference scheme. For the purpose of validating the
choice of metric, we construct a specific random walk
model that has tractable analytic parameter like-
lihoods, but nevertheless retains some of the complex-
ity of a hybridmodel. That way we are able to compare
the ABC approximated posterior distribution (using
the TMs and the investigated metrics) to the exact

solutions obtained through any exact Monte Carlo
sampling scheme (e.g. MCMC) (Robert and
Casella 2013).

We present a case study where we analyse the spa-
tio-temporal characteristics of a biased-persistent
random walk model of leukocytes in response to
acute injury. Leukocytes, here macrophages and neu-
trophils, are white blood cells that create the first
layer of defence of the innate immune system and
their migration patterns are therefore subject of
interest in many biomedical studies (Mathias
et al 2009, Skinner 2011, Holmes et al 2012, Schiwon
et al 2014).

The remainder of the paper is structured as fol-
lows. In section 2, we provide a description of the the-
oretical and experimental methods used in this paper.
In particular, we give details of the random walk
model, an overview of the ABC inference procedure,
the list of the various candidate metrics, and details of
the experimental procedures used. In section 3, we
present our results for our simulations and the biolo-
gical case study, and conclude with a discussion of the
wider applicability of this approach.

2.Methods

2.1. The randomwalkmodel
The situation we model consists of N non-interact-
ing point particles in 2 . These points represent the
centroid of a cell, which is often used to track cells
from live imaging data. The approximation of the
cell as a point mass introduces simplicity and for
many problems the added complexity of particle
shapes or sizes is unnecessary. In this way our model
is build on the assumption that themovement results
from the cells interaction with its environment.
In situations where the cell density is high or the
cell’s compartment is small, cell–cell-interactions
need to be considered. The direction of a particle’s
movement at any time step t is described by two
random variables, which are a step length st and a
turning angle tα taken with respect to an arbitrary
fixed reference axis. The step length follows the
distribution

s t Nd (0, 1), (1)t ∼ × +

where N (0, 1)+ is a truncated normal distribution,
truncated at 0, and dt = 0.001. The chosen step size
model is just a practical implementation; our statistical
analysis is independent of step sizes.

The turning angle tα is defined as the angle
between a motion vector and a reference axis, here the
negative y-axis (see figure 1(a), at time t. tα follows the
wrapped normal distributions (Breitenberger 1963)
with the probability density function

2
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We note that we have selected the wrapped normal
distribution mainly for its flexibility and relative
simplicity; the inference scheme described below is, in
principle, applicable to any other choice of distribu-
tion defined on a circle (e.g. vonMises distribution).

Themean μ and variance σ depend on whether the
random walker follows a biased or persistent motion.
For the biased motion we define μ β= (the direction
of bias) and for the persistent distribution we have

t 1μ α= − , which is the direction in the previous time
step (see figure 1(a)). The variances σ for the biased
and persistentmotion are defined as

p2 log( ) (3)pσ = −

and

b2 log( ) (4)bσ = −

respectively, with the persistence and bias parameters,
p and b, with p b, [0, 1]∈ . They affect the variance of
the distributions such that the closer to 1 they are, the
smaller their respective variances will be, and themore
likely the particle will be to sample an angle in the
direction of the bias or the persistence, as appropriate.
If p or b is equal to 0, then the corresponding variance
will tend to infinity and thus the distribution is a
wrapped uniformdistribution.

The decision whether the random walker follows
biased or persistent motion is based on a further ran-
dom variable, which follows a Bernoulli distribution
with success probability w, so that w describes the
probability of a biased motion and w1 − describes

Figure 1. (A) A diagramdepicting two consecutivemotion vectors at times t and t 1+ (grey), and the associated angles with respect to
the reference axis (the negative y-axis). The direction ofmotion at time t 1− is described by t 1α − , the persistence direction at time t is
given by t 1α − , and the bias direction is denoted by β. The combination of bias and persistence direction results in themotion vector at
time twith direction tα . (B) A key to reading heatmaps of transitionmatrices (TMs). TheTMgives the probability distribution of
directional changes for a set of trajectories. The angles on rows and columns give the direction ofmovementwith respect to the
reference axis (here, the negative y-axis) in the plane containing the trajectories at time step t and t 1+ respectively. Any entry in the
TMgives the probability of a particle travelling in the direction denoted by the blue arrows (rows) at time t 1+ , given that it was
travelling in the direction denoted by the black arrows (columns) at time t. (C) An overview of the inference scheme used. TheABC–
SMC algorithm takes trajectories fromdata and numerically solves themathematicalmodel with varying parameters in order to
minimize the distance between the transitionmatrices generated from the data and the simulation. This gives rise to inferred levels of
bias and persistence.

3
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the probability of a persistent motion; w is assumed to
remain constant over time t.

At each time point, tα and st are determined and,
accordingly, the particle moves a distance of st in the
direction defined by tα . This constitutes one step in
the particle’s trajectory, described by three para-
meters (p, b and w). Five different parameter combi-
nations are considered as reference points for specific
types of randomwalks as can be seen in table 1. A par-
ticle that performs Brownian motion does not show
either bias or persistence (p = 0, b = 0). The choice of
the weight is then arbitrary and we chose without loss
of generality w = 0.5. A persistent random walker has
no bias (b = 0), but he has some level of persistence
which is defined by p and w. Accordingly, a biased
random walker has no persistence (p = 0) and the
level of bias is defined by b and w. In the case of a
biased persistent random walk (BPRW1 and
BPRW2) none of the parameters should be 0. From
these example parameter combinations we compute
TMs, which we will refer to in the following as
queryTMs.

2.2. Transitionmatrices
To summarize the model output in the approx-
imate inference framework we extract the direc-
tional transitions from the simulation and compute
from these a transition matrix, first introduced in
(Taylor et al 2013), which allows for visualization
of the dynamics exhibited by the particle
trajectories.

A TM T is the expected joint distribution of suc-
cessively measured turning angles ( , )t t tdα α + . The
components of the matrix Tij gives the joint prob-
ability of measuring the angle i t,α at some time t and
the angle j t t, dα + at the next measurement time t td+ ,
where i t,α represents any angle that lies in the half-
open interval i N i N[2 , 2 ( 1) )bins binsπ π + for
i N0, 1 ,... bins= .

Tij can be estimated from the data by constructing
a two-dimensional histogram. First, we bin successive
(and overlapping) pairs of angles ofmotionsmeasured
for every particle in terms of the intervals above. Then
we define the sample TMas

T
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and N T tdq
N

q1′ = ∑ = the total number of successive

angle-pair observations. The choice of Nbins is not pre-
determined and can, in principle, be tuned for
different datasets. The more transitions are observed
in a data set the larger Nbins can be chosen.

As can be seen in the key in figure 1(b), we have
adopted the convention whereby the columns of the
TM indicate the direction intervals at time t while the
rows the intervals at time t td+ .

The interval between experimental observations
dtobs is determined by the experimental setup. In the
general case, the interval between directional changes
d t is an independent random variable; specifically,
the number of directional changes that take place
between any two observations is itself an unobserved
quantity. It is precisely this hidden feature that pre-
vents one from deriving exact closed-form expres-
sions for the parameter likelihoods, thereby
necessitating an approximate approach. In this sce-
nario, the random walk model adopted here is an
effective model (see (Sim et al 2015) for alternative
velocity jump process models); concomitantly, the
directional terms tα are simply functions of the dis-
placement data rather than the true ballistic paths of
the particles.

Nevertheless in the simulation examples below we
let

t td d constant. (7)obs= =

This simplifying assumption is made for the sole
purpose of validating the proposed ABC approach as it
allows us to determine the exact path probabilities
and, hence, parameter posteriors for comparing
against the approximate versions.

For the set of model parameters Θ, the likelihood
resulting from the observation ofN paths is simply

( )L p( ) , (8)
i

N

i

1

∏Θ π Θ=
=

where ( ,..., )i i i T,0 ,π α α= is the ith path consisting of a
sequence of T 1+ observations i t,

2α ∈  . From
equation (7) the individual terms can be factorized as

( ) ( ) ( )p p p , ,

(9)

i i

t

T

i i t,0

1

, 1t∏π Θ α Θ α α Θ=
=

−

where the individual probability terms are simply
given by equation (2).

Table 1.Parameters for reference transitionmatrices (R).

type of randomwalk (RW) parameters (w, p, b)

Brownianmotion (BM) (0.5, 0.0, 0.0)

persistent RW (PRW) (0.1, 0.5, 0.0)

biasedRW(BRW) (0.9, 0.0, 0.5)

biased persistent RW1 (BPRW1) (0.5, 0.7, 0.3)

biased persistent RW2 (BPRW2) (0.5, 0.3, 0.7)
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2.3. Inference usingABC
Even though for the proposed model in this study it is
straightforward to define the likelihood function and
perform exact inference, themotivation of this study is
to provide an inference scheme that can also be applied
to far more complex random walk models, for which
the likelihood is not tractable. The approach taken for
the parameter inference is ABC in a sequential Monte
Carlo sampling scheme (ABC–SMC) (figure 1(c))
(Toni et al 2009). In order to perform ABC–SMC, one
requires some sufficient statistic, μ, which can be
calculated from both the real data and the simulated
data; a distance function; a prior distribution for each
of the parameters; some distance thresholds iϵ ; and a
set of perturbation kernels. The overall performance is
affected by all of the factors (Filippi et al 2013, Silk
et al 2013), but the choice of the summary statistic is
crucial; even for good summary statistics, however, the
distance function can play a major role in setting the
rate and reliability of convergence. The iϵ are typically
a series of decreasing distance thresholds where
i n0, 1, ,= … and n. Here we choose 1.00ϵ = and
decrease it adaptively so that in population i the new
threshold iϵ is based on the 10%-ile of the distances
accepted in the i( 1)th− population. As summary
statistics μwe compute the TMs; the distance function
will be discussed at length later on in the paper. The
prior distributions for the parametersw, p and b are all
uniform distributions between 0 and 1. The ABC–
SMCalgorithmproceeds as follows:

We chose P = 500, q 10%= . The value for d is
dependent on the distance function being used since
they all return values of various magnitudes, but it
tends towards 0.

2.4. Exploring distance functions
In order to perform ABC–SMC as described above, it
is mandatory to define a distance function that is able
to efficiently discriminate between different random
walk TM matrices. There is no standard method of
computing the distance between two matrices and
each proposed matrix metric focusses on distances
between specificmatrix characteristics. For this reason

a number of potential distance function candidates
were tested in order to find the best option for our
application. The distances investigated are listed in
table 2 (Deza and Deza 2006). The TM from real or
simulated data is denoted by R and the query TM is
denoted by Q, and A Q R= − . For the purposes of
the following notation, all matrices are m x n. We
chose m n 13= = in the case study and m n 15= =
otherwise. These is a sufficient number of intervals to
detect randomwalk characteristics, but also an appro-
priately low number of intervals to work with experi-
mental data, as the number of data points required for
reliable estimation of the TM increases dramatically
with the number of intervals. The entry in the ith row
and jth column of amatrixA is denoted by aij, while its
singular values are written as si(A). The singular values
of a matrix A are defined as the square roots of the
eigenvalues of the matrix A A* where A* is the
conjugate transpose of A and s A s A( ) ( ) ...1 2⩽ ⩽
(Deza andDeza 2006).

The distances include the Frobenius norm, which
is also sometimes called the Euclidean norm; the Hel-
linger distance, which is used to calculate how similar
two probability distributions are (Duan et al 2012);
two natural norms: the infinity norm and one norm,
which are defined as the maximum absolute row sum
and the maximum absolute column sum, respectively;
and two Ky-Fan k-norms: the spectral norm and the
trace norm, which are defined to be the sum of anm x
nmatrix’ first k singular values where k = 1 and k =
min m n{ , }, respectively. Furthermore we test the
Kullback–Leibler divergence. The latter is not strictly a
distance since it is asymmetrical. However, it is often
used to quantify differences between distributions. For
the purpose of parameter inference in an ABC scheme,
the distance function does not need to be symmetric,
as long as the non-negativity, the identity of indis-
cernibles and the triangular inequality are fulfilled.We
explore both possibilities for the Kullback–Leibler
divergence (D R Q( )KL1 ∣∣ and D Q R( )KL2 ∣∣ ).

2.5. Experimental procedures
mpx:GFP/fms:RFP zebrafish embryos (Gray
et al 2011) (5 days post fertilization) were anesthetized

Table 2.The distances that were investigated.

Distance Formula (Deza andDeza 2006)

Frobenius norm A aFr
i

m

j

n
ij

1 1
2∑ ∑∣∣ ∣∣ = ∣ ∣

= =

Hellinger distance H R Q p q( , ) ( )
i

k

i i
1

2 1
2∑= −

=

Infinity norm A amax j n
j

n
ij1

1
∑∣∣ ∣∣ = ∣ ∣∞

⩽ ⩽ =

Kullback–Leibler div. 1 D R Q r( ) ( · ln ( ))
i j

ij
r

qKL
ij

ij
∑ ∑∣∣ =

Kullback–Leibler div. 2 D Q R q( ) ( · ln ( ))
i j ij

q

rKL
ij

ij
∑ ∑∣∣ =

One norm A amax j n
i

n
ij

1
1

1
∑∣∣ ∣∣ = ∣ ∣⩽ ⩽ =

Spectral norm A A A(max eigenvalue of * )sp
1
2∣∣ ∣∣ =

Trace norm A s A( )tr
i

m n
i

1

min{ , }∑∣∣ ∣∣ =
=
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in 0.6 M MS-222 (Tricaine methanesulfonate, Sigma-
Aldrich) and the tail fin was transacted using a sterile
scalpel. The fish were then transferred to fresh system
water for 2 h 28.5°C before transferral to 0.8% low-
melt agarose (Flowgen, Lichfield, UK) for time-lapse
imaging experiments. Images were captured using a
Zeiss Axiovert 200 inverted microscope (Zeiss, Cam-
bridge, UK) controlled by the C-Imaging Simple-PCI
acquisition software (Hamamatsu, Sewickley, PA,
USA) for up to 11 h post wounding. The temperature
was maintained at 28.5°C throughout the experiment
using a full incubation chamber with temperature
control. The time gap between two consecutive images
was 18 s. This resulted in time-lapse movies of GFP-
labelled (green) neutrophils and mCherry-labelled
(red) macrophages. Image processing was performed
as described in (Taylor et al 2013).

3. Results

3.1. Choosing the optimal distance
In order to determine which of the seven distances is
the best candidate for parameter inference we gener-
ated 500 TMs based on simulated random walk
trajectories with various values for w, p and b, which
we refer to as query TMs (Q). We compute each of the
seven distances between these query TMs (Q) and the
thefive reference TMs (R) shown in table 1. The results
are then represented graphically to visualize the
distances’ performance. The parameter values used to
generate the query TMs are chosen on a lattice in
parameter space with intervals 0.2 for w and 0.1 for p
and b.

The first method of visualizing these results is by
using an atlas of 2D heat maps. Each heat map shows
the distance from (or to, in the case of D Q R( )KL ∣∣ ) the
reference TM to (or from) query TMs with varying
levels of b and p, and a fixed value of w. ‘Atlases’ of
these heatmaps are produced for each reference TM,
where each row of heatmaps uses a different distance
function, and each column uses query TMs produced
with a different value of w. For a complete set of these
heat atlases, please see supplementary figures 1–5.

Examples from the BM and BPRW1 cases with
fixed w = 0.5 are shown in figure 2. A good distance
will have a minimum value when both the reference
and query TM have been produced using the same
parameters, andwill increase rapidly as the parameters
become less similar. We can quantify this latter prop-
erty by examining the proportion of the full parameter
space that reflects a distance below a threshold relative
to the minimum distance value; here, a low value
would indicate a good distance measure. The results
for several thresholds are shown in figures 3(A) and
(B) with the Hellinger distance and the trace norm
performingwell.

As a second approach to visualize the results we
produce rank plots of the calculated distances. This

means that we group all of the distances calculated to
(or from) each reference TM using a particular dis-
tance function, order these numbers from lowest to
highest, and plot them on a graph. This way it is possi-
ble to see the gradient of distances as the parameters
change more clearly. Again, the steeper this gradient
the better, because a steep gradientmeans this distance
function will elucidate differences between TMs
whose parameters are only slightly different. The
results for the trace norm and Hellinger distance can
be seen in figures 3(C) and (D). For other distances,
please refer to supplementary figure 6.

Visual inspection of the heat atlases clearly indi-
cates that the Hellinger distance and the trace norm
outperform the other distance functions. Both the
Hellinger distance and the trace norm are minimal
between TMs with identical parameters, and maximal
when parameters are most different. There is also a
clear, strong gradient from low to high values of the
distances.

3.2. TMs in anABC inference scheme
We next explore the performance of the Hellinger
distance and the trace norm in anABC–SMC inference
scheme. As data we use the five simulated reference
TMs, since their parameters are known.We run ABC–
SMC in order to infer for each TM the original
parameters of bias, persistence and weight using both,
theHellinger distance and the trace norm, as a distance
between the data and simulations. We compare the
inference results to the posterior distribution obtained
using the Metropolis Hastings algorithm. This com-
parison will indicate (i) if the applied statistics (TMs)
are sufficient to describe the data, and (ii) if the chosen
metric is appropriate.

We approximate the posterior parameter dis-
tribution of a TM generated from a BM with para-
meters w p b( , , ) (0.5, 0.0, 0.0)= . The marginal
posterior distributions based on the Hellinger dis-
tance and the trace norm, respectively, are shown in
figure 4(a). While b and p are inferred well for both
distances, the marginal posterior distribution of
w spans the entire prior. The reason for this becomes
apparent when visualizing the posterior distribution
as a 3D scatterplot. All three parameters are highly
correlated in a way that a high bias can reproduce
the BM characteristics, as long as the weight is sup-
porting the persistence, which itself needs to be
close to 0. Vice versa, a high persistence can repro-
duce the BM characteristics, as long as the weight is
supporting the bias, which itself needs to be close to
0. In order to reduce this dependency, we rescale the
parameters by simple multiplication of the para-
meters. Since the weight is equivalent to the prob-
ability of the particle choosing the bias distribution
over the persistence distribution, b wb′ = and
p w p(1 )′ = − where b′ and p′ are the rescaled bias
and rescaled persistence parameters, respectively.

6

Phys. Biol. 12 (2015) 066001 P JM Jones et al



The rescaled parameters (p′,b′) used in generating
the BM are (0.0, 0.0). The rescaled posterior dis-
tribution matches these values well for both Hellin-
ger distance and the trace norm.

We repeat the inference scheme with the remain-
ing four TMs. The results for the BPRW1 are shown
in figure 4(b). The true parameters w p b( , , ) =
(0.5, 0.7, 0.3) are inferred well by both distances.

Figure 2. 100 query TMs (Q) were computed from simulationswith various levels of b and p ranging from0 to 0.9 in 0.1 increments,
andwith afixedw of 0.5. Each graph is a heatmap generated by calculating the distance from/to the query TMs to/from the BM
reference TM (A) and the BPRW1 reference TM(B) using various distance functions (see graph titles). Kullback–Leibler (KL)
divergence 1 and 2 are theKL divergence from and to the reference TMs, respectively. Persistence (p) increases along the columns and
bias (b) increases along the rows of each heatmap. Thewhite cross indicates the true parameter values; thewhite circle indicates the
minimumof the heatmap.
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However, the marginal posterior distributions based
on theHellinger distance are narrower around the true
parameter values, which shows a better performance
of this distance. Note, the 3D scatterplot does not
show any correlations between the three parameters,
which indicates that no other parameter combinations
can reproduce the characteristics of the BPRW
model. Therefore it is not a surprise that also the
rescaled parameters p b( , ) (0.35, 0.15)′ ′ = are infer-
redwell.

For all five tested scenarios the approximated pos-
terior distributions are in good agreements with the
exact posterior distributions obtained by the Metro-
polis Hastings algorithm. The main deviation is
observed for the weight parameter w in the Brownian
motion case 4(a). Furthermore, the exact marginal
posterior distributions are slightly narrower than the

approximated counterparts, which indicates some loss
of information in the TMs and/or the appliedmetric.

In conclusion, the Hellinger distance is the best
distance function to infer bias and persistence para-
meters for 2D random walks using TMs as summary
statistics. The inference results are in agreement with
exactmethodswhere these are applicable.

3.3.Macrophages andneutrophils as random
walkers— a case study
To test theHellinger distance and evaluate its application
on real-world problems we apply this distance to infer
the randomwalk parameters ofmigrating immune cells.
More specifically,we extractmacrophage andneutrophil
tracks from living zebrafish embryos that hadundergone
tail transection. Macrophages and neutrophils are the
first layer of defence during inflammation, here

Figure 3. 500 query TMswere computed from simulationswith values ofw, p and b spanning the parameter space. The distances from
each reference TM in table 1 to these query TMswere calculated and plotted in ascending order (rank plots). (A) and (B) The
proportion of the full p b× parameter space that gives distance less than certain thresholds. The thresholds are defined in terms of
fractions α of the difference between themaximumandminimumdistances across the parameter space in eachmodel.We set

0.05α = , 0.1 and 0.2.We show the plots for the Brownianmotion (A) and the BRW1model (B). (C) Rank plot based on the trace
norm. (D) Rank plot based on theHellinger distance.
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mimicked by wounding. The extracted cell tracks were
grouped according to how long after wounding and how
far away from thewound theywere detected. This results
into spatial-temporal clusters, consisting of two tem-
poral groups (T1: 1–6 h; T2: 6–11 h), each of them
consisting of seven spatial groups that are generated by a
sliding window approach. Figure 5 provides an overview
of how the data are separated. For all 28 groups of
trajectories (14 formacrophages and 14 for neutrophils)
we compute the TM from the extracted cell tracks and
infer the randomwalk parameters (figures 5 and 6). The
ABC–SMC framework using the Hellinger distance
successfully reproduces the TM computed from the
in vivo data (figure 5(B)). We compare the distances
from the data TM to the simulatedTM to distances from
the same data TMs to a given realization of a random
walkwith p b 0= = .As shown in supplementaryfigure
8, the former distances are significantly smaller for every
TM, as is expected.

The posterior distributions of the inferred
rescaled parameters p w p(1 )′ = − and b wb′ = are
given in figure 6. It becomes apparent that the level of

observed bias and persistence during the first 6 h after
wounding is dependent on the distance from the
wound for neutrohils. Macrophages, on the contrary,
have a nearly constant level of persistence and only a
modest increase of the bias with increasing distance
from the wound. After 6 h the observed bias is
decreased close to the wound, while the level of
observed persistence is increased. Neutrophils show a
comparable behaviour before and after 6 h. In gen-
eral, we find that while the level of bias is similar in
both cell types, the level of persistence is significantly
higher in neutrophils than in macrophages. This case
study demonstrates the potential of TMs as summary
statistics combined with the Hellinger distance in an
ABC framework.

4.Discussion

Traditional random walk models are often not applic-
able to describe in vivo cell migration due to the high
complexity of the underlying molecular and cellular

Figure 4.Results of parameter inference usingABC–SMC,with theHellinger distance (orange) and trace norm (blue) as distance
functions, performed on simulated data using the BM (A) and (B) andBPRW(C) and (D) as reference TMs. Shown are the posterior
parameter distributions asmarginals for p, b andw and themarginal rescaled parameters p′ and b′ (A) and (C). The exact posterior
distributions (usingMetropolis Hastings algorithm /MCMC) are shown in black; the true values used for the simulation of the
reference TMare indicated by a red line. The 3D scatter plots of p, b andw are shown in (B) and (D).
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processes. In the last decade, so-called agent based
models have been developed to describe pathways of
the immune response (Bogle and Dunbar 2009, Liepe
et al 2012, Chiacchio et al 2014). Such models can
include a panoply of rules that guide the agent, here
the cell. The problem is that these models can not be
easily analysed. To provide an inference framework
for such model, we studied a random walk model, for
which the likelihood is tractable and exact inference
can be applied. This provided us a reference of
performance. By exploring a set of distance functions
between matrices, we provide an inference scheme
that is able to estimate parameters from different
random walk models. The advantage of our frame-
work is that it does not require any analytic or closed
form expressions derived from the model of interest,
as long as themodel can be solved numerically.

We find that the Hellinger distance and the trace
norm are best suited to distinguish randomwalk char-
acteristics. It is interesting that the trace norm per-
forms so well since it is just the sum of the diagonal
entries of the matrix. This suggests that a lot of infor-
mation about the whole TM is contained in just its
diagonal entries. The level of persistence is represented
by the probabilities on the diagonal on the matrix.
Since the overall TM is normalized (all entries sum up
to 1), the diagonal also contains information about the
remaining entries in the TM. Similarly, the bias in our
study is expressed as the probability in the centre of the
TM, i.e. the probabilities along the diagonal of the
matrix. This explains the high information content of
the diagonal entries and therefore the good perfor-
mance of the trace norm. However, as soon as the bias
will be located at an angle other than 0, or other

Figure 5.Anoverview of the TMcomputed from the extracted in vivo cell trajectories (A) and the inferred TMs (B). The inferred TMs
are computed from simulated trajectories using parameters drawn from the posterior distribution (posterior predictive check). The
graph depicts how the data were separated into seven spatial (S1–S7) and two temporal (T1 andT2) groups. Temporal groups are
non-overlapping and are represented by individual rowswhereas spatial groups span three columns and overlap the consecutive
group(s) by two thirds. The TMs are computed from the extracted trajectories of the corresponding groups and are positioned in the
exact row for the temporal group and the central columnof the spatial group. From left to right the spatial groups read in increasing
numerical order fromS1 to S7, and the temporal group is T1 in the top two rows andT2 in the bottom two of each set of four.Note
that the TMs are not plotted on equal scales, whichwas necessary for visualization purposes.
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characteristics emerge, the trace norm is expected to
fail. Here the Hellinger distance captures more details
of the entire TM.

The framework relies on the ability of the TM to
capture the information of the underlying random
walkmodel. The TMhas the advantage that it does not
require the collection of data over many steps, because
it does not rely on long term behaviour (in contrast to,
for example, the mean square displacement). Indeed,
it is enough to be able to track a cell via three points,
i.e. to observe two consecutive motion vectors of the
same cell. However, biological data might also bear a
further problem, which is related to sampling effects.
A low temporal resolution can result in a different
time step in observed data compared to the reality.
Rosser et al (2013) and Codling and Hill et al (2005)
investigate the effects of sampling on a PRW. We
briefly demonstrate such sampling effect on the TMs
in supplementary figure 9. We find that strong sam-
pling has the tendency to overestimate the level of bias,
but underestimate the level of persistence. These
effects may also impact the choice of the optimal

metric and should be carefully considered in the inter-
pretation of inference results.

We have demonstrated the inference framework
in a case study that analyses the different migration
patterns of macrophages and neutrophils in response
to acute injury. Because the experimental data were
extracted from only four zebrafish embryos, the biolo-
gical significance of these results is debatable. How-
ever, the spatio-temporal behaviour regarding bias
and persistence can be linked to cellular function in
future studies. It is, for example, suggested that the
behaviour of macrophages and neutrophils is regu-
lated by a hydrogen peroxide gradient, produced at the
wound site (Niethammer et al 2009). Such a gradient
will induce the production of chemokines that interact
with the cell surface receptors and in consequence reg-
ulate their motion. A similar study was conducted in
zebrafish that tries to combine the migration beha-
viour with chemokine gradients in vivo (Liepe
et al 2012). Our inference results show a clear spatio-
temporal dependency of the bias and persistence of
macrophages and neutrophils in response to wound-
ing. The significantly higher persistence in neutrophils

Figure 6. Shown are the posterior distributions of the rescaled persistence, p′, and rescaled bias, b′, following parameter inference
using the data shown infigure 5. Results from1 to 6 h of the inferred persistence (A) and bias (B) aswell as the results from6 to 11 h of
the inferred persistence (C) and bias (D) are shown.
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compared to macrophages results in an overall faster
migration.

Although we investigate in this study the migra-
tion behaviour of innate immune cells during inflam-
mation, the proposed inference framework can be
useful in several other applications. Possible examples
in biology include the migration of T-cells as part of
the adaptive immune response (Masopust and Schen-
kel 2013), the migration of haemocytes (equivalent of
macrophages) during the development of drosophila
(Wood et al 2006, Razzell et al 2013) or the migration
and spread of tumour cells (Boroughs et al 2011). The
majority of studies conducted in the past decades were
restricted to analyse very basic statistics, such as cell
velocities and mean square displacement—choosing
appropriate summary statistics is a general problem in
ABC approaches, especially for model selection
(Fearnhead and Prangle 2012, Prangle et al 2014).
Here the concept of TMs is directly related to char-
acteristics of (random)migration behaviour, and their
application in an inference scheme allows us to extract
more information from the available data. This is par-
ticularly important when working with animal experi-
ments. Advanced statistical tools allow us to gainmore
information out of a reduced number of animals used
to answer a given research question.
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